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1 Introduction

In previous work [18], we developed statistical methods for state estimation on interval-censored data. The

motivating example was that of determining the occurrence times of residential burglaries based on police

reports. In the criminology literature, such data are known as aoristic crime data [21, 22]. Aoristic crime

studies have mainly focused on ad hoc methods [1], which can be helpful but may miss dependencies such

as the near-repeat effect [4]. We developed a Bayesian statistical method that can account for inter-event

dependencies [18].

Our approach assumed that for each event occurrence the censoring mechanism is governed by a stochastic

process. Specifically, an alternating renewal process was used to split time up into observable and partially

observable periods according to the two phases of the renewal process. Either the event is fully observed,

in which case the exact time of occurrence is recorded, or only the interval between two jumps is recorded.

The approach was shown to lead to a tractable mark distribution and is therefore amenable to Monte Carlo

methods for simulation.

The censoring mechanism based on alternating renewal processes imposes time-homogeneity. In reality,

events rarely occur homogeneously in time. For instance, returning to the motivating example, there may

be times of day that are more likely to be censored due to the periodic behaviour of potential victims, such
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as being at work or asleep. Additionally, burglars may choose to commit crimes at different rates at certain

times of the day based on their perception of victim behaviour. Thus, there may be inhomogeneity in both

the underlying distribution of occurrence times and the censoring mechanism.

This paper introduces a new model that rectifies these shortcomings. For the censoring mechanism, we

propose a non-homogeneous semi-Markov process [11, 12, 16, 24]. Conditional intensity-based methods [10]

are used to guarantee existence and we derive the joint, marginal and conditional distributions of starting

point and length for each occurrence time. We then propose a marked point process model [7] for the complete

data using a non-homogeneous Markov point process [17] for the ground process of event occurrences and a

mark kernel based on the semi-Markov process. We illustrate the model by means of parametric examples that

can describe various types of non-homogeneous behaviour, culminating in a comparison of non-homogeneous

and homogeneous models.

The plan of this paper is as follows. In Section 2 we recall the definition of a semi-Markov process on

the half line and give an explicit expression for the joint distribution of age and excess. In Section 3 we

formulate our marked point process model and study the conditional distribution of the ground process given

the union of marks. In Section 4 we present some parametric examples; a demonstration of the model in

action is given in Section 5.

2 The non-homogeneous semi-Markov process

2.1 Definition and notation

Let (Ω,A, P ) be a probability space. Consider the two-dimensional stochastic process (Si, Xi), i ∈ N0, on

(Ω,A, P ) with values in {0, 1} × R+. Here, Si denotes the i-th state that the process is in and 0 = X0 ≤
X1 ≤ . . . are the jump times. Call a time interval that the process spends in state 0 a Z-phase and state 1

a Y -phase, in analogy to [18]. We set S0 = 1, as is convention.

The tuple (Sn, Xn)
∞
n=1 defines a non-homogeneous semi-Markov process if

P(Sn+1 = j,Xn+1 ≤ x | (S0, X0) = (s0, x0), . . . , (Sn, Xn) = (sn, xn))

= P(Sn+1 = j,Xn+1 ≤ x | (Sn, Xn) = (sn, xn))

= P(Sn+1 = j,Xn+1 −Xn ≤ x− xn | (Sn, Xn) = (sn, xn))

= P(S1 = j,X1 −X0 ≤ x− x0 | (S0, X0) = (s0, x0)), (2.1)

i.e. the joint conditional probability of the sojourn time Tn+1 = Xn+1 − Xn in the n-th state and the

next state Sn+1 depends only on the n-th state Sn and its jump time Xn, not on the entire history of the

process [6, 12, 16, 24] nor on the index n. This process is only Markov at the jump times, hence the name

semi-Markov.

It follows from (2.1) that the distribution of a non-homogeneous semi-Markov process is completely

specified by the starting state (or its probability distribution) and a semi-Markov kernel G that describes
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the transition rates from state i to state j. Formally, for τ ≥ 0, x ≥ 0 and i, j ∈ {0, 1},

Gij(x, τ) = P(Sn+1 = j, Tn+1 ≤ τ |Sn = i,Xn = x), (2.2)

regardless of n = 0, 1, . . . . As the process alternates, we can write G10(x, τ) = GY (x, τ) and G01(x, τ) =

GZ(x, τ), the subscript denoting the state that the process is in after jump time x. In the remainder of this

paper, we shall assume that, for all x ≥ 0, GY (x, ·) and GZ(x, ·) are absolutely continuous with respect to

Lebesgue measure and write gY (x, ·) and gZ(x, ·) respectively for their Radon–Nikodym derivatives.

2.2 Conditional intensities and non-explosion conditions

The conditional intensity, also known as the stochastic intensity, of a temporal point process describes the

infinitesimal conditional probability of occurrence given the history of the process [15]. More precisely, for

n = 0, 1, . . . and 0 = x0 ≤ x1 ≤ · · · ≤ xn ≤ x,

λn+1(x;x1, . . . , xn) dx = P(Xn+1 ≤ x+ dx |Xn+1 ≥ x,X0 = 0, X1 = x1, . . . , Xn = xn). (2.3)

For a non-homogeneous semi-Markov process, the λn+1(·; ·) are closely related to the hazard rates of the

sojourn times. To see this, recall that S0 = 1 and assume that n+ 1 is odd. Then the conditional intensity

of the jump process at time x given jumps at times 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn can be simplified as

λn+1(x;x1, . . . , xn)dx = P(Xn+1 ≤ x+ dx |Xn+1 ≥ x,Xn = xn, Sn = 1)

=
P(x− xn ≤ Tn+1 ≤ x− xn + dx |Xn = xn, Sn = 1)

P(Tn+1 ≥ x− xn |Xn = xn, Sn = 1)

=
gY (xn, x− xn) dx

1−GY (xn, x− xn)
(2.4)

whenever well-defined and using absolute continuity of the semi-Markov kernel. When GY (xn, x− xn) = 1,

the conditional intensity is set to zero. For even n+ 1, a similar argument holds with gZ and GZ instead of

gY and GY .

The conditional intensity is a convenient tool to guarantee the existence of the process. Indeed, [10]

developed suitable comparison criteria under which explosion, the situation in which there are infinitely

many transitions in a finite time span, can be prevented. Indeed, their Corollaries 2 and 5 imply, for two

temporal point processes Xn and X∗
n with conditional intensities λ and λ∗, that if

• for every n ∈ N0, λn+1 ≤ λ∗
n+1;

• for every n ∈ N, either λn+1(x;x1, . . . , xn) or λ
∗
n+1(x;x1, . . . , xn) depends only on x− xn,

then the probability of explosion at or before time x of the point process defined by λ is at most as big as

that of the point process defined by λ∗. Under the same conditions [10, Corollary 1], for all n ∈ N and x ≥ 0,

P(Xn ≤ x) ≤ P(X∗
n ≤ x).
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Below, we establish existence for two common families of sojourn time distributions, the Gamma and the

Weibull.

Proposition 2.1. Let (Sn, Xn)
∞
n=1 be an alternating non-homogeneous semi-Markov process with values in

{0, 1}×R+ with S0 = 1, X0 = 0 and semi-Markov kernels GY (x, ·), GZ(x, ·) that follow Gamma distributions

with shape and rate parameters θY (x) = (kY (x), λY (x)) and θZ(x) = (kZ(x), λZ(x)) in [1,∞)× (0,∞) such

that, for all x ∈ R+,

λY (x) ≤ c; λZ(x) ≤ c

for some c > 0. Write X∞ = limn→∞ Xn for the time of explosion. Then P(X∞ < ∞) = 0.

Proof. The probability density and cumulative distribution functions of the Gamma distribution with shape

and rate parameters k(x) and λ(x) are, for τ ≥ 0,

g(x, τ ; k(x), λ(x)) =
λ(x)

k(x)
τk(x)−1e−λ(x)τ

Γ(k(x))
; G(x, τ ; k(x), λ(x)) =

γ(k(x), λ(x)τ)

Γ(k(x))
,

writing Γ for the gamma function and γ for the lower incomplete gamma function. The conditional intensity

is, for n = 0, 1, . . . and 0 = x0 ≤ x1 ≤ · · · ≤ xn ≤ x,

λn+1(x;x1, . . . , xn) =
gT (xn, x− xn; kT (xn), λT (xn))

1−GT (xn, x− xn; kT (xn), λT (xn))

=
λT (xn)

kT (xn)(x− xn)
kT (xn)−1e−λT (xn)(x−xn)∫∞

λT (xn)(x−xn)
ukT (xn)−1e−u du

,

where gT is either gY or gZ . We examine the limiting behaviour as x → ∞. See that

lim
x→∞

gT (xn, x− xn; kT (xn), λT (xn)) = 0, lim
x→∞

(1−GT (xn, x− xn; kT (xn)λT (xn))) = 0.

Noting that both are differentiable on (0,∞), by L’Hôpital’s rule,

lim
x→∞

λn+1(x;x1, . . . , xn) = lim
x→∞

λT (xn)(x− xn)− (kT (xn)− 1)

x− xn
= λT (xn) (2.5)

after simplifying.

To prove monotonicity, we must show that λn+1(x;x1, . . . , xn) is increasing in x ≥ xn. Write t =

λT (xn)(x− xn). Then λn+1(x;x1, . . . , xn) can be written as λT (xn)h(t) for

h(t) =
tkT (xn)−1e−t∫∞

t
ukT (xn)−1e−udu

.

Therefore, it suffices to show that the function t → log h(t) is non-decreasing in t > 0. Now,

∂

∂t
log h(t) =

kT (xn)− 1

t
− 1 +

tkT (xn)−1e−t∫∞
t

ukT (xn)−1e−u du
.

If t < kT (xn) − 1, we see directly that the derivative is positive. Otherwise, use integration by parts to

simplify the last term in the right-hand side to

1−
∫ ∞

t

kT (xn)− 1

u
ukT (xn)−1e−u du

/∫ ∞

t

ukT (xn)−1e−u du.
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Consequently

∂

∂t
log h(t) =

∫ ∞

t

{
kT (xn)− 1

t
− kT (xn)− 1

u

}
ukT (xn)−1e−u du

/∫ ∞

t

ukT (xn)−1e−u du

is non-negative. We conclude that λn+1(x;x1, . . . , xn) is bounded by λT (xn) for all kT (xn) ≥ 1.

Recall that we assume that supx∈R+ max(λY (x), λZ(x)) ≤ c. We may then construct a Poisson process

N∗ with conditional intensity λ∗
n+1(x;x1, . . . , xn) = c. Clearly, λ∗ satisfies the second condition of [10,

Corollary 2]. Moreover, λn+1 ≤ c = λ∗
n+1 for every n ∈ N0. Since a Poisson process with constant intensity

has probability zero to explode, we conclude that P(X∞ < ∞) = 0.

Important special cases include kT (x) = 1 for exponential distributions or, more generally, kT (x) ∈ N

corresponding to Erlang distributed phases.

Proposition 2.2. Let (Sn, Xn)
∞
n=1 be an alternating non-homogeneous semi-Markov process with values in

{0, 1}×R+ with S0 = 1, X0 = 0 and semi-Markov kernels GY (x, ·), GZ(x, ·) that follow Weibull distributions

with shape and rate parameters θY (x) = (kY (x), λY (x)) and θZ(x) = (kZ(x), λZ(x)) in (0,∞)× (0,∞) such

that (i) λY (x) ≤ c, λZ(x) ≤ c for some c > 0 and (ii) either 1 ≤ kY (x) ≤ k, 1 ≤ kZ(x) ≤ k for some

k ≥ 1, or kY (x) = kZ(x) = k for some k > 0. Write X∞ = limn→∞ Xn for the time of explosion. Then

P(X∞ < ∞) = 0.

Proof. Let GT (x, ·) and corresponding (λT (x), kT (x)) correspond to either Y - or Z-phase cases. The proba-

bility density and cumulative distribution functions of the Weibull distribution with shape and rate param-

eters k(x) and λ(x) are, for τ ≥ 0,

g(x, τ ; k(x), λ(x)) = k(x)λ(x) (λ(x)τ)
k(x)−1

e−(λ(x)τ)k(x)

;

G(x, τ ; k(x)λ(x)) = 1− e−(λ(x)τ)k(x)

.

The conditional intensity is therefore, for n = 0, 1, . . . and 0 = x0 ≤ x1 ≤ · · · ≤ xn ≤ x,

λn+1(x;x1, . . . , xn) = kT (xn)λT (xn) (λT (xn)(x− xn))
kT (xn)−1

.

Since the conditional intensity is unbounded, we cannot use a Poisson process to bound λn+1. Instead we

turn to a homogeneous renewal process N∗ with sojourn times that are Weibull distributed with shape

parameter k and rate parameter c. By the strong law of large numbers, since the expected sojourn times

are strictly positive, N∗ has explosion probability zero [24, Section 3.1]. Also,

λn+1(x;x1, . . . , xn) ≤ λ∗
n+1(x;x1, . . . , xn) = kck(x− xn)

k−1

and both conditional intensities are a function of x− xn only. By [10, Corollary 2], P(X∞ < ∞) = 0.

The case that k = 1 corresponds to exponential sojourn times.
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2.3 Renewal function: existence and boundedness

The process counting the number of cycles having occurred by time t ≥ 0 can be written as

N(t) = sup {n ∈ N0 : X2n ≤ t} , (2.6)

where a cycle is an interval of time within which each state occurs once. The distribution of X2n, the jump

time after completing the n-th cycle, is, for n ∈ N0 and t ≥ 0,

F2n(t) = P

(
2n∑
i=1

Ti ≤ t

)
= P(X2n ≤ t) = P(N(t) ≥ n).

The renewal function is defined, analogously to that of the classic alternating renewal process, as M(t) =

EN(t), t ≥ 0 [12]. In our case,

M(t) = EN(t) =
∞∑

n=0

P(N(t) > n) =

∞∑
n=1

P(X2n ≤ t) =

∞∑
n=1

F2n(t),

a 2n-fold convolution.

The following corollaries to Propositions 2.1–2.2 hold.

Corollary 2.2.1. Let (Sn, Xn)
∞
n=1 be as in Proposition 2.1. Then its renewal function M(t) satisfies M(t) ≤

ct, t ≥ 0.

Proof. Construct a Poisson process N∗(t) with intensity c as in the proof of Proposition 2.1 and write X∗
n

for its jump times. By [10, Corollary 1], P(X2n ≤ t) is bounded from above by P(X∗
2n ≤ t). Therefore,

EN(t) =

∞∑
n=1

P(X2n ≤ t) ≤
∞∑

n=1

P(X∗
2n ≤ t) = EN∗(t) = ct.

Corollary 2.2.2. Let (Sn, Xn)
∞
n=1 be as in Proposition 2.2. Then its renewal function M(t) is finite and

bounded from above by the expectation E(N∗(t)) of a renewal process N∗(t) with Weibull distributed sojourn

times having shape parameter k and rate parameter c.

Proof. Construct the renewal process N∗ as in the proof of Proposition 2.2. Then, as in the proof of

Corollary 2.2.1, E(N(t)) ≤ E(N∗(t)). Also E(N∗(t)) < ∞ (see [2] or [24, Prop. 3.2.2.]).

2.4 Age and excess distributions

Now that the theoretical groundwork for the censoring mechanism has been laid, we proceed by determining

the joint distribution of age and excess. The age A(t) is the time elapsed since the last phase change, and

B(t), the excess, is the time remaining until the next phase change. For all t where the process is in state 0,

or the Z-phase, we assume that the occurrence time can be observed perfectly. Therefore we only consider

age and excess with respect to state 1, or the Y -phase. Obtaining their joint distribution allows us to specify
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the likelihood of intervals based on their starting point and length in terms of the semi-Markov kernel GY .

See Figure 1 for a visualisation of the age and excess functions.

0

State 1 (Out)

State 0 (Home)

X0

T1

3

X1

T2

5

X2

T3

9

tA(t)

B(t)

X3

T4

11

X4

T5

12

X5

T6

16

Figure 1: A visualisation of a semi-Markov process with initial values S0 = 1 and X0 = 0. At the dotted

line, one cycle has passed - i.e. the process has taken both possible state values. The jump times correspond

to a change of state. For a given time t in which the process is in state 1, a non-zero age A(t) and excess

B(t) are recorded.

Proposition 2.3. Consider an alternating non-homogeneous semi-Markov process (Sn, Xn)
∞
n=1 with values

in {0, 1} × R+ with S0 = 1, X0 = 0, semi-Markov kernels GY and GZ and associated counting measure

N(t), t ≥ 0. Let the age process with respect to the Y -phase be

A(t) = (t−X2N(t))1{X2N(t)+1 > t}

and define the excess with respect to the Y -phase as

B(t) = (X2N(t)+1 − t)1{X2N(t)+1 > t},

where X2N(t) is the jump time immediately after N(t) cycles have been completed. Then, for t ≥ 0 and

0 ≤ x ≤ t and z ≥ 0,

P(A(t) ≤ x,B(t) ≤ z) = GY (0, t)−
∫ t

t−x

[1−GY (s, t+ z − s)] dM(s)−
∫ t−x

0

[1−GY (s, t− s)] dM(s)

+ 1{x = t}[GY (0, t+ z)−GY (0, t)]. (2.7)

Proof. By construction, X0 = 0 and S0 = 1. Now, for 0 ≤ x < t,

P(A(t) > x) = P(t−X2N(t) > x, X2N(t)+1 > t |S0 = 1, X0 = 0)

=

∞∑
n=0

P(t−X2n > x, X2n+1 > t, N(t) = n |S0 = 1, X0 = 0)

= 1− P(T1 ≤ t |S0 = 1, X0 = 0) +

∞∑
n=1

P(t−X2n > x, X2n+1 > t |S0 = 1, X0 = 0)
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after simplifying and removing redundant conditions. Note that by (2.2) and as we know we are guaranteed

to be in state 1, P(T1 ≤ t |S0 = 1, X0 = 0) = GY (0, t). Continuing,

P(A(t) > x) = 1−GY (0, t) +

∞∑
n=1

P(X2n < t− x; X2n+1 > t |S0 = 1, X0 = 0)

= 1−GY (0, t) +

∫ t−x

0

[1−GY (s, t− s)] dM(s),

using the law of total probability and Fubini’s theorem. Considering the discrete components,

P(A(t) = 0) = 1− P (A(t) > 0) = GY (0, t)−
∫ t

0

[1−GY (s, t− s)] dM(s)

and

P(A(t) = t) = P(X1 > t) = 1−GY (0, t).

Next turn to the excess. For z ≥ 0,

P(B(t) > z) = P(X2N(t)+1 > t+ z |S0 = 1, X0 = 0)

= 1−GY (0, t+ z) +

∫ t

0

[1−GY (s, t+ z − s)] dM(s)

and

P(B(t) = 0) = 1− P(B(t) > 0) = GY (0, t)−
∫ t

0

[1−GY (s, t− s)] dM(s).

Using similar arguments, we can find an expression for the joint probability P(A(t) > x,B(t) > z). For

z ∈ [0,∞) and x ∈ [0, t),

P(A(t) > x,B(t) > z) = P(X2N(t)+1 > t+ z, t−X2N(t) > x |S0 = 1, X0 = 0)

= 1−GY (0, t+ z) +

∫ t−x

0

[1−GY (s, t+ z − s)] dM(s).

We can now handle the event {A(t) ≤ x,B(t) ≤ z} for 0 ≤ x < t, z ≥ 0 as follows:

P(A(t) ≤ x,B(t) ≤ z) = P(A(t) > x,B(t) > z) + 1− P(B(t) > z)− P(A(t) > x)

= GY (0, t)−
∫ t

t−x

[1−GY (s, t+ z − s)] dM(s)−
∫ t−x

0

[1−GY (s, t− s)] dM(s).

Finally, for x = t,

P(A(t) ≤ t, B(t) ≤ z) = 1− P(B(t) > z) = GY (0, t+ z)−
∫ t

0

[1−GY (s, t+ z − s)] dM(s)

and we obtain the proposed expression.

From Proposition 2.3 we conclude that the probability that time t ≥ 0 falls in a Z-phase is given by

wt = P(A(t) ≤ 0, B(t) ≤ 0) = GY (0, t)−
∫ t

0

[1−GY (s, t− s)] dM(s). (2.8)
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This case constitutes the atomic part of (2.7). The singular component on the line x = t has total mass

1−GY (0, t) and represents the case that t falls before the first jump of the semi-Markov process.

The absolutely continuous component of (2.7) can be written as∫ x

0

∫ z

0

gY (t− u, u+ v)m(t− u)dudv

provided that the Radon–Nikodym derivatives m of M and gY of GY exist. Recall that in our proposed

censoring mechanism, when t falls in a Y -phase, the entire interval [t − A(t), t + B(t)] is reported, which

may be parametrised by the left-most point t − A(t) and length A(t) + B(t). Suppose that A(t) = u and

B(t) = v, and apply the change of variables a = t − u and l = u + v. We find that the joint probability

density function of left-most point and length is

qt(a, l) =
m(a)gY (a, l)∫ t

0
[1−GY (s, t− s)] dM(s)

1{0 ≤ a ≤ t ≤ a+ l; l ≥ 0}, (2.9)

upon scaling.

Proposition 2.4. Let gY and m be as before, and let (A,L) be distributed according to qt(a, l) given by

(2.9). Then the marginal probability density function of A at a ∈ [0, t] is

ft(a) =
m(a)[1−GY (a, t− a)]∫ t

0
[1−GY (s, t− s)] dM(s)

(2.10)

and the conditional probability density function of L given A = a is, for l ∈ [t− a,∞),

ft, L |A=a(l) =
gY (a, l)

1−GY (a, t− a)
. (2.11)

Proof. Assume that 0 ≤ a ≤ t ≤ a+ l and l ≥ 0. The marginal distribution of the starting time ft(a) is

ft(a) =

∫
qt(a, l) dl =

m(a)∫ t

0
[1−GY (s, t− s)] dM(s)

∫ ∞

t−a

gY (a, l) dl

=
m(a)[1−GY (a, t− a)]∫ t

0
[1−GY (s, t− s)] dM(s)

,

and

ft, L |A=a(l) =
qt(a, l)

fa(a)
=

gY (a, l)

1−GY (a, t− a)
.

The marginal and conditional distributions of the intervals can be used to generate interval samples.

3 A model for non-homogeneous interval-censoring

3.1 Model formulation

The ensemble of potentially censored occurrence times can be mathematically formalised as a marked point

process [7]. The ground process of points represent the uncensored event occurrences, which we model by

9



a Markov point process [17] defined by a probability density with respect to a unit rate Poisson process.

Temporal variations can be taken into account as well as interactions between the points. Each point is

subsequently marked, independently of other points, either by an atom at the point when it is observed

perfectly, or by the interval in which the point lies in case of censoring. The mark kernel that governs the

random censoring is based on the distribution of age and excess in a non-homogeneous semi-Markov process.

Formally, let X be an open set on the real line. The state space NX of a simple point process X consists

of finite sets {x1, x2, . . . , xn} ⊂ X , n ∈ N0, which we equip with the Borel σ-algebra of the weak topology

[7, Appendix A2]. Let p be a measurable, non-negative function on X that integrates to unity and ∼ a

symmetric, reflexive relation on X . A point process X on X having probability density p with respect to

a unit rate Poisson process is Markov with respect to ∼ if, firstly, p is hereditary, that is, p(x) > 0 implies

that p(y) > 0 for all subsets y of x, and, secondly, the conditional intensity, defined as p(x ∪ {t})/p(x) with
a/0 = 0 for a ≥ 0, depends only on the neighbourhood {x ∈ x : x ∼ t} of t in x for every t ∈ X \x and every

x = {x1, . . . , xn} ⊂ X for which p(x) > 0 [17, 23].

An interaction function is a family ϕ0, ϕ1, ϕ2, . . . of non-negative functions ϕi defined on configurations

of i points that take the value one whenever the configuration contains a pair {x1, x2} of points that are

unrelated, that is, x1 ̸∼ x2. By the Hammersley–Clifford theorem [23], writing | · | for cardinality, a Markov

density p can be factorised as

p(x) =
∏
y⊂x

ϕ|y|(y) (3.1)

for some interaction function ϕi. The function ϕ1(x) can be used to model temporal variations in the

likelihood of events occurring. Higher order terms ϕ2, ϕ3, . . . govern interactions between pairs, triples or

tuples of points.

The points x in a realisation x of X are marked independently according to a mark kernel ν(·|x) on

R × R+. A mark (a, l) represents an interval [a, a + l] that starts at a and has length l. The mark kernel

ν formalises the semi-Markov censoring discussed in Section 2. For demonstrative purposes, we assumed

a starting time of 0, which we now set to −∞. Doing so also allows us to ignore the singular component.

Hence the appropriate time-dependent mark kernel ν(·|x), x ∈ X , for a Borel subset A ⊂ R× R+ is

ν(A|x) =
(
1−

∫ x

−∞
[1−GY (s, x− s)] dM(s)

)
δ({(x, 0)} ∩A)

+

∫ x

−∞

∫ ∞

x−a

1{(a, l) ∈ A}GY (a, dl) dM(a). (3.2)

Write W for the marked point process defined by p(·) and ν(·|·) [7, Prop. 4.IV]. A realisation w is of the

form

w = {w1, w2, . . . , wn} = {(x1, (a1, l1)), (x2, (a2, l2)), . . . , (xn, (an, ln))}

for ai ≤ xi ≤ ai + li for all i = 1, 2, . . . , n. We denote the set of realisations by NX×(R×R+).
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The model description is complete by noting that the observable pattern of marks after censoring is

U =
⋃

(xi,(ai,li))∈W

{(ai, li)}.

To obtain the probability distribution of U , write, for F in the Borel σ-algebra of the weak topology on

NR×R+ ,

P(U ∈ F |X = x) =

∫
(R×R+)n

1({(a1, l1), . . . , (an, ln)} ∈ F )

n∏
i=1

dν((ai, li)|xi),

where x = {x1, . . . , xn}, and then take the expectation with respect to X.

3.2 Conditional distribution

Write u for a realisation of the interval set U . We are interested in the conditional distributions of X and

W given U = u.

Theorem 3.1. Let W be a marked point process with ground process X on the open set X ⊂ R defined

by its probability density function p with respect to the distribution of a unit rate Poisson process having

independent marks distributed according to the mark kernel ν(·|x) for x ∈ X given by (3.2). Let u be

a realisation of U that consists of an atomic part {(a1, 0), . . . , (am, 0)}, m ∈ N0, and a non-atomic part

{(am+1, lm+1), . . . , (an, ln)}, n ≥ m. Then the conditional distribution of X given U = u satisfies, for A in

the Borel σ-algebra of the weak topology on NX ,

P(X ∈ A |U = u) = c(u)

∫
Xn−m

p({a1, ..., am, x1, ..., xn−m}) 1A({a1, ..., am, x1, ..., xn−m})

∑
D1,...,Dn−m

∪j{Dj}={1,...,n−m}

n−m∏
i=1

1[am+i,am+i+lm+i](xDi
) dxi

provided that the normalisation constant

c(u) = 1/

∫
Xn−m

p(x ∪ {a1, ..., am})
∑

D1,...,Dn−m

∪j{Dj}={1,...,n−m}

n−m∏
i=1

1[am+i,am+i+lm+i](xDi
) dxi

exists in (0,∞).

Proof. We must prove, for each A in the Borel σ-algebra of NX with respect to the weak topology and each

F in the Borel σ-algebra of the weak topology on NR×R+ , that

E [1F (U)P(X ∈ A | U)] = E [1F (U)1A(X)] ,

as in equation 4 of [18]. From the model description, writing wt for the modification of (2.8) over (−∞, t),

11



ℓ for Lebesgue measure, | · | for cardinality,

E[1F (U)1A(X)] =

∞∑
n=0

e−ℓ(X )

n!

∫
Xn

1A(x) p({x1, ..., xn})
∑

C0⊂{1,...,n}

1

(n− |C0|)!
∏
i∈C0

wxi∫
(R×R+

0 )n−|C0|
1F ({(a1, l1), . . . , (an−|C0|, ln−|C0|)} ∪ (xC0

× {0}))

∑
C1,...,Cn−|C0|

∪j{Cj}={1,...,n}\C0

n−|C0|∏
j=1

m(aj) gY (aj , lj) 1[aj ,aj+lj ](xCj
) dajdlj

n∏
i=1

dxi. (3.3)

Following through for the left-hand side,

E [1F (U)P(X ∈ A | U)] =

∞∑
n=0

e−ℓ(X )

n!

∫
Xn

p({x1, . . . , xn})
∑

C0⊂{1,...,n}

1

(n− |C0|)!
∏
i∈C0

wxi∫
(R×R+

0 )n−|C0|
1F ({(a1, l1), . . . , (an−|C0|, ln−|C0|)} ∪ (xC0 × {0}))

P(X ∈ A |U = {(a1, l1), . . . , (an−|C0|, ln−|C0|)} ∪ (xC0 × {0}))

∑
C1,...,Cn−|C0|

∪j{Cj}={1,...,n}\C0

n−|C0|∏
j=1

m(aj) gY (aj , lj) 1[aj ,aj+lj ](xCj
) dajdlj

n∏
i=1

dxi.

Next, we plug in the expression for P(X ∈ A |U = u) proposed in the statement of the theorem. Upon

substitution, changing integration order and rearranging, we obtain

E [1F (U)P(X ∈ A | U)] =

∞∑
n=0

e−ℓ(X )

n!

∑
C0⊂{1,...,n}

1

(n− |C0|)!

∫
Xn

p(y ∪ xC0) 1A(y ∪ xC0)
∏
i∈C0

wxi∫
(R×R+

0 )n−|C0|
1F ({(a1, l1), . . . , (an−|C0|, ln−|C0|)} ∪ (xC0

× {0}))

c({(a1, l1), . . . , (an−|C0|, ln−|C0|) ∪ (xC0
× {0}))

∑
D1,...,Dn−|C0|

∪j{Dj}={1,...,n}\C0

n−|C0|∏
j=1

m(aj) gY (aj , lj) 1[aj ,aj+lj ](yDj
)


∫
Xn−|C0|

p(x)
∑

C1,...,Cn−|C0|
∪j{Cj}={1,...,n}\C0

n−|C0|∏
j=1

1[aj ,aj+lj ](xCj
)
∏
j ̸∈C0

dxj


n−|C0|∏
j=1

dajdlj

∏
i∈C0

dxi

n−|C0|∏
k=1

dyk = E[1F (U)1A(X)]

since the term within brackets cancels out against the normalisation constant c(·).

Strikingly, although the marking mechanism is more complicated than that in [18], the conditional dis-

tribution of X has the same form.
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The conditional distribution of W can be obtained in the same vein, by considering 1A(W ) instead of

1A(X) for A a Borel set in NX×(R×R+), the space of marked point configurations, is given by

P(W ∈ A |U = u) ∝
∫
Xn−m

p({a1, ..., am, x1, ..., xn−m}) 1A({(a1, (a1, 0)), . . . , (am, (am, 0)),

(x1, (am+1, lm+1)), . . . , (xn−m, (am+1, lm+1))})
n−m∏
i=1

1[am+i,am+i+lm+i](xi) dxi.

4 Modelling considerations

In this section, we will consider parametric forms for p(·) and ν(·|x).

4.1 Non-homogeneous point process densities

We will first look at inhomogeneity that manifests itself via the occurrence time distribution. In view of (3.1),

it is natural to add inhomogeneity by means of the first-order interaction function ϕ1, a procedure known

as type I inhomogeneity [13]. The idea is to let ϕ1({x}) = β(x) vary over time according to a measurable

function β that maps x ∈ X to [0,∞). In many applications, it may make sense to model β as a step

function. More specifically, given a measurable partition Bk, k = 1, . . . ,K, of X , set

β(x) =

K∑
k=1

βk1Bk
(x), x ∈ X (4.1)

where βk ≥ 0 is the value that β takes in the corresponding set Bk.

The function ϕ1 can be combined with classic second and higher order interaction functions. For instance,

the density of the non-homogeneous area-interaction point process [3] becomes

p(x) = αp

(∏
x∈x

β(x)

)
exp [− log γ ℓ(X ∩ Ur(x))] (4.2)

with respect to a unit rate Poisson process on X . The parameter γ quantifies the interaction strength, r

the radius of interaction, and αp = c(β(·), γ) is a normalisation constant [3] that depends on the function

β as well as on γ. Additionally, Ur(x) =
⋃n

i=1 B(xi, r) where B(xi, r) is the closed interval [xi − r, xi + r].

We observe regularity for γ < 1, clustering for γ > 1, and γ = 1 corresponds to a non-homogeneous Poisson

process with intensity function β. For further examples, we refer to [17].

4.2 Parametric modelling of the mark kernel

To proceed, parametric forms for GY andmmust be developed. We begin by modelling GY , the semi-Markov

kernel that determines the length of time until the next transition. We may take one of the time-dependent

probability density functions considered in Section 2.2. For instance, gY (a, l) could be the density function

of an exponential distribution with rate

λ(a;α) = α (b+ sin(ca)) , a ∈ R, (4.3)
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where c specifies the period and b ≥ 1 the elevation away from 0. The parameter α determines the amplitude

of the harmonic.

We could proceed in a similar fashion for gZ . However, there are two problems with such an approach.

From a probabilistic point of view, tractable expressions for the renewal density m in terms of the semi-

Markov kernels GY and GZ do not seem to exist, and, statistically speaking, lengths of Z phases cannot be

observed. Therefore, we shall model m directly. The following proposition justifies this approach.

Proposition 4.1. Let (Sn, Xn)
∞
n=1 be a semi-Markov process on {1} × R+ with S0 = 1 and X0 = 0 having

semi-Markov kernel GY defined by a density function gY (t, τ), t ∈ R+, τ ∈ [0,∞) and write m̃ for the

density of its renewal function

M̃(t) =

∞∑
n=1

P(Xn ≤ t).

If h(t) : R+ → [0,∞) is a Borel-measurable function such that h(t) ≤ m̃(t), then there exists an alternating

semi-Markov process on {0, 1} × R+ with G01 = GY and renewal density h.

Proof. As 0 ≤ h(t)/m̃(t) ≤ 1, we may use a time-dependent thinning approach with retention probability

p(t) = h(t)/m̃(t). Algorithmically, the sought-after process can be constructed as follows. Initialise Ŝ0 = 1,

X̂0 = 0 and X̂1 = X1. Also set Ŝ2i = 1, Ŝ2i−1 = 0 for i ∈ N and j = 1. For each jump time Xi, i = 1, 2, . . . ,

• with probability p(Xi), if j is even, update X̂j+1 = Xi+1 and increment j by 1; for odd j update

X̂j+1 = X̂j , X̂j+2 = Xi+1 and increment j by 2;

• else, if j is odd, update X̂j+1 = Xi+1 and increment j by 1; for even j update X̂j = Xi+1 leaving j

unchanged.

Because complete cycles correspond to intervals in between accepted points Xi, i = 0, 1, 2, . . . ,

H(t) =

∞∑
n=1

P(X̂2n ≤ t) =

∞∑
n=1

P(Xn ≤ t;Xn retained) =

∫ t

0

h(s)

m̃(s)
dM̃(s).

We can therefore conclude that the intensity of the thinned process is h(t)
m̃(t)m̃(t) = h(t) (see e.g. [7, pp. 78–79]

and hence (Ŝn, X̂n)
∞
n=1 is a non-homogeneous alternating semi-Markov process that satisfies the proposed

conditions.

As an illustration, suppose that h is a step function

m(t) =

J∑
j=1

δj1Aj
(t), t ∈ R+, (4.4)

that takes J different values δj > 0 on Borel sets Aj forming a partition of the half line (j = 1, . . . , J ,

with J ∈ N). The following corollary lays out conditions under which h = m is the renewal density of an

alternating renewal process whose Y -phases are governed by (4.3).

Corollary 4.1.1. A sufficient condition for (4.4) to be the renewal density of an alternating semi-Markov

process on {0, 1} × R+ with GY given by (4.3) on R+ is that for all j = 1, . . . , J we have δj ≤ α(b− 1).
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Proof. For (4.4) to induce a semi-Markov process, we require h(t) ≤ m̃(t), where m̃(t) is the Radon-Nikodym

derivative of the renewal function M̃(t). In Proposition 4.1 we defined

M̃(t) =

∞∑
n=1

P(Xn ≤ t),

with (Xn)
∞
n=0 being its associated jump process of only Y -phases. By construction, its conditional intensity

is λ̃n+1(t; t1, . . . , tn) = λ(t, α) for all 0 ≤ t1 ≤ · · · ≤ tn ≤ t.

Observe that inf{λ(t;α) : t ∈ R} = α(b−1). Construct a Poisson processN∗(t) with intensity ν = α(b−1).

By [10, Corollary 1], since λ∗
n+1(t; t1, . . . , tn) ≤ λ̃n+1(t; t1, . . . , tn), we may conclude that the renewal function

νt of N∗(t) is bounded from above by M̃(t) for all t. Hence also ν ≤ m̃(t).

For h = m as in (4.4), in order to have
∑J

j=1 δj1Aj
(t) ≤ α(b − 1), it is sufficient that δj ≤ α(b − 1) for

all j = 1, . . . , J to guarantee that m(t) is the renewal density of a semi-Markov process.

As noted before, in practice, the starting point 0 is moved back to −∞. Realisations u from the specified

model may be obtained as follows. First, a set of points x ⊂ X in time are chosen according to the probability

density function p(·) by, for example, coupling from the past [14] or the Metropolis–Hastings algorithm [8].

Next, for each point x ∈ x, it is determined whether or not it is an atom based on wx. If this is not the

case, we appeal to Proposition 2.4 and use rejection sampling with a proposal distribution that simulates a

uniformly distributed point in Aj∩(−∞, x] chosen with probability δjℓ(Aj∩(−∞, x])/
∑J

i=1 δiℓ(Ai∩(−∞, x])

and acceptance probability exp[−λ(a;α)(x− a)]. The result is a sample a from fx(a), cf. (2.10). The length

is then sampled according to an exponential distribution with parameter λ(a;α) shifted by x−a (see (2.11)).

It is interesting to observe that, in contrast to the alternating renewal case studied in [18], using the marginal

distribution with respect to A and then the conditional given A is computationally simpler than sampling

L first.

4.3 Statistical aspects

In practical applications, both the family of probability density functions gY (t, τ ; θ) for the sojourn times

in phase Y and the function m(t; ξ) rely on unknown parameters η = (θ, ξ) that must be estimated. The

log-likelihood L(η;u) follows directly from (3.3). Upon observing u = {(a1, 0), . . . , (am, 0), (am+1, lm+1),

. . . , (an, ln)},

L(η;u) =

m∑
i=1

log

(
1−

∫ ai

−∞
[1−GY (s, ai − s; θ)]m(s; ξ) ds

)
+

n∑
i=m+1

log (m(ai; ξ) gY (ai, li; θ)) . (4.5)

When the sojourn time distributions GY and GZ and hence the renewal density m ≡ (EY + EZ)−1 are not

time-varying, (4.5) reduces to the renewal likelihood in [18].

We will illustrate the procedure by means of a specific example. For the sojourn times, we take an

exponential model; for the function m, we use (4.4). Assume that GY (t, ·), t ∈ R, is distributed exponentially
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with rate parameter λ(t) as in (4.3) and m given by (4.4). In the homogeneous case that λ(t) ≡ α > 0 (that

is, b = 1 and c = 0), J = 1, A1 = R and 0 ≤ δ1 ≤ α,

L(α, δ1;u) = m log

(
1− δ1

α

)
+ (n−m) log δ1 + (n−m) logα− α

n∑
i=m+1

li.

In general, the atom probability for a given time x ∈ X is

wx = 1−
J∑

j=1

δj

∫
Aj∩(−∞,x]

e−(x−s)λ(s) ds. (4.6)

The likelihood equation (4.5) after substitution and discarding of terms that do not depend on the parameters

becomes

L(δ, α;u) =

m∑
i=1

log

1−
J∑

j=1

δj

∫
(ai−Aj)∩[0,∞)]

e−αr(b+sin(cai−cr)) dr

+

n∑
i=m+1

log

 J∑
j=1

δj1Aj
(ai)


+ (n−m) logα− α

n∑
i=m+1

li (b+ sin (cai)) .

The resulting equations can be solved numerically to find optimal values for δk, k = 1, . . . , J , and α under

the inequality constraints 0 ≤ δj ≤ α(b− 1), j = 1, . . . , J .

The distribution of unobserved occurrence times may also be considered as a parameter to be estimated

using the reported intervals. To do so, since the form of the conditional distribution of W given U according

to Theorem 3.1 is identical to that for alternating renewal process-based censoring, the simulation techniques

developed in [18] to obtain realisations of the marked occurrence times given a sample u of U apply. Briefly,

estimation of any parameters involved in p(·), for instance the βk in (4.1), requires a Monte Carlo EM

approach [9]. Once the parameters have been estimated, a Metropolis-Hastings algorithm [5, 19, 20] for a

fixed number of points can be used. For further details and conditions under which the algorithm converges

to the desired distribution, we refer to Propositions 4.3–4.5 in [18].

5 Illustrations in practice

To show how the non-homogeneous semi-Markov model behaves, we present a few examples that compare the

new model with a homogeneous one. Recall that, broadly speaking, there are three sources of inhomogeneity:

the interval lengths as governed by gY , the renewal density m, and the ground process responsible for the

uncensored event occurrences. Throughout this section, we set X = (0, 1).

5.1 Model mis-specification

The first source of inhomogeneity in our model is the semi-Markov kernel GY (a, l) for starting point a ∈ R

and length l ≥ 0, which determines the time until the next transition. For specificity, let us assume that

the actual interval censoring mechanism is governed by a Weibull distribution with shape parameter k = 1
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and rate parameter λY (t;α) = α(1.6 + sin(2πt)) for α = 1. Regarding the other model ingredients, we take

p(·) of the form given in (4.2) with β = 400 and γ = 1, that is, a homogeneous Poisson process on X with

intensity 400. We additionally set m(t) = 0.61[−0.2,1)(t).

To illustrate the effect of erroneously assuming a homogeneous model, we sample a realisation from the

actual model and fit a Weibull distribution with parameters k > 0 and constant rate λY (t;α) ≡ α for α > 0.

We obtained parameter estimates k̂ = 0.9 and α̂ = 2.0. The graphs of the survival time densities for t = 0.6

for both models are shown in Figure 2. The homogeneous model is able to roughly discern the shape of

the distribution, but struggles with the scale. Compared to the actual model, for t = 0.6, it generates more

intervals shorter than about 0.5 and fewer of longer length.

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
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Estimation of pdf of interval length for t ≈ 0.6

Interval length

D
en

si
ty

Actual pdf of interval length
Estimated pdf of interval length

Figure 2: The solid line is the actual probability density of interval length for k = 1 and λ(0.6; 1) = 1. The

broken line is the estimated survival time density.

5.2 Inhomogeneity in renewal density and survival time

In our second experiment, we add inhomogeneity in m to the the model and study the effect on fx, cf.

(2.10). As in Section 5.1, consider an exponential semi-Markov density gY with rate parameter either

constant, λ(t;α) = 1.3α, or varying in time according to λ(t;α) = α(1.3 + sin(2πt)). Furthermore, set

m(t) = 0.4 for t ∈ [−0.2, 1) in the constant case, and

m(t) =

0.4 t ∈ [−0.2, 0.4)

0.1 t ∈ [0.4, 1)
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(a) gY fixed rate exponential, m constant
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(b) gY fixed rate exponential, m varying
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(c) gY time-dependent exponential, m constant
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(d) gY time-dependent exponential, m varying

Figure 3: Probability density function of the starting time fx(·) with x = 1 for various choices of gY and m.

in the time-varying case. We set α = 1.6, so the largest value of δi which guarantees that gY is the Radon-

Nikodym derivative of a semi-Markov kernel is 1.6× (1.3− 1) = 0.48. Figure 3 shows the graphs of fx(·) for
the four possible combinations of gy and m obtained from 200,000 samples from qx for x = 1. In Figures 3a

and 3b, we assume that λ is constant. When m is also constant as in Figure 3a, the marginal distribution

of the starting times, by Proposition 2.4, is a shifted exponential distribution. If m is allowed to vary in

time, the exponential curve is broken at t = 0.4, the discontinuity point of m, resulting in a zigzag pattern.

In both Figures 3a and 3c, m is constant, but in Figure 3c the rate parameter of gY varies according to a

harmonic. The resulting sinusoidal modulation is clearly visible. Finally, allowing m to vary too results in

a break at its discontinuity point t = 0.4 as seen in Figure 3d.
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5.3 Inhomogeneity in occurrence time distribution

In the previous subsections, we have assumed that the first order interaction function β of the point process

X of occurrence times remains constant over the entire sampling window (0, 1). In our final example, we relax

this assumption in that we consider a ‘peak time’ in which events are more likely to occur and investigate

the effect on the conditional distribution of occurrences. More precisely, we take an area-interaction model

(4.2) with

β(y) =


3 y ∈ (0, c1)

5 y ∈ [c1, c2)

3 y ∈ [c2, 1)

and critical range [c1, c2) = [0.81, 0.85). The radius of interaction is set to r = 0.1 and we consider both a

regular (η = −1.2) and a clustered (η = 1.2) model.

As in [18], consider the set u = {(0.45, 0.4), (0.51, 0), (0.58, 0)} that contains one non-degenerate interval.

Recall that the entries are parameterised as (a, l), where a is the starting point and l is the length. Figure 4

plots the conditional distribution of the occurrence time on the interval [0.45, 0.85] given u for the regular

and clustered model.
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Figure 4: A comparison between a regular and clustered model with a ‘peak time’ added by changing the

intensity function within a critical range.

To create this figure, a Metropolis-Hastings algorithm (see Algorithm 4.2, [18]) has been run for 600,000

time steps, with the first 100,000 iterations being thrown out due to burn-in. The general shape of the

graphs is similar to the corresponding plots for constant β = 3 in Figures 2 and 3 in [18]. For the clustered

model, the occurrence time is more likely to happen close to the atoms, for regular models the probability

density is shifted away from the atoms. In the non-homogeneous case, the higher value of β during the peak

times causes a clear bump in the range [c1, c2) = [0.81, 0.85).
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6 Conclusion

We introduced a time-dependent interval censoring mechanism that splits time into observable and partially

observable phases by means of a non-homogeneous semi-Markov process on the real line. The process was

shown to be well-defined for a range of Gamma and Weibull semi-Markov kernels. We extended tools from

renewal theory to derive families of time-dependent joint distributions of age and excess, which in turn

characterise the probability distribution of censored intervals. We then constructed a model wherein a

possibly non-homogeneous point process provides a mechanism to select points on the real line, which are

independently marked by the intervals resulting from the censoring mechanism. For this model, a conditional

distribution form was posited and verified. The influence of the model components was demonstrated through

parameterised examples. In future, we intend to apply this model to data on domestic burglaries and to add

a spatial component.
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