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Quantum computers have the potential to outperform classical computers, but are currently
limited in their capabilities. One such limitation is the restricted connectivity between qubits, as
captured by the hardware’s coupling graph. This limitation poses a challenge for running algorithms
that require a coupling graph different from what the hardware can provide. To overcome this
challenge and fully utilize the hardware, efficient qubit routing strategies are necessary. In this paper,
we introduce line-graph qubit routing, a general method for routing qubits when the algorithm’s
coupling graph is a line graph and the hardware coupling graph is a heavy graph. Line-graph qubit
routing is fast, deterministic, and effective; it requires a classical computational cost that scales at
most quadratically with the number of gates in the original circuit, while producing a circuit with
a SWAP overhead of at most two times the number of two-qubit gates in the original circuit. We
implement line-graph qubit routing and demonstrate its effectiveness in mapping quantum circuits
on kagome, checkerboard, and shuriken lattices to hardware with heavy-hex, heavy-square, and
heavy-square-octagon coupling graphs, respectively. Benchmarking shows the ability of line-graph
qubit routing to outperform established general-purpose methods, both in the required classical
wall-clock time and in the quality of the solution that is found. Line-graph qubit routing has direct
applications in the quantum simulation of lattice-based models and aids the exploration of the

capabilities of near-term quantum hardware.

I. INTRODUCTION

Quantum computing offers potential to revolutionize
a wide range of domains by efficiently solving problems
that are intractable for classical computers [1, 2]. To
run any quantum algorithm, it must be compiled into
a quantum circuit that can be executed on the quan-
tum hardware. The hardware coupling graph of a quan-
tum computer, which defines adjacency between qubits
based on the ability to perform two-qubit gates between
them, plays a crucial role in this process. The problem
of ensuring that a quantum circuit is compatible with
the hardware coupling graph is referred to as the qubit
routing problem [3, 4]. While generalized methods ex-
ist for qubit routing [5], a standard approach to imple-
ment two-qubit gates between non-adjacent qubits is to
insert SWAP gates, making the qubits effectively adja-
cent [3, 4, 6-9]. To obtain a practical quantum advan-
tage on noisy intermediate-scale quantum (NISQ) [10]
devices, it is imperative that overhead arising from com-
pilation is kept to a minimum [11, 12]. However, finding
the swapping strategy that requires the least number of
SWAP gates is NP-hard [3, 6], making it a challenging
problem to solve. Heuristic, probabilistic methods have
been developed, but their classical runtime may become
problematic for large circuits, and the solution they find
may be far from optimal [4, 7-9]. Striking the right bal-
ance between the classical resources required for routing
and minimizing the circuit depth of the routed quantum
circuit is crucial in maximizing the performance of NISQ
devices.

The qubit routing problem is particularly evident in
the quantum simulation of lattice-based spin models.

One of the first areas in which it was realized that quan-
tum computers could outperform classical computers was
that of quantum simulation [13]. When applied specifi-
cally to lattice-based spin systems with two-body inter-
actions, quantum simulation by Trotterization [14] ap-
proximates the overall time evolution operator of the
quantum-mechanical system by a sequence of two-qubit
gates, where each two-qubit gate corresponds to the time
evolution according to one two-body term in the Hamil-
tonian (dynamic quantum simulation) [15, 16]. Addition-
ally, by introducing variable parameters for the per-term
evolution times, these circuits are transformed to circuits
that prepare ansatz states for the variational quantum
eigensolver (VQE) [17], designed to variationally find the
ground state of the quantum-mechanical system (static
quantum simulation). Before any routing, these circuits
for dynamic and static quantum simulation naturally re-
quire hardware with a coupling graph that is equal to
the lattice of the lattice-based spin system (the virtual
graph) [17]. There will generally be a mismatch between
the virtual graph and the hardware coupling graph. Effi-
cient qubit routing plays a crucial role in overcoming this
mismatch.

In this paper, we develop an efficient and determinis-
tic qubit routing strategy, which we call line-graph qubit
routing, or line-graph routing for short. It maps any
circuit on a line graph L(G) to hardware with coupling
graph heavy(G). Here, heavy(G) is obtained from the
graph G by placing a node on every edge of G. We call
these added nodes the heavy nodes of heavy(G). By def-
inition, the nodes of the line graph L(G) consist of the
heavy nodes of heavy(G). In L(G), two nodes are adja-
cent if the associated edges in G are incident on the same
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heavy-hex

shuriken/

square-kagome checkerboard

heavy-square/

heavy-square-octagon Lieb lattice [18]

(model) material | spin glasses [19, 20]

Table I.

herbertsmithite [21]

atlasovite-like [22, 23] | planar pyrochlore [24—26)]

Examples of line-graph routing. Line-graph routing maps any circuit with coupling graph L(G) (blue edges) to

circuits with coupling graph heavy(G) (black edges). Line-graph routing finds direct application in the quantum simulation
of the magnetic properties of some (model) materials with coupling graph L(G) (last row) on hardware with coupling graph

heavy(G).

node of G. It is instructive to verify this property for
one of the pairs (L(G),heavy(G)) in Table I. For exam-
ple, line-graph routing maps the circuits for the quantum
simulation of the Heisenberg anti-ferromagnet (HAFM)
on the kagome lattice to hardware with a heavy-hex cou-
pling graph. In this example, G is the hexagonal lattice
and L(G) is the kagome lattice. Despite these examples,
we stress that line-graph routing is applicable to any cir-
cuit on any line graph L(G).

The remainder of this paper is organized as follows.
We first introduce line-graph routing by example, map-
ping circuits for the quantum simulation of the kagome
HAFM to hardware with a heavy-hex coupling graph
(Sec. II). We formalize and generalize this approach to
arbitrary circuits and arbitrary line graphs in Sec. III.
We benchmark our software implementation of the gen-
eral algorithm against existing qubit routing approaches
in Sec. IV, to conclude with a discussion and outlook in
Sec. V.

II. KAGOME TO HEAVY-HEX

Line-graph routing is arguably most clearly explained
with an example, which we do in this section by map-
ping circuits for the quantum simulation of the kagome
HAFM to quantum hardware with a heavy-hex coupling
graph. First, we use this example due to the relevance of
the kagome spin model in exploring quantum phenomena
like topological states of matter and quantum spin lig-
uids [21, 27]. The kagome lattice’s significance extends to
chemistry, as it is frequently observed in transition metal
compounds and metal organic frameworks [28, 29]. The
ground state of the kagome HAFM is a long-standing
open problem in quantum magnetism [30] that can po-
tentially be solved on NISQ devices [16]. By classical
emulation of noiseless quantum computers, it was previ-

ously demonstrated that the ground-state energy found
by a VQE approaches the true ground-state energy ex-
ponentially as a function of the circuit depth [16].

Second, the heavy-hex coupling graph is the coupling
graph of IBM’s current and future superconducting hard-
ware [31, 32]. Among the emerging quantum hardware
platforms, IBM’s superconducting qubits have gained sig-
nificant attention due to their rapid development and
scalability in the NISQ era. To optimize this super-
conducting qubit hardware and mitigate the occurrence
of frequency collisions and crosstalk [33-35], error cor-
recting codes are designed on low-degree graphs such as
heavy-hex and heavy-square lattices, preventing errors
during program execution [31, 32, 36]. This motivates
the further development of hardware with these types of
connectivity graphs.

The relevance of the kagome-to-heavy-hex mapping
was further highlighted by the IBM Quantum’s Open Sci-
ence Prize 2022, where the challenge was to prepare the
ground state of the kagome HAFM using a VQE and im-
plement it on a 16-qubit IBM Quantum Falcon device
with a heavy-hex coupling graph [37]. It is important
to note that, also within the context of quantum simu-
lation, the routing problem is not unique to the quan-
tum simulation of spin problems on the kagome lattice.
Other lattice-based spin models, such the HAFM on the
shuriken lattice, are also known for their geometric frus-
tration and challenging simulation [38].

A. Line-graph routing

The first step in line-graph routing is establishing a
one-to-one correspondence between the nodes of the vir-
tual graph (in this section, the kagome lattice) and the
hardware connectivity graph (in this section, the heavy-
hex lattice). This correspondence is achieved by aligning



the nodes of the kagome lattice with the heavy nodes of
the heavy-hex lattice, as shown in Fig. 1. Subsequently,
the light (non-heavy) nodes of the heavy-hex lattice are
used to mediate two-qubit gates between the spins on the
nodes of the kagome lattice.

To see this in more detail, assume a kagome quantum
circuit, that is, a circuit composed of single-qubit gates
on qubits {7} and two-qubit gates along the edges { (4, j)}
of a patch of the kagome lattice. To map the circuit from
the kagome to the heavy-hex lattice, we label the heavy
qubits on the heavy-hex lattice with the labels {i} of
the congruent qubits on the kagome lattice, as shown in
Fig. 1. Under this identification, any single-qubit gate in
the kagome circuit is trivially mapped to a single-qubit
gate on the heavy-hex lattice.

To map the two-qubit gates, let us label the ¢th two-
qubit gate in the kagome circuit, acting on qubits (i, j),
by Ufj. Any such gate can be performed on the heavy-
hex lattice by mapping it to the three-qubit mediated
two-qubit gate MU

U, — MU,

fnj = SWAP,,; U} [SWAP; ., (1)
where qubit m = m;; mediates the interaction between
qubits ¢ and j. This map provides the cornerstone of
line-graph routing. The key point of line-graph routing
is that for every pair of qubits (4,j) the existence and
uniqueness of the mediating qubit m = m;; is guaranteed
by the definition of L(G) and heavy(G) (see Sec. I).

Equation (1) introduces many SWAP gates that need
not be performed physically. First, SWAP gates occur-
ring at the beginning and end of the routed circuit can be
accounted for by a relabeling of the qubits. Second, any
two consecutive SWAP gates can be cancelled. These
double SWAP gates are introduced by Eq. (1) if there
are two consecutive two-qubit gates acting on the same
two qubits (possibly with additional single-qubit gates
on those qubits in between). Double SWAP gates are
also introduced by Eq. (1) in the case of two consecutive
two-qubit gates that have a single qubit in common and
where the two resulting mediated gates have a mediating
qubit in common. That is, if m = m;; = m;;, we have
by Eq. (1) that

ULUS — (SWAP,,;, UL SWAP;,,) (SWAP,,,;, U’ SWAP;,,)
= SWAP,,;U}, Uk, ;SWAP; .. (2)
In summary, line-graph routing first associates the
nodes of L(G) with the heavy nodes of heavy(G), applies

the map of Eq. (1) to all two-qubit gates, and finally
removes superfluous SWAP gates as described above.

B. Application: quantum simulation

One immediate application of the kagome-to-heavy-
hex mapping is in the quantum simulation of the kagome
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Figure 1.  The kagome lattice (colored edges) is the line
graph of the hexagonal lattice (black edges). As shown in the
figure, the nodes of the kagome lattice can be identified with
the heavy nodes of the heavy-hex lattice. The colored edges
represent one possible circuit with a kagome coupling graph.
Every color represents a layer in this circuit. In the first layer,
singlet states are created along the blue lines. Thereafter,
HEIS gates [Eq. (5)] are applied along all colored edges in
sequence, defining one circuit cycle. This cycle is repeated to
obtain the complete circuit. Figure adapted from Ref. [16].

HAFM on heavy-hex quantum hardware. In units where
h =1, the HAFM has a Hamiltonian

H =) H;j,

(4,9)

Hij = XiX; +YiY; + Z:Z;,  (3)

where the sum is over all edges (i, j) of a given graph. In
the current section, this graph could be any patch of the
kagome lattice. Here, X; denotes the Pauli-X operator
acting on qubit ¢ (similarly for Y;, Z;). This Hamiltonian
is straightforwardly generalized to arbitrary two-spin in-
teractions along the edges of a graph [39], which would
conceptually not change the constructions that follows.

The goal of dynamic quantum simulation is to com-
pute expectation values of observables with respect to
the time-evolved state |1 (t)) = e~ |+)(0)), given some
initial state |1(0)). On a quantum computer, this can be
achieved by applying the unitary [[,; e Hii (/1) to [4(0))
(the latter of which is assumed to be easy to prepare) a
total of r times. That is,

T

o)~ | [Le | o). (@

The error in this approximation is of the order ¢?/r [14],
assuming a perfect quantum computer. After the prepa-
ration of |1(t)), expectation values can be extracted by
repeated preparation and measurements. Note that H;;
acts on two qubits, so that e #i5(t/7) i a two-qubit uni-
tary that can be decomposed into a few one and two-
qubit gates that act on qubits 7, 7 only. In the case of the
HAFM, e i5(/7) is called the HEIS gate [16]

HEIS;;(a) = e la/dg—iali; /4 (5)
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Figure 2.

The line-graph routed quantum circuit for the quantum simulation of the kagome HAFM (Fig. 1), focusing on one

triangle. The circuits involving the other triangles are similar. Empty colored boxes indicate subcircuits coming in from other
triangles. The white SWAP gates can be omitted by a relabeling of the qubits (first SWAP gate) and the cancellation of double

SWAP gates [other white SWAP gates, cf. Eq. (2)].

where, in anticipation of static simulation, we have set
a = 4t/r, and where the physically irrelevant prefactor
e7@/4 and a factor of 1/4 in the exponent are included
for consistency with Ref. [16].

We can go from the circuit for dynamical simulation
[Eq. (4)] to the circuits needed for static quantum sim-
ulation by a VQE [2, 40, 41] by considering « as a free
parameter in every occurrence of the HEIS gate. VQEs
form are a promising method for computing ground
state energies of various many-body systems in the NISQ
era [2, 40, 41]. In VQEs, a parameterized quantum state
is prepared with a parameterized circuit. The energy of
this state is measured and optimized using a classical
heuristic optimization routine. By the variational princi-
ple, the lowest energy that is found in this way provides
an upper bound on the ground-state energy. In princi-
ple, there are no a priori restrictions on the structure
of the ansatz circuit [40]. In the subclass of VQEs us-
ing the so-called Hamiltonian variational ansatz (HVA),
however, each gate in the parameterized circuit is either
formed by parameterized time evolution along a term in
the Hamiltonian, or by parameterized time evolution ac-
cording to some reference Hamiltonian [17]. The initial
state of the circuit is the (known and easy-to-prepare)
ground state of the reference Hamiltonian.

One possible quantum circuit following from the above
considerations is depicted in Fig. 1 (colored edges). This
circuit can both be used for the dynamic quantum simu-
lation (fixed parameters «) or for static quantum simula-
tion using the HVA (free parameters «, to be optimized
by a classical optimization routine). Here, every color
depicts a different layer of the circuit. In the first layer,
singlet states (|01) — [10))/+/2 are placed along the blue
edges. This provides the initial state of either the cir-
cuit for dynamical or static quantum simulation. It is
the ground state of a reference Hamiltonian Z(i, 7 Hj,
where the sum is over the blue edges (i, 7). After prepa-
ration of the initial state, HEIS gates are placed along
all orange, green, red, and blue edges. This combination
of HEIS gates defines one cycle of the circuit. The cy-
cle is repeated r times. (The color blue defines both the
initial state and the last layer of the cycle.) Alternative
circuits for dynamic or static quantum simulation (using

the HVA) may be achieved by changing the initial state
or the order of the HEIS gates.

Line-graph routing maps the kagome circuit from
Fig. 1 to a circuit on the heavy-hex lattice by first iden-
tifying nodes of the respective lattices, as in Fig. 1. Sub-
sequently, Eq. (1) is applied to all gates, after which su-
perfluous SWAP gates are removed [Eq. (2)]. The routed
circuit thus obtained is shown in Fig. 2.

III. GENERAL CASE

Here, we formalize and generalize the routing strat-
egy from the previous section, which leads to our main
results, Theorem 1 and Algorithm 2. To introduce nota-
tion, we now define line- and heavy graphs more formally.
The graph heavy(G) is obtained from G by defining a
node i and edges (m, i), (i,m’) for each edge (m,m’) in
G. The nodes i are referred to as the heavy nodes. A mi-
nor but subtle point is that this construction may lead to
paths of length three as induced subgraphs of heavy(G)
in which two adjacent nodes are of degree one. That
is, induced subgraphs of the form P = {(m,1), (i,m')},
with m and 7 nodes of degree one. For example, in the
star graph (Table I), all paths emanating from the center
node (i.e., the ‘rays’ of the star) are of the form of P.
Line-graph routing [previewed in Eq. (1)] will never use
mediating qubits associated with nodes locally equiva-
lent (including neighbors and next-nearest neighbors) to
node m in P and can therefore be discarded without af-
fecting the routed circuit. In the example of the star
graph (Table T), this means the qubits associated with
the gray nodes may be removed from the routed circuit.
To avoid frequent mention of minor but subtle point, in
this paper we also refer to heavy graphs where the nodes
locally equivalent (including neighbors and next-nearest
neighbors) to node m in P are removed as heavy graphs.
After these removals, we still refer to nodes locally equiv-
alent (only including neighbors) to node ¢ in P as heavy
nodes.

The line graph of G, L(G), is defined in terms of
heavy(G) as follows: construct heavy(G) from G and let
the node set of L(G) be equal to the set of heavy nodes



{i} of heavy(G). An edge (4,j) is added to L(G) if and
only if there exists a node m in G such that (i,m) and
(m, j) are edges in heavy(G).

We say that a quantum circuit C', consisting of one-
and two-qubit gates by assumption, has coupling graph
G = (V,E) if V is equal to the set of qubit labels in
C and if (i,7) in E if and only if there exists a two-
qubit gate U;; in C. If a quantum computer has coupling
graph G = (V, E), then it can perform arbitrary single-
qubit gates on the qubits associated with each node in V'
and arbitrary two-qubit gates along each edge in E. By
Eq. (1), we then have the following theorem.

Theorem 1 (Line-graph routing). Every quantum cir-
cuit C with coupling graph L(G) can be performed on
quantum hardware with coupling graph heavy(G) with a
SWAP overhead of at most two times the number of two-
qubit gates in C.

Proof. By definition, there is a one-to-one correspon-
dence between the nodes of L(G) and the heavy nodes
{i} of heavy(G). Therefore, the single-qubit gates of C'
can be mapped directly to hardware with coupling graph
heavy(G). Furthermore, for every edge (i,7) in L(G),
there are edges (i,m) and (m,j) in heavy(G), where
m = m,;; can be determined uniquely from ¢ and j. Thus,
every two-qubit gate U;; in C' can be mapped to the
three-qubit gate MUjp; := SWAP ;U jSWAP 4, lead-
ing to an overhead of 2A SWAP gates, with A\ the total
number of two-qubit gates in C. O

Note that the above theorem does not make any as-
sumption about the graph G. Also note that the theorem
provides a hierarchy of mappings, as heavy(G) itself may
be a line graph. For example, invoking the above theorem
twice gives a routing from L(L(QG)) to heavy(L(Q)).

In practice, one may be given hardware with a cou-
pling graph H’ and asked to find the class of circuits
that can be run on this hardware using the line-graph
construction. (For an overview of the graphs that follow,
please see Fig. 3.) This task may arise if one has specific
but limited quantum hardware available and wants to ex-
plore its capabilities by looking at quantum circuits that
can be routed to this hardware with low overhead. The
most immediate class of such quantum circuits is obvi-
ously formed by circuits with coupling graph H'. In case
H' is a heavy graph, H' = heavy(G), line-graph routing
extends the possibilities to the class of circuits with cou-
pling graph L(G). If H' is a heavy graph, it is trivial
to find G such that H' = heavy(G). It is also trivial to
construct the line graph L(G) from G. Therefore, given
a heavy hardware coupling graph, it is trivial to find the
class of circuits that can be run on it by line-graph rout-
ing. For example, given hardware with a heavy-hex cou-
pling graph, it is trivial to find that line-graph routing
yields the class of kagome circuits.

The task can also be reversed: given a circuit with a
coupling graph G’, find the hardware on which it can
be run with low overhead (cf. Fig. 3). Again, the first
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Figure 3. An overview of the graphs related to line-graph

routing. All maps from the right to the left are trivial given
that H' is a heavy graph.

place to look would be hardware with coupling graph G'.
Line-graph routing extends the possibilities by adding
hardware with a coupling graph of heavy(G) with G such
that G' = L(G).

But how to find G from the circuit coupling graph G'?
This is less straightforward, first because it is not pos-
sible to find G from G’ if G’ is not a line graph. In
this case, line-graph routing cannot be applied. There
are numerous straightforward ways of checking whether
a graph is a line graph. For example, Beineke’s theo-
rem states that a graph is a line graph if and only if
it does not contain an induced subgraph out of a set of
nine forbidden subgraphs [42]. One of these forbidden
graphs is the claw (y). For example, since the heavy-
hex and hexagonal lattices consist entirely of claws, they
are themselves not line graphs. Second, even if G’ is a
line graph, it is nontrivial to find the graph G such that
G’ = L(G). Nevertheless, Roussopoulos’ algorithm [43]
finds G from G’, or reports that G’ is not a line graph, in
time O(max{n, |E¢/|}), with n the number of nodes and
|Egr| the number of edges of G'.

We briefly introduce the concepts from Roussopoulos’
algorithm that are useful to us later. If G’ is a line graph,
Roussopoulos’ algorithm partitions the edges of G’ into
complete subgraphs in such a way that no node lies in
more than two of the subgraphs (which is possible if and
only if G’ is a line graph). Then, the nodes of G cor-
respond to the sets in the partition. Additionally, the
nodes that lie in only one of the sets in the partition are
added as nodes of GG as sets of length one. Two nodes in G
are adjacent if their corresponding sets have a nonempty
overlap. For example, in Fig. 1, each triangle of colored
edges forms a set in the partition of the kagome lattice
because triangles are fully connected subgraphs of the
kagome lattice and no node of the kagome lattice is in
more than two triangles. Defining the partitions as the
nodes of L(G) and putting an edge between two nodes in
L(G) whenever the corresponding sets have a nonempty
intersection results in the hexagonal lattice (open nodes
in Fig. 1).

For line-graph routing [as previewed in Eq. (1)], L(G)
must be mapped to heavy(G) in such a way that the la-
bels of the heavy nodes of heavy(G) are identical to the
labels of the nodes of L(G). The output of Roussopoulos’



algorithm provides a convenient way to achieve this label-
ing through the following algorithm. It takes a graph G,
as generated by Roussopoulos’ algorithm, as input and
returns H = heavy(G), a heavy graph where the set of
heavy nodes is equal to the set of nodes (i.e., with equal
labels) of G’ = L(G). This generalizes and automatizes
the identification of nodes made in Fig. 1.

Algorithm 1 (Congruent heavy labels). Consider the
edges (a,b) of G for which both a and b contain more than
one node. (The nodes in a and b are from G’, the latter
of which need not be provided explicitly to the current
algorithm.) For all such edges (a,b), add (a,c) and (¢, b)
to an empty graph H. Because a and c are distinct sets
in a partition of the edges of G’ into complete subgraphs
and a and ¢ have a nonempty overlap, ¢ contains a single
entry and this entry is a node from G’. Now, consider
the edge cases, that is, the edges (a,b) in G where either
a or b is a set of length one. For every such edge, add
(a,b) to H.

Everything is now in place for the succinct presenta-
tion of line-graph routing. It maps any circuit C, with
unknown coupling graph G’, to a circuit with coupling
graph H whenever G’ is a line graph, G’ = L(G), and
where H = heavy(G).

Algorithm 2 (Line-graph routing). Construct the cou-
pling graph G’ of the circuit C. Run Roussopoulos’
algorithm on G’ to obtain G = L~(G’). Construct
heavy(G) using Algorithm 1. For every two-qubit gate
Ui; in C, let m = m;; be the node in heavy(G) that
is in between nodes 7, j of heavy(G) and replace U;; by
MUimj = SWAijUimSWAij.

Note the existence and uniqueness of mediating qubit
m are guaranteed by the definition of line graphs. In
some cases, some qubits, related to the so-called lone
leaf nodes in the coupling graph of the output circuit
of line-graph routing, can be removed from that circuit,
reducing the SWAP and qubit count of line-graph routed
circuits. This removal leads to a marginal improvement,
which may nevertheless be crucial given hardware with
few qubits, but arguably obfuscates the general idea of
line-graph routing. The definition of lone leaf nodes and
the method for their removal is presented in Appendix A.

As opposed to heuristic methods [7], line-graph rout-
ing is deterministic, allowing rigorous performance guar-
antees. Given the time complexity of Roussopoulos’ al-
gorithm [43], it is straightforward to show that the time
complexity of line-graph routing is O(A?), with A the
number of gates in the input circuit C. A tighter bound
on the time complexity can possibly obtained, but this
requires a more sophisticated analysis. Such an anal-
ysis is unnecessary for the current purposes because a
nonoptimized implementation of line-graph routing al-
ready routes circuits with thousands of qubits and hun-
dred thousands of gates within a minute on a standard
laptop [44].

To utilize line-graph routing in practice, one additional
step may be required. Quantum hardware providers will
generally use a specific labeling of the qubits on their
hardware, leading to a hardware coupling graph H’. This
labeling may differ from the labeling of H = heavy(G)
obtained through Algorithm 1. However, H can be
mapped to a subgraph of H' using an algorithm that finds
subgraph isomorphisms, such as the VF2 algorithm [45].
The VF2 algorithm generates a list of isomorphic sub-
graphs, and in practice, a selection is made based on a
performance metric, such as the average two-qubit gate
fidelity, to identify the subgraph with the best perfor-
mance. This step is commonly implemented in quantum
computing software development kits. In this paper, we
also refer to H as the hardware coupling graph and in this
wording leave the possible mapping to the fixed qubit la-
bels provided by a hardware provider implicit.

IV. IMPLEMENTATION AND
BENCHMARKING

In the Supplemental Material [44], we implement,
showcase and benchmark line-graph routing, Algo-
rithm 2, together with the removal of lone leafs (Ap-
pendix A). The implementation takes any Qiskit [46]
quantum circuit consisting of one- and two-qubit gates,
constructs its coupling graph L(G) or reports that the
coupling graph is not a line graph, finds G and heavy(G),
and outputs the routed circuit with coupling graph
heavy(G). The implementation does not rely heavily
on Qiskit’s methods and can hence straightforwardly be
transformed to an implementation in other quantum soft-
ware development kits.

Line-graph routing is benchmarked against all routing
methods available in Qiskit by default [44, 46]. In this
section, we show line-graph routing is able to confidently
outperform these default methods on relevant problem
instances. There are also problem instances where line-
graph routing does not outperform the default methods.
In the end of this section, we discuss for which types
of instances we expect line-graph routing to be superior.
We consider two types of circuits.

(i) Random. With probability 2/5, a CNOT gate is
placed along a randomly chosen edge of a given vir-
tual graph. With a probability 3/5 a gate from the set
{H,S,T} is chosen uniformly at random and placed at a
random node.

(#1) Quantum simulation. As described in detail for the
kagome lattice (Sec. IIB), circuits for the dynamical and
static quantum simulation of the HAFM on any lattice
can be defined by an edge-coloring of that lattice [15, 16].
An edge coloring of a graph is an assignment of colors to
the edges such that no two edges with the same color are
incident on the same node. This edge coloring is called
minimal if it uses the least possible number of colors.
We perform edge coloring of the virtual lattices by an
automatic method that generally finds an edge coloring



L(G) Routing method Opt. depth NSWAP Nqubit teot (S) t (s)

Complete line-graph 1036 650 10 <1 <1

SABRE 720 146 9 3 <1

Kagome line-graph 226 7968 300 43 43
SABRE 790 8486 200 886 55+ 1

Shuriken line-graph 209 13600 476 7 7
SABRE 1099 17064 323 2520 157 + 4

Checkerboard line-graph 435 18521 393 67 67
SABRE 2121 23060 282 1750 109 + 1

Table II. Excerpt of the benchmarking data available in the Supplemental Material [44]. The column headers are defined in

the main text.

that is not minimal. The benefit of this coloring method
is that it does not require a manual assignment of edge
colors. The downside is that we expect line-graph routing
to work best (compared to other methods) for circuits
derived from a minimal edge coloring. This does not pose
a problem because, as we show in this section, line-graph
routing is already able to outperform the default methods
in Qiskit in routing circuits derived from a nonminimal
edge coloring.

We found SABRE [7] to outperform the other meth-
ods in Qiskit and therefore we focus on a comparison
between line-graph routing and SABRE in what follows.
Unlike line-graph routing, SABRE is a probabilistic rout-
ing method that obtains a different qubit routing with
each run. Additionally, the intensity of the optimization
that is part of SABRE can be varied, leading to a tradeoff
between the classical resources required and the perfor-
mance characteristics of the routed circuits. We address
these issues by running SABRE 16 times (at fixed opti-
mization level) and comparing the performance against
one run of line-graph routing. We do this separately for
every optimization level available by default in Qiskit,
which range from optimization level 0 (‘no optimization’)
to optimization level 3 (‘heavy-weight optimization’) in
integer steps [46].

In Table II, we show an excerpt of the benchmarking
data, which includes problem instances on which line-
graph routing does and does not perform well. The fol-
lowing performance characteristics are listed.

(i) Opt. depth. The optimal (lowest) depth reached
by the routing method among all runs (line-graph rout-
ing is run once per virtual graph, SABRE is run 16 times
per virtual graph). Routed circuits are obtained by in-
serting SWAP gates (as dictated by line-graph routing
or SABRE) and no further gate identities are used to
simplify the resulting circuits. So, in the case of random
input circuits, the routed circuits consist of gates from
the set {CNOT, H, S, T} U{SWAP}. The routed circuits
contain, for example, double H gates if those were present
in the input circuit. In the case of quantum simulation
input circuits, the routed circuits consist of gates from
the set {SINGLET, HEIS(«)} U {SWAP}.

(i) nswap. The number of SWAP gates of the routed

circuit that achieved the lowest depth.

(111) nqubit- The number of active qubits in the routed
circuit that achieved the lowest depth.

(iv) tior. The total wall-clock time needed to run
all runs of the routing method. For line-graph rout-
ing, this includes the time needed to find heavy(G) from
L(G). The implementation of line-graph routing repeat-
edly loops through all gates using (slow) Python loops
and can likely be sped up considerably, if needed. We use
Qiskit’s standard implementation of SABRE. SABRE is
given the target graph heavy(G) as input and hence find-
ing heavy(G) from L(G) is not included in its wall-clock
time. The benchmarks for different methods are always
run on the same hardware.

(v) t. The average wall-clock time for a single run of
the routing method. The error bars are calculated by
bootstrapping the individual wall-clock times and repre-
sent symmetrized 95% confidence intervals.

The first two data lines of Table II show the perfor-
mance characteristics of line-graph routing and SABRE
when applied to a random circuit on the complete graph
with 9 nodes. SABRE was run with optimization level 1.
(Passing a higher optimization level to Qiskit’s transpiler
will trigger the usage of gate identities.) Already at an
optimization level of 1 SABRE outperforms line-graph
routing on all performance characteristics considered ex-
cept the total wall-clock time.

Data lines 3 and 4 of Table II show the performance
characteristics of line-graph routing and SABRE when
applied to circuits for the quantum simulation of the
HAFM on patches of the kagome lattice measuring 7 x 7
unit cells, with open boundary conditions and padded
edges (see [44]). Here, SABRE was run at Qiskit’s tran-
spiler optimization level 3, the highest optimization level
available. As opposed to the transpilation of the random
circuits, no gate identities are used in this process because
the gates {SWAP, SINGLET, HEIS} have unknown prop-
erties to Qiskit’s transpiler [46]. Line-graph routing out-
performs SABRE in terms of the optimal depth of the
routed circuits by about a factor of 3.5, while at the
same time requiring less time than one run of SABRE.
The line-graph routed circuit also uses less SWAP gates
than the SABRE routed circuit with the lowest depth.



However, the line-graph routed circuit uses a factor of
1.5 more qubits than the SABRE routed circuit that
achieved the lowest depth. Nevertheless, the space-time
volume of the line-graph routed circuit is still about half
of the space-time volume of the SABRE routed circuit
with the lowest depth. Similar results, with an even
larger performance gap, hold for the routing of circuits
for the quantum simulation of the HAFM on patches of
the shuriken lattice measuring 7 x 7 unit cells (lines 5 and
6 of Table IT) and patches of the checkerboard lattice of
7.5 x 7.5 unit cells (last two lines of Table II).

Line-graph routing was conceived while keeping in
mind its application in mapping quantum circuits to
hardware with a lattice-like low-degree coupling graph.
It is therefore not expected to perform well in mapping
quantum circuits to hardware with a high-degree cou-
pling graph without lattice-like structure. In fact, the
benchmarking results show that line-graph routing is not
well-suited for mapping circuits on the complete coupling
graph to hardware with a star coupling graph. One prop-
erty of line-graph routing that leads to its low effectiv-
ity on unstructured, high-degree graphs is that in the
output circuit of line-graph routing, the qubits are as-
signed a base location where they return to after they are
acted on by one [Eq. (1)] or multiple [Eq. (2)] gates from
the input circuit. This is likely advantageous for input
quantum circuits with a structured, low-degree coupling
graph. For example, in Fig. 2, in the third layer of the
cycle (red gates), all qubits are still close to where they
are needed, leading to the insertion of few SWAP gates
to get them there.

However, on high-degree coupling graphs, the prop-
erty of a base location need not be advantageous since
any qubit can be routed to any other qubit in relatively
few steps and regularly returning qubits to their base lo-
cation leads to the insertion of unnecessary SWAP gates.
As an extreme example, let us look at the action of line-
graph routing on a circuit C' with a complete coupling
graph, where at one point in C' a cascade of CNOT
gates, H;l:n CNOT; j41, is prescribed. Line-graph rout-
ing maps the circuit C' to a circuit on the star graph (Ta-
ble I). To perform CNOT, ;11 on star-graph hardware,
line-graph routing first swaps qubit 4 to the center of the
star, performs a CNOT between the center qubit and
qubit 7+ 1, and swaps qubit ¢ back to its original position
[Eq. (1)]. Not insisting that the qubits eventually return
to their original position leads to the possibility of more
efficient routing strategy. To perform the CNOT; ; 1,
swap qubit i to the center, perform the CNOT between
the center qubit and qubit ¢ 4+ 1, and leave qubit ¢ in the
center. After repeating this procedure for the subsequent
CNOT in the circuit, qubit ¢ will end up at the initial lo-
cation of qubit i+ 1. The latter approach uses half of the
number of SWAP gates compared to line-graph routing.

A second situation in which line-graph routing is not
expected to perform well is when there are subgraphs of
the virtual graph L(G) that are isomorphic to subgraphs
of heavy(G). In that case, unnecessary mediating qubits

may be inserted. For example, let L(G) be the path
graph on n nodes. When applied to circuits on this graph,
line-graph routing introduces mediating qubits between
all qubits of L(G), leading to a circuit on a path graph
with n —1 added mediating qubits. This happens despite
the fact that no routing is needed at all. If needed, line-
graph routing can be enhanced such that it detects and
prevents this behavior.

V. DISCUSSION AND OUTLOOK

In this paper, we developed line-graph routing, a qubit
routing strategy that efficiently and deterministically
maps any quantum circuit on a line graph L(G) to a
circuit on the heavy graph heavy(G). By software imple-
mentation and benchmarking, we showed its ability to
outperform standard, general-purpose methods on input
quantum circuits, circuit sizes, and hardware connectiv-
ity graphs of practical relevance.

Line-graph routing showed not to perform well in map-
ping circuits on the complete graph to the star graph.
We attribute this to the high degree and absence of a
lattice-like structure of the complete graph. Based on our
benchmarking results, we expect line-graph routing to
outperform general-purpose methods in routing circuits
with a line-graph coupling graph to low-degree hardware
coupling graphs. For superconducting qubits, these are
exactly the hardware coupling graphs preferable from an
engineering standpoint [31, 32, 36].

Line-graph routing is limited in its applicabil-
ity because it is only defined for pairs of graphs
(L(G),heavy(G)). General-purpose methods are able
to map any circuit on any graph to a circuit on any
other graph (given that the latter graph is connected
and has at least the same number of nodes as the for-
mer graph). However, in general, finding the optimal
routing strategy is NP-hard. It is therefore unlikely that
general-purpose methods can find the optimal or close-
to-optimal routing strategy. Routing strategies that are
defined on a subset of possible input circuits can never-
theless be highly efficient and effective, and indeed line-
graph routing is shown to have the ability to outper-
form standard-purpose methods on the subset of prob-
lem instances for which it is defined. The set of pairs of
graphs (L(G), heavy(Q)) is still infinitely large and con-
tains pairs of practical relevance.

The routed circuit for the simulation of a nearest-
neighbor model on L(G) can be reinterpreted as a circuit
for the quantum simulation of a next-nearest-neighbor
model on heavy(G). This is evident from Table I and
Fig. 1 and follows directly from the definition of line
graphs as given in Sec. III. This routed circuit for the
simulation of a nearest-neighbor model on L(G) can be
lifted to a circuit for the quantum simulation of a model
containing both nearest- and next-nearest-neighbor in-
teractions on heavy(G) by adding the gates arising from
nearest-neighbor interactions on heavy(G) to the routed



circuit. These gates naturally satisfy the heavy(G) con-
nectivity graph and can thus be added to the circuit with-
out any routing. This further enlarges the range of ap-
plicability of line-graph routing.

The effectiveness of line-graph routing may be im-
proved further by leveraging the freedom of which qubit
is swapped with the mediating qubit. In line-graph rout-
ing, for the implementation of the gate Ufj, it is qubit 4
that is swapped with the mediating qubit [Eq. (1)]. How-
ever, in some cases, it is only when swapping qubit j with
the mediating qubit that a cancellation of SWAP gates
from consecutive mediated two-qubit gates MU [Eq. (1),
Fig. 2] occurs. Thus, line-graph routing may be improved
by letting the decision of which qubit to swap with the
mediating qubit depend on the ensuing gates in the input
quantum circuit.

Although we showed the ability of line-graph routing
to outperform general-purpose methods, we did not prove
it gives the optimal routing. In fact, it was shown to be
suboptimal in cases where the input circuit is a circuit
on the complete graph. A proof or refutation for the
optimality of line-graph routing (possibly after includ-
ing the improvement of the previous paragraph) would
therefore require careful consideration of the allowed in-
put circuits and performance characteristic for which op-
timality is considered. Such a proof may inspire even

stronger methods that build on or generalize line-graph
routing.

A straightforward but exciting way to carry on the
work in the current paper is to run our routed circuits
on actual quantum hardware. The circuits available in
the Supplemental Material [44] can be executed as-is
on hardware with the appropriate hardware coupling
graphs. Remaining challenges therein are the extraction
of useful physical quantities from the generated quantum
states. To obtain results that go beyond anything that
can be obtained classically requires further improve-
ments of error mitigation techniques and quantum
hardware.

All code and data used to generate the results in this
paper are available as Supplemental Material [44] and at
Ref. [47].
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Appendix A: Removal of lone leaf nodes

In some cases, line-graph routing produces circuits con-
taining qubits ¢ that are swapped with only one corre-
sponding mediating qubit m; during the course of the
entire circuit. In these cases, the mediating qubits m;
can be removed and replaced by the corresponding qubits
i, leading to a reduction in the qubit and SWAP count
of the routed circuit.

We define a lone leaf i as a node in a coupling graph
heavy(G) that is of degree one and shares its only edge
with a node that has no other neighbors of degree one.
We do not assume the coupling graph is a tree. As an
example, consider the triangle graph with an extra node
i connected to one of the nodes m; of the triangle. The
node 7 is a lone leaf.

If a node i is a lone leaf in a coupling graph heavy(G),



by the construction of line-graph routing its neighbor m
must be a mediating node. For every two-qubit gate that
is performed between qubit ¢ and any other neighbor j
of m, qubits 7 and m first need to be swapped. So, as
far as the interactions with qubit ¢ are concerned, qubit
m may be fully eliminated by simply removing qubit m
and reverting mediated two-qubit gates MU;,,; to the
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original gates MUj,;. Physically, qubit ¢ can be put on
the place of qubit m. After the removal of m and the
relocation of qubit 4, inspection of Eq. (1) reveals that
qubit ¢ may in fact act as a mediating node for any two-
qubit gates between any two neighbors j, k of m unequal
to i; after a mediated gate MUj;x, qubit ¢ returns to its
starting position unaffected.
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1 Requirements

This notebook should typically run after installing
the following packages with pip (or conda). In a ter-
minal, run

pip install giskit[visualization]

or

pip install 'qiskit[visualization]'
and

pip install netket networkx tabulate

Note Netket currently needs Python 3.9 (and SciPy
>= 1.9.3). Netket is only used to generate patches
of the kagome lattice as graphs and not for line-
graph routing itself.  This notebook was tested
with a pip environment that can be recreated
with requirements.txt by running pip install
-r requirements.txt (after creating a new environ-
ment).

The file 1ine_graph_routing.py should be placed in
the same folder as the current notebook.

import line_graph_routing as lgr
import networkx as nx

2 Kagome to heavy-hex

2.1 Random

Create a random circuit on a patch of the kagome lat-
tice of 3 x 3 unit cells and show the circuit’s coupling
graph. With probability 2/5, a CNOT is placed along
an edge of the connectivity graph. With a probabil-
ity 3/5 a gate from {H,S,T} is chosen uniformly at
random and placed at a random node.

lg = lgr.kagome(3, 3)
qc = lgr.random_circuit(lg, 10**4)
cg = lgr.coupling_graph(qc)

nx.draw_kamada_kawai (cg)
print(qgc.depth())
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Route the circuit to a circuit with heavy-hex coupling
graph.

qc = lgr.line_graph_route(qc)
cg = lgr.coupling_graph(qc)
nx.draw_kamada_kawai (cg)
print (qc.depth())
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2.2 Quantum simulation

We base our circuits on edge colorings of the (kagome)
lattice by identifying every color with a layer of HEIS
gates. One of the colors (color ‘0’) doubles as a color
specifying the initial state by indicating along which
edges singlet states are placed. The entire circuit is
repeated p times, excluding initial state preparation.
Every HEIS gets its own parameter. These param-
eters can later be bound to specific values to obtain
circuits for dynamical quantum simulation or for sim-
ulated adiabatic state preparation.

First, create and show an edge coloring of the kagome
lattice.



1lg = 1lgr.edge_coloring(lg) create an edge coloring of the unit cell patch.
lgr.draw_edge_coloring(lg)
g g g8 lg = lgr.kagome(1l, 1)
Matching is perfect 1g = 1lgr.edge_coloring(lg)
Edge coloring is not minimal lgr.draw_edge_coloring(lg)

Matching is perfect

§ Edge coloring is not minimal

Create the associated circuit, route it to heavy-hex
hardware and show the coupling graph of the routed

cireuit. Create the HEIS circuit ased on this coloring, map it

to heavy-hex hardware, and show the coupling graph

= i ..
P of the routed circuit.

gc = lgr.heis_circuit(lg, p)
print(qc.depth())

gc = lgr.line_graph_route(qc)
print(qc.depth())

cg = lgr.coupling_graph(qc)
nx .draw_kamada_kawai(cg)

p=1

gc = lgr.heis_circuit(lg, p)

print(qc.depth())

gc = lgr.line_graph_route(qc)

print(gc.depth())

cg = lgr.coupling_graph(qc)

nx.draw_kamada_kawai(cg, with_labels =,
—'true')

&

6
15

Since the above circuit has the connectivity of a 2D

graph, the corresponding quantum circuit diagram

will not be very insightful. However, for a single unit

cell of the kagome lattice, the routed quantum circuit = Show the circuit diagram of the routed circuit, with
becomes a circuit on a circle, which allows for a clear parameters al_i.

representation as a quantum circuit diagram. We first



wo = [0, 3, 1, 10, 7, 11, 4, 2, 5, 8, 6,,
—9] # In the circuit diagram, placey
—qubits in this order.

gc.draw('latex', wire_order = wo)

heis (als)

heis (als)

heis (alg)

4
2
5
8:
6
9

The fircuit depth can be reduced further by replace-
ment of the initial and final SWAP gates between
qubits (10,7) and (8,6) by a relabeling of those qubits.

3 Complete graph to star graph
3.1 Random

Create a random circuit on the complete graph of
four nodes and show the circuit’s coupling graph.

n=>5

lg = nx.complete_graph(4)

gc = lgr.random_circuit(lg, 10%*2)
cg = lgr.coupling_graph(qc)

nx .draw_kamada_kawai(cg)

print(gc.depth())

56

Route the circuit to a circuit with star-graph connec-
tivity.

qc = lgr.line_graph_route(qc)
cg = lgr.coupling_graph(qc)
nx.draw_kamada_kawai (cg)

print(gc.depth())

108

3.2 Quantum simulation

As before, circuits are defined by identifying every
color with a layer of HEIS-gates. For more details,
see the kagome to heavy-hex section.

Create and show an edge coloring of the complete
graph.

lg = lgr.edge_coloring(lg)
lgr.draw_edge_coloring(lg)

Matching is perfect
Edge coloring is not minimal

Create the associated circuit, route it to heavy-hex
hardware, and show the coupling graph of the routed
circuit.

p=1

gc = lgr.heis_circuit(lg, p)
print(gc.depth())

gc = lgr.line_graph_route(qc)



print (qc.depth()) Route the circuit to a circuit with heavy-square-
cg = lgr.coupling_graph(qc) octagon connectivity.
nx.draw_kamada_kawai (cg)
qc = lgr.line_graph_route(qc)
4 cg = lgr.coupling_graph(qc)
20 nx.draw_kamada_kawai (cg)
print(qc.depth())

877

We do not show the circuit diagram in this case be-
cause the routed circuit is not a circuit on a line.

4 Shuriken to heavy square- 42 Quantum simulation

oct agon As before, circuits are defined by identifying every
color with a layer of HEIS-gates. For more details,
4.1 Random see the kagome to heavy-hex section.
Create a random circuit on a patch of the shuriken Create and show an edge coloring of the shuriken lat-
lattice of 3 x 3 unit cells. tice.
n=5 lg = 1lgr.edge_coloring(lg)
g = dgr shmen(@, ) lgr.draw_edge_coloring(lg)

gc = lgr.random_circuit(lg, 10%*4)
cg = lgr.coupling_graph(qc)
nx.draw_kamada_kawai (cg)

print (qc.depth())

Matching is perfect
Edge coloring is not minimal

%

Create the associated circuit, route it to heavy-
square-octagon hardware, and show the coupling
graph of the routed circuit.




p=1

qc = lgr.heis_circuit(lg, p)
print (qc.depth())

qc = lgr.line_graph_route(qc)
print(qgc.depth())

cg = lgr.coupling_graph(qc)
nx .draw_kamada_kawai(cg)

6
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Again, the resulting circuit diagram will not be very
insightful, but it will be for a single-unit cell patch of

the shuriken lattice.

lg = lgr.shuriken(l, 1)
lg = lgr.edge_coloring(lg)
lgr.draw_edge_coloring(lg)

Matching is perfect
Edge coloring is minimal

p-=1

qgc = lgr.heis_circuit(lg, p)
print(qc.depth())

gc = lgr.line_graph_route(qc)

print(qc.depth())

cg = lgr.coupling_graph(qc)

nx.draw_kamada_kawai(cg, with_labels =
< 'true')

gc.draw('latex')

o
R ‘ heis (alz) ‘
i

5 Checkerboard to heavy-
square

m = 2.5 # For the checkerboard lattzice,
—specify dimentions in nodes by nodes.
lg = lgr.checkerboard(m, m)

qc = lgr.random_circuit(lg, 10**4)

cg = lgr.coupling_graph(qc)

nx .draw_kamada_kawai (cg)

print(qc.depth())

872



Route the circuit to a circuit with a heavy-square Create the associated circuit, route it to heavy-

coupling graph. square-octagon hardware, and show the coupling
graph of the routed circuit.

qc = lgr.line_graph_route(qc)

cg = lgr.coupling_graph(qc) p=1
nx.draw_kamada_kawai (cg) qgc = lgr.heis_circuit(lg, p)
print(gc.depth()) print(qc.depth())

qc = lgr.line_graph_route(qc)
1622 print(qc.depth())

cg = lgr.coupling_graph(qc)
nx .draw_kamada_kawai (cg)

8
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5.1 Quantum simulation

As before, circuits are defined by identifying every
color with a layer of HEIS-gates. For more details,
see the kagome to heavy-hex section.

Create and show an edge coloring of the checkerboard § Random line graph to random
lattice
heavy graph

lg = 1lgr.edge_coloring(lg)
lgr.draw_edge_coloring(lg, spectral=True)
—# Use spactral method to find location

6.1 Random

Create a random circuit on a random graph with 6
—of nodes. nodes and show the circuit’s coupling graph. For de-
tails on radom_line_graph generation, see its func-

Matching is perfect tion definition in 1ine_graph_routing.py.

Edge coloring is not minimal



n=6 may not find a perfect matching even if it exists. If a

1lg = lgr.random_line_graph(6) perfect matching is not found, try to create another
gc = lgr.random_circuit(lg, 10%x3) random line graph (i.e., evaluate the two cells above)
cg = 1lgr.coupling_graph(qc) or use more sophisticated (or brute-force) methods to
nx.draw_kamada_kawai (cg) find a perfect matching.

print(qc.depth())
lg = lgr.edge_coloring(lg)
287 lgr.draw_edge_coloring(lg)

Matching is perfect
Edge coloring is not minimal

Route the circuit to a circuit with the associated
heavy connectivity.

qc = lgr.line_graph_route(qc)

cg = lgr.coupling_graph(qc) Create the associated circuit, route it to heavy-hex
nx.draw_kamada_kawai (cg) hfird\.Jvare and show the coupling graph of the routed
print(qc.depth()) circuit.
576 p=1

qc = lgr.heis_circuit(lg, p)
print(qc.depth())

qc = lgr.line_graph_route(qc)
print(qc.depth())

cg = lgr.coupling_graph(qc)
nx.draw_kamada_kawai (cg)

8
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6.2 Quantum simulation

As before, circuits are defined by identifying every
color with a layer of HEIS-gates. For more details,
see the kagome to heavy-hex section.

Create and show an edge coloring of random graph.
The method we use to find a perfect matching
(needed for initial state preparation) is limited and



We do not show the circuit diagram in this case be-
cause the routed circuit is not a circuit on a line.



7 Benchmarking

We benchmark line graph routing by performing the above routing tasks (but for larger unit cells) using
both line-graph qubit routing and all methods available in qiskit. These methods are ‘basic’, ‘lookahead’,
‘stochastic’, and ‘sabre’ [1].

The benchmarking settings are specified by the following options: - name The name of the virtual graph,
either kagome, shuriken or complete. - size. In case of kagome and shuriken: the size of the patch in unit
cells by unit cells. In case of complete: the number of nodes of the complete graph. - circuit type. Either
quantum simulation or random, as presented in this notebook. - p In case of kagome and shuriken: the
number of cycles of the circuit. In case of complete: the number of random gates from the set H,T,S,CNOT.
- repetitions. The number of runs for the methods sabre and stochastic. The methods 1ine-graph and
basic are deterministic and hence only run once. Correspondingly, the reported total time pertains to the
time taken for this single run in case of the latter two methods. - optimization_level. Either 0, 1, 2, or 3.
This specifies the optimization level used for the routing methods implemented in giskit [2]. This parameter
is passed directly to Qiskit’s transpiler [1]. - methods. The methods to benchmark line graph transpilation
against. Must be a list containing elements from ['sabre', 'basic','lookahead',stochastic]. These
methods are passed directly to Qiskit’s transpiler [1].

The methods sabre and stochastic are probabilistic, achieving a different routing each time they are run,
and hence achieve different performance characteristics with each run. We therefore run these methods
repetitions times and report the average, confidence interval, and best performance out of these runs. Error
bars on the data show the (symmetrized) 95% confidence interval and are obtained by bootstrapping the
data. The error interval for num_qubits is sometimes given by nan because in those cases the number of
qubits was equal for all runs. The routing methodsline-graph and basic are deterministic and for these
we enforce repetitions=1.

We consider the following performance characteristics. - method The routing method. - av. n_swaps The
average number of swaps obtained among the repetitions runs of the routing method. - min n_swap The
number of swaps of the run that achieved the lowest depth. - av. depth The average depth of the routed
circuits among the repetitions runs of the routing method. We focus on the performance of routing so
none of the gates in any of the routing methods are compiled into hardware native gates. That is, for the
purposes of assessing routing performance, we assume the gate set SWAP, HEIS, H, X, Z CNOT for the quantum
simulation circuits. For the random circuits we assume SWAP, CNOT, H, S, T. - min depth The minimum depth
among the repetitions runs of the routing method. - av. n_qubits The average number obtained among
the repetitions runs of the routing method. - total time The total wall clock time (in seconds) needed to
perform all repetitions runs of the routing method. - av. time The average (minimum) wall clock time
of the repetitions routing runs. - min. time The number wall clock run time of the run that achieved the
lowest depth.

[1] Qiskit 0.43.0 documentation, https://qiskit.org/documentation/stubs/qiskit.compiler.transpile.html, ac-
cessed 11h May 2023.
[2] https://github.com/Qiskit/qiskit-terra/tree/main/qiskit/transpiler/preset passmanagers

7.0.1 Quantum simulation, kagome and shuriken, agianst SABRE

import line_graph_routing as lgr # Loading these makes these cells stand-alone
import pickle

settings=[]
for name in ['kagome', 'shuriken']:
for side in range(1,9,2):
for p in [1,8,16]:
for optimization_level in range(4):
setting={'name' :name,
'size': (side,side),
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'circuit_type': 'quantum_simulation',

'P't P,

'repetitions' : 16,

'optimization_level' : optimization_level,
'methods' : ['sabre'l

}
settings.append(setting)

## Uncomment to rerun benchmarks. This takes a couple of hours.
#results=[]

#for setting in settings:

# result=1gr.benchmark (**setting)

# results.append(result)

# lgr.print_benchmark(result)

#

#with open('benchmark_data/kagome_shuriken.pkl', 'wb') as f:

# pickle.dump (results, f)

#Load previously obtained results from disk and show them.

import pickle

with open('benchmark_data/kagome_shuriken.pkl','rb') as f:
results=pickle.load(f)

for result in results:
lgr.print_benchmark(result)

name = kagome, size = (1, 1), circuit_type = quantum_simulation, p = 1, repetitions = 16, optimization_level = 0

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 12 * 0.0 12 7 £ 0.0 7 12 % 0.0 12 0.08 0.08 * 0.0 0.08
sabre 16 * 2.06 6 12.38 * 2.09 6 10.25 % 1.0 12 0.7 0.04 % 0.06 0.02

name = kagome, size = (1, 1), circuit_type = quantum_simulation, p = 1, repetitions = 16, optimization_level = 1

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 12 # 0.0 12 7 + 0.0 7 12 £ 0.0 12 0.08 0.08 + 0.0 0.08
sabre 10 + 0.81 6 6.44 + 0.34 6 8.75 % 0.75 8 0.32 0.02 # nan 0.02

name = kagome, size = (1, 1), circuit_type = quantum_simulation, p = 1, repetitions = 16, optimization_level = 2

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 12 * 0.0 12 7 £ 0.0 7 12 £ 0.0 12 0.08 0.08 = 0.0 0.08
sabre 6 + nan 6 6.0 * nan 6 8.0 * nan 8 0.33 0.02 £ 0.0 0.02
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name = kagome, size = (1, 1), circuit_type = quantum_simulation, p = 1, repetitions = 16, optimization_level = 3

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 12 # 0.0 12 7 %0.0 7 12 % 0.0 12 0.08 0.08 0.0 0.08
sabre 6 + nan 6 6.0 + nan 6 8.0 + nan 8 0.75 0.05 % 0.02 0.04

name = kagome, size = (1, 1), circuit_type = quantum_simulation, p = 8, repetitions = 16, optimization_level = 0

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 96 * 0.0 96 49 % 0.0 49 12 + 0.0 12 0.67 0.67 * 0.0 0.67
sabre 99 * 7.66 48 52.94 * 5.28 41 11.5 # 0.75 12 1.39 0.09 # 0.02 0.08

name = kagome, size = (1, 1), circuit_type = quantum_simulation, p = 8, repetitions = 16, optimization_level = 1

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 96 * 0.0 96 49 * 0.0 49 12 £ 0.0 12 0.64 0.64 % 0.0 0.64
sabre 48 + 8.62 48 42.88 * 3.28 41 8.5 £ 0.75 8 1.67 0.1 % 0.02 0.09

name = kagome, size = (1, 1), circuit_type = quantum_simulation, p = 8, repetitions = 16, optimization_level = 2

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 96 + 0.0 96 49 £ 0.0 49 12 £ 0.0 12 0.64 0.64 0.0 0.64
sabre 48 £ 7.19 48 41.56 + 1.41 41 8.25 £ 0.62 8 2.07 0.13 % 0.02 0.11

name = kagome, size = (1, 1), circuit_type = quantum_simulation, p = 8, repetitions = 16, optimization_level = 3

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 96 * 0.0 96 49 % 0.0 49 12 £ 0.0 12 0.64 0.64 = 0.0 0.64
sabre 48 % nan 48 41.0 * nan 41 8.0 * nan 8 5.07 0.32 = 0.02 0.29

name = kagome, size = (1, 1), circuit_type = quantum_simulation, p = 16, repetitions = 16, optimization_level = 0

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 192 # 0.0 192 97 % 0.0 97 12 % 0.0 12 1.29 1.29 % 0.0 1.29
sabre 100 + 18.19 96 99.38 + 9.69 81 11.25 + 0.75 12 2.78 0.17 # 0.02 0.15
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name = kagome, size = (1, 1), circuit_type = quantum_simulation, p = 16, repetitions

= 16, optimization_level = 1

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 192 # 0.0 192 97 % 0.0 97 12 1.31 1.31 % 0.0 1.31
sabre 96 + 17.62 96 86.69 * 8.53 81 8 3.18 0.2 + 0.03 0.17

name = kagome, size = (1, 1), circuit_type =

quantum_simulation, p = 16, repetitions

= 16, optimization_level = 2

method av. n_swaps min. n_swap av. depth min. depth min. qubits total time (s) av. time (s) min. time (s
line-graph 192 # 0.0 192 97 # 0.0 97 12 1.3 1.3 # 0.0 1.3
sabre 96 * nan 96 81.0 * nan 81 8 3.74 0.23 * 0.02 0.21

name = kagome, size = (1, 1), circuit_type =

quantum_simulation, p = 16, repetitions

= 16, optimization_level = 3

method av. n_swaps min. n_swap av. depth min. depth min. qubits total time (s) av. time (s) min. time (s
line-graph 192 # 0.0 192 97 0.0 97 12 1.29 1.29 # 0.0 1.29
sabre 96 * nan 96 81.0 % nan 81 8 10.26 0.64 * 0.02 0.67

name = kagome, size = (3, 3), circuit_type =

quantum_simulation, p = 1, repetitions = 16, optimization_level = 0

method av. n_swaps min. n_swap av. depth min. depth min. qubits  total time (s) av. time (s) min. time (s
line-graph 112 # 0.0 112 15 % 0.0 15 68 % 0.0 68 0.6 0.6 0.0 0.6
sabre 307 + 3.44 286 72.62 * 3.5 63 55.0 + 1.66 55 1.83 0.11 # 0.02 0.09

name = kagome, size = (3, 3), circuit_type =

quantum_simulation, p = 1, repetitions

= 16, optimization_level = 1

method av. n_swaps min. n_swap av. depth min. depth min. qubits total time (s) av. time (s) min. time (s)
line-graph 112 * 0.0 112 15 * 0.0 15 68 0.6 0.6 = 0.0 0.6
sabre 85 * 3.56 85 27.38 = 1.34 22 52 1.8 0.11 £ 0.02 0.1

name = kagome, size = (3, 3), circuit_type =

quantum_simulation, p =

= 16, optimization_level = 2

method av. n_swaps min. n_svap av. depth min. depth min. qubits  total time (s) av. time (s) min. time (s
line-graph 112 # 0.0 112 15 * 0.0 15 68 0.6 0.6 % 0.0 0.6
sabre 96 * 4.19 82 26.81 * 2.41 20 a7 2.62 0.16 % 0.02 0.15
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name = kagome, size = (3, 3), circuit_type = quantum_simulation, p = 1, repetitions = 16, optimization_level = 3

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 112 # 0.0 112 15 % 0.0 15 68 % 0.0 68 0.5 0.5 % 0.0 0.5
sabre 64 + 2.34 67 21.44 + 1.94 14 46.0 % 1.75 47 7.77 0.49 % 0.02 0.55

name = kagome, size = (3, 3), circuit_type = quantum_simulation, p = 8, repetitions = 16, optimization_level = 0

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 896 * 0.0 896 113 + 0.0 113 68 + 0.0 68 4.25 4.25 £ 0.0 4.25
sabre 1361 + 33.51 1203 312.5 # 9.31 287 59.5 * 1.75 51 10.83 0.68 * 0.03 0.69

name = kagome, size = (3, 3), circuit_type = quantum_simulation, p = 8, repetitions = 16, optimization_level = 1

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 896 * 0.0 896 113 % 0.0 113 68 * 0.0 68 4.39 4.39 * 0.0 4.39
sabre 625 * 19.67 613 192.38 * 14.0 149 45.19 * 1.28 44 10.99 0.69 * 0.04 0.76

name = kagome, size = (3, 3), circuit_type = quantum_simulation, p = 8, repetitions = 16, optimization_level = 2

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 896 + 0.0 896 113 0.0 113 68 % 0.0 68 4.42 4.42 £ 0.0 4.42
sabre 621 + 9.75 621 182.06 + 9.79 152 43.56 + 1.4 44 14.53 0.91 + 0.04 0.95

name = kagome, size = (3, 3), circuit_type = quantum_simulation, p = 8, repetitions = 16, optimization_level = 3

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 896 * 0.0 896 113 * 0.0 113 68 * 0.0 68 4.23 4.23 £ 0.0 4.23
sabre 601 * 10.06 555 176.25 = 7.62 149 43.44 £ 0.72 43 45.11 2.82 £ 0.04 2.74

name = kagome, size = (3, 3), circuit_type = quantum_simulation, p = 16, repetitions = 16, optimization_level = 0

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 1792 # 0.0 1792 225 + 0.0 225 68 + 0.0 68 8.45 8.45 * 0.0 8.45
sabre 2627 + 55.91 2304 553.94 + 12.78 509 60.94 + 2.12 63 20.65 1.29 * 0.05 1.29
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name = kagome, size = (3, 3), circuit_type = quantum_simulation, p = 16, repetitions = 16, optimization_level = 1

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s

line-graph 1792 # 0.0 1792 2256 * 0.0 225 68 * 0.0 68 8.87 8.87 * 0.0 8.87
sabre 1213 * 28.0 1213 388.12 * 18.66 318 43.75 * 1.16 44 20.66 1.29 * 0.05 1.35
name = kagome, size = (3, 3), circuit_type = quantum_simulation, p = 16, repetitions = 16, optimization_level = 2

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s

line-graph 1792 # 0.0 1792 2256 # 0.0 226 68 * 0.0 68 8.4 8.4 £ 0.0 8.4

sabre 1215 + 14.41 1142 377.69 * 19.52 311 44.06 * 1.19 49 28.01 1.75 + 0.01 1.79
name = kagome, size = (3, 3), circuit_type = quantum_simulation, p = 16, repetitions = 16, optimization_level = 3

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 1792 #* 0.0 1792 225 * 0.0 225 68 £ 0.0 68 8.57 8.57 + 0.0 8.57
sabre 1172 + 15.38 1144 342.25 + 13.38 290 43.56 * 1.0 43 86.44 5.4 £ 0.05 5.53

name = kagome, size = (5, 5), circuit_type = quantum_simulation, p = 1, repetitions = 16, optimization_level = 0

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 270 # 0.0 270 14 £ 0.0 14 164 % 0.0 164 1.48 1.48 % 0.0 1.48
sabre 1247 + 9.78 1247 132.81 # 3.09 123 128.31 + 1.72 125 5.12 0.32 * 0.03 0.37

name = kagome, size = (5, 5), circuit_type = quantum_simulation, p = 1, repetitions = 16, optimization_level = 1

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 270 * 0.0 270 14 £ 0.0 14 164 * 0.0 164 1.47 1.47 £ 0.0 1.47
sabre 338 £ 14.72 345 50.94 * 3.44 38 110.69 * 1.34 109 5.47 0.34 = 0.02 0.3

name = kagome, size = (5, 5), circuit_type = quantum_simulation, p = 1, repetitions = 16, optimization_level = 2

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s

line-graph 270 # 0.0 270 14 £ 0.0 14 164 * 0.0 164 1.47 1.47 £ 0.0 1.47
sabre 364 * 10.22 350 48.81 * 4.88 38 110.19 * 2.16 115 9.7 0.61 £ 0.03 0.56
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name = kagome, size = (5, 5), circuit_type = quantum_simulation, p = 1, repetitions = 16, optimization_level = 3

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 270 * 0.0 270 14 £ 0.0 14 164 * 0.0 164 1.47 1.47 £ 0.0 1.47
sabre 274 £ 9.62 269 37.44 %= 3.25 30 106.25 * 1.62 108 36.54 2.28 = 0.03 2.33

repetitions = 16, optimization_level = 0

av. n_qubits min. qubits total time (s) av. time (s)

min. time (s)

name = kagome, size = (5, 5), circuit_type = quantum_simulation, p = 8,
method av. n_swaps min. n_swap av. depth min. depth
line-graph 2160 * 0.0 2160 98 * 0.0 98
sabre 6068 + 87.86 55679 557.62 * 12.5 511

164 + 0.0 164 10.96 10.96 # 0.0

134.88 + 2.03 134 27.49 1.72 * 0.06

10.96

name = kagome, size = (5, 5), circuit_type = quantum_simulation, p = 8, repetitions = 16, optimization_level = 1

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 2160 % 0.0 2160 98 % 0.0 98 164 % 0.0 164 11.01 11.01 # 0.0 11.01
sabre 2124 + 45.1 2056 341.69 * 14.66 286 106.5 * 2.38 118 30.77 1.92 * 0.05 1.98
name = kagome, size = (5, 5), circuit_type = quantum_simulation, p = 8, repetitions = 16, optimization_level = 2

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s

line-graph 2160 * 0.0 2160 98 % 0.0 98 164 % 0.0 164 10.93 10.93 # 0.0 10.93
sabre 1894 + 32.99 1953 324.31 * 22.53 265 106.62 * 2.47 118 44.89 2.81 * 0.03 2.8

name = kagome, size = (5, 5), circuit_type = quantum_simulation, p = 8,

repetitions = 16, optimization_level = 3

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)

line-graph 2160 * 0.0 2160 98 %= 0.0 98 164 * 0.0 164 10.88 10.88 % 0.0 10.88

sabre 1869 = 23.79 1758 282.88 * 13.62 236 104.12 * 1.91 109 158.7 9.92 £ 0.08 9.89

name = kagome, size = (5, 5), circuit_type = quantum_simulation, p = 16, repetitions = 16, optimization_level = 0

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s

line-graph 4320 * 0.0 4320 194 *# 0.0 194 164 * 0.0 164 21.85 21.85 * 0.0 21.85
sabre 10420 * 144.88 9561 979.94 * 18.51 919 133.62 * 2.94 124 56.99 3.56 * 0.11 3.42
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name = kagome, size = (5, 5), circuit_type = quantum_simulation, p = 16, repetitions = 16, optimization_level = 1

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 4320 * 0.0 4320 194 * 0.0 194 164 * 0.0 164 21.73 21.73 % 0.0 21.73
sabre 4267 * 109.67 4443 682.12 + 23.85 627 107.31 * 3.03 110 58.8 3.68 % 0.11 3.58

name = kagome, size = (5, 5), circuit_type = quantum_simulation, p = 16, repetitions = 16, optimization_level = 2

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 4320 # 0.0 4320 194 # 0.0 194 164 * 0.0 164 21.86 21.86 * 0.0 21.86
sabre 3972 * 57.03 3804 628.44 * 28.22 526 107.31 # 2.53 109 85.09 5.32 + 0.1 5.11

name = kagome, size = (5, 5), circuit_type = quantum_simulation, p = 16, repetitions = 16, optimization_level = 3

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 4320 # 0.0 4320 194 * 0.0 194 164 * 0.0 164 21.56 21.56 * 0.0 21.56
sabre 3716 + 30.9 3656 592.5 * 13.72 562 104.94 % 1.25 108 296.62 18.54 * 0.15 18.2

name = kagome, size = (7, 7), circuit_type = quantum_simulation, p = 1, repetitions = 16, optimization_level = 0

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 498 # 0.0 498 16 + 0.0 16 300 % 0.0 300 2.8 2.8 %0.0 2.8
sabre 3534 + 31.01 3534 208.06 * 8.72 175 238.75 + 3.75 239 10.84 0.68 + 0.03 0.71

name = kagome, size = (7, 7), circuit_type = quantum_simulation, p = 1, repetitions = 16, optimization_level = 1

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 498 * 0.0 498 16 * 0.0 16 300 * 0.0 300 2.86 2.86 = 0.0 2.86
sabre 1119 = 28.5 1092 94.94 £ 7.28 70 202.19 * 3.62 210 13.88 0.87 £ 0.03 0.8

name = kagome, size = (7, 7), circuit_type = quantum_simulation, p = 1, repetitions = 16, optimization_level = 2

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 498 * 0.0 498 16 * 0.0 16 300 + 0.0 300 2.88 2.88 % 0.0 2.88
sabre 994 + 28.53 902 83.25 + 4.84 68 200.81 * 3.18 194 30.74 1.92 * 0.04 1.95
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name = kagome, size = (7, 7), circuit_type = quantum_simulation, p = 1,

method av. n_swaps min. n_swap av. depth

min. depth av. n_qubits

repetitions = 16, optimization_level

min. qubits

3

total time (s)

av. time (s)

min. time (s)

line-graph 498 * 0.0 498 16 * 0.0 16 300 * 0.0 300 2.87 2.87 * 0.0 2.87
sabre 868 * 28.66 737 66.25 * 3.94 53 194.75 % 2.84 189 135.51 8.47 £ 0.05 8.39
name = kagome, size = (7, 7), circuit_type = quantum_simulation, p = 8, repetitions = 16, optimization_level = 0

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s
line-graph 3984 # 0.0 3984 114 # 0.0 114 300 # 0.0 300 21.561 21.51 * 0.0 21.51
sabre 13056 * 225.0 13056 766.81 + 18.31 686 247.75 * 2.97 251 61.25 3.83 + 0.12 4.01
name = kagome, size = (7, 7), circuit_type = quantum_simulation, p = 8, repetitions = 16, optimization_level = 1

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s
line-graph 3984 * 0.0 3984 114 * 0.0 114 300 * 0.0 300 20.92 20.92 * 0.0 20.92
sabre 5532 * 133.17 4986 569.0 * 30.89 426 199.12 * 3.19 207 68.32 4.27 + 0.11 4.14

name = kagome, size = (7, 7), circuit_type = quantum_simulation, p = 8,

repetitions = 16, optimization_level = 2

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 3984 0.0 3984 114 + 0.0 114 300 # 0.0 300 20.7 20.7 % 0.0 20.7
sabre 4758 + 150.83 4644 511.88 + 33.91 429 194.75 * 3.38 199 118.43 7.4 £ 0.07 7.32

name = kagome, size = (7, 7), circuit_type = quantum_simulation, p = 8,

repetitions = 16, optimization_level =

3

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 3984 * 0.0 3984 114 * 0.0 114 300 * 0.0 300 20.74 20.74 * 0.0 20.74
sabre 4702 = 106.77 4300 460.69 * 27.72 375 191.88 % 2.75 200 504.51 31.53 * 0.21 31.37

name = kagome, size = (7, 7), circuit_type = quantum_simulation, p = 16, repetitions = 16, optimization_level = 0

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 7968 * 0.0 7968 226 * 0.0 226 300 *+ 0.0 300 41.85 41.85 # 0.0 41.85
sabre 22309 * 375.19 21499 1238.75 * 23.39 1182 248.75 * 2.74 242 116.84 7.3 £ 0.19 7.39
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name = kagome, size = (7, 7), circuit_type = quantum_simulation, p = 16, repetitions = 16, optimization_level = 1

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 7968 * 0.0 7968 226 * 0.0 226 300 * 0.0 300 41.09 41.09 # 0.0 41.09
sabre 9497 * 345.67 9370 1049.75 * 55.28 888 194.06 * 3.81 198 134.06 8.38 * 0.28 8.61
name = kagome, size = (7, 7), circuit_type = quantum_simulation, p = 16, repetitions = 16, optimization_level = 2
method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s
line-graph 7968 * 0.0 7968 226 * 0.0 226 300 £ 0.0 300 41.59 41.59 * 0.0 41.59
sabre 9742 + 181.92 9337 978.25 * 31.91 856 197.69 * 3.94 206 227.53 14.22 * 0.41 15.89
name = kagome, size = (7, 7), circuit_type = quantum_simulation, p = 16, repetitions = 16, optimization_level = 3

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)

line-graph 7968 * 0.0 7968 226 * 0.0 226 300 * 0.0 300 42.57 42.57 * 0.0 42.57

sabre 8452 * 100.74 8486 899.0 * 24.78 790 192.25 * 2.62 200 886.06 55.38 * 1.31 60.71

name = shuriken, size = (1, 1), circuit_type = quantum_simulation, p = 1, repetitions = 16, optimization_level = 0

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 8 # 0.0 8 9%0.0 9 8%0.0 8 0.09 0.09 % 0.0 0.09
sabre 8 + nan 8 8.88 £ 0.19 8 8.0 + nan 8 0.32 0.02 # nan 0.02

name = shuriken, size = (1, 1), circuit_type = quantum_simulation, p = 1, repetitions = 16, optimization_level = 1

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits

min. qubits total time (s) av. time (s) min. time (s)
line-graph 8 * 0.0 8 9 %0.0 9 8 % 0.0 8 0.09 0.09 = 0.0 0.09
sabre 6 * nan 6 7.5 % 0.25 7 8.0 £ nan 8 0.32 0.02 * nan 0.02
name = shuriken, size = (1, 1), circuit_type = quantum_simulation, p = 1, repetitions = 16, optimization_level = 2
method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 8 * 0.0 8 9% 0.0 9 8 % 0.0 8 0.09 0.09 * 0.0 0.09
sabre 6 * nan 6 7.5 % 0.25 7 8.0 * nan 8 0.32 0.02 # nan 0.02
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name = shuriken, size = (1, 1), circuit_type

method av. n_swaps

min. n_swap av. depth

= quantum_simulation, p = 1, repetitions = 16, optimization_level = 3

min. depth av. n_qubits min. qubits total time (s) av. time (s)

min. time (s)

line-graph 8 * 0.0 8 9% 0.0 9 8 % 0.0 8 0.09 0.09 * 0.0 0.09
sabre 6 * nan 6 7.62 £ 0.22 7 8.0 £ nan 8 0.64 0.04 * nan 0.04
name = shuriken, size = (1, 1), circuit_type = quantum_simulation, p = 8, repetitions = 16, optimization_level = 0

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s

line-graph 64 * 0.0 64 65 * 0.0 65 8 £ 0.0 8 0.74 0.74 * 0.0 0.74
sabre 74 * 1.56 64 67.94 + 2.31 61 8.0 * nan 8 1.66 0.1 * 0.02 0.09
name = shuriken, size = (1, 1), circuit_type = quantum_simulation, p = 8, repetitions = 16, optimization_level = 1

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 64 * 0.0 64 65 * 0.0 65 8 = 0.0 8 0.73 0.73 + 0.0 0.73
sabre 62 * nan 62 60.756 * 0.53 59 8.0 # nan 8 1.82 0.11 £ 0.02 0.1

name = shuriken, size = (1, 1), circuit_type

= quantum_simulation, p = 8, repetitions = 16, optimization_level = 2

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 64 * 0.0 64 65 % 0.0 65 8 £ 0.0 8 0.77 0.77 = 0.0 0.77
sabre 62 * nan 62 60.19 = 0.69 58 8.0 * nan 8 2.04 0.13 £ 0.02 0.13
name = shuriken, size = (1, 1), circuit_type = quantum_simulation, p = 8, repetitions = 16, optimization_level = 3

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 64 * 0.0 64 65 % 0.0 65 8 % 0.0 8 0.75 0.75 = 0.0 0.75
sabre 62 * nan 62 60.69 = 0.66 58 8.0 * nan 8 5.7 0.36 £ 0.03 0.41
name = shuriken, size = (1, 1), circuit_type = quantum_simulation, p = 16, repetitions = 16, optimization_level = 0

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 128 # 0.0 128 129 * 0.0 129 8 +# 0.0 8 1.5 1.5 + 0.0 1.5
sabre 138 + 2.94 138 140.56 * 3.66 128 8.0 * nan 8 3.42 0.21 = 0.03 0.18
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name = shuriken, size = (1, 1), circuit_type = quantum_simulation, p = 16, repetitions = 16, optimization_level = 1

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 128 # 0.0 128 129 + 0.0 129 8 % 0.0 8 1.53 1.53 % 0.0 1.53
sabre 126 + nan 126 121.12 # 1.06 119 8.0 # nan 8 3.57 0.22 * 0.02 0.2

name = shuriken, size = (1, 1), circuit_type = quantum_simulation, p = 16, repetitions = 16, optimization_level = 2

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 128 # 0.0 128 129 # 0.0 129 8 # 0.0 8 1.68 1.58 *# 0.0 1.58
sabre 126 + nan 126 121.06 * 0.88 118 8.0 #* nan 8 4.24 0.26 £ 0.03 0.24

name = shuriken, size = (1, 1), circuit_type = quantum_simulation, p = 16, repetitions = 16, optimization_level = 3

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 128 # 0.0 128 129 * 0.0 129 8 £ 0.0 8 1.5 1.5 * 0.0 1.5
sabre 126 *+ nan 126 120.81 * 0.94 116 8.0 * nan 8 11.06 0.69 * 0.02 0.71

name = shuriken, size = (3, 3), circuit_type = quantum_simulation, p = 1, repetitions = 16, optimization_level = 0

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 130 # 0.0 130 12 % 0.0 12 84 % 0.0 84 1 1.0 £ 0.0 1
sabre 469  8.24 460 67.94 + 2.41 60 83.75 + 0.22 84 2.68 0.17 * 0.02 0.14

name = shuriken, size = (3, 3), circuit_type = quantum_simulation, p = 1, repetitions = 16, optimization_level = 1

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 130 * 0.0 130 12 * 0.0 12 84 0.0 84 0.89 0.89 = 0.0 0.89
sabre 177 = 6.53 187 34.5 £ 2.94 27 64.88 * 1.19 67 2.79 0.17 = 0.02 0.16

name = shuriken, size = (3, 3), circuit_type = quantum_simulation, p = 1, repetitions = 16, optimization_level = 2

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 130 * 0.0 130 12 % 0.0 12 84 % 0.0 84 0.89 0.89 % 0.0 0.89
sabre 169 + 7.66 123 34.5 + 2.44 26 64.5 + 1.0 63 4.43 0.28 + 0.02 0.24
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(3, 3), circuit_type = quantum_simulation, p = 1, repetitions = 16, optimization_level = 3

name = shuriken, size =

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 130 # 0.0 130 12 # 0.0 12 84 * 0.0 84 1 1.0 # 0.0 1
sabre 138 = 6.41 94 29.44 % 2.53 20 62.81 * 0.84 63 14.29 0.89 * 0.03 0.94

name = shuriken, size = (3, 3), circuit_type =

quantum_simulation, p = 8, repetitions = 16, optimization_level = 0

av. time (s)

min. time (s)

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s)
line-graph 1040 * 0.0 1040 89 * 0.0 89 84 % 0.0 84 7.06 7.06 £ 0.0 7.06
sabre 2778 * 36.62 2575 400.94 * 8.12 362 83.81 * 0.19 84 18.11 1.13 # 0.03 1.16

name = shuriken, size = (3, 3), circuit_type = quantum_simulation, p =

8, repetitions =

16, optimization_level = 1

min. time (s)

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s)
line-graph 1040 # 0.0 1040 89 * 0.0 89 84 % 0.0 84 6.92 6.92 * 0.0 6.92
sabre 1268 * 32.28 1039 254.25 * 18.57 205 64.94 % 1.41 63 16.06 1.0 * 0.04 0.98

name = shuriken, size = (3, 3), circuit_type = quantum_simulation, p =

8, repetitions = 16, optimization_level = 2

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 1040 * 0.0 1040 89 * 0.0 89 84 £ 0.0 84 6.92 6.92 = 0.0 6.92
sabre 1051 * 26.45 926 215.75 * 15.27 170 64.69 * 1.41 65 22.5 1.41 + 0.05 1.34
name = shuriken, size = (3, 3), circuit_type = quantum_simulation, p = 8, repetitions = 16, optimization_level = 3

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 1040 * 0.0 1040 89 * 0.0 89 84 %= 0.0 84 7.06 7.06 = 0.0 7.06
sabre 966 * 14.37 892 192.5 % 13.59 145 64.44 £ 1.09 68 79.12 4.94 = 0.07 5.05
name = shuriken, size = (3, 3), circuit_type = quantum_simulation, p = 16, repetitions = 16, optimization_level = 0

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 2080 * 0.0 2080 177 = 0.0 177 84 +# 0.0 84 13.7 13.7 + 0.0 13.7
sabre 5067 * 112.35 4490 774.94 * 15.84 706 83.94 * 0.16 84 31.53 1.97 * 0.08 2.1
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name = shuriken, size = (3, 3), circuit_type = quantum_simulation, p = 16, repetitions = 16, optimization_level = 1

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 2080 #* 0.0 2080 177 * 0.0 177 84 % 0.0 84 14.13 14.13 # 0.0 14.13
sabre 2035 + 50.28 1861 450.12 + 38.78 302 65.19 + 1.28 66 35.28 2.2 % 0.06 2.19

name = shuriken, size = (3, 3), circuit_type = quantum_simulation, p = 16, repetitions = 16, optimization_level = 2

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 2080 # 0.0 2080 177 = 0.0 177 84 +# 0.0 84 13.71 13.71 # 0.0 13.71
sabre 2080 * 41.66 1890 398.25 + 19.59 334 65.38 * 0.94 63 44.87 2.8 £ 0.06 2.84

name = shuriken, size = (3, 3), circuit_type = quantum_simulation, p = 16, repetitions = 16, optimization_level = 3

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 2080 # 0.0 2080 177 * 0.0 177 84 + 0.0 84 13.89 13.89 # 0.0 13.89
sabre 1826 * 35.68 1703 373.75 * 26.89 303 64.44 + 1.53 61 150.75 9.42 * 0.09 9.59

name = shuriken, size = (5, 5), circuit_type = quantum_simulation, p = 1, repetitions = 16, optimization_level = 0

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 418 # 0.0 418 14 £ 0.0 14 240 % 0.0 240 2.76 2.76 £ 0.0 2.76
sabre 1722 + 13.92 1706 117.56 + 4.03 100 237.69 + 0.81 239 7.59 0.47 % 0.03 0.43

name = shuriken, size = (5, 5), circuit_type = quantum_simulation, p = 1, repetitions = 16, optimization_level = 1

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 418 * 0.0 418 14 * 0.0 14 240 * 0.0 240 2.61 2.61 = 0.0 2.61
sabre 993 * 25.43 918 85.12 % 4.62 70 179.31 * 2.32 182 11.16 0.7 £ 0.03 0.8

name = shuriken, size = (5, 5), circuit_type = quantum_simulation, p = 1, repetitions = 16, optimization_level = 2

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 418 * 0.0 418 14 % 0.0 14 240 % 0.0 240 2.58 2.58 0.0 2.58
sabre 940 + 25.45 830 83.06 * 7.81 54 179.06 + 3.62 194 25.23 1.58 % 0.02 1.55
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name = shuriken, size = (5, 5), circuit_type = quantum_simulation, p = 1, repetitions = 16, optimization_level = 3

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 418 * 0.0 418 14 % 0.0 14 240 % 0.0 240 2.6 2.6 0.0 2.6
sabre 702 + 15.83 712 66.81 + 6.6 45 176.12 + 2.69 183 105.59 6.6 * 0.04 6.58

name = shuriken, size = (5, 5), circuit_type = quantum_simulation, p = 8, repetitions = 16, optimization_level = 0

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s
line-graph 3344 # 0.0 3344 105 * 0.0 105 240 * 0.0 240 19.21 19.21 # 0.0 19.21
sabre 10085 *+ 62.18 10397 654.81 + 12.53 619 238.31 * 0.59 238 53.61 3.35 * 0.12 3.66

name = shuriken, size = (5, 5), circuit_type = quantum_simulation, p = 8, repetitions = 16, optimization_level = 1

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 3344 # 0.0 3344 105 * 0.0 105 240 * 0.0 240 19.42 19.42 £ 0.0 19.42
sabre 4949 *+ 172.47 4147 581.88 * 36.5 461 178.88 * 2.91 173 60.32 3.77 * 0.09 3.72

name = shuriken, size = (5, 5), circuit_type = quantum_simulation, p = 8, repetitions = 16, optimization_level = 2

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 3344 0.0 3344 105 + 0.0 105 240 # 0.0 240 19.65 19.65 + 0.0 19.65
sabre 4321 * 153.74 3792 566.06 + 43.95 414 173.81 * 2.09 171 109.02 6.81 # 0.22 7.04

name = shuriken, size = (5, 5), circuit_type = quantum_simulation, p = 8, repetitions = 16, optimization_level = 3

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 3344 * 0.0 3344 105 * 0.0 105 240 * 0.0 240 19.33 19.33 £ 0.0 19.33
sabre 3405 * 65.66 3312 408.12 * 21.62 343 170.62 * 2.41 165 429.48 26.84 £ 0.98 25.93

name = shuriken, size = (5, 5), circuit_type = quantum_simulation, p = 16, repetitions = 16, optimization_level = 0

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 6688 * 0.0 6688 209 * 0.0 209 240 * 0.0 240 38.44 38.44 % 0.0 38.44
sabre 18976 * 105.01 18874 1155.94 * 14.25 1095 238.88 + 0.38 238 108.03 6.75 # 0.22 6.3
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name = shuriken, size = (5, 5), circuit_type = quantum_simulation, p = 16, repetitions = 16, optimization_level = 1

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 6688 * 0.0 6688 209 * 0.0 209 240 * 0.0 240 38.54 38.54 % 0.0 38.54
sabre 8889 + 336.48 6839 1004.38 + 82.18 832 174.88 * 2.72 176 111.6  6.98 # 0.17 6.8

name = shuriken, size = (5, 5), circuit_type = quantum_simulation, p = 16, repetitions = 16, optimization_level = 2

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 6688 * 0.0 6688 209 + 0.0 209 240 # 0.0 240 38.42 38.42 £ 0.0 38.42
sabre 6943 * 155.17 6914 836.81 * 46.97 673 173.06 * 1.69 173 183.47 11.47 # 0.2 12.22

name = shuriken, size = (5, 5), circuit_type = quantum_simulation, p = 16, repetitions = 16, optimization_level = 3

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 6688 * 0.0 6688 209 * 0.0 209 240 * 0.0 240 38.14 38.14 * 0.0 38.14
sabre 6644 * 94.12 6326 667.75 = 19.72 599 170.81 # 2.19 165 693.94 43.37 * 1.15 43.48

name = shuriken, size = (7, 7), circuit_type = quantum_simulation, p = 1, repetitions = 16, optimization_level = 0

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 850 # 0.0 850 14 + 0.0 14 476 0.0 476 5.19 5.19 + 0.0 5.19
sabre 4169 * 24.72 4173 143.25 * 4.62 127 471.81 + 1.22 474 16.26 1.02 # 0.05 1.13

name = shuriken, size = (7, 7), circuit_type = quantum_simulation, p = 1, repetitions = 16, optimization_level = 1

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 850 * 0.0 850 14 * 0.0 14 476 * 0.0 476 5.2 5.2 £ 0.0 5.2
sabre 2783 * 64.06 2792 196.44 * 13.5 154 343.5 * 3.28 349 48.94 3.06 % 0.24 2.78

name = shuriken, size = (7, 7), circuit_type = quantum_simulation, p = 1, repetitions = 16, optimization_level = 2

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 850 * 0.0 850 14 * 0.0 14 476 % 0.0 476 5.31 5.31 0.0 5.31
sabre 2665 + 65.58 2535 170.75 + 14.04 127 350.5 + 5.34 352 132.45 8.28 # 0.26 7.5
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name = shuriken, size = (7, 7), circuit_type = quantum_simulation, p = 1, repetitions = 16, optimization_level = 3

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s)
line-graph 850 * 0.0 850 14 * 0.0 14 476 * 0.0 476 5.22 5.22 *# 0.0 5.22
sabre 2079 * 57.9 1891 124.12 + 8.31 93 342.06 * 3.19 354 628.32 39.27 * 0.78 37.63

name = shuriken, size = (7, 7), circuit_type = quantum_simulation, p = 8, repetitions =

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total ti

16, optimization_level = 0

me (s) av. time (s)

min. time (s)

line-graph 6800 * 0.0 6800 105 % 0.0 105 476 * 0.0 476 38.58 38.58 £ 0.0 38.58
sabre 25487 + 146.92 25288 875.19 * 21.34 785 474.06 * 1.12 475 111.3 6.96 £ 0.17 6.82
name = shuriken, size = (7, 7), circuit_type = quantum_simulation, p = 8, repetitions = 16, optimization_level = 1

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 6800 * 0.0 6800 105 %= 0.0 105 476 * 0.0 476 38.22 38.22 * 0.0 38.22
sabre 14038 + 501.85 11672 1110.0 # 72.38 836 349.44 * 5.69 345 167.86 10.49 * 0.26 10.87
name = shuriken, size = (7, 7), circuit_type = quantum_simulation, p = 8, repetitions = 16, optimization_level = 2

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s)
line-graph 6800 * 0.0 6800 105 %= 0.0 105 476 * 0.0 476 37.94 37.94 * 0.0 37.94
sabre 11889 = 326.3 12192 1092.25 * 51.37 922 343.62 *+ 5.27 347 352.13 22.01 # 0.34 20.89
name = shuriken, size = (7, 7), circuit_type = quantum_simulation, p = 8, repetitions = 16, optimization_level = 3

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 6800 * 0.0 6800 105 %= 0.0 105 476 * 0.0 476 38.256 38.25 * 0.0 38.25
sabre 9431 * 295.31 9200 791.69 * 50.65 589 336.75 = 4.19 333 1612.88 100.8 *= 1.84 99.38
name = shuriken, size = (7, 7), circuit_type = quantum_simulation, p = 16, repetitions = 16, optimization_level = 0

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s)
line-graph 13600 * 0.0 13600 209 * 0.0 209 476 = 0.0 476 75.38 75.38 * 0.0 75.38
sabre 45512 * 312.53 44697 1457.12 * 33.54 1343 473.31 * 1.06 474 207.14 12.95 * 0.2 13.88
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name = shuriken, size = (7, 7), circuit_type = quantum_simulation, p = 16, repetitions = 16, optimization_level = 1

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 13600 * 0.0 13600 209 * 0.0 209 476 * 0.0 476 75.82 75.82 % 0.0 75.82
sabre 24677 + 1008.11 19213 1943.62 * 179.76 1252 342.62 + 4.44 334 295.31 18.46 * 0.33 19.18

name = shuriken, size = (7, 7), circuit_type = quantum_simulation, p = 16, repetitions = 16, optimization_level = 2

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 13600 %+ 0.0 13600 209 * 0.0 209 476 = 0.0 476 75.21 75.21 *# 0.0 75.21
sabre 22096 * 699.86 19115 1676.12 + 96.85 1293 348.44 * 4.94 347 573.52 35.84 * 0.93 38.88

name = shuriken, size = (7, 7), circuit_type = quantum_simulation, p = 16, repetitions = 16, optimization_level = 3

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 13600 # 0.0 13600 209 * 0.0 209 476 % 0.0 476 76.74 76.74 * 0.0 76.74
sabre 18148 + 348.43 17064 1369.19 * 66.21 1099 336.31 * 4.62 323 2519.55 157.47 + 3.75 146.54

7.0.2 Quantum simulation, checkerboard, agianst SABRE

import line_graph_routing as lgr # Loading these makes these cells stand-alone
import pickle

settings=[]
for name in ['checkerboard']:
for side in [i+0.5 for i in range(1,9,2)]:
for p in [1,8,16]:
for optimization_level in range(4):
setting={'name' :name,
'size': (side,side),
'circuit_type': 'quantum_simulation',
'p': P,
'repetitions' : 16,
'optimization_level' : optimization_level,
'methods' : ['sabre'l]
}
settings.append(setting)

## Uncomment to rerun benchmarks. This takes a couple of hours.
#results=[]

#for setting in settings:

# result=1gr.benchmark (**setting)
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# results. append(result)

# lgr.print_benchmark(result)

#

#with open('benchmark_data/checkerboard.pkl’, 'wb') as f:
# pickle.dump (results, f)

#Load previously obtained results from disk and show them.

import pickle

with open('benchmark_data/checkerboard.pkl','rb') as f:
results=pickle.load(f)

for result in results:
lgr.print_benchmark(result)

name = checkerboard, size = (1.5, 1.5), circuit_type = quantum_simulation, p = 1, repetitions = 16, optimization_level = 0

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 42 * 0.0 42 27 £ 0.0 27 21 £ 0.0 21 0.17 0.17 = 0.0 0.17
sabre 45 + 1.28 47 32.44 * 1.97 27 19.06 * 0.66 21 0.99 0.06 = 0.03 0.03

name = checkerboard, size = (1.5, 1.5), circuit_type = quantum_simulation, p = 1, repetitions = 16, optimization_level = 1

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 42 * 0.0 42 27 % 0.0 27 21 % 0.0 21 0.37 0.37 0.0 0.37
sabre 32 % 1.44 22 26.56 * 2.0 19 17.69 * 0.66 16 0.67 0.04 % 0.03 0.03

name = checkerboard, size = (1.5, 1.5), circuit_type = quantum_simulation, p = 1, repetitions = 16, optimization_level = 2

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 42 # 0.0 42 27 + 0.0 27 21 # 0.0 21 0.35 0.35 %+ 0.0 0.35
sabre 28 * 0.84 31 23.81 * 1.81 19 17.94 * 0.87 21 1.34 0.08 £ 0.04 0.04

name = checkerboard, size = (1.5, 1.5), circuit_type = quantum_simulation, p = 1, repetitions = 16, optimization_level = 3

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 42 * 0.0 42 27 £ 0.0 27 21 0.0 21 0.17 0.17 + 0.0 0.17
sabre 28 + 0.78 256 25.31 # 2.03 18 16.81 * 0.41 18 2.56 0.16 * 0.04 0.11
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name = checkerboard, size = (1.5, 1.5), circuit_type = quantum_simulation, p = 8, repetitions = 16, optimization_level = 0O

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 322 # 0.0 322 188 * 0.0 188 21 % 0.0 21 1.89 1.89 % 0.0 1.89
sabre 362 + 7.38 343 235.0 * 6.03 214 21.0 * nan 21 4.87 0.3 % 0.06 0.18

name = checkerboard, size = (1.5, 1.5), circuit_type = quantum_simulation, p = 8, repetitions = 16, optimization_level = 1

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 322 # 0.0 322 188 # 0.0 188 21 + 0.0 21 1.98 1.98 * 0.0 1.98
sabre 239 * 3.71 240 197.25 *+ 7.75 176 17.94 * 0.84 16 4.99 0.31 £ 0.06 0.21

name = checkerboard, size = (1.5, 1.5), circuit_type = quantum_simulation, p = 8, repetitions = 16, optimization_level = 2

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 322 # 0.0 322 188 £ 0.0 188 21 % 0.0 21 1.94 1.94 % 0.0 1.94
sabre 237 % 2.75 227 183.5 * 7.31 160 17.12 % 0.5 16 5.84 0.36 % 0.05 0.28

name = checkerboard, size = (1.5, 1.5), circuit_type = quantum_simulation, p = 8, repetitions = 16, optimization_level = 3

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 322 # 0.0 322 188 % 0.0 188 21 % 0.0 21 1.95 1.95 % 0.0 1.95
sabre 217 + 2.41 221 187.5 + 4.34 175 16.62 + 0.44 16 17.58 1.1 £ 0.01 1.08

name = checkerboard, size = (1.5, 1.5), circuit_type = quantum_simulation, p = 16, repetitions = 16, optimization_level = 0

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 642 * 0.0 642 372 = 0.0 372 21 % 0.0 21 3.85 3.85 = 0.0 3.85
sabre 763 £ 20.84 657 485.38 = 12.94 417 21.0 * nan 21 8.07 0.5 = 0.05 0.51

name = checkerboard, size = (1.5, 1.5), circuit_type = quantum_simulation, p = 16, repetitions = 16, optimization_level = 1

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 642 * 0.0 642 372 % 0.0 372 21 % 0.0 21 3.18 3.18 + 0.0 3.18
sabre 471 + 9.91 469 379.56 * 17.02 311 18.62 * 0.88 21 7.55 0.47 % 0.04 0.4
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name = checkerboard, size = (1.5, 1.5), circuit_type = quantum_simulation, p = 16, repetitions = 16, optimization_level = 2

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 642 * 0.0 642 372 % 0.0 372 21 % 0.0 21 3.22 3.22 + 0.0 3.22
sabre 463 + 5.31 466 376.0 + 8.98 346 17.5 + 0.81 21 10.29 0.64 # 0.04 0.52

name = checkerboard, size = (1.5, 1.5), circuit_type = quantum_simulation, p = 16, repetitions = 16, optimization_level = 3

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s
line-graph 642 * 0.0 642 372 + 0.0 372 21 # 0.0 21 3.23 3.23 +# 0.0 3.23
sabre 454 + 2.81 447 353.69 * 12.16 321 16.88 * 0.5 16 29.5 1.84 + 0.03 1.96

name = checkerboard, size = (3.5, 3.5), circuit_type = quantum_simulation, p = 1, repetitions = 16, optimization_level = 0

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 271 # 0.0 271 30 £ 0.0 30 97 £ 0.0 97 0.92 0.92 0.0 0.92
sabre 550 * 9.03 548 104.56 *= 3.78 90 88.5 + 1.56 92 2.56 0.16 = 0.02 0.14

name = checkerboard, size = (3.5, 3.5), circuit_type = quantum_simulation, p = 1, repetitions = 16, optimization_level = 1

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 271 * 0.0 271 30 £ 0.0 30 97 £ 0.0 97 1.01 1.01 £ 0.0 1.01
sabre 257 £ 7.69 233 63.81 * 4.25 48 69.0 * 1.38 68 3.03 0.19 = 0.02 0.17
name = checkerboard, size = (3.5, 3.5), circuit_type = quantum_simulation, p = 1, repetitions = 16, optimization_level = 2

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 271 * 0.0 271 30 £ 0.0 30 97 £ 0.0 97 1.01 1.01 £ 0.0 1.01
sabre 228 £ 6.72 234 57.94 = 3.75 48 70.56 * 1.25 71 4.87 0.3 £ 0.03 0.26
name = checkerboard, size = (3.5, 3.5), circuit_type = quantum_simulation, p = 1, repetitions = 16, optimization_level = 3

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 271 # 0.0 271 30 £ 0.0 30 97 £ 0.0 97 1.04 1.04 £ 0.0 1.04
sabre 180 = 2.97 187 45.44 % 2.72 37 67.38 * 0.97 70 16.94 1.06 % 0.03 1.1
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name = checkerboard, size = (3.5, 3.5), circuit_type = quantum_simulation, p = 8, repetitions = 16, optimization_level = 0

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 2077 * 0.0 2077 198 % 0.0 198 97 % 0.0 97 7.69 7.69 * 0.0 7.69
sabre 3416 + 49.08 3159 597.62 * 15.12 544 92.62 % 0.75 92 18.07 1.13 # 0.05 1.19

name = checkerboard, size = (3.5, 3.5), circuit_type = quantum_simulation, p = 8, repetitions = 16, optimization_level = 1

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 2077 # 0.0 2077 198 # 0.0 198 97 + 0.0 97 7.68 7.68 + 0.0 7.68
sabre 1870 + 26.84 1894 481.25 + 11.75 444 70.19 * 1.84 68 20.33 1.27 + 0.05 1.33

name = checkerboard, size = (3.5, 3.5), circuit_type = quantum_simulation, p = 8, repetitions = 16, optimization_level = 2

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 2077 % 0.0 2077 198 * 0.0 198 97 % 0.0 97 7.91 7.91 % 0.0 7.91
sabre 1785 * 15.44 1756 456.5 * 14.31 404 69.56 * 1.16 73 29.02 1.81 + 0.05 1.86

name = checkerboard, size = (3.5, 3.5), circuit_type = quantum_simulation, p = 8, repetitions = 16, optimization_level = 3

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 2077 # 0.0 2077 198 % 0.0 198 97 % 0.0 97 7.73 7.73 £ 0.0 7.73
sabre 1740 + 16.03 1731 446.75 + 14.74 387 69.12 + 2.0 76 104.9  6.56 + 0.05 6.48

name = checkerboard, size = (3.5, 3.5), circuit_type = quantum_simulation, p = 16, repetitions = 16, optimization_level = 0

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 4141 * 0.0 4141 390 * 0.0 390 97 * 0.0 97 14.99 14.99 £ 0.0 14.99
sabre 6142 * 72.56 5875 1117.75 * 21.0 1021 94.0 * nan 94 36.66 2.29 * 0.13 2.24

name = checkerboard, size = (3.5, 3.5), circuit_type = quantum_simulation, p = 16, repetitions = 16, optimization_level = 1

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 4141 * 0.0 4141 390 + 0.0 390 97 * 0.0 97 16.05 15.05 * 0.0 15.05
sabre 3639 + 29.19 3753 996.19 * 20.97 934 70.0 + 1.38 67 41.08 2.57 * 0.09 2.48
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name = checkerboard, size = (3.5, 3.5), circuit_type = quantum_simulation, p = 16, repetitions = 16, optimization_level = 2

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 4141 * 0.0 4141 390 * 0.0 390 97 * 0.0 97 15.66 15.66 * 0.0 15.66
sabre 3684 + 25.79 3608 949.5 * 19.69 893 70.06 * 2.69 71 57.58 3.6 + 0.1 3.48

name = checkerboard, size = (3.5, 3.5), circuit_type = quantum_simulation, p = 16, repetitions = 16, optimization_level = 3

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 4141 # 0.0 4141 390 # 0.0 390 97 +# 0.0 97 16.64 15.64 * 0.0 15.64
sabre 3580 * 20.27 3621 924.56 * 17.07 854 67.0 * 1.47 65 207.53 12.97 * 0.12 12.8

name = checkerboard, size = (5.5, 5.5), circuit_type = quantum_simulation, p = 1, repetitions = 16, optimization_level = 0

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 682 * 0.0 682 34 % 0.0 34 221 £ 0.0 221 2.48 2.48 £ 0.0 2.48
sabre 1770 * 17.16 1791 138.56 * 4.66 121 211.31 * 1.47 213 6.81 0.43 * 0.04 0.5

name = checkerboard, size = (5.5, 5.5), circuit_type = quantum_simulation, p = 1, repetitions = 16, optimization_level = 1

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 682 + 0.0 682 34 £ 0.0 34 221 £ 0.0 221 2.45 2.45 % 0.0 2.45
sabre 678 + 30.68 678 107.06 * 7.62 77 160.38 £ 1.34 160 9.63 0.6 +0.04 0.65

name = checkerboard, size = (5.5, 5.5), circuit_type = quantum_simulation, p = 1, repetitions = 16, optimization_level = 2

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 682 * 0.0 682 34 £ 0.0 34 221 0.0 221 2.47 2.47 = 0.0 2.47
sabre 808 * 21.59 773 102.81 £ 7.0 82 159.62 * 2.76 160 18.67 1.17 £ 0.03 1.07

name = checkerboard, size = (5.5, 5.5), circuit_type = quantum_simulation, p = 1, repetitions = 16, optimization_level = 3

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 682 * 0.0 682 34 + 0.0 34 221 % 0.0 221 2.41 2.41 % 0.0 2.41
sabre 652 + 19.28 608 83.75 + 6.44 58 156.94 + 1.84 158 80.01 5.0  0.04 5.14
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name = checkerboard, size = (5.5, 5.5), circuit_type = quantum_simulation, p = 8, repetitions = 16, optimization_level = 0

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 5148 * 0.0 5148 223 % 0.0 223 221 % 0.0 221 18.16 18.16 * 0.0 18.16
sabre 10367 *+ 118.27 10404 823.12 # 18.63 746 217.38 * 0.62 219 46.53 2.91 + 0.16 2.8

name = checkerboard, size = (5.5, 5.5), circuit_type = quantum_simulation, p = 8, repetitions = 16, optimization_level = 1

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 5148 # 0.0 5148 223 + 0.0 223 221 # 0.0 221 18.72 18.72 # 0.0 18.72
sabre 5644 * 120.68 5373 800.31 + 38.98 667 159.44 * 2.66 166 52.7 3.29 £ 0.1 3.38

name = checkerboard, size = (5.5, 5.5), circuit_type = quantum_simulation, p = 8, repetitions = 16, optimization_level = 2

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 5148 * 0.0 5148 223 * 0.0 223 221 % 0.0 221 18.19 18.19 # 0.0 18.19
sabre 5241 + 43.19 5091 734.25 % 22.25 666 157.81 % 3.06 171 89.44 5.59 * 0.12 5.86

name = checkerboard, size = (5.5, 5.5), circuit_type = quantum_simulation, p = 8, repetitions = 16, optimization_level = 3

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 5148 + 0.0 5148 223 * 0.0 223 221 % 0.0 221 18.3  18.3 £ 0.0 18.3
sabre 5054 + 30.28 4839 723.25 * 16.98 656 157.69 + 2.69 159 363.83 22.74 + 0.2 23.19

name = checkerboard, size = (5.5, 5.5), circuit_type = quantum_simulation, p = 16, repetitions = 16, optimization_level = 0

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 10252 * 0.0 10252 439 * 0.0 439 221 * 0.0 221 36.56 36.56 * 0.0 36.56
sabre 18950 * 206.58 18281 1546.5 %= 24.0 1464 217.38 £ 0.78 218 98.11 6.13 = 0.21 6.55

name = checkerboard, size = (5.5, 5.5), circuit_type = quantum_simulation, p = 16, repetitions = 16, optimization_level = 1

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 10252 * 0.0 10252 439 * 0.0 439 221 + 0.0 221 36.48 36.48 * 0.0 36.48
sabre 10695 + 85.99 10470 1609.69 * 39.03 1439 161.44 + 2.88 158 113.03 7.06 # 0.21 6.69

33



name = checkerboard, size = (5.5, 5.5), circuit_type = quantum_simulation, p = 16, repetitions = 16, optimization_level = 2

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 10252 * 0.0 10252 439 * 0.0 439 221 + 0.0 221 36.69 36.69 * 0.0 36.69
sabre 10265 + 67.73 10411 1565.5 * 31.69 1469 162.69 + 4.19 163 171.93 10.75 + 0.22 10.26

name = checkerboard, size = (5.5, 5.5), circuit_type = quantum_simulation, p = 16, repetitions = 16, optimization_level = 3

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s
line-graph 10252 # 0.0 10252 439 * 0.0 439 221 * 0.0 221 37.43 37.43 * 0.0 37.43
sabre 10373 + 43.89 10384 1537.19 * 30.88 1390 155.31 * 2.59 158 681.17 42.57 * 0.25 42.4

name = checkerboard, size = (7.5, 7.5), circuit_type = quantum_simulation, p = 1, repetitions = 16, optimization_level = 0

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 1211 # 0.0 1211 30 * 0.0 30 393 £ 0.0 393 4.76 4.76 * 0.0 4.76
sabre 4053 + 23.25 4092 198.25 * 3.97 187 350.88 * 3.41 355 14.04 0.88 * 0.04 0.91

name = checkerboard, size = (7.5, 7.5), circuit_type = quantum_simulation, p = 1, repetitions = 16, optimization_level = 1

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 1211 # 0.0 1211 30 + 0.0 30 393 £ 0.0 393 4.49 4.49 £ 0.0 4.49
sabre 2459 + 56.57 2107 186.38 + 11.72 152 284.44 + 2.91 289 25.29 1.58 % 0.05 1.64

name = checkerboard, size = (7.5, 7.5), circuit_type = quantum_simulation, p = 1, repetitions = 16, optimization_level = 2

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 1211 * 0.0 1211 30 * 0.0 30 393 * 0.0 393 4.58 4.58 £ 0.0 4.58
sabre 2189 * 48.72 1989 167.81 % 10.59 138 286.19 * 3.31 293 57.96 3.62 = 0.05 3.58

name = checkerboard, size = (7.5, 7.5), circuit_type = quantum_simulation, p = 1, repetitions = 16, optimization_level = 3

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 1211 * 0.0 1211 30 # 0.0 30 393 * 0.0 393 4.55 4.55 + 0.0 4.55
sabre 1767 + 37.66 1641 135.38 + 6.47 105 279.06 * 4.72 290 283.04 17.69 # 0.12 17.6
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name = checkerboard, size = (7.5, 7.5), circuit_type = quantum_simulation, p = 8, repetitions = 16, optimization_level = 0O

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 9289 # 0.0 9289 219 * 0.0 219 393 % 0.0 393 34.14 34.14 % 0.0 34.14
sabre 22164 + 192.21 21331 1027.31 # 17.21 951 361.69 + 3.69 377 93.75 5.86 * 0.21 6.22

name = checkerboard, size = (7.5, 7.5), circuit_type

= quantum_simulation, p = 8, repetitions = 16, optimization_level = 1

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s
line-graph 9289 * 0.0 9289 219 + 0.0 219 393 # 0.0 393 34.49 34.49 £ 0.0 34.49
sabre 12118 + 289.99 11694 1276.06 * 66.48 1103 285.69 * 3.28 293 118.35 7.4 £ 0.19 7.07

name = checkerboard, size = (7.5, 7.5), circuit_type

= quantum_simulation, p = 8, repetitions = 16, optimization_level = 2

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s
line-graph 9289 # 0.0 9289 219 # 0.0 219 393 £ 0.0 393 33.66 33.66 * 0.0 33.66
sabre 12194 + 132.53 11396 1219.62 * 31.86 1093 287.31 * 3.31 286 222.24 13.89 * 0.23 13.07

name = checkerboard, size = (7.5, 7.5), circuit_type

= quantum_simulation, p = 8, repetitions = 16, optimization_level = 3

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 9289 # 0.0 9289 219 % 0.0 219 393 £ 0.0 393 33.34 33.34 % 0.0 33.34
sabre 11481 * 103.84 11276 1151.81 # 30.17 1052 279.0 + 3.91 278 974.77 60.92 + 0.4 61.4

name = checkerboard, size = (7.5, 7.5), circuit_type

= quantum_simulation, p

= 16, repetitions = 16, optimization_level = 0

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 18521 # 0.0 18521 435 % 0.0 435 393 * 0.0 393 68.34 68.34 * 0.0 68.34
sabre 39936 * 352.99 38867 1884.31 * 37.54 1805 359.75 * 3.12 363 169.73 10.61 = 0.29 10.02

name = checkerboard, size = (7.5, 7.5), circuit_type

= quantum_simulation, p

= 16, repetitions = 16, optimization_level = 1

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 18521 * 0.0 18521 435 + 0.0 435 393 + 0.0 393 67.22 67.22 % 0.0 67.22
sabre 23853 + 341.31 23359 2396.88 * 96.2 2054 286.44 + 3.78 299 222.73 13.92 # 0.42 13.2
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name = checkerboard, size = (7.5, 7.5), circuit_type = quantum_simulation, p = 16, repetitions = 16, optimization_level = 2

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 18521 # 0.0 18521 435 % 0.0 435 393 * 0.0 393 68.09 68.09 * 0.0 68.09
sabre 23286 * 127.03 22930 2395.75 * 51.28 2243 288.56 * 5.34 280 389.156 24.32 * 0.38 24.34

name = checkerboard, size = (7.5, 7.5), circuit_type = quantum_simulation, p = 16, repetitions = 16, optimization_level = 3

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 18521 # 0.0 18521 435 * 0.0 435 393 + 0.0 393 67.2 67.2 £ 0.0 67.2
sabre 22170 + 140.89 23060 2352.75 * 72.43 2121 281.62 * 4.06 282 1750.38 109.4 + 0.67 109.23

7.0.3 Random circuit, kagome and shuriken, against SABRE

import line_graph_routing as 1lgr # Loading these makes these cells stand-alone
import pickle

settings=[]
for name in ['kagome', 'shuriken']:
for side in range(1,7,2):
for p in [sidex*2x500]:
for optimization_level in [1]:
setting={'name' :name,
'size': (side,side),
'circuit_type': 'random',
'P't P,
'repetitions' : 16,
'optimization_level' : optimization_level,
'methods' : ['sabre']
}
settings.append(setting)

## Uncomment to rerun benchmarks.

#results=[]

#for setting in settings:

# result=1gr.benchmark (**setting)

# results. append(result)

# lgr.print_benchmark(result)

#

#with open('benchmark_data/random.pkl’', 'wb') as f:
# pickle.dump (results, f)

#Load previously obtained results from disk and show them.

import pickle
with open('benchmark_data/random.pkl','rb') as f:
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results=pickle.load(f)

for result in results:
lgr.print_benchmark(result)

name = kagome, size = (1, 1), circuit_type = random, p = 500, repetitions = 16, optimization_level = 1

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 200 * 0.0 200 249 * 0.0 249 12 £ 0.0 12 0.37 0.37 £ 0.0 0.37
sabre 96 + 0.62 96 207.5 * 1.19 205 12.0 #* nan 12 1.17 0.07 # 0.03 0.06

name = kagome, size = (3, 3), circuit_type = random, p = 4500, repetitions = 16, optimization_level = 1

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 2611 * 0.0 2611 568 = 0.0 568 68 * 0.0 68 1.14 1.14 £ 0.0 1.14
sabre 1444 + 25.94 1450 838.88 * 35.0 720 44.31 £ 1.75 54 10.24 0.64 £ 0.03 0.66

name = kagome, size = (5, 5), circuit_type = random, p = 12500, repetitions = 16, optimization_level = 1

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 7592 * 0.0 7592 735 * 0.0 735 164 * 0.0 164 3.02 3.02 * 0.0 3.02
sabre 5637 * 82.31 5452 1774.44 * 54.79 1590 108.69 * 3.56 107 32.72 2.04 * 0.04 2.03

name = shuriken, size = (1, 1), circuit_type = random, p = 500, repetitions = 16, optimization_level = 1

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 122 # 0.0 122 247 # 0.0 247 8 + 0.0 8 0.07 0.07 * 0.0 0.07
sabre 85 * nan 85 231.12 *+ 0.31 231 8.0 * nan 8 0.84 0.05 * 0.0 0.05

name = shuriken, size = (3, 3), circuit_type = random, p = 4500, repetitions = 16, optimization_level = 1

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 2262 # 0.0 2262 415 + 0.0 415 84 £ 0.0 84 1.06 1.05 % 0.0 1.05
sabre 1662 + 39.26 1447 667.12 + 39.54 517 66.25 + 1.38 69 10.53 0.66 * 0.04 0.7
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name = shuriken, size = (5, 5), circuit_type = random, p = 12500, repetitions = 16, optimization_level = 1

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s)

min. time (s)

line-graph 6828 * 0.0 6828 405 = 0.0 405 240 * 0.0 240

sabre 6811 * 192.15 5969 1403.31 * 94.74 1094 177.31 * 2.94 176

2.83 2.83 * 0.0

38.36 2.4 * 0.04

7.0.4 Random circuit, complete graph, against SABRE

import line_graph_routing as lgr
import pickle

settings=[]
for name in ['complete']:
for side in range(3,10,2):
for p in [sidex*100]:
for optimization_level in range(2):
setting={'name' :name,
'size': side,

'circuit_type': 'random',

‘PP,

'repetitions' : 16,

'optimization_level' : optimization_level,
'methods' : ['sabre'l

}
settings.append(setting)

## Uncomment to rerun benchmarks
#results=[]

#for setting in settings:

# result=1gr.benchmark (**setting)
# results. append(result)

# lgr.print_benchmark(result)

#with open('benchmark_data/complete.pkl’, 'wb') as f:
# pickle.dump (results, f)

with open('benchmark_data/complete.pkl','rb') as f:
results=pickle.load(f)

for result in results:
lgr.print_benchmark(result)
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name = complete, size = 3, circuit_type = random, p = 300, repetitions = 16, optimization_level = 0

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 154 * 0.0 154 334 % 0.0 334 4% 0.0 4 0.12 0.12 * 0.0 0.12
sabre 40 £ 0.97 37 267.88 + 2.34 257 3.0 # nan 3 1.01 0.06 # 0.06 0.04
name = complete, size = 3, circuit_type = random, p = 300, repetitions = 16, optimization_level = 1

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 140 # 0.0 140 313 * 0.0 313 4 0.0 4 0.11 0.11 + 0.0 0.11
sabre 34 * nan 34 220.0 * nan 220 3.0 * nan 3 0.97 0.06 * 0.0 0.07
name = complete, size = 5, circuit_type = random, p = 500, repetitions = 16, optimization_level = 0

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 314 # 0.0 314 548 £ 0.0 548 6 % 0.0 6 0.19 0.19 % 0.0 0.19
sabre 88 * 1.25 84 458.06 * 4.0 444 5.0 * nan 5 0.96 0.06 * nan 0.06

name = complete, size = 5, circuit_type = random, p = 500, repetitions = 16, optimization_level = 1

method av.

n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 286 * 0.0 286 503 = 0.0 503 6 * 0.0 6 0.18 0.18 = 0.0 0.18
sabre 72 % nan 72 387.25 * 0.31 386 5.0 * nan 5 1.44 0.09 # nan 0.09
name = complete, size = 7, circuit_type = random, p = 700, repetitions = 16, optimization_level = 0

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 436 * 0.0 436 723 * 0.0 723 8 £ 0.0 8 0.256 0.25 = 0.0 0.25
sabre 115 = 1.59 115 609.25 £ 6.01 586 7.0 * nan 7 1.65 0.1 £ 0.02 0.09
name = complete, size = 7, circuit_type = random, p = 700, repetitions = 16, optimization_level = 1

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s

line-graph 478 * 0.0 478 787 * 0.0 787 8 %+ 0.0 8 0.26 0.26 = 0.0 0.26
sabre 118 + 0.38 117 573.25 * 1.66 567 7.0 * nan 7 2.24 0.14 = 0.01 0.13
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name = complete, size = 9, circuit_type = random, p = 900, repetitions = 16, optimization_level = 0

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s
line-graph 593 * 0.0 593 946 * 0.0 946 10 * 0.0 10 0.43 0.43 % 0.0 0.43
sabre 151 + 2.0 143 770.0 + 6.84 730 9.0 + nan 9 1.6 0.1 # nan 0.1

name = complete, size = 9, circuit_type = random, p = 900, repetitions = 16, optimization_level = 1

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 650 * 0.0 650 1036 + 0.0 1036 10 # 0.0 10 0.33 0.33 + 0.0 0.33
sabre 149 + 0.59 146 726.5 £ 1.59 720 9.0 * nan 9 2.74 0.17 * 0.02 0.16

7.0.5 Against other routing methods

Above, we only ran SABRE because it outperforms the other methods available in Qiskit by default.

standard methods available are

from qiskit import transpiler
transpiler.preset_passmanagers.plugin.list_stage_plugins('routing')

['basic', 'lookahead', 'none', 'sabre', 'stochastic']

import line_graph_routing as lgr
import pickle

settings=[]
for name in ['kagome', 'shuriken']:
for side in [1]:
for p in [1]:
for optimization_level in [3]:
setting={'name' :name,
'size': (side,side),
'circuit_type': 'quantum_simulation',
'P't P,
'repetitions' : 16,
'optimization_level' : optimization_level,
'methods' : ['basic', 'lookahead', 'sabre', 'stochastic']

}
settings.append(setting)

## Uncomment to rerun benchmarks
#results=[]

#for setting in settings:

# result=1lgr.benchmark (**setting)
# results.append(result)

# lgr.print_benchmark (result)
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#with open('benchmark_data/other_methods_1zl.pkl','wb') as f:

# pickle.dump (results, f)

with open('benchmark_data/other_methods_1x1.pkl','rb') as f:

results=pickle.load(f)

for result in results:
lgr.print_benchmark(result)

name = kagome, size = (1, 1), circuit_type = quantum_simulation, p = 1, repetitions = 16, optimization_level = 3

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 12 * 0.0 12 7 0.0 7 12 £ 0.0 12 0.08 0.08 = 0.0 0.08
basic 14 = 0.0 14 17.0 £ 0.0 17 8.0 * 0.0 8 0.05 0.05 = 0.0 0.05
lookahead 8 * nan 8 8.81 £ 0.19 8 8.0 * nan 8 19.55 1.22 * 0.04 1.26
sabre 6 * nan 6 6.0 * nan 6 8.0 * nan 8 0.49 0.03 = 0.0 0.03
stochastic 6 * 0.62 6 6.06 + 0.16 6 8.0 * nan 8 0.62 0.04 + 0.0 0.03

name = shuriken, size = (1, 1), circuit_type = quantum_simulation, p = 1, repetitions = 16, optimization_level = 3

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 8 * 0.0 8 9%0.0 9 8% 0.0 8 0.05 0.05 % 0.0 0.05
basic 16 * 0.0 16 19.0 £ 0.0 19 8.0 £ 0.0 8 0.04 0.04 = 0.0 0.04
lookahead 6 * nan 6 8.0 * nan 8 8.0 + nan 8 14.22 0.89 * 0.01 0.88
sabre 6 + nan 6 7.62 % 0.22 7 8.0 + nan 8 0.5 0.03 0.0 0.04
stochastic 6 * nan 6 7.0 * nan 7 8.0 * nan 8 0.58 0.04 % 0.0 0.04

The method ‘lookahead’ takes an impractical amount of time, so we exclude it when running benchmarks

for larger/deeper circuits.

import line_graph_routing as 1lgr
import pickle

settings=[]

for name in ['kagome', 'shuriken']:

for side in [3]:
for p in [3]:

for optimization_level in [3]:

setting={'name' :name,
(side,side),
'quantum_simulation',

'size':

'circuit_type':

|p|: P>

'repetitions'’

16,

'optimization_level'
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'methods' : ['basic', 'sabre', 'stochastic']
}
settings.append(setting)

## Uncomment to rerun benchmarks

#results=[]

#for setting in settings:

# result=1gr.benchmark (**setting)

# results. append(result)

# lgr.print_benchmark(result)

#

#with open('benchmark_data/other_methods_3z3.pkl', 'wb') as f:
# pickle.dump (results, f)

with open('benchmark_data/other_methods_3x3.pkl','rb') as f:
results=pickle.load(f)

for result in results:
lgr.print_benchmark(result)

name = kagome, size = (3, 3), circuit_type = quantum_simulation, p = 3, repetitions = 16, optimization_level = 3

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits  total time (s) av. time (s) min. time (s

line-graph 336 + 0.0 336 43 £ 0.0 43 68 £ 0.0 68 1.33 1.33 % 0.0 1.33
basic 475 £ 0.0 475 287.0 £ 0.0 287 45.0 + 0.0 45 1.21 1.21 % 0.0 1.21
sabre 215 + 3.56 203 63.25 + 3.78 50 43.94 £ 0.97 45 12.37 0.77 + 0.04 0.93
stochastic 410 * 14.31 428 85.88 * 4.12 71 46.44 + 1.5 48 28.09 1.76 * 0.07 1.46

name = shuriken, size = (3, 3), circuit_type = quantum_simulation, p = 3, repetitions = 16, optimization_level = 3

method av. n_swaps min. n_swap av. depth min. depth av. n_qubits min. qubits total time (s) av. time (s) min. time (s)
line-graph 390 # 0.0 390 34 £ 0.0 34 84 % 0.0 84 1.81 1.81 £ 0.0 1.81
basic 1195 + 0.0 1195 491.0 # 0.0 491 71.0 # 0.0 71 2.14 2.14 + 0.0 2.14
sabre 380 * 10.03 344 78.19 % 4.42 66 64.19 * 0.94 67 24.94 1.56 % 0.12 2.31
stochastic 813 * 32.04 609 104.0 + 7.88 76 66.56 + 1.44 71 62.25 3.89 * 0.09 3.76

We see SABRE outperforms the other methods available by default in Qiskit, but not line-graph routing for
the circuits considered.

7.0.6 Wall-clock time of line-graph routing

Create a random graph, construct the line graph, create a circuit on the line graph, and put this circuit into
line-graph routing

from time import time

side=25

lg = lgr.kagome(side, side)

print ('number of nodes =',lg.number_of_nodes())
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La=10%%*5

print ('number of gates =',La)
qc = lgr.random_circuit(lg, La)

begin=time ()

gc = lgr.line_graph_route(qc)

end=time ()

print('wall clock time =',end-begin,'(s)')

number of nodes
number of gates
wall clock time

1976
100000
25.544434070587158 (s)
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