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Abstract
In this paper we prove that for any integer q ≥ 5, the anti-ferromagnetic q-state Potts model
on the infinite �-regular tree has a unique Gibbs measure for all edge interaction parameters
w ∈ [1 − q/�, 1), provided � is large enough. This confirms a longstanding folklore
conjecture.

Keywords Gibbs measure · Anti-ferromagnetic Potts model · Infinite regular tree

1 Introduction

The Potts model is a statistical model, originally invented to study ferromagnetism [32]; it
also plays a central role in probability theory, combinatorics and computer science, see e.g.
[35] for background.

Let G = (V , E) be a finite graph. The anti-ferromagnetic Potts model on the graph G has
two parameters, a number of states, or colors, q ∈ Z≥2 and an edge interaction parameter
w = ek J/T , with J < 0 being a coupling constant, k the Boltzmann constant and T the
temperature. The case q = 2 is also known as the zero-field Ising model. A configuration
is a map σ : V → [q] := {1, . . . , q}. Associated with such a configuration is the weight
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wm(σ ), where m(σ ) is the number of edges e = {u, v} ∈ E for which σ(u) = σ(v).
There is a natural probability measure, the Gibbs measure PrG;q,w[·], on the collection of
configurations � = {σ : V → [q]} in which a configuration is sampled proportionally to
its weight. Formally, for a given configuration φ : V → [q] the probability that a random
configuration �1 is equal to φ, is given by

PrG;q,w[� = φ] = wm(φ)

∑
σ :V→[q] wm(σ )

, (1)

here the denominator is called partition function of themodel andwe denote it by Z(G; q, w)

(or just Z(G) if q and w are clear form the context).
In statistical physics the Potts model is most frequently studied on infinite lattices, such

as Z
2. At the cost of introducing some measure theory, the notion of a Gibbs measure can

be extended to such infinite graphs, see e.g. [10, 11, 16]. While at any temperature the Gibbs
measure on a finite graph is unique, this is no longer the case for all infinite lattices. The
transition from having a unique Gibbs measure to multiple Gibbs measures in terms of the
temperature is referred to as a phase transition in statistical physics [16, 17] and it is an
important problem to determine the exact temperature, the critical temperature, Tc, at which
this happens. There exist predictions for the critical temperature on several lattices in the
physics literature by Baxter [2, 3] (see also [36] for more details and further references), but
it turns out to be hard to prove these rigorously cf. [36].

In the present paper we consider the anti-ferromagnetic Potts model on the infinite �-
regular tree, T� = (V , E), also known as the Bethe lattice, or Cayley tree. We briefly recall
the formal definition of a Gibbs measure in this situation following [10, 11]. See [34] for a
survey on this topic in general.

The sigma algebra is generated by sets of the form Uσ := {φ : V → [q] | φ �U= σ },
where U ⊂ V is a finite set and σ : U → [q]. Let w ∈ (0, 1). A probability measure μ

on this sigma algebra is then called a Gibbs measure for the q-state anti-ferromagnetic Potts
model on T� at w, if for all finite U ⊂ V and μ-a.e. φ : V → [q] the following holds

Prμ[��U◦= φ �U◦ | ��V \U◦= φ �V \U◦ ] = PrT�[U ];q,w[��U◦= φ|U◦ | ��∂U= φ|∂U ],
where ∂U denotes the collection of vertices in U that have a neighbor in V \ U and U ◦ :=
U\∂U . We note that the probability in the right-hand side of this equation is determined in
the finite graph induced byU , T�[U ]. Moreover, we note that for anyw ∈ (0, 1) there exists
at least one such Gibbs measure.

For a number of states q ≥ 2 define

wc := max
{
0, 1 − q

�

}
.

It is a longstanding folklore conjecture (cf. [7, page 746]) that the Gibbs measure is unique
if and only if w ≥ wc (where the inequality should be read as strict if q = �.) We note
that using the well known Dobrushin uniqueness theorem, one obtains uniqueness of the
Gibbs measure provided w > 1− q

2� cf. [5, 36], which is still far way from the conjectured
threshold. The conjecture was confirmed by Jonasson for the casew = 0 [24], by Srivastava,
Sinclair and Thurley [38] for q = 2 (see also [17]; in this case one can map the model to a
ferromagnetic model since the tree is bipartite, which is much better understood), by Galanis,
Goldberg and Yang for q = 3 [18] and by three of the authors of the present paper for q = 4
and � ≥ 5 [13]. Our main result is a confirmation of this conjecture for all q ≥ 5 provided
the degree of the tree is large enough.

1 We use the convention to denote random variables with capitals in boldface.

123



Uniqueness of the Gibbs measure for the anti-ferromagnetic... Page 3 of 24 140

Main Theorem For each integer q ≥ 5 there exists �0 ∈ N such that for each � ≥ �0 and
eachw ∈ [wc, 1) the q-state anti-ferromagnetic Potts model with edge interaction parameter
w has a unique Gibbs measure on the infinite �-regular tree T�.

It has long been known that there are multiple Gibbs measures whenw < wc [30, 31], see
also [22]) and [8, 21, 25, 26]. We will briefly indicate below Lemma 2.2 how one can deduce
this. Our main results therefore pinpoints the critical temperature for the anti-ferromagnetic
Potts model on the infinite regular tree for large enough degree. For later reference we will
refer to wc as the uniqueness threshold.

In Theorem 2.1 below, we will reformulate our main theorem in terms of the conditional
distribution of the color of the root vertex of T� conditioned on a fixed coloring of the
vertices at a certain distance from the root, showing that this distribution converges to the
uniform distribution as the distance tends to infinity. We in fact show that this convergence
is exponentially fast for subcritical w (i.e. w > wc).

1.1 Motivation from Computer Science

There is a surprising connection between phase transitions on the infinite regular tree and
transitions in the computational complexity of approximately computing partition function
of 2-statemodels (not necessarily the Potts model) on bounded degree graphs. For parameters
inside the uniqueness region there is an efficient algorithm for this task [27, 38, 39], while
for parameters for which there are multiple Gibbs measures on the infinite regular tree, the
problem is NP-hard [23, 37]. It is conjectured that a similar phenomenon holds for a larger
number of states.

While the picture for q-state models for q ≥ 3 is far from clear, some progress has been
made on this problem for the anti-ferromagnetic Potts model. On the hardness side, Galanis,
Štefankvovič and Vigoda [22] showed that for even numbers � ≥ 4 and any integer q ≥ 3,
approximating the partition function of the Potts model Z(G; q, w) is NP-hard on the family
of graphs of maximum degree � for any 0 ≤ w < 1 − q/� = wc, which we now know
to be the uniqueness threshold (for � large enough). On the other side, much less is known
about the existence of efficient algorithms for approximating Z(G; q, w) or sampling from
the measure PrG;q,w for the class of bounded degree graphs when w > wc. Implicit in [6]
there is an efficient algorithm for this problem whenever 1−αq/� < w ≤ 1, with α = 1/e,
which has been improved to α = 1/2 in [28].

For random regular graphs of large enough degree, our main result implies an efficient
randomized algorithm to approximately sample from the Gibbs measure PrG;q,w for any
wc < w ≤ 1 by a result of Blanca, Galanis, Goldberg, Štefankovič, Vigoda and Yang [7,
Theorem 2.7]. See also [12] for a very recent improvement. In [14], Efthymiou proved a
similar result for Erdős-Rényi random graphs without the assumption that wc is equal to
the uniqueness threshold on the tree. At the very least this indicates that the uniqueness
threshold on the infinite regular tree plays an important role in the study of the complexity
of approximating the partition function of and sampling from the Potts model on bounded
degree graphs.

1.2 Approach

Our approach to prove the main theorem is based on the approach from [13] for the cases
q = 3, 4. As is well known, to prove uniqueness it suffices to show that for a given root
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vertex, say v, the probability that v receives a color i ∈ [q], conditioned on the event that the
vertices at distance n from v receive a fixed coloring, converges to 1/q as n → ∞ regardless
of the fixed coloring of the vertices at distance n. Instead of looking at these probabilities,
we look at ratios of these probabilities. It then suffices to show that these converge to 1. The
ratios at the root vertex v can be expressed as a rational function of the ratios at the neighbors
of v. See Lemma 2.2 below. This function is rather difficult to analyze directly and as in [13]
we analyze a simpler function coupled with a geometric approach. A key new ingredient
of our approach is to take the limit of �, the degree of the tree, to infinity and analyze the
resulting function. This function turns out be even simpler and behaves much better in a
geometric sense. With some work we translate the results for the limit case back to the finite
case and therefore obtain results for � large enough. This is inspired by a recent paper [4]
in which this idea was used to give a precise description of the location of the zeros of the
independence polynomial for bounded degree graphs of large degree.

Organization

In the next section we give a more technical overview of our approach. In particular we recall
some results from [13] that we will use and set up some terminology. We also gather two
results that will be used to prove our main theorem, leaving the proofs of these results to
Sect. 3 and Sect. 4 respectively. Assuming these results, the main theorem will be proved in
Subsect 2.4.

2 Preliminaries, Setup and Proof Outline

2.1 Reformulation of theMain Result

We will reformulate our main theorem here in terms of the conditional distribution of the
color of the root vertex of T� conditioned on a fixed coloring of the vertices at a certain
distance from the root.

Let � ≥ 2 be an integer. In what follows it will be convenient to write d = � − 1. For a
positive integer n we denote byT

n
d+1 the finite tree obtained fromTd+1 by fixing a root vertex

r , deleting all vertices at distance more than n from the root, deleting one of the neighbors of
r and keeping the connected component containing r . We denote the set of leaves of T

n
d+1

by �n , except when n = 0, in which case we let �0 = {r}. For a positive integer q we call a
map τ : �n → [q] a boundary condition at level n.

The following theorem may be seen as a more precise form of our main result.

Theorem 2.1 Let q ≥ 3 be a positive integer. There exist constants C > 0 and d0 > 0 such
that for all integers d ≥ d0 and all α ∈ (0, 1) the following holds for any i ∈ {1, . . . , q}:

lim
n→∞ max

τ :�n→[q]

∣
∣
∣
∣PrTn

d+1,q,wc [�(r) = i | ���n= τ ] − 1

q

∣
∣
∣
∣ = 0, (2)

for any boundary condition τ at level n and edge interaction w(α) = 1 − αq
d+1 ,

∣
∣
∣
∣PrTn

d+1,q,w(α)[�(r) = i | ���n= τ ] − 1

q

∣
∣
∣
∣ ≤ Cαn/2. (3)

Remark 1 We can in fact strengthen (3) in two ways. First of all, for any α < α̂ < 1 there
exists a constant Cα̂ > 0 such that the right-hand side of (3) can be replaced by Cα̂ α̂n .
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Secondly, for any fixed d ≥ d0 there exist a constant Cd > 0 such that the right-hand side
of (3) can be replaced by Cdα

n .

As is well known (see e.g. [13, Lemma 1.3].2) Theorem 2.1 directly implies our main
theorem. Therefore the remainder of the paper is devoted to proving Theorem 2.1.

We now outline how we do this.

2.2 Log-Ratios of Probabilities

Theorem 2.1 is formulated in terms of certain conditional probabilities. For our purposes
it turns out to be convenient to reformulate this into log-ratios of these probabilities. To
introduce these, we recall some relevant definitions from [13]. Throughout we fix an integer
q ≥ 3.

Given a (finite) graph G = (V , E) and a subset U ⊆ V of vertices, we call τ : U → [q]
a boundary condition on G. We say vertices in U are fixed and vertices in V \ U are free.
The partition function restricted to τ is defined as

ZU ,τ (G; q, w) =
∑

σ :V→[q]
σ�U=τ

wm(σ ).

We just write Z(G) if U , τ and q, w are clear from the context. Given a boundary condition
τ : U → [q], a free vertex v ∈ V \ U and a state i ∈ [q] we define τv,i as the unique
boundary condition on U ∪ {v} that extends τ and associates i to v. When U and τ are clear
from the context, we will denote ZU∪{v},τv,i (G) as Zv

i (G). Let τ : U → [q] be a boundary
condition and v ∈ V be a free vertex. For any i ∈ [q] we define the log-ratio R̃G,v,i as

R̃G,v,i := log(Zv
i (G)) − log(Zv

q (G)),

where log denotes the natural logarithm. Note that R̃G,v,q = 0. We moreover remark that
R̃G,v,i can be interpreted as the logarithm of the ratio of the probabilities that the root gets
color i (resp. q) conditioned on the event that U is colored according to τ .

For trees the log-ratios at the root vertex can be recursively computed from the log-
ratios of its neighbors. To describe this compactly we introduce some notation that will be
used extensively throughout the paper. Fix d ∈ R>1 and let α ∈ (0, 1]. Define the maps
Gd,α;i , Fd,α;i : R

q−1 → R for i ∈ {1, . . . , q − 1} as

Gd,α;i (x1, . . . , xq−1) = 1 − xi
∑q−1

j=1 x j + 1 − α·q
d+1

(4)

and

Fd,α;i (x1, . . . , xq) = d log

(

1 + α · q
d + 1

· Gd,α;i (exp(x1), . . . , exp(xq−1))

)

. (5)

Define the map Fd,α : R
q−1 → R

q−1 whose i th coordinate function is given by
Fd,α;i (x1, . . . , xq−1) and define Gd,α similarly. To suppress notation we write Fd = Fd,1

and Gd = Gd,1. We also define exp(x1, . . . , xq−1) = (exp(x1), . . . , exp(xq−1)) and
log(x1, . . . , xq−1) = (log(x1), . . . , log(xq−1)). We note that Gd,α and Fd,α are analytic

2 The proof of that lemma in the published version of that paper contains an error; this is corrected in a more
recent arXiv version: arXiv:2011.05638v3.
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in 1/d near 0 when viewing d as a variable. We will now use the map Fd,α to give a compact
description of the tree recurrence for log-ratios.

Lemma 2.2 Let T = (V , E) be a tree, τ : U → [q] a boundary condition on U � V . Let v
be a free vertex of degree d ≥ 1 with neighbors v1, . . . , vd . Denote Ti for the tree that is the
connected component of T − v containing vi . Restrict τ to each Ti in the natural way. Write
R̃i, j for the log-ratio R̃Ti ,vi , j . Then for α such that w = 1 − α·q

d+1 ,

(R̃T ,v,1, . . . , R̃T ,v,q−1) =
d∑

i=1

1

d
Fd,α(R̃i,1, . . . , R̃i,q−1), (6)

a convex combination of the images of the map Fd,α .

Proof By focusing on the j th entry of the left-hand side and substituting RT ,v, j :=
exp(R̃T ,v, j ), we see that (6) follows from the well known recursion for ratios

RT ,v,i =
d∏

s=1

∑
l∈[q−1]\{i} RTs ,vs ,l + wRTs ,vs ,i + 1

∑
l∈[q−1] RTs ,vs ,l + w

. (7)

See e.g. [13] for a proof of this. ��
We note that if the boundary condition τ is constant on the leaves of the tree T

n
d+1, then

the log-ratios at the root can be obtained by iterating the univariate function f given by
f (x) = Fd,α(x, . . . , x) at w = w(α). The point x = 0 is a fixed point of f ; it satisfies
| f ′(0)| ≤ 1 if and only if w ≥ wc. From this it is not difficult to extract that there exist
multiple Gibbs measures when w < wc.

Denote 0 for the zero vector in R
q−1. (Throughout we will denote vectors in boldface.)

We define for any n ≥ 1 the set of possible log-ratio vectors

Rn := {(R̃T
n
d+1,r ,1

, . . . , R̃T
n
d+1,r ,q−1) ∈ R

q−1|τ : �n → [q]}.
Here the ratios R̃T

n
d+1,r ,1

depend on τ but this is not visible in the notation. The following
lemma shows how the recursion from Lemma 2.2 will be used.

Lemma 2.3 Let q ≥ 3 and d ≥ 2 be integers. If there exists a sequence {Tn}n≥1 of convex
subsets of R

q−1 with the following properties:

1. R1 ⊆ T1,
2. for every n ≥ 1, Fd(Tn) ⊆ Tn+1,
3. for every ε > 0 there is an N ≥ 1 such that for all n ≥ N, supr∈Tn

‖r‖1 ≤ ε,

then

lim
n→∞ max

τ :�n,d+1→[q]

∣
∣
∣
∣PrTn

d ,q,wc [�(r) = i | ���n,d= τ ] − 1

q

∣
∣
∣
∣ = 0. (8)

Proof The proof is straightforward and analogous to the proof of Lemma 2.3 in [13] and we
therefore omit it. ��
We note that the lemma is only stated for α = 1. An analogues statement for α ∈ (0, 1)
and Fd replaced by Fd,α with a more accurate dependence of N on ε follows from a certain
monotonicity of Fd,α , as will be explained in the proof of Theorem 2.1 below.

In the next section we construct a family of convex sets that allows us to form a sequence
{Tn}n≥1 with the properties required by the lemma.
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2.3 Construction of Suitable Convex Sets

We need the standard q − 2-simplex, which we denote as

� =
⎧
⎨

⎩
(t1, . . . , tq−2, 1 −

q−2∑

i=1

ti ) | ti ≥ 0 for all i,
q−2∑

i=1

ti ≤ 1

⎫
⎬

⎭
.

The symmetric group Sq acts onR
q by permuting entries of vectors. ConsiderR

q−1 ⊂ R
q

as the subspace spanned by {e1 − eq , . . . , eq−1 − eq}, where ei denotes the i th standard base
vector in R

q . This induces a linear action of Sq on R
q−1, also known as the the standard

representation of Sq and denoted by x �→ π · x for x ∈ R
q−1 and π ∈ Sq . The following

lemma shows that the map Fd,α is Sq -equivariant for any α ∈ (0, 1], essentially because the
action permutes the q colors of the Potts model and no color plays a special role.

Lemma 2.4 For any π ∈ Sq , any α ∈ (0, 1], any x ∈ R
q−1 and any d we have

π · Fd,α(x) = Fd,α(π · x).
Proof This follows as in Section 3.1 in [13]. ��

Define for c ≥ 0 the half space

H≥−c :=
⎧
⎨

⎩
x ∈ R

q−1 |
q−1∑

i=1

xi ≥ −c

⎫
⎬

⎭
. (9)

Define the set

Pc =
⋂

π∈Sq
π · H≥−c. (10)

Note that for each c ≥ 0 the set Pc equals the convex polytope

conv
({(−c, 0, . . . , 0), . . . (0, . . . , 0,−c), (c, . . . , c)}).

Denote Dc := conv
({(−c, 0, . . . , 0), . . . (0, . . . , 0,−c), (0, . . . , 0)}). Then we have

Pc =
⋃

π∈Sq
π · Dc. (11)

We refer to Dc as the fundamental domain of the action of Sq on R
q−1.

The following two propositions capture the image of Pc under applications of the map
Fd .

Proposition 2.5 Let q ≥ 3 be an integer. Then there exists d1 > 0 such that for all d ≥ d1
and c ∈ [0, q + 1], Fd(Pc) is convex.
Proposition 2.6 Let q ≥ 3 be an integer. There exists d2 > 0 such that for all d ≥ d2 the
following holds: for any c ∈ (0, q + 1] there exists 0 < c′ < c such that

F◦2
d (Pc) ⊆ Pc′ .

An intuitive explanation for why we need F◦2
d and cannot work with Fd directly is that the

derivative of Fd at 0 is equal to −Id, which reflects the fact that we are dealing with an
anti-ferromagnetic model, while the derivative of F◦2

d at 0 is equal to Id.
We postpone the proofs of the two results above to the subsequent sections. A crucial

ingredient in both proofs will be to analyze the limit limd→∞ Fd . We first utilize the two
propositions to give a proof of Theorem 2.1.
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2.4 A Proof of Theorem 2.1

Fix an integer q ≥ 3. Let d1, d2 be the constants from Propositions 2.5 and 2.6 respectively.
Let d0 ≥ max{d1, d2} large enough to be determined below. Note that the log-ratios at depth
0 are of the form ∞ · ei and −∞ · 1, where 1 denotes the all ones vector. This comes
from the fact that the probabilities at level 0 are either 1 or 0 and so the ratios are of the
form 1 + ∞ei or 0. This implies that the log-ratios at depth 1 are convex combinations of
Fd(∞ · ei ) = d log(1 + −q

d+1 )ei and Fd(−∞ · 1) = d log(1 + q
d+1−q )1. So for d ≥ d0 and

d0 large enough they are certainly contained in Pq+1.
We start with the proof of (2).We construct a decreasing sequence {cn}n∈N and let T2n−1 =

Pcn . For even n > 0 we set Tn = Fd(Pcn−1), which is convex by Proposition 2.5. We set
c1 = q + 1 and for n ≥ 1, given cn , we can choose, by Proposition 2.6, cn+1 < cn so that
F◦2
d (Pcn ) ⊆ Pcn+1 . Choose such a cn+1 as small as possible. We claim that the sequence

{cn}n∈N converges to 0. Suppose not then it must have a limit c > 0. Choose c′ < c such that
F◦2
d (Pc) ⊆ Pc′ . Then for n large enough we must have F◦2

d (Pcn ) ⊆ Pc/2+c′/2, contradicting
the choice of cn+1.

Since {cn}n∈N converges to 0, it follows that the sequence Tn converges to {0}. With
Lemma 2.3 this implies (2).

To prove the second part let α ∈ (0, 1). Consider the decreasing sequence {cn}n∈N
with cn = (q + 1)αn−1. Set T2n−1 = Pcn and T2n = Fd,α(Pcn−1). We use the following
observation.

Lemma 2.7 For any α ∈ (0, 1], any x ∈ R
q−1 and any integer d there is d ′ ≥ d such that

Fd,α(x) = d
d ′ · Fd ′(x). Moreover, d

d ′ ≤ α.

Proof When viewing α and d as variables, 1
d Fd,α;i only depends on the ratio α

d+1 . Therefore

the first statement of the lemma holds with d ′ defined by α
d+1 = 1

d ′+1 . Since
d
d ′ = αd

d+1−α
,

the second statement also holds. ��
The lemma above implies that Fd,α(Pcn ) = d

d ′ · Fd ′(Pcn ) and hence is convex for each
cn . It moreover implies that

F◦2
d,α(Pcn ) ⊂ αFd ′(αFd ′(Pcn ))) ⊂ αPcn = Pcn+1 .

By basic properties of the logarithm, (3) now quickly follows. This finishes the proof of
Theorem 2.1.

The strengthening mentioned in Remark 1 can be derived from the fact that the derivative
of Fd,α at 0 is equal to −αd

d+1−α
Id. Note that αd

d+1−α
< α for all α ∈ (0, 1) and d . Therefore

on a small enough open ball B around 0 the operator norm of the derivative of Fd,α can
be bounded by α̂ for all d ≥ d0 (and by α for fixed d ≥ d0). Then for any integer n ≥ 0,
F◦n
d,α(B) ⊂ α̂n B (αn B respectively). For n0 large enough Pcn0 is contained in this ball B. For

n > 2n0 we then set Tn = α̂n−2n0 B (αn−2n0 B respectively). The statements in the remark
now follow quickly.

2.5 The d → ∞ Limit Map

As mentioned above, an important tool in our approach is to analyze the maps Fd as d →
∞. Since Fd(Rq−1) is bounded, it follows that as d → ∞, Fd(x1, . . . , xq−1) converges
uniformly to the limit map

F∞(x1, . . . , xq−1), (12)
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with coordinate functions

F∞;i (x1, . . . , xq−1) := q
1 − exi

∑q−1
j=1 e

xi + 1
. (13)

We write G∞;i (x1, . . . , xq−1) = q 1−xi∑q−1
j=1 x j+1

for the i th coordinate function of the fractional

linear map G∞. Note that F∞ = G∞ ◦ exp.
By Lemma 2.4 for any π ∈ Sq , any x ∈ R

q−1 and any d we have π ·Fd(x) = Fd(π ·x). As
the action of π on R

q−1 does not depend on d , we immediately see π · F∞(x) = F∞(π · x)
follows.

In the next two sections we will prove Propositions 2.5 and 2.6. The idea is to first prove
a variant of these propositions for the map F∞ and then use that Fd → F∞ uniformly to
finally prove the actual statements. We use the description of Pc as intersection of half spaces
π · H≥−c in Sect. 3 and the description as the union of the π · Dc in Sect. 4.

3 Convexity of the Forward Image of Pc

This section is dedicated to proving Proposition 2.5.
Fix an integer q ≥ 3. For μ ∈ R we define the half space H≥μ as in (9). The half space

H≤μ is defined similarly. We denote by Hμ the affine space which is the boundary of H≤μ.
In what follows we will often use that the map G∞ is a fractional linear transformation

and thus preserves lines and hence maps convex sets to convex sets, see e.g. [9, Section 2.3].

Lemma 3.1 For all c > 0, the set exp(H≥−c) := {exp(x) | x ∈ H≥−c} is strictly convex,
consequently

G∞(exp(H≥−c))

is strictly convex.

Proof Since G∞ is a fractional linear transformation, it preserves convex sets. It therefore
suffices to show that exp(H≥−c) is strictly convex.

To this end take any x, y ∈ exp(H≥−c) and let λ ∈ (0, 1). We need to show that λx+ (1−
λ)y ∈ exp(H≥−c). By strict concavity of the logarithm we have

q−1∑

i=1

log(λxi + (1 − λ)yi ) ≥
q−1∑

i=1

λ log(xi ) + (1 − λ) log(yi ) > −c,

we conclude that exp(H≥−c) is strictly convex. ��
In what follows we need the angle between the tangent space ofG∞(exp(H−c)) for c > 0

at G∞(x) for any x ∈ exp(H−c) and the space H0. This angle is defined as the angle of a
normal vector of the tangent space pointing towards the interior of G∞(exp(H≥−c)) and the
vector −1 (which is a normal vector of H0).

Lemma 3.2 For any c ∈ [0, q + 1] and any x ∈ exp(H−c) the angle between the tangent
space of G∞(exp(H−c)) at G∞(x) and H0 is strictly less than π/2.

Proof We will first show that the tangent space cannot be orthogonal to H0.
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The map G∞ is invertible (when restricted to R
q−1
>0 ) with inverse G−1∞ whose coordinate

functions are given by

G−1
∞,i (y1, . . . , yq−1) = −qyi

∑q−1
i=1 yi + q

+ 1.

Define g : R
q−1 \ H−q → R by g(y) = ∏q−1

i=1 G−1
∞,i (y). Then the image of exp(H−c)

under G∞ is contained in the hypersurface {y ∈ R
q−1 | g(y) = exp(−c)}. Therefore a

normal vector of the tangent space of G∞(exp(H−c)) at y = G∞(x) is given by the gradient
of the function g. Thus to show that this tangent space is not orthogonal to H0, we need to
show that

q−1∑

i=1

∂
∂ yi

g(y) �= 0. (14)

We have

q−1∑

i=1

∂
∂ yi

g(y) =
q−1∑

i=1

q−1∑

j=1

∏q−1
k=1 G

−1
∞,k(y)

G−1
∞, j (y)

∂
∂ yi

G−1
∞, j (y)

=
q−1∑

j=1

∏q−1
k=1 G

−1
∞,k(y)

G−1
∞, j (y)

q−1∑

i=1

∂
∂ yi

G−1
∞, j (y)

=
q−1∑

j=1

∏q−1
k=1 G

−1
∞,k(y)

G−1
∞, j (y)

· −q(
∑q−1

i=1 yi + q) + q(q − 1)y j

(
∑q−1

i=1 yi + q)2

=
q−1∑

j=1

∏q−1
k=1 G

−1
∞,k(y)

G−1
∞, j (y)

· −(q − 1)G−1
∞, j (y) − 1

∑q−1
i=1 yi + q

.

Since G−1
∞,k(y) > 0 for each k, all terms in the final sum are nonzero and have the same

sign. This proves (14).
Since the angle between the tangent space of G∞(exp(H−c)) at G∞(x) and H0 depends

continuously on x this angle should either be always less than π/2 or always be bigger. Since
by the previous lemma the set G∞(exp(H≥−c)) is convex, it is the former. ��

Wenext continuewith thefinite case.Wewill need the following definition. Thehypograph
of a function f : D → R is the region {(x, y) | x ∈ D, y ≤ f (x)}. Below we will consider a
hypersurface contained inR

q−1 thatwe view as the graph of a functionwith domain contained
in H0. In this context the hypograph of such a function is again contained in R

q−1, but the
‘positive y-axis’ points in the direction of 1 as seen from 0 ∈ H0.

Lemma 3.3 There exists y1 > 0 such that for all y ∈ [0, y1) and c ∈ [0, q+1] the set Fy(Pc)
is contained in the hypograph of a concave function, hy,c, with a convex compact domain in
H0.

Proof Wefirst prove that for any x ∈ H0 and c ∈ [0, q+1] there exists an open neighborhood
Wc,x = Yc,x ×Cc,x × Xc,x of (0, c, x) ∈ [0, 1] × [0, q + 1] × R

q−1 such that the following
holds for any (y′, c′, x′) ∈ Wc,x:

the angle between the tangent space of F1/y′(H−c′) at F1/y′(x′
c′) and H0
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is strictly less thanπ/2, (15)

where we denote xc := x − c
q−11 ∈ H−c. To see this note that by the previous lemma we

have that the tangent space of F∞(H−c) at F∞(xc) is not orthogonal to H0 and in fact makes
an angle of less than π/2 with H0. Say it has angle π/2 − γ . Since (y, c, x) �→ F1/y(xc) is
analytic, there exists an open neighborhoodW0 of (0, c, x) such that for any (y′, x′, c′) ∈ W0

the angle between the tangent space of F1/y′(H−c′) at F1/y′(x′
c′) and H0 is atmostπ/2−γ /2.

Clearly,W0 contains an open neighborhood of (0, c, x) of the form Y ×C × X proving (15).
Next fix c ∈ [0, q + 1] and x ∈ H0 and write Wc,x = Y × C × X . Together with the

implicit function theorem, (15) now implies that for each y′ ∈ Y and any c′ ∈ C , that locally
at xc′ , F1/y′(H−c) is the graph of an analytic function fy′,c′,x on an open domain contained
in H0. Here we use that F1/y is invertible with analytic inverse. By choosing Y and C small
enough, we may by continuity assume that we have a common open domain, Dc,x, for these
functions for all c′ ∈ C and y′ ∈ Y , where we may moreover assume that these functions are
all defined on the closure of Dc,x.

We next claim, provided the neighbourhood W = Yc,x × Cc,x is chosen small enough,
that for each y′ ∈ Y and c′ ∈ C ,

the largest eigenvalue of the Hessian fy′,c′,x on Dc,x is strictly less than 0. (16)

To see this we note that by the previous lemma we know that F∞(H≥−c) is strictly convex.
Therefore the Hessian3 of f0,c,x on Dc,x is negative definite, say its largest eigenvalue is
δ < 0. Similarly as before, there exists an open neighborhood W ′ ⊆ W of (0, c) of the form
W ′ = Y ′ × C ′ such that for each y′ ∈ Y ′ and c′ ∈ C ′, the function fy′,c′,x has a negative
definite Hessian with largest eigenvalue at most δ/2 < 0 for each z ∈ Dc,x (by compactness
of the closure of Dc,x). We now want to patch all these function to form a global function on
a compact and convex domain. We first collect some properties of F1/y that will allow us to
define the domain.

First of all note that by compactness there exists a > 0 such that for each c ∈ [0, q + 1],
exp(Pc) ⊂ H≤a (where the inclusion is strict). We now fix such a value of a. Since G∞ is
Sq -equivariant, we know that G∞(H≤a) = H≥a′ for some a′ ∈ R. We now choose y∗ > 0
small enough such that the following two inclusions hold for all y ∈ [0, y∗] and c ∈ [0, q+1]

F1/y(Pc) ⊂ H≥a′ , (17)

projH0
(F∞(H−c) ∩ H≥a′) ⊂ projH0

(F1/y(H−c)), (18)

where projH0
denotes the orthogonal projection onto the space H0. The first inclusion holds

since F1/y converges uniformly to F∞ as y → 0. For the second inclusion note that

F∞(H−c) ∩ H≥a′ = G∞(exp(H−c) ∩ H≤a) ⊂ F∞(H−c).

Because exp(H−c) ∩ H≤a is compact, the desired conclusion follows since F1/y → F∞
uniformly as y → 0.

Let us now consider for c ∈ [0, q + 1] the projection
Domc := projH0

(F∞(H−c) ∩ H≥a′),

see Fig. 1 . Since F∞(H−c) ∩ H≥a′ is convex by Lemma 3.1 and compact, it follows that

3 Recall that the Hessian of a function f : U → R for an open set U ⊆ R
n at a point u ∈ U is defined as

the n × n matrix H f (u) with (H f (u))i, j = ∂2 f
∂xi ∂x j

(u). When these partial derivatives are continuous and the

domain U is convex, f is concave if and only if its Hessian is negative definite at each point of the domain U
[9].
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Fig. 1 Depicting the situation in Lemma 3.3, for q = 3, c = 2 and y = 1
20 . The domain Domc of the function

hy,c which we define in the proof of Lemma 3.3 is made by choosing a′ = −3

Domc is compact and convex for each c ∈ [0, q + 1]. Moreover, we claim that
⋃

c∈[0,q+1]
({c} × Domc) ⊆ [0, q + 1] × H0 is compact. (19)

Indeed, it is the continuous image of the compact set exp(H≥−q−1) ∩ H≤a under the map

exp(H≥−q−1) ∩ H≤a → [0, q + 1] × H0

defined by

x �→
⎛

⎝
q−1∑

i=1

xi , projH0
(G∞(x))

⎞

⎠ .

By (18) Domc is contained in projH0
(F1/y(H−c)) for all y ∈ [0, y∗] and c ∈ [0, q + 1]. It

follows that the sets Yc,x ×Cc,x × Dc,x, where x ranges over H0 and c over [0, q + 1], form
an open cover of {0} × ∪c∈[0,q+1] ({c} × Domc). Since the latter set is compact by (19), we
can take a finite sub cover. Therefore there exists y1 > 0 such that for each y ∈ [0, y1) and
each c ∈ [0, q + 1] we obtain a unique global function hy,c on the union of these finitely
many domains, which by (16) has a strictly negative definite Hessian. By construction the
union of these domains contains Domc for each c ∈ [0, q + 1]. Consequently, restricted to
Domc, hy,c is a concave function for each y ∈ [0, y1) and c ∈ [0, q + 1]. By (17), it follows
that F1/y(Pc) is contained in the hypograph of hy,c, as desired. ��

We can now finally prove Proposition 2.5, which we restate here for convenience.

Proposition 2.5 Let q ≥ 3 be an integer. Then there exists d1 > 0 such that for all d ≥ d1
and c ∈ [0, q + 1], Fd(Pc) is convex.
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Proof By the previous lemma we conclude that for d larger than 1/y1, Fd(Pc) is contained
in the hypograph of the function h1/d,c, denoted by hypo(hc,1/d) and moreover that this
hypograph is convex, as the function h1/d,c is concave on a convex domain.

Since Pc is invariant under the Sq -action, it follows that

exp(Pc) =
⋂

π∈Sq
π · (exp(H≥−c) ∩ H≤a)

and therefore by Lemma 2.4,

Fd(Pc) =
⋂

π∈Sq
π · (Fd(Pc)) ⊆

⋂

π∈Sq
π · hypo(h1/d,c). (20)

We now claim that the final inclusion in (20) is in fact an equality. To see the other inclusion,
take some z ∈ ∩π∈Sqπ · hypo(h1/d,c). By symmetry, we may assume that z is contained

in R
q−1
≥0 . Then z is equal to Fd(x) for some x ∈ H≥−c ∩ R

q−1
≤0 , implying that z is indeed

contained in Fd(Pc).
This then implies that Fd(Pc) is indeed convex being equal to the intersection of the

convex sets π · hypo(h1/d,c). ��

4 Forward Invariance of Pc in two iterations

This section is dedicated to proving Proposition 2.6.We start with a version of the proposition
for d = ∞ and after that consider finite d .

4.1 Two Iterations of F∞

Let � : R
q−1 → R

q−1 be defined by

�(x1, . . . , xq−1) = F◦2∞ (x1, . . . , xq−1)

and its ‘restriction’ to the half line R≤/0 · 1, φ : R≥0 → R≥0, by

φ(t) = −〈�(−t/(q − 1) · 1), 1〉,
where we use 〈·, ·〉 to denote the standard inner product on R

q−1.

This subsection is devoted to proving the following result.

Proposition 4.1 For any c ≥ 0 we have

�(Pc) ⊆ Pφ(c) � Pc.

By the definition of Pc in terms of Dc, (11), and the Sq -equivariance of the map F∞ and
hence of the map �, it suffices to prove this for Pc replaced by Dc. This can be derived from
the following two statements:

(i) For any c ≥ 0 the minimum of 〈�(x), 1〉 on −c� is attained at −c/(q − 1) · 1.
(ii) For any c > 0 we have φ(c) < c.

Indeed, these statements imply that for any c > 0 we have that �(−c�) ⊆ Dφ(c) � Dc.
Clearly this is sufficient, since Dc = ∪0≤c′≤c − c′� and therefore

�(Dc) = ∪0≤c′≤c�(−c′�) ⊆ ∪0≤c′≤cDφ(c′) ⊆ Dφ(c) � Dc.

We next prove both statements, starting with the first one.
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4.1.1 Statement (i)

Proposition 4.2 Let c ≥ 0. Then for any x ∈ −c� we have that

〈�(x), 1〉 ≥
〈

�

( −c

q − 1
1
)

, 1
〉

.

Moreover, equality happens only at x = −c
q−11.

Before giving a proof, let us fix some further notation. By definition we have

〈�(x), 1〉 =
q−1∑

i=1

q
1 − eF∞;i (x)

∑q−1
j=1 e

F∞; j (x) + 1
= q2

∑q−1
j=1 e

F∞; j (x) + 1
− q,

where we recall that F∞; j denotes the j th coordinate function of F∞. Thus the i th coordinate
of the gradient of 〈�(x), 1〉 is given by

ψi (x) := −q2
(∑q−1

j=1 e
F∞; j (x) + 1

)2

⎛

⎝
q−1∑

j=1

eF∞; j (x) · ∂F∞; j
∂xi

(x)

⎞

⎠

=
q3exi

(
eF∞;i (x)(1 + ∑q−1

j=1 e
x j ) + ∑q−1

j=1 e
F∞; j (x)(1 − ex j )

)

(∑q−1
j=1 e

F∞; j (x) + 1
)2 (∑q−1

j=1 e
x j + 1

)2 .

Let us define the following functions vi : R
q−1 → R for i = 1, . . . , q − 1 as

vi (x) := xi

⎛

⎝eGi (1 +
q−1∑

j=1

x j ) +
q−1∑

j=1

eG j (1 − x j )

⎞

⎠ ,

where we write

Gi := G∞;i (x) = q(1 − xi )

1 + x1 + · · · + xq−1
.

Then we see that

ψi (x) = q3
(∑q−1

j=1 e
F∞; j (x) + 1

)2 (∑q−1
j=1 e

x j + 1
)2 · vi (e

x1 , . . . , exq−1),

and ψ1(x) = · · · = ψq−1(x) if and only if v1(exp(x)) = · · · = vq−1(exp(x)).

Proof of Proposition 4.2 First of all observe that the function 〈�(x), 1〉 is invariant under the
permutation of the coordinates of x. Thus we can assume that

x ∈ U := {y ∈ R
q−1 | 0 ≥ y1 · · · ≥ yq−1}

and not all the coordinates of x are equal. Now it is enough to show that there exists a vector
0 �= w ∈ R

q−1 such that in the direction ofw the function is (strictly) decreasing, 〈w, 1〉 = 0
and x + t0w ∈ U for some small t0 > 0. Let

� = min{1 ≤ i ≤ q − 2 | xi > xi+1},
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which is finite, since not all of the coordinates of x are equal.We claim thatw = − e1+···+e�
�

+
e�+1 satisfies the desired conditions. Clearly, w is perpendicular to 1 and x + tw ∈ U for t
small enough. Now let us calculate the derivative of

g(t) := 〈�(x + tw), 1〉.
Using the notation defined above, we obtain

g′(0) = − ψ1(x) + · · · + ψ�(x)
�

+ ψ�+1(x)

= −ψ�(x) + ψ�+1(x)

= −C · (v�(exp(x)) − v�+1(exp(x)))

= −C · (v�(y) − v�+1(y)),

where C > 0 and y = exp(x). In particular,

1 ≥ y1 = y2 = · · · = y� > y�+1 ≥ · · · ≥ yq−1 ≥ 0.

So to conclude that g′(0) < 0 and finish the proof, we need to show that

v�(y) − v�+1(y) > 0. (21)

Lemma 4.3 shows that we may assume y satisfies 1 ≥ y1 = y2 = . . . = y� > y�+1 ≥
y�+2 = . . . = yq−1 ≥ 0. Lemma 4.4 below shows that for those vectors y (21) is indeed true.
So by combining Lemma 4.3 and Lemma 4.4 below we obtain (21) and finish the proof. ��
Lemma 4.3 If 1 ≥ y1 = y2 . . . = y� > y�+1 ≥ . . . ≥ yq−1 ≥ 0 for some 1 ≤ � ≤ q − 2,
then

v�(y) − v�+1(y) ≥ v�(x) − v�+1(x),

where x ∈ R
q−1 is defined as

x j =
{

y j if j ≤ � + 1
y�+2+···+yq−1

q−�−2 if j > � + 1

for 1 ≤ j ≤ q − 1.

Proof By continuity, it suffices to show

v�(y) − v�+1(y) ≥ v�(x) − v�+1(x), (22)

where x ∈ R
q−1 is defined as

x j =
{

y j if j �= i, i + 1
yi+yi+1

2 if j = i or j = i + 1

for 1 ≤ j ≤ q − 1 and any i ≥ � + 2.
For t ∈ R we define y(t) by

y j (t) :=
⎧
⎨

⎩

y j if j �= i, i + 1
yi − t if j = i
yi+1 + t if j = i + 1

for j = 1, . . . , q − 1. Note that y(0) = y and y(yi/2 − yi+1/2) = x. We further define

�(t) :=v�(y(t)) − v�+1(y(t)).
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After a straightforward calculation we can express �(t) as

�(t) = y�e
G� (1 +

q−1∑

j≥1

y j ) − y�+1e
G�+1(1 +

q−1∑

j≥1

y j )

+ y�
∑

j �=i,i+1

eG j (1 − y j ) − y�+1

∑

j �=i,i+1

eG j (1 − y j )

+ (y� − y�+1)
(
eGi (t)(1 − yi + t) + eGi+1(t)(1 − yi+1 − t)

)
,

where we write G� := G∞;�(y(t)) = q(1−y�)
1+y1+···+yq−1

, for � /∈ {i, i + 1} and we write G�(t) =
G∞;�(y(t)) when � ∈ {i, i + 1}. This notation indicates that G� is a constant function of t
when � /∈ {i, i + 1}. Now observe that the function appearing in the last row,

g(t) := eGi (t)(1 − yi + t) + eGi+1(t)(1 − yi+1 − t),

is convex on t ∈ [0, yi − yi+1], since its second derivative is given by

g′′(t) = eGi (t) (1 − yi + t)q2

(1 + y1 + · · · + yq−1)2
+ 2eGi (t) q

1 + y1 + · · · + yq−1

+ eGi+1(t) (1 − yi+1 − t)q2

(1 + y1 + · · · + yq−1)2
+ 2eGi+1(t) q

1 + y1 + · · · + yq−1
> 0.

As g(t) = g(yi − yi+1 − t), we obtain that g(t) has a unique minimizer in [0, yi − yi+1]
exactly at t such that = yi − yi+1 − t . In other words,

t = yi − xi+1

2

is the unique minimizer of g(t) on this interval and thus for�(t). This implies (22) and hence
the lemma. ��
Lemma 4.4 Let 1 ≥ x1 > x2 ≥ x3 ≥ 0 and q − 2 ≥ l ≥ 1. Then

vl(x1, . . . , x1︸ ︷︷ ︸
l

, x2, x3, . . . , x3︸ ︷︷ ︸
q−l−2

) > vl+1(x1, . . . , x1︸ ︷︷ ︸
l

, x2, x3, . . . , x3︸ ︷︷ ︸
q−l−2

).

Proof The algebraicmanipulations that are done in this proof, while elementary, involve quite
large expressions. Therefore we have supplied additional Mathematica code in Appendix A
that can be used to verify the computations. We define

�(y1, y2, y3; t) := (y1y3(t − l − 1) + (l + 1)y1 + (l + 1)y1y2 − ly2) e
A1(y1,y2,y3;t)+

(−y2y3(t − l − 1) − (l + 1)y1y2 + y1 − 2y2) e
A2(y1,y2,y3;t)+

(y1 − y2) (1 − y3) (t − l − 1)eA3(y1,y2,y3;t),

where

Ai (y1, y2, y3; t) := (t + 1)(1 − yi )

1 + ly1 + y2 + (t − (l + 1))y3

for i = 1, 2, 3 (see Listing 1). One can check that

�(x1, x2, x3; q − 1) = vl(x1, . . . , x1, x2, x3, . . . , x3) − vl+1(x1, . . . , x1, x2, x3, . . . , x3).
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We will treat t as a variable and vary it while keeping the values that appear in the exponents
constant. To that effect let Ci = Ai (x1, x2, x3; q − 1) and define

y1(t) = C1(l − t − 1) + C3(t − l − 1) + C2 + t + 1

C3(t − l − 1) + C1l + C2 + t + 1
,

y2(t) = C3(t − l − 1) + C1l − C2t + t + 1

C3(t − l − 1) + C1l + C2 + t + 1
,

y3(t) = C1l − C3(l + 2) + C2 + t + 1

C3(t − l − 1) + C1l + C2 + t + 1
.

These values are chosen such that for t0 = q − 1 we have yi (t0) = xi and
Ai (y1(t), y2(t), y3(t); t) = Ci independently of t for i = 1, 2, 3 (see Listings 2 and 3).
Therefore �(y1(t), y2(t), y3(t); t) is a rational function of t and we want to show that it is
positive at t = q − 1. We can explicitly calculate that

�(y1(t), y2(t), y3(t); t) =
(

1 + t

C3(t − l − 1) + C1l + C2 + t + 1

)2

· r(t),

where r is a linear function (see Listing 4). It is thus enough to show that r(q − 1) > 0. We
will do this by showing that r(l + 1) > 0 and that the slope of r is positive. We find that
r(l + 1) is equal to

r(l + 1) = u1 · eC1 + u2 · eC2 ,

where

u1 = 2 + l + C2 − 2C1 + lC1C2 − lC2
1

u2 = − (
2 + l + lC1 − (l + 1)C2 + C1C2 − C2

2

)
.

This is part of the output of Listing 5. Note that by construction, since 1 ≥ x1 > x2 ≥ x3,
we have 0 ≤ C1 < C2 ≤ C3. Therefore the sum of the coefficients of eC1 and eC2 satisfies

u1 + u2 = (l + 2)(C2 − C1) + (l − 1)C1C2 − lC2
1 + C2

2

= (l + 2 + C2 + lC1)(C2 − C1) > 0.

Now we will separate two cases depending on the sign of the coefficient of u2. If u2 is
non-negative, then

r(l + 1) = u1e
C1 + u2e

C2 ≥ u1e
C1 + u2e

C1 = (u1 + u2)e
C1 > 0.

If u2 is negative, then

2 + (1 + C1 − C2)l > C2 − C1C2 + C2
2 = (1 + C2 − C1)C2.

In particular 2 + (1 + C1 − C2)l > 0. Thus

r(l + 1) = eC2(u1e
C1−C2 − u2)

≥ (1 + C1 − C2)u1 − u2 = C1(C2 − C1)(2 + (1 + C1 − C2)l) > 0.

The slope of r is given by

s := (1 + C3 − C1) e
C1 − (1 + C3 − C2)e

C2 + (C2 − C1)C3e
C3 .

This is part of the output of Listing 5. To show that this is positive we show that s · e−C2 is
positive. Because both 1 + C3 − C1 and C2 − C1 are positive we find

s · e−C2 = (1 + C3 − C1) e
C1−C2 − (1 + C3 − C2) + (C2 − C1)C3e

C3−C2
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≥ (1 + C3 − C1) (1 + C1 − C2) − (1 + C3 − C2) + (C2 − C1)C3(1 + C3 − C2)

= (C2 − C1)(C1 + C3(C3 − C2)),

which is positive because 0 ≤ C1 < C2 ≤ C3. This concludes the proof. ��

We now continue with the second statement.

4.1.2 Statement (ii)

Proposition 4.5 For any x > 0 we have that
〈

�

( −x

q − 1
1
)

, 1
〉

> −x .

Proof The statement is equivalent to

φ(x) < x .

for x > 0. By definition we know that

φ(x) = (q − 1)
q(e f (x) − 1)

(q − 1)e f (x) + 1
,

where

f (x) = −q
e−x/(q−1) − 1

(q − 1)e−x/(q−1) + 1
.

First note that φ(R>0) ⊆ (0, q). This means that if x ≥ q , the statement holds. Thus we
can assume that 0 < x < q . Now, the inequality φ(x) < x can be written as

e f (x) <
x + q(q − 1)

(q − 1)(q − x)
,

because q − x > 0. By taking logarithm of both sides, we see that φ(x) < x is equivalent to

−q
e−x/(q−1) − 1

(q − 1)e−x/(q−1) + 1
< log

(
x + q(q − 1)

(q − 1)(q − x)

)

.

Since x+q(q−1)
(q−1)(q−x) >

0+q(q−1)
(q−1)q ≥ 1, we can use the inequality log(b) > 2 b−1

b+1 for b =
x+q(q−1)

(q−1)(q−x) . Therefore, to show φ(x) < x , it is sufficient to prove that

−q
e−x/(q−1) − 1

(q − 1)e−x/(q−1) + 1
≤ −2qx

(q − 2)x − 2q(q − 1)
,

or, equivalently

(2q − 2 − x) ≤ (x + 2q − 2)e−x/(q−1).

This follows from the fact that g(t) = (t + 2q − 2)e−t/(q−1) − (2q − 2 − t) is a convex
function on R≥0, its derivative satisfies g′(0) = 0 and g(0) = 0. This concludes the proof. ��
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4.2 Two Iterations of Fd

As before, we view y = 1/d as a continuous variable. Let us define � : R
q−1 × [0, 1

2 ] →
R
q−1 by

�(x1, . . . , xq−1, y) = F◦2
1/y(x1, . . . , xq−1).

Note that this map is analytic in all its variables. For simplicity, if y∗ is fixed, then
we use the notation �y∗(x1, . . . , xq−1) for �(x1, . . . , xq−1, y)|y=y∗ , and if y = 0, then
�(x1, . . . , xq−1) := �0(x1, . . . , xq−1).

Lemma 4.6 There exist positive constants A > 0 and c0 > 0, such that for any 0 < c ≤ c0
we have

c − φ(c) ≥ Ac3.

Proof By definition we know that

φ(x) = (g ◦ f )(x) = (q − 1)
q(e f (x) − 1)

(q − 1)e f (x) + 1
,

where

f (x) = −q
e−x/(q−1) − 1

(q − 1)e−x/(q−1) + 1
,

g(x) = (q − 1)q
ex − 1

(q − 1)ex + 1
.

Let us calculate the Taylor expansion of f (x) and g(x) around 0:

f (x) = 1

q − 1
x + q − 2

2(q − 1)2q
x2 + (q2 − 6q + 6)

6(q − 1)3q2
x3 + O(x4),

g(x) = (q − 1)x − (q − 1)(q − 2)

2q
x2 + (q − 1)(q2 − 6q + 6)

6q2
x3 + O(x4).

Thus their composition has the following Taylor expansion around 0:

(g ◦ f )(x) = x − 1

6(q − 1)2
x3 + O(x4).

This implies that there exists c0 > 0 and A > 0, such that for any c0 ≥ x ≥ 0 we have

x − φ(x) ≥ Ax3,

as desired. ��

The next proposition implies forward invariance of Pc under F◦2
d for c small enough and

d large enough.

Proposition 4.7 There exists c0 > 0 and d0 > 0. Such that for all c ∈ (0, c0] and integers
d ≥ d0 there exists 0 < c′ < c such that

F◦2
d (Dc) ⊂ Dc′ .
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Proof By the previous lemma we know that there is a c′
0 > 0 and an A > 0, such that for

any c ≤ c′
0 we have

‖�(−c/(q − 1) · 1) + c/(q − 1) · 1‖ ≥ Ac3.

Here we denote by ‖x‖ =
(∑q−1

i=1 x2i

)1/2
, the standard 2-norm on R

q−1. By Proposition 4.2,

we have that for any x ∈ Dc, �(x) is contained in Dφ(c). Therefore, denoting by Br (y) the
ball of radius r around y,

BAc3/2(�(x)) ∩ (−∞, 0]q−1 ⊆ Dφ(c)+Ac3/2 � Dc. (23)

Now let us consider the Taylor approximation of �y(x1, . . . , xq−1) at 0 = (0, . . . , 0).
Since for any y∗ ∈ [0, 1] the map F1/y∗(x1, . . . , xq−1) has 0 as a fixed point of derivative
−Id, there exists constants c1,C1 ≥ 0 such that for any y ∈ [0, 1] and x = (x1, . . . , xq−1) ∈
[−c1, 0]q−1 we have

‖�y(x) − Id(x) − T3,y(x)‖ ≤ C1 · ‖x‖4,
where Id(x)+T3,y(x) is the 3rd orderTaylor approximation of�y(x) at0. Note that the second
order term is equal to 0 because the derivative of F1/y∗(x1, . . . , xq−1) at 0 equals−Id. In par-
ticular, T3,y(x) = Ty((x), (x), (x)) for some multi-linear map Ty ∈ Mult((Rq−1)3, R

q−1),
and as y → 0 the map T3,y converges uniformly on [−q, 0]q−1 to T3,0. Specifically, for any
x = (x1, . . . , xq−1) ∈ [−c1, 0]q−1

‖T3,y(x) − T3,0(x)‖ ≤ A3(y)‖x‖3
for some function A3 that satisfies limy→0 A3(y) = 0.

Putting this together and making use of the triangle inequality, we obtain that for any
0 < c ≤ min{c1, c′

0} and any x = (x1, . . . , xq−1) ∈ Dc

‖�y(x) − �(x)‖ ≤ ‖�y(x) − Id(x) − T3,y(x)‖
+ ‖Id(x) + T3,y(x) − Id(x) − T3,0(x)‖
+ ‖Id(x) + T3,0(x) − �(x)‖
≤ 2C1‖x‖4 + A3(y))‖x‖3 ≤ K (2C1c + A3(y))c

3,

for some constant K > 0 (using that the 2-norm and the 1-norm are equivalent on R
q−1.)

Now let us fix 0 < c0 ≤ min{c1, c′
0} small enough such that K2C1c0 < A/4 and fix a y0 > 0

such that for any any 0 ≤ y ≤ y0 we have K A3(y) ≤ A/4.
Then by (23), for any 0 ≤ y ≤ y0, 0 ≤ c ≤ c0 and x = (x1, . . . , xq−1) ∈ Dc,

�y(Dc) ⊆ BAc3/2(�(Dc)) ∩ (−∞, 0]q−1 ⊆ Dφ(c)+Ac3/2 � Dc.

So we can take c′ = φ(c) + Ac3/2. ��

4.3 Proof of Proposition 2.6

We are now ready to prove Proposition 2.6, which we restate here for convenience.

Proposition 2.6 Let q ≥ 3 be an integer. There exists d2 > 0 such that for all integers d ≥ d2
the following holds: for any c ∈ (0, q + 1] there exists 0 < c′ < c such that

F◦2
d (Pc) ⊂ Pc′ .
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Proof We know by Proposition 4.7 there is a d0 > 0 and a c0 > 0 such that for d ≥ d0 and
c ∈ (0, c0) there exist c′ < c such that F◦2

d (Dc) ⊂ Dc′ . As Pc = ∪π∈Sqπ · Dc, we see by
Lemma 2.4 that for d ≥ d0 and c ∈ (0, c0) we have F◦2

d (Pc) ⊂ Pc′ .
Next we consider c ∈ [c0, q + 1]. By Proposition 4.1 we know F◦2∞ (Pc) ⊂ Pφ(c) and

φ(c) < c for any c > 0. As Fd converges to F∞ uniformly, we see for each c ∈ [c0, q + 1]
there is a dc > 0 large enough such that for d ≥ dc and c′ = c/2 + φ(c)/2 we have
F◦2
d (Pĉ) � Pc′ for all ĉ sufficiently close to c. By compactness of [c0, q + 1], we obtain that

there is a dmax > 0 such that for any d > dmax and any c ∈ [c0, q + 1] there exists c′ < c
such that F◦2

d (Pc) � Pc′ . The proposition now follows by taking d2 = max(d0, dmax). ��

5 Concluding Remarks

Although we have only proved uniqueness of the Gibbs measure on the infinite regular tree
for a sufficiently large degree d , our method could conceivably be extended to smaller values
of d . With the aid of a computer we managed to check that for q = 3 and q = 4 and all
d ≥ 2 the map F◦2

d maps Pc into Pφd (−c), where φd is the restriction of −F◦2
d to the line

R · 1. It seems reasonable to expect that for other small values of q a similar statement could
be proved. A general approach is elusive so far. It is moreover also not clear that Fd(Pc) is
convex, not even for q = 3. In fact, for q = 3 and c large enough F3(Pc) is not convex. But
for reasonable values of c it does appear to be convex. For larger values of q this is even less
clear.

Knowing that there is a uniqueGibbsmeasure on the infinite regular tree is by itself not suf-
ficient to design efficient algorithms to approximately compute the partition function/sample
from the associated distribution on all bounded degree graphs. One needs a stronger notion
of decay of correlations, often called strong spatial mixing [19, 20, 29, 39] or absence of
complex zeros for the partition function near the real interval [w, 1] [1, 6, 28, 33]. It is not
clear whether our current approach is capable of proving such statements (these certainly do
not follow automatically), but we hope that it may serve as a building block in determining
the threshold(s) for strong spatial mixing and absence of complex zeros.We note that even for
the case w = 0, corresponding to proper colorings, the best known bounds for strong spatial
mixing on the infinite tree [15] are still far from the uniqueness threshold. Very recently (after
the current article was posted to the arXiv) these bounds have been significantly improved
[12].
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A Supplementary Mathematica Code to Lemma 4.4

The functions Ai for i = 1, 2, 3 and � are defined as follows.
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Listing 1 The functions Ai and �

A1[y1_, y2_, y3_, m_] := (m + 1) (1 − y1)/(1 + l y1 + y2 + (m − (l + 1) ) y3)
A2[y1_, y2_, y3_, m_] := (m + 1) (1 − y2)/(1 + l y1 + y2 + (m − (l + 1) ) y3)
A3[y1_, y2_, y3_, m_] := (m + 1) (1 − y3)/(1 + l y1 + y2 + (m − (l + 1) ) y3)

Delta[y1_, y2_, y3_, m_] := (y1 y3 (m − l − 1) + ( l + 1) y1 + ( l + 1) y1 y2 − l y2) Exp[A1[y1,
y2, y3, m]]

+ (−y2 y3 (m − l − 1) − ( l + 1) y1 y2 + y1 − 2 y2) Exp[A2[y1, y2, y3, m]]
+ (y1 − y2) (1 − y3) (m − l − 1) Exp[A3[y1, y2, y3, m]]

The functions yi (t) are defined as follows.

Listing 2 The functions yi

{y1[t_ ], y2[t_ ], y3[t_ ]} = {y1, y2, y3} /. Solve[A1[y1, y2, y3, t ] == C1 && A2[y1, y2, y3, t ]
== C2 && A3[y1, y2, y3, t ] == C3, {y1, y2, y3 }][[1]]

Listing 3 Verification that yi (q − 1) = xi . This expression yields {x1, x2, x3}
Simplify [{ y1[q − 1], y2[q − 1], y3[q − 1]} /. {Rule[C1, A1[x1, x2, x3, q − 1]], Rule[C2, A2[x1,

x2, x3, q − 1]], Rule[C3, A3[x1, x2, x3, q − 1]]}]

The function r(t) can subsequently be found with the following code.

Listing 4 The function r

r [ t_ ] = Simplify[Delta[y1[t ], y2[t ], y3[t ], t ] ((1 + t ) /(1 + C2 − C3 + C1 l − C3 l + t + C3 t ) )
^(−2)]

It can be observed that r is indeed linear in t . To calculate r(l + 1) and the slope of r we
use the following piece of code.

Listing 5 The values of r(l + 1) and the slope of r

Simplify [{ r [ l + 1], Coefficient [ r [ t ], t ]}]
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