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NOISY DECODING BY SHALLOW CIRCUITS WITH

PARITIES: CLASSICAL AND QUANTUM

JOP BRIËT, HARRY BUHRMAN, DAVI CASTRO-SILVA,
AND NIELS M. P. NEUMANN

Abstract. We consider the problem of decoding corrupted error correcting
codes with NC0[⊕] circuits in the classical and quantum settings. We show
that any such classical circuit can correctly recover only a vanishingly small
fraction of messages, if the codewords are sent over a noisy channel with
positive error rate. Previously this was known only for linear codes with large
dual distance, whereas our result applies to any code. By contrast, we give
a simple quantum circuit that correctly decodes the Hadamard code with
probability Ω(ε2) even if a (1/2− ε)-fraction of a codeword is adversarially
corrupted.

Our classical hardness result is based on an equidistribution phenom-
enon for multivariate polynomials over a finite field under biased input-
distributions. This is proved using a structure-versus-randomness strategy
based on a new notion of rank for high-dimensional polynomial maps that
may be of independent interest.

Our quantum circuit is inspired by a non-local version of the Bernstein-
Vazirani problem, a technique to generate “poor man’s cat states” by Watts
et al., and a constant-depth quantum circuit for the OR function by Taka-
hashi and Tani.

1. Introduction

Error correcting codes (ECCs), formally introduced in Shannon’s celebrated
work [Sha48], protect digital signals from noise. An ECC is a map E : Σk → Σn,
for a finite alphabet Σ and positive integers n ≥ k, with the property that any
message x ∈ Σk can be decoded from the codeword E(x) even if the code-
word is partially corrupted. If too many errors occur, however, recovering the
original message may become impossible. In such cases one can instead resort
to list decoding, an influential idea proposed in seminal works of Elias [Eli57]
and Wozencraft [Woz58], which aims to give a small list of messages whose
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codewords are close to the received (corrupted) codeword. Complexity con-
siderations appear naturally in this context, as encoding and decoding ideally
allow for reliable communication with limited computational resources; they
also appear because of the fundamental role played by ECCs in computational
complexity itself (see e.g., [Tre04] for a survey).

1.1. Error models. In the error model considered by Shannon [Sha48], a code-
word is corrupted according to some random process. A natural such process
is given by the symmetric channel : for each coordinate of the codeword inde-
pendently, the channel either transmits it unchanged with some probability ρ,
or replaces it with a uniformly random element of Σ with probability 1 − ρ.
We refer to ρ as the bias of the channel.1 If Z ∈ Σn is distributed according to
the random outcome of the symmetric channel with bias ρ applied to a code-
word E(x), we write Z ∼ Nρ

(
E(x)

)
. In this model the goal is to correctly

decode a corrupted codeword with good probability over the noise.
The combinatorial worst-case error model of Hamming [Ham50] instead as-

sumes that the codeword is corrupted arbitrarily on at most some δ ∈ [0, 1)
fraction of coordinates. We will refer to δ as the error parameter. In this
setting, the number of errors that can be tolerated depends on the minimal
Hamming distance between any pair of distinct codewords, or minimal dis-
tance of the code, denoted dE . Since the Hamming ball of diameter dE − 1
around any point y ∈ Σn contains at most one codeword, a message can be
retrieved if fewer than dE/2 errors have occurred.
If more errors occur, faithful decoding is no longer possible and list decoding

enters the picture. For δ ∈ [0, 1) and positive integer L, a code is (δ, L)-list
decodable if for any point y ∈ Σn, the Hamming ball of radius δn centered
around y contains at most L codewords. It is well known that any (δ, L)-list
decodable code satisfies L ≥ Ω(1/ε2) when δ = (1 − ε)(1 − |Σ|−1) [GV10]. If
fewer than a δ-fraction of codeword coordinates are corrupted, then a random
element from this list will give the correct message with probability at least 1/L.

1.2. Circuits. A well-studied problem is that of decoding corrupted ECCs by
constant-depth circuits with n inputs, k outputs and size poly(n), for example
in the context of black-box hardness amplification [STV99, TV07, Vio06]. Two
classes of such circuits are AC0, consisting of unbounded-fan-in AND, OR and
NOT gates, and the class NC0, consisting of arbitrary bounded-fan-in gates;
without loss of generality, we may assume that the fan-in of any gate in NC0

is at most two.

1In this model, each coordinate is thus corrupted with probability (1−ρ)(1−|Σ|−1), which
is usually referred to as the error rate. For our purposes, however, the bias will be a more
convenient parameterization.
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The extensions of these classes where unbounded-fan-in parity gates are
added to the gate sets are denoted by AC0[⊕] and NC0[⊕], respectively. These
are proper extensions since parity cannot be computed by AC0 circuits and NC0

is a proper subset of AC0 (see [AB09]). An important distinction is that the
outputs of NC0 circuits depend on only a constant number of coordinates of the
input, whereas the outputs of NC0[⊕] circuits can depend on the whole input.
The classes AC0 and NC0[⊕] are incomparable since NC0[⊕] cannot compute
the n-bit AND function; indeed, NC0[⊕] circuits can compute only constant-
degree polynomials over F2 (see Section 3), whereas AND has degree n.
We also consider the quantum counterparts of the above circuit classes, de-

noted QX, where X is one of the classes discussed above; these classes were first
introduced by Moore [Moo99] and Moore and Nilsson [MN01]. Thus, QNC0 is
the class of constant-depth quantum circuits containing arbitrary one- and two-
qubit gates, while QNC0[⊕] includes unbounded-fan-in parity gates acting on
superpositions. In contrast with their classical analogues, the classes QNC0[⊕]
and QAC0 are known to be equivalent [GHMP02, HŠ05, Moo99].2 In the set-
ting we consider, all parity gates will be classical. This is in slight contrast with
the works above, which consider quantum parity gates. The above-mentioned
equivalence still holds however, due to the fact that quantum parity can be
computed by a QNC0[⊕] circuit (with classical parities).

1.3. Quantum advantage. The above-mentioned classes of quantum circuits
recently enjoyed renewed interest in the context of provable separations between
quantum and classical complexity classes.
One of the principal challenges in quantum computing is to determine for

which types of problems quantum computers offer a significant advantage over
classical ones. Celebrated examples of practical importance, such as Shor’s
algorithm for integer factoring [Sho97], require quantum computers of a vastly
larger scale than currently available. Moreover, formally proving classical hard-
ness of factoring appears to be beyond the scope of currently-available tech-
niques. Constant-depth circuits form an attractive computational model, as
they will likely be easier to implement in practice and, from the perspective
of complexity theory, provide one of the few settings currently amenable to
provable lower bounds.

2In addition, the works of Moore showed that these classes are all equivalent to QAC0[q],
the class QAC0 with additional modulo-q gates. For an integer q > 1, a modulo-q gate
evaluates to 1 if the sum of its inputs equals 0 mod q and evaluates to 0 otherwise. Clas-
sically, the classes AC0[p] and AC0[q] are incomparable if p and q are powers of distinct
primes [Raz87, Smo87].
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A recent series of works, starting with a breakthrough of Bravyi, Gosset and
König [BGK18], considered the relative power of shallow quantum circuits. For
instance:

• The 2D-Hidden Linear Function problem can be solved exactly in QNC0

while any AC0 circuit succeeds with exponentially small probability
under a certain input distribution [BWKST19]; this strengthened the
main result of [BGK18] showing that this problem separates QNC0 from
NC0 in the worst case.

• The Relaxed Parity Halving problem can be solved exactly in QNC0

while any AC0 circuit succeeds with probability at most 1
2
+ exp(−nε)

under the uniform distribution [BWKST19].
• The Parallel Parity Bending problem can be solved with probability
1−o(1) by a QNC0/qpoly circuit while any AC0[⊕]/rpoly succeeds with
probability at most O(n−ε) [BWKST19].

• The problem of simulating correlations obtained from measuring graph
states QNC0 and NC0, even in the average-case [Gal19].

• The 1D-Magic Square problem separates noisy QNC0 circuits from
NC0 [BGKT20].

Similar separations based on other relational and sampling-based problems were
proven in [CSV21, GS20, WP23]. A common feature of all these problems
is that they were specifically designed to prove separations between shallow
quantum and classical circuits.
We instead consider the problem of decoding a corrupted error-correcting

code, which arises naturally in computer science. This problem is well studied
in the context of classical complexity theory, where shallow circuits endowed
with parity gates are also considered; see Sections 2.2 and 2.3 for further dis-
cussion.

1.4. The Hadamard code. A basic but important example of an ECC is the
Hadamard code, which encodes k-bit messages into codewords of length n = 2k

and is given by the F2-linear map H(x) = (〈x, y〉)y∈Fk
2
, where 〈x, y〉 = yTx.

This code has minimal distance n/2 and is (1/2−ε, O(1/ε2))-list decodable for
any ε ∈ (0, 1/2], which is known to be optimal for any code [GV10].
Under the symmetric channel, the Chernoff bound implies that unique de-

coding of the Hadamard code is possible with high probability for any constant
bias ρ > 0.3 This is due to the fact that, with high probability, the Hamming
ball of radius (1/4−ρ/4)n around a corrupted version of a codeword C contains
no other codewords than C itself.

3This even holds for any code over a large enough alphabet, as shown in [RU10].
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For the worst-case Hamming model, Goldreich and Levin [GL89] famously
gave an efficient list decoding algorithm for the Hadamard code that runs in
time poly(k, 1/ε), for error parameter δ = 1/2 − ε. For fixed ε > 0, their
algorithm gives a probabilistic AC0 circuit that, on input length n, correctly
returns the original message with probability Ω(1).

2. Our results

Here we consider the following problem. Let E : Fk2 → F
n
2 be a (binary)

error correcting code. Given a map φ : Fn2 → Fk2 representing some decoding
procedure, we wish to bound the probability of correct message retrieval:

(1) Pr
[
φ
(
E(x) + Z

)
= x],

where x ∈ Fk2 is some message and Z ∈ Fn2 is an error string. We consider two
scenarios, one classical and one quantum.

2.1. Classical setting. In the first scenario, φ represents an NC0[⊕] circuit, x
is uniformly distributed and Z ∼ Nρ(0), so that E(x)+Z is a random codeword
corrupted according to the binary symmetric channel with bias ρ. Our main
result in this setting says that (1) tends to zero, for any ρ ∈ [0, 1) and any
code:

Theorem 2.1 (Impossibility of decoding by NC0[⊕]). For any ρ ∈ [0, 1), d ∈ N

and ε ∈ (0, 1], there is a k0 = k0(d, ρ, ε) ∈ N such that the following holds. Let
k ≥ k0 and n be positive integers, E : Fk2 → Fn2 be any map and φ : Fn2 → Fk2

be a map computable by an NC0[⊕] circuit of depth at most d. Then, for a
uniformly distributed x ∈ Fk2 and Z ∼ Nρ(0), we have that

Pr
[
φ
(
E(x) + Z

)
= x] < ε.

In particular, this theorem shows that no NC0[⊕] circuit can correctly de-
code more than an ε-fraction of codewords with probability higher than ε over
the noise distribution, if the messages are long enough depending on ε, the
error rate (1 − ρ)/2 > 0 and the depth of the circuit. As a consequence of
Yao’s minimax principle [Yao77] and the Chernoff bound, it follows that any
probabilistic NC0[⊕] circuit will also fail (with high probability) to correctly
decode any binary ECC in the worst-case Hamming model, for any constant
error parameter δ ∈ (0, 1/2].

We note that the decay we obtain on the probability (1) of correct mes-
sage retrieval as a function of the message length is extremely slow, making
Theorem 2.1 a qualitative result rather than quantitative. Nevertheless, we
conjecture that the true decay of this probability is exponential in the message
length k; this would clearly be optimal, as can be seen by taking a constant
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map φ which always returns some fixed message. In Section 7 we will provide
some evidence to support this conjecture.

2.2. Quantum setting. In the second scenario, we consider the worst-case
Hamming model with constant-depth quantum circuits. Our main result in
this setting is an explicit QNC0[⊕] circuit capable of decoding the Hadamard
code.

Theorem 2.2 (Decoding Hadamard with QNC0[⊕]). There is a family of
QNC0[⊕] circuits (Cn)n∈N such that the following holds. Let k ∈ N, n = 2k

and ε ∈ (0, 1/2]. Then, for any y ∈ F
n
2 and any x ∈ F

k
2 satisfying d

(
y,H(x)

)
≤

(1
2
− ε)n, on input y the circuit Cn returns x with probability Ω(ε2).

We note that the bound Ω(ε2) obtained in the theorem is optimal, since in
general there can be Θ(ε−2) messages x ∈ F

k
2 satisfying d

(
y,H(x)

)
≤ (1

2
− ε)n.

This bound is non-trivial only when ε = Ω(1/
√
n), as there are n possible

messages.
As a simple corollary of Theorem 2.2, we obtain a similar result for the

problem of list decoding the Hadamard code.

Corollary 2.3. There is a family of QNC0[⊕] circuits (Cn)n∈N such that the
following holds. Let k ∈ N, n = 2k and ε ∈ [1/

√
n, 1/2]. Then, on any

input y ∈ Fn2 , with probability 1 − ε the circuit Cn returns a list L(y) of size
O(ε−2 log(1/ε)) which contains every x ∈ Fk2 with d

(
y,H(x)

)
≤ (1

2
− ε)n.

Proof: For a large enough constant C > 0, consider Cε−2 log(1/ε) parallel
instances of the circuit from Theorem 2.2. This gives a list L(y) of the claimed
size such that any message x ∈ Fk2 satisfying d

(
y,H(x)

)
≤ (1

2
− ε)n appears

in L(y) with probability at least 1− ε3. Since there are at most O(1/ε2) such
messages, it follows from the union bound that with probability at least 1−O(ε)
every such message appears in L(y). ✷

Remark 2.4. Note that the circuits obtained in this corollary also output sev-
eral messages whose codewords differ from the input y in more than (1

2
− ε)n

coordinates; this differs from the usual notion of the list decoding problem,
which aims to output a list of all messages x ∈ F

k
2 with d

(
y,H(x)

)
≤ (1

2
− ε)n

and none other. One can also solve the usual list decoding problem for the
Hadamard code using QNC0[⊕] circuits, by making use of MAJORITY gates
(and more general threshold gates) to prune the obtained list (see Section A.2).
We omit the details, as they are not so relevant for us.

As a consequence of Theorem 2.1 and Theorem 2.2, we conclude that the
problem of list decoding the Hadamard code separates the complexity classes
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NC0[⊕] and QNC0[⊕]; this holds for any positive error parameter δ > 0. The
task of proving quantum advantage for a natural problem such as list decoding
was the original motivation for the present work.
In the high-error regime where the parameter δ approaches the information-

theoretic limit of 1/2 (which is relevant for hardness amplification), a stronger
separation follows by combining Theorem 2.2 with a result of Sudan showing
hardness of noisy decoding by AC0[⊕] circuits (see Corollary 2.7 below).4 To
state this separation theorem precisely, we consider the following problem:

List-Hadamard problem: Let ε : N → (0, 1] be a function. For each dyadic
number n = 2k we define the problem LHn(ε) as follows: given y ∈ Fn2 , out-
put a list of at most n/4 elements in Fk2 containing every x ∈ Fk2 satisfying
d
(
y,H(x)

)
≤

(
1
2
− ε(n)

)
n.

The most general form of our quantum advantage result is given by the
following theorem:

Theorem 2.5 (Quantum-vs-classical separation). For any constant δ ∈ (0, 1
2
),

list decoding the Hadamard code with error parameter δ separates QNC0[⊕]
from NC0[⊕]. Moreover, for any (log n)/

√
n ≤ ε(n) ≤ 1/(logn)ω(1), the list-

Hadamard problem LHn(ε) separates QNC0[⊕] from AC0[⊕].

2.3. Related results and discussion. Both the problem of decoding cor-
rupted ECCs and the problem of proving quantum-versus-classical separations
of complexity classes are well studied, and there are several results in the lit-
erature related to the results presented here.

The main strength of our Theorem 2.1 is that it holds for any code and for
any positive error rate. Complementary results are known for restricted classes
of codes, and also for when the error rate tends to 1/2. We will now expand
on some of these results.
A code E : Fk2 → Fn2 is t-wise independent if, for any t-subset of coordi-

nates S ⊆ [n] and a uniformly random X ∈ Fk2, the restriction E(X)|S is
uniformly distributed over FS2 . Many codes have this property; for instance,
the dual code of a linear code of distance d is (d− 1)-wise independent. Under
the same noise model considered here, Lee and Viola [LV17], using earlier work
of Viola [Vio09], showed that NC0[⊕] circuits cannot distinguish a corrupted
uniformly random codeword of an ω(1)-wise independent linear code from a
uniformly random element of Fn2 . Note that this problem is formally easier
than (list) decoding.

4The same separation of complexity classes can also be obtained by combining other
previously-known results; see Section 2.3 for a discussion.
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Their result does not cover the Hadamard code, however, as it is not even
3-wise independent. Indeed, the Hadamard code is also easy to distinguish, as
it contains the sub-code (x1, x2, x1 + x2). Since the parity of these three bits is
always zero, the parity under noise is biased towards zero and therefore easily
distinguished from the parity of a random string.
In the very-high-error regime where the error rate approaches the information-

theoretic limit of 1/2 (which is relevant for hardness amplification), stronger
results are also known. For instance, Sudan (see [Vio06, Section 6.2]) showed
that list decoding with error parameter 1/2 − ε requires probabilistic AC0[⊕]
circuits to have size exp(poly(1/ε)). Below we state his result when restricted
to the Hadamard code, which is done for concreteness and better clarity; as
can be easily seen from its proof, one could instead consider any other ECC.

Theorem 2.6 (MAJORITY from list-Hadamard). Let C be a probabilistic cir-
cuit that solves the list-Hadamard problem LHn(ε) with probability at least 3/4.
There exists a (deterministic) oracle AC0 circuit D of size poly(n, 1/ε) which,
when given oracle access to C and the ability to fix its random bits, computes
MAJORITY on Ω(1/ε) bits.

This result can be readily deduced from Sudan’s arguments exposed in [Vio06,
Section 6.2]; since it is not given in this form elsewhere, we include its elegant
proof in Appendix A. As a corollary, the circuit lower bound for MAJORITY
due to Razborov [Raz87] and Smolensky [Smo87] gives the following (known)
hardness result for list decoding the Hadamard code.

Corollary 2.7 (Hardness of list-Hadamard). If ε(n) ≤ 1/(logn)ω(1), then the
list-Hadamard problem LHn(ε) cannot be solved by a probabilistic AC0[⊕] circuit
with probability Ω(1).

Combining this corollary with our QNC0[⊕] circuits for list-Hadamard given
in Corollary 2.3, we obtain the second separation of complexity classes stated
in Theorem 2.5.

The existence of the quantum circuits of Theorem 2.2 and Corollary 2.3
also follows from the Goldreich-Levin algorithm and the surprising fact that
MAJORITY can be computed by a QNC0[⊕] circuit [HŠ05, TT13].5 However,
whereas the circuit based on the Golreich-Levin algorithm depends on the error
parameter ε (which influences the size of the MAJORITY gates), our quantum
circuit is constructed independently of ε. Moreover, a key enabling sub-routine
in the Høyer-Špalek circuit for MAJORITY [HŠ05] is the powerful quantum

5The above-mentioned classical hardness of MAJORITY thus also implies a separation
between AC0[⊕] and QNC0[⊕], showing that despite its simplicity, the latter class of quantum
circuits is remarkably powerful.
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fan-out gate (see below for further details). In our circuit for Corollary 2.3,
we construct this gate explicitly using only classical parity gates and single-
and two-qubit gates; these gates are native to many quantum architectures
and as such, may give an easier way to implement quantum fan-out. In the
opposite direction, one can use the ideas behind the proof of Theorem 2.6 to
show that our quantum circuit from Corollary 2.3 also gives a QNC0[⊕] circuit
for MAJORITY, albeit not exact (see Section A.2).
Finally, quantum list-decoding of classical error correcting codes was also

studied in [Yam16]. The model considered there consists of a faulty quantum
circuit that implements the encoding, which differs from our setting.

2.4. Future directions. We conjecture that the correct rate of decay in The-
orem 2.1 is exponential in the message length, as suggested by the results we
obtain in the high-characteristic setting (exposed in Section 7). This raises sev-
eral intriguing questions related to notions of rank for tensors and polynomial
maps [BCS22].
Our results leave open the problem of decoding more general classes of error

correcting codes by shallow quantum circuits, or by efficient quantum algo-
rithms. A particular class of interest consists of low-degree Reed-Muller codes,
which generalize the Hadamard code.
A related question is if the problem of distinguishing random corrupted code-

words of some code from uniformly random strings gives similar separations of
the quantum and classical complexity classes considered here. For example,
Lee and Viola [LV17] proved NC0[⊕]-hardness of distinguishing ω(1)-wise in-
dependent codes. Is there a QNC0[⊕] distinguisher for such a code?

3. Techniques

To establish our main results, we use techniques from two different areas.
Broadly speaking, Theorem 2.1 builds on ideas from higher-order Fourier anal-
ysis [Tao12, HHL19], while Theorem 2.2 (unsurprisingly) uses ideas from quan-
tum computing [NC10].

3.1. Polynomial equidistribution. The proof of Theorem 2.1 uses the basic
observation that any function F

n
2 → F

k
2 that is computable by an NC0[⊕]

circuit can be given by a collection of k constant-degree polynomials over F2

in n variables. Indeed, any gate with fan-in d implements a function Fd2 → F2

and any such function can be represented by a d-variable polynomial of total
degree at most d. Degree is multiplicative under composition and composition
occurs only between different layers of the circuit. Since the parities amount
to addition in F2 and NC0 circuits have constant depth, the total degree of the
output is bounded.
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We will therefore study the distribution of polynomial maps under biased in-
put distributions. We will do so in a slightly more general setting over arbitrary
finite fields of prime order.6 For a prime p, let Fp denote the finite field with p
elements. For ρ ∈ [0, 1], an Fp-valued random variable Z is ρ-biased if with
probability ρ it equals 0 and with probability 1− ρ it is uniformly distributed
over Fp. Note that this corresponds to the noise Nρ(0) added by the symmetric
channel when the alphabet is Fp.
A mapping φ : Fnp → Fkp is a polynomial map if there exist polynomials

f1, . . . , fk ∈ Fp[x1, . . . , xn] such that φ = (f1, . . . , fk). The degree of φ is the
maximal degree among the fi. To prove Theorem 2.1, it thus suffices to prove
the following result.

Theorem 3.1 (Impossibility of decoding by polynomial maps). For any d ∈ N

and ρ, ε ∈ (0, 1) there exists an integer k0 = k0(p, d, ρ, ε) such that the following
holds. Let k ≥ k0 and n be integers, φ : Fnp → Fkp be a polynomial map of degree

at most d and E : Fkp → Fnp be an arbitrary function. Then

Prx∈Fk
p,Z∼Nρ(0)

[
φ
(
E(x) + Z

)
= x

]
≤ ε.

Studying the distribution of polynomial maps in many variables over a finite
field falls within the purview of additive combinatorics. In the “unbiased”
situation where Z is uniformly distributed there are powerful tools from higher-
order Fourier analysis that can be used to study the distribution of φ(Z). In
particular, Green and Tao [GT09] proved that if φ is “regular” (random-like),
then φ(Z) is approximately uniformly distributed over Fkp. This implies that
the probability of the event {φ(E(x)+Z) = x} considered is small for every x.
A “regularity-type” lemma proved in [GT09] shows that one can “force” φ to be
regular by restricting it to a partition defined by sufficiently many polynomial
equations of degree less than the degree of φ. However, these techniques cause
the size of the polynomial map φ considered to blow up considerably, and are
only effective if k is an extremely slowly growing function of n.
In order to deal with this issue, and to adapt these results to the case where Z

is no longer uniform but biased, we employ a dichotomy often used in ad-
ditive combinatorics that studies the “pseudorandom” case of regular maps
separately from the “structured” case of maps that carry a certain algebraic
structure. This is done by defining and studying a new notion of rank for
(high-dimensional) polynomial maps, which we call the analytic rank,7 and

6The restriction to prime order is done for notational reasons and for ease of exposition.
Our arguments can be readily adapted to the case of non-prime finite fields.

7A very similar notion of rank was defined for multilinear forms by Gowers and
Wolf [GW11], who coined the term analytic rank. We use the same name to highlight
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which measures how equidistributed the values taken by the considered map
are.
In the pseudorandom case, a key tool we use is a new random restriction

result for high-rank polynomial maps proved in a companion paper [BCS22].
We use this to show that the distribution of values taken by a high-rank poly-
nomial map will be close to uniform even under a biased input distribution.
This implies that the event considered in the theorem has very low probability
for any fixed x, in which case we can conclude by averaging.
In the structured case we deal instead with polynomial maps of low rank,

whose values are in a sense poorly distributed. Results from higher-order
Fourier analysis then imply that they can be determined by “few” lower-degree
polynomial maps (plus a few extra polynomials); by a simple Fourier-analytic
argument we can reduce the analysis of a low-rank polynomial map to those
lower-degree maps which specify it, making it amenable to an inductive argu-
ment.

3.2. Building the quantum circuit. The quantum circuit of Theorem 2.2 is
inspired by a distributed version of the Bernstein-Vazirani algorithm [BV97].
Given a corrupted Hadamard codeword H(x), this single-query quantum al-
gorithm returns x with probability Ω(ε2). The distributed version describes
an entangled strategy for a particular non-local game [CHTW04] consisting
of n players who, when given unique coordinates of H(x), must each return
an element of Fk2. They win if and only if the sum of their answers equals x.
It turns out that by sharing an n-partite GHZ state of local dimension 2k,
they can simulate the Bernstein-Vazirani algorithm and achieve the same suc-
cess probability. We then turn this entangled strategy into a quantum cir-
cuit that only uses single and two-qubit gates and classical parity gates. For
this we use two constant-depth sub-routines, one for preparing GHZ states
and another for the quantum fan-out gate [PS13], which implements the map
|x〉 |y1〉 . . . |yn〉 7→ |x〉 |y1 ⊕ x〉 . . . |yn ⊕ x〉.
To generate the GHZ state, we use a poor man’s cat state [BWKST19], which

is a GHZ state with some of its qubits flipped. We correct this poor man’s cat
state to a GHZ state by flipping qubits based on parity computations. The
input for these parity computations follows from the procedure that generates
the poor man’s cat state.
To implement the quantum fan-out gate, we use ideas from distributed quan-

tum computing. These ideas use GHZ states and classical parity gates together

the similarity between our two notions, which are relevant for distinct types of mathematical
objects.
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with single and two-qubit gates. With the quantum fan-out gate, we also ob-
tain the quantum parity gate, by conjugating the quantum fan-out gate with
Hadamard gates.
Part of the circuit is applying phase-flips, conditional on the bits of the

corrupted codeword. To do this, we use quantum fan-out gates in a circuit,
exponential in size in k to correctly apply the phase-flips [TT13].
The depth of the list-decoding circuit is constant, whereas the circuit size is

O(n2 log n). We also show how to reduce this complexity to O(n logn log log n),
while increasing the depth by only a small constant number. We do this by
preparing a state on ⌈log(k + 1)⌉ qubits. Evaluating an OR on this newly
prepared state yields the same result as evaluating an OR on the original k
qubits [HŠ05]. Applying the same exponential size circuit as before on this
newly prepared state indeed gives the reduced circuit size.

4. Warm-up: The linear case and a non-local game

This section is meant to give some intuition for the proofs of Theorem 3.1
and Theorem 2.2, as well as provide the first steps in those proofs.

4.1. Impossibility of decoding for linear maps. To motivate our later
arguments, here we present a proof of the first nontrivial case of Theorem
3.1, namely that of maps φ : Fnp → Fkp of degree 1. In this case, there is a

matrix U ∈ Fk×np and a vector v ∈ Fkp such that

φ(y) = Uy + v for all y ∈ F
n
p .

Let x be a uniformly distributed random variable over Fkp and Z be an Nρ(0)-
distributed random variable over Fnp . Our goal is then to bound the probability
of the event

(2) U(E(x) + Z) + v = x.

We distinguish two cases based on the rank of U . Let r ∈ [k] be an integer
to be set later. If U has rank at most r, then its image im(U) is a subspace
of size at most pr. If (2) holds, then x is contained in the coset v + im(U)
of this subspace, which (for x uniform over Fkp) happens with probability at

most pr/pk. Hence, (2) holds with probability at most p−(k−r) in this case.
For the “pseudorandom case” of high-rank matrices, we make the following

simple but important observation: one can sample Z ∼ Nρ(0) by first sampling
the set I ⊆ [n] of “corrupted coordinates”, then sampling the “noise” y uni-
formly at random from FIp and setting8 Z|I = y, Z|[n]\I = 0. Each index i ∈ [n]

8Given x ∈ Fn
p and I ⊆ [n], we denote by x|I ∈ FI the restriction of x to the coordinates

indexed by I.
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has probability 1−ρ of belonging to the random set I, with these events being
mutually independent; we denote this sampling scheme by I ∼ [n]1−ρ.
If we denote by UI ∈ Fk×Ip the restriction of U to the columns indexed

by I ⊆ [n], it follows that the random variable UZ has the same distribution
as the random variable UIy, where I ∼ [n]1−ρ and y is uniformly distributed
over FIp. Thus, for any given x ∈ Fkp, we have

PrZ∼Nρ(0)

[
U(E(x) + Z) + v = x

]
= EI∼[n]1−ρ

Pry∈F I

[
UIy = x− UE(x)− v

]
.

Now, if I ⊆ [n] is fixed and y is uniformly distributed over FIp, then the random
variable UIy is uniformly distributed over im(UI); hence

max
w∈Fk

p

Pry∈F I

[
UIy = w

]
=

1

| im(UI)|
=

1

prk(UI)
.

Taking the expectation over I ∼ [n]1−ρ and x ∈ Fkp, we conclude that event (2)

holds with probability at most EI∼[n]1−ρp
− rk(UI ).

Suppose now that U has rank at least r, and let J ⊆ [n] be a set of r linearly
independent columns of U . By the Chernoff bound (see e.g. [HR90]), we have
that

PrI∼[n]1−ρ

[
|I ∩ J | ≤ (1− ρ)r

2

]
≤ e−(1−ρ)r/8.

Thus UI will contain more than (1− ρ)r/2 linearly independent columns with
probability at least 1 − e−(1−ρ)r/8; whenever this happens we have rk(UI) ≥
(1− ρ)r/2. It follows that

Prx∈Fk
p ,Z∼Nρ(0)

[
U(E(x) + Z) + v = x

]
≤ EI∼[n]1−ρp

− rk(UI )

≤ e−(1−ρ)r/8 + p−(1−ρ)r/2

in this “high-rank” case.
Setting r = k/2 (say) implies that in both cases the probability that event

(2) holds decays exponentially in k, which concludes the analysis.

4.2. Quantum decoding in a non-local game. Our quantum algorithm is
inspired by the analysis of a particular non-local game. In a non-local game, a
referee randomly sends questions to a set of players, according to a probability
distribution known to the players in advance. Then, without communicating
with each other, the players individually answer the referee. Finally, the referee
determines whether the players win or lose based solely on the questions and
answers. The rule used by the referee is known to the players in advance as
well. With a (deterministic) classical strategy, the players decide before the
game starts what to answer to each possible question. With an entangled
strategy, the players base their answers on the outcomes of local measurements
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of their respective parts of a shared entangled state. We refer to [CHTW04]
for further background on non-local games.
Let H : Fk2 → Fn2 be the Hadamard code, where n = 2k and let ε ∈ (0, 1/2) be

a constant (independent of n). We identify the codewords H(x) with functions
Fk2 → F2 given by H(x)(y) = 〈x, y〉. We consider the following non-local game,
which we shall refer to as the Hadamard game. There are n players, each
labeled uniquely with an element in Fk2. The referee picks a uniformly chosen
message x ∈ Fk2 and randomly corrupts the codeword H(x) using the binary
symmetric channel with error rate 1/2− ε, resulting in a function c : Fk2 → F2.
He then sends player y the value c(y). The players each return a string in F

k
2

and they win the game if the sum of their answers equals x.
Here we show that entangled players can win the Hadamard game with prob-

ability Ω(1). The corresponding strategy is inspired by the famous Bernstein-
Vazirani algorithm [BV97]. The strategy is based on an n-partite GHZ state
of local dimension 2k, shared by the n players:

1√
n

∑

y∈Fk
2

|y〉 ⊗ . . .⊗ |y〉 .

Upon receiving their input c(y), player y applies a conditional phase flip on
their part of the shared state:

(3) |z〉 7→
{
(−1)c(y) |z〉 if z = y

|z〉 else
.

Once all players have done this, they share the state

1√
n

∑

y

(−1)c(y) |y〉 ⊗ . . .⊗ |y〉 .

Each player then applies a k-qubit Hadamard gate to their local register
and measures in the computational basis. The measurement results are then
returned by each player. The state before the measurements is:

n−(n+1)/2
∑

y∈Fk
2

∑

b1,...,bn∈Fk
2

(−1)c(y)(−1)〈y,b1+···+bn〉 |b1〉 ⊗ . . .⊗ |bn〉 .
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The probability that the measurement results sum to a string z ∈ Fk2 is
therefore given by

Pr

[ n∑

i=1

bi = z

]
=

1

n(n+1)

∑

b1+···+bn=z

∣∣∣∣
∑

y∈Fk
2

(−1)c(y)+〈y,z〉
∣∣∣∣
2

=

∣∣∣∣1− 2
d
(
c,H(z)

)

n

∣∣∣∣
2

.

It follows from the Chernoff bound [HR90] that for fixed x ∈ F
k
2 and the

random c obtained by corrupting the codeword H(x),

Pr

[
d
(
c,H(x)

)

n
≥ 1− ε

2

]
≤ exp(−Cε2n).

Hence, by the union bound, for fixed ε ∈ (0, 1/2), the players win with proba-
bility at least Cε2, where the probability is taken over the message x, the noise
corrupting the codeword H(x) to c and the measurements done by the players.
Note that this strategy in fact succeeds with probability Cε2 for every x and

whenever at most any (1/2−ε)-fraction of the coordinates of H(x) are flipped.

5. Classical hardness of list decoding

In this section we will prove Theorem 3.1, which – as explained before –
implies that NC0[⊕] circuits are unable to perform list decoding, no matter
which specific code is considered (see Theorem 2.1 for a formal statement). We
will do so by following a similar strategy as we used for maps of degree 1 in
Section 4.1, dividing the analysis into the “pseudorandom” case of high-rank
polynomial maps and the “structured” case of low-rank polynomial maps.

There is a well-studied notion of rank for polynomials P ∈ Fp[x1, . . . , xn],
first introduced by Green and Tao [GT09], which is defined (roughly speaking)
as the smallest number of lower-degree polynomials needed to compute P .
A different notion of rank, called the analytic rank, was later introduced by
Gowers and Wolf [GW11] when studying linear systems of equations over Fnp .
It is related to the bias of the polynomial P , or more specifically to the bias of
the symmetric deg(P )-multilinear form associated to P . The bias of a function
f : Fnp → Fp is an analytic measure of how well-equidistributed the values of f
are when evaluated on a uniformly random input; formally,

(4) bias(f) = |Ex∈Fn
p
ωf(x)|

where we write ω = e2iπ/p for a primitive p-th root of unity.
When dealing with a polynomial P of some bounded degree d, having non-

negligible bias implies that it has a significant amount of internal structure.
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Such a result was first proven by Green and Tao [GT09] in the case of polyno-
mials whose degree d is smaller than the characteristic p of the field considered,
and motivated the introduction of both their notion of rank and Gowers and
Wolf’s notion of analytic rank. We will need a similar result, proven by Kauf-
man and Lovett [KL08], which generalizes this theorem to characteristics p ≤ d
and also gives more precise information on the structure of the polynomial.
For a vector h ∈ Fnp and a polynomial P ∈ Fp[x1, . . . , xn], the derivative of P

in direction h is defined by

∆hP (x) = P (x+ h)− P (x).

Note that ∆hP is also a polynomial on Fnp , and (as with usual derivatives
in real analysis) its degree is strictly smaller than deg(P ). The derivatives
of a polynomial map φ : Fnp → Fkp are defined analogously, and also sat-
isfy deg(∆hφ) < deg(φ).
The following result of Kaufman and Lovett shows that polynomials with

large bias must be highly structured:

Theorem 5.1 (Bias implies low rank). For every d ∈ N and ε > 0, there is
an r = r(p, d, ε) ∈ N such that the following holds. If P ∈ Fp[x1, . . . , xn] is a
polynomial of degree at most d with bias(P ) ≥ ε, then there exist h1, . . . , hr ∈ Fnp

and a map Γ : Frp → Fp such that

P (x) ≡ Γ
(
∆h1P (x), . . . ,∆hrP (x)

)
.

5.1. The analytic rank of polynomial maps. Inspired by Gowers and
Wolf’s notion of analytic rank for multilinear forms and polynomials [GW11],
we introduce a new notion of rank for higher-dimensional polynomial maps
which we also call the analytic rank. This notion will be crucial in our proof of
Theorem 3.1; intuitively, it measures how well a given polynomial map φ can
be approximated by lower-degree maps.
For integers d, n, k ≥ 1, we denote by Pol≤d(Fnp ,F

k
p) the space of all polyno-

mial maps φ : Fnp → Fkp of degree at most d.

Definition 5.2 (Analytic rank). Given a polynomial map φ ∈ Pol≤d(Fnp ,F
k
p),

we define its analytic rank arankd(φ) by

arankd(φ) = − logp

(
max

ψ:Fn
p→Fk

p ,deg(ψ)<d
Prx∈Fn

p

[
φ(x) = ψ(x)

])
.

Note that, for affine-linear maps φ ∈ Pol≤1(F
n
p ,F

k
p), this definition coincides

with the usual notion of rank for the matrix U ∈ Fk×np encoding its linear part.

Indeed, write φ(x) = Ux+v for some v ∈ Fkp. Since Ux is uniformly distributed
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over im(U) ≃ F
rk(U)
p when x is uniformly distributed over Fkp, we have that

Prx∈Fn
p

[
Ux+ v = w

]
=

{
p− rk(U) if w − v ∈ im(U),

0 if w − v /∈ im(U).

This might help explain the reason for the − logp in the definition of analytic
rank, as well as the need to maximize the probability of agreement over all
lower-degree maps.
Another useful way of viewing the analytic rank of a polynomial map φ is as

a measure of how well-equidistributed its values are in F
k
p, up to lower-degree

perturbations. Indeed, we can equivalently write

arankd(φ) = min
ψ:Fn

p→Fk
p,deg(ψ)<d

− logp
(
Ev∈Fk

p ,x∈Fn
p
ω〈v, φ(x)−ψ(x)〉).

The expectation inside the logarithm above is analogous to the notion of bias (4)
given before, and can be seen as an analytic measure of how close to uniformly
distributed over Fkp the values taken by φ− ψ are.
It is clear from the definition that the function arankd is non-negative (since

probabilities are bounded by 1), and that arankd(φ) = 0 if and only if deg(φ) ≤
d − 1. It also satisfies several useful properties in common with the rank of
matrices; in order to state them we will need some notation for considering
coordinate restrictions:

Definition 5.3 (Restriction). For a polynomial map φ : Fnp → F
k
p and sub-

set I ⊆ [n], we define the restriction φ|I : FIp → F
k
p to be the map given by

φ|I(y) = φ(ȳ), where ȳ ∈ Fnp agrees with y on the coordinates in I and is zero
elsewhere.

The properties of analytic rank which will be important to us are summarized
in the next lemma. Those rank functions for polynomial maps which satisfy
all these properties are called natural rank functions in [BCS22].

Lemma 5.4 (Properties of analytic rank). For all integers d, n, k ≥ 1, the
analytic rank function arankd satisfies:

(1) Symmetry:
arankd(φ) = arankd(−φ) for all φ ∈ Pol≤d(F

n,Fk).
(2) Sub-additivity:

arankd(φ+ γ) ≤ arankd(φ) + arankd(γ) for all φ, γ ∈ Pol≤d(Fn,Fk).
(3) Monotonicity under restrictions:

arankd(φ|I) ≤ arankd(φ) for all φ ∈ Pol≤d(F
n,Fk) and all sets I ⊆ [n].

(4) Restriction Lipschitz property:
arankd(φ|I∪J) ≤ arankd(φ|I) + |J | for all φ ∈ Pol≤d(Fn,Fk) and all
sets I, J ⊆ [n].
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Proof: The first property is trivial. To prove property (2), let ψ, χ : Fnp → Fkp

be polynomial maps of degree at most d− 1 such that

arankd(φ) = − logp Prx∈Fn
p

[
φ(x) = ψ(x)

]
,

arankd(γ) = − logp Prx∈Fn
p

[
γ(x) = χ(x)

]
.

Then p− arankd(φ)−arankd(γ) can be expressed as

Prx,y∈Fn
p

[
φ(x) = ψ(x) & γ(y) = χ(y)

]

= Prx,y
[
φ(x) = ψ(x) & φ(x) + γ(x+ y) = ψ(x) + χ(x+ y)

]
,

where we performed the change of variables (x, y) 7→ (x, x+ y). Since

γ(x+ y) = γ(x) + ∆yγ(x),

this equals

Prx,y
[
φ(x) = ψ(x) & φ(x) + γ(x) = ψ(x) + χ(x+ y)−∆yγ(x)

]

≤ Prx,y
[
φ(x) + γ(x) = ψ(x) + χ(x+ y)−∆yγ(x)

]
.

Note that, for any fixed y ∈ Fnp , the function

x 7→ ψ(x) + χ(x+ y)−∆yγ(x)

is a polynomial map of degree at most d−1. The last probability above is then
bounded by

max
y

Prx
[
φ(x) + γ(x) = ψ(x) + χ(x+ y)−∆yγ(x)

]

≤ max
ζ:Fn

p→Fk
p ,deg(ζ)<d

Prx
[
φ(x) + γ(x) = ζ(x)

]

= p− arankd(φ+γ).

Sub-additivity now follows by taking logarithms.
To prove property (3) it suffices to show that arankd(φ|[n]\{i}) ≤ arankd(φ)

for any i ∈ [n], which can then be applied iteratively. Assume for notational
convenience that i = n, and let ψ : Fnp → Fkp be a polynomial map of degree at
most d− 1 which satisfies

p− arankd(φ) = Prx∈Fn
p
[φ(x) = ψ(x)].

Factoring out the variable xn allows us to write the probability on the right-
hand side as

Exn∈FpPry∈Fn−1
p

[
φ|[n−1](y) + φ′(y, xn)xn = ψ|[n−1](y) + ψ′(y, xn)xn

]
,
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where φ′ and ψ′ are some polynomial maps of degree at most d − 1. By the
averaging principle, this is at most

max
xn∈Fp

Pry∈Fn−1
p

[
φ|[n−1](y) = ψ|[n−1](y) + ψ′(y, xn)xn − φ′(y, xn)xn

]

≤ max
ζ:Fn−1

p →Fk
p, deg(ζ)<d

Pry∈Fn−1
p

[
φ|[n−1](y) = ψ|[n−1](y) + ζ(y)

]

= p− arankd(φ|[n−1]),

showing that arankd(φ|[n−1]) ≤ arankd(φ) as wished.
Finally, for the Lipschitz property (4), let ψ : F

I
p → F

k
p be a map with

deg(ψ) < d maximizing the agreement probability Prx∈FI
p

[
φI(x) = ψ(x)

]
, and

suppose without loss of generality that J ∩ I = ∅. Then
p− arankd(φ|I∪J ) ≥ Prx∈FI

p, y∈FJ
p

[
φ|I∪J(x, y) = ψ(x)

]

≥ Prx∈FI
p, y∈FJ

p

[
φ|I∪J(x, 0) = ψ(x) & y = 0

]

= p−|J |Prx∈FI
p

[
φI(x) = ψ(x)

]

= p− arankd(φI)−|J |,

and the restriction Lipschitz property follows. ✷

5.2. Biased equidistribution of high-rank maps. As in the degree-1 case
considered in Section 4.1, we will need to study the distribution of values φ(Z)
taken by a polynomial map φ when the input is a ρ-biased random variable Z ∼
Nρ(y). This can be done by considering restrictions of φ to random subsets
of variables, which model the coordinates “corrupted” by the studied random
process.
Motivated by this problem, the behavior of rank functions under random co-

ordinate restrictions was studied in detail by the first and third authors [BCS22].
In the nomenclature of that paper, Lemma 5.4 shows that the analytic rank
is a natural rank function. Applying [BCS22, Theorem 1.8] we then imme-
diately obtain the following result, which shows that random restrictions of
a high-rank polynomial map will also have high rank with high probability.
(Recall that I ∼ [n]σ denotes the random process of sampling a subset I ⊆ [n]
where each i ∈ [n] belongs to I with probability σ, all events being mutually
independent.)

Theorem 5.5 (Random restriction theorem). For every d ∈ N and σ, ε ∈ (0, 1],
there exist κ = κ(d, σ) > 0 and R = R(d, σ, ε) ∈ N such that the following holds.
For every map φ ∈ Pol≤d(Fn,Fk) with arankd(φ) ≥ R, we have that

PrI∼[n]σ

[
arankd(φ|I) ≥ κ · arankd(φ)

]
≥ 1− ε.
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With the help of this theorem, it is easy to show that high-rank polynomial
maps are approximately equidistributed even under biased inputs:

Lemma 5.6 (Biased equidistribution lemma). For every d ∈ N and ρ, ε ∈ (0, 1)
there exists a constant R0 = R0(d, ρ, ε) > 0 such that the following holds. If
φ ∈ Pol≤d(Fn,Fk) satisfies arankd(φ) ≥ R0, then

PrZ∼Nρ(0)

[
φ(y + Z) = w

]
≤ ε for all y ∈ F

n
p , w ∈ F

k
p.

Proof: It suffices to prove the special case where both y and w are zero, that is

PrZ∼Nρ(0)

[
φ(Z) = 0

]
≤ ε.

Indeed, for fixed y ∈ Fnp and w ∈ Fkp, the map φ̃ : x 7→ φ(y + x) − w has the

same degree and same analytic rank as φ, and satisfies φ̃(x) = 0 if and only
if φ(y + x) = w.
We can sample Z ∼ Nρ(0) by first sampling I ∼ [n]1−ρ (the “corrupted coor-

dinates”), then sampling z uniformly from FIp (the “noise”) and setting Z|I = z,
Z|[n]\I = 0; thus

PrZ∼Nρ(0)

[
φ(Z) = 0

]
= EI∼[n]1−ρ

Prz∈FI
p

[
φ|I(z) = 0

]

≤ EI∼[n]1−ρp
− arankd(φ|I).

Let R = R(d, 1 − ρ, ε/2) and κ = κ(d, 1 − ρ) be the constants guaranteed by
Theorem 5.5. If arankd(φ) ≥ R, from that result we obtain

EI∼[n]1−ρ
p− arankd(φ|I) ≤ ε/2 + p−κ·arankd(φ).

Taking9 R0 = max
{
R, logp(2/ε)/κ

}
we conclude that

PrZ∼Nρ(0)

[
φ(Z) = 0

]
≤ EI∼[n]1−ρp

− arankd(φ|I) ≤ ε

whenever arankd(φ) ≥ R0, as wished. ✷

5.3. The proof of Theorem 3.1. We are now ready to present the proof of
Theorem 3.1, which proceeds by induction on the degree d. For degree-1 maps
the result was already proven in the warm-up section,10 so let d ≥ 2 and assume
the result holds for maps of degree at most d− 1.
As was done in the base case, we will divide the argument into two parts,

corresponding to whether the analytic rank of φ is “high” (the pseudorandom

9Note that this bound is non-increasing on the value of p, so we can obtain a field-
independent bound by considering the smallest case p = 2.

10It would also be possible to start the induction from the trivial base case d = 0 of
constant maps, but we thought it more instructive to first present the argument for degree-1
maps in order to gain some intuition.
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case) or “low” (the structured case). The pseudorandom case immediately fol-
lows from Lemma 5.6, the biased equidistribution lemma: let R0 = R0(d, ρ, ε)
be the constant guaranteed by that lemma, and suppose that arankd(φ) > R0.
Then for every x ∈ Fkp we have that

PrZ∼Nρ(0)

[
φ
(
E(x) + Z

)
= x

]
≤ ε,

and we conclude by averaging over all such x.
Now suppose that arankd(φ) ≤ R0, and let ψ : Fnp → F

k
p be a map of degree

at most d − 1 such that Prx∈Fn
p

[
φ(x) = ψ(x)

]
≥ p−R0 . Denote φ̃ = φ − ψ for

convenience, and let P ∈ Fp[y1, . . . , yn, v1, . . . , vk] be the polynomial given by

P (y, v) = 〈v, φ̃(y)〉.
This polynomial has non-negligible bias:

bias(P ) = Ey∈Fn
p
Ev∈Fk

p
ω〈v,φ̃(y)〉 = Ey∈Fn

p
1
[
φ̃(y) = 0

]
≥ p−R0 ,

where ω = e2πi/p. By Theorem 5.1, there exist s = s(p, d, R0) ∈ N, pairs
(h1, w1), . . . , (hs, ws) ∈ F

n
p × F

k
p and a map Γ : Fsp → Fp such that

P (y, v) = Γ
(
∆(h1,w1)P (y, v), . . . ,∆(hs,ws)P (y, v)

)
.

Let f : Fsp → C be the map given by f(t) = ωΓ(t) and let f̂ : Fsp → C be its
Fourier transform,

f̂(α) = Et∈Fs
p
f(t)ω−〈α,t〉.

Since P is linear in the last k coordinates, it follows that

∆(h,w)P (y, v) = P (y + h, v + w)− P (y + h, v) + P (y + h, v)− P (y, v)

= 〈w, φ̃(y + h)〉+ 〈v,∆hφ̃(y)〉.
By the Fourier inversion formula, we conclude that

ωP (y,v) = f
(
∆(h1,w1)P (y, v), . . . ,∆(hs,ws)P (y, v)

)

=
∑

α∈Fs
p

f̂(α)ωQα(y)+〈v,γα(y)〉,

where for α ∈ Fsp we denote

Qα(y) =
s∑

i=1

〈αiwi, φ̃(y + hi)〉,

γα(y) =

s∑

i=1

αi∆hi φ̃(y).
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Note crucially that deg(γα) ≤ d−1 for all α ∈ Fsp, which is what will eventually
allow us to apply the induction hypothesis.
It follows from our expression for ωP (y,v) that

1[φ(y) = x] = Ev∈Fk
p
ω〈v,φ(y)−x〉

= Ev∈Fk
p
ωP (y,v)+〈v,ψ(y)−x〉

=
∑

α∈Fs
p

f̂(α)ωQα(y) Ev∈Fk
p
ω〈v, (γα+ψ)(y)−x〉.

Taking y = E(x) + Z, we then obtain

Pr
[
φ
(
E(x) + Z

)
= x

]
= Ex,Z1

[
φ(E(x) + Z

)
= x

]

≤
∑

α∈Fs
p

|f̂(α)|Ex,Z
∣∣Ev∈Fk

p
ω〈v, (γα+ψ)(E(x)+Z)−x〉∣∣

≤
( ∑

α∈Fs
p

|f̂(α)|
)
max
α∈Fs

p

Ex,Z1
[
(γα + ψ)

(
E(x) + Z

)
= x

]

≤ ps/2max
α∈Fs

p

Pr
[
(γα + ψ)

(
E(x) + Z

)
= x

]
,

where we have used the Cauchy-Schwarz inequality and Parseval’s identity in
the last line. Since deg(γα+ψ) ≤ d− 1 and s ultimately depends only on p, d,
ρ and ε, by taking

k ≥ k0(p, d, ρ, ε) := k0(p, d− 1, ρ, ε p−s/2)

we conclude from the induction hypothesis that

Pr
[
φ
(
E(x) + Z

)
= x

]
≤ ε

in this case as well. The theorem follows.

6. Quantum circuit for decoding the Hadamard code

In this section we give the constant-depth quantum circuit to decode the
Hadamard code. We first give the operations on a high level, then we present
more details on the implementations and finally we show how to further reduce
the total complexity.

6.1. High-level quantum algorithm. Interestingly, we can implement each
of the operations performed by the entangled players described in Section 4.2
with constant-depth quantum circuits using only single and two-qubit gates
and classical parity gates, thus giving a QNC0[⊕] circuit.
To generate GHZ states (which we will need on multiple occasions), we use

a technique of Watts et al. [BWKST19] that starts by generating a so-called
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poor man’s cat state: 1√
2
(|z〉 + |z̄〉) for some binary vector z. To generate an

n-qubit poor man’s cat state, we apply Hadamard gates to an n-qubit register
initialized in the all-zeros state and then compute the parity between adjacent
qubits in n − 1 auxilliary qubits. After measuring the auxilliary qubits, we
are left with a poor man’s cat state. With the parity measurements di we can
correct the poor man’s cat state to a GHZ state by flipping qubits conditioned
on a prefix-sum computation of the measurement outcomes.
To apply the conditional phase-flip (3), we use an auxilliary qubit and com-

pute the AND function

|z〉 |b〉 7→ |z〉 |AND(z1, . . . , zk)⊕ b〉 .
We then apply a phase-flip on the last qubit conditioned on c(y) = 1. Using
X-gates, we can ensure that AND evaluates to 1 if and only if z = y. For ease
of implementation, we use the identity AND(z1, . . . , zk) = ¬OR(¬z1, . . . ,¬zk).
We cannot use standard decomposition techniques, such as using Toffoli

gates, to implement the OR, as these do not give constant-depth circuits. In-
stead, we use the constant-depth Exact OR-implementation of [TT13]. Their
method uses single and two-qubit gates and additionally makes use of quantum
fan-out gates that implement the general map

|b〉 |y1〉 . . . |yn〉 7→ |b〉 |y1 ⊕ b〉 . . . |yn ⊕ b〉 .
Below, we show how to implement these quantum fan-out gates with QNC0[⊕]
circuits. These quantum fan-out gates compute parity when conjugated with
Hadamard gates on each input. We use the quantum fan-out gates to compute
and sum the parity of each subset of the inputs to compute the OR of the
inputs in the first qubit [TT13, Lemma 1].
Implementing this constant-depth approach does come at the cost of a circuit

size exponential in k: O(k2k) = O(n logn). We can implement this for each
input in parallel which gives a quantum circuit of size O(n2 log n). As we have a
constant number of constant-depth operations, we have constant-depth circuit
for list-decoding the Hadamard code.

6.2. Details of quantum algorithm. Now, we present details of the opera-
tions given in the previous section.
Figure 1 shows the quantum circuit to generate a 3-qubit GHZ state. If

the measurement results were d1 = 1 and d2 = 1, then we have the state
1√
2
(|010〉 + |101〉). We flip the second qubit, because the first measurement

result, d1, equals 1. We do not flip the third qubit, because the parity of the
measurement results, d1 ⊕ d2, equals 0. This indeed gives the 3-qubit GHZ
state 1√

2
(|000〉+ |111〉) as desired.
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|0〉1 H

|0〉2 d1

|0〉3 H

|0〉4 d1 ⊕ d2

|0〉5 H

Figure 1. The quantum circuit to generate a 3-qubit GHZ
state. First we obtain a poor man’s cat state 1√

2
(|z〉 + |z̄〉) with

each z ∈ F3
2 equally likely to be found. The parity gates compute

a prefix sum on the measurement results d1 and d2 and determine
if a qubit has to be flipped to obtain the GHZ state.

This method extends naturally to larger n. A prefix-sum computation is
then used to determine which qubits have to be flipped. The depth of the
circuit does not increase with larger n. In our GHZ state construction, we
implicitly assumed the qubits to be arranged in a linear architecture. Other
arrangements work equally well, as shown in [BWKST19].
A powerful tool in the implementation above is the quantum fan-out gate.

We now show how to implement this gate using only single and two-qubit gates
and classical parity gates. For this, we combine the GHZ state construction
introduced above with ideas from distributed quantum computing, specifically,
the non-local CNOT-gate [EJPP00, YL04]. The term non-local CNOT origi-
nates from the fact that we can imagine the control and target qubits being
hosted on different quantum devices which share a GHZ state. We apply this
gate in a local setting to construct the quantum fan-out gate in constant-depth.
Figure 2 shows the quantum fan-out gate implementation for one control and

two targets. This method extends to an arbitrary number of targets by reap-
plying the same operations to all target qubits and the corresponding qubits
in the GHZ state in parallel. The last Z-gate is only applied if the parity over
all measurement results equals 1.

Lemma 6.1. The circuit of Figure 2 implements a quantum fan-out gate.

Proof: Let |x〉 be an n-qubit computational basis state and |φ〉 = α |0〉+ β |1〉
be any single qubit quantum state. We will prove that the circuit implements
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|φ〉 Z

|x1〉

|x2〉

|GHZ3〉 H
Parity
d1 ⊕ d2

H

Figure 2. Implementation of a quantum fan-out gate with one
control qubit |φ〉 and two target qubits |x1〉 and |x2〉. Only single
and two-qubit gates and classical parity gates are used. The
bottom three qubits are in the GHZ3 state.

the quantum fan-out gate on the state |φ〉 |x〉. The lemma then follows by
linearity of the operations.
The action of the quantum fan-out gate on the quantum state is given by

(5) |φ〉 |x〉 fan-out7→ α |0〉 |x〉 + β |1〉X⊗n |x〉 = α |0〉 |x〉+ β |1〉 |x̄〉 ,
where |x̄〉 is the computational basis state |x〉 with all qubits flipped.
To see why this works, assume we have a GHZn+1 state and we apply the op-

erations as shown in Figure 2 generalized to arbitrary n. Up to a normalization
factor of 1/

√
2 coming from the GHZ state we then have:

[
α |0〉+ β |1〉

]
|x〉 ⊗

[
|00 · · ·0〉+ |11 · · ·1〉

]

(1)7−→ α |0〉 |x〉 ⊗
[
|00 · · ·0〉+ |11 · · ·1〉

]
+ β |1〉 |x〉 ⊗

[
|10 · · ·0〉+ |01 · · ·1〉

]

(2)7−→ α |0〉 |x〉 |d00 · · ·0〉+ β |1〉 |x〉 |d01 · · · 1〉
(3)7−→ α |0〉 |x〉 |d00 · · ·0〉+ β |1〉X⊗n |x〉 |d01 · · ·1〉
(4)7−→ 1

2n−1

∑

d∈Fn
2

[
α |0〉 |x〉+ β(−1)d1+...+dn |1〉X⊗n |x〉

]
|d0d1 . . . dn〉

(5)7−→ α |0〉 |x〉 |d0d1 . . . dn〉+ (−1)d1+...+dnβ |1〉X⊗n |x〉 |d0d1 . . . dn〉
(6)7−→

[
α |0〉 |x〉+ β |1〉 |x̄〉

]
|d0d1 . . . dn〉 .
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In Step (1), we perform a CNOT operation from the control qubit to the first
qubit of the GHZ state. In Step (2), we measure that qubit, with outcome d0,
and apply an X-gate to the remaining n qubits of the GHZ state if d0 = 1.
Next we perform CNOT gates between the i+1-th qubit of the GHZ state and
the i-th target qubit. In Steps (4) and (5), we first apply Hadamard gates to
each unmeasured qubit of the GHZ state and subsequently measure it. Finally,
we compute the parity d1 ⊕ . . .⊕ dn and apply a Z-gate to the control qubit if
this parity equals one. This indeed gave the desired final state and hence the
shown quantum circuit implements the quantum fan-out gate. ✷

6.3. Reducing the algorithm’s complexity. We now show how to reduce
the complexity of the quantum algorithm fromO(n2 log n) toO(n logn log log n).
With the current implementation, the complexity of applying a single condi-

tional phase-flip is polynomial in the codeword length n. We can reduce this to
polynomial in the message length k. For this we apply the OR-reduction [HŠ05].
Instead of evaluating an OR on k inputs, we use a O(k log k) size constant depth
circuit to prepare a quantum state on ⌈log(k+1)⌉ qubits, such that the OR on
these ⌈log(k+1)⌉ qubits evaluates to the same value as the OR on the original
k qubits. This OR-reduction uses the quantum fan-out gate.
The OR-reduction increases the depth by an additive constant, however, it

reduces the complexity of applying a single conditional phase-flip to O(k log k).
The complexity of the quantum circuit therefore reduces to O(n logn log log n),
using k = log n.
Note that the phase flip is only applied if the input is one, hence, we have to

apply the OR-reduction and the Exact OR implementation only if this input
is one.

7. The high-characteristic setting

In this section we give some evidence to support our conjecture (made in
Section 2.1) that the probability of correct message retrieval by NC0[⊕] circuits
decays exponentially with the message length. This is done by proving the
following theorem, which a “high-characteristic” analogue of Theorem 3.1 with
much better bounds; as we see no reason to believe a result of this kind has
a strong dependence on the characteristic of the finite field considered,11 we
believe that a similar bound also holds for low-characteristic fields such as F2.

Theorem 7.1 (Exponential decay in high characteristic). For every d ∈ N

and ρ ∈ [0, 1) there exist constants C = C(ρ, d) and c = c(ρ, d) > 0 such that
the following holds. Let p > d be a prime, and let n, k be integers with k ≥ p.

11While the result is stated in the setting of prime fields Fp, it easily generalizes to the
case of non-prime finite fields Fq, with only minor modifications in the proof.
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Then for every polynomial map φ : Fnp → Fkp of degree at most d and every

function E : Fkp → F
n
p we have

Prx∈Fk
p,Z∼Nρ(0)

[
φ
(
E(x) + Z

)
= x

]
≤ Ce−ck/(log k)

d2

.

Remark 7.2. The presence of the poly-logarithmic term in the exponential
above is due to a poly-logarithmic loss when passing between two distinct
notions of tensor rank in our proof of Theorem 7.1. It is a widely-believed con-
jecture in additive combinatorics that these two notions of rank (see Section 7.1
below) are within a constant multiplicative factor of one another, in which case
our proof would give an upper bound of the form Ce−ck for the probability of
correct message retrieval (and this would be the best possible).

As with the proof of Theorem 3.1, we will prove Theorem 7.1 by induction
on the degree d, using the degree-1 case shown in Section 4.1 as the base case
of the induction. The inductive argument will also share many similarities
with the one presented in Section 5, in particular relying on a structure-versus-
randomness dichotomy based on a notion of rank associated with the poly-
nomial map φ. The reason for the better bounds we obtain now stems from
the fact that, in the high-characteristic case, one can work with tensors (i.e.
multilinear forms) rather than with general polynomial maps. In the quasiran-
dom case of our argument, we can then use a stronger version of the random
restriction theorem for the analytic rank of tensors (also proved in [BCS22]),
while in the structured case we use a recently-proved close connection between
analytic rank and partition rank of tensors [MZ22].

7.1. Tensors associated to polynomial maps. Given a polynomial map φ :
Fnp → Fkp of degree at most d, we can define a (d+1)-tensor T : (Fnp)

d×Fkp → Fp

associated to it by

T (y1, . . . , yd, v) =
〈
v, ∆y1 · · ·∆ydφ(0)

〉
,

where we recall that ∆yφ(x) = φ(x+y)−φ(x). While not immediately obvious,
the formula above indeed defines a tensor (i.e., it is linear in each variable
separately). This follows from the fact that ∆y1 · · ·∆ydφ does not depend on
the order of the derivatives, and that the polynomial map ∆y1 · · ·∆yd−1

φ has
degree at most 1 (since φ has degree at most d); note that, if ψ is a linear map,
then h 7→ ∆hψ is linear in h.
If the characteristic p of the field in strictly higher than the degree d, then

we also have the integration formula

φ(y) =
1

d!
T (y, . . . , y, ·) + ψ(y) for all y ∈ F

n
p ,
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where y is repeated d times inside T and ψ is a polynomial map of degree at
most d − 1. This follows from the (discrete) Taylor expansion theorem, and
allows us to pass back and forth between tensors and polynomial maps.
We will use the following two notions of rank for tensors, originally intro-

duced by Gowers and Wolf [GW11] and by Naslund [Nas20], respectively.

Definition 7.3 (Tensor analytic rank). Let X1, . . . , Xr be finite sets and T :
FX1
p × · · · × FXr

p → Fp be an r-tensor. The bias of T is defined as

bias(T ) = E
x1∈FX1

p ,...,xr∈FXr
p
ωT (x1,...,xr),

where ω = e2πi/p. The bias is always real and positive,12 and the analytic rank
of T is defined by

arank(T ) = − logp bias(T ).

Definition 7.4 (Partition rank). A nonzero r-tensor T : FX1
p ×· · ·×F

Xr
p → Fp

is said to have partition rank 1 if there is a nonempty strict subset I ⊂ [r] and
tensors S :

∏
i∈I F

Xi → F and R :
∏

i∈[r]\I F
Xi → F such that T can be factored

as T = SR . The partition rank of T , denoted prank(T ), is defined as the least
m ∈ N such that there is a decomposition T = T1+ · · ·+Tm where each Ti has
partition rank 1.

While these two notion of rank are defined in very different ways, it turns
out that they are intimately related to one another. Lovett has shown that
arank(T ) ≤ prank(T ) holds for all tensors [Lov19], and it is a well-known
open problem to determine whether a similar inequality holds in the converse
direction, up to an absolute multiplicative factor. Very recently, Moshkovitz
and Zhu [MZ22] proved that the relation between these two rank functions is
at worst quasilinear.

Theorem 7.5 (Moshkovitz–Zhu). For every r ≥ 2 there exists Lr > 0 such
that for every r-tensor T over any finite field, we have

(6) arank(T ) ≤ prank(T ) ≤ Lr arank(T ) log
r−1

(
1 + arank(T )

)
.

This result will be an important ingredient in our proof of Theorem 7.1;
we note that the decay obtained could be improved to Ce−ck if Theorem 7.5
were proven without the poly-logarithmic factor on the right-hand side of (6).
Another important ingredient is the following random restriction theorem for
tensors [BCS22], stated here for the special case of the analytic rank.

12It is not hard to show that bias(T ) = Pr
x1∈F

X1
p ,...,xr−1∈F

Xr−1

p

[
T (x1, . . . , xr−1, ·) ≡ 0

]
.
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Theorem 7.6 (Tensor random restriction theorem). For every d ∈ N and
σ ∈ (0, 1], there exist constants C, κ > 0 such that for any order-d tensor T
over any field, we have that

PrI∼[n]σ

[
arank(T|I) ≥ κ · arank(T )

]
≥ 1− Ce−κ arank(T ).

7.2. The proof of Theorem 7.1. The proof will proceed by induction on the
degree of the polynomial map. Recall that in the base case of degree-1 maps
the result has already been proven in Section 4.1.
Let now φ : Fnp → Fkp be a polynomial map of degree at most d, with

2 ≤ d < p, and suppose the theorem holds for polynomial maps of degree at
most d− 1. Define the (d+ 1)-tensor T : (Fnp )

d × Fkp → Fp by

T (y1, . . . , yd, v) =
〈
v, ∆y1 . . .∆ydφ(0)

〉
.

We split the analysis into two cases, depending on whether the analytic rank
of T is above or below some cut-off value r = Θ

(
k/(log k)d

2)
.

Pseudorandom case. Assume that arank(T ) ≥ r. We will show that, for any
given x ∈ F

n
p , the probability

(7) PrZ∼Nρ(0)

[
φ
(
E(x) + Z

)
= x

]

decays exponentially on arank(T ); we then conclude the pseudorandom case
by averaging over all x.
Fix some x ∈ F

n
p . As before (in Section 5), we write

PrZ∼Nρ(0)

[
φ
(
E(x) + Z

)
= x

]
= EI∼[n]1−ρ

Pry∈FI
p

[
φ
(
E(x) + y

)
= x

]

= EI∼[n]1−ρ
Ey∈FI

p,v∈Fk
p
ω〈v, φ(E(x)+y)−x〉.

Note that we can write φ(E(x) + y)− x = φ(y) + ψ(y), where

ψ(y) := ∆E(x)φ(y)− x

has degree at most d − 1. Using this identity and the triangle inequality, it
follows that

PrZ∼Nρ(0)

[
φ
(
E(x) + Z

)
= x

]
= EI∼[n]1−ρ

Ey∈FI
p,v∈Fk

p
ω〈v, φ(y)+ψ(y)〉

≤ EI∼[n]1−ρEv∈Fk
p

∣∣Ey∈FI
p
ω〈v, (φ+ψ)(y)〉∣∣.

Repeated applications of the Cauchy-Schwarz inequality (or equivalently, the
monotonicity property of the Gowers uniformity norms [TV06, pp. 420]) shows
that, for any fixed v ∈ Fkp, I ⊆ [n], we have

∣∣Ey∈FI
p
ω〈v, (φ+ψ)(y)〉∣∣ ≤

(
Ey0,y1,...,yd∈FI

p
ω〈v,∆y1 ...∆yd

(φ+ψ)(y0)〉)1/2d .
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We then conclude that

PrZ∼Nρ(0)

[
φ
(
E(x) + Z

)
= x

]

≤ EI∼[n]1−ρEv∈Fk
p

(
Ey0,y1,...,yd∈FI

p
ω〈v,∆y1 ...∆yd

(φ+ψ)(y0)〉)1/2d

≤ EI∼[n]1−ρ

(
Ev∈Fk

p
Ey0,y1,...,yd∈FI

p
ω〈v,∆y1 ...∆yd

(φ+ψ)(y0)〉)1/2d ,

where we have applied Hölder’s inequality once (or, alternatively, Cauchy-
Schwarz d further times).
Now we need to relate this last expression to the analytic rank of T . De-

riving d times a polynomial map of degree at most d − 1 gives the zero map,
and so ∆y1 . . .∆ydψ(y0) ≡ 0. Moreover, since deg(φ) ≤ d, the d-th derivative
∆y1 . . .∆ydφ is a constant map. We conclude that

Ev∈Fk
p
Ey0,y1,...,yd∈FI

p
ω〈v,∆y1 ...∆yd

(φ+ψ)(y0)〉 = Ev∈Fk
p
Ey1,...,yd∈FI

p
ω〈v,∆y1 ...∆yd

φ(0)〉.

For each v ∈ Fkp, let S(v) be the d-tensor given by T (·, . . . , ·, v). Then the above
is precisely the bias of the restricted tensor S(v)|Id, averaged over v, which (by

definition) equals the average of p
− arank(S(v)

|Id
)
. The probability (7) is then

bounded from above by

Ev∈Fk
p
EI∼[n]1−ρp

− arank(S(v)
|Id

)/2d .

Theorem 7.6 now implies that for some absolute constant C = C(d, ρ) > 0,
the last quantity is bounded from above by Cp− arank(T )/C . This settles the
pseudorandom case.

Structured case. Now we assume that arank(T ) < r.
Denote the partition rank of T by s := prank(T ). Theorem 7.5 shows that

s ≤ Ld+1r(log r)
d, where Ld+1 is a universal constant. We can then write

T (y[d], v) =

s∑

i=1

Ri(yIi)Si(yIci , v)

for some non-empty sets Ii ⊆ [d], |Ii|-tensors Ri and (d − |Ii| + 1)-tensors Si.
Since d < p, by Taylor’s expansion theorem we have that

φ(y) =
1

d!
∆y . . .∆yφ(0) + ψ0(y), deg(ψ0) < d.

Define qi : F
n
p → F, ψi : F

n
p → F

k
p (i ∈ [s]) by

qi(y) =
1

d!
Ri(y

Ii), 〈v, ψi(y)〉 = Si(y
Ici , v),
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and note that deg(ψi) < d for all i ∈ [s]. By the definition of T we conclude
that

φ(y) = ψ0(y) +

s∑

i=1

qi(y)ψi(y), with deg(ψi) < d for 0 ≤ i ≤ s.

Let A = {A1, . . . , Am} be the partition of Fnp given by the level sets of the

polynomial map (q1, . . . , qs) : F
n
p → Fsp; note that m ≤ ps ≤ pLd+1r(log r)

d
. For

each j ∈ [m], φ will coincide on Aj with a polynomial map ψAj
: Fnp → Fkp of

degree at most d − 1 (just substitute the qi(y) on the formula above by their
value on Aj ∈ A). Define the random events

Ej =
{
E(x) + Z ∈ Aj : x ∼ U(Fkp), Z ∼ Nρ(0)

}
, j ∈ [m].

Since these events partition the probability space, it follows that

Prx∈Fk
p ,Z∼Nρ(0)

[
φ
(
E(x) + Z

)
= x

]

=

m∑

i=1

Prx,Z
[
φ
(
E(x) + Z

)
= x & Ej

]

=

m∑

i=1

Prx,Z
[
ψAj

(
E(x) + Z

)
= x & Ej

]

≤ m · max
1≤j≤m

Prx,Z
[
ψAj

(
E(x) + Z

)
= x

]

≤ pLd+1r(log r)
d · max

deg(ψ)<d
Prx,Z

[
ψ
(
E(x) + Z

)
= x

]
,

where the last maximum is over all polynomial maps ψ : Fnp → Fkp of degree at
most d−1. By the induction hypothesis we have that this maximum probability

is at most C ′e−c
′k/(log k)(d−1)2

, where C ′ = C(d − 1, ρ) and c′ = c(d − 1, ρ); we
conclude that

Prx∈Fk
p,Z∼Nρ(0)

[
φ
(
E(x) + Z

)
= x

]

≤ C ′ exp

(
(log p)Ld+1r(log r)

d − c′k

(log k)(d−1)2

)
.

Taking

r =
c′

2Ld+1

k

(log k)d2
,
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and using our assumptions k ≥ p and d ≥ 2, we have that

(log p)Ld+1r(log r)
d ≤ (log k)Ld+1

c′

2Ld+1

k

(log k)d2
(log k)d

=
c′

2

k

(log k)d2−d−1

≤ c′

2

k

(log k)(d−1)2
.

We conclude that

Prx∈Fk
p ,Z∼Nρ(0)

[
φ
(
E(x) + Z

)
= x

]
≤ C ′ exp

(
− c′k

2(log k)(d−1)2

)

in this case, and the theorem follows.

Appendix A. MAJORITY from list decoding

This appendix shows how to compute the MAJORITY function when given
oracle access to circuits capable of list decoding the Hadamard code.

A.1. Classical circuits. We start by considering the case of classical circuits,
in particular proving Theorem 2.6, which we recall below for convenience. Our
proof of this result follows the arguments exposed in [Vio06, Section 6.2].

Theorem 2.6 (MAJORITY from list-Hadamard). Let C be a probabilistic cir-
cuit that solves the list-Hadamard problem LHn(ε) with probability at least 3/4.
There exists a (deterministic) oracle AC0 circuit D of size poly(n, 1/ε) which,
when given oracle access to C and the ability to fix its random bits, computes
MAJORITY on Ω(1/ε) bits.

Let Majt denote the MAJORITY function on t bits. We first introduce a
promise problem called IsBalt, which asks to determine whether a given binary
string is balanced. We then show that a (possibly probabilistic) circuit that
solves IsBalt can be turned into a deterministic circuit that computes Majt.
Finally, we show how a circuit for LHn(ε) can be used to solve IsBalt for
t = Ω(1/ε).

Definition A.1 (The IsBalt problem). For an even positive integer t, define
IsBalt : {x ∈ Ft2 : |x| ≤ t/2} → F2 by

IsBalt(x) =

{
1 if |x| = t/2
0 otherwise.

Given an arbitrary x ∈ Ft2, define the IsBalt problem to be to return IsBalt(x)
if |x| ≤ t/2 and an arbitrary bit otherwise.
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Lemma A.2 (Derandomization lemma). Let C be a probabilistic circuit that
solves IsBalt with probability at least 2/3 for every input. There exists a de-
terministic oracle AC0 circuit C′ that, when given oracle access to C and the
ability to fix its random bits, solves IsBalt.

Proof: For some large enough constant c ∈ N, consider ct parallel instances
of C. It follows from the Chernoff bound that, for any fixed x ∈ Ft2 given to all
of these instances, with probability 1−exp(−10 t) at least 55% of the instances
solves the IsBalt problem on input x.
By the union bound, one can fix the randomness in the instances of C in

order to get a deterministic classical circuit that, for every input x ∈ Ft2 with
|x| ≤ t/2, returns a ct-bit string whose Hamming weight is at least 0.55t
if IsBalt(x) = 1 and at most 0.45t if IsBalt(x) = 0. Distinguishing these two
types of strings is known as the approximate majority problem, for which there
is an AC0 circuit [Ajt83]. Combining these circuits gives the result. ✷

We now show that a deterministic circuit that solves IsBalt can be used to
compute Majt.

Lemma A.3. Let C be a deterministic circuit for IsBalt. There exists an oracle
AC0 circuit D that, given oracle access to C, computes Majt.

Proof: For x ∈ Ft2 and i ∈ {0, 1, . . . , t}, define xi as the string x with the first i
bits set to zero and the rest of the bits equal to those of x. So, for instance,
x0 = x and xt is the all-zeroes string. Let D be the circuit that runs t + 1
parallel instances of C with inputs x0, x1, . . . , xt, respectively, and returns the
OR of the t+ 1 outputs.
We claim that D computes Majt. Indeed, if x has fewer than t/2 ones then C

returns 0 for each input xi, as the number of 1s only decreases with i. If x has
at least t/2 ones, then C returns 1 for at least one i, since x0 has at least t/2
ones, whereas xt is the all-zeroes string. This completes the proof. ✷

Towards turning a circuit C for LHn(ε) into a circuit for IsBalt, we associate
with each input x ∈ Ft2 to IsBalt a random error vector Nx over Fn2 as follows:
independently, each coordinate of Nx is a uniformly random entry of x. In
particular, for balanced x, the error vector Nx will correspond to an error rate
of 1/2 and we refer to it as N1/2. The next lemma shows that there is a message
m ∈ Fk2 that has small probability of recovery by C under the error vector N1/2.

Lemma A.4. Let C be a probabilistic circuit which, on input y ∈ Fn2 , returns
a (random) list L(y) ⊆ Fk2 of at most 2k/4 elements. Then there exists m ∈ Fk2

such that

(8) Pr[m ∈ L(H(m) +N1/2)] ≤ 1/4,

where the probability is taken over L and N1/2.
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Proof: Note that, for any y ∈ Fn2 , the vector y +N1/2 is uniformly distributed
over Fn2 ; in particular, it has the same distribution as N1/2. Let M ∈ Fk2 be
a uniformly distributed random element. Then, by independence of M , L(y)
and N1/2, get that

PrM,L,N1/2
[M ∈ L(H(M) +N1/2)] = PrM,L,N1/2

[M ∈ L(N1/2)]

≤ 1

2k
EL,N1/2

|L(N1/2)|
≤ 1/4.

Hence, there exists a value m of M such that (8) holds. ✷

Finally, we prove that the circuit C in Theorem 2.6 can solve IsBalt.

Lemma A.5. Let C be a probabilistic circuit as in Theorem 2.6. There exists
a probabilistic oracle AC0 circuit D of size poly(n, 1/ε) that, when given oracle
access to C, solves IsBalt with probability at least 3/4 for t = Ω(1/ε).

Proof: We may assume without loss of generality that ε ≤ 1/4. Let δ ∈ [ε, 1/4]
be minimized such that t = 1/(2δ) is an even integer; note that, since δ ≥ ε,
the circuit C also solves LHn(δ) with probability at least 3/4. Fix a message
m as in Lemma A.4, and let x ∈ Ft2 be any given string (which serves as input
to D).
The circuit D has three layers. The first layer has the string H(m) hardwired

into it and uses n independent uniform samples to the coordinates of x to
compute the random string H(m) + Nx. This layer is a probabilistic circuit
using n parallel two-bit XOR gates. The second layer consists of the circuit C,
which produces a random list L(H(m) + Nx) of size at most n/4. The third
layer consists of an AC0 circuit of size poly(n) that returns 0 if and only if
m ∈ L(H(m) + Nx). This can be done by checking equality between m and
the O(n) elements of the list. We claim that this solves IsBalt.
If x is balanced then it follows from Lemma A.4 that D correctly returns 1

with probability at least 3/4. If x has Hamming weight strictly less than t/2,
then each coordinate of Nx is 1 with probability at most 1/2− 1/t = 1/2− 2δ.
By the Chernoff bound, Nx has Hamming weight at most (1/2 − δ)n with
probability 1 − exp(−Ω(δ2n)). Hence, the properties of the circuit C imply
that in this case D correctly outputs 0 with probability at least 3/4. ✷

Theorem 2.6 now follows directly by combining Lemma A.2, Lemma A.3 and
Lemma A.5.
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A.2. The quantum case. Now we sketch how the above proof can be used to
turn our QNC0[⊕] circuit for decoding the Hadamard code into one that com-
putes MAJORITY with polynomially small error. We first recall the following
result.

Corollary 2.3. There is a family of QNC0[⊕] circuits (Cn)n∈N such that the
following holds. Let k ∈ N, n = 2k and ε ∈ [1/

√
n, 1/2]. Then, on any

input y ∈ Fn2 , with probability 1 − ε the circuit Cn returns a list L(y) of size
O(ε−2 log(1/ε)) which contains every x ∈ Fk2 with d

(
y,H(x)

)
≤ (1

2
− ε)n.

Let ε = n−1/4 and let C be the circuit from Corollary 2.3. Since C returns
lists of size at most n3/4, a stronger version of Lemma A.4 holds where the
probability (8) – taken additionally over the measurement outcomes of C – is
bounded from above by n3/4/2k = n−1/4.
The proof of Lemma A.5 then gives an oracle QNC0[⊕] circuitD of size poly(n)

that, given oracle access to C, solves IsBalt with probability 1 − O(n−1/4) for
t = Ω(n1/4). Here, the AC0 circuit used to check membership of m can be
replaced with our QNC0[⊕] circuit for the OR function (see Section 6) applied
to the entrywise sum of m with each element in the list.
Now let t′ = ⌊n1/8⌋, and note that the same circuit D above can be used

to solve IsBalt′ with probability 1 − O(n−1/4): it suffices to pad the input
with zeroes and ones in the same number until we have a string of the correct
size. Finally, with the proof of Lemma A.3 and the union bound we obtain a
QNC0[⊕] circuit D′ that, given oracle access to D, solves Majt′ with probability
1 − O(n−1/8) for t′ = ⌊n1/8⌋. Here again we use our QNC0[⊕] circuit for the
OR function as explained in Section 6.
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