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Abstract

An important tool in algorithm design is the ability to build algorithms from other algorithms
that run as subroutines. In the case of quantum algorithms, a subroutine may be called on a
superposition of different inputs, which complicates things. For example, a classical algorithm that
calls a subroutine Q times, where the average probability of querying the subroutine on input i is p̄i,
and the cost of the subroutine on input i is Ti, incurs expected cost Q

∑
i p̄iE[Ti] from all subroutine

queries. While this statement is obvious for classical algorithms, for quantum algorithms, it is much
less so, since naively, if we run a quantum subroutine on a superposition of inputs, we need to wait
for all branches of the superposition to terminate before we can apply the next operation. We
nonetheless show an analogous quantum statement (*): If q̄i is the average query weight on i over
all queries, the cost from all quantum subroutine queries is Q

∑
i q̄iE[Ti]. Here the query weight on

i for a particular query is the probability of measuring i in the input register if we were to measure
right before the query.

We prove this result using the technique of multidimensional quantum walks, recently introduced
in [Jeffery, Zur 2022]. We present a more general version of their quantum walk edge composition
result, which yields variable-time quantum walks, generalizing variable-time quantum search, by,

for example, replacing the update cost with
√∑

u,v πuPu,vE[T 2
u,v], where Tu,v is the cost to move

from vertex u to vertex v. The same technique that allows us to compose quantum subroutines in
quantum walks can also be used to compose in any quantum algorithm, which is how we prove (*).

1 Introduction

Classical algorithms make extensive use of subroutines, which allow an algorithm designer to build up
an algorithm in modular blocks. Analysis of such algorithms can also be done in a simple, modular
way. Suppose an outer classical algorithm makes use of some subroutine at Q steps of the algorithm,
and suppose the subroutine’s stopping time on input i is some random variable Ti. Suppose p̄i is the
average probability, over all Q queries to the subroutine, that the subroutine is called on input i – so
Qp̄i is the expected number of times the subroutine is called on input i, and

∑
i p̄i = 1. Let L denote

the total number of other operations used by the outer algorithm. Then the expected running time
of the classical algorithm is:

L+ Q
∑
i

p̄iE[Ti]. (1)

We can get a bounded-error algorithm with this asymptotic running time by simply stopping after
10 times the expected number of steps, if the algorithm has not already halted, and outputting an
arbitrary (likely wrong) answer, which happens with probability at most some small constant.

While subroutines are also quite useful in quantum algorithms, it is not at all obvious how to do
the above classical analysis in a quantum setting. Suppose an outer quantum algorithm makes use of
some subroutine. In general, the subroutine will be called on a superposition of inputs i, so if some
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branches of the superposition are finished early, it is not obvious how to exploit this in the overall
complexity. Generally, if Tmax is the maximum time we must wait for the quantum subroutine to
terminate, the total complexity of the quantum algorithm is:

O(L+ Q · Tmax), (2)

where again, Q is the number of queries to the subroutine, and L is the number of other operations
made by the outer algorithm. Our main result is to give a quantum analogue of (1). Given a quantum
algorithm that decides f using L basic operations, as well as Q queries to a subroutine that runs in
time Ti on input i to compute some bit gi, there is a bounded error quantum algorithm that computes
f(g) with complexity (neglecting log factors):

L+ Q
∑
i

q̄iE[Ti],

where q̄i is the average query weight on i – the squared norm on |i⟩ averaged over all queries, so in
particular,

∑
i q̄i = 1. We describe the result in more detail in Section 1.2. While such a result is

obvious in classical algorithms, it is much less so in quantum algorithms. In fact, if the outer algorithm
and subroutine are zero-error algorithms, and we want to compose them to get a zero-error algorithm
with this expected running time, while again obvious in the classical case, this is not possible in general
for quantum algorithms [BdW03].

If E[Ti] = µ is a known constant (in i), then this result is much less interesting: we can always stop
the subroutine after 10µ steps, and by Markov’s inequality, this introduces at most 1/10 additional
probability of error (which we can reduce through logarithmic repetitions). However, if the values
E[Ti] vary significantly in i, in contrast to the classical case, it is not obvious (to the best of our
knowledge) that this result should hold for quantum algorithms, and special cases of this result have
been the subject of significant effort.

For example, consider evaluating an unbalanced formula that is the OR of n ANDs, of arity
k1, . . . , kn:

f(x(1), . . . , x(n)) = ORn(ANDk1(x
(1)), . . . ,ANDkn(x

(n))),

where x(j) ∈ {0, 1}kj . Naively, using nested quantum search, one could search for a j such that
ANDkj (x

(j)) = 1, where ANDkj (x
(j)) can be evaluated in

√
kj steps, for total cost

√
n ·maxj∈[n]

√
kj

(we neglect log factors in this paragraph), but this may be far from optimal. However, using highly

non-trivial techniques, it has been shown how to evaluate any such formula in
√
n
√

1
n

∑n
j=1 kj quantum

time or any AND-OR formula on N bits in
√
N time [ACR+07, Rei11a].

This non-trivial upper bound for OR of ANDs can be seen as a special case of a technique called
variable-time quantum search. Consider a setting in which a quantum subroutine runs in time Ti
on input i, and one wants to decide if there exists an i ∈ [n] on which the subroutine outputs 1.
Classically, it is easy to see that this can be decided in cost

∑
i∈[n] Ti. Naive use of quantum search

gives an upper bound of
√
nTmax, where Tmax = maxi∈[n] Ti. Ambainis showed, in a highly non-trivial

way, an upper bound of Õ
(√∑n

i=1 T
2
i

)
[Amb10]. This result assumes that if the i-th subroutine

consists of unitaries U i1, . . . , U
i
Tmax

, the operator
∑Tmax

t=1 |t⟩⟨t| ⊗U it can be implemented in “unit cost”.
We will make this assumption as well, throughout this paper, and use “unit cost” to describe a cost we
are willing to accept as a multiplicative factor on all complexities (for example, O(1) or polylogarithmic
in some natural variable). This assumption is only reasonable if the unitaries each have unit cost. It
does not hold for strict gate complexity when U i1, . . . , U

i
Tmax

are arbitrary gates (local unitaries), but
it holds, for example, in the fully quantum QRAM model if U i1, . . . , U

i
Tmax

are stored as a list of gates
in QCRAM1, or if they satisfy certain uniformity conditions (see [JZ22, Section 2.2]).

In [Amb12], Ambainis considers a slightly different setting, where a quantum subroutine runs in
time T , where T is a random variable on {1, . . . ,Tmax} – that is, the algorithm may stop at different

1Classical memory to which a quantum computer has read-only superposition access, sometimes referred to as
“QRAM” in previous literature.
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times with different probabilities, outputting either a 0 or 1 in some answer register whenever it stops.
Ambainis shows how to amplify the 1 part of the computation in complexity (neglecting log factors):

Tmax +

√
E[T 2]

ε

where ε is a lower bound on the probability that the algorithm outputs 1 (assuming this is non-zero).
We consider a combination of Ambainis’ two settings, where a subroutine computes some bit gi

for any input i, and the time it takes is a random variable Ti on {1, . . . ,Tmax}. When the expected
stopping times E[Ti] are unknown, and ε is a lower bound on the probability in uniform input i that
the subroutine outputs 1, we obtain (neglecting log factors)√√√√ 1

nε

∑
i∈[n]

E[T 2
i ]. (3)

When the expected stopping times E[Ti] are known, we can replace E[T 2
i ] with E[Ti]2, which is better

when Ti has large variance, and improve, but not remove, the polylogarithmic dependence on Tmax.
We also show two alternative variable-time search results that may be better in certain settings.
Our variable-time search results are a special case of a new technique: variable-time quantum walk
algorithms. Loosely speaking, if the cost of moving from a vertex u to a vertex v in a random walk on
a graph G is some random variable Tu,v on {1, . . . ,Tmax}, previous quantum walk search algorithms
would have incurred a multiplicative overhead on the complexity of Tmax. We show how to improve

this overhead to
√∑

{u,v}∈E(G) π(u)Pu,vE[T 2
u,v], where P is the transition matrix of the random walk,

and π is its stationary distribution. We show a similar variable-time dependence on the checking cost.
We describe our variable-time quantum search and variable-time quantum walk results in Section 1.1.

Techniques: Our results build on multidimensional quantum walks, recently described in [JZ22].
Given a collection of states, each of which can be efficiently prepared, and therefore reflected around,
we can define an overlap graph, with one node for every state, and a pair of nodes adjacent if and
only if the states overlap. If this graph is bipartite, with bipartition VA, VB, then reflections around
the states in VA (resp. VB) commute, and so we can also efficiently reflect around the span of all
states in VA, and around the span of all states in VB. Then sufficiently precise phase estimation of the
product of these two reflections can be used to reflect around the span of all states. When the states
are quantum walk states for some graph G: |ψG⋆ (u)⟩ =

∑
v:{u,v}∈E(G)

√
Pu,v|{u, v}⟩, then |ψG⋆ (u)⟩ and

|ψG⋆ (v)⟩ overlap if and only if {u, v} ∈ G, so the overlap graph of these states is exactly G. Quantum
walk search algorithms, like those we describe shortly in Section 1.1, use analysis of the properties of
the graph G to analyze what precision of phase estimation is needed to reflect around the span of all
states.

Ref. [JZ22] extends this idea to a set of spaces that can be efficiently reflected around. If {Ψu}u∈V
is a set of subspaces of some inner product space H, we can define an overlap graph on V , with
an edge between u and v whenever Ψu and Ψv are non-orthogonal. Just as in the case when each
space is one-dimensional, if the overlap graph is bipartite, a bipartition gives rise to two efficiently
implementable reflections, whose product can be used to reflect around the span of all the spaces using
sufficiently precise phase estimation. The properties of the overlap graph can be used to bound the
required precision.

Ref. [JZ22] use this idea in two ways. The first is the technique of alternative neighbourhoods,
which is orthogonal to the ideas of this paper: we do not deal with this technique here for simplicity,
but there is no reason it could not be used simltaneously with our techniques. This work builds on the
second technique, called edge composition2. Suppose there is a subroutine that implements a step of
the quantum walk: for now imagine some reversible version of moving from u, to some neighbour v, in
cost Tu,v. Then implementing the reflection around the states {|ψG⋆ (u)⟩}u∈VA costs maxu,v Tu,v. The
edge composition technique uses the random walk and the subroutine to define, for each {u, v} ∈ E,

2which is similar to the concurrent, independent technique of graph composition of span programs [Cor23].
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Figure 1: Instead of using a Tu,v step quantum algorithm for the transition from u to v to build a
“bridge” from u to v that functions like a path of length Tu,v (left), we use a variable-time quantum
algorithm to put a ladder-like gadget between u and v (right). The rungs of the ladder correspond
to the steps of the quantum algorithm, and intuitively, we should think of the weight of each rung as
corresponding to the probability that the algorithm terminates at that step.

a sequence of Tu,v spaces whose overlap graph is similar to G, but each edge is replaced by a path of
length Tu,v (see Figure 1). Our quantum walk composition described in Section 1.1 is similar, except
that we allow the subroutine to have a variable, unknown stopping time, and then we describe spaces
whose overlap graph looks like G, but in place of an edge {u, v}, there is a ladder-like gadget (see
Figure 1), where we can imagine getting from u to v by going up one side (representing computation)
and that at various “rungs” with various probabilities, crossing to the other side of the ladder and
uncomputing. By increasing or decreasing the “weights” ({αt}t in Theorem 4.1) as the ladder goes
up, we can get various variable-time complexities without knowing the total lengths of the ladders.

Our result for general algorithmic composition (Section 1.2) uses the same ideas, but within an
algorithm rather than a graph. This can be done by defining a sequence of spaces from the outer
algorithm whose overlap graph is a line of length L, and then plugging in ladder-like gadgets like those
in Figure 1 wherever there is a subroutine query (see Figure 4).

Comparison with Previous and Concurrent Work: Aside from the special cases of formula
evaluation and variable-time search already mentioned, previous work in composing quantum algo-
rithms in non-trivial ways has mainly been restricted to the model of query complexity. Span programs
can be composed in various nice ways [RŠ12, Rei11b], for example, to evaluate formulas in various
gate sets with a quantum query complexity that amortizes nicely – a fact exploited in [CKKD+22]
(concurrent with this work) to analyze the quantum query complexity of divide-and-conquer algo-
rithms. It is also rather simple to get a version of Ambainis’ variable-time search result that applies
only to query complexity using span program composition. Ref. [CJOP20] showed how to extend span
program composition to time complexity, also reproducing Ambainis’ variable-time search in a time-
efficient way using span program composition. The main idea of [CJOP20] allows span programs, also
known as dual adversary solutions, to maintain time complexity structure where it is given, whereas
previously span programs were only used to study query complexity. The techniques of [CJOP20] are
the basis for characterizing time complexty in [JZ22], and now in this work as well.

In a concurrent, independent work, Belovs and Yolcu defined the notion of quantum Las Vegas
query complexity, and in particular, showed a version of our main theorem (Theorem 1.1) that applies
only to query complexity [BY23]. While their results do not apply to time complexity, they work with
a significantly more general class of subroutines. While we assume subroutines compute a single bit
(which easily extends to any classical function), their results work for subroutines that enact arbitrary
state conversion, or even non-unitary maps. Their techniques are quite novel, and distinct from ours.
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1.1 Quantum Walk Composition

Quantum walk search algorithms were first introduced by Szegedy [Sze04] who showed the following.
Let P be the transition matrix of a random walk on a graph G with stationary distribution π, and
M ⊂ V (G) a marked set, both of which may implicitly depend on some input x – we write, for example
Mx when we want to make this dependence explicit. Let H be a known bound such that whenever
M ̸= ∅, we are promised that the hitting time to M – the expected number of steps needed by a
classical random walk starting in the distribution π to reach some u ∈ M – is at most H. Then
there is a quantum algorithm that decides, with bounded error, if M = ∅, which starts by generating
an initial state

∑
u

√
π(u)|u⟩, and then makes some number

√
H calls to a subroutine whose main

components are: (1) for any u ∈ V (G), generating the quantum walk state
∑

v

√
Pu,v|u, v⟩, which

can be seen as the quantum analogue of taking a random walk step (and are essentially the states
|ψG⋆ (u)⟩ mentioned above); (2) for any u ∈ V (G), checking if u ∈ M . In early work, the most
important parameter in the complexity was

√
H – a generic quadratic speedup over the analogous

classical algorithm – and it was assumed that other operations, such as generating the quantum walk
states had unit cost. In later applications, these operations often had non-trivial costs, impacting the
complexity in different ways. Generally S is used to denote the cost of generating

∑
u

√
π(u)|u⟩, U the

cost of generating the quantum walk states, and C the cost of checking if u ∈M . In our work, we will
subdivide the task of generating quantum walk states. We suppose (as is common in classical random
walk algorithms) that for each u ∈ V (G), there is a set of labels L(u), for example, L(u) = [du], and a
mapping fu : L(u)→ V such that fu(i) is the i-th neighbour of u. Then the following two subroutines
can be used in place of generating quantum walk states (this is not entirely obvious):

1. Sampling: For each u ∈ V , generate
∑

i∈L(u)
√
Pu,fu(i)|i⟩. We assume this can be done in unit

cost.

2. Transitions: For {u, v} ∈ E(G) with fu(i) = v and fv(j) = u, map |u, i⟩ 7→ |v, j⟩, in cost Tu,v,
which is a random variable on [Tmax].

In all applications that we know of, sampling has at most polylogarithmic cost, and it is the transition
that may be expensive.3 We can also suppose the checking cost is variable, with random variable Cu
on [Cmax] representing the cost of checking if u is marked. With this notation in place, the complexity
of a Szegedy walk is

S+
√
H(Tmax + Cmax). (4)

Belovs generalized Szegedy’s framework to the electric network framework [Bel13] (published
in [BCJ+13]), in which the walk may start in any distribution σ. If Sσ is the cost of generating
|σ⟩ =

∑
u

√
σ(u)|u⟩ (so S = Sπ above), and Cσ,M is an upper bound on a quantity Cσ,M (G), then

Belovs exhibited a quantum algorithm for deciding if M = ∅ with complexity

Sσ +
√
Cσ,M(Tmax + Cmax). (5)

Let us say more about this quantity Cσ,M (G). If W(G) is the total weight of G (the number of edges
when G is unweighted) and Rσ,M (G) is the effective resistance between σ and M (see Definition 2.4),
then Cσ,M (G) = 2W(G)Rσ,M (G). This is probably not a very helpful definition, so we mention some
special cases that give some intuition. If σ = π is the stationary distribution, then Cπ,M (G) is just
the hitting time from π to M , and we recover the Szegedy framework. If σ is supported on a single
vertex s, then Cs,M (G) is the commute time or expected number of steps starting from s, to get to
any vertex in M and then return to s [CRR+96] (see [AGJ20] for a proof of the case when |M | > 1,
which was previously folklore).

Another framework, incomparable to Szegedy’s, is the MNRS framework [MNRS11], in which the
walk must start in the stationary distribution π, but the cost is:

Sπ +
1√
ε

(
1√
δ
Tmax + Cmax

)
, (6)

3For example, in algorithms for triangle finding there is often a quantum walk step where the sampling step consists
of selecting a new vertex of the input graph (not the graph being walked on) to add to a stored set of vertices, but to
complete the transition, it is necessary to find all neighbours of the new vertex in the already stored set.
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where δ is the spectral gap of P , and ε is a lower bound on π(M) =
∑

u∈M π(u). This framework has
different dependence on the cost of transitions and the cost of checking, since the checking subroutine
is run less frequently. Since the hitting time is between 1

ε and 1
εδ , this may be better or worse than

a Szegedy walk, depending on the relative values of Tmax and Cmax. In [AGJ20], the electric network
framework was extended to be able to not only detect if M ̸= ∅, but to find an element of M as well,
and this extension was shown to also include the MNRS framework as a special case – simulating an
MNRS walk with a walk whose hitting time is 1/ε, and update cost is Tmax/

√
δ. In this paper, we do

not consider finding a marked vertex, but only detecting if there exists a marked vertex.
Finally, a result of Dohotaru and Høyer [DH17] shows how to achieve an optimal number of both

checking and update steps in the special case where |M | ≤ 1, obtaining complexity:

Sπ +
√
HTmax +

1√
ε
Cmax. (7)

Previously, quantum walk applications have used various tricks to handle the case when the transi-
tions can have different complexities. The MNRS framework is already one means of handling the case
when the checking cost is much larger than the update cost. Nested quantum walks [JKM12, CJKM13],
where the checking or update is implemented by another quantum walk subroutine, can be seen as
one large quantum walk with multiple types of update operations with different costs. Variable-time
search has also been used within the checking subroutine of a quantum walk [LG14]. The most com-
mon method for handling variability in the transition or checking cost has been through the use of
tail bounds, but this only works when the cost is highly concentrated around the average. In the
special case of MNRS quantum walks on Johnson graphs, where subroutines are restricted to being in
the framework of extended learning graphs and the measure of complexity is query complexity rather
than time complexity, [CLM20] showed how to replace Tmax and Cmax with ℓ2-averages, also getting
an average in the setup cost Sπ, in a way that is specific to Johnson graphs. While Johnson graphs
are quite a specific case, almost all known MNRS quantum walk algorithms work on Johnson graphs.

The recent work of [JZ22], on whose techniques our results are heavily based, achieves an improve-
ment on the electric network framework (and by extension, its special cases) as follows. Suppose the
transition algorithm, rather than having random stopping times, stops after a known time Tu,v ≤ Tmax

on input (u, i), where fu(i) = v. The value Tu,v must be computable from (u, i), but also from (v, j),
where fv(j) = u. Suppose checking can be done in unit cost. Then there is a quantum algorithm that
decides if M = ∅ in complexity

Sσ +
√
CTσ,M, (8)

where CTσ,M is an upper bound on Cσ,M (GT), where GT is the graph G where every edge {u, v} has
been replaced by a path of length Tu,v. This is already a huge improvement over having worst case
Tmax complexity. The results presented in this section are based on a generalization of the results
in [JZ22], and a careful analysis of their implications.

Variable-time Quantum Walks: We now state our results. For simplicity, we begin by stating
our results in the case that checking has unit cost. This is without loss of generality, since we can
always add extra edges to the graph from a vertex u to a new vertex that includes a bit indicating if
u ∈ M , although this change to the graph changes parameters such as hitting time. In that case, we
can simply replace Tmax with a weighted ℓ2 average, weighted by π(u)Pu,v, which is the proportion of
time spent traversing edge (u, v) in an infinitely long random walk starting from any distribution, to
get complexity (see Corollary 4.2):

Sσ +
√
Cσ,M

√√√√ ∑
(u,v)∈

−→
E (G)

π(u)Pu,vE[T 2
u,v] log

1.5 Tmax. (9)

Above,
−→
E (G) is the set of all edges, assigned some arbitrary orientation (see Definition 2.1). If we

further assume that the values E[Tu,v] are computable in some strong sense (see Corollary 4.2), then

6



there is a quantum algorithm that decides if M = ∅ with bounded error in complexity:

Sσ +
√
Cσ,M

√√√√ ∑
(u,v)∈

−→
E (G)

π(u)Pu,vE[Tu,v]2 logTmax. (10)

Aside from the log factor improvement, (10) is better when the variances of Tu,v are large, as
Var(Tu,v) = E[T 2

u,v] − E[Tu,v]2 ≥ 0. The expressions in (9) and (10) should be compared with the
electric network framework, (5) (or (4) in the special case when σ = π, and so Cσ,M = H), and the
graph composition in (8), although comparison with (8) is more difficult. These results follow from a
more general statement (Theorem 4.1) of which a version of (8) where the transition subroutine may
have variable stopping times, and the values E[Tu,v] need not be known in advance, also follows as a
special case. As we discuss further below, in some cases, the expressions in (9) and (10) are better,
whereas in some cases the expression in (8) is better, but analysis of (9) and (10) may be easier, since
we can work with the original graph G, and need not analyze a modified graph GT.

As stated above, the checking cost can be made part of the update cost by adding a new edge to
each vertex u, whose other endpoint encodes u and a bit indicating if u ∈M , and whose transition cost
is Cu. For comparison with previous work, we work out what impact this might have on the complexity.
For comparison with the MNRS framework, we restrict our attention to initial distribution σ = π.
Then we can decide if M = ∅ in complexity (see Corollary 4.3):

Sπ +
1√
ε

 1√
δ

√√√√ ∑
(u,v)∈

−→
E

π(u)Pu,vE[T 2
u,v] +

√ ∑
u∈V (G)

π(u)E[C2
u]

 log.5
1

πmin
log1.5 (TmaxCmax) , (11)

where πmin = minu π(u). Compared to the complexity achieved by the MNRS framework in (6), ignor-
ing log factors, we have replaced Tmax and Cmax with weighted ℓ2-averages. This also generalizes the
results of [CLM20] from Johnson graphs to general graphs, learning graphs to arbitrary subroutines,
and query complexity to time complexity. As before, if the values E[Cu] and E[Tu,v] are computable
in some strong sense, then we can replace E[T 2

u,v] with E[Tu,v]2 and E[C2
u] with E[Cu]2, and shave off

a
√
log factor. For more general initial distributions, see Corollary 4.2.
In the simpler case where |M | ≤ 1, we can once again consider a more general starting distribution

σ. In that case, we get a variable-time analogue of the results of Dohotaru and Høyer in (7), but
even more general. Specifically, let τ be any distribution on V (G) such that we are promised that if
M = {m} ≠ ∅, then τ(m) ≥ ε. Then we can decide if M = ∅ in complexity (see Corollary 4.2):

Sσ +

√Cσ,M√√√√ ∑
(u,v)∈

−→
E (G)

π(u)Pu,vE[T 2
u,v] +

1√
ε

∑
u∈V (G)

τ(u)E[C2
u]

 log1.5 (TmaxCmax) .

When σ = τ = π, so Cσ,M = H, we get a variable-time version of the Dohotaru-Høyer result in (7).
As before, if the values E[Cu] and E[Tu,v] are computable in some strong sense, then we can replace
E[T 2

u,v] with E[Tu,v]2 and E[C2
u] with E[Cu]2, and shave off a

√
log factor.

Variable-time Search: As a special case of our variable-time quantum walk results, we recover
something similar to Ambainis variable-time search result, but allowing the stopping time on input
i to be a random variable Ti, similar to the setting Ambainis considers separately in variable-time
amplitude amplification. We restate our result (mentioned already in (3)) with slightly more detail.
Let M ⊂ [n] be some marked set, and let π be any distribution on [n] such that if M ̸= ∅, π(M) ≥ ε
for some known bound ε. Leting Ti be the stopping time on input i ∈ [n] of a subroutine that checks if
i ∈M , we can decide if M = ∅ with bounded error in the following complexities, assuming the values
E[Ti] are unknown (first expression), or known in a certain strong sense (see Corollary 4.4):

(1) unknown:

√√√√1

ε

∑
i∈[n]

π(i)E[T 2
i ] log

1.5 Tmax known:

√√√√1

ε

∑
i∈[n]

π(i)E[Ti]2 logTmax.

7



The case when the values E[Ti] are known (computable from i) follows from Ambainis’ variable-time
search result, since in that case, on input i we can simply stop after Ti = 10E[Ti] steps (repeating
O(log n) times and taking a majority to reduce the error). In the case when these values are unknown,
this would probably also follow from a combination of variable-time search and variable-time amplitude
amplification. What is perhaps more interesting is that we obtain alternative complexities for variable-
time search, by using different parameters. In the case of unknown expected stopping times, we can
also choose either of the following two complexities (neglecting log factors).

(2)

√√√√ ∑
i∈[n] π(i)E[Ti]

minx:Mx ̸=∅
∑

i∈M
π(i)
E[Ti]

or (3)
1√

minx:Mx ̸=∅
∑

i∈M
π(i)
E[T 2

i ]

.

Above, we minimize over all allowed (non-empty) marked sets, assuming the marked set depends on
some implicit input. Table 1 shows the three complexities we can obtain, and argues that there are
settings where each of the three is the smallest complexity. We note that we can achieve analogous
complexities to each of (1), (2) and (3) for more general quantum walk algorithms. The generalization
of (1) is the results we presented above. The generalization of (2) is essentially what was shown
in [JZ22] ((8)). We have not explored the generalization of (3). Other settings of the parameters
in our main quantum walk theorem, Theorem 4.1, could lead to further alternatives, although it is
unclear if these would be useful.

1.2 Quantum Algorithm Composition

We use a similar technique to compose an arbitrary quantum query algorithm with a variable-time
subroutine. That is, fix functions f : {0, 1}n → {0, 1} and {gi : {0, 1}m → {0, 1}}i∈[n], and define
f ◦ g : {0, 1}m → {0, 1}n by f ◦ g(x) = f(g(x)) = f(g1(x), . . . , gn(x)). Suppose we have a quantum
algorithm algorithm that decides f with bounded error in L time steps and Q queries to the input to
f , and a quantum algorithm that decides g(i, x) = gi(x) in Tmax steps with some sufficiently small
error. Then by composing these algorithms in a naive way, we get a bounded error quantum algorithm
for f ◦ g with complexity:

Õ(L+ Q · Tmax).

As in the case of quantum walk algorithms, we show how we can do significantly better if the inner
algorithm’s running time varies significantly in the input i, as well as its internal randomness. We
show the following (see Theorem 5.1):

Theorem 1.1 (Informal). Let q̄i be the average (over all queries made by the outer algorithm) squared
amplitude on querying index i ∈ [n] (see (52)). Let ϵi be the error of the inner subroutine on input i,
and Ti the stopping time of the inner subroutine on input i, which is a random variable. Let Tavg be
an upper bound such that: ∑

i∈[n]

q̄iE[Ti] ≤ Tavg

and suppose the subroutine’s errors satisfy the following condition:

ϵavg :=
∑
i∈[n]

q̄iϵi ≤
1

Q(L+ Q · Tavg)
.

Then there is a quantum algorithm that computes f ◦ g with bounded error in complexity

Õ (L+ Q · Tavg) .

We compare this with the naive upper bound of L+Q ·Tmax. Since Tmax is the maximum running
time of any subroutine, this can be significantly better when E[Ti] varies widely over different i. If the
values E[Ti] are known (i.e. computable from i), we can always truncate the inner algorithm, on input
i, at some time Ti = 10E[Ti], and then by Markov’s inequality, the probability that the algorithm has
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output correctly is not impacted by more than a constant. In that case, Theorem 1.1 does better than
naive composition if and only if the values E[Ti] vary.

We remark that our error dependence is not optimal. If ϵi = ϵ for all i, then a subroutine called
Q times needs ϵ ≤ 1/Q2 to achieve overall bounded error. In the usual way of calling a subroutine,
there is no reason that the error bound on the subroutine queries should scale with anything other
than the number of times the subroutine is called. In particular, it need not scale with the number
of other steps of the algorithm (L) or the number of steps taken by a given call of the subroutine,
since ϵ is already totalled over all these steps. There is also no reason to think that the error should
scale with these things when we combine a subroutine and outer algorithm in the way we do in the
proof of Theorem 5.1, so we suspect there is something here that can be improved. In practice it does
not make much difference, since the error of a bounded error subroutine can be made as small as any
ϵ at a multiplication cost of log 1

ϵ , so the overhead is at most logarithmic. Still, it would be nice to
understand, conceptually, how different errors add up, and at the moment it seems there is something
missing from the picture. We leave this for future work.

1.3 Outline

The rest of this paper is organized as follows. In Section 2, we give preliminaries on graph theory
and random walks (Section 2.1) as well as phase estimation algorithms, on which all of our algorithms
are based (Section 2.2). In Section 3, we introduce our model of variable-time quantum algorithms,
which is a slight generalization of the models of [Amb10] and [Amb12]. We define certain states
and subspaces from such algorithms, and prove a number of properties of these that will be used in
our composition results. In Section 4, we state and prove our results for composing variable-time
subroutines in quantum walks, and in Section 5, we prove Theorem 1.1, by showing how to compose
a variable-time subroutine into an arbitrary quantum algorithm.

2 Preliminaries

2.1 Graph Theory

In this section, we define graph theoretic concepts and notation, used in our results on quantum walks.

Definition 2.1 (Network). A network is a weighted graph G with an (undirected) edge set E(G),
vertex set V (G), and some weight function w : E(G) → R>0. Since edges are undirected, we can

equivalently describe the edges by some set
−→
E (G) such that for all {u, v} ∈ E(G), exactly one of (u, v)

or (v, u) is in
−→
E (G). The choice of edge directions is arbitrary. Then we can view the weights as a

function w :
−→
E (G) → R>0, and for all (u, v) ∈

−→
E (G), define wv,u = wu,v. For convenience, we will

define wu,v = 0 for every pair of vertices such that {u, v} ̸∈ E(G). The total weight of G is

W(G) :=
∑

e∈
−→
E (G)

we.

For an implicit network G, and u ∈ V (G), we will let Γ(u) denote the neighbourhood of u:

Γ(u) := {v ∈ V (G) : {u, v} ∈ E(G)}.

We use the following notation for the out- and in-neighbourhoods of u ∈ V (G):

Γ+(u) := {v ∈ Γ(u) : (u, v) ∈
−→
E (G)}

Γ−(u) := {v ∈ Γ(u) : (v, u) ∈
−→
E (G)}.

(12)

Random Walks: A Markov process on a finite set V is specified by a stochastic transition matrix
P ∈ RV×V , where we interpret Pu,v as the probability of moving to the state v when currently in the
state u. We can define a Markov process P from a weighted graph G by letting:

Pu,v =
wu,v
wu

, where wu :=
∑

v∈Γ(u)

wu,v.
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Next, define

∀u ∈ V (G), π(u) :=
wu

2W(G)
.

Then it is easy to check that
∑

u∈V (G) π(u) = 1. Furthermore, if G is connected, π is the unique
left-1-eigenvector of P , called the stationary distribution. We note that for any u, v ∈ V (G),

π(u)Pu,v =
wu

2W(G)

wu,v
wu

=
wu,v

2W(G)
=

wv,u
2W(G)

= π(v)Pv,u. (13)

When P satisfies this condition, called detailed balance, we say that P is reversible. We have just
seen that any random walk on an undirected weighted graph is reversible, and it is also true that any
reversible Markov process can be modelled as a random walk on an undirected weighted graph, using
edge weights wu,v = π(u)Pu,v.

Finally, we let δ denote the spectral gap of P , which is the smallest non-zero eigenvalue of I − P .
For intuition, it is useful to know that 1

δ is within a log |V (G)| factor of the mixing time of P (see, for
example, [LWP09]).

Accessing G: In computations involving a (classical) random walk on a graph G, it is usually
assumed that for any u ∈ V (G), it is possible to sample a neighbour v ∈ Γ(u) according to the
distribution given by the u-th row of P . It is standard to assume this is broken into two steps:
(1) sampling some i ∈ [du], where du := |Γ(u)| is the degree of u, and (2) computing the i-th
neighbour of u. That is, we assume that for each u ∈ V (G), there is an efficiently computable function
fu : [du]→ V (G) such that im(fu) = Γ(u), and we call fu(i) the i-th neighbour of u. In the quantum
case (see Definition 2.2 below), we assume that the sample (1) can be done coherently, and we use a
reversible version of the map (u, i) 7→ fu(i). We will also find it convenient to suppose the indices i
of the neighbours of u come from some more general set L(u), which may equal [du], or some other
convenient set, which we call the edge labels of u. It is possible to have |L(u)| > |Γ(u)| = du, meaning
that some elements of L(u) do not label an edge adjacent to u (these labels should be sampled with
probability 0). We assume we have a partition of L(u) into disjoint L+(u) and L−(u) such that:

L+(u) ⊇ {i ∈ L(u) : (u, fu(i)) ∈
−→
E (G)} = {i ∈ L(u) : fu(i) ∈ Γ+(u)}

L−(u) ⊇ {i ∈ L(u) : (fu(i), u) ∈
−→
E (G)} = {i ∈ L(u) : fu(i) ∈ Γ−(u)}.

Note that for any (u, v) ∈
−→
E (G), with i = f−1u (v) and j = f−1v (u), any of (u, v), (v, u), (u, i), or (v, j)

fully specify the edge. Thus, it will be convenient to denote the weight of the edge using any of the
alternatives:

wu,v = wv,u = wu,i = wv,j .

For any i ∈ L(u), we set wu,i = 0 if and only if {u, fu(i)} ̸∈ E(G).

Definition 2.2 (Quantum Walk access to G). For each u ∈ V (G), let L(u) = L+(u)∪L−(u) be some
finite set of edge labels, and fu : L(u) → V (G) a function such that Γ(u) ⊆ im(fu). A quantum
algorithm has quantum walk access to G if it has access to the following subroutines:

• A subroutine that generates quantum samples from L(u) by implementing a unitary U⋆ in cost
A⋆ that acts as:

U⋆|u, 0⟩ ∝
∑

i∈L+(u)

√
wu,i|u, i⟩ −

∑
i∈L−(u)

√
wu,i|u, i⟩ =: |ψG⋆ (u)⟩.

• A subroutine that implements the transition map

|u, i⟩ 7→ |v, j⟩

(possibly with some error) where i = f−1u (v) and j = f−1v (u), with costs {Tu,i = Tu,v}(u,v)∈−→E (G)
.

• Query access to the total vertex weights wu =
∑

v∈Γ(u) wu,v.

We call {Te}e∈−→E (G)
the set of transition costs and A⋆ the cost of generating the star states.
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Flows and Resistances: Electric networks of resistors can be modelled as weighted graphs, where
the weights represent conductances (so their inverses represent resistances). This beautiful connection
was expounded by Doyle and Snell [DS84], or see [LWP09] for a modern exposition. This connection
inspires the following definitions.

Definition 2.3 (Flow, Circulation). A flow on a network G is a real-valued function θ :
−→
E (G)→ R,

extended to edges in both directions by θ(u, v) = −θ(v, u) for all (u, v) ∈
−→
E (G). For any flow θ on G,

and vertex u ∈ V (G), we define θ(u) =
∑

v∈Γ(u) θ(u, v) as the flow coming out of u. If θ(u) = 0, we
say flow is conserved at u. If flow is conserved at every vertex, we call θ a circulation. If θ(u) > 0, we
call u a source, and if θ(u) < 0 we call u a sink. The set of sources and sinks is called the boundary
of θ. A flow with unique source s and unique sink t is called an st-flow. If additionally θ(s) = 1, we
call θ a unit st-flow. The energy of θ is

E(θ) :=
∑

(u,v)∈
−→
E (G)

θ(u, v)2

wu,v
.

Definition 2.4 (Effective Resistance). Let σ and τ be distributions on V (G). We define the effective
resistance from σ to τ :

Rσ,τ (G) := min{E(θ) : ∀u ∈ V (G), θ(u) = σ(u)− τ(u)}.

When σ and τ have disjoint support, this is the minimum energy of a flow whose sources are exactly
supp(σ), with θ(u) = σ(u), and whose sinks are exactly supp(τ), with θ(u) = −τ(u). In the special
case when supp(σ) = {s} and supp(τ) = {t}, then θ ranges over all unit st-flows, and we denote
Rσ,τ (G) by Rs,t(G). Finally, for any M ⊆ V (G) \ supp(σ), we define:

Rσ,M (G) := min{Rσ,τ (G) : supp(τ) ⊆M}.

That is, Rσ,M (G) is the minimum energy of a flow from σ to M (where any distribution on M is
allowed).

There is always a unique θ from σ to τ (or σ to M) that achieves energy Rσ,τ (G) (or Rσ,M (G)): If
two σ-τ flows achieve energy E , then there is some affine combination of them that achieves energy
strictly smaller than E .
These concepts are related to random walks as follows.

Theorem 2.5 ([CRR+96]). For any s, t ∈ V (G), let Cs,t(G) be the commute time from s to t, which
is the expected number of steps taken in a random walk starting at s, before the walker reaches t, and
then returns to s. Then Cs,t(G) = 2W(G)Rs,t(G).

Theorem 2.6 (Folklore, or see [AGJ20]). For any set M ⊂ V (G) and s ∈ V (G), let Cs,M (G) be the
commute time from s to M , which is the expected number of steps taken in a random walk starting at
s, before the walker reaches M , and then returns to s. Then Cs,M (G) = 2W(G)Rs,M (G).

Theorem 2.7 ([Bel13]). For any set M ⊂ V (G), let Hπ,M (G) be the hitting time from the stationary
distribution π to M , which is the expected number of steps taken in a random walk starting in a vertex
sampled according to π, before the walker reaches M . Then Hπ,M (G) = 2W(G)Rπ,M (G).

Motivated by the three theorems above, we define

Cσ,τ (G) := 2W(G)Rσ,τ (G) and Cσ,M (G) := 2W(G)Rσ,M (G). (14)

2.2 Phase Estimation Algorithms

We will use the precise notion of a phase estimation algorithm from [JZ22], which is based on the
phase estimation technique of [Kit96].
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Definition 2.8 (Parameters of a Phase Estimation Algorithm). For an implicit input x ∈ {0, 1}∗,
fix a finite-dimensional complex inner product space H, a unit vector |ψ0⟩ ∈ H, and sets of vectors
ΨA,ΨB ⊂ H. We further assume that |ψ0⟩ is orthogonal to every vector in ΨB. Let ΠA be the
orthogonal projector onto A = span{ΨA}, and similarly for ΠB.

Let UAB = (2ΠA − I)(2ΠB − I). The algorithm defined by (H, |ψ0⟩,ΨA,ΨB) performs phase
estimation of UAB on initial state |ψ0⟩, to sufficient precision that by measuring the phase register and
checking if the output is 0, we can distinguish between a negative case and a positive case.

Definition 2.9 (Negative Witness). A δ-negative witness for (H, |ψ0⟩,ΨA,ΨB) is a pair of vectors
|wA⟩, |wB⟩ ∈ H such that ∥(I −ΠA)|wA⟩∥2 ≤ δ, ∥(I −ΠB)|wB⟩∥2 ≤ δ, and |ψ0⟩ = |wA⟩+ |wB⟩.

Definition 2.10 (Positive Witness). A δ-positive witness for (H, |ψ0⟩,ΨA,ΨB) is a vector |w⟩ ∈ H
such that ⟨ψ0|w⟩ ≠ 0 and |w⟩ is almost orthogonal to all |ψ⟩ ∈ ΨA∪ΨB, in the sense that ∥ΠA|w⟩∥2 ≤
δ ∥|w⟩∥2 and ∥ΠB|w⟩∥2 ≤ δ ∥|w⟩∥2.4

Theorem 2.11 ([JZ22]). Fix (H, |ψ0⟩,ΨA,ΨB) as in Definition 2.8. Suppose we can generate the
state |ψ0⟩ in cost S, and implement UAB = (2ΠA − I)(2ΠB − I) in cost A.
Let c+ ∈ [1, 50] be some constant, and let C− ≥ 1 be a positive real number that may scale with |x|.
Let δ and δ′ be positive real parameters such that

δ ≤ 1

(8c+)3π8C−
and δ′ ≤ 3

4

1

π4c+
.

Suppose we are guaranteed that exactly one of the following holds:

Positive Condition: There is a δ-positive witness |w⟩ s.t. |⟨w|ψ0⟩|2
∥|w⟩∥2 ≥

1
c+

.

Negative Condition: There is a δ′-negative witness |wA⟩, |wB⟩ s.t. ∥|wA⟩∥2 ≤ C−.

Then there is a quantum algorithm that distinguishes these two cases with bounded error in cost

O
(
S+

√
C−A

)
.

3 Variable-Time Subroutines

A variable-time subroutine is a sequence of unitaries U1, . . . , UT, for some T = Tmax, acting on the
space

HI ⊗HA ⊗HZ = span{|i⟩|a⟩|z⟩ : i ∈ I, a ∈ A, z ∈ Z}

for finite sets I, representing inputs to the subroutine; A, representing answers the subroutine may
output; and Z, representing states of the algorithm’s workspace. Both A and Z can be assumed to
be initialized to |0⟩. The unitaries are controlled on HI , so we can express Ut =

∑
i∈I |i⟩⟨i| ⊗ U it for

some unitaries U it . In other words, the input register is read only. Following [Amb12], we make the
following assumptions.

1. There are subspaces
{0} = H0 ⊆ H1 ⊆ · · · ⊆ HT = HZ

such that Ut leaves Ht−1 invariant, so any part of the algorithm in Ht−1 after Ut−1 has been
applied, does not get changed any more. Letting Π≤t−1 denote the orthogonal projector onto
Ht−1, we can express this mathematically as:

UtΠ≤t−1 = Π≤t−1. (15)

For any t, we assume we can measure a bit indicating if we are in Ht in unit cost. 5

4We note that for technical reasons, positive witness error is defined multiplicatively (relative error), whereas negative
witness error is defined additively.

5For example, imagine having T single-qubit registers, F1, . . . , FT, where we set a 1 in Ft after Ut has been applied
to indicate that the algorithm is ready to halt, and then all subsequent unitaries are controlled on no 1s yet being set.
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2. We can implement
∑T

t=1 |t⟩⟨t| ⊗ Ut in unit cost.

We say that t is a potential stopping time if Ht := Ht ∩H⊥t−1 ̸= {0}, so HZ := H1⊕ · · · ⊕HT. We
can imagine an algorithm that, for every potential stopping time t, after applying Ut, measures to see
if the algorithm is in the space Ht, and if so, the algorithm is done and the answer register can also
be measured, and if not, the algorithm continues. Since the later unitaries leave Ht invariant, these
measurements do not affect the computation.

Let {|z⟩ : z ∈ Zt} be an orthonormal basis for Ht, for some disjoint sets Z =
⋃
tZt. Note that

Zt ̸= ∅ precisely when t is a potential stopping time. Since we assume we can measure if the algorithm
is in each space, we assume we can generate each of these bases.

For t ∈ [T], we let p̄i(t) be the probability of stopping at time t (i.e. measuring “1” right after Ut
is applied) on input i. Then

pi(t) = p̄i(0) + · · ·+ p̄i(t− 1) (16)

is the probability that the algorithm halts some time before Ut is applied. We let Ti be the random
variable such that Pr[Ti = t] = p̄i(t), so Ti is the stopping time on input i.

Suppose the algorithm is meant to compute some function g : I → A. Then if we let Πt be the
orthogonal projector onto Ht, and Ξa the orthogonal projector onto a in the answer register, the
probability that the algorithm outputs an incorrect answer on input i, given that it stops at time t,
is:

ϵti :=
1

p̄i(t)

∥∥((I − Ξg(i))⊗Πt)Ut . . . U1|i, 0, 0⟩
∥∥2 . (17)

Reversible Variable-Time Subroutines: So far this is just a generalization of Ambainis’ notion
of a variable stopping time algorithm in [Amb12] to allowing the output to be more than just a bit. We
will extend it to what we call Reversible Variable-Time Subroutines. Building on the above notation,
suppose what we are actually interested in is computing |i⟩ 7→ A|i⟩, for some isometry A. A simple
example we will consider (Section 5) is A|i⟩ = (−1)gi |i⟩ for some g : [n]→ {0, 1}. In the other example

we will see, in Section 4, A|u, i⟩ = |v, j⟩ for vertices (u, v) ∈
−→
E (G), with fu(i) = v and fv(j) = u (see

Definition 2.2). Whatever the case, we will suppose that computing A can be reduced to computing
some auxiliary information g(i) ∈ A, for which we have a variable-time subroutine. To this end, we say
that a variable-time subroutine reversibly computes A if it computes g(i), and satisfies the following
additional assumptions:

1. For t ∈ {1, . . . ,T}, letting
Ũt =

∑
i∈I

A|i⟩⟨i|A† ⊗ U it ,

the unitary
∑T

t=1 |t⟩⟨t| ⊗ Ũt can be implemented in unit cost.

2. There exists a unitary A′ of the following form that can be implemented in unit cost:

A′ =
∑
a∈A
|a⟩⟨a| ⊗Aa,

and such that Ag(i) = A.

3. For all i, i′ ∈ I such that i ̸= i′, and all a ∈ A, ⟨i′|A†Aa|i⟩ = 0.

If A were easy to implement, then we would not need a subroutine. Instead, we are assuming (condition
2) that there is an easy to implement A′ that computes A given the auxiliary information g(i) computed
by the variable-time subroutine. Given a reversible variable-time subroutine for computing A, we can
implement the map |i⟩ 7→ A|i⟩ by running the variable-time subroutine U1, . . . , UT until the algorithm
halts at some step Ti, applying A

′, and then uncomputing by running ŨTi , . . . , Ũ1 (condition 1). The
last condition is not strictly necessary, but the total error of algorithms that use the subroutine (see
Section 4 and Section 5) is different if we omit it. The condition basically says that while the subroutine
might output the wrong answer, it will not output an answer that could interfere with the correct
part of another branch of the superposition running the algorithm on a different input.
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For example, suppose A|i⟩|0⟩ = |i⟩|g(i)⟩, so A just adds information to the state – not in an
information theoretic sense, but in a computational sense. In that case, it is still possible to control
on i to reverse the computation after we have applied A (conditions 1 and 2), and condition 3 is
satisfied, since ⟨i′, g(i′)|i, a⟩ = 0 whenever i ̸= i′, regardless of a. Similarly, if g(i) is a single bit, and
A|i⟩ = (−1)g(i)|i⟩, then a variable-time subroutine for g is trivially reversible, by setting Ũt = Ut for
all t, and Aa|i⟩ = (−1)a|i⟩.

3.1 Transition States and Algorithm States

We define several states associated with a variable stopping time algorithm, and prove some properties
that will be useful later. We first define some states called transition states from the subroutine, and
sort them into two sets Ψ0 and Ψ1, such that each set is pairwise orthogonal. These sets could be
used to define a phase estimation algorithm as described in Section 2.2. There would be little point
in turning an algorithm into a phase estimation algorithm – if we already have an algorithm, we do
not need another one – but we will later (in Section 4 and Section 5) combine these states with some
other ones to get a more complicated phase estimation algorithm that uses the variable stopping time
subroutine as a building block.

Definition 3.1. Fix some set of positive weights {αt}Tt=1 such that α0 = 1. The transition states of a
reversible variable stopping time subroutine are defined as follows. The forward transitions states are
defined:

∀i ∈ I, t ∈ {0, . . . ,T− 1}

Ψi,→
t :=

{
|ψi,→a,z,t⟩ := | →⟩|i⟩

(√
αt|a, z⟩|t⟩ −

√
αt+1U

i
t+1|a, z⟩|t+ 1⟩

)
: a ∈ A, z ∈ Z>t

}
.

The backward transition states are defined:

∀i ∈ I, t ∈ {0, . . . ,T− 1}

Ψi,←
t :=

{
|ψi,←a,z,t⟩ := | ←⟩A|i⟩

(√
αt|a, z⟩|t⟩ −

√
αt+1U

i
t+1|a, z⟩|t+ 1⟩

)
: a ∈ A, z ∈ Z>t

}
.

The reversal states are defined:

∀i ∈ I, t ∈ {1, . . . ,T} Ψi,↔
t :=

{
|ψi,↔a,z,t⟩ :=

√
αt (| →⟩|i⟩ − | ←⟩Aa|i⟩) |a, z⟩|t⟩ : a ∈ A, z ∈ Zt

}
.

We finally define Ψi,↔
0 = Ψi,→

T = Ψi,←
T = ∅, and:

Ψ0 =
⋃
i∈I

T⋃
t=0:t even

(
Ψi,→
t ∪Ψi,←

t ∪Ψi,↔
t

)
and Ψ1 =

⋃
i∈I

T⋃
t=0:t odd

(
Ψi,→
t ∪Ψi,←

t ∪Ψi,↔
t

)
.

Claim 3.2. For b ∈ {0, 1}, the states of Ψb are pairwise orthogonal.

To convince oneself of Claim 3.2, one should notice that the states in each set Ψi,d
t are pairwise

orthogonal, and the only overlaps between sets are those shown in the graph in Figure 2. Then since
Ψ0 and Ψ1 are formed from a bipartition of this graph, they are each pairwise orthogonal.

Lemma 3.3. For b ∈ {0, 1}, let ΠΨb
denote the orthogonal projector onto the span of Ψb. Then

(2ΠΨb
− I) can be implemented in O(logT) complexity.

Proof. The basic idea is that for b ∈ {0, 1}, we can implement a unitary Ub that acts, for all i ∈ I,
a ∈ {0, 1}, and t of parity b, as:

1. | →⟩|i⟩|a, z, t⟩ Ub7→∝ |ψi,→a,z,t⟩ for all z ∈ Z>t

2. | ←⟩A|i⟩|a, z, t⟩ Ub7→∝ |ψi,←a,z,t⟩ for all z ∈ Z>t

14



Ψi,→
0

Ψi,↔
1

Ψi,←
0

Ψi,→
1

Ψi,↔
2

Ψi,←
1

Ψi,→
2

Ψi,↔
3

Ψi,←
2

. . .

. . .

. . .

Ψi,→
t

Ψi,↔
t+1

Ψi,←
t

. . .

. . .

. . .

Ψi,→
T−1

Ψi,↔
T

Ψi,←
T−1

Figure 2: The overlap graph of the sets of states defined in Definition 3.4 for some fixed i. Each node
represents a set of states that are pairwise orthogonal. Two nodes share an edge if and only if their
sets contain overlapping states. For different values of i, all states are orthogonal. One can imagine an
algorithm starting in the state | →⟩|i⟩|0, 0⟩|0⟩, which only overlaps Ψi,→

0 . The state of the algorithm
moves through the graph until some part of it is of the form | ←⟩Aa|i⟩|a, z⟩|t⟩, hopefully for a = g(i),
then on that part, it uncomputes to move back down the other side of the ladder to a state that only
overlaps Ψi,←

0 . The length of the algorithm’s path depends on which “rung” t of the ladder it uses to
move from the → to the ← part, which will depend on the stopping probabilities at various steps.

3. | ↔⟩|i⟩|a, z, t⟩ Ub7→∝ |ψi,↔a,z,t⟩ for all z ∈ Zt

using, respectively:

1. The ability to implement
∑T

t=1 |t⟩⟨t| ⊗ Ut in unit cost.

2. The ability to implement
∑T

t=1 |t⟩⟨t| ⊗ Ũt in unit cost.

3. The ability to implement
∑

a∈A |a⟩⟨a| ⊗Aa in unit cost.

We implement Ub in two parts: the first is conditioned on z ∈ Z>t, which will ensure (1) and (2);
the second is conditioned on z ∈ Zt, which will ensure condition (3). First, conditioned on z ∈ Z>t,
do the following. Append an auxiliary qubit initialized to |0⟩. Controlled on t, rotate this qubit to
∝ √αt|0⟩ −

√
αt+1|1⟩. When z ∈ Z>t, we only care about the cases where the first qubit is | →⟩ or

| ←⟩, and in these cases we now have:

(→)-case:
√
αt|0⟩| →⟩|i⟩|a, z, t⟩ −

√
αt+1|1⟩| →⟩|i⟩|a, z, t⟩,

(←)-case:
√
αt|0⟩| ←⟩A|i⟩|a, z, t⟩ −

√
αt+1|1⟩| ←⟩A|i⟩|a, z, t⟩.

Controlled on the auxiliary qubit being |1⟩, increment the last register, and then (still controlled on
|1⟩) controlled on | →⟩, apply

∑T
t=1 |t⟩⟨t| ⊗ Ut, and controlled on | ←⟩, apply

∑T
t=1 |t⟩⟨t| ⊗ Ũt to get:

(→)-case:
√
αt|0⟩| →⟩|i⟩|a, z, t⟩ −

√
αt+1|1⟩| →⟩|i⟩Ut+1|a, z⟩|t+ 1⟩,

(←)-case:
√
αt|0⟩| ←⟩A|i⟩|a, z, t⟩ −

√
αt+1|1⟩| ←⟩A|i⟩Ut+1|a, z⟩|t+ 1⟩.

Since we only care about the action of Ub when t has parity b, we can uncompute the auxiliary using
the parity of the last register.

Next, conditioned on z ∈ Zt, do the following. Map | ↔⟩ to (| →⟩−| ←⟩)/
√
2, and then conditioned

on | ←⟩, apply
∑

a |a⟩⟨a| ⊗Aa to get:

1√
2
(| →⟩|i⟩|a, z, t⟩ − | ←⟩Aa|i⟩|a, z, t⟩) ∝ |ψi,↔a,z,t⟩.

The map Ub can be combined with a reflection Rb that checks, for any state |d⟩|i⟩|a, z⟩|t⟩: t has
parity b; if d ∈ {←,→}, then z ∈ Z>t and t < T; and if d =↔, then z ∈ Zt and t > 0. Then

(2ΠΨb
− I) = UbRbU

†
b .
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We now define some states which are essentially positive and negative witnesses for a phase es-
timation algorithm defined by Ψ0 and Ψ1. When we combine Ψ0 and Ψ1 with other states to get
more complex phase estimation algorithms in Section 4 and Section 5, these will be building blocks for
the positive and negative witnesses for those phase estimation algorithms, so we prove several claims
analyzing these states here.

Definition 3.4 (Algorithm States). Fix a reversible variable-time subroutine U1, . . . , UT, A and some
set of positive weights {αt}t. Let Π≥t := Πt + · · · + ΠT be the orthogonal projector onto H⊥t−1 =
Ht ⊕ · · · ⊕HT. Define the following algorithm states in HA ⊗HZ , for all i ∈ I:

|w0(i)⟩ = |0, 0⟩
∀t ∈ [T], |wt(i)⟩ = U itΠ≥t|wt−1(i)⟩.

The positive history state of the algorithm on input i ∈ I is defined:

|w+(i)⟩ = (| →⟩|i⟩+ | ←⟩A|i⟩)
T∑
t=0

1
√
αt
|wt(i)⟩|t⟩.

The negative history state of the algorithm on input i ∈ I is defined:

|w−(i)⟩ = (| →⟩|i⟩ − | ←⟩A|i⟩)
T∑
t=0

√
αt(−1)t|wt(i)⟩|t⟩.

We have defined the algorithm states in this way because Π≥t|wt−1(i)⟩ is the part of the algorithm
that has not yet output before we apply U it . The following claim makes clear that |wt(i)⟩ consists of two
orthogonal parts: the part in Ht, which is output at this step, and the part in H⊥t = Ht+1⊕· · ·⊕HT,
which has yet to halt.

Claim 3.5. For all i ∈ I and t ∈ {0, . . . ,T},

|wt(i)⟩ = Π≥tU
i
tΠ≥t−1U

i
t−1 . . .Π≥1U

i
1|0, 0⟩ = Π≥tU

i
t . . . U

i
1|0, 0⟩.

Proof. First, note that since U itΠ≤t−1 = Π≤t−1 (by (15)), we have:

U itΠ≥t = U it (I −Π≤t−1) = U it −Π≤t−1 = (I −Π≤t−1)U
i
t = Π≥tU

i
t , (18)

so the first equality follows easily from the definition of |wt(i)⟩.
We prove the second equality by induction. For the base step, we have: |w0(i)⟩ = |0, 0⟩ = Π≥0|0, 0⟩.

For the induction step, assuming |wt−1(i)⟩ = Π≥t−1U
i
t−1 . . . U

i
1|0, 0⟩, we have:

|wt(i)⟩ = UtΠ≥t|wt−1(i)⟩ = UtΠ≥tΠ≥t−1U
i
t−1 . . . U

i
1|0, 0⟩ = UtΠ≥tU

i
t−1 . . . U

i
1|0, 0⟩

= Π≥tUtU
i
t−1 . . . U

i
1|0, 0⟩.

Corollary 3.6. Let i ∈ I. Recall the definitions of p̄i(t) and pi(t) ((16)). Then we have:∥∥Πt|wt(i)⟩∥∥2 = p̄i(t) and
∥∥|wt(i)⟩∥∥2 = 1− pi(t).

Proof. By Claim 3.5, we have Πt|wt(i)⟩ = ΠtU
i
t . . . U

i
1|0, 0⟩, which is the part of the state after applying

Ut that did not already output, but does output in the measurement after Ut, so p̄i(t) =
∥∥Πt|wt(i)⟩∥∥2 .

For the second part, we have∥∥|wt(i)⟩∥∥2 = ∥∥U it . . . U i1|0, 0⟩∥∥2 − ∥∥Π<tU it . . . U i1|0, 0⟩∥∥2 = 1− pi(t),

since Π<tU
i
t . . . U

i
1|0, 0⟩ is the part of the state that has already halted before Ut was applied.
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Corollary 3.7. For all i ∈ I,

∥|w−(i)⟩∥2 = 2

T∑
t=0

αt(1− pi(t)) = 2E

[
Ti∑
t=0

αt

]

and ∥|w+(i)⟩∥2 = 2
T∑
t=0

1

αt
(1− pi(t)) = 2E

[
Ti∑
t=0

1

αt

]
.

Proof. By (16) and the fact that
∑T

t=1 p̄i(t) = 1, and letting p̄i(0) = 0, we have:

∥|w−(i)⟩∥2 =
T∑
t=0

αt(1− pi(t)) =
T∑
t=0

αt

T∑
t′=t

p̄i(t
′) =

T∑
t′=0

p̄i(t
′)

t′∑
t=0

αt = E

[
Ti∑
t=0

αt

]
.

A similar computation applies in the positive case.

Claim 3.8 (Positive Witness). Assume T is odd. For all i, |w+(i)⟩ is orthogonal to all forward

and backward transition states, and all reversal states |ψi
′,↔
a,z,t⟩ such that i′ ̸= i or a′ ̸= g(i) (see

Definition 3.1). Moreover, if ΠΨb
is the orthogonal projector onto span{Ψb}, then

∥ΠΨ0 |w+(i)⟩∥2 ≤ 2
T−1∑
t=0
even

1

αt
p̄i(t)ϵ

t
i ≤ 2E

[
ϵTii
αTi

]
and ∥ΠΨ1 |w+(i)⟩∥2 ≤ 2

T∑
t=1
odd

1

αt
p̄i(t)ϵ

t
i ≤ 2E

[
ϵTii
αTi

]
.

Proof. We start with the forward transition states. We always have ⟨w+(i)|ψi
′,→
a,z,t⟩ = 0 when i ̸= i′.

For all z ∈ Z>t, we have:

⟨ψi,→a,z,t|w+(i)⟩ = ⟨a, z|wt(i)⟩ − ⟨a, z|(U it+1)
†|wt+1(i)⟩ = ⟨a, z|wt(i)⟩ − ⟨a, z|(U it+1)

†U it+1Π≥t+1|wt(i)⟩ = 0,

since ⟨a, z|Π≥t = ⟨a, z| for all z ∈ Z>t. A nearly identical argument holds for the backward transi-
tion states.

Next consider the reversal states. We have

⟨ψi,↔a,z,t|w+(i)⟩ =
(
1− ⟨i|A†aA|i⟩

)
⟨a, z|wt(i)⟩. (19)

When a = g(i), so Aa = Ag(i) = A, this is 0, and otherwise we have |⟨ψi,↔a,z,t|w+(i)⟩|2 ≤ 4|⟨a, z|wt(i)⟩|2.
Thus:

ΠΨ0 |w+(i)⟩ =
T−1∑
t=0
even

∑
a∈A\{g(i)}

z∈Zt

|ψi,↔a,z,t⟩⟨ψ
i,↔
a,z,t|∥∥∥|ψi,↔a,z,t⟩∥∥∥2 |w+(i)⟩

∥ΠΨ0 |w+(i)⟩∥2 =
T−1∑
t=0
even

∑
a∈A\{g(i)}

z∈Zt

|⟨ψi,↔a,z,t|w+(i)⟩|2∥∥∥|ψi,↔a,z,t⟩∥∥∥2 ≤
T−1∑
t=0
even

∑
a∈A\{g(i)}

z∈Zt

4|⟨a, z|wt(i)⟩|2

2αt
.

We have, for any t, ∑
a∈A\{g(i)}

z∈Zt

|⟨a, z|wt(i)⟩|2 = p̄i(t)ϵ
t
i

is the probability that the algorithm outputs at time t, and the answer is incorrect (not equal to g(i)).
Thus:

∥ΠΨ0 |w+(i)⟩∥2 ≤ 2
T−1∑
t=0
even

p̄i(t)
1

αt
ϵti ≤ 2

T∑
t=0

p̄i(t)
1

αt
ϵti = 2E

[
ϵTii
αTi

]
,

and similarly for Ψ1.
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Claim 3.9 (Negative witness). Assume T is odd. For i ∈ I, let |w−(i)⟩ be the negative history state
defined in Definition 3.4. Then, letting ΠΨb

be the orthogonal projector onto span{Ψb}, we have:

∥(I −ΠΨ0)|w−(i)⟩∥
2 ≤ 2

T−1∑
t=0
even

αtp̄i(t)ϵ
t
i ≤ 2E

[
αTiϵ

Ti
i

]

and ∥(I −ΠΨ1) (|w−(i)⟩ − (| →⟩|i⟩ − | ←⟩A|i⟩)|0, 0⟩|0⟩)∥2 ≤ 2
T∑
t=1
odd

αtp̄i(t)ϵ
t
i ≤ 2E

[
αTiϵ

Ti
i

]
.

Proof. Recall from Definition 3.4 that

|w−(i)⟩ = (| →⟩|i⟩ − | ←⟩A|i⟩)
T∑
t=0

√
αt(−1)t|wt(i)⟩|t⟩,

where |wt(i)⟩ = Π≥t|wt(i)⟩ by Claim 3.5. We have:

T∑
t=0

√
αt(−1)t|wt(i)⟩|t⟩ =

T−1∑
t=0
even

√
αt|wt(i)⟩|t⟩ −

T∑
t=1
odd

√
αt|wt(i)⟩|t⟩

=

T−1∑
t=0
even

√
αtΠt|wt(i)⟩|t⟩+

T−1∑
t=0
even

√
αtΠ≥t+1|wt(i)⟩|t⟩ −

T∑
t=1
odd

√
αtΠ≥tU

i
t |wt−1(i)⟩|t⟩

=

T−1∑
t=0
even

√
αtΠt|wt(i)⟩|t⟩+

T−1∑
t=0
even

(√
αtΠ≥t+1|wt(i)⟩|t⟩ −

√
αt+1U

i
t+1Π≥t+1|wt(i)⟩|t+ 1⟩

)
by (18).

Then since Π≥t+1|wt(i)⟩ is supported on states |a, z⟩ such that z ∈ Z>t, we have:

(| →⟩|i⟩ − | ←⟩A|i⟩)
T−1∑
t=0
even

(√
αtΠ≥t+1|wt(i)⟩|t⟩ −

√
αt+1U

i
t+1Π≥t+1|wt(i)⟩|t+ 1⟩

)
∈ span{Ψ0}.

Let Ξa be the orthogonal projector onto states with a in the answer register. We can thus see that:

(I −ΠΨ0)|w−(i)⟩ = (I −ΠΨ0) (| →⟩|i⟩ − | ←⟩A|i⟩)
T−1∑
t=0
even

√
αtΠt|wt(i)⟩|t⟩

− (I −ΠΨ0)
(
| →⟩|i⟩ − | ←⟩Ag(i)|i⟩

) T−1∑
t=0
even

√
αtΞg(i)Πt|wt(i)⟩|t⟩

︸ ︷︷ ︸
∈Ψ0

= (I −ΠΨ0)
(
| →⟩|i⟩ − | ←⟩Ag(i)|i⟩

) T−1∑
t=0
even

√
αt
(
I − Ξg(i)

)
Πt|wt(i)⟩|t⟩,

(20)

since A|i⟩ = Ag(i)|i⟩. Thus:

∥(I −ΠΨ0)|w−(i)⟩∥
2 ≤

∥∥∥∥∥∥∥
(
| →⟩|i⟩ − | ←⟩Ag(i)|i⟩

) T−1∑
t=0
even

√
αt
(
I − Ξg(i)

)
Πt|wt(i)⟩|t⟩

∥∥∥∥∥∥∥
2

= 2
T−1∑
t=0
even

αt
∥∥(I − Ξg(i)

)
Πt|wt(i)⟩

∥∥2 = 2
T−1∑
t=0
even

p̄i(t)αtϵ
t
i ≤ 2E

[
αTiϵ

Ti
i

]
.
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For the second part of the claim, we note that:

T∑
t=0

√
αt(−1)t|wt(i)⟩|t⟩

=
√
α0|w0(i)⟩|0⟩ −

√
αT|wT(i)⟩|T⟩

−
T−2∑
t=1
odd

√
αtΠt|wt(i)⟩|t⟩ −

T−2∑
t=1
odd

(√
αtΠ≥t+1|wt(i)⟩|t⟩ −

√
αt+1U

i
t+1Π≥t+1|wt(i)⟩|t+ 1⟩

)

= |0, 0⟩|0⟩ −
T∑
t=1
odd

√
αtΠt|wt(i)⟩|t⟩ −

T−2∑
t=1
odd

(√
αtΠ≥t+1|wt(i)⟩|t⟩ −

√
αt+1U

i
t+1Π≥t+1|wt(i)⟩|t+ 1⟩

)
,

since α0 = 1, |w0(i)⟩ = |0, 0⟩, and |wT(i)⟩ is in the support of Π≥T = ΠT. Similar to above, we have

(| →⟩|i⟩ − | ←⟩A|i⟩)
T−2∑
t=1
odd

(√
αtΠ≥t+1|wt(i)⟩|t⟩ −

√
αt+1U

i
t+1Π≥t+1|wt(i)⟩|t+ 1⟩

)
∈ Ψ1,

and just as in (20),

(I −ΠΨ1)(| →⟩|i⟩ − | ←⟩A|i⟩)
T∑
t=1
odd

√
αtΠt|wt(i)⟩|t⟩

= (I −ΠΨ1)(| →⟩|i⟩ − | ←⟩A|i⟩)
T∑
t=1
odd

√
αtΠt(I − Ξg(i))|wt(i)⟩|t⟩.

Thus, we can see that:

(I −ΠΨ1) (|w−(i)⟩ − (| →⟩|i⟩ − | ←⟩A|i⟩)|0, 0⟩|0⟩)

= (I −ΠΨ1)(| →⟩|i⟩ − | ←⟩A|i⟩)

|0, 0⟩|0⟩ − T∑
t=1
odd

√
αtΠt(I − Ξg(i))|wt(i)⟩|t⟩ − |0, 0⟩|0⟩



so ∥(I −ΠΨ1) (|w−(i)⟩ − (| →⟩|i⟩ − | ←⟩A|i⟩)|0, 0⟩|0⟩)∥2

≤ 2
T∑
t=1
odd

αt
∥∥Πt(I − Ξg(i))|wt(i)⟩

∥∥2 = 2
T∑
t=1
odd

p̄i(t)αtϵ
i
t ≤ 2E

[
αTiϵ

Ti
i

]
.

4 Composition in Quantum Walks

In this section, we state and prove Theorem 4.1, which extends the quantum walk electric network
framework by allowing a variable-time subroutine to implement the edge transition subroutine. This
is similar to [JZ22, Theorem 3.10], with the following differences:

1. We require that our transition subroutine be reversible, meaning that the mapping |u, i⟩ 7→ |v, j⟩
must be done by first computing some auxiliary information g(u, i), from which the transition
becomes easy (see Section 3). This is not required in [JZ22], but it is not a particularly stringent
constraint, and we know of no quantum walk application where the transition is not done this
way.
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2. [JZ22] does not allow the running time Tu,v for some fixed (u, v) to be a random variable,
but instead depends on a parameter Tu,v, which is an upper bound on the running time on
input (u, v), and requires that this value be efficiently computable from (u, i) and (v, j) (where
fu(i) = v and fv(j) = u). We do not require E[Tu,v] to be efficiently computable.

3. In [JZ22], there are no parameters {αt}t (equivalently, αt = 1 for all t).

4. [JZ22] also extends the electric network framework by allowing the use of alternative neighbour-
hoods. For simplicity, we do not incude this extension here, but there is no reason it could not
be combined with our results.

We first state Theorem 4.1, which is too general to be easily understood. Immediately afterwards,
we discuss some more easily understood consequences of this theorem, for quantum walks (Corollary 4.2
and Corollary 4.3) and the special case of black-box search (Corollary 4.4 and Table 1), before proving
the theorem in Section 4.1.

Theorem 4.1 (Quantum Walks with Edge Composition). Fix the following, which may implicitly
depend on some input x:

• a network G with disjoint sets V0, VM ⊂ V (G) such that for any vertex, checking if v ∈ V0 (resp.
if v ∈ VM) can be done in unit complexity;

• a reversible variable-time subroutine (see Section 3) that implements the transition map (see
Definition 2.2) with stopping times {Tu,v}(u,v)∈−→E (G)

, which are random variables on [T], and

errors {ϵtu,v}(u,v)∈−→E (G),t∈[T];

• a subset M ⊆ VM, and distribution σ on V0.

Fix some positive real numbers {αt}Tt=0 such that α0 = 1; and positive real-valued W and R, that may
scale with |x|. Suppose the following conditions hold.

Setup Subroutine: The state |σ⟩ =
∑

u∈V0

√
σ(u)|u⟩ can be generated in cost S, and furthermore,

for any u ∈ V0, σ(u) can be computed in unit cost.

Star State Generation Subroutine: There is a subroutine that generates {|ψG⋆ (u)⟩}u∈V (G) in unit
cost (see Definition 2.2).

Checking Subroutine: There is an algorithm that checks, for any u ∈ VM, if u ∈M , in unit cost.

Positive Condition: If M ̸= ∅, then there exists a flow θ on G (see Definition 2.3) such that:

P1 The boundary of θ is in V0 ∪M , and
∑

u∈V0 θ(u) = 1.6

P2 1
3 ≤

∑
u∈V0

θ(u)2

σ(u) ≤ 3.

P3
∑

(u,v)∈
−→
E (G)

θ(u, v)2

wu,v
E

Tu,v∑
t=0

1

αt

 ≤ R.
P4

∑
(u,v)∈

−→
E (G)

θ(u, v)2

wu,v
E

[
ϵ
Tu,v
u,v

αTu,v

]
= o(1/W);

Negative Condition: If M = ∅, then

N1
∑

(u,v)∈
−→
E (G)

wu,vE

Tu,v−1∑
t=0

αt

 ≤ W.

6A σ-M -flow always satisfies conditions P1 and P2. While we do not make it a strict requirement that all sources
are in V0 and all sinks in M , P1 implies that we do not simply have flow coming in at V0 and then leaving again at V0.
P2 implies that the flow in V0 is roughly distributed as σ.

20



N2
∑

(u,v)∈
−→
E (G)

wu,vE
[
αTu,vϵ

Tu,v
u,v

]
= o(1/R);

Then there is a quantum algorithm that decides if M = ∅ or not with bounded error in complexity:

O
(
S+
√
RW · logT

)
.

We prove Theorem 4.1 in Section 4.1 by defining a phase estimation algorithm and analysing it
using Theorem 2.11. First, we give some less general, easier to digest, corollaries of Theorem 4.1. One
thing that probably makes Theorem 4.1 particularly hard to parse is the parameters {αt}Tt=0, so we
mention three cases of special interest. First, if we set αt = 1 for all t, then we recover a version of
[JZ22, Theorem 3.10]: the resulting complexities are as if we had replaced the graph G with a graph
GT, in which each edge (u, v) is replaced by a path of length E[Tu,v]+1 (or an upper bound on Tu,v+1,
in the case of [JZ22]), but now each transition has unit cost.

We mention two other interesting choices of {αt}t that lead to two distinct “variable-time” quantum
walk results. First, if we set αt = t+ 1, we satisfy the requirement α0 = 1, and we get:

E

Tu,v∑
t=0

1

αt

 = E

Tu,v+1∑
t=1

1

t

 = Θ(E[log Tu,v]) and E

Tu,v∑
t=0

αt

 = E

Tu,v+1∑
t=1

t

 = Θ(E[T 2
u,v]).

Thus P3 has only a logarithmic dependence on the transition times, whereas we get a weighted ℓ2-
average in N1. On the other hand, by setting αt =

1
1+t , E[log Tu,v] and E[T 2

u,v] are swapped: now P3
has a (different!) weighted ℓ2-average, whereas N1 just has a log factor.

If we additionally know the values E[Tu,v], then we can use αt = 1 for all t, and scale wu,v by a
factor of E[Tu,v] to get:

P3 :
∑

(u,v)∈
−→
E (G)

θ(u, v)2

wu,v
≤ R N1 :

∑
(u,v)∈

−→
E (G)

wu,vE[Tu,i]2 ≤ W,

or alternatively, scaling wu,v by 1/E[Tu,v] gives:

P3 :
∑

(u,v)∈
−→
E (G)

θ(u, v)2

wu,v
E[Tu,i]2 ≤ R N1 :

∑
(u,v)∈

−→
E (G)

wu,v ≤ W.

Thus, when the expected stopping times are known, we can save a log factor, and also replace E[T 2
u,v]

with E[Tu,v]2, which is better the higher the variance. We formally state these results for αt = t + 1
in the following corollary (the αt = 1/(t + 1) case can be worked out from Theorem 4.1, but is less
elegantly stated). We simplify things by only considering flows that are exactly from σ to M , and
assuming our subroutine has no error, but by Theorem 4.1, it is clear that some deviation would also
be tolerable.7

Corollary 4.2 (Variable-time quantum walks (αt = t+1)). Fix a network G; marked set M ⊂ V (G),
and initial distribution σ on V (G), all of which may implicitly depend on an input x, although for
simplicity, we assumeW(G) only depends on |x|. Let P be the transition matrix for the random walk on
G, and π its stationary distribution. Let S be the cost of generating |σ⟩, and suppose {|ψG⋆ (u)⟩}u∈V (G)

can be generated in unit cost. Let Cσ,M be an upper bound on Rσ,M (G)W(G) (see Definition 2.3)
whenever M ̸= ∅.

Suppose there is a variable-time subroutine8 that checks, for any u ∈ V (G), if u ∈M , with stopping
times {Cu}u∈V (G), which are random variables on [C], and all errors zero. Fix some (known) terminal

7In all the applications discussed in this section, we assume the subroutine has no error, for simplicity. We believe it
is also interesting to further investigate the different ways the error can propagate depending on the choice of {αt}t, but
we leave this for future work. It is also possible, as in the case of the results of Section 5, that our error terms can be
improved.

8A variable-time subroutine that computes a bit is always reversible.
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distribution τ on V (G) such that τ(M) ≥ ε whenever M ̸= ∅, and let Cavg and C′avg be upper bounds
such that whenever M = ∅,√ ∑

u∈V (G)

τ(u)E[C2
u] ≤ Cavg, and

√ ∑
u∈V (G)

τ(u)E[Cu]2 ≤ C′avg.

Suppose there is a reversible variable-time subroutine that implements the transition map with
stopping times {Tu,v}(u,v)∈−→E (G)

, which are random variables on [T], and all errors zero. Let Tavg and

T′avg be upper bounds such that whenever M = ∅,√√√√ ∑
(u,v)∈

−→
E (G)

π(u)Pu,vE[T 2
u,v] ≤ Tavg, and

√√√√ ∑
(u,v)∈

−→
E (G)

π(u)Pu,vE[Tu,v]2 ≤ T′avg.

Claim 0: Suppose the checking cost is trivial, meaning for all u ∈ V (G), E[Cu] = O(1). Then there
is a quantum algorithm that detects if M = ∅ with bounded error in complexity:

O
(
S+

√
Cσ,MTavg log

1.5 T
)
.

Suppose in addition that the values E[Tu,v] = E[Tu,i] are computable in the strong sense that for any
u, we can generate a superposition proportional to

∑
i∈L(u)

√
wu,iE[Tu,i]|i⟩, and we have query access

to w′u =
∑

i∈L(u) wu,iE[Tu,i]. Then there is a quantum algorithm that detects if M = ∅ with bounded
error in complexity:

O
(
S+

√
Cσ,MT′avg logT

)
.

Claim I: Let DM be an upper bound such that
∑

u∈M θ(u)2/τM (u) ≤ DM, where θ is the unit flow
from σ to M with minimal energy and τM (u) = τ(u)/τ(M) is the normalized restriction of τ to M ,
whenever M ̸= ∅. Then there is a quantum algorithm that detects if M = ∅ with bounded error in
complexity:

O

(
S+

(√
Cσ,MTavg +

√
DM

ε
Cavg

)
log1.5(TC)

)
.

Suppose in addition that the values E[Tu,v] are computable in the same strong sense as Claim 0, and
E[Cu] are computable in the the sense that for any u ∈ V (G), we can query E[Cu] in unit cost. Then
there is a quantum algorithm that detects in M = ∅ with bounded error in complexity:

O

(
S+

(√
Cσ,MT′avg +

√
DM

ε
C′avg

)
log(TC)

)
.

Claim II: Suppose we are promised that eitherM = ∅, or |M | = 1. Then there is a quantum algorithm
that detects if M = ∅ with bounded error in complexity:

O

(
S+

(√
Cσ,MTavg +

1√
ε
Cavg

)
log1.5(TC)

)
.

Suppose in addition that the values E[Tu,v] and E[Cu] are computable as in Claim I. Then there is a
quantum algorithm that detects in M = ∅ with bounded error in complexity:

O

(
S+

(√
Cσ,MT′avg +

1√
ε
C′avg

)
log(TC)

)
.

Claim III: Let Cσ,τ be an upper bound on W(G)Rσ,τM (G) (see Definition 2.3). Then there is a
quantum algorithm that detects if M = ∅ with bounded error in complexity:

O

(
S+

(√
Cσ,τTavg +

1√
ε
Cavg

)
log1.5 TC

)
.

Suppose in addition that the values E[Tu,v] and E[Cu] are computable as in Claim I. Then there is a
quantum algorithm that detects in M = ∅ with bounded error in complexity:

O

(
S+

(√
Cσ,τT′avg +

1√
ε
C′avg

)
logTC

)
.
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Proof. Let gu = 1 if u ∈M , and gu = 0 else. We will make a new graph G′, which is obtained from G
by adding, for each vertex u ∈ V (G), a new vertex (u, gu) connected only to u by an edge of weight
wu,M, to be defined. That is,

V (G′) := V (G)︸ ︷︷ ︸
=:V0

∪{(u, gu) : u ∈ V (G)}︸ ︷︷ ︸
=:VM

and
−→
E (G′) :=

−→
E (G) ∪ {(u, (u, gu)) : u ∈ V (G)},

with wu,(u,gu) = wu,M. Then let M ′ = M × {1} ⊆ VM be the marked set of G′. The new edges
(u, (u, gu)) will have label 0, in both directions, so: fu(0) = (u, gu) and f(u,gu)(0) = u. Since we can

generate {|ψG⋆ (u)⟩}u∈V (G) in unit cost, we can also generate

{|ψG′
⋆ (u)⟩ = |ψG⋆ (u)⟩+

√
wu,M|0⟩}u∈V (G)

in unit cost, assuming wu,M is chosen so that we can prepare a state proportional to
√
wu|1⟩+

√
wu,M|0⟩.

For any u ∈ VM, we can check if u ∈ M ′ in unit cost by examining gu, and generate |σ⟩ in cost S, by
assumption. Thus, to apply Theorem 4.1, we just need to check the positive and negative conditions.
P4 and N2 are satisfied because we assume no error, and for the positive condition, we will always
choose θ to be a σ-M ′ flow, so P1 and P2 are automatically satisifed. We thus only need to check
P3 and N1. We will use αt = t + 1 for the first half of the proof of each claim, and αt = 1 for the
second half. We note that we immediately have a variable-time subroutine for the transition map with
Tu,(u,gu) = Cu.

Proof of Claim 0: To prove Claim 0, we let wu,M := wu. Note that this makes preparing a state
proportional to

√
wu|0⟩+

√
wu,M|1⟩ trivial.

P3: Let θ be the flow from σ to M with minimal energy Rσ,M (G) (see Definition 2.3), and extend it
to a flow on G′ from σ to M ′ by setting θ(u, (u, gu)) = θ(u) for all u ∈M . Then:

∑
(u,v)∈

−→
E (G′)

θ(u, v)2

wu,v
E

Tu,v∑
t=0

1

t+ 1

 =
∑

(u,v)∈
−→
E (G)

θ(u, v)2

wu,v
E

Tu,v∑
t=0

1

t+ 1

+
∑
u∈M

θ(u)2

wu,M
E

[
Cu∑
t=0

1

t+ 1

]

≤ Rσ,M (G)(ln(T+ 1) + 1) +
3

2

∑
u∈M

θ(u)2

wu

(21)

since Cu = 1 for all u, by assumption. By Jensen’s inequality, we have:∑v∈Γ(u) wu,v
θ(u,v)
wu,v∑

v∈Γ(u) wu,v

2

≤

∑
v∈Γ(u) wu,v

(
θ(u,v)
wu,v

)2∑
v∈Γ(u) wu,v(∑

v∈Γ(u) θ(u, v)
)2∑

v∈Γ(u) wu,v
≤
∑

v∈Γ(u)

θ(u, v)2

wu,v∑
u∈M

θ(u)2

wu
≤
∑
u∈M

∑
v∈Γ(u)

θ(u, v)2

wu,v
≤ Rσ,M (G),

so we can continue from (21), using W(G)Rσ,M (G) ≤ Cσ,M:

∑
(u,v)∈

−→
E (G′)

θ(u, v)2

wu,v
E

Tu,v∑
t=0

1

t+ 1

 ≤ 4
Cσ,M
W(G)

lnT =: R. (22)
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N1: We use π(u)Pu,v =
wu,v

2W(G) from (13). If M = ∅, we have:

∑
(u,v)∈

−→
E (G′)

wu,vE

Tu,v∑
t=0

(t+ 1)

 =
∑

(u,v)∈
−→
E (G)

wu,vE

Tu,v∑
t=0

(t+ 1)

+
∑

u∈V (G)

wu,ME

[
Cu∑
t=0

(t+ 1)

]

≤ 2W(G)
∑

(u,v)∈
−→
E (G)

π(u)Pu,vE[T 2
u,v] + 2

∑
u∈V (G)

wu

≤ 2W(G)T2
avg + 2W(G) =:W.

(23)

To complete the first half of the proof of Claim 0, we apply Theorem 4.1 using the fact that:
√
RW = O

(√
Cσ,MT2

avg logT
)
.

Known E[Tu,v]: For the second half of Claim 0, we scale the weights of G′ as follows:

∀(u, v) ∈
−→
E (G), w′u,v := wu,vE[Tu,v] and ∀u ∈ V (G), w′u,M := wu,M = wu.

Note that by changing the weights, we have changed the star states, but we can generate them by
first generating a state proportional to

∑
i∈L(u)

√
wu,iE[Tu,i]|i⟩, which we assume can be done in unit

cost, and then putting a phase in front of each |i⟩ depending on if i ∈ L+(u) or i ∈ L−(u). We have
also changed the total weight of each vertex, w′u =

∑
i wu,iE[Tu,i], but we assume we still have query

access to these values.
Then for P3, now using αt = 1, in place of (21) and (22), we have:

∑
(u,v)∈

−→
E (G′)

θ(u, v)2

w′u,v
E

Tu,v∑
t=0

1

 =
∑

(u,v)∈
−→
E (G)

θ(u, v)2

wu,vE[Tu,v]
E [Tu,v + 1] +

∑
u∈M

θ(u)2

wu
E [Cu + 1]

≤ 2Rσ,M (G) + 2Rσ,M (G) ≤ 4
Cσ,M
W(G)

=: R′,

(24)

and for N1, in place of (23), we have:

∑
(u,v)∈

−→
E (G′)

w′u,vE

Tu,v∑
t=0

1

 =
∑

(u,v)∈
−→
E (G)

wu,vE[Tu,v]E [Tu,v + 1] +
∑

u∈V (G)

wuE [Cu + 1]

≤ 4W(G)
∑

(u,v)∈
−→
E (G)

π(u)Pu,vE[Tu,v]2 + 2W(G)

≤ 4W(G)(T′avg)
2 + 2W(G) =:W ′.

(25)

Then a simple calculation of
√
R′W ′ shows that the second part of Claim 0 follows from Theorem 4.1.

Proof of Claim I: For the proof of Claim I, we now let

wu,M :=
W(G)DMτ(u)

εCσ,M
=
W(G)DMτM (u)τ(M)

εCσ,M
if u ∈M.

With this choice of wu,M, preparing a state proportional to
√
wu|1⟩ +

√
wu,M|0⟩ can be done using a

single qubit rotation that depends on W(G)DM

εCσ,M
τ(u)
wu

.

P3: Let θ be the flow from σ to M with minimal energy Rσ,M (G) (see Definition 2.3), and extend it
to a flow on G′ from σ to M ′ by setting θ(u, (u, gu)) = θ(u) for all u ∈M . Then we have:

∑
(u,v)∈

−→
E (G′)

θ(u, v)2

wu,v
E

Tu,v∑
t=0

1

t+ 1

 =
∑

(u,v)∈
−→
E (G)

θ(u, v)2

wu,v
E

Tu,v∑
t=0

1

t+ 1

+
∑
u∈M

θ(u)2

wu,M
E

[
Cu∑
t=0

1

t+ 1

]

≤ 2Rσ,M (G) lnT+ 2
Cσ,M

W(G)DM

ε

τ(M)

∑
u∈M

θ(u)2

τM (u)
lnC

≤ 2
Cσ,M
W(G)

lnT+ 2
Cσ,M
W(G)

lnC =: R,

(26)
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where we used W(G)Rσ,M ≤ Cσ,M,
∑

u∈M θ(u)2/τM (u) ≤ DM and ε ≤ τ(M).

N1: If M = ∅, we have:

∑
(u,v)∈

−→
E (G′)

wu,vE

Tu,v∑
t=0

(t+ 1)

 =
∑

(u,v)∈
−→
E (G)

wu,vE

Tu,v∑
t=0

(t+ 1)

+
∑

u∈V (G)

wu,ME

[
Cu∑
t=0

(t+ 1)

]

≤ 2W(G)
∑

(u,v)∈
−→
E (G)

π(u)Pu,vE[T 2
u,v] +

∑
u∈V (G)

W(G)DMτ(u)

εCσ,M
E[C2

u]

≤ 2W(G)T2
avg +

W(G)DM

Cσ,M
1

ε
C2
avg =:W.

(27)

To complete the first half of the proof of Claim I, we apply Theorem 4.1 using the fact that:

√
RW = O

(√(
Cσ,MT2

avg +
DM

ε
C2
avg

)
logTC

)
.

Known E[Tu,v] and E[Cu]: For the second half of Claim I, we scale the weights of G′ as follows:

∀(u, v) ∈
−→
E (G), w′u,v := wu,vE[Tu,v] and ∀u ∈ V (G), w′u,M := wu,ME[Cu] =

W(G)DMτ(u)E[Cu]
εCσ,M

.

(28)
Note that by changing the weights, we have changed the star states, but we can generate them as
follows. Let w′u =

∑
i∈L(u) wu,iE[Tu,i], which we can query, by assumption. Then we first prepare a

state proportional to
√

w′u|1⟩ +
√
wu,ME[Cu]|0⟩, using a single qubit rotation, and then map |1⟩ to

a state proportional to
∑

i∈L(u)
√
wu,iE[Tu,i]|i⟩, which we assume can be done in unit cost. Then all

that remains to be done is to put a phase in front of each |i⟩ depending on if i ∈ L+(u) or i ∈ L−(u).
Then for the positive analysis, now using αt = 1, in place of (26), we have:

∑
(u,v)∈

−→
E (G′)

θ(u, v)2

w′u,v
E

Tu,v∑
t=0

1

 =
∑

(u,v)∈
−→
E (G)

θ(u, v)2

wu,vE[Tu,v]
E [Tu,v + 1] +

∑
u∈M

θ(u)2

wu,ME[Cu]
E [Cu + 1]

≤ 2Rσ,M (G) + 2
Cσ,M

W(G)DM

ε

τ(M)

∑
u∈M

θ(u)2

τM (u)

≤ 2
Cσ,M
W(G)

+ 2
Cσ,M
W(G)

=: R′,

(29)

and for the negative analysis, in place of (27), we have:

∑
(u,v)∈

−→
E (G′)

w′u,vE

Tu,v∑
t=0

1

 =
∑

(u,v)∈
−→
E (G)

wu,vE[Tu,v]E [Tu,v + 1] +
∑

u∈V (G)

wu,ME[Cu]E [Cu + 1]

≤ 4W(G)
∑

(u,v)∈
−→
E (G)

π(u)Pu,vE[Tu,v]2 + 2
∑

u∈V (G)

W(G)DM

εCσ,M
τ(u)E[Cu]2

≤ 4W(G)(T′avg)
2 + 2

W(G)DM

Cσ,M
1

ε
(C′avg)

2 =:W ′.

(30)

Then a simple calculation of
√
R′W ′ show that the second part of Claim I follows from Theorem 4.1.

Proof of Claim II: Next, we consider the special case where there is a unique marked element if
M ̸= ∅. In that case, when M = {m} is non-empty, we have, for any σ-M flow, θ(m) = −1 (all flow
leaves at m), so: ∑

u∈M

θ(u)2

τM (u)
=

1

τM (m)
=
τ(M)

τ(m)
= 1.
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Thus Claim II follows from applying Claim I with DM = 1.

Proof of Claim III: Finally, let τ be the known distribution described in Claim III. If such a τ is
known, we can define

wu,M :=
τ(u)W(G)

εCσ,τ
=
τM (u)τ(M)W(G)

εCσ,τ
when u ∈M.

With this choice of wu,M, preparing a state proportional to
√
wu|1⟩ +

√
wu,M|0⟩ can be done using a

single qubit rotation that depends on W(G)
εCσ,τ

τ(u)
wu

.

P3: Let θ be the flow from σ to τM with minimal energy Rσ,τM (G) (see Definition 2.4), and extend
it to a flow on G′ from σ to M ′ by setting θ(u, (u, gu)) = τM (u) for all u ∈M . Then, similar to (26),
we have:

∑
(u,v)∈

−→
E (G′)

θ(u, v)2

wu,v
E

Tu,v∑
t=0

1

t+ 1

 ≤ 2
∑

(u,v)∈
−→
E (G)

θ(u, v)2

wu,v
lnT+ 2

∑
u∈M

τM (u)2

wu,M
lnC

= 2Rσ,τM (G) lnT+ 2
ε

τ(M)

Cσ,τ
W(G)

∑
u∈M

τM (u)2

τM (u)
lnC

≤ 2
Cσ,τ
W(G)

lnT+ 2
Cσ,τ
W(G)

lnC =: R.

N1: If M = ∅, we have, similar to (27):

∑
(u,v)∈

−→
E (G′)

wu,vE

Tu,v∑
t=0

t+ 1

 ≤ 2
∑

(u,v)∈
−→
E (G)

wu,vE[T 2
u,v] + 2

∑
u∈V (G)

wu,ME[C2
u]

≤ 4W(G)T2
avg +

W(G)

Cσ,τ
1

ε
C2
avg =:W.

To complete the proof of the first half of Claim III, we apply Theorem 4.1 using the fact that

√
RW = O

((
Cσ,τT2

avg +
1

ε
C2
avg

)
logTC

)
.

The proof of the second half of Claim III proceeds just as in Claim I.

The expressions we achieve in Corollary 4.2 in the case when checking is non-trivial and M is
not restricted to being a singleton are somewhat complicated. However, in the special case when
σ = π, we can get a bound comparable to the MNRS framework. The following corollary also gives
an alternative proof to the one in [AGJ20] that the MNRS framework is a special case of the electric
network framework (up to log 1/πmin factors, which we suspect can be removed).

Corollary 4.3 (Variable-time MNRS). Fix a network G and marked set M ⊂ V (G) that may im-
plicitly depend on an input x. Let P be the transition matrix for the random walk on G, and π its
stationary distribution. Let S be the cost of generating |π⟩, and suppose {|ψG⋆ (u)⟩}u∈V (G) can be gen-
erated in unit cost. Let δ be a lower bound on the spectral gap of P , and ε a lower bound on π(M)
whenever M ̸= ∅. Let πmin = minu∈V (G) π(u).

Suppose there is a variable-time subroutine that checks, for any u ∈ V (G), if u ∈M , with stopping
times {Cu}u∈V (G), which are random variables on [C], and all errors zero. Let Cavg and C′avg be upper
bounds such that whenever M = ∅,√ ∑

u∈V (G)

π(u)E[C2
u] ≤ Cavg, and

√ ∑
u∈V (G)

π(u)E[Cu]2 ≤ C′avg.
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Suppose there is a reversible variable-time subroutine that implements the transition map with stopping
times {Tu,v}(u,v)∈−→E (G)

, which are random variables on [T], and all errors zero. Let Tavg and T′avg be

upper bounds such that whenever M = ∅,√√√√ ∑
(u,v)∈

−→
E (G)

π(u)Pu,vE[T 2
u,v] ≤ Tavg, and

√√√√ ∑
(u,v)∈

−→
E (G)

π(u)Pu,vE[Tu,v]2 ≤ T′avg.

Then there is a quantum algorithm that detects if M = ∅ with bounded error in complexity:

O

(
S+

1√
ε

(
1√
δ
Tavg + Cavg

)√
log

1

πmin
log1.5(TC)

)
.

Suppose in addition that the values E[Tu,v] = E[Tu,i] are computable in the strong sense that for any
u, we can generate a superposition proportional to

∑
i∈L(u)

√
wu,iE[Tu,i]|i⟩, and we have query access

to w′u =
∑

i∈L(u) wu,iE[Tu,i] and E[Cu]. Then there is a quantum algorithm that decides if M = ∅ with
bounded error in complexity:

O

(
S+

1√
ε

(
1√
δ
T′avg + C′avg

)√
log

1

πmin
log(TC)

)
.

Proof. As in the proof of Corollary 4.2, we will apply Theorem 4.1 to a modified graph G′ in which
we connect each u ∈ V (G) to a new vertex (u, gu), where gu = 1 if and only if u ∈ M , by an edge of
weight wu,M = δwu.

We will use the following process – which is similar to a random walk on G′ starting from π except
for the log factor in p – to design a flow on G′.

1. Sample a vertex u from π.

2. Repeat:

(a) With probability p = δ
log(2/π2

min)
, check if u ∈M , and if so, halt.

(b) Take a step to some v according to P (the random walk on G) by setting u← v.

This process gives rise to a Markov chain X1, . . . , Xτ on V (G) for a random variable τ with

E[τ ] = O

(
1

pπ(M)

)
= O

(
log 1

πmin

εδ

)
.

From this process, we can define a flow on G as follows. Let [u→ v] be the number of times the above
process moves from u to v and define for any {u, v} ∈ E(G):

θ(u, v) := E[u→ v]− E[v → u].

This satisfies θ(u, v) = −θ(v, u), and letting N→u be the number of times we leave u, and N←u be the
number of times we enter u, we have:

θ(u) =
∑
v

θ(u, v) = (E[N→u ]− E[N←u ]) = Pr[X1 = u]− Pr[Xτ = u].

It is clear that Pr[X1 = u] = π(u). We also only ever output if u ∈ M , so Pr[Xτ = u] = 0 unless
u ∈M . We can extend this to a flow on G′ by setting θ(u, (u, 1)) = θ(u) for all u ∈M . Let π̃ be the
distribution on M defined π̃(u) = π(u)− θ(u) for all u ∈M – in other words, π̃(u) is the probability
that Xτ = u. Since there are 1/p = 1

δ log
1

π2
min

steps between checks, in expectation, each time we

check if u ∈M , we are distributed according to some distribution π′ that is expected πmin/2-close to
π [LWP09, Theorem 12.3], meaning that for each u ∈M

E[π′M (u)] ≤ π(u) + πmin/2

π(M)− πmin/2
≤

3
2π(u)
1
2π(M)

= 3πM (u)
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and so π̃(u) ≤ 3πM (u), and thus:

|θ(u)| ≤ π̃(u) + π(u) ≤ 3πM (u) + π(M)πM (u) ≤ 4πM (u).

Then we have (using αt = t+ 1):

2W(G)
∑

(u,v)∈
−→
E (G′)

θ(u, v)2

wu,v
E

Tu,v∑
t=0

1

t+ 1

 ≤ ∑
(u,v)∈

−→
E (G)

θ(u, v)2

π(u)Pu,v
E[log Tu,v] +

∑
u∈M

θ(u)2

δπ(u)
E[logCu]

≤
∑

(u,v)∈
−→
E (G)

θ(u, v)2

π(u)Pu,v
logT+

16

δπ(M)2

∑
u∈M

π(u) logC

≤
∑

(u,v)∈
−→
E (G)

θ(u, v)2

π(u)Pu,v
logT+

16

δε
logC.

Above, we used wu,v = π(u)Pu,v/(2W(G)), θ(u)2 ≤ 16πM (u)2 = 16π(u)2/π(M)2, and ε ≤ π(M) =∑
u∈M π(u). We will show that,

∑
(u,v)∈

−→
E (G)

θ(u, v)2

π(u)Pu,v
≤ E[τ ] ≤

c log 1
πmin

εδ
(31)

for some constant c, from which it follows that

∑
(u,v)∈

−→
E (G′)

θ(u, v)2

wu,v
E

Tu,v∑
t=0

1

t+ 1

 ≤ 1

2W(G)

1

εδ

(
c log

1

πmin
logT+ 16 logC

)
=: R.

Then since:

∑
(u,v)∈

−→
E (G′)

wu,vE

Tu,v∑
t=0

(t+ 1)

 ≤ 2W(G)

 ∑
(u,v)∈

−→
E (G)

π(u)Pu,vE[T 2
u,v] +

∑
u∈V (G)

δπ(u)E[C2
u]

 =:W

we have

RW = O


 1

εδ

∑
(u,v)∈

−→
E (G)

π(u)Pu,vE[T 2
u,v] +

1

ε

∑
u∈V (G)

π(u)E[C2
u]

 log
1

πmin
logTC


and so the claim follows from Theorem 4.1. Thus, it remains only to establish (31), which we now
undertake.

Let [u → v]t be the event that we move from u to v in the t-th step, and let Et(u) be the event
that Xt = u, and τ > t (i.e. we don’t stop there). Then:

E[u→ v] =

∞∑
t=1

Pr[[u→ v]t] =

∞∑
t=1

Pr[Et(u)]Pu,v.

Then since θ(u, v) = E[u→ v]− E[v → u], by definition, we have:∑
(u,v)∈

−→
E (G)

θ(u, v)2

π(u)Pu,v
=

1

2

∑
u∈V (G)

∑
v∈Γ(u)

π(u)Pu,v

(
E[u→ v]

π(u)Pu,v
− E[v → u]

π(v)Pv,u

)2

=
1

2

∑
u∈V (G)

∑
v∈Γ(u)

π(u)Pu,v

(
1

π(u)

∞∑
t=1

Pr[Et(u)]−
1

π(v)

∞∑
t=1

Pr[Et(v)]

)2

=
1

2

∑
u∈V (G)

∑
v∈Γ(u)

π(u)Pu,v

(
E[N→u ]

π(u)
− E[N→v ]

π(v)

)2

.

(32)
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From (32) and the detailed balance condition π(u)Pu,v = π(v)Pv,u, it follows that:∑
(u,v)∈

−→
E (G)

θ(u, v)2

π(u)Pu,v
=

1

2

∑
u∈V (G)

∑
v∈Γ(u)

π(u)Pu,v

(
E[N→u ]2

π(u)2
+

E[N→v ]2

π(v)2
− 2

E[N→u ]

π(u)

E[N→v ]

π(v)

)

=
∑

u∈V (G)

∑
v∈Γ(u)

π(u)Pu,v
E[N→u ]2

π(u)2
−

∑
u∈V (G)

∑
v∈Γ(u)

π(u)Pu,v
E[N→u ]

π(u)

E[N→v ]

π(v)

=
∑

u∈V (G)

∑
v∈Γ(u)

Pu,vE[N→u ]

(
E[N→u ]

π(u)
− E[N→v ]

π(v)

)
.

(33)

The number of visits to u depends on if it is visited at step 1, which happens with probability
π(u), as well as the number of visits to its neighbours. Every time we leave a neighbour v of u, we
visit u next with probability Pv,u. Thus, the expected number of visits to u is:

π(u) +
∑

v∈Γ(u)

Pv,uE[N→v ].

Then since we leave u if we visit and don’t halt, the expected number of times we leave u ∈M is

E[N→u ] = π(u) +
∑

v∈Γ(u)

Pv,uE[N→v ], (34)

since we never halt on u ∈M ; and for u ∈M , since every visits ends in halting with probability δ,

E[N→u ] = (1− δ)π(u) + (1− δ)
∑

v∈Γ(u)

Pv,uE[N→v ]

so E[N→u ]−
∑

v∈Γ(u)

Pv,uE[N→v ] = π(u)− δ

1− δ
E[N→u ]. (35)

Thus:∑
v∈Γ(u)

Pu,v

(
E[N→u ]

π(u)
− E[N→v ]

π(v)

)
=

E[N→u ]

π(u)
−
∑

v∈Γ(u)

Pu,v
E[N→v ]

π(v)

=
1

π(u)

E[N→u ]−
∑

v∈Γ(u)

Pv,uE[N→v ]

 since
Pu,v
π(v)

=
Pv,u
π(u)

=

{
1 if u ∈M, by (34)

1− δ
1−δ

E[N→
u ]

π(u) if u ∈M, by (35).

Thus, continuing from (33), we have

∑
(u,v)∈

−→
E (G)

θ(u, v)2

π(u)Pu,v
=
∑
u∈M

E[N→u ] +
∑
u∈M

E[N→u ]

(
1− δ

1− δ
E[N→u ]

π(u)

)
≤

∑
u∈V (G)

E[N→u ] = E[τ ],

establishing (31).

We now turn to the special case of search, where we have the following corollary, again assuming,
for simplicity, that there are no errors:
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Corollary 4.4 (Variable-time Search (αt = t+1)). Fix a search space [n] and a distribution π on [n]
such that we can generate |π⟩ in unit cost. Suppose we have a variable-time subroutine that computes,
for any i ∈ [n], a bit g(i), in time Ti, which is a random variable on [T]. Assume all errors are 0.
Suppose ε > 0 is a lower bound on

∑
i:g(i)=1 π(i) whenever

∨
i∈[n] g(i) = 1, and Tavg and T′avg are

upper bounds such that whenever
∨
i∈[n] g(i) = 0:√∑

i∈[n]

π(i)E[T 2
i ] ≤ Tavg and

√∑
i∈[n]

π(i)E[Ti]2 ≤ T′avg.

Then there is a quantum algorithm that decides
∨
i∈[n] g(i) with bounded error in complexity:

O

(
1√
ε
Tavg log

1.5 T

)
.

If, in addition, we assume the values E[Ti] are known, in the strong sense that we can generate
a superposition proportional to

∑
i∈[n]

√
π(i)E[Ti]|i⟩ in unit cost, there is a quantum algorithm that

decides
∨
i∈[n] g(i) with bounded error in complexity:

O

(
1√
ε
T′avg logT

)
.

Proof. First note that, letting A|i⟩ = (−1)g(i), a variable-time algorithm for g is trivially a reversible
variable-time algorithm (just use Ũt = Ut). We will define a graph G as follows. Let V (G) =
{u0, . . . , un}, where u0 = (0, 0) and for all i ∈ [n], ui = (i, g(i)). Let V0 = {u0}, so σ is just a
point function, and M = {ui : g(i) = 1}. The graph will be a star with u0 the centre, connected
to each ui by an edge of weight π(i). Define label sets L(u0) = L+(u0) = [n], and for all i ∈ [n],
L(ui) = L−(ui) = {←}, and transition function fu0(i) = (i, g(i)), fui(←) = u0 for i ∈ [n]. Thus, the
variable-time subroutine can be used to implement the edge transition subroutine in this graph.

We note that it is trivial to generate |σ⟩ = |u0⟩, as well as to check if (i, b) is marked, by checking
if b = 1. Generating star states is trivial for all {ui : i ∈ [n]}, each of which has a single neighbour,
and generating |ψ⋆(u0)⟩ = |π⟩ is assumed to have unit cost. Thus, to apply Theorem 4.1, we just need
to check the positive and negative conditions. We will use αt = t+ 1 for the first part of the proof.

Positive Condition: Define π(M) :=
∑

ui∈M π(i) ≥ ε. Let θ be defined as θ(u0, ui) =
π(i)
π(M) for all

ui ∈ M , and 0 otherwise. Then it is easy to see that θ satisfies P1 and P2. P4 is trivially satisfied,
because all errors are 0. For P3, we have, using αt = t+ 1:

∑
(u,v)∈

−→
E (G)

θ(u, v)2

wu,v
E

Tu,v∑
t=0

1

t+ 1

 ≤ 2

π(M)2

∑
ui∈M

π(i)2

π(i)
E[lnTu,v] ≤

2

ε
lnT =: R.

Negative Condition: N2 is trivially satisfied because all errors are 0. For N1, we have:

∑
(u,v)∈

−→
E (G)

wu,vE

Tu,v∑
t=0

(t+ 1)

 ≤∑
i∈[n]

π(i)E
[
T 2
u,v

]
≤ T2

avg =:W.

The stated complexity follows from Theorem 4.1
For the case when the expected stopping times are known, we can set wu0,ui = π(i)E[Ti], but this

means that we need to be able to generate a state proportional to |ψ⋆(u0)⟩ =
∑

i∈[n]
√
π(i)E[Ti]|i⟩ in

unit time, which is precisely what we assume. Then to apply Theorem 4.1, we just need to check the
positive and negative conditions. We will now use αt = 1.

Positive Condition: Let θ be defined as θ(u0, ui) =
π(i)
π(M) for all ui ∈ M , and 0 otherwise. Then it

is easy to see that θ satisfies P1 and P2. P4 is trivially satisfied, because all errors are 0. For P3,
we have: ∑

(u,v)∈
−→
E (G)

θ(u, v)2

wu,v
E

Tu,v∑
t=0

1

 =
1

π(M)2

∑
ui∈M

π(i)2

π(i)E[Ti]
E [Ti + 1] ≤ 2

ε
=: R′.
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αt Complexity Special case M = {m}, π(m) ≥ ε

(1) αt = t+ 1

√ ∑
i∈[n] π(i)E[T 2

i ]

minM :M ̸=∅
∑

i∈M π(i)

√√√√1

ε

∑
i∈[n]

π(i)E[T 2
i ]

(2) αt = 1

√√√√ ∑
i∈[n] π(i)E[Ti]

minM :M ̸=∅
∑

i∈M
π(i)
E[Ti]

√√√√1

ε

∑
i∈[n]

π(i)E[Ti]E[Tm]

(3) αt = 1/(t+ 1)
1√

minM :M ̸=∅
∑

i∈M
π(i)
E[T 2

i ]

√
1

ε
E[T 2

m]

Table 1: Here we show three different versions of Corollary 4.4 that can be obtained by different settings
of αt. (1) corresponds to Corollary 4.4. We neglect log factors. For (3), as with (1) (Corollary 4.4) if
the weights are known, we can get a similar expression with E[Ti]2 instead of E[T 2

i ], which is better
when the variance of Ti is large, and a slightly better dependence on logT. To allow a comparison of
these three complexities, we show the special case where there is a single marked element M = {m},
promised to have weight at least ε. In that case, we can see that which of the three expressions is
optimal depends on how E[Tm] compares to the average: Suppose for simplicity that the stopping
times have 0 variance, so the Ti are just some natural numbers. If Tm >

∑
i∈[n] π(i)T

2
i /
∑

i∈[n] π(i)Ti,

then (1) is the smallest. If
∑

i∈[n] π(i)Ti < Tm <
∑

i∈[n] π(i)T
2
i /
∑

i∈[n] π(i)Ti, then (2) is the smallest.
And finally, if Tm <

∑
i∈[n] π(i)Ti, then (3) is the smallest. This does not guarantee that each of

the three variable-time search results is useful. This is somehow just saying that if we know Tm is
relatively small for the marked m, then we should not spend too much time in any subroutine, whereas
if we know Tm is relatively large, then we should. Perhaps there would be a simpler way to exploit
such information.

Negative Condition: N2 is trivially satisfied because all errors are 0. For N1, we have:

∑
(u,v)∈

−→
E (G)

wu,vE

Tu,v∑
t=0

1

 =
∑
i∈[n]

π(i)E [Tu,v]E [Tu,v + 1] ≤ 2(T′avg)
2 =:W ′.

The stated complexity follows from Theorem 4.1.

We proved the first part of Corollary 4.4 (i.e. E[Ti] unknown) by applying Theorem 4.1 with the setting
αt = t+1. By setting αt = 1, or αt = 1/(t+1), we can get similar results with different complexities,
as shown in Table 1. The proofs proceed as in the αt = t + 1 case, except that we use different flow
settings, θ, to upper bound P3. For the αt = 1 case, we obtain the expression in Table 1 row (2) by

setting θ(u0, ui) =
π(i)/E[Ti]∑

j∈M π(j)/E[Tj ] . For the αt = 1/(t+1) case, we obtain the expression in Table 1 row

(3) by setting θ(u0, ui) =
π(i)/E[T 2

i ]∑
j∈M π(j)/E[T 2

j ]
. One can verify that these settings of θ satsify the conditions

of Theorem 4.1. Analogous to the second part of Corollary 4.4, if the values E[Ti] are known to the
extent that we can efficiently generate a state proportional to

∑
i∈[n]

√
π(i)/E[Ti]|i⟩, which allows the

edge weights to be set to wu0,ui = π(i)/E[Ti], then by using αt = 1 and θ(u0, ui) =
π(i)/E[Ti]2∑

j∈M π(j)/E[Tj ]2 ,

we can get a complexity like the one in (3), but better by a
√
logT factor, and with E[Ti]2 in place of

E[T 2
i ].
We stress that these results could also be applied to other quantum walk search algorithms, for

example, in a version of element distinctness in which the query costs are variable. We leave specific
applications for future work.
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4.1 Proof of Theorem 4.1

We start by defining the parameters of the phase estimation algorithm (see Section 2.2) that will prove
Theorem 4.1. Our algorithm will work on the space:

H = span
{
| →⟩|u, i⟩|0, 0⟩|0⟩, | ←⟩|u, j⟩|0, 0⟩|0⟩ : u ∈ V (G), i ∈ L+(u), j ∈ L−(u)

}
⊕

T⊕
t=1

span
{
| →⟩|u, i⟩|a, z⟩|t⟩, | ←⟩|u, j⟩|a, z⟩|t⟩ : u ∈ V (G), i ∈ L+(u), j ∈ L−(u), a ∈ A, z ∈ Z≥t

}
⊂ span {|d⟩|u, i⟩|a, z⟩|t⟩ : d ∈ {←,→}, u ∈ V (G), i ∈ L(u), a ∈ A, z ∈ Z, t ∈ {0, . . . ,T}} . (36)

We first define the star states in H. To this end, suppose we obtain a graph G′ from G by adding a
single new vertex, v0, connected to each vertex u ∈ V0 by an edge of weight w0σ(u) and each vertex
in M by an edge of weight wM (for w0 and wM to be determined later). We can suppose each of these
new edges have the label 0, and so we set:

L+
G′(u) =

{
L+
G(u) ∪ {0} if u ∈ V0 ∪M

L+
G(u) else.

Then we define the star states:

∀u ∈ V (G), |ψ⋆(u)⟩ =
∑

i∈L+
G′ (u)

√
wu,i| →⟩|u, i⟩|0, 0⟩|0⟩ −

∑
j∈L−

G(u)

√
wu,j | ←⟩|u, j⟩|0, 0⟩|0⟩. (37)

Throughout this section, we will let L+(u) = L+
G′(u), so that we are always talking about the neigh-

bours with respect to G′ unless explicitly stated otherwise.
Our algorithm will be based on the star states, as well as the transition states Ψ0 ∪ Ψ1 (see

Definition 3.1) of the variable stopping time transition subroutine we are assuming. We recall the
form of those states in the setting of the graph transition algorithm, where

I = {(u, i) : u ∈ V (G), i ∈ L+(i)} and A|u, i⟩ = |v, j⟩

where v = fu(i), and j = f−1v (u):

Ψu,v,→
t := Ψu,i,→

t =
{
|ψu,i,→a,z,t ⟩ = | →⟩|u, i⟩(

√
αt|a, z⟩|t⟩ −

√
αt+1U

u,i
t+1|a, z⟩|t+ 1⟩) : a ∈ A, z ∈ Z>t

}
Ψu,v,←
t := Ψu,i,←

t =
{
|ψu,i,←a,z,t ⟩ = | ←⟩|v, j⟩(

√
αt|a, z⟩|t⟩ −

√
αt+1U

u,i
t+1|a, z⟩|t+ 1⟩) : a ∈ A, z ∈ Z>t

}
Ψu,v,↔
t := Ψu,i,↔

t =
{
|ψu,i,↔a,z,t ⟩ =

√
αt (| →⟩|u, i⟩ − | ←⟩Aa|u, i⟩) |a, z⟩|t⟩ : a ∈ A, z ∈ Zt

}
.

(38)

Also recall from Definition 3.1:

Ψb =
⋃

u∈V (G)
i∈L+(u)

T−1⋃
t=0

t=b mod2

(
Ψu,i,→
t ∪Ψu,i,←

t

)
∪

T⋃
t=1

t=b mod2

Ψu,i,↔
t .

Then we define:

ΨA := Ψ0 and ΨB := Ψ1 ∪ {|ψ⋆(u)⟩ : u ∈ V (G)}︸ ︷︷ ︸
=:Ψ⋆

.
(39)

Each of these sets is pairwise orthogonal. This follows from the fact that each of Ψ0 and Ψ1 is a
pairwise orthogonal set (Claim 3.2), the star states are pairwise orthogonal (easily verified), and each
star state is orthogonal to Ψ1 (easily verified). Another way of seeing this orthogonality is that starting
from the graph G, we can form an orthogonality graph, where we replace each edge of G with a ladder
gadget consisting of the orthogonality graph in Figure 2. An example of such a graph when G is a
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Ψu,v,←
0

Ψu,v,↔
1

Ψu,v,→
0

. . .

. . .

Ψu,v,←
T−1

Ψu,v,↔
T

Ψu,v,→
T−1

{|ψ⋆(v)⟩}

{|ψ⋆(u)⟩} {|ψ⋆(w)⟩}

Ψw,v,←
0

Ψw,v,↔
1

Ψw,v,→
0

. . .

. . .

Ψw,v,←
T−1

Ψw,v,↔
T

Ψw,v,→
T−1

Ψu,w,→
0 Ψu,w,↔

1 Ψu,w,←
0

Ψu,w,→
1 Ψu,w,↔

2 Ψu,w,←
1

...
...

Ψu,v,→
T−1 Ψu,v,↔

T Ψu,v,←
T−1

Figure 3: If G is a triangle with vertices u, v and w, and
−→
E (G) = {(u, v), (w, v), (u,w)}, this figure

shows the overlap graph for the spaces that make up ΨA∪ΨB. If G is any graph, we can get a similar
overlap graph by replacing each edge of G with a “ladder” gadget, like those shown here. While the
height of each ladder is T = Tmax, if there is some probability of stopping at an earlier time, we can
get flow through earlier rungs, thus saving time. The weights of the rungs should correspond to the
probability that the algorithm halts at that time.

triangle is shown in Figure 3. Each node of the graph represents a set of pairwise orthogonal vectors,
and there is an edge between two nodes if and only if states in the sets overlap. Since this graph is
bipartite, and ΨA and ΨB are a bipartition (i.e. they are each independent sets) they are each pairwise
orthogonal.

The algorithm in Theorem 4.1 will be a phase estimation algorithm, a la Theorem 2.11, on a
unitary UAB = (2ΠA − I)(2ΠB − I), where A = span{ΨA} and B = span{ΨB}, on initial state:

|ψ0⟩ = | →⟩|σ⟩|0, 0⟩|0⟩. (40)

We have the following corollary of Lemma 3.3, and the fact that Ψ⋆ can be generated in unit cost:

Corollary 4.5. The unitary UAB can be implemented in O(logT) complexity.

4.1.1 Positive Analysis

Suppose there is a flow θ satisfying conditions P1-P4 of Theorem 4.1. We can extend θ to a circulation
(see Definition 2.3) on G′ by assigning:

∀u ∈ V0 ∪M, θ(v0, u) = θ(u).

Then letting θ(u, i) := θ(u, fu(i)), we define:

|w⟩ :=
∑

u∈V (G),i∈L+
G′ (u)

θ(u, i)
√
wu,i
|w+(u, i)⟩, (41)

where

|w+(u, i)⟩ = (| →⟩|u, i⟩+ | ←⟩|v, j⟩)
T∑
t=0

1
√
αt
|wt(u, i)⟩|t⟩

is the subroutine’s positive history state on input (u, i), as defined in Definition 3.4. We will prove
that this is a positive witness.
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Lemma 4.6. The state |w⟩ defined in (41) is a δ-positive witness for

δ = 3w0

∑
u∈V (G),i∈L+(u)

θ(u, i)2

wu,i
E

[
ϵ
Tu,i
u,i

αTu,i

]
.

Letting w0 = R−1, for sufficiently large wM, |w⟩ has complexity

∥|w⟩∥2

|⟨ψ0|w⟩|2
≤ 2w0

∑
(u,v)∈

−→
E (G)

θ(u, v)2

wu,v
E

Tu,i−1∑
t=0

1

αt

+ 4 ≤ 6 =: c+.

Proof. We begin by showing that |w⟩ is almost orthogonal to A+ B. We first note that by Claim 3.8
and the definition of |w⟩, |w⟩ is orthogonal to all |ψ←,u,ia,z,t ⟩ and all |ψ→,u,ia,z,t ⟩. We now show that |w⟩
is also orthogonal to all star states. First note that star states have |0⟩ in the last (time) register.
Referring to Definition 3.4, and using A|u, i⟩ = |v, j⟩, we have:

(I ⊗ |0⟩⟨0|)|w+(u, i)⟩ =
1
√
α0

(| →⟩|u, i⟩+ | ←⟩|v, j⟩)|w0(u, i)⟩|0⟩.

Since |w0(u, i)⟩ = |0, 0⟩ and α0 = 1, we have, using the notation
−−−→
(v, j) = (u, i) for i ∈ L+(u), v = fu(i),

and j = f−1v (u):

⟨ψ⋆(u)|w⟩ =
∑

i∈L+(u)

√
wu,i

θ(u, i)
√
wu,i

1
√
α0
⟨0, 0|w0(u, i)⟩+

∑
j∈L−(u)

√
wu,j

θ(u, j)
√
wu,j

1
√
α0
⟨0, 0|w0−−−→(u, j)⟩

=
∑
i∈L(u)

θ(u, i) = 0,

since θ is a circulation on G′. Thus, the only states in ΨA ∪ΨB not orthogonal to |w⟩ are the states
|ψu,i,↔a,z,t ⟩ in (38). We claim that such a state only overlaps |w⟩ in the |w+(u, i)⟩ part. That is because
|w+(u, i)⟩ has (| →⟩|u, i⟩+| ←⟩|v, j⟩) in the first register, whereas |ψ↔,u,ia,z,t ⟩ has (| →⟩|u, i⟩−| ←⟩Aa|u, i⟩),
and we are assuming that ⟨v′, j′|Aa|u, i⟩ = 0 for all a whenever (v′, j′) ̸= (v, j), where v = fu(i) and
j = f−1v (u). Thus:

⟨ψu,i,↔a,z,t |w⟩ =
θ(u, i)
√
wu,i
⟨ψu,i,↔a,z,t |w+(u, i)⟩ =

θ(u, i)
√
wu,i

(
1− ⟨u, i|A†a|v, j⟩

)
⟨a, z|wt(u, i)⟩

by (19). From this we get

|⟨ψu,i,↔a,z,t |w⟩|2 ≤

{
0 if a = g(u, i)

4 θ(u,i)
2

wu,i
|⟨a, z|wt(u, i)⟩|2 else.

Thus, using the fact that reversal states are pairwise orthogonal, we have:

∥ΠA|w⟩+ΠB|w⟩∥2 =
∑

u∈V (G),
i∈L+(u)

∑
a∈A,

t∈{0,...,T},
z∈Zt

|⟨ψu,i,↔a,z,t |w⟩|2∥∥∥|ψu,i,↔a,z,t ⟩
∥∥∥2 = 4

∑
u∈V (G),
i∈L+(u)

∑
a∈A\{g(u,i)},
t∈{0,...,T},
z∈Zt

θ(u, i)2

wu,i

|⟨a, z|wt(u, i)⟩|2

2αt
.

Letting Λbad
t be the projector onto the part of the state that outputs at time t and is incorrect, we

have ∑
a∈A\{g(u,i)},

z∈Zt

|⟨a, z|wt(u, i)⟩|2 =
∥∥∥Λbad

t |wt(u, i)⟩
∥∥∥2 = p̄u,i(t)ϵ

t
u,i,
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where p̄u,i(t) is the probability that the algorithm outputs at time t, and ϵtu,i is the probability that
the algorithm errs on input u, i given that it outputs at time t. Thus:

∥ΠA|w⟩+ΠB|w⟩∥2 = 2
∑

u∈V (G),
i∈L+(u)

θ(u, i)2

wu,i

T∑
t=0

p̄u,i(t)ϵ
t
u,i

αt
= 2

∑
u∈V (G),
i∈L+(u)

θ(u, i)2

wu,i
E

[
ϵ
Tu,i
u,i

αTu,i

]
,

where Tu,i = Tu,v is the stopping time of the subroutine on input (u, i). We can conclude that |w⟩ is
a δ-positive witness for any δ such that

δ ≥ 2

∥|w⟩∥2
∑

u∈V (G),
i∈L+(u)

θ(u, i)2

wu,i
E

[
ϵ
Tu,i
u,i

αTu,i

]
. (42)

Next we compute ∥|w⟩∥2. First we have, by Corollary 3.7:

∥|w+(u, i)⟩∥2 = 2E

Tu,i−1∑
t=0

1

αt

 ,
from which we can compute:

∥|w⟩∥2 = 2
∑

u∈V (G),i∈L+
G(u)

θ(u, i)2

wu,i
E

Tu,i−1∑
t=0

1

αt

+
∑
u∈V0

θ(u)2

w0σ(u)
+
∑
u∈M

θ(u)2

wM
. (43)

This already gives a lower bound of ∥|w⟩∥2 ≥ 1
w0

∑
u∈V0

θ(u)2

σ(u) ≥
1

3w0
by P2, which, combined with

(42), yields the desired bound on δ. Continuing from (43), and using
∑

u∈V0
θ(u)2

σ(u) ≤ 3 (P2), we have:

∥|w⟩∥2 ≤ 2
∑

u∈V (G),i∈L+
G(u)

θ(u, i)2

wu,i
E

Tu,i−1∑
t=0

1

αt

+
3

w0
+

1

w0
(44)

for sufficiently large wM. Finally, referring to (40), we compute

⟨ψ0|w⟩ =
∑
u∈V0

√
σ(u)

θ(u)√
w0σ(u)

=
1
√
w0

by P1, which, combined with (44) and P3, yields the desired upper bound on the complexity.

4.1.2 Negative Analysis

Define

|wA⟩ := −
1
√
w0

∑
u∈V (G)

i∈L+
G(u)

√
wu,i|w−(u, i)⟩

|wB⟩ := −
1
√
w0

∑
u∈V (G)

i∈L+
G(u)

√
wu,i ((| →⟩|u, i⟩ − | ←⟩A|u, i⟩)|0, 0⟩|0⟩ − |w−(u, i)⟩) +

1
√
w0

∑
u∈V (G)

|ψ⋆(u)⟩
(45)

where

|w−(u, i)⟩ = (| →⟩|u, i⟩ − | ←⟩|v, j⟩)
T∑
t=0

αt(−1)t|wt(u, i)⟩|t⟩

is the subroutine’s negative history state on input (u, i), as defined in Definition 3.4. We will prove
that |wA⟩, |wB⟩ are a negative witness. We start by showing the following.
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Claim 4.7.

∥(I −ΠA)|wA⟩∥2 ≤ 2
∑

u∈V (G),i∈L+
G(u)

wu,i
w0

E
[
αTu,iϵ

Tu,i
u,i

]
∥(I −ΠB)|wB⟩∥2 ≤ 2

∑
u∈V (G),i∈L+

G(u)

wu,i
w0

E
[
αTu,iϵ

Tu,i
u,i

]
.

Proof. Refer to (39) for the definitions of ΨA and ΨB, from which A and B are defined. By Claim 3.9,

∥(I −ΠΨ0)|w−(u, i)⟩∥
2 ≤ 2E

[
αTu,iϵ

Tu,i
u,i

]
,

where ϵtu,i is the probability of erring given that the algorithm stops at time t on input (u, i). Thus,

since ΨA = Ψ0:

∥(I −ΠA)|wA⟩∥2 =
∑

u∈V (G),i∈L+
G(u)

wu,i
w0
∥(I −ΠΨ0)|w−(u, i)⟩∥

2 ≤ 2
∑

u∈V (G),i∈L+
G(u)

wu,i
w0

E
[
αTu,iϵ

Tu,i
u,i

]
,

where we used the fact that the |w−(u, i)⟩ are pairwise orthogonal, because of the state in their first
register (see Definition 3.4).

We have |ψ⋆(u)⟩ ∈ B for all u ∈ V (G). Combining this with ΨB = Ψ1 ∪Ψ⋆, we have:

∥(I −ΠB)|wB⟩∥2 =
∑

u∈V (G),i∈L+
G(u)

wu,i
w0
∥(I −ΠΨ1) ((| →⟩|u, i⟩ − | ←⟩A|u, i⟩)|0, 0⟩|0⟩ − |w−(u, i)⟩)∥

2

≤ 2
∑

u∈V (G),i∈L+
G(u)

wu,i
w0

E
[
αTu,iϵ

Tu,i
u,i

]
, by Claim 3.9.

Lemma 4.8. The states |wA⟩, |wB⟩ defined in (45) are a δ′ negative witness for

δ′ = 2
∑

u∈V (G),i∈L+(u)

wu,i
w0

E
[
αTu,iϵ

Tu,i
u,i

]
.

Letting w0 = R−1, as in Lemma 4.6, |wA⟩ has complexity: ∥|wA⟩∥2 = 2RW =: C−.

Proof. We first note that:

√
w0(|wA⟩+ |wB⟩) = −

∑
u∈V (G),i∈L+

G(u)

√
wu,i (| →⟩|u, i⟩ − | ←⟩A|u, i⟩) |0, 0⟩|0⟩+

∑
u∈V (G)

|ψ⋆(u)⟩. (46)

Using the fact that A|u, i⟩ = |v, j⟩ whenever i ∈ L+(u), fu(i) = v and j = f−1v (u), we have:∑
u∈V (G),i∈L+

G(u)

√
wu,i (| →⟩|u, i⟩ − | ←⟩A|u, i⟩)

=
∑

u∈V (G),i∈L+
G(u)

√
wu,i| →⟩|u, i⟩ −

∑
u∈V (G),j∈L−

G(u)

√
wu,j | ←⟩|v, j⟩.

(47)

On the other hand, referring to (37):

∑
u∈V (G)

|ψ⋆(u)⟩ =
∑

u∈V (G)

 ∑
i∈L+

G′ (u)

√
wu,i| →⟩|u, i⟩ −

∑
j∈L−

G(u)

√
wu,j | ←⟩|u, j⟩

 |0, 0⟩|0⟩. (48)

Recall that G′ only differs from G in that vertices in M ∪ V0 = V0 (since M = ∅ by assumption) are
connected to an additonal vertex v0 by an edge labelled 0 ∈ L+. Thus, putting (47) and (48) into

36



(46), we have: we have:

√
w0(|wA⟩+ |wB⟩) =

∑
u∈V (G)

∑
i∈L+

G′ (u)\L
+
G(u)

√
wu,i| →⟩|u, i⟩|0, 0⟩|0⟩

=
∑
u∈V0

√
w0σ(u)| →⟩|u, 0⟩|0, 0⟩|0⟩ =

√
w0|ψ0⟩.

Combining this with Claim 4.7, we see that |wA⟩, |wB⟩ form a δ′-negative witness in the sense of
Definition 2.9. We upper bound the complexity:

∥|wA⟩∥2 =
1

w0

∑
u∈V (G),i∈L+(u)

wu,i ∥|w−(u, i)⟩∥2 =
2

w0

∑
u∈V (G),i∈L+(u)

wu,iE

Tu,i−1∑
t=0

αt

 ≤ 2W
w0

,

by Corollary 3.7, and condition N1 of Theorem 4.1. The result follows.

4.1.3 Conclusion of Proof of Theorem 4.1

Fix H as in (36), |ψ0⟩ as in (40), and ΨA and ΨB as in (39). Since |ψ0⟩ = | →⟩|σ⟩|0, 0⟩|0⟩ and
we assume we can generate |σ⟩ in cost S, we can generate |ψ0⟩ in cost S′ = S + O(logT), since we
need to initialize O(logT) qubits in addition to |σ⟩. By Corollary 4.5, we can implement UAB in cost
A = logT. Let

c+ = 6 and C− = 2RW

and let

δ = 3R−1
∑

(u,v)∈
−→
E (G)

θ(u, v)2

wu,v
E

[
ϵ
Tu,v
u,v

αTu,v

]
and δ′ = 2R

∑
(u,v)∈E(G)

wu,vE
[
αTu,vϵ

Tu,v
u,v

]
as in Lemma 4.6 and Lemma 4.8. Then we can verify that

δ = R−1o(1/W) ≤ 1

(8c+)3π8C−
by condition P4 of Theorem 4.1, and

δ′ = Ro(1/R) ≤ 3

4

1

π4c+
,

by N2. Furthermore:

Positive Condition: by Lemma 4.6, if M ̸= ∅, there is a δ-positive witness with ∥|w⟩∥2
|⟨w|ψ0⟩|2 ≤ c+; and

Negative Condition: by Lemma 4.8, if M = ∅, there is a δ′-negative witness with ∥|wA⟩∥2 ≤ C−.

Thus, by Theorem 2.11, there is a quantum algorithm that can distinguish these two cases with
bounded error in complexity:

O
(
S′ +

√
C−A

)
= O

(
S+
√
RW logT

)
.

5 Composition in Quantum Algorithms

Fix f : {0, 1}n → {0, 1}, and for each i ∈ [n], fix gi : {0, 1}m → {0, 1}. Then we can define g :
[n]×{0, 1}m → {0, 1} by g(i, x) = gi(x), and f ◦g : {0, 1}m → {0, 1} by f ◦g(x) = f(g1(x), . . . , gn(x)).
Given a bounded error quantum algorithm for f that takes time L and Q queries, and a quantum
algorithm for g with sufficiently small error, that takes time at most T = Tmax, we can compose these
algorithms to get a quantum algorithm for the composed function f ◦ g that takes time L+ Q · T. In
this section, we present a better way to compose these algorithms when the subroutine’s running time
varies in i, and its own randomness. Before we state our main theorem, we fix some notation.
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Outer Algorithm: We suppose we have a quantum algorithm that computes f : {0, 1}n → {0, 1}
using quantum queries to an input g ∈ {0, 1}n. Let V1, . . . , VL be some unitaries acting on a space:

HI ⊗HA ⊗HY = span{|i⟩|b, y⟩ : i ∈ [n] ∪ {0}, b ∈ {0, 1}, y ∈ Y},

where HI is the query register, HA is the answer register, and HY is the workspace. Let Q ⊂ [L] be
such that:

• If ℓ ∈ Q, Vℓ+1 = Og, where Og|i⟩|b, y⟩ = (−1)gi |i⟩|b, y⟩.

• If ℓ ̸∈ Q, Vℓ+1 is an input-independent unitary that can be implemented in unit cost.

Let Q = |Q|. We suppose this algorithm computes f with bounded error εO. We assume, without loss
of generality, that L is even, and that ℓ ∈ Q only if ℓ is even.

We fix some notation for discussing this outer algorithm. First, define:

∀ℓ ∈ {0, . . . , L}, |wℓO⟩ := Vℓ . . . V1|0, 0, 0⟩, (49)

the algorithm’s state at time ℓ. For ℓ ∈ {0, . . . , L}, y ∈ Y, b ∈ {0, 1}, define:

βℓi,b,y := ⟨i, b, y|wℓO⟩. (50)

Of special interest will be the query weight on i at time ℓ, for ℓ ∈ Q:

qi,ℓ :=
∥∥∥(|i⟩⟨i| ⊗ I)|wℓO⟩∥∥∥2 = ∑

b∈{0,1},y∈Y

|βℓi,b,y|2. (51)

Then the average query weight of i ∈ [n] is:

q̄i :=
1

Q

∑
ℓ∈Q

qi,ℓ. (52)

Note that
∑

i∈[n] q̄i = 1.
Similar to variable-time algorithms, we assume we can implement, in unit cost, the unitary:∑

ℓ∈{0,...,L−1}\Q

|ℓ⟩⟨ℓ| ⊗ Vℓ+1 +
∑

ℓ∈Q∪{L}

|ℓ⟩⟨ℓ| ⊗ I.

Inner Subroutine: In addition to the outer algorithm, we suppose we have an inner variable-time
subroutine, as defined in Section 3, that computes the function g(i) = gi = gi(x) with maximum time
T = Tmax. For i ∈ [n], let ϵi denote the error on input i, so in the notation of Section 3, we have:

ϵi =

T∑
t=0

p̄t(i)ϵ
t
i = E[ϵTii ].

As in Section 3, we let Ti denote the time at which the inner subroutine stops on input i, which is a
random variable on {1, . . . ,T}. Then our main theorem of this section is the following.

Theorem 5.1. Fix functions f : {0, 1}n → {0, 1} and {gi : {0, 1}m → {0, 1}}i∈[n], and an outer algo-
rithm for f with time complexity L, query complexity Q, and bounded error εO; and inner subroutine
for g with maximum time T = Tmax, as described above. Let Tavg be an upper bound such that:∑

i∈[n]

q̄iE[Ti] ≤ Tavg

and suppose the subroutine’s errors satisfy the following condition:

ϵavg :=
∑
i∈[n]

q̄iϵi ≤
η

Q(L+ QTavg)
.

Then if εO and η are sufficiently small constants, there is a quantum algorithm that computes f ◦ g
with bounded error in complexity

O ((L+ QTavg) log(LT)) .

The remainder of this section is devoted to proving Theorem 5.1.
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Figure 4: A graph showing the overlap between the states in ΨA ∪ ΨB. Each node of the graph
represents a set of pairwise orthogonal states. An edge between two nodes indicates that the sets are
not orthogonal. The states in ΨA (or ΨB) are an independent set of this graph. Here we show just a
part of the graph, for some ℓ ∈ Q.

5.1 Parameters of the Phase Estimation Algorithm

We let

H = span{|d⟩|i⟩|a, z⟩|t⟩|b, y⟩|ℓ⟩ : d ∈ {←,→}, i ∈ [n], a, b ∈ {0, 1}, z ∈ Z, y ∈ Y,
t ∈ {0, . . . ,T}, ℓ ∈ {0, . . . , L}}

⊕ span{|⊥⟩|i⟩|0, 0⟩|0⟩|b, y⟩|ℓ⟩ : i ∈ [n], b ∈ {0, 1}, z ∈ Z, y ∈ Y, ℓ ∈ {0, . . . , L}}
⊕ span{|◦⟩|i⟩|0, 0⟩|0⟩|1, y⟩|L⟩ : i ∈ [n], y ∈ Y} ⊕ span{|◦⟩|0⟩|0, 0⟩|0⟩|0, 0⟩|0⟩}.

(53)

We first define outer transition states, extending the unitaries Vℓ to H by tensoring in identities:

∀i ∈ [n], ℓ ∈ {0, . . . , L− 1} \ Q
ΨO
i,ℓ :=

{
|ψOi,b,y,ℓ⟩ := |⊥⟩|i⟩|0, 0⟩|0⟩|b, y⟩|ℓ⟩ − |⊥⟩Vℓ+1(|i⟩|0, 0⟩|0⟩|b, y⟩)|ℓ+ 1⟩ : b ∈ {0, 1}, y ∈ Y

}
. (54)

In addition to the outer algorithm, we are assuming we have an inner subroutine, which is a
variable-time subroutine {U it}i∈[n],t∈[T] as in Section 3, computing g(i) = gi – that is, we have input
space I = [n], and answer space A = {0, 1}. Note that letting A|i⟩ = (−1)gi |i⟩, and Aa|i⟩ = (−1)a|i⟩
for a ∈ {0, 1}, it is easy to verify that this variable-time subroutine reversibly computes A, simply
letting Ũt = Ut. We will use inner transition states, which are basically the transition states of the
subroutine (see Definition 3.1), but we carry around the extra information of the current state of the
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outer algorithm, |b, y⟩|ℓ⟩ as well. Throughout this section, we will use αt = 1 for all t, so we have:

∀i ∈ [n], t ∈ {0, . . . ,T− 1}, ℓ ∈ Q

Ψi,→
t,ℓ :=

{
|ψi,→a,z,t⟩|b, y⟩|ℓ⟩ = | →⟩|i⟩

(
|a, z⟩|t⟩ − U it+1|a, z⟩|t+ 1⟩

)
|b, y⟩|ℓ⟩

}
a∈{0,1},z∈Z>t,
b∈{0,1},y∈Y

Ψi,←
t,ℓ :=

{
|ψi,←a,z,t⟩|b, y⟩|ℓ⟩ = | ←⟩|i⟩

(
|a, z⟩|t⟩ − U it+1|a, z⟩|t+ 1⟩

)
|b, y⟩|ℓ⟩

}
a∈{0,1},z∈Z>t,
b∈{0,1},y∈Y

∀i ∈ [n], t ∈ [T], ℓ ∈ Q

Ψi,↔
t,ℓ :=

{
|ψi,↔a,z,t⟩|b, y⟩|ℓ⟩ = (| →⟩ − (−1)a| ←⟩) |i⟩|a, z⟩|t⟩|b, y⟩|ℓ⟩

}
a∈{0,1},z∈Zt,
b∈{0,1},y∈Y

.

(55)

We note that for d ∈ {←,→,↔}, we have

Ψi,d
t,ℓ =

⋃
b∈{0,1},y∈Y

Ψi,d
t ⊗ |b, y⟩|ℓ⟩,

where Ψi,d
t are as in Definition 3.1.

Next, we define connecting states, which represent transitioning into and out of the inner subroutine:

∀i ∈ [n], ℓ ∈ Q
Ψ→i,ℓ :=

{
|ψ→i,b,y,ℓ⟩ := |⊥⟩|i⟩|0, 0⟩|0⟩|b, y⟩|ℓ⟩ − | →⟩|i⟩|0, 0⟩|0⟩|b, y⟩|ℓ⟩

}
b∈{0,1},y∈Y

Ψ←i,ℓ :=
{
|ψ←i,b,y,ℓ⟩ := | ←⟩|i⟩|0, 0⟩|0⟩|b, y⟩|ℓ⟩ − |⊥⟩|i⟩|0, 0⟩|0⟩|b, y⟩|ℓ+ 1⟩

}
b∈{0,1},y∈Y

(56)

Analogous to how we let star states for u ∈ V0 overlap with the initial state, we define an initial
transition state:

|ψ0,v0⟩ :=
√
w0|◦⟩|0⟩|0, 0⟩|0⟩|0, 0⟩|0⟩ − |⊥⟩|0⟩|0, 0⟩|0⟩|0, 0⟩|0⟩ (57)

Finally, analogous to how we let star states of marked vertices in Section 4 have an extra edge
coming out of them (to v0), we will consider a state at time L to be marked, but we would like it to
be “more marked” if it has b = 1 in the answer register than not, which we reflect through the use of
different weights on the extra edge. With this intuition, we include the following terminal states, for
some weights w1,out > w0,out:

Ψout :=
{
|ψout
i,b,y⟩ := |⊥⟩|i⟩|0, 0⟩|0⟩|b, y⟩|L⟩ −

√
wb,out|◦⟩|i⟩|0, 0⟩|0⟩|b, y⟩|L⟩ : i ∈ [n], b ∈ {0, 1}, y ∈ Y

}
.

(58)

Recall that the transition states of the subroutine, |ψi,→a,z,t⟩, |ψ
i,←
a,z,t⟩, and |ψ

i,↔
a,z,t⟩, can be divided into

two pairwise orthogonal sets, Ψ0 and Ψ1, based on the parity of t (see Definition 3.1). We define the
following two sets of states.

ΨA =
⋃
i∈[n]

⋃
ℓ∈{0,...,L−1}\Q even

ΨO
i,ℓ ∪

⋃
i∈[n]

⋃
ℓ∈Q

(
Ψ→i,ℓ ∪Ψ←i,ℓ

)
∪Ψout ∪

⋃
b∈{0,1}
y∈Y

⋃
ℓ∈Q

(Ψ1 ⊗ |b, y⟩|ℓ⟩)

ΨB =
⋃
i∈[n]

⋃
ℓ∈{0,...,L−1}\Q odd

ΨO
i,ℓ ∪ {|ψ0,v0⟩} ∪

⋃
b∈{0,1}
y∈Y

⋃
ℓ∈Q

(Ψ0 ⊗ |b, y⟩|ℓ⟩) .
(59)

We claim that the states in ΨA (or ΨB) are pairwise orthogonal, for which the assumptions that L
is even, and every ℓ ∈ Q is even are necessary. To illustrate this, Figure 4 shows a diagram of which
of the states in ΨA ∪ΨB overlap.

The algorithm in Theorem 5.1 will be a phase estimation algorithm, a la Theorem 2.11, on a
unitary UAB = (2ΠA − I)(2ΠB − I), where A = span{ΨA} and B = span{ΨB}, on initial state:

|ψ0⟩ = |◦⟩|0⟩|0, 0⟩|0⟩|0, 0⟩|0⟩. (60)

Then we have the following:
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Lemma 5.2. UAB can be implemented in complexity O(logT+ log L).

Proof. We describe how to reflect around the states in ΨA one part at a time. We use the fact that
reflecting around a set of pairwise orthogonal states can be reduced to generating the states and then
performing a much simpler reflection, as in Lemma 3.3.

As in Lemma 3.3, we can reflect around Ψ1 in complexity O(logT), from which it follows that
we can reflect around

⋃
b,y,ℓ∈Q(Ψ1 ⊗ |b, y⟩|ℓ⟩) in this cost. By a similar argument to Lemma 3.3, we

can reflect around the outer algorithm states with ℓ even in complexity O(log L). We can reflect
around the two types of connecting states in O(log L), using the maps |⊥⟩ 7→∝ |⊥⟩ − | →⟩ and
|⊥⟩|ℓ⟩ 7→∝ | →⟩|ℓ⟩ − |⊥⟩|ℓ + 1⟩. Finally, we can reflect around the states in Ψout using the O(1)
complexity map |⊥⟩|b⟩ 7→∝ |⊥⟩ − √wb,out|◦⟩.

The case for ΨB is similar, but we note that we can reflect around |ψ0,v0⟩ using the O(1) complexity
map |◦⟩ 7→∝ √w0|◦⟩ − |⊥⟩.

5.2 Positive Analysis

Recall from Definition 3.4, the positive history states of the inner subroutine (using αt = 1):

|w+(i)⟩ = (| →⟩|i⟩+ (−1)gi | ←⟩|i⟩)
T∑
t=0

|wt(i)⟩|t⟩,

where |wt(i)⟩ is the state of the inner subroutine at time t on input i. Our positive witness will be the
following, where βℓi,b,y = ⟨i, b, y|wℓO⟩ are the amplitudes of the outer algorithm states, defined in (50):

|w⟩ = 1
√
w0
|◦⟩|0⟩|0, 0⟩|0⟩|0, 0⟩|0⟩+ |⊥⟩

L∑
ℓ=0

∑
i∈[n],b∈{0,1},y∈Y

βℓi,b,y|i⟩|0, 0⟩|0⟩|b, y⟩|ℓ⟩

+
∑
ℓ∈Q

∑
i∈[n],b∈{0,1},y∈Y

βℓi,b,y|w+(i)⟩|b, y⟩|ℓ⟩+ |◦⟩
∑

i∈[n],b∈{0,1},y∈Y

1
√
wb,out

βLi,b,y|i⟩|0, 0⟩|0⟩|b, y⟩|L⟩. (61)

Ignoring the first and last term, this can be seen (up to algorithm errors) as a history state of the
algorithm obtained by composing the inner and outer algorithms.

Claim 5.3. |w⟩ is orthogonal to all outer transition states (see (54)), connecting states (see (56)),
terminal states (see (58)), and the initial transition state (see (57)).

Proof. Outer Transition States: For outer algorithms states, we fix some ℓ ̸∈ Q. The first register
of |ψOi,b,y,ℓ⟩ = |⊥⟩(|i⟩|0, 0, 0⟩|b, y⟩|ℓ⟩ − Vℓ+1|i⟩|0, 0, 0⟩|b, y⟩|ℓ+ 1⟩) is only supported on |⊥⟩, so we have:

⟨ψOi,b,y,ℓ|w⟩ = ⟨ψOi,b,y,ℓ|
L∑

ℓ′=0

|⊥⟩
∑
i′∈[n]

b′∈{0,1},y′∈Y

βℓ
′
i′,b′,y′ |i′⟩|0, 0⟩|0⟩|b′, y′⟩|ℓ⟩

= ⟨i, b, y|
∑
i′∈[n]

b′∈{0,1},y′∈Y

βℓi′,b′,y′ |i⟩|b′, y′⟩ − ⟨i, b, y|V
†
ℓ+1

∑
i′∈[n]

b′∈{0,1},y′∈Y

βℓ+1
i′,b′,y′ |i

′⟩|b′, y′⟩

= ⟨i, b, y|wℓO⟩ − ⟨i, b, y|V
†
ℓ+1|w

ℓ+1
O ⟩ = ⟨i, b, y|wℓO⟩ − ⟨i, b, y|V

†
ℓ+1Vℓ+1|wℓO⟩ = 0.

Connecting States: For any i ∈ [n], b ∈ {0, 1}, y ∈ Y, ℓ ∈ Q, we can see by referring to (56) that
|ψ→i,b,y,ℓ⟩ = (|⊥⟩ − | →⟩)|i⟩|0, 0, 0⟩|b, y⟩|ℓ⟩, so:

⟨ψ→i,b,y,ℓ|w⟩ = βℓi,b,y − βℓi,b,y⟨ →, i, 0, 0, 0|w+(i)⟩ = βℓi,b,y − βℓi,b,y⟨0, 0|w0(i)⟩ = 0,

where we have used |w0(i)⟩ = |0, 0⟩ (see Definition 3.4). Similarly, |ψ←i,b,y,ℓ⟩ = | ←⟩|i⟩|0, 0, 0⟩|b, y⟩|ℓ⟩ −
|⊥⟩|i⟩|0, 0, 0⟩|b, y⟩|ℓ+ 1⟩, so:

⟨ψ←i,b,y,ℓ|w⟩ = βℓi,b,y⟨ ←, i, 0, 0, 0|w+(i)⟩ − βℓ+1
i,b,y = (−1)giβℓi,b,y⟨0, 0|w0(i)⟩ − βℓ+1

i,b,y = (−1)giβℓi,b,y − βℓ+1
i,b,y.
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To see that this is 0, we use the fact that since ℓ ∈ Q, Vℓ+1 = Og is a query, so:

βℓ+1
i,b,y = ⟨i, b, y|w

ℓ+1
O ⟩ = ⟨i, b, y|Vℓ+1|wℓO⟩ = (−1)gi⟨i, b, y|wℓO⟩ = (−1)giβℓi,b,y. (62)

Initial Transition State |ψ0,v0⟩ =
√
w0|◦⟩|0⟩|0, 0⟩|0⟩|0, 0⟩|0⟩ − |⊥⟩|0⟩|0, 0⟩|0⟩|0, 0⟩|0⟩:

⟨ψ0,v0 |w⟩ =
√
w0

1
√
w0
⟨◦, 0, 0, 0, 0, 0, 0, 0|◦, 0, 0, 0, 0, 0, 0, 0⟩ − β00,0,0 = 0,

since |w0
O⟩ = |0⟩|0, 0⟩, so β00,0,0 = ⟨0, 0, 0|w0

O⟩ = 1.
Terminal States: For i ∈ [n], b ∈ {0, 1}, and y ∈ Y, |ψout

i,b,y⟩ = (|⊥⟩ − √wb,out|◦⟩)|i⟩|0, 0⟩|0⟩|b, y⟩|L⟩,
so:

⟨ψMi,y|w⟩ = ⟨⊥|⊥⟩βLi,b,y − ⟨ ◦ |◦⟩
√
wb,out

1
√
wb,out

βLi,b,y = 0.

Lemma 5.4 (Positive Witness). Suppose f ◦ g(x) = 1, and let |w⟩ be as in (61), and |ψ0⟩ as in (60).
Then letting δ = 2w0Qϵavg, |w⟩ is a δ-positive witness with

∥|w⟩∥2

|⟨w|ψ0⟩|2
≤ 1 + w0

(
L+ 1 + 2Q (Tavg + 1) +

εO
w0,out

+
1− εO
w1,out

)
.

Proof. Let Ξb be the orthogonal projector onto states with b in the outer algorithm’s answer register,
and p0 the probability that the outer algorithm outputs 0 on input g(x) (assuming Og is implemented
with no error), so in particular, p0 ≤ εO. Then we have:

∥|w⟩∥2 = 1

w0
+

L∑
ℓ=0

∥∥∥|wℓO⟩∥∥∥2 +∑
ℓ∈Q

∑
i∈[n]

b∈{0,1},y∈Y

|βℓi,b,y|2 ∥|w+(i)⟩∥2 +
∥∥Ξ0|wL

O⟩
∥∥2

w0,out
+

∥∥Ξ1|wL
O⟩
∥∥2

w1,out
(63)

=
1

w0
+ L+ 1 +

∑
ℓ∈Q

∑
i∈[n]

b∈{0,1},y∈Y

|βℓi,b,y|22E [Ti + 1] +
p0

w0,out
+

1− p0
w1,out

Corollary 3.7

≤ 1

w0
+ L+ 1 + 2

∑
i∈[n]

∑
ℓ∈Q

qi,ℓE[Ti + 1] +
εO

w0,out
+

1− εO
w1,out

w1,out > w0,out and (51)

=
1

w0
+ L+ 1 + 2Q

∑
i∈[n]

q̄i(E[Ti] + 1) +
εO

w0,out
+

1− εO
w1,out

by (52)

≤ 1

w0
+ L+ 1 + 2Q (Tavg + 1) +

εO
w0,out

+
1− εO
w1,out

,

where in the last line we have used the assumption from the theorem statement that Tavg upper
bounds the average stopping time. Combined with the observation that ⟨ψ0|w⟩ = 1√

w0
, we get the

desired complexity bound.
To complete the proof, we upper bound ∥ΠA|w⟩∥2 and ∥ΠB|w⟩∥2, to show that |w⟩ is a δ-positive

witness, as defined in Definition 2.10. By Claim 5.3, the only states in ΨA∪ΨB (see (59)) that overlap
|w⟩ are the inner algorithm states (see (55)). Since the inner algorithm states do not have ⊥ or ◦ in
the first register, we have:

ΠA|w⟩ =
∑

b∈{0,1}
y∈Y

(∑
ℓ∈Q

ΠΨ1 ⊗ |b, y, ℓ⟩⟨b, y, ℓ|

)∑
ℓ∈Q

∑
i∈[n]

βℓi,b,y|w+(i)⟩|b, y⟩|ℓ⟩

=
∑
i∈[n]

∑
ℓ∈Q

ΠΨ1 |w+(i)⟩ ⊗
∑

b∈{0,1},y∈Y

βℓi,b,y|b, y⟩|ℓ⟩.

Then applying Claim 3.8, which says that (using αt = 1)

∥ΠΨ1 |w+(i)⟩∥2 ≤ 2E
[
ϵTii

]
= 2ϵi,
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and since |w+(i)⟩ are orthogonal for different i, we have:

∥ΠA|w⟩∥2 =
∑
i∈[n]

∑
ℓ∈Q
∥ΠΨ1 |w+(i)⟩∥2

∑
b∈{0,1},y∈Y

|βℓi,b,y|2 ≤ 2Q
∑
i∈[n]

q̄iϵi by (51) and (52)

≤ 2Qϵavg ≤ 2w0Qϵavg ∥|w⟩∥2 = δ ∥|w⟩∥2 ,

since, by (63), ∥|w⟩∥2 ≥ 1/w0. By a nearly identical proof where we simply swap ΠΨ0 with ΠΨ1 , we
have a similar upper bound on ∥ΠB|w⟩∥2, and thus, |w⟩ is a δ-positive witness.

5.3 Negative Analysis

We will use the negative history states |w−(i)⟩ defined in Definition 3.4, and the amplitudes of the
states of the outer algorithm at time ℓ, βi,b,y = ⟨i, b, y|wℓO⟩, defined in (50), to define a negative witness
(see Definition 2.9). We first define:

|w̃A⟩ :=
∑

ℓ∈{0,...,L−1}\Q
even

∑
i,b,y

βℓi,b,y|ψOi,b,y,ℓ⟩+
∑
ℓ∈Q

∑
i,b,y

βℓi,b,y

(
|ψ→i,b,y,ℓ⟩+ (−1)gi |ψ←i,b,y,ℓ⟩

− |w−(i)⟩|b, y⟩|ℓ⟩+ (| →⟩|i⟩ − (−1)gi | ←⟩|i⟩)|0, 0⟩|0⟩|b, y⟩|ℓ⟩

)
and |w̃B⟩ :=

∑
ℓ∈{0,...,L−1}\Q

odd

∑
i,b,y

βℓi,b,y|ψOi,b,y,ℓ⟩+
∑
ℓ∈Q

∑
i,b,y

βℓi,b,y|w−(i)⟩|b, y⟩|ℓ⟩,

(64)

where the outer transition states |ψOi,b,y,ℓ⟩ are defined in (54), and the connecting states |ψ→i,b,y,ℓ⟩, |ψ←i,b,y,ℓ⟩
are defined in (56). Recall that we assume that all ℓ ∈ Q are even.

Claim 5.5. ∥(I −ΠA)|w̃A⟩∥2 ≤ 2Qϵavg and ∥(I −ΠB)|w̃B⟩∥2 ≤ 2Qϵavg.

Proof. Referring to (59), we can see that |ψOi,b,y,ℓ⟩ ∈ ΨA whenever ℓ is even, and in ΨB whenever

ℓ is odd. Furthermore, whenever ℓ ∈ Q (and so by assumption ℓ is even), |ψ→i,b,y,ℓ⟩, |ψ←i,b,y,ℓ⟩ ∈ ΨA,

Ψ1 ⊗ |b, y⟩|ℓ⟩ ⊂ ΨA, and Ψ0 ⊗ |b, y⟩|ℓ⟩ ⊂ ΨB, so:

∥(I −ΠA)|w̃A⟩∥2 ≤
∑
ℓ∈Q

∑
i,b,y

|βℓi,b,y|2 ∥(I −ΠΨ1) (|w−(i)⟩ − (| →⟩|i⟩ − (−1)gi | ←⟩|i⟩)|0, 0⟩|0⟩)∥2

≤
∑
ℓ∈Q

∑
i,b,y

|βℓi,b,y|22E[ϵ
Ti
i ] by Claim 3.9,

= 2
∑
ℓ∈Q

∑
i∈[n]

qi,ℓϵi = 2Q
∑
i∈[n]

q̄iϵi = 2Qϵavg by (51) and (52).

Similarly, again applying Claim 3.9:

∥(I −ΠB)|w̃B⟩∥2 ≤
∑
ℓ∈Q

∑
i,b,y

|βℓi,b,y|2 ∥(I −ΠΨ0)|w−(i)⟩∥
2 ≤

∑
ℓ∈Q

∑
i,b,y

|βℓi,b,y|22E[ϵ
Ti
i ] = 2Qϵavg.

Claim 5.6. Let |w̃A⟩ and |w̃B⟩ be as defined in (64). For ℓ ∈ {0, . . . , L}, define

|w̄ℓO⟩ :=
∑
i,b,y

βℓi,b,y|i⟩|0, 0⟩|0⟩|b, y⟩,

which is just the state of the outer algorithm at time ℓ, |wℓO⟩, with extra registers set to 0. Then

|w̃A⟩+ |w̃B⟩ = |⊥⟩|0⟩|0, 0⟩|0⟩|0, 0⟩|0⟩ − |⊥⟩|w̄L
O⟩|L⟩.
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Proof. Referring to (64), we have:

|w̃A⟩+ |w̃B⟩ =
L−1∑
ℓ=0

∑
i,b,y

βℓi,b,y|ψOi,b,y,ℓ⟩

+
∑
ℓ∈Q

∑
i,b,y

βℓi,b,y
(
|ψ→i,b,y,ℓ⟩+ (−1)gi |ψ←i,b,y,ℓ⟩+ (| →⟩ − (−1)gi | ←⟩)|i⟩|0, 0⟩|0⟩|b, y⟩|ℓ⟩

)
.

(65)

Referring to (56), we can compute, for any ℓ ∈ Q:∑
i,b,y

βℓi,b,y|ψ→i,b,y,ℓ⟩ =
∑
i,b,y

βℓi,b,y(|⊥⟩|i⟩|0, 0⟩|0⟩|b, y⟩|ℓ⟩ − | →⟩|i⟩|0, 0⟩|0⟩|b, y⟩|ℓ⟩) = (|⊥⟩ − | →⟩)|w̄ℓO⟩|ℓ⟩.

(66)

Similarly, since ℓ ∈ Q, Vℓ+1 is a query, so we have βℓ+1
i,b,y = (−1)giβℓi,b,y (see (62)). Thus we have, again

referring to (56):∑
i,b,y

βℓi,b,y(−1)gi |ψ←i,b,y,ℓ⟩ =
∑
i,b,y

βℓ+1
i,b,y(| ←⟩|i⟩|0, 0⟩|0⟩|b, y⟩|ℓ⟩ − |⊥⟩|i⟩|0, 0⟩|0⟩|b, y⟩|ℓ+ 1⟩)

= | ←⟩|w̄ℓ+1
O ⟩|ℓ⟩ − |⊥⟩|w̄ℓ+1

O ⟩|ℓ+ 1⟩.
(67)

Still assuming ℓ ∈ Q, we have:∑
i,b,y

βℓi,b,y (| →⟩|i⟩ − (−1)gi | ←⟩|i⟩) |0, 0⟩|0⟩|b, y⟩|ℓ⟩

= | →⟩
∑
i,b,y

βℓi,b,y|i⟩|0, 0⟩|0⟩|b, y⟩|ℓ⟩ − | ←⟩
∑
i,b,y

βℓ+1
i,b,y|i⟩|0, 0⟩|0⟩|b, y⟩|ℓ⟩ = | →⟩|w̄

ℓ
O⟩|ℓ⟩ − | ←⟩|w̄ℓ+1

O ⟩|ℓ⟩.

(68)

Thus, combining (66), (67) and (68), we have that for all ℓ ∈ Q,∑
i,b,y

βℓi,b,y
(
|ψ→i,b,y,ℓ⟩+ (−1)gi |ψ←i,b,y,ℓ⟩+ (| →⟩|i⟩ − (−1)gi | ←⟩|i⟩) |0, 0⟩|0⟩|b, y⟩|ℓ⟩

)
= |⊥⟩

(
|w̄ℓO⟩|ℓ⟩ − |w̄ℓ+1

O ⟩|ℓ+ 1⟩
)
.

(69)

Next, referring to (54), we can compute:∑
ℓ∈{0,...,L−1}\Q

∑
i,b,y

βℓi,b,y|ψOi,b,y,ℓ⟩

=
∑

ℓ∈{0,...,L−1}\Q

∑
i,b,y

βℓi,b,y|⊥⟩ (|i⟩|0, 0⟩|0⟩|b, y⟩|ℓ⟩ − Vℓ+1(|i⟩|0, 0⟩|0⟩|b, y⟩)|ℓ+ 1⟩)

= |⊥⟩
∑

ℓ∈{0,...,L−1}\Q

|w̄ℓO⟩|ℓ⟩ − |⊥⟩
∑

ℓ∈{0,...,L−1}\Q

Vℓ+1|w̄ℓO⟩|ℓ+ 1⟩

= |⊥⟩
∑

ℓ∈{0,...,L−1}\Q

|w̄ℓO⟩|ℓ⟩ − |⊥⟩
∑

ℓ∈{0,...,L−1}\Q

|w̄ℓ+1
O ⟩|ℓ+ 1⟩.

(70)

Combining (69) and (70) in (65), we can compute:

|w̃A⟩+ |w̃B⟩ = |⊥⟩

 ∑
ℓ∈{0,...,L−1}\Q

(
|w̄ℓO⟩|ℓ⟩ − |w̄ℓ+1

O ⟩|ℓ+ 1⟩
)
+
∑
ℓ∈Q

(
|w̄ℓO⟩|ℓ⟩ − |w̄ℓ+1

O ⟩|ℓ+ 1⟩
)

=
L−1∑
ℓ=0

|w̄ℓO⟩|ℓ⟩ −
L−1∑
ℓ=0

|w̄ℓ+1
O ⟩|ℓ+ 1⟩ = |⊥⟩|w̄0

O⟩|0⟩ − |⊥⟩|w̄L
O⟩|L⟩.

The proof is completed by observing that |w̄0
O⟩ = |0⟩|0, 0⟩|0⟩|0, 0⟩ (see (49)).
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We are now ready to define the negative witness. We let:

|wA⟩ =
1
√
w0

(
|w̃A⟩+ |⊥⟩|w̄L

O⟩|L⟩
)

and |wB⟩ =
1
√
w0

(|ψ0,v0⟩+ |w̃B⟩) , (71)

where |ψ0,v0⟩ is defined in (57), |w̄L
O⟩ is defined in Claim 5.6, and |w̃A⟩ and |w̃B⟩ are defined in (64).

Lemma 5.7. Suppose f(g(x)) = 0. Let

δ′ =
4

w0
(2Qϵavg + w1,outεO + w0,out(1− εO)) .

Then |wA⟩, |wB⟩ is a δ′-negative witness (see Definition 2.9) with complexity:

∥|wA⟩∥2 ≤
4

w0
(L+ 2Q(Tavg + 1) + 1) .

Proof. We first verify that |wA⟩+ |wB⟩ = |ψ0⟩ (see (60)), letting |06⟩ = |0⟩|0, 0⟩|0⟩|0, 0⟩:
√
w0(|wA⟩+ |wB⟩) = |ψ0,v0⟩+ |⊥⟩|06⟩|0⟩ − |⊥⟩|w̄L

O⟩|L⟩+ |⊥⟩|w̄L
O⟩|L⟩ by Claim 5.6

=
√
w0|◦⟩|06⟩|0⟩ − |⊥⟩|06⟩|0⟩+ |⊥⟩|06⟩|0⟩ by (57)

=
√
w0|ψ0⟩ by (60).

We thus analyze the error of this negative witness. We have:

∥(I −ΠA)|wA⟩∥2 ≤
4

w0

(
∥(I −ΠA)|w̃A⟩∥2 +

∥∥∥(I −ΠA)|⊥⟩|w̄L
O⟩|L⟩

∥∥∥2) . (72)

For the second term, we note that since |ψout
i,b,y⟩ ∈ ΨA, we have:

(I −ΠA)|⊥⟩|w̄L
O⟩|L⟩ = (I −ΠA)

|⊥⟩|w̄L
O⟩|L⟩ −

∑
i,b,y

βLi,b,y|ψout
i,b,y⟩


and, letting Ξb denote the orthogonal projector onto states with b in the outer algorithm’s answer
register:

|⊥⟩|w̄L
O⟩|L⟩ −

∑
i,b,y

βLi,b,y|ψout
i,b,y⟩

= |⊥⟩
∑
i,b,y

βLi,b,y|i⟩|0, 0⟩|0⟩|b, y⟩|L⟩ −
∑
i,b,y

βLi,b,y
(
|⊥⟩ − √wb,out|◦⟩

)
|i⟩|0, 0⟩|0⟩|b, y⟩|L⟩

=
√
w1,out|◦⟩Ξ1|w̄L

O⟩|L⟩+
√
w0,out|◦⟩Ξ0|w̄L

O⟩|L⟩.

Since f(g) = 0, we have
∥∥Ξ1|wL

O⟩
∥∥2 ≤ εO, since this is the probability that the outer algorithm outputs

1 (when Og is implemented perfectly). Thus, using w1,out > w0,out:∥∥∥(I −ΠA)|⊥⟩|w̄L
O⟩|L⟩

∥∥∥2 ≤ w1,out

∥∥∥Ξ1|w̄L
O⟩
∥∥∥2 + w0,out

(
1−

∥∥∥Ξ1|w̄L
O⟩
∥∥∥2) ≤ w1,outεO + w0,out(1− εO).

Combining this with Claim 5.5, which gives the upper bound ∥(I −ΠA)|w̃A⟩∥2 ≤ 2Qϵavg, in (72) we
have:

∥(I −ΠA)|wA⟩∥2 ≤
4

w0
(2Qϵavg + w1,outεO + w0,out(1− εO)) = δ′.

Similarly, since |ψ0,v0⟩ ∈ B, applying Claim 5.5, we have:

∥(I −ΠB)|wB⟩∥2 ≤
1

w0
∥(I −ΠB)|w̃B⟩∥2 ≤

2Q

w0
ϵavg < δ′.
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To complete the proof, we give an upper bound on ∥|wA⟩∥2. By (71), we have:

∥|wA⟩∥2 ≤
4

w0

(
∥|w̃A⟩∥2 +

∥∥∥|⊥⟩|w̄L
O⟩|L⟩

∥∥∥2) =
4

w0

(
∥|w̃A⟩∥2 + 1

)
. (73)

Using the fact (see (56)):

|ψ→i,b,y,ℓ⟩+ (−1)gi |ψ←i,b,y,ℓ⟩+ (| →⟩|i⟩ − (−1)gi | ←⟩|i⟩)|0, 0⟩|0⟩|b, y⟩|ℓ⟩
= |⊥⟩|i⟩|0, 0⟩|0⟩|b, y⟩|ℓ⟩ − (−1)gi |⊥⟩|i⟩|0, 0⟩|0⟩|b, y⟩|ℓ+ 1⟩

and referring to (64), we have:

∥|w̃A⟩∥2 ≤
∑

ℓ∈{0,...,L−1}\Q
even

∑
i,b,y

|βℓi,b,y|2
∥∥|ψOi,b,y,ℓ⟩∥∥2

+
∑
ℓ∈Q

∑
i,b,y

|βℓi,b,y|2 ∥|⊥⟩|i⟩|0, 0⟩|0⟩|b, y⟩(|ℓ⟩ − (−1)gi |ℓ+ 1⟩)− |w−(i)⟩|b, y⟩|ℓ⟩∥2

= 2
∑

ℓ∈{0,...,L−1}\Q
even

∥∥∥|wℓO⟩∥∥∥2 +∑
ℓ∈Q

∑
i∈[n]

qi,ℓ

(
2 + ∥|w−(i)⟩∥2

)
by (51)

= 2(L/2− Q) + 2Q+
∑
i∈[n]

Qq̄i ∥|w−(i)⟩∥2 ≤ L+
∑
i∈[n]

Qq̄i2E [Ti + 1] ,

by (52) and Corollary 3.7, using αt = 1. Plugging this into (73), we have:

∥|wA⟩∥2 ≤
4

w0

L+ 2Q

∑
i∈[n]

q̄iE[Ti] + 1

+ 1

 ≤ 4

w0
(L+ 2Q(Tavg + 1) + 1) ,

by the assumption of Theorem 5.1.

5.4 Conclusion of Proof of Theorem 5.1

We set the parameters w0, w1,out and w0,out as follows:

w0 :=
1

L+ 1 + 2Q(Tavg + 1)
, w1,out :=

1− εO
8

w0, and w0,out :=
εO
8
w0.

Note that w1,out > w0,out is satisfied.
We apply Theorem 2.11 with H as in (53), |ψ0⟩ = |◦⟩|0⟩|0, 0⟩|0⟩|0, 0⟩|0⟩ (as in (60)), and ΨA and

ΨB as in (59). First note that we can easily generate |ψ0⟩ in cost S = O(1). By Lemma 5.2 we can
implement UAB in cost A = logT+ log L. Let

c+ = 18 and C− = 4(L+ 1 + 2Q(Tavg + 1))2

and let

δ = 2w0Qϵavg =
2Qϵavg

L+ 1 + 2Q(Tavg + 1)

and δ′ =
4

w0
(2Qϵavg + w1,outεO + w0,out(1− εO)) = 8Qϵavg(L+ 1 + 2Q(Tavg + 1)) + εO(1− εO)

as in Lemma 5.4 and Lemma 5.7. Then, using the assumption in the theorem statement that ϵavg ≤
η/(Q(L+ QTavg)), we can verify that:

δ = 2Qϵavg
4(L+ 1 + 2Q(Tavg + 1))2

L+ 1 + 2Q(Tavg + 1)

1

C−
≤ 2Qη

Q(L+ QTavg)
4(L+ 1 + 2Q(Tavg + 1))

1

C−
≤ 1

(8c+)3π8
1

C−
when η is a sufficiently small constant, since Tavg ≥ 1; and

δ′≤8QηL+ 1 + 2Q(Tavg + 1)

Q(L+ QTavg)
+ εO(1− εO) ≤

3

4

1

π4c+

for sufficiently small constants εO and η. Furthermore:
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Positive Condition: By Lemma 5.4, if f(g) = 1, there is a δ-positive witness with

∥|w⟩∥2

|⟨w|ψ0⟩|2
≤ 1 + w0 (L+ 1 + 2Q(Tavg + 1)) +

w0

w0,out
εO +

w0

w1,out
(1− εO)

= 1 + 1 + 8 + 8 = 18 = c+.

Negative Condition: By Lemma 5.7, if f(g) = 0, there is a δ′-negative witness with ∥|wA⟩∥2 ≤ C−.

Thus, by Theorem 2.11, there is a quantum algorithm that decides f ◦ g with bounded error in
complexity:

O(S+
√
C−A) = O((L+ QTavg)(log L+ logT)).
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