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Abstract
We develop and compare e-variables for testing whether k samples of data are
drawn from the same distribution, the alternative being that they come from
different elements of an exponential family. We consider the GRO (growth-
rate optimal) e-variables for (1) a ‘small’ null inside the same exponential
family, and (2) a ‘large’ nonparametric null, as well as (3) an e-variable
arrived at by conditioning on the sum of the sufficient statistics. (2) and (3)
are efficiently computable, and extend ideas from Turner et al. (2021) and
Wald (1947) respectively from Bernoulli to general exponential families. We
provide theoretical and simulation-based comparisons of these e-variables in
terms of their logarithmic growth rate, and find that for small effects all
four e-variables behave surprisingly similarly; for the Gaussian location and
Poisson families, e-variables (1) and (3) coincide; for Bernoulli, (1) and (2)
coincide; but in general, whether (2) or (3) grows faster under the alterna-
tive is family-dependent. We furthermore discuss algorithms for numerically
approximating (1).
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1 Introduction

E-variables (and the value they take, the e-value) provide an alternative
to p-values that is inherently more suitable for testing under optional stop-
ping and continuation, and that lies at the basis of anytime-valid confidence
intervals that can be monitored continuously (Grünwald, 2023, Grünwald et
al, 2023, Henzi and Ziegels, 2022, Ramdas et al, 2022, Shafer, 2021, Vovk
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and Wang, 2021). While they have their roots in the work on anytime-valid
testing by H. Robbins and students (e.g. (Darling and Robbins, 1967)), they
have begun to be investigated in detail for composite null hypotheses only
very recently. E-variables can be associated with a natural notion of optimal-
ity, called GRO (growth-rate optimality), introduced and studied in detail
by Grünwald et al (2023). GRO may be viewed as an analogue of the uni-
formly most powerful test in an optional stopping context. In this paper, we
develop GRO and near-GRO e-variables for a classical statistical problem:
parametric k-sample tests. Pioneering work in this direction appears already
in Wald (1947): as we explain in Example 1, his SPRT for a sequential test
of two proportions can be re-interpreted in terms of e-values for Bernoulli
streams. Wald’s e-values are not optimal in the GRO sense — GRO versions
were derived only very recently by Turner and Grünwald (2022a), Turner et
al (2021), but again only for Bernoulli streams. Here we develop e-variables
for the case that the alternative is associated with an arbitrary but fixed
exponential family, M, with data in each of the k groups sequentially sam-
pled from a different distribution in that family. We mostly consider tests
against the null hypothesis, denoted by H0(M) that states that outcomes in
all groups are i.i.d. by a single member of M. We develop the GRO e-variable
S
gro(M) for this null hypothesis, but it is not efficiently computable in gen-

eral. Therefore, we introduce two more tractable e-variables: S
gro(iid) and

Scond. The former is defined as the GRO e-variable, for the much larger null
hypothesis that the k groups are i.i.d. from an arbitrary distribution, denoted
by H0(iid): since an e-variable relative to a null hypothesis H0 is automat-
ically an e-variable relative to any null that is a subset of H0, S

gro(iid) is
automatically also an e-variable relative to H0(M). Whenever below we refer
to ‘the null’, we mean the smaller H0(M). The use of S

gro(iid) rather than
S
gro(M) for this null, for which it is not GRO, is justifiable by ease of com-

putation and robustness against misspecification of the model M. However,
exactly this robustness might also cause it to be too conservative when M
is well-specified. The third e-variable we consider, Scond, does not have any
GRO status, but is specifically tailored to H0(M), so that it might still be
better than S

gro(iid) in practice. Finally, we introduce a pseudo-e-variable
S
pseudo(M), which coincides with S

gro(M) whenever the latter is easy to com-
pute; in other cases it is not a real e-variable, but it is still highly useful for
our theoretical analysis.



Results

Besides defining S
gro(M), S

gro(iid) and Scond and proving that they achieve
what they purport to, we analyze their behaviour both theoretically and by
simulations. Our main theoretical results, Theorem 2 and 3 reveal some
surprising facts: for any exponential family, the four types of (pseudo-) e-
variables achieve almost the same growth rate under the alternative, hence
are almost equally good, whenever the ‘distance’ between null and alternative
is sufficiently small. That is, suppose that the (shortest) �2-distance between
the k dimensional parameter of the alternative and the parameter space of
the null is given by δ. Then for any two of the aforementioned e-variables
S, S′, we have E[log S−log S′] = O(δ4), where the expectation is taken under
the alternative. Here, E[log S] can be interpreted as the growth rate of S, as
explained in Sect. 1.1.

While S
gro(iid) and Scond are efficiently computable for the families we

consider, this is generally not the case for S
gro(M), since to compute it we

need to have access to the reverse information projection (RIPr; (Grünwald
et al, 2023, Li, 1999)) of a fixed simple alternative to the set H0(M). In
general, this is a convex combination of elements of H0(M), which can only
be found by numerical means. Interestingly, we find that for three families,
Gaussian with fixed variance, Bernoulli and Poisson, the RIPr is attained
at a single point (i.e. a mixture putting all its mass on that point) that
can be efficiently computed. Furthermore, in these cases S

gro(M) coincides
with one of the other e-variables (S

gro(iid) for Bernoulli, Scond for Gaussian
and Poisson). For other exponential families, for k = 2, we approximate the
RIPr and hence S

gro(M) using both an algorithm proposed by Li (1999) and
a brute-force approach. We find that we can already get an extremely good
approximation of the RIPr with a mixture of just two components. This
leads us to conjecture that perhaps the deviation from the RIPr is just due
to numerical imprecision and that the actual RIPr really can be expressed
with just two components. The theoretical interest of such a development
notwithstanding, we advise to use Scond or S

gro(iid) rather than S
gro(M)

for practical purposes whenever more than one component is needed for the
RIPr, as their growth rates are not much worse, and they are much easier
to compute. If furthermore robustness against misspecification of the null is
required, then S

gro(iid) is the most sensible choice.



Method: Restriction to Single Blocks and Simple Alternatives

The main interest of e-variables is in analyzing sequential, anytime-valid set-
tings: the data arrives in k streams corresponding to k groups, and we may
want to stop or continue sampling at will (optional stopping); for example,
we only stop when the data looks sufficiently good; or we stop unexpectedly,
because we run out of money to collect new data. Nevertheless, in this paper
we focus on what happens in a single block, i.e. a vector Xk = (X1, . . . , Xk),
where each Xj denotes a single outcome in the j-th stream. By now, there
are a variety of papers (see e.g. Grünwald et al (2023), Ramdas et al (2022),
Turner et al (2021)) that explain how e-variables defined for such a single
block can be combined by multiplication to yield e-processes (in our context,
coinciding with nonnegative supermartingales) that can be used for testing
the null with optional stopping if blocks arrive sequentially — that is, one
observes one outcome of each sample at a time. Briefly, one multiplies the
e-variables and at any time one intends to stop, one rejects the null if the
product of e-values observed so-far exceeds 1/α for pre-specified significance
level α. This gives an anytime-valid test at level α: irrespective of the stop-
ping rule employed, the Type-I error is guaranteed to be below α. Similarly,
one can extend the method to design anytime-valid confidence intervals by
inverting such tests, as described in detail by Ramdas et al (2022). This
is done for the 2-sample test with Bernoulli data by Turner and Grünwald
(2022a); their inversion methods are extendable to the general exponential
family case we discuss here. Thus, we refer to the aforementioned papers for
further details and restrict ourselves here to the 1-block case. Also, Turner
and Grünwald (2022b), Turner et al (2021) describe how one can adapt an e-
process for data arriving in blocks to general streams in which the k streams
do not produce data points at the same rate; we briefly extend their explana-
tion to the present setting in Appendix A. Finally, we mainly restrict to the
case of a simple alternative, i.e. a single member of the exponential family
under consideration. While this may seem like a huge restriction, extension
from simple to composite alternatives (e.g. the full family under considera-
tion) is straightforward using the method of mixtures (i.e. Bayesian learning
of the alternative over time) and/or the plug-in method. We again refer
to Grünwald et al (2023), Ramdas et al (2022) for detailed explanations,
and Turner et al (2021) for an explanation in the 2-sample Bernoulli case,
and restrict here to the simple alternative case: all the ‘real’ difficulty lies
in dealing with composite null hypotheses, and that, we do explicitly and
exhaustively in this paper.



Related Work and Practical Relevance

As indicated, this paper is a direct (but far-reaching) extension of the papers
Turner and Grünwald (2022a), Turner et al (2021) on 2-sample testing for
Bernoulli streams as well as Wald’s (1947) sequential two-sample test for
proportions to streams coming from an exponential family. There are also
nonparametric sequential (Lhéritier and Cazals, 2018) and anytime-valid 2-
sample tests (Balsubramani and Ramdas, 2016, Pandeva et al, 2022) that
tackle a somewhat different problem. They work under much weaker assump-
tions on the alternative (in some versions the samples could be arbitrary
high-dimensional objects such as pictures and the like). The price to pay
is that they will need a much larger sample size before a difference can be
detected. Indeed, while our main interest is theoretical (how do different e-
variables compare? in what sense are they optimal?), in settings where data
are expensive, such as randomized clinical trials, the methods we describe
here can be practically very useful: they are exact (existing methods are
often based on chi-squared tests, which do not give exact Type-I error guar-
antees at small sample size), they allow for optional stopping, and they
need small amounts of data due to the strong parametric assumptions for
the alternative. As a simple illustration of the practical importance of these
properties, we refer to the recent SWEPIS study (Wennerholm et al, 2019)
which was stopped early for harm. As demonstrated by Turner et al (2021), if
an anytime-valid two-sample test had been used in that study, substantially
stronger conclusions could have been drawn.

We also mention that k-sample tests can be viewed as independence tests
(is the outcome independent of the group it belongs to?) and as such this
paper is also related to recent papers on e-values and anytime-valid tests for
conditional independence testing (Duan et al, 2022, Grünwald et al, 2022,
Shaer et al, 2022). Yet, the setting studied in those papers is quite different
in that they assume the covariates (i.e. indicator of which of the k groups
the data belongs to) to be i.i.d.

Contents

In the remainder of this introduction, we fix the general framework and
notation and we briefly recall how e-variables are used in an anytime-
valid/optional stopping setting. In Sect. 2 we describe our four (pseudo-)
e-variables in detail, and we provide preliminary results that characterize
their behaviour in terms of growth rate. In Sect. 3 we provide our main
theoretical results which show that, for all regular exponential families, the



expected growth of the four types of e-variables is of surprisingly small order
δ4 if the parameters of the alternative are at �2-distance δ to the parameter
space of the null. In Sect. 4 we give more detailed comparisons for a large
number of standard exponential families (Gaussian, Bernoulli, Poisson, expo-
nential, geometric, beta), including simulations that show what happens if δ
gets larger. Section 5 provides some additional simulations about the RIPr.
All proofs, and some additional simulations, are in the appendix.

1.1 Formal Setting Consider a regular one-dimensional exponential
family M = {Pμ : μ ∈ M} given in its mean-value parameterization (see e.g.
(Barndorff-Nielsen, 1978) for more on definitions and for all the proofs of all
standard results about exponential families that are to follow). Each member
of the family is a distribution for some random variable U , taking values in
some set U , with density pμ;[U ] relative to some underlying measure ρ[U ]

which, without loss of generality, can be taken to be a probability measure.
For regular exponential families, M is an open interval in R and pμ;[U ] can be
written as:

pμ;[U ](U) = exp (λ(μ) · t(U) − A(λ(μ))) , (1.1)

where λ(μ) maps mean-value μ to canonical parameter β. We then have
μ = EPμ

[t(U)], where t(U) is a measurable function of U and A(β) is the
log-normalizing factor. The measure ρ[U ] induces a corresponding (marginal)
measure ρ := ρ[X] on the sufficient statistic X := t(U), and similarly the
density (1.1) induces a corresponding density pμ := pμ;[X] on X, i.e. we have

pμ(X) := pμ;[X](X) = exp (λ(μ) · X − A(λ(μ))) . (1.2)

All e-variables that we will define can be written in terms of the induced
measure and density of the sufficient statistic of X; in other words, we can
without loss of generality act as if our family is natural. Therefore, from
now on we simply assume that we observe data in terms of their sufficient
statistics X rather than the potentially more fine-grained U , and will be
silent about U ; for simplicity we thus abbreviate pμ;[X] to pμ and ρ[X] to ρ.
Note that exponential families are more usually defined with a carrier func-
tion h(X) and ρ set to Lebesgue or counting measure; we cover this case by
absorbing h into ρ, which we do not require to be Lebesgue or counting.

The data comes in as a block Xk = (X1, . . . , Xk) ∈ X k, where X is the
support of ρ. To calculate our e-values we only need to know Xk ∈ X k, and
under the alternative hypothesis, all Xj , j = 1 . . . k are distributed according
to some element Pμj

of M. In our main results we take the alternative
hypothesis to be simple, i.e. we assume that μ = (μ1, . . . , μk) ∈ Mk is fixed



in advance. The alternative hypothesis is thus given by

simple H1 : X1 ∼ Pμ1 , X2 ∼ Pμ2 , . . . , Xk ∼ Pμk
independent.

Note that we will keep μ fixed throughout the rest of this section and
Sect. 2. This is without loss of generality as μ is defined as an arbitrary
element of Mk, so that all results stated for μ hold for any element of Mk. The
extension to composite alternatives by means of the method of mixtures
or the plug-in method is straightforward, and done in a manner that has
become standard for e-value based testing (Ramdas et al, 2022).

Our null hypothesis is directly taken to be composite, for as regards
the null, the composite case is inherently very different from the simple
case (Grünwald et al, 2023, Ramdas et al, 2022). It expresses that the Xk

are identically distributed. We shall consider various variants of this null
hypothesis, all composite: let P be a set of distributions on X , then the null
hypothesis relative to P, denoted H0(P), is defined as

composite H0(P) : X1 ∼ P, X2 ∼ P, . . . , Xk ∼ P i.i.d. for some P ∈ P.

Our most important instantiation for the null hypothesis will be H0 =
H0(M) for the same exponential family M from which the alternative was
taken; then H0(M) is a one-dimensional parametric family expressing that
the Xi are i.i.d. from Pμ0 for μ0 ∈ M. Still, we will also consider H0 = H0(P)
where P is the much larger set of all distributions on X . Then the null sim-
ply expresses that the Xk are i.i.d.; we shall abbreviate this null to H0(iid).
Finally we sometimes consider H0 = H0(M′) where M′ ⊂ M is a subset of
Pμ ∈ M with μ ∈ M′ for some sub-interval M′ ⊂ M. The statistics that we use
to gain evidence against these null hypotheses are e-variables.
Definition 1 We call any nonnegative random variable S on a sample space
Ω (which in this paper will always be Ω = X k) an e-variable relative to H0

if it satisfies
for all P ∈ H0 : EP [S] ≤ 1. (1.3)

1.2 The GRO E-variable for General H0 In general, there exist many
e-variables for testing any of the null hypotheses introduced above. Each
e-variable S can in turn be associated with a growth rate, defined by
EPμ

[log S]. Roughly, this can be interpreted as the (asymptotic) exponen-
tial growth rate one would achieve by using S in consecutive independent
experiments and multiplying the outcomes if the (simple) alternative was
true (see e.g. Grünwald et al, 2023 Section 2.1) or Kelly (1956).



The Growth Rate Optimal (GRO) e-variable is then the e-variable with
the greatest growth rate among all e-variables. The central result (Theorem
1) of Grünwald et al (2023) states that, under very weak conditions, GRO
e-variables take the form of likelihood ratios between the alternative and
the reverse information projection (Li, 1999) of the alternative onto the
null. We instantiate their Theorem 1 to our setting by providing Lemma 1
and 2, both special cases of their Theorem 1. Before stating these, we need
to introduce some more notation and definitions. For μ = (μ1, . . . , μk) we
use the following notation:

pμ(Xk) :=
k∏

i=1

pμi
(Xi).

Whenever in this text we refer to KL divergence D(Q‖R), we refer to mea-
sures Q and R on X k. Here Q is required to be a probability measure, while
R is allowed to be a sub-probability measure, as in (Grünwald et al, 2023).
A sub- probability measure R on X k is a measure that integrates to 1 or
less, i.e

∫
x∈X dR(x) ≤ 1.

The following lemma follows as a very special case of Theorem 1 (simplest
version) of Grünwald et al (2023), when instantiated to our k-sample testing
set-up:
Lemma 1 Let P be a set of probability distributions on X k and let conv(P)
be its convex hull. Then there exists a sub-probability measure P ∗

0 with density
p∗
0 such that

D(Pμ‖P ∗
0 ) = inf

P∈conv(P)
D(Pμ‖P ). (1.4)

P ∗
0 is called the reverse information projection (RIPr) of Pμ onto conv(P).

Clearly, if P ∗
0 ∈ conv(P) (the minimum is achieved) then P ∗

0 is a probabil-
ity measure, i.e. integrates to exactly one. We show that this happens for
certain specific exponential families in Sect. 4. However, in general we can
neither expect the minimum to be achieved, nor the RIPr to integrate to
one. Lemma 2 below, again a special case of (Grünwald et al, 2023, Theorem
1), shows that the RIPr characterizes the GRO e-variable, and explains the
use of the term gro in the definition below.
Definition 2 S

gro(P) is defined as

S
gro(P) :=

pμ(Xk)
p∗
0(Xk)

(1.5)



where p∗
0 is the density of the RIPr of Pμ onto conv(P).

Lemma 2 For every set of distributions P on X , S
gro(P) is an e-variable

for H0(P). Moreover, it is the GRO (Growth-Rate-Optimal) e-variable for
H0(P), i.e. it essentially uniquely achieves

sup
S

EPμ
[log S]

where the supremum ranges over all e-variables for H0(P).
Here, essential uniqueness means that any other GRO e-variable must

be equal to S
gro(P) with probability 1 under Pμ. This in turn implies that

the measure P ∗
0 is in fact unique, as members of regular exponential families

must have full support. Thus, once we have fixed our alternative and defined
our null as H0(P) for some set of distributions P on X , the optimal (in the
GRO sense) e-variable to use is the S

gro(P) e-variable as defined above.

2 The Four Types of E-variables

In this section, we define our four types of e-variables; the definitions can be
instantiated to any underlying 1-parameter exponential family. More pre-
cisely, we define three ‘real’ e-variables S

gro(M), Scond, Sgro(iid) and one
‘pseudo-e-variable’ S

pseudo(M), a variation of S
gro(M) which for some expo-

nential families is an e-variable, and for others is not.
2.1 The GRO E-variable for H0(M) and the pseudo e-variable We

now consider the GRO e-variable for our main null of interest, H0(M).
In practice, for some exponential families M, the infimum over conv(M)
in (1.4) is actually achieved for some Pμ∗

0
∈ M. In this easy case we can

determine S
gro(M) analytically (this happens if S

gro(M) = S
pseudo(M), see

below). For all other M, i.e. whenever the infimum is not achieved at all or is
in conv(M)\M, we do not know if S

gro(M) can be determined analytically.
In this hard case will numerically approximate it by S′

gro(M) as defined
below. First, for a fixed parameter μ0 ∈ M we define the vector 〈μ0〉 as the
vector indicating the distribution on X k with all parameters equal to μ0:

〈μ0〉 := (μ0, . . . , μ0) ∈ Mk. (2.1)

Next, with W a distribution on M, we define

pW :=
∫

p〈μ0〉(X
k)dW (μ0) (2.2)



to be the Bayesian marginal density obtained by marginalizing over distri-
butions in H0(M) according to W . Clearly, if W has finite support then the
corresponding distribution PW has PW ∈ conv(M). We now set

S′
gro(M) :=

pμ(Xk)
pW ′

0
(Xk)

where W ′
0 is chosen so that pW ′

0
is within a small ε of achieving the minimum

in (1.4), i.e. D(Pμ1,...,μk
‖P ′

W0
) = infP∈conv(M) D(Pμ1,...,μk

‖P ) + ε′ for some
0 ≤ ε′ < ε. Then, by Corollary 2 of Grünwald et al (2023), S′

gro(M) will not
be an e-variable unless ε′ = 0, but in each case (i.e. for each choice of M)
we verify numerically that supμ0∈M EPμ0,...,μ0

[S] = 1 + δ for negligibly small
δ, i.e. δ goes to 0 quickly as ε′ goes to 0. We return to the details of the
calculations in Sect. 5.

We now consider the ‘easy’ case in which P ∗
0 = P〈μ∗

0〉 for some μ∗
0 ∈ M.

Clearly, we must have μ∗
0 := arg minμ0∈M D(Pμ‖P〈μ0〉). An easy calculation

shows that then

μ∗
0 =

1
k

k∑

i=1

μi. (2.3)

Definition 3 S
pseudo(M) is defined as

S
pseudo(M) :=

pμ(Xk)
p〈μ∗

0〉(Xk)
.

S
pseudo(M) is not always a real e-variable relative to H0(M), which explains

the name ‘pseudo’. Still, it will be very useful as an auxiliary tool in Theo-
rem 2 and derivations. Note that, if it is an e-variable then we know that it
is equal to S

gro(M):
Proposition 1 S

pseudo(M) is an e-variable for M iff S
pseudo(M) = S

gro(M).
The proposition above does not give any easily verifiable condition to check
whether S

pseudo(M) is an e-variable or not. The following proposition does
provide a condition which is sometimes easy to check (and which we will
heavily employ below). With μ∗

0 as in (2.3), define

f(μ0) :=
k∑

i=1

varPμi+μ0−μ∗
0
[X] − kvarPμ0

[X].



Proposition 2 If f(μ∗
0) > 0, then S

pseudo(M) is not an e-variable. If
f(μ∗

0) < 0, then there exists an interval M′ ⊂ M with μ∗
0 in the interior of M′

so that S
pseudo(M) is an e-variable for H0(M′), where M′ = {Pμ : μ ∈ M′}.

2.2 The GRO E-variable for H0(iid) Recall that we defined H0(iid)
as the set of distributions under which Xj , j = 1, . . . k, are i.i.d. from some
arbitrary distribution on X . By the defining property of e-variables, i.e.
expected value bounded by one under the null (1.3), it should be clear that
any e-variable for H0(iid) is also an e-variable for H0(M), since H0(M) ⊂
H0(iid). In particular, we can also use the GRO e-variable for H0(iid) in our
setting with exponential families. It turns out that this e-variable, which we
will denote as S

gro(iid), has a simple form that is generically easy to compute.
We now show this:
Theorem 1 The minimum KL divergence infP∈conv(H0(iid)) D(Pμ‖P ) as in
Lemma 1 is achieved by the distribution P ∗

0 on X k with density

p∗
0(x

k) =
k∏

j=1

1
k

k∑

i=1

pμi
(xj).

Hence, S
gro(iid), as defined below, is the GRO e-variable for H0(iid).

Definition 4 S
gro(iid) is defined as

S
gro(iid) :=

pμ(Xk)
k∏

j=1

(
1
k

k∑
i=1

pμi
(Xj)

) .

The proof of Theorem 1 extends an argument of Turner et al (2021) for the
2-sample Bernoulli case to the general k-sample case. The argument used
in the proof does not actually require the alternative to equal the product
distribution of k independent elements of an exponential family — it could
be given by the product of k arbitrary distributions. However, we state the
result only for the former case, as that is the setting we are interested in
here.

2.3 The Conditional E-variable Scond So far, we have defined e-
variables as likelihood ratios between Pμ and cleverly chosen elements of
either H0(M) or H0(iid). We now do things differently by not considering
the full original data X1, . . . Xk, but instead conditioning on the sum of the
sufficient statistics, i.e. Z =

∑k
i=1 Xi. It turns out that doing so actually

collapses H0(M) to a single distribution, so that the null becomes simple.
That is, the distribution of Xk | Z is the same under all elements of H0(M),



as we will prove in Proposition 3. This means that instead of using a likeli-
hood ratio of the original data, we can use a likelihood ratio conditional on
Z, which ‘automatically’ gives an e-variable.
Definition 5 Setting Z to be the random variable Z :=

∑k
i=1 Xi, Scond is

defined as

Scond :=
pμ

(
Xk−1 | Z

)

p〈μ0〉 (Xk−1 | Z)
,

with μ0 ∈ M and (X) the sufficient statistic as in (1.2).

Proposition 3 For all μ′ = (μ′
1, . . . , μ

′
k) ∈ Mk, we have that pμ′(xk−1 | Z =

z) depends on μ′ only through λj := λ(μ′
j)−λ(μ′

k), j = 1, . . . k−1, i.e. it can
be written as a function of (λ1, . . . , λk−1). As a special case, for all μ0, μ

′
0 ∈ M,

it holds that p〈μ0〉(x
k | Z) = p〈μ′

0〉(x
k | Z). As a direct consequence, Scond is

an e-variable for H0(M),

Example 1 [The Bernoulli Model] If M is the Bernoulli model and k =
2, then the conditional e-variable reduces to a ratio between the conditional
probability of (X1, X2) ∈ {0, 1}2 given their sum Z ∈ {0, 1, 2}. Clearly, for all
μ′
1, μ

′
2 ∈ M = (0, 1), we have pμ′

1,μ
′
2
((0, 0) | Z = 0) = pμ′

1,μ
′
2
((1, 1) | Z = 2) = 1,

so Scond = 1 whenever Z = 0 or Z = 2, irrespective of the alternative: data
with the same outcome in both groups is effectively ignored. A non-sequential
version of Scond for the Bernoulli model was analyzed earlier in great detail
by Adams (2020).

Furthermore, for any c ∈ R, we have that Mc := {(μ′
1, μ

′
2) : λ(μ1) −

λ(μ2) = c} is the line of distributions within M2 with the same odds ratio
log(μ1(1−μ2)/((1−μ1)μ2)) = c. The sequential probability ratio test of two
proportions from Wald (1947) was based on fixing a c for the alternative
(viewing it as a notion of ‘effect size’) and analyzing sequences of paired
data X(1), X(2), . . . with X(i) = (Xi,1, Xi,2) by the product of conditional
probabilities

pc(X(i) | Z(i))
p0(X(i) | Z(i))

= Scond(Xi),

thus effectively using Scond (here, we abuse notation slightly, writing pc(x | z)
when we mean pμ′

1,μ
′
2
(x | z) for any μ′

1, μ
′
2 ∈ Mc). It is, however, important

to note that this product was not used for an anytime-valid test but rather
for a classical sequential test with a fixed stopping rule especially designed
to optimize power.



3 Growth Rate Comparison of Our E-variables

Above we provided several recipes for constructing e-variables S = Sμ whose
definition implicitly depended on the chosen alternative μ. To compare these,
we define, for any non-negative random variables Sμ

1 and Sμ
2 , Sμ

1 	 Sμ
2 to

mean that for all μ ∈ Mk, it holds that EPμ
[log Sμ

1 ] ≥ EPμ
[log Sμ

2 ]. We write
Sμ
1 � Sμ

2 if Sμ
1 	 S2 and there exists μ ∈ Mk for which equality does not

hold. From now on we suppress the dependency on μ again, i.e. we write S
instead of Sμ. We trivially have, for every underlying exponential family M,

S
pseudo(M) 	 S

gro(M) 	 S
gro(iid) and S

gro(M) 	 Scond. (3.1)

We proceed with Theorem 2 and 3 below (proofs in the Appendix). These
results go beyond the qualitative assessment above, by numerically bounding
the difference in growth rate between S

pseudo(M) and S
gro(iid) (and, because

S
gro(M) must lie in between them, also between these two and S

gro(M))
and S

pseudo(M) and Scond respectively. Theorem 2 and 3 are asymptotic (in
terms of difference between mean-value parameters) in nature. To give more
precise statements rather than asymptotics we need to distinguish between
individual exponential families; this is done in the next section.

To state the theorems, we need a notion of effect size, or discrepancy
between the null and the alternative. So far, we have taken the alternative
to be fixed and given by μ, but effect sizes are usually defined with the null
hypothesis as starting point. To this end, note that each P〈μ0〉 ∈ H0(M)
corresponds to a whole set of alternatives for which P〈μ0〉 is the closest point
in KL within the null. This set of alternatives is parameterized by M(k)(μ0) =
{μ′

1, . . . , μ
′
k ∈ M : 1

k

∑k
i=1 μ′

i = μ0}, as in (2.3). We can re-parameterize this
set as follows, using the special notation 〈μ0〉 as given by (2.1). Let A be the

set of unit vectors in R
k whose entries sum to 0, i.e. α ∈ A iff

√∑k
j=1 α2

j = 1

and
∑k

j=1 αj = 0. Clearly μ ∈ M(k)(μ0) if and only if μ1, . . . , μk ∈ M and μ =
〈μ0〉 + δα for some scalar δ ≥ 0 and α ∈ A. We can think of δ as expressing
the magnitude of an effect and α as its direction. Note that, if k = 2, then
there are only two directions, A = {a1, a−1} with a1 = (1/

√
2, −1/

√
2)

and a−1 = −a1, corresponding to positive and negative effects: we have
μ1 − μ2 =

√
2 · δ if α = a1 and μ1 − μ2 = −√

2 · δ if α = a−1, as illustrated
later on in Fig. 1. Also note that, for general k, in the theorem below, we
can simply interpret δ as the Euclidean distance between μ and 〈μ0〉.
Theorem 2 Fix some μ0 ∈ M, some α ∈ A and let μ = 〈μ0〉 + δα for δ ≥ 0
such that μ ∈ M(k)(μ0). The difference in growth rate between S

pseudo(M) and



S
gro(iid) is given by

EPμ

[
log S

pseudo(M) − log S
gro(iid)

]
=

1
8

∫

x

(f ′′
x (0))2

fx(0)
dρ(x) · δ4 + o

(
δ4

)

= O
(
δ4

)
, (3.2)

where fx(δ) =
∑k

i=1 pμ0+δαi
(x) =

k∑
i=1

pμi
(x) and f ′′

x is the second deriva-

tive of fx, so that fx(0) = kpμ0(x) and (with some calculation) f ′′
x (0) =

d2

dμ2 pμ(x) |μ=μ0.
As is implicit in the O(·)-notation, the expectation on the left is well-

defined and finite and the integral in the middle equation is finite as well.
The theorem implies that for general exponential families, S

gro(iid) is sur-
prisingly close (O(δ4)) to the optimal S

gro(M) in the GRO sense, whenever
the distance δ between H1 and H0(M) is small. This means that, whenever
S
gro(M) 
= S

pseudo(M) (so S
gro(M) is hard to compute and S

pseudo(M) is
not an e-variable), we might consider using S

gro(iid) instead: it will be more
robust (since it is an e-variable for the much larger hypothesis H0(iid)) and
it will only be slightly worse in terms of growth rate.

Theorem 2 is remarkably similar to the next theorem, which involves
Scond rather than S

gro(iid). To state it, we first set Xk(xk−1, z) := z −∑k−1
i=1 xi, and we denote the marginal distribution of Z =

∑k
i=1 Xi under Pμ

as Pμ;[Z], noting that its density pμ;[Z] is given by

pμ;[Z](z) =
∫

C(z)
pμ

(
xk−1, xk

)
dρ(xk−1), (3.3)

where ρ is extended to the product measure of ρ on X k−1 and

C(z) :=
{

xk−1 ∈ X k−1 : Xi(xk−1, z) ∈ X
}

. (3.4)

Theorem 3 Fix some μ0 ∈ M, α ∈ A and let μ = 〈μ0〉 + δα for δ ≥ 0
such that μ ∈ M(k)(μ0). The difference in growth rate between S

pseudo(M)

and Scond is given by

EPμ

[
log S

pseudo(M) − log Scond

]
=

1
8

∫

z

(g′′
z (0))2

gz(0)
dρ[Z](z) · δ4 + o

(
δ4

)

= O(δ4), (3.5)



Table 1: The ranks of the four different e-variables when compared with the
relation ‘�’. The ranks in black are proved in Appendix 6, while the ranks
in blue are conjectures based on the simulations in Figure 1. The rank of
S
pseudo(M) is denoted in red whenever it is not an e-variable, as shown in

Appendix 6
Exponential Family S

pseudo(M) S
gro(M) S

gro(iid) Scond

Bernoulli (1) (1) (1) (2)
Gaussian with free mean
and fixed variance

(1) (1) (2) (1)

Poisson (1) (1) (2) (1)
beta with free β and fixed
α

(1) (2) (3) (4)

geometric (1) (2) (4) (3)
Gaussian with free vari-
ance and fixed mean

(1) (2) (3) (4)

Exponential (1) (2) (3)-(4) (3)-(4)

where gz(δ) := p〈μ0〉+αδ;[Z](z) and ρ[Z] denotes the measure on Z induced by
the product measure of ρ on X k.
Again, the expectation on the left is well-defined and finite and the integral
on the right is finite. Comparing Theorem 3 to Theorem 2, we see that
fx(0), the sum of k identical densities evaluated at x, is replaced by gz(0),
the density of the sum of k i.i.d. random variables evaluated at z.
Corollary 1 With the definitions as in the two theorems above, the growth-
rate difference EPμ

[
log Scond − log S

gro(iid)

]
can be written as

1
8

(∫

x

(f ′′
x (0))2

fx(0)
dρ(x) −

∫

z

(g′′
z (0))2

gz(0)
dρ[Z](z)

)
· δ4 + o

(
δ4

)
= O

(
δ4

)
. (3.6)

4 Growth Rate Comparison for Specific Exponential
Families

We will now establish more precise relations between the four (pseudo-
) e-variables in k-sample tests for several standard exponential families,
namely those listed in Table 1 and a few related ones, as listed at the
end of this section. For each family M under consideration, we give
proofs for which different e-variables are the same, i.e. S = S′, where



S, S′ ∈ {S
gro(M), Scond, Sgro(iid), Spseudo(M)}. Whenever we can prove that

S
gro(M) 
= S for another e-variable S ∈ {Scond, Sgro(iid)}, we can infer that

S
gro(M) � S because S

gro(M) is the GRO e-variable for H0(M). Whenever
both Scond and S

gro(iid) are not equal to S
gro(M), we will investigate via

simulation whether S
gro(iid) � Scond or vice versa — our theoretical results

do not extend to this case. All simulations are carried out for the case k = 2
in the paper. Theorem 2 and Theorem 3 show that in the neighborhood of
δ = 0 (μ1, . . . , μk all close together), the difference EPμ

[log S − log S′] is of
order δ4 when S, S′ ∈ {S

gro(M), Spseudo(M), S
gro(iid), Scond}. Hence in the

figures we will show (EPμ
[log S − log S′])1/4, since then we expect the dis-

tances to increase linearly as we move away from the diagonal, making the
figures more informative.

Our findings, proofs as well as simulations, are summarised in Table 1.
For each exponential family, we list the rank of the (pseudo-)e-variables when
compared with the order ‘�’. The ranks that are written in black are proven
in Appendix D, while the ranks in blue are merely conjectures based on our
simulations as stated above. The results of the simulations on which these
conjectures are based are given in Fig. 1. Furthermore, the rank of S

pseudo(M)

is colored red whenever it is not an e-variable for that model, as shown in the
Appendix. Note that whenever any of the e-variables have the same rank,
they must be equal ρ-almost everywhere, by strict concavity of the logarithm
together with full support of the distributions in the exponential family. For
example, the results in the table reflect that for the Bernoulli family, we
have shown that S

pseudo(M) = S
gro(M) = S

gro(iid) and that S
pseudo(M) �

Scond. Also, for the geometric family and beta with free β and fixed α, we
have proved that S

pseudo(M) is not an e-variable, that S
gro(M) 
= S

gro(iid)

and that S
gro(M) 
= Scond, so that it follows from (3.1) that S

pseudo(M) �
S
gro(M), S

gro(M) � S
gro(iid) and S

gro(M) � Scond. Then the findings of the
simulations shown in Fig. 1a suggest that S

gro(iid) � Scond for beta with
free β and fixed α and in Fig. 1b suggest that Scond � S

gro(iid) for geometric
family, but these are not proven. Figure 1c shows that S

gro(iid) � Scond for
Gaussians with free variance and fixed mean. Finally, Fig. 1d shows that for
the exponential, there is no clear relation between S

gro(iid) and Scond. That
is, S

gro(iid) grows faster than Scond for some μ1, . . . , μk ∈ M, and slower for
others, which is indicated by rank (3) − (4) in the table.

Finally, we note that for each family listed in the table, the results must
extend to any other family that becomes identical to it if we reduce it to
the natural form (1.2). For example, the family of Pareto distributions with



Figure 1: A comparison of S
gro(iid) and Scond for four exponential families.

We evaluated the expected growth difference on a grid of 50 × 50 alterna-
tives (μ1, μ2), equally spaced in the standard parameterization (explaining
the nonlinear scaling on the depicted mean-value parameterization). On the
left are the corresponding heatmaps. On the right are diagonal ‘slices’ of
these heatmaps: the red curve corresponds to the main diagonal (top left -
bottom right), the blue curve corresponds to the diagonal starting from the
second tick mark (10th discretization point) top left until the second tick
mark bottom right. These slices are symmetric around 0, their value only
depending on δ =| μ1 − μ2 | /

√
2 =| μ1 − μ∗

0 | ·√2, where μ∗
0 = (μ1 + μ2)/2

and δ is as in Theorem 2



fixed minimum parameter v can be reduced to that of the exponential dis-
tributions: if U ∼ Pareto(v, α), then we can do a transformation X = t(U)
with t(U) = log(U/v), and then X ∼ Exp(α). Thus, the k-sample problem
for U with the Pareto(v, α) distributions, with α as free parameter, is equiv-
alent to the k-sample problem for X with the exponential distributions; the
e-value S

gro(M) obtained with a particular alternative in the Pareto setting
for observation U coincides with S

gro(M) for the corresponding alternative
in the exponential setting for observation X = t(U), and the same holds
for S

gro(iid) and Scond. Therefore, the ordering for Pareto must be the same
as the ordering for exponential in Table 1. Similarly, the e-variables for the
log-normal distributions (with free mean or variance) can be reduced to the
two corresponding normal distribution e-variables.

5 Simulations to Approximate the RIPr

Because of its growth optimality property, we may sometimes still want
to use the GRO e-variable S

gro(M), even in cases where it is not equal
to the easily calculable S

pseudo(M). To this end we need to approximate it
numerically. The goal of this section is twofold: first, we want to illustrate
that this is feasible in principle; second, we show that this raises interest-
ing additional questions for future work. Thus, below we consider in more
detail simulations to approximate S

gro(M) for the exponential families with
S
gro(M) 
= S

pseudo(M) that we considered before, i.e. beta, geometric, expo-
nential and Gaussian with free variance; for simplicity we only consider the
case k = 2. In Appendix E we provide some graphs illustrating the RIPr
probability densities for particular choices of μ1, μ2; here, we focus on how
to approximate them, taking our findings for k = 2 as suggestive for what
happens with larger k.

5.1 Approximating the RIPr via Li’s Algorithm Li (1999) provides
an algorithm for approximating the RIPr of distribution Q with density
q onto the convex hull conv(P) of a set of distributions P (where each
P ∈ P has density p) arbitrarily well in terms of KL divergence. At the m-
th step, this algorithm outputs a finite mixture P(m) ∈ conv(P) of at most
m elements of P. For m > 1, these mixtures are determined by iteratively
setting P(m) := αP(m−1)+(1−α)P ′, where α ∈ [0, 1] and P ′ ∈ P are chosen so
as to minimize KL divergence D(Q‖αP(m−1)+(1−α)P ′). Here, P(1) is defined
as the single element of P that minimizes D(Q‖P(1)). It is thus a greedy
algorithm, but Li shows that, under some regularity conditions on P, it holds



that D(Q‖P(m)) → infP∈conv(P) D(Q‖P ). That is, P(m) approximates the
RIPr in terms of KL divergence. This suggests, but is not in itself sufficient
to prove, that supP∈P EP [q(X)/p(m)(X)] → 1, i.e. that the likelihood ratio
actually tends to an e-variable.

We numerically investigated whether this holds for our familiar set-
ting with k = 2, Q is equal to Pμ for some μ = (μ1, μ2) ∈ M2, and
P = H0(M). To this end, we applied Li’s algorithm to a wide variety
of values (μ1, μ2) for the beta, exponential, geometric and Gaussian with
free variance. In all these cases, after at most m = 15 iterations, we found
that supμ0∈M EPμ0,μ0

[pμ1,μ2(X1, X2)/q(m)(X1, X2)] was bounded by 1.005: Li’s
algorithm convergences quite fast; see Appendix E for a graphical depiction
of the convergence and design choices in the simulation.

(note that, since we have proved that S
gro(M) = S

pseudo(M) for Bernoulli,
Poisson and Gaussian with free mean, there is no need to approximate
S
gro(M) for those families).

5.2 Approximating the RIPr via Brute Force While Li’s algorithm
converges quite fast, it is still highly suboptimal at iteration m = 2, due
to its being greedy. This motivated us to investigate how ‘close’ we can
get to an e-variable by using a mixture of just two components. Thus, we
set pA(xk) := αp〈μ01〉(x

k) + (1 − α)p〈μ02〉(x
k) and, for various choices of

μ = (μ1, μ2), considered

Sappr :=
pμ(Xk)
pA(Xk)

(5.1)

as an approximate e-variable, for the specific values of α ∈ [0, 1] and μ01, μ02

that minimize
sup
μ0∈M

EP〈μ0〉 [Sappr].

(in practice, we maximize μ0 over a discretization of M with 1000 equally
spaced grid points and minimize α, μ01, μ02 over a grid with 100 equally sized
grid points, with left- and right- end points of the grids over M determined
by trial and error). The simulation results, for k = 2 and particular values
of μ1, μ2 and the exponential families for which approximation makes sense
(i.e. S

gro(M) 
= S
pseudo(M)) are presented in Table 2. We tried, and obtained

similar results, for many more parameter values; one more parameter pair for
each family is given in Table 3 in Appendix E. The term supμ0∈M EP〈μ0〉 [Sappr]
is remarkably close to 1 for all of these families. Corollary 2 of Grünwald et al
(2023) implies that if the supremum is exactly 1, i.e. Sappr is an e-variable,
then Sappr must also be the GRO e-variable relative to Pμ. This leads us to
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speculate that perhaps all the exceedance beyond 1 is due to discretization
and numerical error, and the following might (or might not — we found no
way of either proving or disproving the claim) be the case:
Conjecture
For k = 2, the RIPr, i.e. the distribution achieving

min
Q∈conv(H0(M))

D(Pμ1,μ2‖Q)

can be written as a mixture of just two elements of H0(M).

6 Conclusion and Future Work

In this paper, we introduced and analysed four types of e-variables for test-
ing whether k groups of data are distributed according to the same ele-
ment of an exponential family. These four e-variables include: the GRO
e-variable (S

gro(M)), a conditional e-variable (Scond), a mixture e-variable
(S

gro(iid)), and a pseudo-e-variable (S
pseudo(M)). We compared the growth

rate of the e-variables under a simple alternative where each of the
k groups has a different, but fixed, distribution in the same exponen-
tial family. We have shown that for any two of the e-variables S, S′ ∈
{S

gro(M), Scond, Sgro(iid), Spseudo(M)}, we have E[log S − log S′] = O(δ4) if
the �2 distance between the parameters of this alternative distribution and
the parameter space of the null is given by δ. This shows that when the effect
size is small, all the e-variables behave surprisingly similar. For more general
effect sizes, we know that S

gro(M) has the highest growth rate by definition.
Calculating S

gro(M) involves computing the reverse information projection
of the alternative on the null, which is generally a hard problem. However,
we proved that there are exponential families for which one of the follow-
ing holds S

pseudo(M) = S
gro(M), Scond = S

gro(M) or S
gro(iid) = S

gro(M),
which considerably simplifies the problem. If one is interested in testing an
exponential family for which is not the case, there are algorithms to esti-
mate the reverse information projection. We have numerically verified that
approximations of the reverse information projection also lead to approx-
imations of S

gro(M). However, the use of Scond or S
gro(iid) might still be

preferred over S
gro(M) due to the computational advantage. Our simula-

tions show that depends on the specific exponential family which of them
is preferable over the other, and that sometimes there is even no clear
order.



A Application in Practice: k Separate I.I.D. Data Streams

In the simplest practical applications, we observe one block at a time, i.e. at
time n, we have observed X(1), . . . ,X(n), where each X(i) = (Xi,1, . . . , Xi,k)
is a block, i.e. a vector with one outcome for each of the k groups. This is
a rather restrictive setup, but we can easily extend it to blocks of data
in which each group has a different number of outcomes. For example,
if data comes in blocks with mj outcomes in group j, for j = 1 . . . k,
X(i) = (Xi,1,1, . . . , Xi,1,m1 , Xi,2,1, . . . , Xi,2,m2 , . . . , Xi,k,1, . . . , Xi,k,mk

), we can
re-organize this having k′ =

∑k
j=1 mj groups, having 1 outcome in each

group, and having an alternative in which the first m1 entries of the out-
come vector share the same mean μ′

1 = . . . = μ′
m1

= μ1; the next m2 entries
share the same mean μ′

m1+1 = . . . = μ′
m1+m2

= μ2, and so on.
Even more generally though, we will be confronted with k separate i.i.d

streams and data in each stream may arrive at a different rate. We can
still handle this case by pre-determining a multiplicity m1, . . . , mk for each
stream. As data comes in, we fill virtual ‘blocks’ with mj outcomes for group
j, j = 1 . . . k. Once a (number of) virtual block(s) has been filled entirely,
the analysis can be performed as usual, restricted to the filled blocks. That
is, if for some integer B we have observed Bmj outcomes in stream j, for all
j = 1 . . . k, but for some j, we have not yet observed (B + 1)mj outcomes,
and we decide to stop the analysis and calculate the evidence against the
null, then we output the product of e-variables for the first B blocks and
ignore any additional data for the time being. Importantly, if we find out,
while analyzing the streams, that some streams are providing data at a much
faster rate than others, we may adapt m1, . . . , mk dynamically: whenever a
virtual block has been finished, we may decide on alternative multiplicities
for the next block; see Turner et al (2021) for a detailed description for the
case that k = 2.

B Proofs for Sect. 2

In the proofs we freely use, without specific mention, basic facts about deriva-
tives of (log-) densities of exponential families. These can all be found in, for
example, Barndorff-Nielsen (1978).

B.1 Proof of Proposition 1
Proof Since S

gro(M) was already shown to be an E-variable in Lemma 2,
the ‘if’ part of the statement holds. The ‘only-if’ part follows directly from



Corollary 2 to Theorem 1 in (Grünwald et al, 2023), which states that there
can be at most one E-variable of the form pμ(Xk)/r(Xk) where r is a prob-
ability density for Xk. ��

B.2 Proof of Proposition 2
Proof Define g(μ0) := Ep〈μ0〉

[
S
pseudo(M)

]
and B(μi) := A(λ(μi) + λ(μ0)−

λ(μ∗
0)).

g(μ0) = Ep〈μ0〉

[
k∏

i=1

pμi
(Xi)

pμ∗
0
(Xi)

]
=

k∏

i=1

EY ∼pμ0

[
pμi

(Y )
pμ∗

0
(Y )

]

=
k∏

i=1

∫
exp (λ(μ0)y − A (λ(μ0))) · exp (λ(μi)y − A (λ(μi)))

exp (λ(μ∗
0)y − A (λ(μ∗

0)))
dρ(y)

=
k∏

i=1

∫
exp((λ(μi) + λ(μ0) − λ(μ∗

0))y − A(λ(μi)) − A(λ(μ0))

+A(λ(μ∗
0)))dρ(y)

=
k∏

i=1

exp (A (λ(μ∗
0)) − A (λ(μi)) − A (λ(μ0))) exp (B(μi))

·
∫

exp ((λ(μi) + λ(μ0) − λ(μ∗
0)) y − B(μi)) dρ(y)

=
k∏

i=1

exp (A (λ(μ∗
0)) − A (λ(μi)) − A (λ(μ0))) exp (B(μi)) · 1

= exp

(
kA (λ(μ∗

0)) −
k∑

i=1

A (λ(μi))−kA (λ(μ0))+
k∑

i=1

B(μi)

)
. (B.1)

Taking first and second derivatives with respect to μ0, we find

d

dμ0
g(μ0) = g(μ0) · d

dμ0

(
k∑

i=1

B(μi) − kA (λ(μ0))

)
(B.2)



and

d2

dμ2
0

g(μ0) =
(

d

dμ0
g(μ0)

)
· d

dμ0

(
k∑

i=1

B(μi) − kA (λ(μ0))

)

+ g(μ0) · d2

dμ2
0

(
k∑

i=1

B(μi) − kA (λ(μ0))

)

=g(μ0)

(
k∑

i=1

(μi + μ0 − μ∗
0) − kμ0

)2

+ g(μ0)

(
k∑

i=1

varPμi+μ0−μ∗
0
[X] − kvarPμ0

[X]

)

=g(μ0)

(
k∑

i=1

varPμi+μ0−μ∗
0
[X] − kvarPμ0

[X]

)
= g(μ0) · f(μ0).

(B.3)

where the second equality holds by (B.2), (d/dλ(μ))A(λ(μ)) = EPμ
[X] and

(d2/dλ(μ)2)A(λ(μ)) = varPμ
[X]. (B.3) is continuous with respect to μ0.

Therefore, if f(μ∗
0) > 0 holds, it means that there exists an interval M∗ ⊂ M

with μ∗
0 in the interior of M∗ on which (B.1) is strictly convex. Then there must

exist a point μ′
0 ∈ M∗ satisfying EP〈μ′

0〉

[
S
pseudo(M)

]
> EP〈μ∗

0〉

[
S
pseudo(M)

]
=

1, i.e. S
pseudo(M) is not an E-variable. Conversely, f(μ∗

0) < 0 means that
there exists an interval M∗ ⊂ M with μ∗

0 in the interior of M∗, on which (B.1)
is strictly concave. The result follows. ��

B.3 Proof of Theorem 1

To prepare for the proof of Theorem 1, let us first recall Young’s [1912]
inequality:
Lemma 3 [Young’s inequality] Let p, q be positive real numbers satisfying
1
p + 1

q = 1. Then if a, b are nonnegative real numbers, ab ≤ ap

p + bq

q .
The proof of Theorem 1 follows exactly the same argument as the one used
by Turner et al (2021) to prove this statement in the special case that M is
the Bernoulli model.



Proof We first show that S
gro(iid) as defined in the theorem statement is an

E-variable. For this, we set p∗
0(X) = 1

k

k∑
i=1

pμi
(X). We have:

EXk∼P〈μ0〉

[
S
gro(iid)

]
= EX1∼Pμ0

[
pμ1(X1)
p∗
0(X1)

]
· . . . ·EXk∼Pμ0

[
pμk

(Xk)
p∗
0(Xk)

]
. (B.4)

We also have

1
k
EX1∼Pμ0

[
pμ1(X1)
p∗
0(X1)

]
+ · · · +

1
k
EXk∼Pμ0

[
pμk

(Xk)
p∗
0(Xk)

]

=
1
k
EX∼Pμ0

⎡

⎢⎢⎢⎣
pμ1(X)

1
k

k∑
i=1

pμi
(X)

+ · · · +
pμk

(X)

1
k

k∑
i=1

pμi
(X)

⎤

⎥⎥⎥⎦ = 1. (B.5)

We need to show that (B.4) ≤ 1, for which we can use (B.5). Stated more

simply, it is sufficient to prove
k∏

i=1
ri ≤ 1 with 1

k

k∑
i=1

ri ≤ 1, ri ∈ R
+. But this

is easily established:

1
k

k∑

i=1

ri =
k − 1

k
·
∑k−1

i=1 ri

k − 1
+

rk

k
≥

(∑k−1
i=1 ri

k − 1

) k−1
k

r
1
k

k

=

(
k − 2
k − 1

·
∑k−2

i=1 ri

k − 2
+

rk−1

k − 1

) k−1
k

r
1
k

k

≥
(∑k−2

i=1 ri

k − 2

) k−2
k

r
1
k

k−1r
1
k

k

...

≥
(

r1 + r2
2

) 2
k

k∏

i=3

r
1
k

i ≥
k∏

i=1

r
1
k

i (B.6)

where the first inequality holds because of Young’s inequality, by setting
1
p := k−1

k , 1
q := 1

k , ap :=
∑k−1

i=1 ri

k−1 , bq := rk in Lemma 3. The other inequalities

are established in the same way. It follows that
k∏

i=1
r

1
k

i ≤ 1 and further



k∏
i=1

ri ≤ 1. This shows that S
gro(iid) is an e-variable. It remains to show

that S
gro(iid) is indeed the GRO e-variable relative to H0(iid); once we have

shown this, it follows by Lemma 2 that it is the unique such e-variable
and therefore by Lemma 1 that P ∗

0 achieves the minimum in Lemma 1.
Since we already know that S

gro(iid) is an e-variable, the fact that it is the
GRO e-variable relative to H0(iid) follows immediately from Corollary 2
of Theorem 1 in Grünwald et al (2023), which states that there can be at
most one e-variable of form pμ(Xk)/r(Xk) where r is a probability density.
Since S

gro(iid) is such an e-variable, Lemma 1 gives that it must be the GRO
e-variable. ��

B.4 Proof of Proposition 3

Proof The observed values of X1, X2, . . . , Xk are denoted as xk (:= x1, . . . , xk).
With Xk(xk−1, z) := z − ∑k−1

i=1 xi and C(z) as in (3.4) and pμ;[Z] (z) and
ρ(xk−1) as in (3.3), we get:

pμ

(
x

k−1∣
∣Z = z

)
=

pμ

(
xk

)

pμ ;[Z] (z)

=

exp

(
k∑

i=1
(λ(μi)xi − A(λ(μi)))

)

∫

yk−1∈C(z)
exp

(
k−1∑

i=1
(λ(μi)yi − A(λ(μi)) + λ(μk)Xk(yk−1, z)) − A(λ(μk)))

)

dρ(yk−1)

=

exp

(

λ(μk)z +
k−1∑

i=1
(λ(μi) − λ(μk))xi)

)

∫

yk−1∈C(z)
exp

(

λ(μk)z +
k−1∑

i=1
(λ(μi) − λ(μk))yi

)

dρ(yk−1)

=

exp

(
k−1∑

i=1
(λ(μi) − λ(μk))xi

)

∫

yk−1∈C(z)
exp

(
k−1∑

i=1
(λ(μi) − λ(μk))yi

)

dρ(yk−1)

.

��

C Proofs for Section 3

C.1 Proof of Theorem 2
Proof We prove the theorem using an elaborate Taylor expansion of F (δ),
defined below, around δ = 0. We first calculate the first four derivatives of

F (δ). Thus we define and derive, with μi = μ0 + αiδ and fy(δ) =
k∑

i=1
pμi

(y)



defined as in the theorem statement,

F (δ) :=EP〈μ0〉+α δ

[
log S

pseudo(M) − log S
gro(iid)

]

=EPμ

⎡

⎣log
k∏

j=1

(
1
k

k∑

i=1

pμi
(Xj)

)
− log p〈μ0〉(X

k)

⎤

⎦

=EPμ

⎡

⎣
k∑

j=1

log fXj
(δ) −

k∑

j=1

log pμ0(Xj)

⎤

⎦ − k log k

(a)
=

k∑

j=1

EX∼Pμj
[log fX(δ) − log pμ0(X)] − k log k

(b)
=

F1(δ)︷ ︸︸ ︷∫

y∈X
fy(δ) log fy(δ)dρ(y) +

F2(δ)︷ ︸︸ ︷(
−

∫

y∈X
fy(δ) log pμ0(y)dρ(y)

)
−k log k,

(C.1)

where we define F1(δ) to be equal to the leftmost term in (C.1) and F2(δ)
to be equal to the second, and (a) and (b) both hold provided that

for all j ∈ {1, . . . , k} : EXj∼Pμj

[| log fXj
(δ) − log pμ0(Xj) |] < ∞ (C.2)

is finite. In the online supplementary material we verify that this condition,
as well as a plethora of related finiteness-of-expectation-of-absolute-value
conditions hold for all δ sufficiently close to 0. Together these not just imply
(a) and (b), but also (c) that we can freely exchange integration over y and
differentiation over δ for all such δ when computing the first k derivatives of
F1(δ) and F2(δ), for any finite k and (d) that all these derivatives are finite
for δ in a compact interval including 0 (since the details are straightforward
but quite tedious and long-winded we deferred these to the supplementary
material). Thus, using (c), we will freely differentiate under the integral sign
in the remainder of the proof below, and using (d), we will be able to conclude
that the final result is finite.



For each derivative, we first compute the derivative of F1(δ) and then
that of F2(δ).

F ′
1(δ) =

∫
f ′

y(δ)dρ(y) +
∫

f ′
y(δ) log fy(δ)dρ(y) = 0,

F ′
2(δ) = −

∫
f ′

y(δ) log pμ0(y)dρ(y) = 0, so F ′(0) = F ′
1(0) + F ′

2(0) = 0,

(C.3)

where the above formulas hold since f ′
x(0) = 0 for all x ∈ X , which can be

obtained by

f ′
x(δ◦) =

k∑

j=1

dpμj
(x)

dμj

dμj

dδ
(δ◦),

f ′
x(0) =

dpμ0(x)
dμ0

k∑

j=1

dμj

dδ
(0) =

dpμ0(x)
dμ0

k∑

j=1

αj = 0, (C.4)

where we used that all μj are equal to μ0 at δ = 0. We turn to the second
derivatives:

F ′′
1 (δ) =

∫
f ′′

y (δ)dρ(y) +
∫ (

f ′′
y (δ) log fy(δ) +

(
f ′

y(δ)
)2

fy(δ)

)
dρ(y)

=
∫ (

f ′′
y (δ) log fy(δ) +

(
f ′

y(δ)
)2

fy(δ)

)
dρ(y)

F ′′
1 (0) =

∫ (
f ′′

y (0) log fy(0) +

(
f ′

y(0)
)2

fy(0)

)
dρ(y);

=
∫

f ′′
y (0) log pμ0(y)dρ(y) +

∫

y∈X

(
f ′′

y (0) log k
)
dρ(y) (C.5)

=
∫ (

f ′′
y (0) log pμ0(y)

)
dρ(y),



where
∫

f ′′
y (δ)dρ(y) = 0 because

∫
fy(δ)dρ(y) = k, in which k is a constant

that does not depend on δ. Then F ′′
2 (δ) is given by

F ′′
2 (δ) = −

∫
f ′′

y (δ) log pμ0(y)dρ(y) ; F ′′
2 (0) = −

∫
f ′′

y (0) log pμ0(y)dρ(y), so

F ′′(0) =F ′′
1 (0) + F ′′

2 (0) = 0. (C.6)

Now we compute the third derivative of F (δ), denoted as F (3)(δ).

F
(3)
1 (δ) =

∫ (
f (3)
y (δ) log fy(δ) +

f ′′
y (δ)f ′

y(δ)

fy(δ)
+

2f ′′
y (δ)f ′

y(δ)fy(δ) − (f ′
y(δ))

3

(fy(δ))2

)
dρ(y)

F
(3)
1 (0) =

∫
f (3)
y (0) log fy(0)dρ(y)

=

∫
f (3)
y (0) log pµ0(y)dρ(y) +

∫
f (3)
y (0) log kdρ(y) (C.7)

=

∫
f (3)
y (0) log pµ0(y)dρ(y)

F
(3)
2 (δ) = −

∫
f (3)
y (δ) log pµ0(y)dρ(y)

F
(3)
2 (0) = −

∫
f (3)
y (0) log pµ0(y)dρ(y), so F (3)(0) = F

(3)
1 (0) + F

(3)
2 (0) = 0,

which holds since f ′
y(0) = 0 and

∫
fy(0)dρ(y) = k.

The fourth derivative of F (δ) can be computed as follows:

F
(4)
1 (δ) =

∫ (
f (4)

y (δ) log fy(δ) +
f
(3)
y (δ)f ′

y(δ)
fy(δ)

)
dρ(y)

+
∫

3 ·
(
f
(3)
y (δ)f ′

y(δ) + (f ′′
y (δ))2

)
fy(δ) − f ′′

y (δ)
(
f ′

y(δ)
)2

(fy(δ))
2 dρ(y)

−
∫ 3

(
fy(δ)f ′

y(δ)
)2 · f ′′

y (δ) − 2
(
f ′

y(δ)
)4 · fy(δ)

(fy(δ))
4 dρ(y) ; (C.8)



F
(4)
1 (0) =

∫ (
f (4)

y (0) log fy(0) +
3
(
f ′′

y (0)
)2

fy(0)

)
dρ(y)

=
∫

f (4)
y (0) log pμ0(y)dρ(y) + log k

∫

y∈X
f (4)

y (0)dρ(y)

+
∫

y∈X

3
(
f ′′

y (0)
)2

fy(0)
dρ(y)

=
∫

f (4)
y (0) log pμ0(y)dρ(y) +

∫

y∈X

3
(
f ′′

y (0)
)2

fy(0)
dρ(y),

and F
(4)
2 (δ) can be computed by

F
(4)
2 (δ) = −

∫
f (4)

y (δ) log pμ0(y)dρ(y),

F
(4)
2 (0) = −

∫
f (4)

y (0) log pμ0(y)dρ(y), so

F (4)(0) =F
(4)
1 (0) + F

(4)
2 (0) =

∫ 3
(
f ′′

y (0)
)2

fy(0)
dρ(y) > 0.

Based on the above derivatives, we can now do a fourth-order Taylor expan-
sion of F (δ) around δ = 0, which gives:

EPμ

[
log S

pseudo(M) − log S
gro(iid)

]
=

1
4!

F (4)(0)δ4 + o(δ4)

=
1
8

∫

y∈X

(
f ′′

y (0)
)2

fy(0)
dρ(y) · δ4 + o

(
δ4

)
,

where fy(0) =
∑k

i=1 pμ0(y) = kpμ0(y) and f ′′
y (0) =

(
k∑

i=1
α2

i

)
· d2

dμ2 pμ(y)

|μ=μ0=
d2

dμ2 pμ(y) |μ=μ0 . ��
C.2 Proof of Theorem 3

Proof We obtain the result using an even more involved Taylor expansion
than in the previous theorem. As in that theorem, we will freely differentiate
(with respect to δ) under the integral sign — that this is allowed is again
verified in the online supplementary material.



Let μ, α, C(z), ρ(xk−1), Pμ etc. be as in the theorem statement. We have:

f(δ) := EPμ

[
log S

pseudo(M) − log Scond

]

=EPμ

[
log

pμ

(
Xk

)

p〈μ0〉 (Xk)
− log

pμ

(
Xk−1 | Z

)

p〈μ0〉 (Xk−1 | Z)

]

=EPμ

[
log

pμ

(
Xk

)

p〈μ0〉 (Xk)
− log

pμ

(
Xk

)

p〈μ0〉 (Xk)
+ log

∫
C(z) pμ

(
xk

)
dρ(xk−1)

∫
C(z) p〈μ0〉 (xk) dρ(xk−1)

]

=D
(
P〈μ0〉+αδ;[Z]‖P〈μ0〉;[Z]

)
.

We will prove the result by doing a Taylor expansion for f(δ) around δ = 0.
It is obvious that f(0) = 0 and the first derivative f ′(0) = 0 since f(0)
is the minimum of f(δ) over an open set, and f(δ) is differentiable. We
proceed to compute the second derivative of f(δ), using the notation gz(δ) =
p〈μ0〉+αδ;[Z](z) as in the theorem statement, with g′

z and g′′
z denoting first and

second derivatives.

f ′(δ) =
∫

g′
z(δ) log

gz(δ)
gz(0)

dρ[Z](z) +
∫

g′
z(δ)dρ[Z](z)

=
∫

g′
z(δ) log

gz(δ)
gz(0)

dρ[Z](z).

f ′′(δ) =
∫

g′′
z (δ) log

gz(δ)
gz(0)

dρ[Z](z) +
∫

(g′
z(δ))

2

gz(δ)
dρ[Z](z),

where in the first line, the second equality follows since the second term does
not change if we interchanging differentiation and integration and the fact
that

∫
gz(δ)dz = 1 is constant in δ. We obtain

f ′′(0) =
∫

(g′
z(0))2

gz(0)
dρ[Z](z), (C.9)

and, with xk set to Xk(xk−1, z) and recalling that μ = 〈μ0〉 + αδ and μj =
μ0 + αjδ,

g′
z(δ) =

∫

C(z)

d

dδ
p〈μ0〉+αδ(x

k)dρ(xk−1)



=
∫

C(z)

k∑

j=1

∏

i∈{1,...,k}\j

pμi
(xi)

dpμj
(xj)

dδ
dρ(xk−1)

=
∫

C(z)

k∑

j=1

pμ1,...,μj−1,μj+1,...,μk
(x1, . . . , xj−1, xj+1, . . . , xk)

× dpμj
(xj)

dμj

dμj

dδ
dρ(xk−1)

=
∫

C(z)

k∑

j=1

pμ(xk)
d log pμj

(xj)
dμj

αjdρ(xk−1)

=
∫

C(z)

k∑

j=1

pμ(xk) (I(μj)xj − μjI(μj)) αjdρ(xk−1)

where I(μj) is the Fisher information. The final equality follows because,
with λ(μj) the canonical parameter corresponding to μj , we have dλ(μj)/
dμj = I(μj) and dA(β)/dβ |β=λ(μj)= μj ; see e.g. Grünwald (2007)[Chapter
18]. Now

g′
z(0) =

∫

C(z)

k∑

j=1

p〈μ0〉(x
k) (I(μ0)xj − μ0I(μ0)) αjdρ(xk−1)

=
∫

C(z)
p〈μ0〉(x

k)I(μ0)
k∑

j=1

xjαjdρ(xk−1) (C.10)

= I(μ0) ·
∫

C(z)
p〈μ0〉(x

k)
k∑

j=1

xjαjdρ(xk−1) (C.11)

where the second equality follows from
k∑

j=1
αj = 0. Because Xk i.i.d. ∼ Pμ0

under P〈μ0〉 and the integral in (C.10) is over a set of exchangeable sequences,
(For understanding the statement, we can consider the simple case k = 2, X1

and X2 can be exchangeable because they are ‘symmetric’ for given C(z).)
we must have that (C.10) remains valid if we re-order the αj ’s in round-robin
fashion, i.e. for all i = 1..k, we have, with αj,i = α(j+i−1) mod k,

g′
z(0) = I(μ0) ·

∫

C(z)
p〈μ0〉(x

k)
k∑

j=1

xjαj,idρ(xk−1).



Summing these k equations we get, using that
k∑

i=1
αi = 0, that kg′

z(0) = 0 so

that g′
z(0) = 0. From (C.9) we now see that

f ′′(0) = 0.

Now we compute the third derivative of f(δ), denoted as f (3)(δ):

f (3)(δ) =
∫ (

g(3)z (δ) log
gz(δ)
gz(0)

+
g′′
z (δ)g′

z(δ)
gz(δ)

)
dρ[Z](z)

+
∫ (

2g′′
z (δ)g′

z(δ)gz(δ) − (g′
z(δ))

3

(gz(δ))2

)
dρ[Z](z).

So since g′
z(0) = 0 we must also have

f (3)(0) = 0.

The fourth derivative of f(δ) is now computed as follows:

f (4)(δ) =
∫ (

g(4)z (δ) log
gz(δ)
gz(0)

+
g
(3)
z (δ) · g′

z(δ)
gz(δ)

)
dρ[Z](z)

+
∫

3 ·
(
g
(3)
z (δ) · g′

z(δ)+(g′′
z (δ))2

)
gz(δ) − g′′

z (δ) · (g′
z(δ))

2

(gz(δ))2
dρ[Z](z).

Then

f (4)(0) =
∫

3 (g′′
z (0))2

gz(0)
dρ[Z](z) > 0.

We now have all ingredients for a fourth-order Taylor expansion of f(δ)
around δ = 0, which gives:

EPμ

[
log S

pseudo(M) − log Scond

]
=

1
8

∫
(g′′

z (0))2

gz(0)
dρ[Z](z) · δ4 + o

(
δ4

)

which is what we had to prove. ��

D Proofs for Section 4

In this section, we prove all the statements in Table 1.



D.1 Bernoulli Family

We prove that for M equal to the Bernoulli family, we have S
pseudo(M) =

S
gro(M) = S

gro(iid) � Scond.

Proof We set μ∗
0 = 1

k

k∑
i=1

μi.

S
gro(iid) :=

pμ(Xk)
k∏

j=1

(
1
k

k∑
i=1

pμi
(Xj)

) = pμ (Xk)
k∏

j=1

(
1
k

k∑

i=1

(
μ

Xj
i (1−μi)

1−Xj

)) (D.1)

= pμ (Xk)
k∏

j=1
((μ∗

0)
Xj (1−μ∗

0)
1−Xj )

= pμ (Xk)
k∏

j=1
pμ∗

0
(Xj)

= S
pseudo(M) (D.2)

where the third equality holds since Xi ∈ {0, 1}. So S
pseudo(M) is an E-

variable and S
pseudo(M) = S

gro(M) according to Theorem 1. Then the claim
follows using (3.1) together with the fact that when Z = 0 or Z = 2, we
have Scond = 1, while this is not true for the other e-variables, so that
Scond 
= S

gro(M) = S
pseudo(M) = S

gro(iid). The result then follows from
(3.1). ��

D.2 Poisson and Gaussian Family With Free Mean and Fixed
Variance

We prove that for M equal to the family of Gaussian distributions with
free mean and fixed variance σ2, we have S

pseudo(M) = S
gro(M) = Scond �

S
gro(iid). The proof that the same holds for M equal to the family of Poisson

distributions is omitted, as it is completely analogous.
Proof Note that if we let Z :=

∑k
i=1 Xi, then we have that Z ∼

N (
∑k

i=1 μi, kσ2) if Xk ∼ Pμ. Let μ∗
0 be given by (2.3) relative to fixed

alternative Pμ as in the definition of S
pseudo(M) underneath (2.3). Since

kμ∗
0 =

∑k
i=1 μi, we have that Z has the same distribution for Xk ∼ P〈μ∗

0〉.
This can be used to write

Scond =
pμ

(
Xk | Z

)

p〈μ∗
0〉 (Xk | Z)

=
pμ

(
Xk

)

p〈μ∗
0〉 (Xk)

p〈μ∗
0〉(Z)

pμ(Z)
=

pμ

(
Xk

)

p〈μ∗
0〉 (Xk)

= S
pseudo(M).



Therefore, S
pseudo(M) is also an e-variable, so we derive that S

pseudo(M) =
S
gro(M) by Theorem 1. Furthermore, we have that the denominator of

S
gro(iid) is given by a different distribution than p〈μ∗

0〉, so that S
gro(iid) 
=

S
gro(M) = S

pseudo(M) = Scond. The result then follows from (3.1). ��
D.3 The Families for Which Spseudo(M) Is Not an E-variable

Here, we prove that S
pseudo(M) is not an e-variable for M equal to the

family of beta distributions with free β and fixed α. It then follows from
(3.1) that S

pseudo(M) � S
gro(M). (3.1) also gives S

gro(M) 	 S
gro(iid) and

S
gro(M) 	 Scond. The same is true for M equal to the family of geometric

distributions and the family of Gaussian distributions with free variance
and fixed mean, as the proof that S

pseudo(M) is not an e-variable is entirely
analogous to the proof for the beta distributions given below. In all of these
cases, one easily shows by simulation that in general, S

gro(M) 
= S
gro(iid)

and S
gro(M) 
= Scond, so then S

gro(M) � S
gro(iid) and S

gro(M) � Scond

follow.
Proof First, let Qα,β represent a beta distribution in its standard parame-
terization, so that its density is given by

qα,β(u) =
Γ (α + β)
Γ (α)Γ (β)

uα−1(1 − u)β−1, α, β > 0; u ∈ [0, 1].

To simplify the proof, we assume α = 1 here. Then

q1,β(u) =
Γ (1 + β)

Γ (β)
(1 − u)β−1 =

1
1 − u

exp
(

β log(1 − u) − log
1
β

)

where the first equality holds since Γ (1 + β) = βΓ (β). Comparing this to
(1.1), we see that β is the canonical parameter corresponding to the family
{Q1,β : β > 0}, and we have

λ(μ) = β, t(u) = log(1 − u), A(β) = log
1
β

.

To prove the statement, according to Proposition 2, we just need to show, for
any μ1, . . . , μk that are not all equal to each other, that, with X = t(U) =

log(1 − U) and μ∗
0 = 1

k

k∑
i=1

μi defined as in (2.3), we have

k∑

i=1

varPμi
[X] − kvarPμ∗

0
[X] > 0. (D.3)



Straightforward calculation gives

varPμi
[X] = varQ1,βi

[X] =
d2

d2βi

(
log

1
βi

)
=

1
β2

i

in particular

varPμ∗
0
[X] =

1
(β∗

0)2
(D.4)

where βi corresponds to μi, i.e. EQ1,βi
[(X)] = μi. We also have:

EPβ∗
0
[(X)] = μ∗

0 =
1
k

k∑

i=1

μi =
1
k

k∑

i=1

EPβi
[(X)] . (D.5)

While EPβi
[(X)] = d

dβi
(log 1

βi
) = − 1

βi
, therefore 1

β∗
0

= 1
k

k∑
i=1

1
βi

. We obtain,

together with (D.4) and (D.5), that

k∑

i=1

varPμi
[(X)] − kvarPμ∗

0
[(X)] =

k∑

i=1

1
(βi)2

− k

(
1
k

k∑

i=1

1
βi

)2

. (D.6)

Jensen’s inequality now gives that (D.6) is strictly positive, whenever at least
one of the μi is not equal to μ∗

0, which is what we had to show. ��

E Graphical Depiction of RIPr-Approximation
and Convergence of Li’s Algorithm

We illustrate RIPr-approximation and convergence of Li’s algorithm with
four distributions: exponential, beta with free β and fixed α, geometric and

Figure 2: Exponential distribution. On the right, n represents number of
iterations with Li’s algorithm, starting at iteration 2



Figure 3: beta with free β and fixed α. On the right, n represents number
of iterations with Li’s algorithm, starting at iteration 2

Figure 4: geometric distribution. On the right, n represents number of iter-
ations with Li’s algorithm, starting at iteration 3

Figure 5: Gaussian with free variance and fixed mean. On the right, n rep-
resents number of iterations with Li’s algorithm, starting at iteration 3
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Gaussian with free variance and fixed mean, each with one particular (ran-
domly chosen) setting of the parameters. The pictures on the left in Figs. 2– 5
give the probability density functions (for geometric distributions, discrete
probability mass functions) after n = 100 iterations of Li’s algorithm. The
pictures on the right illustrate the speed of convergence of Li’s algorithm.
The pictures on the right do not show the first (or the first two, for geo-
metric and Gaussian with free variance) iteration(s), since the worst-case
expectation supμ0∈M[Sgro(M)] is invariably incomparably larger in these ini-
tial steps. We empirically find that Li’s algorithm converges quite fast for
computing the true S

gro(M). In each step of Li’s algorithm, we searched for
the best mixture weight α in P(m) over a uniformly spaced grid of 100 points
in [0, 1], and for the novel component P ′ = Pμ′,μ′ by searching for μ′ in a
grid of 100 equally spaced points inside the parameter space M where the left-
and right- endpoints of the grid were determined by trial and error. While
with this ad-hoc discretization strategy we obviously cannot guarantee any
formal approximation results, in practice it invariably worked well: in all
cases, we found that max

μ0∈M
EPμ0,μ0

[S
gro(M)] ≤ 1.005 after 15 iterations. For

comparison, we show the best approximation that can be obtained by brute-
force combining of just two components, for the same parameter values, in
Table 3.
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