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ABSTRACT

Weprovide the �rst deterministic data structure that given aweighted

undirected graph undergoing edge insertions, processes each up-

datewith polylogarithmic amortized update time and answers queries

for the distance between any pair of vertices in the current graph

with a polylogarithmic approximation in $ (log log=) time.

Prior to this work, no data structure was known for partially

dynamic graphs, i.e., graphs undergoing either edge insertions or

deletions, with less than => (1) update time except for dense graphs,

even when allowing randomization against oblivious adversaries

or considering only single-source distances.

CCS CONCEPTS

• Theory of computation→ Dynamic graph algorithms.

KEYWORDS

Dynamic algorithms, Shortest paths, Graph algorithms

ACM Reference Format:

Sebastian Forster, Yasamin Nazari, and Maximilian Probst Gutenberg. 2023.

Deterministic Incremental APSP with Polylogarithmic Update Time and

Stretch. In Proceedings of the 55th Annual ACM Symposium on Theory of

Computing (STOC ’23), June 20–23, 2023, Orlando, FL, USA. ACM, New York,

NY, USA, 14 pages. https://doi.org/10.1145/3564246.3585213

1 INTRODUCTION

Partially dynamic algorithms for approximate shortest path prob-

lems have received considerable attention in recent years. In the

partially dynamic setting the input graph is undergoing either edge

insertions (incremental setting) or edge deletions (decreme1.265ntal

setting). The focus on partially dynamic distance approximation

algorithms, instead of fully dynamic ones allowing both types of

updates, has three major reasons:

• Fully dynamicmaintenance of exact distances or small-stretch

approximations is sometimes not possible with small update

time under plausible hardness assumptions [2, 36, 42, 51].

• Partially dynamic algorithms often serve as a “stepping stone”

for fully dynamic algorithms [5, 30, 47].

• In several applications, partially dynamic algorithms that

are deterministic or use randomization against an adaptive
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adversary1 can be used as subroutines for solving static

problems [15, 19–22, 41].

The research line of developing partially dynamic distance ap-

proximation algorithms against adaptive adversaries has been espe-

cially successful for undirected graphs: in particular, deterministic

incremental and decremental algorithms with almost optimal amor-

tized update time of => (1) exist for the single-source shortest paths

problem (SSSP) with stretch (1+> (1)) [15] and for the all-pairs short-

est paths problem (APSP) with stretch => (1) [21].2 These e�orts

were leveraged for the following applications in static algorithms:

• (1 + > (1))-approximate minimum-cost �ow in time<1+> (1)

[15] (using deterministic decremental (1+> (1))-approximate

SSSP)

• => (1) -approximatemulticommodity �ow in time<1+> (1) [21]

(using deterministic decremental => (1) -approximate APSP)

• Exact minimum cost �ow in time<1+> (1) [20] (using ran-

domized => (1) -approximate APSP against adaptive adver-

saries on expander graphs)

• Deterministic nearly-linear time constructions of light span-

ners (using deterministic incremental $ (1) -approximate

bounded distance APSP).

All known algorithms for partially dynamic approximate SSSP

and APSP that are deterministic (or randomized against an adaptive

adversary) su�er from an “=> (1) -bottleneck” in their update time

with the only exception being the partially dynamic approximate

SSSP algorithm of Bernstein and Chechik [14] that achieves poly-

logarithmic update time in very dense graphs with Ω̃(=2) edges.3

Even if we allowed randomization against an oblivious adversary,

the => (1) -bottleneck persists for sparse graphs [40].

It is thus an intriguing and important open problem to design

improved deterministic algorithms with polylogarithmic update

time and polylogarithmic stretch in all density regimes that ideally

work against an adaptive adversary to allow the use in static algo-

rithms. In particular, it has recently been shown that a deterministic

decremental APSP algorithmwith polylogarithmic stretch and poly-

logarithmic update time would imply a $̃ (<)-time algorithm for

1This means that the “adversary” creating the sequence of updates is adaptive in the
sense that it may react to the outputs of the algorithm. This type of adversary is
called “adaptive online adversary” in the context of online algorithms [10]. In contrast,
an oblivious adversary needs to choose its sequence of updates in advance, which
guarantees probabilistic independence between the updates and the random choices
made by the algorithm. Deterministic algorithms obviously work against an adaptive
adversary.
2As usual, = denotes the number of vertices and< denotes the maximum number
of edges of the graph. In the introductory parts of this paper, we assume that edge
weights are integer and polynomial in = when stating running time bounds.
3In this paper, we use $̃ ( ·)- and Ω̃ ( ·)-notation to suppress factors that are polyloga-
rithmic in =.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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�nding balanced sparse cuts [19] and improve the state-of-the-art

running time of the (exact) minimum cost �ow problem [20].

Our Result. In this paper, we present the �rst shortest path algo-

rithm breaking the => (1) update-time barrier in all density regimes

for a partially dynamic distance problem with polylogarithmic

stretch. We give an incremental algorithm for maintaining a dis-

tance oracle with polylogarithmic stretch that has polylogarithmic

amortized update time.

Theorem 1.1. There is a deterministic algorithm that, given an

undirected graph with real edge weights in [1,, ] undergoing edge

insertions, in total time $ (< log= log log= + = log6 (=, ) log log=)

over all updates maintains a distance oracle with polylogarithmic

stretch and query time $ (log log=), where = denotes the number of

vertices< denotes the �nal number of edges of the graph.

Note that, while our stretch guarantee leaves some room for

improvement in the exponent of the logarithm, there is evidence

that a substantial improvement might not be possible without sac-

ri�cing the polylogarithmic update time: Based on popular hard-

ness assumptions concerning static 3SUM or static APSP, Abboud,

Bringmann, Khoury, and Zamir [1] recently showed that a constant-

stretch distance oracle cannot be maintained with update time

=> (1) . Furthermore, a space bound (and thus also a total update

time bound) of Ω(=1+1/: ) for distance oracles with stretch 2: − 1

follows from Erdős’s girth conjecture [27, 48].

It is worth noting that our techniques are very di�erent from pre-

vious approaches that usually employ Even-Shiloach trees [29, 39]

and constructions based on the Thorup-Zwick distance oracle [48].

We further use no heavy algorithmic machinery and – apart from a

dynamic tree data structure – our paper is self-contained. We cru-

cially use a hierarchical vertex sparsi�er construction by Andoni,

Stein, and Zhong [7] that originally was developed in the context of

distance approximation algorithms with polylogarithmic depth for

the PRAM model. The major technical challenge in employing this

hierarchy in a dynamic setting is controlling the recourse – i.e., the

number of induced updates – from the bottom to the top. A stan-

dard “layer-by-layer” analysis would lead to an exponential blowup

that would at best result in an => (1) overhead. Instead, we perform

several modi�cations to the vertex sparsi�er hierarchy that allow

a more controlled propagation in the algorithm that avoids such

blowups. These modi�cations require a more entangled analysis

over di�erent levels. Hence despite the relatively simple algorithm,

our analysis is quite technical; see Section 2 for an overview of our

technical ideas.

Prior Work. For the fully dynamic all-pairs shortest paths prob-

lem, we can in principle distinguish the two regimes of update time

Ω(=) and update time > (=) (the “sublinear” regime). Most earlier

works have focused on the �rst regime [25, 39] and the state-of-the-

art fully dynamic algorithms for APSP have an amortized update

time of $̃ (=2) to maintain an exact solution [24, 46] or an amor-

tized update time of<1+> (1) to maintain a (2 + > (1))-approximate

solution in undirected graphs [12, 15] (which can then be combined

with a dynamic spanner algorithm [9]). Several approaches exist to

obtain comparable worst-case update time [4, 31, 47, 49, 50] and to

obtain subquadratic (but still superlinear) update time at the cost

of polynomial query time [11, 38, 43–45, 51].

Work on the sublinear regime has been pioneered by Abra-

ham, Chechik, and Talwar [5] with a trade-o� between stretch

and amortized update time for unweighed, undirected graphs, al-

lowing for example for a stretch of$ (log=) with amortized update

time $ (=1/2+X ) (for any constant X) in sparse graphs with $ (=)

edges. A trade-o� for weighted, undirected graphs allowing for

even faster update time has been presented by Forster, Goranci,

and Henzinger [30], allowing for example for both subpolynomial

stretch and subpolynomial amortized update time. Both of these

algorithms are randomized and correct against an oblivious adver-

sary.

For the partially dynamic all-pairs shortest paths problem, we

can similarly distinguish between algorithms with total update time

$̃ (<=) (and above) and faster “subcubic” algorithms. In the �rst

regime, the state of the art is as follows: deterministic exact all-pairs

shortest paths can be maintained with total update time $̃ (=3) in

unweighted, directed graphs [8, 25, 28] and (1 + n)-approximate

all-pairs shortest paths can be maintained with total update time

$̃ (<=/n) in weighted, directed graphs [13, 34, 44] against an obliv-

ious adversary, and in total update time $̃ (<=4/3/n2) against an

adaptive adversary [28, 37].

Subcubic algorithms go beyond the “<=” barrier in undirected

graphs either by increasing the multiplicative stretch or by al-

lowing extra additive stretch. In terms of purely multiplicative

stretch, Chechik [17] presented an algorithm that for any integer

: ≥ 2 maintains a distance oracle of stretch (2 + > (1)) (: − 1) with

total update time <=1/:+> (1) , yielding in particular logarithmic

stretch with total update time<1+> (1) . This result was re�ned by

Łącki and Nazari [40] to in particular improve the total update

time to $̃ ((< + =1+> (1) )=1/: ). Prior works were relevant only for

dense graphs [16] or had “exponentially growing” stretch guar-

antees [5, 35]. Recently, a subcubic partially dynamic algorithm

with stretch 2 + > (1) has been developed as well [26]. All of these

subcubic algorithms for multiplicative stretch are randomized and

assume an oblivious adversary. A deterministic incremental algo-

rithm with several trade-o�s between stretch and update and query

time was developed by [18]; in particular their algorithm can pro-

vide constant stretch and total update time<1+> (1) . Deterministic

partially dynamic algorithms allowing deletions have been devel-

oped by Chuzhoy and Saranurak [23] and by Chuzhoy [21], where

the latter work provides polylogarithmic stretch in total update

time $ (<1+X ) for any constant X (see also [15]). The state-of-the-

art algorithm with “mixed” stretch guarantee has a multiplicative

stretch of (1 + > (1)), an additive stretch of 2(: − 1), and a total

update time of (=2−1/:+> (1)<1/: [26]. Prior works considered only

the case : = 2 [3, 34] or had an “exponentially growing” stretch

guarantee [33]. Again, all of these subcubic algorithms for “mixed”

stretch are randomized and assume an oblivious adversary

2 OVERVIEW

We start by reviewing the techniques from [7]. We then explain

several challenges we face in the dynamic settings and the modi�-

cations we make to the construction to overcome these challenges.

Review of the static construction of [7]. Our starting point is a dis-

tance oracle proposed by [7] that supports fast distance queries with
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polylogarithmic stretch. We can see this structure as a hierarchy of

vertex sparsi�ers4. For a given graph � = (+ , �), a vertex sparsi�er

is a graph � , where + (� ) ⊆ + (�) and each vertex E ∈ + has a

representative vertex ? (E) (called a pivot) such that the distance

between vertices D, E ∈ + can be approximated with the distance

between ? (D) and ? (E) in � . A hierarchy of vertex sparsi�ers al-

lows us to compute approximate distances on subsequently smaller

graphs in each level, while trading o� computation time with the

stretch.

Speci�cally, the algorithm of [7] creates graphs�1, . . . , �: in : =

$ (log log=) levels as follows: at each level 8 for a parameter 18 , they

choose + (�8+1) ⊆ + (�8 ) by subsampling a set of $̃ ( |+ (�8 ) |/18 )

vertices. By choosing appropriate 18 values increasing double expo-

nentially in each level (in our case by setting 18 = 2(6/5)
8

) we have

that after : = $ (log log=) levels the number of remaining vertices

is very small. Roughly speaking, each level of the hierarchy incurs

an additional constant multiplicative factor in the stretch, which

we denote by U and it then remains to observe that U: = polylog =.

We next describe the procedure by [7] to compute a vertex spar-

si�er � ′ for a graph � with some target parameter 1 such that

|+ (� ′) | ≈ |+ (� ) |/1. The hierarchy �1, . . . , �: is then obtained

recursively by computing �8+1 from �8 by using the described

procedure with target parameter 18 .

The procedure initially samples each vertex from + (� ) with

probability 1/1 to form the vertex set of � ′. They de�ne the pivot

? (E) for any vertex E ∈ + (� ) to be the vertex in + (� ′) ⊆ + (� )

that is closest to E in� (we assume that distances are unique for sim-

plicity in the overview). We de�ne ?8E>C�8BC (E) to be the distance

from E to its pivot in � . Using standard hitting set arguments, one

can then argue that there are at most $̃ (1) vertices inside the ball

�� (E, ?8E>C�8BC (E)) centered at E with radius ?8E>C�8BC (E). Having

found the vertex set of � ′, it remains to de�ne the edge set. Two

types of edges are added5 to � ′:

• Type 1 (Ball edges): For each E ∈ + (� ), D ∈ �� (E, ?8E>C�8BC (E)),

we have an edge (? (D), ? (E)) ∈ � ′ of weight ?8E>C�8BC (E) +

38BC� (D, E) + ?8E>C�8BC (D), and

• Type 2 (Projected edges): For each 4 = (G,~) ∈ � (� ), an edge

(? (G), ? (~)) ofweight?8E>C�8BC (G)+F� (G,~)+?8E>C�8BC (~)

is added to � ′.

Intuitively, the �rst type of edges connect vertices in� if one vertex

appears in the ball of the other and the second type of edges connect

the boundaries of the balls.

We brie�y sketch the stretch analysis: Consider vertices D, E ∈

+ (� ), and let c be the shortest path between D and E in � . We

divide this path into segments de�ned by a sequence of vertices

D = ~0, ..., ~ℓ−1 and G1, ..., Gℓ = E de�ned as follows: Starting from

~0 := D, for each B > 0 let GB+1 be the last vertex on c such that

GB+1 ∈ �� (~B , ?8E>C�8BC (~B )). Then~B+1 is set to the next vertex on

c right after GB+1. We stop when GB+1 = E . Essentially, we segment

the path c to alternately take maximal segments contained in balls

to pivot distances, and using the original edge (see also Figure 1).

4In [7] what we call a vertex sparsi�er is called a sub-emulator. They use a type of sub-
emulator for building a low-hop emulator, i.e. a graph that approximates the distances
only using paths with$ (log log=)-hops. We do not need a low-hop emulator and
instead use subemulators/vertex sparsi�ers for maintaining a distance oracle with
small update and query time.
5Based on this de�nition, we may be introducing multi-edges to � ′.

Figure 1: In the construction of [7] paths in�8 are approximated by

paths in �8+1 going through level 8 pivots (denoted by the function

?8+1) of certain vertices on the path. Here GB is in the ball of ~B−1
(represented by the circle). Dashed lines represent projections to the

next level.

[7] then suggest that this path can simply be projected to � ′ by

taking the path ⟨? (D = ~0), ? (G1), ? (~1), ? (G2), . . . , ? (Gℓ = E)⟩ in

� ′ where every two vertices are connected by an edge in � ′ as can

be veri�ed from the procedure above.

One can then show that38BC� ′ (? (~B ), ? (~B+1)) ≈ 38BC� (~B , ~B+1)+

?8E>C�8BC (~B ) + ?8E>C�8BC (~B+1) (here ≈ hides a constant factor).

But it is not hard to see that for any B , we have 38BC� (~B , ~B+1) >

?8E>C�8BC (~B ). Summing over path segments, we thus get that

38BC� ′ (? (D), ? (E)) ≈ 38BC� (D, E) + ?8E>C�8BC (E).

Unfortunately, one cannot hope to get rid of an additive term

scaling linearly in ?8E>C�8BC (E) in the approximation as can be

seen from straight-forward worst-case examples. However, one

can use classic distance oracle query techniques: For query pair

D, E , we either have that D ∈ �� (E, ?8E>C�8BC (E)) and keeping these

balls and the respective distances explicitly in a dictionary, one can

then return the exact distance. Otherwise, we have ?8E>C�8BC (E) <

38BC� (D, E) and therefore 38BC� ′ (? (D), ? (E)) ≈ 38BC� (D, E).

Finally, it is easy to see that the sampling ensures |� (� ′) | ≤

$̃ ( |+ (� ) |1) + |� (� ) |.

Putting this result back to our hierarchy �1, �2, . . . , �: , we have

that one can straight-forwardly query the distances between any

two vertices in the original graph � in time $ (:) by applying

the discussed query procedure iteratively. Further, for each 8 , we

have |� (�8 ) | ≤ |� (�) | +
∑
8 $ ( |+ (�8 ) |/18 ) where 18 ’s are chosen

carefully to ensure |� (�8 ) | ≤ < + $̃ (=).

Algorithm 1: UpdateApproxPivots(�,1)

1 while ∃E ∈ + (� ) such that |�� (E,
1
4

�?8E>C�8BC (E)) | ≥ 1 do

2 Let �E be a set of size 1 such that

�E ⊆ �� (E,
1
4

�?8E>C�8BC (E)).
3 if ∃D ∈ �E with �?8E>C�8BC (D) < 1

2
�?8E>C�8BC (E) then

4 ? (E) ← ? (D);�?8E>C�8BC (E) ← 38BC� (E,D) + �?8E>C�8BC (D).
5 else

6 foreach D ∈ �E do ? (D) ← E ;�?8E>C�8BC (D) ← 38BC� (D, E).

Incremental algorithm for one level. We give an overview of our

algorithm for maintaining these two types of edges for a single
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level before describing the modi�cations needed for making the

algorithm e�cient over all levels.

The �rst obstruction to maintaining the vertex sparsi�er of

the last section in incremental settings is that for each vertex

E ∈ + (� ), even if the pivot ? (E) does not change, the pivot distance

?8E>C�8BC (E) might change after almost each of the< insertions.

While on average most vertices might only undergo few pivot dis-

tance changes, we still might have some node E of large degree and

would have to adjust the weight of projected edges (type 2) incident

on E with every change in E ’s pivot distance. To avoid such a run-

ning time overhead for simply maintaining the weights of projected

edges, we maintain an approximation �?8E>C�8BC (E) of ?8E>C�8BC (E)
such that whenever �?8E>C�8BC (E) changes, it decreases by a con-

stant factor (thus the total number of changes is $ (log(=, )). We

maintain the pivot ? (E) to be some vertex in + (� ′) that is roughly

at distance �?8E>C�8BC (E) (in our case, all approximations are within

a factor 4 of each other). In the following, we merely describe an al-

gorithm to maintain the approximate pivots and the corresponding

distance estimates as it is straight-forward to maintain the edge set

of � ′ from this information.

We give our procedure in Algorithm 1. We assume here that all

edge weights in � are powers of 2 which is w.l.o.g. since we only

want to obtain constant stretch. Here, we skip the initialization

procedure for brevity. The algorithm is then invoked after every

edge insertion to � . The algorithm works as follows: whenever

it detects that the ball �� (E,
1
4

�?8E>C�8BC (E)) contains more than

1 vertices, it checks for a closer pivot for E which then decreases�?8E>C�8BC (E) signi�cantly. Therefore, the algorithm searches over

1 vertices in �� (E,
1
4

�?8E>C�8BC (E)) and asks them whether their

pivot would make a good candidate. If such a candidate is found,

it becomes the new pivot of E . Otherwise, we make E a pivot itself

and assign it to the set of vertices scanned as a pivot (the vertices

in �E ). In this latter case, each vertex in �E has its (approximate)

pivot distance decreased signi�cantly. We maintain the vertex set

+ (� ′) to be the image of all pivot functions ? from the current and

previous stages.

To implement the while-loop in Algorithm 1, we use a truncated

Dijkstra’s algorithm from each vertex E to explore�� (E,
1
4

�?8E>C�8BC (E)),
however, we abort the procedure after seeing 1 vertices. Using ad-

jacency lists sorted by weight, we can implement this procedure

in time $̃ (12). Note that in between any two stages, for a vertex E ,

if no edge/a multi-edge of equal or higher weight is inserted into

�� (E,
1
4

�?8E>C�8BC (E)), we can simply ignore the update and do not

need to recompute. But in the other case, for �xed �?8E>C�8BC (E),
we have that �� (E,

1
4

�?8E>C�8BC (E)) is increasing over time, and the

number of edges with di�erent weights and endpoints in the �nal

ball (before exceeding 1 vertices) is 12 log(=, ) edges. Hence we

have that there are at most $ (12 log=, ) recomputations before�?8E>C�8BC (E) changes. Overall this incurs total time $̃ (14 log2 =, )

per vertex E ∈ + (� ), and thus $̃ (< + |+ (� ) |14 polylog =, ) over-

all.6

6Here, we were slightly imprecise but in the exact analysis one has a higher power for
the log(=, ) factor.

Finally, observe that |+ (� ′) | is only increased if we enter the

else-case. But in this case, 1 vertices have their pivot distance sig-

ni�cantly decreased. We can therefore upper bound the number of

vertices in � ′ by $ ( |+ (� ) | log(=, )/1). However as we see next,

bounding the recourse on the number of edges will be problematic

over all the : levels.

Challenges in maintaining Projected Edges. The naive approach

for maintaining the vertex-sparsi�er hierarchy would be to run

the aforementioned algorithm for each 1 ≤ 8 < : in a black-box

manner to maintain �8+1 as a vertex sparsi�er of �8 . In particular,

the edges added to �8+1 over the course of the algorithm appear as

insertions to the algorithmmaintaining the vertex sparsi�er�8+2 of

the next level. Thus$ ( |� (�8 ) | log=, + |+ (�8 ) |1
2
8 log(=, )) edges

are inserted to �8+1 in total: $ ( |+ (�8 ) |1
2
8 log(=, )) type 1 (ball)

edges, and $ ( |� (�8 ) | log=, ) type 2 (projected) edges.

Starting from� = �1 with< edges, this naive approach with : =

$ (log log=) levels leads to a bound of at least< ·$ (log=, )log log=

type 2 edges inserted to the top level, each of which needs at least

constant time to be processed. Therefore, the black-box approach

will not give us the desired $̃ (<) total update time. Instead, we

propose a more careful approach for avoiding the exponential blow

up in the number of inserted edges within the hierarchy that we

explain next.

Maintaining the hierarchy via multi-level projections. The chal-

lenge discussed means that we cannot a�ord to have a chain of

projections from lower levels to higher levels. In the following,

?8+1 (E) denotes the pivot of some node E ∈ + (�8 ) maintained by

the incremental algorithm at level 8 and �?8E>C�8BC8+1 (E) denotes
its corresponding approximate pivot distance. For the sake of con-

creteness, consider some edge (D, E) in �1 = � and the pivots

?2 (D) ∈ + (�2) and ?2 (E) ∈ + (�2) of its endpoints. Following our

previous de�nition of �2 and our process for maintaining approxi-

mate pivot distances, there would be a projected edge (?2 (D), ?2 (E))

in �2 of weight:

F�2
(?2 (D), ?2 (E)) = �?8E>C�8BC2 (D) +F�1

(D, E) + �?8E>C�8BC2 (E) .
This edge is projected to �3 by edge (?3 (?2 (D)), ?3 (?2 (E))) of

weight

F�3
(?3 (?2 (D)), ?3 (?2 (E))) =

�?8E>C�8BC3 (?2 (D)) +F�2
(?2 (D), ?2 (E))

+ �?8E>C�8BC3 (?2 (E)) = �?8E>C�8BC3 (?2 (D)) + �?8E>C�8BC2 (D)
+F�1

(D, E) + �?8E>C�8BC2 (E) + �?8E>C�8BC3 (?2 (E)) .
As explained above, the “black box” approach would mean to insert

projections of (D, E) to �3 whenever ?3 (?2 (D)) changes, which

happens $ (log(=, )) times for each of the $ (log(=, )) choices of

?2 (D). This bounds the number of insertions of projections of (D, E)

to �3 by $ (log(=, )
2) (and in general the number of insertions to

�8 by $ (log(=, ))
8−1).

Our main idea for obtaining a better bound is to employ another

lazy updating scheme: we insert a projection of (D, E) to �3 only

when the sum above determining the edge weight changes signi�-

cantly, in particular whenever the “left part” �?8E>C�8BC3 (?2 (D)) +�?8E>C�8BC2 (D) or the “right part” �?8E>C�8BC2 (E)+ �?8E>C�8BC3 (?2 (E))
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decreases by a constant factor. In this way, we “reproject” (D, E)

to �3 only $ (log(=, )) times, a bound that is independent on the

level at which the projection happens, which gives us the desired

control in the number of insertions at each level. Note that such

projections to higher levels are not only carried out for the edges

of � , but also for the type 1 (ball) edges introduced at each level of

the hierarchy, which can be done analogously.

More precisely, we de�ne a set of base edges, which are intuitively

the level 8 edges that were not previously projected from a lower

level. To this end, it is convenient to de�ne?8 (D) = ?8 (. . . ?2 (?1 (D)) . . .)

for any vertex D ∈ + . Then at level 8 + 1, we add, in the lazy fashion

explained above, a projected edge (?8+1 (D), ?8+1 (E)) ∈ �8+1 corre-

sponding to each base edge (D, E) ∈ � (� 9 ) from level 9 ≤ 8 and

setting the weight (at time of projection) to be
∑

9≤8
�?8E>C�8BC 9 (D)+

F� 9
(D, E) +

∑
9≤8

�?8E>C�8BC 9 (E).
We show that we can carry out our idea e�ciently by utilizing a

dynamic tree data structure on the forest induced by connecting

each vertex of the hierarchy to its pivot at the next level (weighted

by approximate pivot distance). Whenever for some vertex E in

some � 9 the sum of the approximate pivot distances along the

tree path to its ancestor pivot E ′ at some level 8 > 9 decreases by a

constant factor, we insert to�8 the projections of all (non-projected)

edges incident on E in � 9 . We call the corresponding pivot E ′ a

signi�cantly improving pivot of E at level 8 . These signi�cantly

improving pivots will play a major role in our algorithm, as we

explain next.

Challenges introduced by considering signi�cantly improving piv-

ots. While we have abandoned the “black-box” level-by-level ap-

proach for e�ciency reasons, we still want to, in spirit, follow the

proof strategy of [7], which is an inductive level-by-level stretch

analysis. This “mismatch” causes certain issues. Consider again

the argument of [7] to show that any shortest path c in �8 has

a suitable approximation in �8+1 (see Figure 1). The path c is di-

vided into segments and each segment is represented by an edge in

�8+1. In particular, some of these segments consist of single edges

(GB , ~B ), which in particular are type 2 edges in �8 . In the original

proof, �8+1 contains the projection (?8+1 (GB ), ?8+1 (~B )) of (GB , ~B )

(where ?8+1 (GB ) and ?8+1 (~B ) are the current pivots of GB and ~B ,

respectively).

However, after our modi�cations for lazy updating we only have

the weaker guarantee that (GB , ~B ) was inserted previously as the

projection of some (non-projected) edge (ḠB , ~̄B ) from some lower

level 9 < 8 . Additionally we know that �8+1 contains the projection

4 of the edge (ḠB , ~̄B ) from� 9 and the endpoints of 4 are the the last

signi�cantly improving pivots at level 8+1 of ḠB and ~̄B , respectively

(see Figure 2 in Section 4.1). The major challenge now is to still

�nd a suitable path from ?8+1 (GB ) to ?8+1 (~B ) in�8+1, which should

include 4 to somehow relate the length of this path to the weight

of (GB , ~B ).

New edges for signi�cantly improving pivots. We address this

challenge by introducing two new types of edges (with appropri-

ately chosen weights) into our vertex sparsi�ers: The �rst new type

gives us an edge from the current pivot of GB (i.e., ?8+1 (GB )) to the

last signi�cantly improving pivot of GB . The second new type gives

us an edge from the last signi�cantly improving pivot of GB to the

last signi�cantly improving pivot of ḠB , i.e., the �rst endpoint of 4 .

Similarly, we can use the new types of edges to �nd a path from

the second endpoint of 4 to the current pivot of ~B (i.e., ?8+1 (~B )),

and thus �nd the desired path from ?8+1 (GB ) to ?8+1 (~B ). Since the

new types of edges are used in a somewhat special con�guration,

we can argue that they can be included in the hierarchy with only

polylogarithmic overheads. Setting the edge weights appropriately

to obtain a stretch bound for this path in �8+1 requires some in-

tricate estimates. The exact de�nition of these edges and the full

analysis can be found in Section 4.1.

3 PRELIMINARIES

Basic Notation. For a general (multi-)graph� , we denote the edge

set of the graph by � (� ), its vertex set by+ (� ) and its weight func-

tion byF� whereF� maps each edge in � (� ) to a positive number.

We denote the distance between any two verticesD, E ∈ + (� ) in the

graph � by 38BC� (D, E). We denote by �� (D, A ) = {38BC� (D, E) ≤ A }

the ball at D in � of radius A . We say that � is incremental if it is

undergoing edge insertions.

In this article, we denote by � = (+ , �,F) the input graph and

de�ne = := |+ |, < = |� | and let F be the weight function with

image in [1,, ].

Encoding of the Adjacency List. We assume that additional to the

usual encoding, we have for each (multi-)graph � an adjacency

list for each vertex E denoted by Adj�,E stored as a doubly-linked

list where the edges incident to E appear sorted lexicographically

�rst by weights and then by time of arrival. Here we de�ne time

of arrival for an edge to be equal to the number of edges that were

in the graph before the edge was added where we assume without

loss of generality that edges are added one after another and the

initial graph � is empty. We often index the adjacency list like an

array and use Adj�,E [1, 1] to refer to the set of the �rst 1 edges in

the adjacency list of E (i.e. the 1 edges of smallest weight).

Update time. The total update time of an incremental algorithm

is (a bound on) the sum of the running times spent by the algorithm

for processing all of the< insertions and its amortized update time

is its total update time divided by<.7

Miscellaneous. We de�ne ⌈G⌉2 = ⌈G/2⌉ · 2, where we round up G

to the next multiple of 2.

We refer to the C-th stage of a dynamic algorithm as the instruc-

tions it performs after the C-th update. We refer to the value of a

variable or function at stage C as the value directly after the C-th

stage and write it with the superscript “(C)” ; ? (C ) (E) for example

denotes the pivot of E at stage C . We omit the superscript when it is

clear from the context, for instance when we talk about the current

stage.

4 FULL ALGORITHM AND ANALYSIS

We start by giving the hierarchy that we maintain. We then give

an algorithm to maintain the hierarchy e�ciently that allows for

additional query access. Finally, we give the query algorithm.

7Similarly, the total update time of a decremental algorithm is usually the sum of the
running times spent by the algorithm for processing up to< deletions in a graph with
initially< edges.

1177



STOC ’23, June 20–23, 2023, Orlando, FL, USA Forster, Nazari, Probst Gutenberg

4.1 A Distance-Preserving Vertex Sparsi�er
Hierarchy

De�nition 4.1 (Distance-Preserving Vertex Sparsi�er Hierarchy).

Given an incremental, undirected, weighted graph � = (+ , �,F),

a :-level hierarchy maintaining algorithm is an algorithm that

maintains vertex sparsi�ers�1, �2, . . . , �: for some positive integer

: , with + (�1) ⊇ + (�2) ⊇ . . . ⊇ + (�: ) ≠ ∅ where �1 = � and for

every 1 ≤ 8 ≤ : , �8 is an incremental graph (with vertex insertions).

We have a pivot function set to ?1 (E) = E for the initial level. The

algorithm maintains for every 1 ≤ 8 < : :

(1) an approximate pivot function ?8+1 : + ↦→ + (�8+1) that

acts as the identity on + (�8+1), and an estimator of the

distance from each E ∈ + (�8 ) to its approximate pivot�?8E>C�8BC8+1 (E). We enforce that

38BC�8
(E,+ (�8+1)) ≤ 38BC�8

(E, ?8+1 (E)) ≤ �?8E>C�8BC8+1 (E)
≤ 4 · 38BC�8

(E,+ (�8+1)) .

For each E ∈ + , we alsomaintain an estimate �?8E>C�8BC8+1 (E) =∑
9≤8

�?8E>C�8BC 9+1 (? 9 (E)) and the value �<8=%8E>C�8BC8+1 (E) =

minC ′≤C �?8E>C�8BC (C ′)8+1 (E) where C is the current stage of

the graph. For each E ∈ + \ + (�8+1), we have ?8+1 (E) =

?8+1 (?8 (E)).

(2) It further maintains for each E ∈ + , the last (signi�cantly)

improving pivot ?8+1 (E) that we de�ne to be the approxi-

mate pivot ?
(C ′)
8+1 (E) for C

′
= min{C ′′ | �?8E>C�8BC (C ′′)8+1 (E) ≤

⌈ �<8=%8E>C�8BC8+1 (E)⌉2}.

Given these values, our algorithm maintains each �8+1 as an

incremental graph consisting of two types of edges in � (+8+1): base

edges �10B48+1 which are the edges �rst introduced in level 8 + 1, and

projected edges �
?A> 9
8+1 which are projected to level 8 + 1 from lower

level graphs. For convenience, we de�ne the sets �10B41 = � and

�
?A> 9
1 = ∅.

The algorithm is required to maintain a set of base edges �10B48+1
which contains

(3) for eachD ∈ + (�8 ), and E ∈ ��8
(D, 14 ·

�?8E>C�8BC8+1 (D)), edge
(?8+1 (D), ?8+1 (E)) in�

10B4
8+1 withweight 8·⌈ �?8E>C�8BC8+1 (D)⌉2.

(4) For any vertex E ∈ + (�8 ), let 0 = C1 < C2 < . . . < Cℎ ≤ C be

such that for 9 ≥ 1, we have C 9+1 to be the �rst stage after

stage C 9 such that ?
(C 9+1)

8+1 (E) ≠ ?
(C 9+1−1)

8+1 (E). Then, we have

for any 1 ≤ 9 < ℓ ≤ ℎ, a base edge (?
(C 9 )

8+1 (E), ?
(Cℓ )
8+1 (E)) ∈

�10B48+1 with weight 8 · ⌈ �<8=%8E>C�8BC
(C 9 )

8+1 (E)⌉2.

(5) For any vertex E ∈ + , times C ′ ≤ C , we have at stage C , for

G = ?
(C ′)
8 (E), an edge (?

(C )
8+1 (G), ?

(C )
8+1 (E)) in �10B48+1 of weight

⌈ �<8=%8E>C�8BC
(C )
8+1 (G)⌉2 + ⌈ �<8=%8E>C�8BC

(C ′)
8 (E)⌉2

+⌈ �<8=%8E>C�8BC
(C )
8+1 (E)⌉2.

Additionally, the algorithm maintains a set of projected edges �
?A> 9
8+1

which contains

(6) for 9 ≤ 8 and 4 = (G,~) ∈ �10B49 , the edge (?8+1 (G), ?8+1 (~))

in �
?A> 9
8+1 with weight ⌈ �<8=%8E>C�8BC8+1 (G)⌉2 + ⌈F� 9

(4)⌉2 +

⌈ �<8=%8E>C�8BC8+1 (~)⌉2 .

We also set for all E ∈ + ?̄1 (E) = ?1 (E) = E .

We �rst establish the following simple facts that prove useful in

the next proof of the main theorem of this section.

Fact 4.2. For any E ∈ + (�8 ), we have 38BC�8
(E, ?8+1 (E)) ≤ 4 ·�<8=%8E>C�8BC8+1 (E).

Proof. At any stage C , let C ′ = argminC ′′≤C �?8E>C�8BC (C ′′)8+1 (E), and

note that �<8=%8E>C�8BC8+1 (E) = minC ′′≤C �?8E>C�8BC (C ′′)8+1 (E). Using

that E ∈ + (�8 ), Item 1 and that �8 is incremental, we have that

38BC�8
(E, ?8+1 (E)) ≤ 4 · 38BC�8

(E,+ (�8+1))

≤ 4 · 38BC
�
(C′)
8

(E,+ (�
(C ′)
8+1 ))

≤ 4 · �?8E>C�8BC (C ′)8+1 (E) ≤ 4 · �<8=%8E>C�8BC8+1 (E).

□

We can now prove the main result of this section: we show

that any algorithm that maintains a hierarchy �1, �2, . . . , �: as

described in De�nition 4.1 has distances in �8+1 being constant-

factor approximations of distances in �8 .

Theorem 4.3. Given a :-level hierarchy maintaining algorithm as

described in De�nition 4.1, for any 1 ≤ 8 ≤ :−1, we have for anyD, E ∈

+ (�8+1), that 38BC� (D, E) ≤ 38BC�8+1
(D, E) ≤ 3629 · 38BC�8

(D, E).

We defer the proof of the lower bound to the full version, and

focus for the rest of the section on achieving the upper bound.

Creating Path Segments. Let c be the shortest path between D

and E in �8 . We show that there is a path with the desired stretch

in �8+1 by dividing this path into segments de�ned by a sequence

of vertices D = ~0, ..., ~ℓ−1 and G1, ..., Gℓ = E on c found by the

following procedure:

• ~0 ← D, B ← 0, repeat the following two steps:

• Let GB+1 be the last vertex on c such that 38BC�8
(~B , GB+1) ≤

1
4

�?8E>C�8BC8+1 (~B ). If GB+1 = E , the procedure terminates.

• Otherwise, �nd ~B+1 to be the vertex that appears next on c

after GB+1. B ← B + 1.

Mapping Path Segments into�8+1. For B = 0, . . . , ℓ−1, we have by

Item 3 that edge (?8+1 (~B ), ?8+1 (GB+1)) exists in �8+1 of weight 8 ·

⌈ �?8E>C�8BC8+1 (~B )⌉2. For B = 1, . . . , ℓ −1, we need to �nd paths from

?8+1 (GB ) to ?8+1 (~B ). However, this turns out to be a considerably

more laborious task. The following lemma summarizes the result.

Lemma 4.4. For B = 1, . . . , ℓ − 1, we have

38BC�8+1
(?8+1 (GB ), ?8+1 (~B ))

≤ 69 ·F�8
(GB , ~B ) +

∑
I∈{GB ,~B }

85 · ⌈ �<8=%8E>C�8BC8+1 (I)⌉2 .

Proof. Since GB and ~B are neighbors in �8 we either have

(GB , ~B ) ∈ �
10B4
8 or (GB , ~B ) ∈ �

?A> 9
8 . In the following argument both

we handle both of these cases simultaneously. By construction of the
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Figure 2: A sketch of the paths discussed in Lemma 4.4 and

the projections from level 8 to 8 + 1 and also from a level

9 < 8 to 8 + 1. Note that here in applying Claim 4.5 we set

I = {GB , ~B }. Dashed lines represent projections from lower

levels to higher levels. Here GB is in the ball of ~B−1 and we

have (GB , ~B ) ∈ �8 .

path segments, and by Item 6, that there is an edge (GB , ~B ) ∈ �
10B4
9

for some 9 ≤ 8 , such that (?
(C ′)
8 (GB ), ?

(C ′)
8 (~B )) = (GB , ~B ) at some

stage C ′ ≤ C . Note that here if (GB , ~B ) ∈ �10B48 then we are using

the fact that ḠB = GB and ~̄B = ~B .

Again by Item 6, we have (?8+1 (GB ), ?8+1 (~B )) ∈ �
?A> 9
8+1 of weight

⌈ �<8=%8E>C�8BC8+1 (GB )⌉2+⌈F� 9
(GB , ~B )⌉2+⌈ �<8=%8E>C�8BC8+1 (~B )⌉2.

It remains to �nd paths from ?8+1 (GB ) to ?8+1 (GB ) and from

?8+1 (~B ) to ?8+1 (~B ). To this end, we employ the simple claim below.

This establishes the existence of a path ?8+1 (GB ) { ?8+1 (GB ) {

?8+1 (~B ) { ?8+1 (~B ).

Claim 4.5. For any E ∈ + and C ′ ≤ C , where we de�ne I = ?
(C ′)
8 (E),

38BC�8+1
(?
(C )
8+1 (I), ?

(C )
8+1 (E)) ≤ ⌈

�<8=%8E>C�8BC
(C ′)
8 (E)⌉2

+ 17⌈ �<8=%8E>C�8BC
(C )
8+1 (I)⌉2 + ⌈ �<8=%8E>C�8BC

(C )
8+1 (E)⌉2

.

Proof. We show that the path ⟨?8+1 (I), ?8+1 (I), ?8+1 (E)⟩ exists

in �8+1 and is of small weight. Note that it is possible for some of

these vertices to be the same, e.g. ?8+1 (I) = ?8+1 (I), but this would

be a simpler case, as nothing needs to be show for the corresponding

edge. Otherwise, we show the existence of each edge on this path

one-by-one:

Edge (?8+1 (I), ?8+1 (I)): note that since I ∈ + (�8 ), we have that

?
(C )
8+1 (I) = ?

(C ′′)
8+1 (I) for some C ′′ by the de�nition of last improv-

ing pivots (see Item 2). But note that by Item 4, we thus have an

edge (?
(C ′′)
8+1 (I), ?

(C )
8+1 (I)) of weight 8· ⌈

�<8=%8E>C�8BC
(C ′′)
8+1 (I)⌉2. Using

that ?
(C )
8+1 (I) is updated by ?

(C )
8+1 (I) whenever

�<8=%8E>C�8BC8+1 (I)

improves by at most a factor of two, we can further upper bound

the edge weight by 16 · ⌈ �<8=%8E>C�8BC
(C )
8+1 (I)⌉2.

Edge (?8+1 (I), ?8+1 (E)): by Item 5 this edge is in �10B48+1 with

weight

⌈ �<8=%8E>C�8BC
(C )
8+1 (I)⌉2

+ ⌈ �<8=%8E>C�8BC
(C ′)
8 (E)⌉2 + ⌈ �<8=%8E>C�8BC

(C )
8+1 (E)⌉2 .

The distance then follows by summing over the upper bounds

on the edge weights. □

Straight-forward addition of the upper bounds on the path seg-

ments of the exposed path ?8+1 (GB ) { ?8+1 (GB ) { ?8+1 (~B ) {

?8+1 (~B ) thus establishes that

38BC�8+1
(?8+1 (GB ), ?8+1 (~B ))

≤
∑

I∈{GB ,~B ,GB ,~B }

17 · ⌈ �<8=%8E>C�8BC8+1 (I)⌉2

+ ⌈F� 9
(GB , ~B )⌉2 +

∑
I∈{GB ,~B }

⌈ �<8=%8E>C�8BC
(C ′)
8 (I)⌉2 .

To simplify this expression, we note thatF�8
(GB , ~B ) is

= ⌈ �<8=%8E>C�8BC
(C ′)
8 (GB )⌉2+F� 9

(GB , ~B )+⌈ �<8=%8E>C�8BC
(C ′)
8 (~B )⌉2 .

For 9 < 8 , this follows from Item 6. For 9 = 8 , by Item 1 we have

GB = GB , ~B = ~B and thus

�<8=%8E>C�8BC
(C ′)
8 (G) = �<8=%8E>C�8BC

(C ′)
8 (G) = 0.

Further, for I ∈ {GB , ~B }, using �rst Item 1 and then Fact 4.2

yields

�<8=%8E>C�8BC8+1 (I) =
∑

9≤ 9 ′≤8

�?8E>C�8BC 9 ′+1 (? 9 ′ (I))
≤ 4 ·

∑
9≤ 9 ′≤8

38BC� 9′
(? 9 ′ (I),+ (� 9 ′+1))

≤ 4 ·
(
⌈ �<8=%8E>C�8BC

(C ′)
8 (I)⌉2 + 38BC�8

(I, ?8+1 (I))
)

and therefore

�<8=%8E>C�8BC8+1 (GB ) + �<8=%8E>C�8BC8+1 (~B )

≤ 4
©
«
F�8
(GB , ~B ) +

∑
I∈{GB ,~B }

�<8=%8E>C�8BC8+1 (I)
ª®
¬
.

where we use Fact 4.2 in the last inequality. Our claim now follows

by combining these insights. □

Analyzing distances in �8 . For B = 0, 1, . . . , ℓ − 2, by choice of

GB+1 and ~B+1, we have �<8=%8E>C�8BC8+1 (~B ) ≤ �?8E>C�8BC8+1 (~B ) ≤
4 · 38BC�8

(~B , ~B+1) and therefore, using Item 1, also

�<8=%8E>C�8BC8+1 (GB+1) ≤ �?8E>C�8BC8+1 (GB+1) (1)

≤ 4 · 38BC�8
(GB+1,+ (�8+1)) (2)

≤ 4
(
38BC�8

(GB+1, ~B ) + 38BC�8
(~B , ?8+1 (~B ))

)
≤ 4

(
38BC�8

(GB+1, ~B ) + 38BC�8
(~B , �?8E>C�8BC8+1 (~B )))

≤ 16
(
38BC�8

(GB+1, ~B ) + 38BC�8
(~B , ~B+1)

)
(3)

= 16 · 38BC�8
(GB+1, ~B+1) .
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In the last line we used the de�nition of GB+1 and the fact that ~B+1
is further on c from ~B . In the last equality we have used the fact

that c is the shortest path in �8 .

Using again Item 1, we further obtain via the triangle inequality

�<8=%8E>C�8BC8+1 (~B+1) ≤ �?8E>C�8BC8+1 (~B+1) (4)

≤ 4 · 38BC�8
(~B+1,+ (�8+1)) (5)

≤ 4 ·
(
38BC�8

(~B+1, ~B ) + 38BC�8
(~B ,+ (�8+1))

)
≤ 4 ·

(
38BC�8

(~B+1, ~B ) + �?8E>C�8BC8+1 (~B ))
(6)

≤ 20 · 38BC�8
(~B+1, ~B ) .

Analyzing distances in �8+1. Let us recall our analysis: we seg-

mented the path c using the sequence ~0, G1, ~1, . . . , ~ℓ−1, Gℓ into

segments in �8 that we then lift to �8+1. The total weight of seg-

ments ~B { GB+1 lifted to �8+1 is

ℓ−1∑
B=0

F�8+1
(?8+1 (~B ), ?8+1 (GB+1)) = 8

ℓ−1∑
B=0

⌈ �?8E>C�8BC8+1 (~B )⌉2
= 8

ℓ−1∑
B=1

⌈ �?8E>C�8BC8+1 (~B )⌉2
where we use in the last equality that ~0 = D ∈ + (�8+1) which

implies that �?8E>C�8BC8+1 (~0) = 0 by Item 1. It remains to use

Equation (5) to deduce that

ℓ−1∑
B=0

F�8+1
(?8+1 (~B ), ?8+1 (GB+1)) ≤ 160 · 38BC�8

(D, E).

For the second type of segments, we can bound the weight of

these segments using Lemma 4.4 to obtain

ℓ−1∑
B=1

38BC�8+1
(?8+1 (GB ), ?8+1 (~B ))

≤

ℓ−1∑
B=1

©«
69 ·F�8

(GB , ~B ) +
∑

I∈{GB ,~B }

85 · ⌈ �<8=%8E>C�8BC8+1 (I)⌉2
ª®¬

≤ 69 · 38BC�8
(D, E) + 85 · (40 · 38BC�8

(D, E))

≤ 3469 · 38BC�8
(D, E).

Then by combining the weights of these two segment types we get

38BC�8+1
(D, E) ≤ 3629 · 38BC�8

(D, E), as desired.

4.2 An Algorithm for Maintaining the
Hierarchy

The main result of this section is summarized in the following

theorem.

Theorem 4.6. Given an incremental, undirected, weighted graph

� = (+ , �,F), there is a deterministic algorithm that maintains the

hierarchy of vertex sparsi�ers �1, �2, . . . , �: as described in De�-

nition 4.1 for some : = Θ(log log=). Additionally, the algorithm

answers queries given a level 1 ≤ 8 ≤ : , and vertices D, E ∈ + (�8 )

where the query returns a distance estimate 3̂8BC (D, E) that satis�es

38BC�8
(D, E) ≤ 3̂8BC (D, E) and if D ∈ ��8

(E, 18
�?8E>C�8BC8+1 (E)) or E ∈

��8
(D, 18

�?8E>C�8BC8+1 (D)) where we de�ne �?8E>C�8BC:+1 (E) = ∞, it
is further guaranteed that 3̂8BC (D, E) ≤ 2 · 38BC�8

(D, E).

The algorithm takes total time $ (:= log6 =, + :<) and answers

every query in worst-case $ (1) time.

For the rest of this section, we assume w.l.o.g. that � is initially

connected, has diameter at most =2, 8 and all edge weights in

[2,, ].

Let us now start by giving an algorithm to maintain the approx-

imate pivots ?8+1 (E) for each E ∈ + (�8 ). This also allows us to

determine the vertex sets of each graph �8+1. Once this algorithm

is set-up, we give an algorithm to maintain historic approximate

pivots ?8+1 (E) for each E ∈ + . Finally, we discuss how to maintain

the edges in the graph hierarchy. We note that for technical reasons,

all algorithms work on the graphs �̂1, �̂2, . . . , �̂: where �̂8 is the

graph �8 with all edges rounded up to the nearest power of 2.

Algorithm 2: UpdateApproxPivots()

1 for 8 = 1, . . . , : − 1 do

2 while ∃E ∈ + (�̂8 ) such that

|�
�̂8
(E, 14

�?8E>C�8BC8+1 (E)) | ≥ 1̂8 do

3 Let �E be a set of size 1̂8 such that

�E ⊆ �
�̂8
(E, 14

�?8E>C�8BC8+1 (E)).
4 if ∃D ∈ �E with�?8E>C�8BC8+1 (D) < 1

2
�?8E>C�8BC8+1 (E) then

5 ?8+1 (E) ← ?8+1 (D); �?8E>C�8BC8+1 (E) ←
38BC

�̂8
(E,D) + �?8E>C�8BC8+1 (D).

6 else

7 Add E to �̂8+1.

8 foreach D ∈ �E do

9 ?8+1 (D) ← E ;�?8E>C�8BC8+1 (D) ← 38BC
�̂8
(D, E).

Parameters. Throughout the section, we use parameters 18 =

2(6/5)
8

for any 8 ≥ 1, and let : be the smallest index such that∏
8≤: 18 > =. It is straight-forward to calculate that: = Θ(log log=).

For convenience, we de�ne 1̂8 = 18 · (log4/3 (=
2, ) + 1) for each 8 .

Maintaining Approximate Pivots (Pseudo-code). We initialize for

each D ∈ + , the pivot ?2 (D) = ⊥ and let �?8E>C�8BC2 (D) = =2, .

We initialize �1 to � and �2, �3, . . . , �: to empty graphs (and ini-

tialize �̂1, �̂2, . . . , �̂: to empty graphs). Throughout the algorithm,

whenever a new vertex E is added to vertex set + (�8 ) (and thus

also to + (�̂8 )), we again initialize its pivot ?8+1 (D) = ⊥ and let�?8E>C�8BC8+1 (D) = =2, .

After this initialization and after each update to � , we invoke

UpdateApproxPivots() given in Algorithm 2. The goal of the al-

gorithm is two-fold:

(Ball Size Constraint): Intuitively, the ball ��8
(E, 3�8

(E,+ (�8+1)))

should contain at most 1̂8 vertices for each E ∈ + (�8 ), so that the

8We use =2, factor, so that we can use the connectivity assumption w.l.o.g. as
otherwise we would add a super source with weights =, .

1180



Deterministic Incremental APSP with Polylogarithmic Update Time and Stretch STOC ’23, June 20–23, 2023, Orlando, FL, USA

local computation can be done more e�ciently. If this constraint is

violated, we need to take action and make a new vertex in this ball a

pivot of E so that the ball shrinks in size. Since we work with approx-

imate pivots, however, we have to relax this constraint. To counter

this, we search even more aggressively for an approximate pivot

that enforces this constraint on the ball �
�̂8
(E, 14

�?8E>C�8BC8+1 (E)).
Since 3�8

(E, ?8+1 (E)) ≤ �?8E>C�8BC8+1 (E) ≤ 4 ·38BC�8
(E,+ (�8+1)) by

Item 1 of De�nition 4.1, we thus have

|�
�̂8
(E,

1

4
�?8E>C�8BC8+1 (E)) | ≤ |��8

(E, 3�8
(E,+ (�8+1))) | ≤ 1̂8 .

(Graph Size Constraint):On the other hand, we also want+ (�8+1)

to be signi�cantly smaller than+ (�8 ) (roughly by a factor 1̂8 ). Since

+ (�8+1) is in the image of ?8+1, we have to make each approximate

pivot ?8+1 (E) a vertex of+ (�8+1). At an extreme, while making each

vertex in+ (�8 ) its own approximate pivot is a viable choice of ?8+1
with respect to ball sizes, it is a poor choice when considering the

size of + (�8+1). Therefore, we use a dynamic covering technique

that allows us to bound the number of vertices that are in + (�8+1)

(i.e. at any point in the image of ?8+1) by a much smaller factor.

Our algorithm optimizes these two constraints using a simple

rule: whenever a new pivot is required due to a ball size constraint

being violated, such a vertex E in need, �rst asks other vertices that

are close to it if their approximate pivot is a good �t. Otherwise, E

becomes a pivot itself, but also the new pivot of these close vertices.

We note that the algorithm also already shows how to maintain�?8E>C�8BC8+1 (E) for all E ∈ + (�8 ) for all 8 . Below, we establish our

claim on the graph size.

Claim 4.7. Whenever the approximate pivot ?8+1 (E) of a vertex

E ∈ + (�8 ) is changed, the value �?8E>C�8BC8+1 (E) decreases to a 3
4 -

fraction of the original value.

Proof. It is not hard to see from Algorithm 2 that for each

E ∈ + (�8 ), �?8E>C�8BC8+1 (E) is monotonically decreasing over time.

Further, when the pivot of a vertex E is changed in Line 5, we

have that �?8E>C�8BC#�,
8+1 (E) = 38BC�8

(E,D) + �?8E>C�8BC8+1 (D) ≤
3
4

�?8E>C�8BC$!�
8+1 (E) by the if-condition.

If the pivot of a vertexD is changed in the for-each loop in Line 8,

we have that �?8E>C�8BC#�,
8+1 (D) = 38BC�8

(D, E) ≤ 1
4

�?8E>C�8BC$!�
8+1 (E) ≤

1
2

�?8E>C�8BC$!�
8+1 (D) where the last inequality stems from Line 3 and

the fact that the if condition in Line 4 was not satis�ed. □

Corollary 4.8. At any stage, we have

|+ (�8+1) | ≤
|+ (�8 ) | (log4/3 (=

2, ) + 1)

1̂8
=
|+ (�8 ) |

18
.

Proof. By Claim 4.7, we have that every vertex can change its

approximate pivot at most log4/3 (=
2, ) + 1 times. But note that

whenever a new vertex E is added to the set+ (�8+1) (which happens

only in Line 7), we change the approximate pivots of all vertices in

the current ball ��8
(E, 14

�?8E>C�8BC8+1 (E)) which has size at least 1̂8
by Line 3. □

For convenience, we de�ne =8 for each level 8 the �nal size of set

+ (�8 ) for the rest of this section. Thus, the corollary above can be

restated as =8+1 ≤ =8/18 .

Maintaining Approximate Pivots (Implementation). Next, we pro-

pose an e�cient implementation of Algorithm 2 given that there

is a procedure that updates �̂8 based on the updated approximate

pivots/ approximate pivot distances.

In our implementation, we use the following crucial primitive

TruncDijkstra(E, �8 , A ): for any vertex E ∈ + (�8 ) and radius A ,

we run Dijkstra’s algorithm from E in �̂8 where we stop relaxing

vertices that are at distance greater than A , or abort after having

found 1̂8 such vertices. But note that by de�nition of the adjacency

list Adj
�̂8 ,D

of each vertex D in graph �8 , we can use exclusively

the edges in Adj
�̂8 ,D
[1, 1̂8 ] for each D that we relax and therefore

implement the algorithm e�ciently in$ (1̂28 + 1̂8 log 1̂8 ) time (recall

from Section 3 that these lists are ordered by weight and time of

arrival). Further, we can store with E a deterministic dictionary

D8 (E) (see [32]) that allows us to check for each vertex D if D is

one of the 1̂8 vertices relaxed by Dijkstra’s algorithm, and if so,

we can return the distance 38BC
�̂8
(D, E). The construction time of

the dictionary is subsumed by the bound$ (1̂28 log 1̂8 ) and its query

time is worst-case constant.

Equipped with this primitive, let us give the entire algorithm.

Throughout each stage, we maintain a list of unvisited vertices

Unvisited ⊆ + (�̂8 ) that corresponds to vertices where we cannot

currently ensure that the while-loop condition in Line 2 holds.

At the initial stage, we have Unvisited equal to + (�̂8 ), i.e. the

initial set of vertices of �̂8 . At the beginning of any subsequent

stage, Unvisited consists of the verticesD ∈ + (�8 ) for which there

exists a vertex E ∈ DD where Adj
�̂8 ,E
[1, 1̂8 ] was updated since the

last stage.

Then, at any stage, once Unvisited is initialized as described

above, we use the following procedure: while there exists a vertex

E ∈ Unvisited, we run TruncDijkstra(E, �̂8 ,
1
4

�?8E>C�8BC8+1 (E)).
If the primitive explores less than 1̂8 vertices, we store the dictionary

D8 (E) and remove E fromUnvisited. Otherwise, i.e. if the primitive

explores 1̂8 vertices for E , then we enter the while-loop. We can

obtain �E as described in Line 3 from the primitive (by scanning the

dictionary) and it is not hard to see that the rest of the while-loop

iteration can be implemented in time $ (1̂8 ).

We prove next that this implementation is e�cient.

Lemma 4.9. Given a procedure that updates each �̂8 just before the

8-th iteration of Algorithm 2 in such a way that for each D keeps the

adjacency list of D in �̂8 ordered by weight and time of arrival, the

total update time of all invocations of Algorithm 2 (excluding the

time required by the procedure updating each �̂8 ) can be bounded by

$
(∑

8 =81
4
8 log

6 =, + Δ
)
where Δ is the total number of edges and

vertices in the �nal versions of �1, �2, . . . , �: .

Additionally we can query given a level 1 ≤ 8 ≤ : , and vertices

D, E ∈ + (�8 ) where the query returns a distance estimate 3̂8BC (D, E)

satisfying 38BC�8
(D, E) ≤ 3̂8BC (D, E). If D ∈ ��8

(E, 18
�?8E>C�8BC8+1 (E))

or E ∈ ��8
(D, 18

�?8E>C�8BC8+1 (D)) where we de�ne �?8E>C�8BC:+1 (E) =
∞, it is further guaranteed that 3̂8BC (D, E) ≤ 2 · 38BC�8

(D, E).

Proof. We �rst argue for correctness. Note that each vertex

E that is on the list Unvisited and then removed at the end of

1181



STOC ’23, June 20–23, 2023, Orlando, FL, USA Forster, Nazari, Probst Gutenberg

the stage cannot satisfy the condition of the while-loop in Line 2.

This follows from the fact that a vertex E is only removed from

the list Unvisited when TruncDijkstra(E, �̂8 ,
1
4

�?8E>C�8BC8+1 (E))
certi�es that it cannot satisfy the while-loop condition. Further,

we have that �?8E>C�8BC8+1 (E) is monotonically decreasing over

time by Claim 4.7 and therefore the condition remains true. It

remains to argue that we can initialize Unvisited at a stage af-

ter the initial stage to only consist of vertices D that had no ver-

tex E ∈ DD with updated Adj
�̂8 ,E
[1, 1̂8 ]. But this implies that

the primitive TruncDijkstra(D, �̂8 ,
1
4

�?8E>C�8BC8+1 (D)) would re-

lax the same vertices as at the previous stage. It is thus straight-

forward to prove by induction that for E the while-loop condition

does not hold.

We observe �rst that for each vertex E , its adjacency listAdj
�̂8 ,E
[1, 1̂8 ]

can be updated at most 1̂8 log2 (=, ) times over the entire course

of the algorithm by the way the ordering of edges incident on E is

determined and by the fact that �̂8 only allows for edge weights

that are powers of 2 and is incremental.

For the running time, we �rst use that for each vertex E ∈ + (�8 ),

we have that �?8E>C�8BC8+1 (E) is decreased at most $ (log(=, ))

times over the entire course of the algorithm by Claim 4.7. Fur-

ther, between any two times that �?8E>C�8BC8+1 (E) is decreased, we
claim that the primitive TruncDijkstra(E, �̂8 ,

1
4

�?8E>C�8BC8+1 (E))
is invoked at most $ (1̂8 ) times. This follows since between these

times �?8E>C�8BC8+1 (E) remains �xed and since �̂8 is an incremental

graph, �
�̂8
(E, 14

�?8E>C�8BC8+1 (E)) is monotonically increasing. How-

ever only until it contains 1̂8 or more vertices, as this triggers that

the while-loop condition is violated on E again. Until then, each of

the at most 1̂8 − 1 vertices that are in the ball just before it starts

violating the while-loop condition can have 1̂8 log2 (=, ) updates to

their adjacency list Adj
�̂8 ,D
[1, 1̂8 ] triggering an additional invoca-

tion of TruncDijkstra(E, �̂8 ,
1
4

�?8E>C�8BC8+1 (E)). In summary, we

bound the number of timesTruncDijkstra(E, �̂8 ,
1
4

�?8E>C�8BC8+1 (E))
is run for some vertex E ∈ + (�8 ) to be at most $ (1̂28 log

2 =, ). Us-

ing that the time spent by of each such call can be upper bound by

$ (1̂28 ), and given that these calls asymptotically subsumes all other

operations of the implementation of Algorithm 2, we thus arrive at

the runtime stated above.

To prove that we can carry out queries as stated, we require

two insights: 1) 38BC�8
(D, E) ≤ 38BC

�̂8
(D, E) ≤ 238BC�8

(D, E) which is

trivial from the fact that each �̂8 is derived from �8 by rounding up

weights to the nearest power of 2 and 2) the fact that + (�: ) = ∅

which follows fromCorollary 4.8which implies |+ (�: ) | ≤ =/
∏:

9=1 1 9

and the fact that : is chosen such that
∏:

9=1 1 9 > =. Given these

two insights, it is not hard to verify that the dictionariesD8 (E) that

we have stored at the end of each stage enable us to carry out the

stated queries where we obtain for a vertex D the exact distance

38BC
�̂8
(D, E) and return it as a distance estimate or if we cannot �nd

an entry in the dictionary we can simply return∞. □

Maintaining Historic Approximate Pivots. Before we can describe

how tomaintain the graphs�1, �2, . . . , �: (and thus �̂1, �̂2, . . . , �̂: ),

it is straight-forward to see from De�nition 4.1, that we also need

to maintain the last improving pivots ?8+1 (E). Therefore, we need

to know the current pivot distances �?8E>C�8BC8+1 (E) for each E ∈ +
(recall that Algorithm 2 maintains these distances only for vertices

in + (�8 )). More precisely, we need an algorithm that informs us

when ⌈ �<8=%8E>C�8BC8+1 (E)⌉2 decreases.

Focusing on a given level 8 ≤ : − 1, we keep explicit variables

<̃?38+1 (E) for each E ∈ + = + (�1). Our algorithm ensures that

we have <̃?38+1 (E) = ⌈
�<8=%8E>C�8BC8+1 (E)⌉2 by the end of each

stage. To achieve this goal, consider the following natural hierar-

chy forest �8 . We let the vertices of �8 correspond to the vertices

in + (�1),+ (�2), . . . ,+ (�8+1), where we have an edge from each

vertex E ∈ + (� 9 ), 9 ≤ 8 to its current approximate pivot, i.e. an

edge (E, ? 9+1 (E)). Using directed edges, it is clear that the vertices

in + (�8+1) form the roots of the forest �8 , the vertices in + (� 9 )

form the level- 9 vertices (i.e. at distance 9 − 1 from the leaves) and

+ (�1) form the leaf vertices.

We further maintain the following weight functionF�8 over the

edges:

F�8 (4 = (E, ? 9+1 (E))) =

{ �?8E>C�8BC 9+1 (E) − <̃?38+1 (E) if j = 1�?8E>C�8BC 9+1 (E) otherwise

We can maintain this collection of trees �8 using the dynamic

tree data structure introduced below.

Theorem 4.10 (see [6], Theorem 2.7). Given a directed forest

� = (+ , �,F) with (possibly negative) edge weightsF , there is a data

structure D that supports the following operations:

• AddEdge(4,F4 ) /DeleteEdge(4): adds an edge 4 with weight

F4 (assuming that the tail of 4 is a root) / deletes an edge 4

from � .

• FindRoot(D): Returns the root of a vertex D.

• ReturnDist(D): Returns the distance from D to its root.

• Mark(D) / Unmark(D): Marks / Unmarks a vertex D. Initially

all vertices are unmarked.

• FindNearestMarkedVertex(D): Finds the vertex in D’s sub-

tree that is at closest distance and marked (if such a vertex

exists).

The data structure can be initialized in$ (= log=) time and implement

each operation in $ (log=) time.

We can now state our algorithm to maintain the correct values

<̃?38+1 (E) for each E ∈ + = + (�1). On initialization, we mark

all vertices in + (�1) and leave all other vertices unmarked. We

initialize for each E ∈ + , <̃?38+1 (E) = ⌈=
2, ⌉2.

Next, consider an update to � . This potentially results in many

changes of edges in �8 and weights due to changes in the distances

to approximate pivots �?8E>C�8BC 9+1 (E). Our algorithm starts by

forwarding these changes to the data structure D (for the initial

change we assume the data structure is initially empty so the entire

forest �8 is encoded in these changes). Weight changes are imple-

mented by �rst deleting edges and then adding them back into the

forest with their new weight.

Then, for each tree ) ∈ �8 that underwent some change at

the current stage, we �nd its root A ∈ + (�8+1) and query for

D = FindNearestMarkedVertex(A ), the nearest leaf of A . If the

distance from D to A is non-negative, the algorithm moves on to

the next tree. Otherwise, it sets <̃?38+1 (D) = ⌈
�<8=%8E>C�8BC (D)⌉2
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which can be extracted from the distance from D to A . Then, the

algorithm repeats this the procedure for the current tree.

Claim 4.11. At the end of each stage, we have for each E ∈ + ,

<̃?38+1 (E) = ⌈
�<8=%8E>C�8BC8+1 (E)⌉2 .

Proof. Whenever <̃?38+1 (E) is re-set, it is set to the current

value ⌈ �<8=%8E>C�8BC (D)⌉2. Since ⌈ �<8=%8E>C�8BC (D)⌉2 is monotoni-

cally decreasing over time, we have<̃?38+1 (E) ≥ ⌈
�<8=%8E>C�8BC (D)⌉2.

On the other hand, by our algorithm, we ensure that at the end

of every stage, for each tree ) ∈ �8 , that the nearest leaf to its root

is at a non-negative distance. Thus, it is not hard to see that for

each E ∈ + (�1), we have
∑

9≤8
�?8E>C�8BC 9+1 (E) ≥ <̃?38+1 (E). But

since �<8=%8E>C�8BC (D) is exactly the minimum over all such sums∑
9≤8

�?8E>C�8BC 9+1 (E) at previous and the current stages, we have

that <̃?38+1 (E) ≤
�<8=%8E>C�8BC (D). Rounding up both quantities

to the nearest power of two further preserves this inequality. □

Claim 4.12. Given an algorithm Algorithm 2 to update for each

1 ≤ 8 < : , E ∈ + (�8 ) the quantities �?8E>C�8BC8+1 (E) and ?8+1 (E),

we can maintain for each 1 ≤ 8 < : and E ∈ + , the last improv-

ing pivots ?8+1 (E) and ⌈
�<8=%8E>C�8BC8+1 (E)⌉2 in additional time

$ (:= log=, log=).

Proof. Fixing a level 1 ≤ 8 < : , we have that each vertex in

+ (�8 ) has �?8E>C�8BC8+1 (E) and ?8+1 (E) updated at most$ (log=, )

times. Since each update can be handled by the algorithm described

above in time$ (log=), the algorithm takes$ ( |+ (�8 ) | log=, log=)

time on handling updates and the resulting query on the updated

tree. Further, each time a query returns a negative value, we at least

half the value <̃?38+1 (D) for some D ∈ + . Thus, the number of such

queries is bound by $ (= log=, ) and each query and subsequent

update of <̃?38+1 (D) can again be implemented in time $ (log=).

Since we have : − 1 levels where we maintain our data structure,

the bound follows. □

Putting it all together. Finally, we give the algorithm to main-

tain �1, �2, . . . , �: (and thus to maintain �̂1, �̂2, . . . , �̂: ). Recall

that initially these graphs are equal to the empty graphs. Then,

�8 (and �̂8 ) is updated whenever Algorithm 2 is invoked, and

to be precise, is updated just before the 8-th iteration of the for-

loop in Algorithm 2. For 8 = 1, the update is simple as �1 is just

equal to � at any stage. For 8 + 1 ≥ 1, we have that �8 is already

updated for the current stage, and for any E ∈ + (�8 ), we have

?8+1 (E), �?8E>C�8BC8+1 (E), ��8
(E, 14

�?8E>C�8BC8+1 (E)) and DE , and for

any E ∈ + , we have ?8+1 (E) and ⌈ �<8=%8E>C�8BC8+1 (E)⌉2 in their

updated version (i.e. these values do not change for the rest of the

stage). This can be seen easily from Algorithm 2 and our description

of the algorithm to maintain historic approximate pivots.

Given this updated information, it is straight-forward to generate

all edges that are missing from �8+1 in constant additional time

per edge added to �8+1. To obtain a bound on the runtime, it thus

su�ces to bound the number of edges in �8+1.

Lemma 4.13. Throughout the algorithm, we have for any 1 ≤ 8 < : ,

that |� (�8+1) | = $ (< + := log5 =, +
∑

9≤8 |+ (� 9 ) |1 9 log
4 =, ).

Proof. We �rst prove the claim that for any such 8 , we have

|�10B48+1 | = $ (= log3 =, + |+ (�8 ) |1̂8 log=, ). We proceed by a case

analysis for each edge type that is generated. Following De�ni-

tion 4.1 we have

• For edges generated from Item 3, we have that there is at

most one edge generated for each vertex E in ��8
(D, 14 ·�?8E>C�8BC8+1 (D)) for any vertex D ∈ + (�8 ). Since the quan-

tity �?8E>C�8BC8+1 (D) is updated at most$ (log=, ) times and

since it is ensured that ��8
(D, 14 ·

�?8E>C�8BC8+1 (D)) is of size
less than 1̂8 when edges are generated, there are at most

$ ( |+ (�8 ) |1̂8 log=, ) such edges.

• For edges generated from Item 4, we have that such edges

are only generated for a vertex E ∈ + (�8 ) whenever its

pivot ?8+1 (E) is updated, and if so an edge to every former

pivot of E is added. But since we have from Claim 4.7 that

there are at most $ (log=, ) such pivots throughout the

algorithm, the total number of such edges can be bound by

$ ( |+ (�8 ) | log
2 =, ).

• For edges generated from Item 5, we have to generate new

edges for a vertex E ∈ + only when ?8+1 (E) is updated or if

for an existing edge (?
(C )
8+1 (G), ?

(C )
8+1 (E)) where G = ?

(C ′)
8 (E) for

some C ′ ≤ C , the weight has to change because of one of the

quantities ⌈ �<8=%8E>C�8BC
(C )
8+1 (G)⌉2, ⌈ �<8=%8E>C�8BC

(C ′)
8 (E)⌉2, or

⌈ �<8=%8E>C�8BC
(C )
8+1 (E)⌉2. By our previous argument, we have

that there are atmost$ (log=, ) historic pivots?8 (E), ?8+1 (E)

and that ⌈ �<8=%8E>C�8BC
(C )
8+1 (G)⌉2, ⌈ �<8=%8E>C�8BC

(C )
8+1 (E)⌉2 can

change at most$ (log=, ) times for each pair G, E for which

we generate an edge. We conclude that there are at most

$ (= log3 =, ) such edges.

Having established the upper bound on �10B49 for all 1 ≤ 9 < : ,

and using that �10B41 consists of the edges in � , we can thus bound

the number of edges in �
?A> 9
8+1 . These edges are generated from

Item 6, where we have an edge (?8+1 (G), ?8+1 (~)) in �
?A> 9
8+1 for each

edge (G,~) ∈ �10B49 for any 9 ≤ 8 for any historic pivots of G

and ~ and the edge weight is equal to ⌈ �<8=%8E>C�8BC8+1 (G)⌉2 +

⌈F� 9
(4)⌉2 + ⌈ �<8=%8E>C�8BC8+1 (~)⌉2. From our previous discussion,

we have that for each such edge in �10B49 for any 9 ≤ 8 , we can

have at most$ (log2 =, ) versions in �
?A> 9
8+1 . Thus, the total number

of such edges is $ (< + := log5 =, +
∑

9≤8 |+ (� 9 ) |1̂ 9 log
3 =, ), as

desired. □

Using this upper bound on the number of edges, we can prove

the main result of the section, Theorem 4.6.

Theorem 4.6. Given an incremental, undirected, weighted graph

� = (+ , �,F), there is a deterministic algorithm that maintains the

hierarchy of vertex sparsi�ers �1, �2, . . . , �: as described in De�-

nition 4.1 for some : = Θ(log log=). Additionally, the algorithm

answers queries given a level 1 ≤ 8 ≤ : , and vertices D, E ∈ + (�8 )

where the query returns a distance estimate 3̂8BC (D, E) that satis�es

38BC�8
(D, E) ≤ 3̂8BC (D, E) and if D ∈ ��8

(E, 18
�?8E>C�8BC8+1 (E)) or E ∈

��8
(D, 18

�?8E>C�8BC8+1 (D)) where we de�ne �?8E>C�8BC:+1 (E) = ∞, it
is further guaranteed that 3̂8BC (D, E) ≤ 2 · 38BC�8

(D, E).
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The algorithm takes total time $ (:= log6 =, + :<) and answers

every query in worst-case $ (1) time.

Proof. We have correctness of the algorithm by Lemma 4.9,

Claim 4.11 and our previous discussion. It thus remains only to

bound the runtime. From Lemma 4.9, Claim 4.12 and Lemma 4.13,

we can upper bound the total update time of the algorithm by

$

(
:∑
8=1

=81
4
8 log

6 =, +<: log(<)

)

(recall =1 = Ω(=)). Further note that for 8 < 10, we have 18 ≤

2(6/5)
10
= $ (1) and therefore =81

4
8 = $ (=). For 8 ≥ 10, we have that

=8 ≤ =/

8−1∏
9=1

1 9 = =/2
∑8−1

9=1 (6/5)
9

= =/2(6/5)
8
∑8−1

9=1 (5/6)
9

≤ =/148

wherewe use the formula for geometric sums to obtain
∑8−1

9=1 (5/6)
9 ≥

(1 − (5/6)−10)/(1 − 5/6) − 1 ≥ 4. This allows to bound the total

update time as stated above, and it remains to observe that one can

implement the data structure to maintain AdjE,�8
for each 8 in time

$ (< log<) by using binary search when adding new edges in to

the adjacency list of E . □

4.3 The Query Algorithm

Finally, we can give a query algorithm that is almost identical to

the query algorithm in [7]. Here we de�ne for convenience the

function ?1 : + ↦→ + to be the identity function and recall that�?8E>C�8BC:+1 (G) = ∞ for all G ∈ + (�: ).

Algorithm 3:�eryDist(D, E)

1 8 ← 1.

2 while the distance estimate 3̂8BC (?8 (D), ?8 (E)) from

Theorem 4.6 exceeds

max{ 14
�?8E>C�8BC8+1 (?8 (E)), 14 �?8E>C�8BC8+1 (?8 (D))} do

3 3̃8 ← �?8E>C�8BC8+1 (?8 (D)) + �?8E>C�8BC8+1 (?8 (E)).
4 8 ← 8 + 1.

5 3̃8 ← 3̂8BC (?8 (D), ?8 (E)).

6 return 3̃8BC (D, E) =
∑

9≤8 3̃ 9

Lemma 4.14. The algorithm QueryDist(D, E) returns a distance

estimate 3̃8BC (D, E) such that

38BC� (D, E) ≤ 3̃8BC (D, E) ≤ $̃ (1) · 38BC� (D, E) .

The algorithm runs in worst-case time $ (log log=).

Runtime Analysis. To bound the runtime, we �rst observe that if

we are in the 9-th iteration of the while-loop, once we evaluated

? 9 (D) and ? 9 (E), we can implement the while-loop in $ (1) time.

While ? 9 (D) and ? 9 (E) are nested functions of depth 9 − 1 which

would naively take time$ ( 9) to evaluate, we use that in the 9 −1-th

iteration (for 9 > 1, otherwise$ ( 9) is constant), we already evaluate

? 9−1 (D) and ? 9−1 (E), and by keeping them stored in a cache, we

can compute ? 9 (D) = ? 9 (? 9−1 (D)) and ? 9 (E) = ? 9 (? 9−1 (E)) in

constant time respectively. Thus, each iteration of the while loop

takes constant time.

Letting 8 refer to the �nal value of the variable, we claim that

8 ≤ : . Given this claim, it is not hard to see that from Algorithm 3

and Theorem 4.6, that the total time spend can be bound by$ (:) =

$ (log log=).

To prove that 8 ≤ : , we observe that the variable is initialized

to 1 and then increased by each iteration of the while-loop by

just one. Thus, if we assume for the sake of contradiction that

8 > : , the condition of the while-loop before the :-th iteration must

have been true. In particular, we have 3̂8BC (?: (D), ?: (E)) exceeding
1
4

�?8E>C�8BC:+1 (?: (E)) but this gives an immediate contradiction as

we de�ne �?8E>C�8BC:+1 (G) = ∞ for all G ∈ + (�8 ) while we assume

that �: is a connected graph.

Lower Bounding the Estimate. Observe that

3̃8BC (D, E) =
∑
9≤8

3̃ 9 ≥

8−1∑
ℓ=1

�?8E>C�8BC ℓ+1 (?ℓ (D)) + 38BC�8
(?8 (D), ?8 (E))

+

8−1∑
ℓ=1

�?8E>C�8BC ℓ+1 (?ℓ (E))
≥

8−1∑
ℓ=1

38BC�ℓ
(?ℓ (D), ?ℓ+1 (D)) + 38BC�8

(?8 (D), ?8 (E))

+

8−1∑
ℓ=1

38BC�ℓ
(?ℓ (E), ?ℓ+1 (E))

≥

8−1∑
ℓ=1

38BC� (?ℓ (D), ?ℓ+1 (D)) + 38BC� (?8 (D), ?8 (E))

+

8−1∑
ℓ=1

38BC� (?ℓ (E), ?ℓ+1 (E)) ≥ 38BC� (D, E)

where we have the �rst equality from Line 3 and Line 5, the second

inequality follows from Item 1, the third inequality from Theo-

rem 4.3, and the �nal inequality from the triangle inequality.

Upper Bounding the Estimate. Wenext prove by induction that for

each 1 ≤ ℓ ≤ 8 , we have
∑8

9=ℓ 3̃ 9 ≤ 2 ·2358858−ℓ38BC�8
(?8 (D), ?8 (E)).

For the base case, we have ℓ = 8 , and 3̃ℓ ≤ 2 ·38BC�ℓ
(?ℓ (D), ?ℓ (E)) by

Theorem 4.6 which exactly corresponds to the de�nition in Line 5.

We can then take the inductive step for ℓ + 1 ↦→ ℓ for some ℓ < 8 .

From the while-loop condition in Line 2, Theorem 4.6 and the fact

that ℓ < 8 ,

38BC�ℓ
(?ℓ (D), ?ℓ (E))

≥
1

8
max{ �?8E>C�8BC ℓ+1 (?ℓ (D)), �?8E>C�8BC ℓ+1 (?ℓ (E))}

≥
1

8
max{38BC�ℓ

(?ℓ (D), ?ℓ+1 (D)), 38BC�ℓ
(?ℓ (E), ?ℓ+1 (E))}
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where the last inequality follows from Item 1. We further obtain

8∑
9=ℓ

3̃ 9 =

8∑
9=ℓ+1

3̃ 9 + 3̃ℓ

≤ 2 · 2358858−ℓ−138BC�ℓ+1
(?ℓ+1 (D), ?ℓ+1 (E)) + 3̃ℓ

≤ 2 · 3629 · 2358858−ℓ−138BC�ℓ
(?ℓ+1 (D), ?ℓ+1 (E)) + 3̃ℓ

≤ 2 · 3629 · 2361458−ℓ−1 (38BC�ℓ
(?ℓ (D), ?ℓ (E))

+
∑

G ∈{D,E }

38BC�ℓ
(?ℓ+1 (G), ?ℓ (G))) + 3̃ℓ

≤ 2 · 3629 · 2358858−ℓ−1 (38BC�ℓ
(?ℓ (D), ?ℓ (E))

+
∑

G ∈{D,E }

38BC�ℓ
(?ℓ+1 (G), ?ℓ (G)))

≤ 2 · 3629 · 2358858−ℓ−1 · 65 · 38BC�ℓ
(?ℓ (D), ?ℓ (E))

= 2 · 2358858−ℓ · 38BC�ℓ
(?ℓ (D), ?ℓ (E))

where we use the induction hypothesis in the �rst inequality, Theo-

rem 4.3 in the second inequality, the triangle inequality in the third

inequality. In the fourth inequality, we use that by Line 3 and Item 1

of De�nition 4.1, 3̃ℓ = �?8E>C�8BC ℓ+1 (?ℓ (D))+ �?8E>C�8BC ℓ+1 (?ℓ (E)) ≤
4
(
38BC�ℓ

(?ℓ (D), ?ℓ+1 (D)) + 38BC�ℓ
(?ℓ (E), ?ℓ+1 (E))

)
and the previous

statement. Finally, we use our insight from before. This concludes

the induction.

As we have established the claim, and bound 8 ≤ : , it su�ces

to see that this implies in particular that 3̃8BC (D, E) =
∑8

9=1 3̃ 9 ≤

2 · 2358858−138BC�1
(?1 (D), ?1 (E)) = 2 · 2358858−138BC� (D, E) ≤ 2 ·

235885$ (log log=)38BC� (D, E) ≤ $̃ (1) · 38BC� (D, E).
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