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Abstract

Recently, Apers and Piddock [TQC ’23] strengthened the natural connection between quantum
walks and electrical networks by considering Kirchhoff’s Law and Ohm’s Law. In this work, we
develop the multidimensional electrical network by defining Kirchhoff’s Alternative Law and Ohm’s
Alternative Law based on the novel multidimensional quantum walk framework by Jeffery and Zur
[STOC ’23]. This multidimensional electrical network allows us to sample from the electrical
flow obtained via a multidimensional quantum walk algorithm and achieve exponential quantum-
classical separations for certain graph problems.

We first use this framework to find a marked vertex in one-dimensional random hierarchical
graphs as defined by Balasubramanian, Li, and Harrow [arXiv ’23]. In this work, they generalised
the well known exponential quantum-classical separation of the welded tree problem by Childs,
Cleve, Deotto, Farhi, Gutmann, and Spielman [STOC ’03] to random hierarchical graphs. Our
result partially recovers their results with an arguably simpler analysis. Furthermore, by construct-
ing a 3-regular graph based on welded trees, this framework also allows us to show an exponential
speedup for the pathfinding problem. This solves one of the open problems by Li [arXiv ’23], where
they construct a non-regular graph and use the degree information to achieve a similar speedup.

In analogy to the connection between the (edge-vertex) incidence matrix of a graph and Kirch-
hoff’s Law and Ohm’s Law in an electrical network, we also rebuild the connection between the
alternative incidence matrix and Kirchhoff’s Alternative Law and Ohm’s Alternative Law. By es-
tablishing this connection, we expect that the multidimensional electrical network could have more
applications beyond quantum walks.

1 Introduction

The duality between electrical networks and graph theory is of great significance in multiple aspects of
theoretical computer science. On the one hand, graph theory plays an important role in analysing large
electrical networks (circuits) using high-speed computers [Deo17]. On the other hand, the concepts of
effective resistance and electrical flow used in electrical networks play an important role in the design
of new graph algorithms, such as graph sparsification via effective resistances, computing max flow
via electrical flow, and many more [Vis13]. Furthermore, the connection between random walks (or
more general Markov chains) on undirected graphs and electrical networks plays an important role in
analysing the behavior of random walks, such as their hitting time and cover time [DS84, Lov96].

Quantum computation has been shown to provide various speedups for many graph problems,
ranging from polynomial speedups for detecting (or finding) a marked vertex [HK17, Bel13, AGJK20,
AGJ20], computing the effective resistance in an electrical network [Wan17], connectivity problems
[JJKP18, IJ19], pathfinding problems [DHHM06, JKP23] and graph property testing [ACL11, AS19],
to even superpolynomial speedups when traversing certain graphs [CCD+03, BDCG+20, BLH23, JZ23,
Li23]. Most of these quantum algorithms are based on different types of quantum walks on graphs,
including discrete quantum walks, continuous quantum walks, and the more recent multidimensional
quantum walks.
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The connection between (discrete) quantum walks and electrical networks was first established by
[Bel13], where this implicit connection was used to derive and analyse a phase estimation algorithm
with the goal of detecting the existence of a marked vertex in a graph. Later, [Wan17] provided several
quantum algorithms, based on quantum walks and the HHL algorithm, and exhibited a quantum
speedup in the analysis of large electrical networks, such as computing their electrical flow and effective
resistance. More recently, [Pid19, AP22] have shown that for the quantum walk operator based on
the electrical network framework, if the phase value returned by the phase estimation algorithm from
[Bel13] is “0”, indicating that there is a marked vertex, then the resulting state is actually a quantum
state representing the electrical flow between the starting vertex and the marked vertex. By sampling
from this flow state, one can infer additional information, such as the random walk arrival distribution
and the possibility of finding marked vertices instead of only detecting their existence, but this approach
provides only at most a quadratic speedup compared to what classical random walks can achieve.

In addition to algebraic problems [Sho97, Sim97], one of the most well known examples that ex-
hibits an exponential separation between quantum and classical algorithms is the welded tree problem
[CCD+03]. A welded tree graph consists of two full binary trees of depth h and the leaves of both trees
are connected via two disjoint perfect matchings. Given an adjacency list oracle OG to the welded tree
graphs G and the name of one of the roots s, the goal of the welded tree problem is to output the name
of the other root t. More recently, [BLH23] generalised this exponential separation to one-dimensional
random hierarchical graphs where the goal is once more to find some special vertex t given an initial
vertex s. Instead of finding a marked vertex, [Li23] showed that there is an exponential separation
when it comes to finding a path for certain types of graphs constructed from welded tree graphs. How-
ever, all these quantum algorithms are based on the continuous quantum walk subroutine, in which
they do not generate a specific quantum state implicitly.

Other than the continuous quantum walk approach, the multidimensional quantum walk framework
[JZ23] solves the welded tree problem by applying phase estimation of a more general quantum walk
operator and checks whether the returned phase value is “0”, indicating that the root t is “marked”,
which allows them to infer the name of t. This provides a new way to achieve an exponential separation
between quantum and classical algorithms. Many big open problems in the field of quantum computing
can be reduced to the task of generating a specific type of quantum state, such as the graph isomorphism
problem [AT07], lattice-related problems [EH22], and the problem of computing the ground state of
local Hamiltonians [GHL+15]. However, limited progress has been made on how to generate those
quantum states and exhibit exponential speedup on these types of problems. Alternatively, an equally
important direction is to design new quantum algorithms to generate certain types of quantum states
and use those states to exhibit, hopefully superpolynomial, speedups for some other problems. An
open problem is whether we can build a connection between multidimensional quantum walks and
electrical networks to obtain some notion of a quantum “electrical flow” state, such that by generating
and sampling from such a state we can solve certain problems exponentially faster compared to classical
algorithms. Hopefully this new flow state generation technique may also shed some light on those big
open problems related to quantum state generation.

Multidimensional electrical networks: In this work, we take the first steps in building this
connection by constructing the multidimensional electrical network framework through generalising
Kirchhoff’s Law as Kirchhoff’s Alternative Law and Ohm’s Law as Ohm’s Alternative Law based on
the multidimensional quantum walk framework from [JZ23]. Roughly speaking, for each vertex other
than the source and sink, Kirchhoff’s Law forces the electrical flow to be orthogonal to a vector,
whereas Kirchhoff’s Alternative Law forces the electrical flow to be orthogonal to a potentially larger
subspace that encompasses the previous vector. Moreover, instead of associating each vertex with a
single potential value for each vertex as in Ohm’s Law, we associate (possibly distinct) potential values
p(u,v), p(v,u) to each edge (u, v) in Ohm’s Alternative Law, which states that pu,v − pv,u = θu,v/wu,v,
whereas Ohm’s Law states pu − pv = θu,v/wu,v.

The definitions of these two alternative laws are derived from the quantum walk based on an
electrical network [Bel13, Pid19, AP22] and the alternative neighbourhood technique introduced by
the multidimensional quantum walk [JZ23]. We can model any graph G = (V,E,w) as an electrical
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network with each edge assigned a positive weight wu,v, i.e. the conductance. This weight assignment
gives rise to a weighted superposition of neighbours of any vertex u, known as the star state of u:

|ψu⟩ =
1

√
wu

∑
v

√
wu,v |u, v⟩ ,

where wu is a normalization factor. This can be thought of as a quantum encoding of the probability
to move from a vertex u to each neighbour v. The s-t electrical flow θ, which is the “smallest” s-t flow
by some metric, gives rise to an electrical flow state |θ⟩. Kirchhoff’s Law states that this s-t electrical
flow is conserved at every vertex u ∈ V \{s, t}, meaning that the amount of flow θ coming into u is
equal to the amount of flow existing u. This law can be equivalently read in terms of |ψu⟩ and |θ⟩, in
which case it states that for every vertex u ∈ V \{s, t} we require

⟨ψu|θ⟩ = 0.

The quantum walk operator UAB = (2ΠA − I)(2ΠB − I) in [Bel13] consists of a reflection around
two spaces: the antisymmetric subspace A and the span of (almost all) star states:

B := span{|ψu⟩ : u ∈ V \{s, t}}.

The s-t electrical flow θ is special with regards to this quantum walk operator UAB, as its flow
state |θ⟩ lives in the +1-eigenspace of U . Moreover, it can also be written as a linear combination of
projected star states (I −ΠA) |ψu⟩ for u ∈ V . The coefficients in this linear combination are precisely
the potentials pu given by the potential vector p corresponding to the s-t electrical flow θ such that
together they satisfy Ohm’s Law: pu−pv = θu,v/wu,v. By combining all these properties, [Pid19, AP22]
showed that with the use of phase estimation on the quantum walk operator UAB, one can approximate
|θ⟩, allowing one to (approximately) sample from the s-t electrical flow θ.

The cost of calling UAB, and hence the cost of this phase estimation procedure, relies on the cost of
generating |ψu⟩. In [JZ23], the authors deal with the case where it might be computationally costly to
generate |ψu⟩, but where the algorithm knows that |ψu⟩ is one of a small set of easily preparable states
Ψ⋆(u) = {|ψu,1⟩ , |ψu,2⟩ , . . . }, known as the alternative neighbourhoods for u. They then run phase
estimation on the modified quantum walk operator UABalt , which reflects around the larger space that
contains B:

Balt := span{span(Ψ⋆(u)) : u ∈ V \{s, t}}.
To make sure that the same analysis as before still works on this new quantum walk operator UABalt ,

we introduce the s-t alternative electrical flow θalt. This is again the “smallest” s-t flow that satisfies
Kirchhoff’s Alternative Law, which requires |θalt⟩ to be orthogonal to all of span(Ψ⋆(u)) instead of
only to |ψu⟩ ∈ Ψ⋆(u), ensuring that |θalt⟩ lives in the +1-eigenspace of UABalt . This |θalt⟩ can also be
written as a linear combination of projected star states (I − ΠA) |ψu,i⟩ for u ∈ V and |ψu,i⟩ ∈ Ψ⋆(u).
This will again result in a collection of linear coefficients, which gives rise to an alternative potential
vector palt acting not on vertices, but on edges. This palt is related to θalt through Ohm’s Alternative
Law, which states that pu,v − pv,u = θu,v/wu,v. By a similar analysis as in regular electrical networks,
we show that with phase estimation on the quantum walk operator UABalt we can approximate |θalt⟩,
allowing one to (approximately) sample from the s-t alternative electrical flow θalt.

These laws and definitions may seem constructed in an ad-hoc fashion to fit with the analysis
in [Pid19, AP22], but we give proof that these are in fact natural definitions. It is well known in
electrical network theory [Vis13] that both Kirchhoff’s Law as well as Ohm’s Law can be phrased as
linear equations involving the edge-vertex incidence matrix B, whose entries contain the square root
of the weights wu,v. These linear relations are useful to show important physical properties of the s-t
electrical flow θ and its potential vector p, such as their existence and the fact that ps is equal to
the energy of θ, also known as the effective resistance Rs,t. By extending this B in a natural fashion
to also incorporate the alternative neighbourhoods Ψ⋆(u), we obtain the alternative incidence matrix
Balt. This matrix Balt can be substituted into the previously mentioned linear equations to recover
Kirchhoff’s Alternative Law as well as Ohm’s Alternative Law. We then use these linear equations to
show the existence of the s-t alternative electrical flow θalt and its alternative potential vector palt, as
well as the fact that the potential ps,u along each adjacent to s is equal to the energy of θalt, which we
call the alternative effective resistance Ralt

s,t.
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Applications: We first apply this multidimensional quantum electrical network framework to one-
dimensional random hierarchical graphs with nodes S0, S1, · · · , Sn as defined in [BLH23]. Given the
initial vertex s, which is the unique element in S0, the goal is to transverse the exponentially large
one-dimensional random hierarchical graph to find the vertex t, the unique element in Sn. It has
been shown that the continuous quantum walk approach can provide an exponential speedup (in n)
in solving this problem compared to any classical algorithm with some additional assumptions on
the structures of the one-dimensional random hierarchical graph. In this paper, imposing slightly
different assumptions on the structure, we show that the multidimensional quantum walk also solves
this problem in polynomial time by sampling from the quantum electrical flow state. Interestingly, in
this one-dimensional setting, the electrical flow with respect to the multidimensional quantum walk
operator on some weighted one-dimensional random hierarchical graph matches the real electrical flow.
Compared to the technical analysis [BLH23] used for the continuous quantum walk approach, our
analysis is much simpler and more suited to a computer science audience. We then apply this to the
welded tree graph, which is an example of a one-dimensional random hierarchy graph, to provide an
alternative quantum algorithm that solves the problem in polynomial time, recovering the exponential
separation from [CCD+03].

Additionally, we apply this multidimensional quantum electrical network framework to the pathfind-
ing problem. Here, given a graph G = (V,E) and s, t ∈ V , the algorithm is tasked with finding an s-t
path. Under the adjacency list oracle model, [Li23] recently constructed a graph by associating n differ-
ent welded tree graphs with an s-t path of length n, hereby exhibiting an exponential quantum-classical
separation in the context of pathfinding problems. This quantum algorithm uses the polynomial-time
continuous quantum walk algorithm from [CCD+03] as a subroutine to output the s-t path and the
constructed algorithm relies heavily on the constructed graph being non-regular. This degree informa-
tion in some way propagates the algorithm into the direction of t, which makes this technique infeasible
for less structured graphs, such as isogeny graphs [JDF11]. On the other hand, as indicated in [HL],
by generating the electrical flow using the HHL algorithm [HHL09], there seems to be a possibility of
exhibiting a superpolynomial speedup as well in the context of pathfinding problems, but currently
their analysis provides a quadratic speedup compared with existing approaches. However, we should
emphasise that their failed attempt of using the quantum electrical flow to show a superpolynomial
speedup for the pathfinding problem provided the starting point for this work. Under the adjacency
matrix model, [JKP23] suggest a new way to generate a quantum electrical flow state based on span
programs. This approach can be used to sample an s-t path, which improves the query complexity
of the previous quantum algorithm by [DHHM06] for some types of graphs, but the resulting com-
plexities scale at least linearly with the number of vertices, which poses a problem when dealing with
exponentially large graphs.

In this work, we construct a 3-regular graph, except for the start and end vertices s and t, which
contains welded tree graphs of depth n as subgraphs, meaning this graph has exponentially many
vertices. We then tackle the pathfinding for G and s, t using the adjacency list oracle model using the
multidimensional quantum electrical network framework. This allows us to sample from the electrical
flow between s and t. We then exhibit an explicit s-t path, whose overlap with the electrical flow is
at least inverse polynomial. This allows us to obtain this s-t path using only a polynomial amount
of queries to the adjacency list oracle. We also give a classical lower bound on solving this specific
pathfinding problem, which states that any classical algorithm will have to make an exponential number
of queries to adjacency list oracle to output any s-t path, under the folklore assumption that s-t
pathfinding is classically hard on welded tree graphs. In both of these applications, the way that Balt

is extended is fairly natural, as it will be constructed from Fourier basis states.
Although our work involves pathfinding and welded tree graphs, the multidimensional quantum

electrical network framework does not directly hint at a solution to the s-t pathfinding problem on
welded tree graphs [CCG22], which currently poses a large open-problem in the field of quantum
algorithms [Aar21]. This is due to the fact that any s-t path on the welded tree graph of polynomial
length will have a negligible overlap with the (alternative) s-t electrical flow.
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Organization: The remainder of this article is organised as follows. In Section 2, we give prelimi-
naries on graph theory, electrical networks and quantum walks. In Section 3 we show how the concepts
related to electrical flow can be generalised to the multidimensional electrical network under the multi-
dimensional quantum walk framework. This results in our new Kirchhoff’s Alternative Law and Ohm’s
Alternative Law. In Section 4, we apply the multidimensional electrical network to one-dimensional
random hierarchical graphs and show how the framework allows us to sample exponentially faster from
the quantum electrical flow state than any classical algorithm can. In Section 5, using the multidimen-
sional electrical network, we construct a pathfinding problem where we show that quantum walks can
exhibit exponential speedups when it comes to pathfinding problems. Finally in Section 6, we rebuild
the connection between the alternative incidence matrix and Kirchhoff’s Alternative Law and Ohm’s
Alternative Law, showing that our new laws seem to be natural definitions and that they generalise
known results regarding electrical networks.

2 Preliminaries

2.1 Graph theory and electrical networks

In this section, we define graph-theoretic concepts and basic knowledge of electrical networks following
[Vis13, JZ23]. Although experienced readers will be familiar with these notions, we encourage the
reader not to skip these definitions, as some of them are not completely standard compared to other
works on quantum walks.

Definition 2.1 (Network). A network is a connected weighted graph G = (V,E,w) with a vertex set
V , an (undirected) edge set E and some weight function w : E → R>0. Since edges are undirected, we
can equivalently describe the edges by some set

−→
E such that for all (u, v) ∈ E, exactly one of (u, v) or

(v, u) is in
−→
E . The choice of edge directions is arbitrary. Then we can view the weights as a function

w :
−→
E → R>0, and for all (u, v) ∈

−→
E , define wv,u = wu,v. For convenience, we will define wu,v = 0

for every pair of vertices such that (u, v) ̸∈ E. For an implicit network G, and u ∈ V , we will let Γ(u)
denote the neighbourhood of u:

Γ(u) := {v ∈ V : (u, v) ∈ E}.

We use the following notation for the out- and in-neighbourhoods of u ∈ V :

Γ+(u) := {v ∈ Γ(u) : (u, v) ∈
−→
E }

Γ−(u) := {v ∈ Γ(u) : (v, u) ∈
−→
E },

(1)

Definition 2.2 (Flow, Circulation). A flow on a network G = (V,E,w) is a real-valued function
θ :

−→
E → R, extended to edges in both directions by θu,v = −θv,u for all (u, v) ∈

−→
E . For any flow θ

on G, vertex u ∈ V , and subset A ⊆ V we define θu =
∑

v∈Γ(u) θu,v as the flow coming out of u. If
θu = 0, we say flow is conserved at u. If flow is conserved at every vertex, we call θ a circulation. If
θu > 0, we call u a source, and if θu < 0 we call u a sink. A flow with a unique source s and unique
sink t (satisfying θ(s) = −θ(t) = −1) is called an (unit) s-t flow. The energy of any flow θ is

E(θ) :=
∑

(u,v)∈
−→
E

θ2u,v
wu,v

.

The effective resistance Rs,t is given by the minimal energy E(θ) over all unit flows θ from s to t. The
s-t electrical flow is the unique unit s-t flow that achieves this minimal energy.

Definition 2.3 (Potential). A potential vector (also known as potential function) on a network G =
(V,E,w) is a real-valued function p : V → R that assigns a potential pu to each vertex u ∈ V .

Definition 2.4 (Electrical Network). Given a network G = (V,E,w) with a weight function w, we
can interpret every edge (u, v) ∈ E as a resistor with resistance 1/wu,v. This allows G to be modeled
as an electrical network.
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Two fundamental laws related to electrical networks are Kirchhoff’s Law (also known as Kirchhoff’s
Node Law) and Ohm’s Law. The former states the definition of a s-t flow, as in Definition 2.2:

Definition 2.5 (Kirchhoff’s Law). For any s-t flow on an electrical network G = (V,E,w) with
s, t ∈ V , the amount of electrical flow that enters any u ∈ V \{s, t} is equal to the amount of flow that
exits u, that is,

∑
v∈Γ(u) θu,v = 0.

The latter states that if we inject a unit of current into s and extract it from t in the electrical
network G, then there is an induced potential vector p which relates to the s-t electrical flow θ:

Definition 2.6 (Ohm’s Law). Let θ be the s-t electrical flow on an electrical network G = (V,E,w)
with s, t ∈ V . Then there exists a potential vector p such that the potential difference between the two
endpoints of any edge (u, v) ∈ E is equal to the amount of electrical flow θu,v along this edge multiplied
with the resistance 1/wu,v, that is, pu − pv = θu,v/wu,v.

The potential p induced by an s-t electrical flow θ in Ohm’s Law is not unique and it is therefore
convention to consider the potential p that assigns pt = 0, in which case ps = Rs,t.

2.2 Quantum walks and electrical flow

There is a direct relationship between the analysis of random walks and electrical networks, see for
example [LP16]. The relationship between quantum walks and electrical networks was built for the first
time by [Bel13], where electrical network theory was used to construct and analyse a phase estimation
algorithm to detect whether a given graph contained a marked element. Recently, [Pid19, AP22]
have shown that the resulting state after running this phase estimation is actually a quantum state
representing the electrical flow between a starting vertex and the marked vertices. For a network
G = (V,E,w) and vertices s, t ∈ V , let

H = span{|u, v⟩ |(u, v) ∈ E}

be the associated vector space of its edges. For each vertex u ∈ V , we let wu =
∑

v∈Γ(u) wu,v be the
weighted degree of u. We use it to define the (normalised) star state of u as

|ψu⟩ =
1

√
wu

∑
v∈Γ+(u)

√
wu,v |u, v⟩ −

∑
v∈Γ−(u)

√
wu,v |u, v⟩ =

1
√
wu

∑
v∈Γ(u)

(−1)∆u,v
√
wu,v |u, v⟩ .

Here for any (u, v) ∈ E, the quantity ∆u,v is equal to 0 if (u, v) ∈
−→
E and 1 if (v, u) ∈

−→
E . This definition

of a star state is slightly different from most of the literature, where there is usually no sign-difference
depending on whether (u, v) is part of the directed edge set, but this will be necessary later on when
working with the multidimensional quantum walk framework from [JZ23]. Now consider the following
two subspaces of H. Let

A := span{|ψ⟩ ∈ H : ⟨u, v|ψ⟩ = −⟨v, u|ψ⟩ ∀ |u, v⟩ ∈ H}

be the antisymmetric subspace of H. Moreover, let B := span{|ψu⟩ : u ∈ V \{s, t}} be the star space
of H. Then the quantum walk operator UAB is defined as

UAB := (2ΠA − I)(2ΠB − I), (2)

where ΠA and ΠB are orthogonal projectors onto A and B respectively. Note that

2ΠA − I = −SWAP, 2ΠB − I = 2
∑

u∈V \{s,t}

|ψu⟩ ⟨ψu| − I,

where SWAP acts as SWAP |u, v⟩ = |v, u⟩ for any |u, v⟩ ∈ H. For any star state |ψu⟩, we write

|ψ+
u ⟩ :=

√
2(I −ΠA) |ψu⟩ =

I + SWAP√
2

|ψu⟩
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for its normalised projection onto A⊥, which is also known as the symmetric subspace of H. For any
flow θ, we define its associated (normalised) flow state in H as

|θ⟩ := 1√
2E(θ)

∑
(u,v)∈

−→
E

θu,v√
wu,v

(|u, v⟩+ |v, u⟩) . (3)

In the case where θ is the s-t electrical flow, we define the (unnormalised) state associated with the
induced potential vector p (with the convention that pt = 0) as

|p⟩ =

√
2

Rs,t

∑
u∈V \{s}

pu
√
wu |ψu⟩ . (4)

In [Pid19, AP22], this potential state |p⟩ is used to exhibit that by running phase estimation on the
quantum walk operator UAB, we can obtain a close approximation to the flow state |θ⟩. The precision
required in this phase estimation algorithm scales with a quantity in [AP22] is defined as the escape
time ETs:

ETs :=
1

2
∥|p⟩∥2 = 1

Rs,t

∑
u∈V

p2uwu.

Since we will not be using the operational meaning of ETs in this work, we will omit ETs in the rest
of this work and instead work with ∥|p⟩∥.

Lemma 2.7 (Modified Lemma 8 in [Pid19] and Lemma 10 in [AP22]). Define the unitary UAB =
(2ΠA − 1)(2ΠB − 1) acting on a Hilbert space H for projectors ΠA,ΠB onto some subspaces A and B
of H respectively. Let |ψ⟩ = √

p |φ⟩+(I−ΠA) |ϕ⟩ be a normalised quantum state such that U |φ⟩ = |φ⟩
and |ϕ⟩ is a (unnormalised) vector satisfying ΠB |ϕ⟩ = |ϕ⟩. Then performing phase estimation on the
state |ψ⟩ with operator U and precision δ outputs “0” with probability p′ ∈ [ 4

π2 p, p +
17π2∥|ϕ⟩∥

16T ], leaving
a state |ψ′⟩ satisfying

1

2

∥∥|ψ′⟩ ⟨ψ′| − |φ⟩ ⟨φ|
∥∥
1
≤

√
17π4δ ∥|ϕ⟩∥

64p
.

Consequently, when the precision is O
(

pϵ2

∥|ϕ⟩∥

)
, the resulting state |ψ′⟩ satisfies

1

2

∥∥|ψ′⟩ ⟨ψ′| − |φ⟩ ⟨φ|
∥∥
1
≤ ϵ.

Proof. See Appendix 6.3.

This lemma is almost equivalent to Lemma 8 in [Pid19] and Lemma 10 in [AP22], but we have
modified it slightly as we were unable to verify the constants in [Pid19, AP22] and the scaling with
the precision in [AP22]. The theory of electrical networks tells us if we consider the s-t electrical flow
θ, then we can apply Lemma 2.7 to approximate the s-t electrical flow state |θ⟩.

Corollary 2.8. Let UAB be the quantum walk operator as defined in (2). Then by performing phase
estimation on the initial state |ψ+

s ⟩ with the operator UAB and precision O
(

ϵ2

Rs,tws∥p∥

)
, the phase

estimation algorithm outputs “0” with probability Θ
(

1
Rs,tws

)
, leaving a state |θ′⟩ satisfying

1

2

∥∥|θ′⟩ ⟨θ′| − |θ⟩ ⟨θ|
∥∥
1
≤ ϵ.

Before we provide the proof of Corollary 2.8, which can also be found in [Pid19, AP22], we remark
that it is possible to modify the network G to ensure that Rs,tws = Θ(1), which is a standard tool
used in quantum electrical networks [Bel13].
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Proof. Firstly, by Kirchhoff’s Law (see Definition 2.5), we know the s-t electrical flow θ is conserved
at each vertex u ∈ V \ {s, t}, which shows that ΠB |θ⟩ = 0:

⟨ψu|θ⟩ =
1√
2Rs,t

∑
v∈Γ(u)

(−1)∆u,v
√
wu,v ⟨u, v|

∑
(u,v)∈

−→
E

θu,v√
wu,v

(|u, v⟩+ |v, u⟩)

=
1√
2Rs,t

 ∑
v∈Γ+(u)

θu,v +
∑

v∈Γ−(u)

−θv,u

 =
1√
2Rs,t

∑
v∈Γ(u)

θu,v = 0.

(5)

By Ohm’s Law (see Definition 2.6), we know that there exists a potential p, with pt = 0, such that
for each edge (u, v) ∈ E we have pu − pv =

θu,v
wu,v

. This shows that ΠA |θ⟩ = 0, which combined with
the fact that ΠB |θ⟩ = 0 shows that |θ⟩ is indeed a normalised +1-eigenvector of UAB:

|θ⟩ = 1√
2Rs,t

∑
(u,v)∈

−→
E

θu,v√
wu,v

(|u, v⟩+ |v, u⟩)

=
1√
2Rs,t

∑
(u,v)∈

−→
E

(√
wu,v(pu − pv) |u, v⟩+ (pu − pv)

√
wu,v |v, u⟩

)

=
1√
2Rs,t

∑
u∈V

pu
∑

v∈Γ(u)

(−1)∆u,v
√
wu,v |u, v⟩+ SWAP

∑
u∈V

pu
∑

v∈Γ(u)

(−1)∆u,v
√
wu,v |u, v⟩


= (I −ΠA)

√
2

Rs,t

∑
u∈V

pu
√
wu |ψu⟩ .

(6)

Not only does (6) tells us that ΠA |θ⟩ = 0, it also immediately shows us how to decompose |θ⟩ to
obtain the factor |p⟩, where we make use of the fact that ps = Rs,t:

|θ⟩ = (I −ΠA)

√
2

Rs,t
(
∑
u∈V

pu
√
wu |ψu⟩ = (I −ΠA) |p⟩+ (I −ΠA)

√
2

Rs,t
ps
√
ws |ψu⟩

= (I −ΠA) |p⟩+
√

Rs,tws |ψ+
s ⟩ ,

which we can rewrite to

|ψ+
s ⟩ =

1√
Rs,tws

|θ⟩ − (I −ΠA)
1√

Rs,tws

|p⟩ . (7)

Lastly, since pt = 0, we immediately have by its definition in (4) that |p⟩ ∈ B, meaning ΠB |p⟩ = |p⟩.
Hence by applying Lemma 2.7 with the parameters |ψ⟩ = |ψ+

s ⟩, |φ⟩ = |θ⟩, |ϕ⟩ = − 1√
Rs,tws

|p⟩ and

p = 1
Rs,tws

, we find that the resulting state after running phase estimation on the quantum walk
operator UAB with initial state |ψ+

s ⟩ is approximately the s-t electrical flow state.

3 Multidimensional electrical networks

In this section, based on the multidimensional quantum walk framework [JZ23], we extend the electrical
network to the multidimensional electrical network by generalising Kirchhoff’s Law and Ohm’s Law as
Kirchhoff’s Alternative Law and Ohm’s Alternative Law, respectively. One of the key techniques used
in the multidimensional quantum walk framework is the introduction of alternative neighbourhoods,
where each vertex is associated with a subspace instead of a single vector (its star state) as was the
case in Section 2.2.
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3.1 Alternative neighbourhoods

Definition 3.1 (Alternative Neighbourhoods). For a network G = (V,E,w) and for each vertex u ∈ V ,
a set of alternative neighbourhoods is a collection of states Ψ⋆(u) such that |ψu⟩ ∈ Ψ⋆(u) and

Ψ⋆ = {Ψ⋆(u) ⊂ span{λu,v |u, v⟩ : v ∈ Γ(u), λu,v ∈ R} : u ∈ V }

We view the states of Ψ⋆(u) as different possibilities for |ψu⟩, only one of which is “correct”. We say
we can generate Ψ⋆ in complexity A⋆ if there is a map U⋆ that can be implemented with complexity
A⋆ and for each u ∈ V , an orthonormal basis Ψ(u) = {|ψu,0⟩ , . . . , |ψu,au−1⟩} of size au < |Γ(u)| for
span{Ψ⋆(u)}, such that for all i ∈ {0, . . . , au − 1}, U⋆ |u, i⟩ = |ψu,i⟩ .

In Definition 3.1 we never exclude the possibility that the dimension au of the alternative neigh-
bourhood Ψ⋆(u) is equal to one, in which case Ψ⋆(u) = {|ψu,0⟩} = {|ψu⟩}. If that is the case, we
will say that u has no additional alternative neighbourhoods. These alternative neighbourhoods were
introduced in [JZ23] to tackle the case where it might be computationally easier to generate Ψ⋆(u)
instead of |ψu⟩. By modifying the quantum walk operator UAB to reflect around the span of Ψ⋆ instead
of the span of all star states |ψu⟩, this reduces the cost of applying the walk operator UAB. As a result,
one can reduce the precision needed in the phase estimation algorithm by reducing the weight of the
graph, which directly reduces

∥∥palt∥∥, at the cost of increasing the effective resistance Rs,t, without
incurring an additional cost in calling UAB.

The addition of these alternative neighbourhoods in Ψ⋆ modifies the quantum walk operator UABalt ,
by increasing the star space B:

Balt = span{|ψu,i⟩ : u ∈ V \{s, t}, i ∈ {0, . . . , au − 1}}.

Through this modification, the quantum walk operator UAB with respect to Ψ⋆ is altered to

UABalt = (2ΠA − I)(2ΠBalt − I), (8)

where ΠA and ΠBalt are orthogonal projectors onto A and Balt respectively, meaning

2ΠA − I = −SWAP, 2ΠBalt − I = 2
∑

u∈V \{s,t}

au−1∑
i=0

|ψu,i⟩ ⟨ψu,i| − I.

We would like to be able to apply Lemma 2.7 to this more general walk operator as well, meaning
we want to find an alternative unit s-t flow θalt, an (unnormalised) state |palt⟩ and (normalised) state
|ψ⟩ such that the following conditions are satisfied:

1. U |θalt⟩ = |θalt⟩.

2. (I −ΠA) |palt⟩+
√

2
E(θalt) |ψ⟩ = |θalt⟩.

3. ΠB |palt⟩ = |palt⟩.

For simplicity we will assume in the rest of this work that s and t do not contain any additional
alternative neighbourhoods, as it greatly simplifies notation and intuition. In our applications in
Section 4 and Section 5 these simplifying assumptions will also hold.

3.2 Kirchhoff’s Alternative Law

Recall the definition of a flow state from (3) for any flow θ. By construction, |θ⟩ lives in the symmetric
subspace A⊥, since

ΠA (|u, v⟩+ |v, u⟩) = I − SWAP

2
(|u, v⟩+ |v, u⟩) = 0.

Hence any s-t flow θ that we select will satisfy ΠA |θ⟩ = 0. For the flow state |θ⟩ to live in the
+1-eigenspace of U , it rests us to find some θ such that ΠB |θ⟩ = 0. In (5), we used Kirchhoff’s Law for
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this goal, which showed that for any s-t -flow θ and vertex u ∈ V \{s, t}, we have ⟨ψu|θ⟩ = 0. However,
in the multidimensional electrical network, it must be orthogonal to all states in Balt instead of B.
That is, the state |θalt⟩ must be orthogonal to all of span(Ψ⋆(u)) for every u ∈ V \{s, t}. We therefore
modify Kirchhoff’s Law to be Kirchhoff’s Alternative Law.

Definition 3.2 (Kirchhoff’s Alternative Law). For any s-t alternative flow θalt with respect to a
collection of alternative neighbourhoods Ψ⋆ on an electrical network G = (V,E,w) with s, t ∈ V , the
corresponding flow state |θalt⟩ is orthogonal to span(Ψ⋆(u)) for every u ∈ V \{s, t}, that is, ⟨ψu,i|θ⟩ = 0
for each i ∈ {0, 1, · · · , au − 1}.

We refer to any unit s-t flow satisfying Kirchhoff’s Alternative Law as an alternative unit s-t flow.
Similarly as in Definition 2.2, we define the s-t alternative electrical flow with respect to Ψ⋆ as the
alternative unit s-t flow achieving minimal energy:

Definition 3.3 (Alternative Electrical Flow). For a collection of alternative neighbourhoods Ψ⋆ on an
electrical network G = (V,E,w) with s, t ∈ V , the s-t alternative electrical flow is the alternative unit
s-t flow with minimal energy E(θalt). We call this minimal energy the alternative effective resistance
Ralt

s,t.

Right now it might seem as this is ill-defined, as at first glance there could very well be multiple
alternative unit s-t flows that achieve the minimal energy Ralt

s,t, but we prove in Theorem 6.8 that
the s-t alternative electrical flow is indeed unique (as long as any alternative unit s-t flow exists at
all). It might be that the s-t electrical flow also satisfies Kirchhoff’s Alternative Law, meaning that
it coincides with the s-t alternative electrical flow. We show an example of this in Section 4 and this
allows us to apply Lemma 2.7 directly using similar parameters as in Corollary 2.8. The other side of
the spectrum is that there might not be any s-t flow at all that satisfies Kirchhoff’s Alternative Law,
in which case the s-t alternative electrical flow does not exist. We show an example of this shortly.
The most likely scenario however is that we are right in the middle where the s-t electrical flow and
s-t alternative electrical flow do not coincide, meaning we can not rely on Ohm’s Law.

3.3 Ohm’s Alternative Law

To apply Lemma 2.7, we still need to find an (unnormalised) state |palt⟩ and (normalised) state |ψ⟩
such that

1. (I −ΠA) |palt⟩+
√

2
E(θalt) |ψ⟩ = |θalt⟩.

2. ΠB |palt⟩ = |palt⟩.

In the case that the s-t alternative electrical flow θalt does not overlap with the s-t electrical flow,
we will not be able to find a potential vector p defined on the vertices V satisfying Ohm’s Law. So
instead we will be looking for a potential vector palt on the edges E, meaning it assigns a potential
paltu,v to each edge (u, v) ∈ E.

Definition 3.4 (Alternative Potential). An alternative potential vector (or alternative potential func-
tion) on a network G = (V,E,w) is a real-valued function palt : E → R that assigns a potential pu,v to
each ordered pair (u, v) ∈ E.

Similarly to how the potential vector satisfied ps = Rs,t and pt = 0, we require the alternative
potential vector palt to satisfy palts,v = Ralt

s,t and paltt,v = 0 for every v ∈ Γ(s) (resp. v ∈ Γ(t)). We then
define its corresponding state in H as

|palt⟩ =

√
2

R(θalt)

∑
(u,v)∈

−→
E :s/∈(u,v)

√
wu,v(p

alt
u,v |u, v⟩ − paltv,u |v, u⟩). (9)
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Definition 3.5 (Ohm’s Alternative Law). Let θalt be the s-t alternative electrical flow with respect to a
collection of alternative neighbourhoods Ψ⋆ on an electrical network G = (V,E,w) with s, t ∈ V . Then
there exists an alternative potential vector palt that assigns a potential paltu,v on each edge (u, v) ∈ E such
that the associated state |palt⟩ (see (9)) satisfies ΠB |palt⟩ = |palt⟩ and the potential difference between
(u, v) and (v, u) is equal to the amount of electrical flow θaltu,v along (u, v) multiplied with the resistance
1/wu,v, that is, paltu,v − paltv,u = θaltu,v/wu,v.

We have not yet introduced the necessarily tools to show that there always exists a potential vector
palt satisfying Ohm’s Alternative Law, we will do this in Theorem 6.10. In the following examples and
applications, we therefore show existence by explicitly constructing |palt⟩. If the potential vector palt

satisfies Ohm’s Alternative Law, then |palt⟩ is precisely the state we need to apply Lemma 2.7:

|θalt⟩ = 1√
2Ralt

s,t

∑
(u,v)∈

−→
E

θu,v√
wu,v

(|u, v⟩+ |v, u⟩)

=
1√
2Ralt

s,t

∑
(u,v)∈

−→
E

(√
wu,v(p

alt
u,v − paltv,u) |u, v⟩+

√
wu,v(p

alt
u,v − paltv,u) |v, u⟩

)

=
1√
2Ralt

s,t

 ∑
(u,v)∈

−→
E

√
wu,v(p

alt
u,v |u, v⟩ − paltv,u |v, u⟩) + SWAP

∑
(u,v)∈

−→
E

√
wu,v(p

alt
u,v |u, v⟩ − paltv,u |v, u⟩)


= (I −ΠA)

√
2

Ralt
s,t

∑
(u,v)∈

−→
E

√
wu,v(p

alt
u,v |u, v⟩ − paltv,u |v, u⟩)

= (I −ΠA) |palt⟩+ (I −ΠA)

√
2

Ralt
s,t

∑
v∈Γ(s)

(−1)∆s,vpalts,v
√
ws,v |s, v⟩

= (I −ΠA) |palt⟩+
√

Ralt
s,tws |ψ+

s ⟩ .

In the following examples and applications where we explicitly construct the state |palt⟩, we need
to verify that it satisfies ΠB |palt⟩ = |palt⟩. To assist in this verification, we introduce the states
|palt|u ⟩ = (|u⟩ ⟨u| ⊗ I) |palt⟩ for u ∈ V . To verify whether ΠB |palt⟩ = |palt⟩, it will be sufficient to verify
whether each |palt|u ⟩ lies in span{Ψ⋆(u)}, since we can decompose |palt⟩ as

|palt⟩ =

√
2

R(θalt)

∑
(u,v)∈

−→
E :s/∈(u,v)

√
wu,v(p

alt
u,v |u, v⟩ − paltv,u |v, u⟩)

=

√
2

R(θalt)

∑
u∈V

∑
v∈Γ(u)

(−1)∆u,vpaltu,v
√
wu,v |u, v⟩

=

√
2

R(θalt)

∑
u∈V

|palt|u ⟩ .

(10)

In the special case where u has no additional alternative neighbourhoods, for |palt|u ⟩ to lay in
span{Ψ⋆(u)} = span{|ψu⟩}, the edge potentials pu,v must be the same for each v ∈ Γ(u).

3.4 Examples

Having rebuilt the connection between the alternative potential vector and s-t alternative electrical
flow in the multidimensional quantum electrical network framework, we now provide some intuition
for these new definitions by providing a few examples.

Consider the network G = (V,E,w) with the vertex set V = {s, x, y, t} and directed edge set
−→
E = {(s, x), (x, y), (x, t), (y, t)}, where each edge (u, v) ∈

−→
E has weight wu,v = 1/4, except for the
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y
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1
1
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1
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1
4

wu,v for each (u, v) ∈
−→
E
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t

1
2
3

1
3

1
3

θu,v for each (u, v) ∈
−→
E

s x

y

t

11
3

8
3

4
3 0

pu for each u ∈ V

Figure 1: Graph G with its s-t electrical flow θ and corresponding potential p at each vertex.

s x

y

t

1
1
2

1
2

1
2

θaltu,v for each (u, v) ∈
−→
E

s x

y

t

4
2

2
4

paltu,v for each (u, v) ∈
−→
E

s x

y

t

3
0

0
2

paltu,v for each (v, u) ∈
−→
E

Figure 2: Graph G where the blue vertex x has an additional alternative neighbourhood. The s-t
alternative electrical flow θalt be with respect to this extra alternative neighbourhood is displayed, as
well as the corresponding potential vector palt.

edge (s, x), which has weight ws,x = 1. This is visualised in Figure 1. These directions and weight
assignments give rise to the following star states for each of our 4 vertices:

|ψs⟩ = |s, x⟩ , |ψx⟩ =
√

2

3

(
− |x, s⟩+ 1

2
|x, y⟩+ 1

2
|x, t⟩

)
,

|ψy⟩ =
√
2

(
−1

2
|y, x⟩+ 1

2
|y, t⟩

)
, |ψt⟩ =

√
2

(
−1

2
|t, x⟩ − 1

2
|t, y⟩

)
.

In Figure 1 we show the s-t electrical flow θ on G and the corresponding potential vector p. It is
straightforward to verify that θ and p satisfy Ohm’s Law, meaning pu − pv =

θu,v
wu,v

.
We now consider the case where only the vertex x ∈ V contains an additional alternative neigh-

bourhood: let Ψ⋆(x) = {|ψx⟩ , |ψalt
x ⟩} where

|ψalt
x ⟩ =

√
2

3
(
1

2
|s, x⟩ − |x, y⟩+ 1

2
|x, t⟩),

visualised in Figure 2. Kirchhoff’s Alternative Law states that the flow state |θalt⟩ of any unit s-t flow
θalt must additionally be orthogonal to |ψalt

x ⟩. Together with being orthogonal to all the star states,
meaning that the flow θalt is conserved at the vertices x and y, this leaves us with only a single option
for θalt. This flow is visualised in Figure 2 and the corresponding flow vector is given by

|θalt⟩ = 1√
2Ralt

s,t

∑
(u,v)∈

−→
E

θu,v√
wu,v

(|u, v⟩+ |v, u⟩)

=
1√
8

(
1

1
(|s, x⟩+ |x, s⟩) + 1/2

1/2
(|x, y⟩+ |y, x⟩) + 1/2

1/2
(|x, t⟩+ |y, t⟩) + 1/2

1/2
(|y, t⟩+ |t, y⟩)

)
=

1√
8
(|s, x⟩+ |x, s⟩+ |x, y⟩+ |y, x⟩+ |x, t⟩+ |t, x⟩+ |y, t⟩+ |t, y⟩)

Since this θalt is the only unit s-t flow satisfying Kirchhoff’s Alternative Law, it is by default the s-t
alternative electrical flow. For its alternative potential vector palt, we construct |palt⟩ from the bottom
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s x

y

t

1
1
4

1
4

wu,v for each (u, v) ∈
−→
E

s u

v

t

1
1
2

1
2

θaltu,v for each (u, v) ∈
−→
E

Figure 3: Graph G where the blue vertex x has an additional alternative neighbourhood |ψalt
x ⟩. There

is no unit flow from s to t satisfying Kirchhoff’s Alternative Law possible in this graph.

up by creating the states from (10):

|palt|s ⟩ = 4 |s, u⟩ , |palt|x ⟩ = −3 |x, s⟩+ 4

√
1

4
|x, y⟩+ 2

√
1

4
|x, t⟩),

|palt|y ⟩ = −2

√
1

4
|y, x⟩+ 2

√
1

4
|y, t⟩ , |palt|t ⟩ = −0

√
1

4
|t, x⟩ − 0

√
1

4
|t, y⟩ .

Each such |palt|u ⟩ lies in span{Ψ⋆(u)} respectively. The alternative potential palt (see Figure 2 for all
the edge potentials) satisfies palts,x = Ralt

s,t = 4 and paltt,x = paltt,y = 0, as well as Ohm’s Alternative Law,
meaning that each (u, v) ∈ E) satisfies paltu,v−paltv,u = θaltu,v/wu,v. We have therefore found the alternative
potential vector palt whose associated state |palt⟩ satisfies ΠB |palt⟩ = |palt⟩:

|palt⟩ =

√
2

R(θalt)

∑
(u,v)∈

−→
E :s/∈(u,v)

√
wu,v(p

alt
u,v |u, v⟩ − paltv,u |v, u⟩)

= 4 |s, x⟩ − 3 |x, s⟩+ 2 |x, y⟩+ |x, t⟩ − |y, x⟩+ |y, t⟩

= 4 |ψs⟩+
√

3

2

(
8

3
|ψx⟩+

2

3
|ψalt

x ⟩
)
+
√
2 |ψy⟩+ 0 |ψt⟩ .

As mentioned in Section 3.2, depending on the alternative neighbourhoods in Ψ⋆, the s-t alterna-
tive electrical flow might not exist, which is in contrast with regular electrical networks. As such a
counterexample, we modify G once more, this time removing the edge (y, t) from

−→
E . It is clear that

any unit s-t flow θalt must satisfy θalts,x = θaltx,t = 1 and θaltx,y = 0, but in doing so, it will not satisfy
Kirchhoff’s Alternative Law, as the associated state |θalt⟩ is not orthogonal to |ψalt

x ⟩:

⟨ψalt
x |θalt⟩ =

√
2

3
.

4 Electrical flow sampling on one-dimensional random hierarchical
graphs

Recently, [BLH23] have shown that there is an exponential separation between quantum and classical
algorithms in finding a marked vertex in one-dimensional random hierarchical graphs, which is a
generalization of the result of the welded tree problem [CCD+03]. In this section, we show that for one-
dimensional random hierarchical graphs, we can efficiently generate a set of alternative neighbourhoods
Ψ⋆ such that the resulting s-t alternative electrical flow matches the s-t electrical flow, meaning it
satisfies Ohm’s Law. We show that this allows us to invoke Lemma 2.7 with similar parameters as in
Corollary 2.8, allowing us to efficiently approximate the s-t electrical flow and sample from it to find
a marked vertex, recovering some of the results from [BLH23].

Following [BLH23], we now define the one-dimensional random hierarchical graph model with nodes
S0, S1, . . . , Sn.
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S0

w1
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S2

w3

S3

w4

S4

w5

S5

w6

S6

Figure 4: A line supergraph G with nodes S0, S1, . . . , S6. The black nodes are subsets of Veven, where
the edge directions are reversed and where all adjacent edges have the same weight and direction.

Definition 4.1 (Hierarchical graph on a line supergraph G). A hierarchical graph on a line supergraph
G = (V = {0, . . . , n}, E) of length n is defined by a set of nodes Sv for each v ∈ V and a set of edges
Eu,v for each (u, v) ∈ E such that sv = |Sv| and e(u,v) = |Eu,v|. There are two special start and exit
nodes S0 = {s} and Sn = {t}, meaning s0 = sn = 1. Define V =

⋃
v∈V Sv, E =

⋃
(u,v)∈E Eu,v and

G = (V,E). For each (u, v) ∈ E(G), the edge set Eu,v denotes the set of edges between the nodes
between Su and Sv.

Definition 4.2 (Balanced hierarchical graph). A hierarchical graph on a supergraph G is said to be
balanced if for every (u, v) ∈ E(G), the number of edges connecting a fixed node α ∈ Su to nodes in
Sv is the same for each α.

Definition 4.3 (Edge-edge ratio). Consider a hierarchical graph on the line supergraph G which has
nodes S0, S1, . . . , Sn where each node Si contains s0, s1, . . . , sn many vertices. Let ek and Ek denote
the number of edges and the set of edges between the nodes Sk−1 and Sk respectively. Then the edge
ratios rk for k ∈ {0, . . . , n− 1} are defined as

rk =
ek+1

ek
.

Definition 4.4 (Edge-vertex ratio). A hierarchical graph on the line supergraph G = (V,E) which has
nodes S0, S1, . . . , Sn possesses edge-vertex ratios κ0, κ1, . . . , κn given by

κj =
ej
sj
. (11)

For a D-regular random balanced hierarchical graph on a line supergraph G = (V,E), we have
ei + ei+1 = ei + riei = κisi + riκisi = Dsi and κi(1 + ri) = D. Let ℓ = Θ(n) be an integer such
that 2ℓ ≫ |V |, where |V | is the number of vertices in the one-dimensional random hierarchical graph
G. This does impose the restriction that |V | can be at most exponential in n. To each vertex in
V , we assign a random name from the set {0, 1}ℓ. To access the neighbours of a particular vertex,
we are given quantum access to an adjacency list oracle OG for the graph G. Given an ℓ-bit string
σ ∈ {0, 1}ℓ corresponding to a vertex u ∈ V , the adjacency list oracle OG provides the bit strings of
the neighbouring vertices in Γ(u). If σ does not correspond to any vertex, which will most often be
the case than not since 2ℓ ≫ |V , the oracle instead returns ⊥. This oracle structure effectively forces
any algorithm to start in s and traverse the graph G from there, as it is infeasible to try and guess the
name of any other vertex in V .

Problem 4.5 (One-dimensional random hierarchical graph problem). We are given an adjacency list
oracle OG to the one-dimensional random hierarchical graph G (D-regular) on the line supergraph of
length n and the possibility to check whether any vertex u is equal to t. Given the ℓ-bit string associated
to the starting vertex s ∈ {0, 1}ℓ, the goal is to output the ℓ-bit string corresponding to the other root t.

Before we can use Lemma 2.7 to tackle this problem, we must turn G into an electrical network (see
Definition 2.4), meaning we have to assign a weight and direction to each of its edges. We assign all
edges in Ek the same weight for k ∈ {1, 2, . . . , n} and the weight wk changes every two layers. Without
loss of generality, we assume that n is an even number and set w1 = 1 and

wk =

⌊k/2⌋∏
i=1

(
1

r2i−1

)2

. (12)
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For each vertex u ∈ Si where i ∈ {0, 1, . . . , 2n}, we find that wu =
∑

v∈Γ(u) wu,v = κiwk + (D −
κi)wk+1. We define the set of directed edges as follows:

−→
E =

⋃
k mod 4∈{0,1}

{(u, v) : u ∈ Sk−1, v ∈ Sk} ∪
⋃

k mod 4∈{2,3}

{(u, v) : v ∈ Sk−1, u ∈ Sk}. (13)

See Figure 4 for an example of a line supergraph where this edge orientation and weight assignments is
visualised. By viewing G as an electrical network, it is straightforward to directly compute the effective
resistance Rs,t via the resistance laws for electrical circuits in series and parallel [Sie86]. As a result
we find for the weight assignment from (12) that

Rs,t =
1

D
+

n∑
k=2

1

ekwk
. (14)

Since one-dimensional random hierarchical graphs generalise the welded tree graph, it should come
as no surprise that we will use a collection of alternative neighbourhood that generalises the one used
in [JZ23] to traverse the welded tree graph:

Definition 4.6 (Alternative Fourier Neighbourhood). Let G be a network. For any vertex u ∈ V (G)
with neighbours Γ(u) = {v0, v1, . . . vD−1}. Let ωD = exp(2πi/D) be the D-th root of unity. Then for
each j ∈ {0, 1, 2, . . . , D − 1}, the j’th Fourier basis state is given by:

|ψ̂j
u⟩ :=

1√
D

D−1∑
i=0

ωi·j
D |u, vi⟩

We define the alternative Fourier neighbourhood of dimension D of the vertex u as

Ψ̂⋆(u) = {|ψ̂1
u⟩ , |ψ̂2

u⟩ , . . . |ψ̂D−1
u ⟩}.

Recall that we defined the weights in (12) and the edge directions in (13) in an alternating fashion.
This induces a partition of V into Veven =

⋃
v∈V:v is even Sv and Vodd =

⋃
v∈V:v is odd Sv. We can assume

without loss of generality that we know for any u ∈ V whether it belongs to Veven or Vodd by keeping
track of the parity of the distance from s that is initially 0, and flips every time the algorithm takes a
step. For a more detailed argument why this assumption is without loss of generality, we refer the reader
to the end of Section 4 in [JZ23]. Note that at each vertex in Veven the edge directions are reversed
and all adjacent edges have the same weight (see Figure 4). It is therefore straightforward to generate
the star state |ψu⟩ for each u ∈ Veven, since |ψu⟩ ∝ |ψ̂0(u)⟩. For these vertices, we therefore do not
consider any additional alternative neighbourhoods, meaning Ψ⋆(u) = {|ψu⟩}. For u ∈ Si ⊆ Vodd\{t},
we let the set of alternative neighbourhoods for any u ∈ Vodd be the alternative Fourier neighbourhood
(see Definition 4.6): Ψ⋆(u) = Ψ̂⋆(u).

Lemma 4.7. The quantum walk operator UABalt as defined in (8) can be implemented in O(1) queries
to OG and O(nD) elementary operations.

Proof. The unitary UABalt consists of the two reflections 2ΠA − 1 and 2ΠBalt − 1. Since the former is
(up to a sign difference) equal to the SWAP operator on two registers, each containing bit strings of
length ℓ = Θ(n), it can be implemented in 0 queries and O(n) elementary operations. The cost of
implementing 2ΠBalt − 1 follows almost directly from the proof of Lemma 4.4 in [JZ23], which proves
the D = 3 case. By considering general D in their proof, it still holds that we only need O(1) queries
to OG to apply 2ΠBalt −1. The number of elementary operations needed in their proof is in the general
case dominated by the cost of the following operation (needed to generate the state |ψ̂j

u⟩), which for
each j ∈ {0, . . . , D − 1} applies the map

|j⟩

(
D−1∑
i=0

ωi·j
D |i, 0⟩

)
|v0, v1, . . . vD−1⟩ 7→ |j⟩

(
D−1∑
i=0

ωi·j
D |i, vi⟩

)
|v0, v1, . . . vD−1⟩ .

By conditioning on the value i, we can copy over the i’th value in the |v0, v1, . . . vD−1⟩ register, but
this will require O(nD) elementary operations. This far exceeds the complexity of implementing the
Quantum Fourier Transform FD, which requires O(log(D) log log(D)) elementary operations [HH00].
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We now show how to apply Lemma 2.7 with the quantum walk operator UABalt , where Balt =
span{span(Ψ⋆(u)) : u ∈ V \{s, t}}. We choose the same parameters as in Corollary 2.8. This means
that for |θ⟩ we choose the state corresponding to the s-t electrical flow θ on G, which sends one unit of
flow from s to t by evenly distributing the one unit of flow available at each layer Si to the next layer
Si+1 for each layer i ∈ {0, . . . , n− 1}. By (3) we obtain that

|θ⟩ = 1√
2Rs,t

∑
(u,v)∈

−→
E

θu,v√
wu,v

(|u, v⟩+|v, u⟩) = 1√
2Rs,t

n−1∑
k=0

∑
(u,v)∈

−→
E k

(−1)∆u,v
1

ek
√
wk

(|u, v⟩+|v, u⟩), (15)

and it is straightforward to verify that |θ⟩ is normalised using (14), confirming that θ is in indeed the
s-t electrical flow. By (7) we know that for its corresponding potential vector p and with potential
state |p⟩ ∈ B ⊆ Balt (see (4)) we have

|ψ+
s ⟩ =

1√
Rs,tD

|θ⟩ − (I −ΠA)
1√

Rs,tD
|p⟩ .

Hence we can apply Lemma 2.7 by choosing |ψ⟩ = |ψ+
s ⟩, |ϕ⟩ = − 1√

Rs,tDs
|p⟩ and p = 1

Rs,tD
for

the remaining parameters, if we manage to show that ΠBalt |θ⟩ = 0. We achieve this with the following
claim.

Claim 4.8. For any u ∈ V , define |θu⟩ = (|u⟩ ⟨u| ⊗ I) |θ⟩. If u ∈ Veven, then |θu⟩ ∝ |ψ̂0(u)⟩. If
u ∈ Vodd, then |θu⟩ ∝

∑
v∈Γ(u) θu,v |u, v⟩. As a consequence, for every u ∈ V and |ψ⋆⟩ ∈ Ψ⋆(u) the

state |θu⟩ satisfies ⟨ψ⋆|θu⟩ = 0.

Proof. By construction of |θ⟩ (see (15)), we see for any u ∈ V that the state |θu⟩ is equal to

|θu⟩ =
1√
2Rs,t

∑
v∈Γ(u)

θu,v√
wu,v

|u, v⟩ .

Let k such that u ∈ Sk and let v1, v2, . . . , vl ∈ Γ(u) ∩ Sk−1 be the neighbours of u that lay in the
node Sk−1 and similarly let vl+1, . . . , vD ∈ Γ(u) ∩ Sk+1 be the neighbours of u that lay in the node
Sk+1, where l = D/(1+rk), which is in fact an integer. This means that θu,vi = (−1)∆u,vi/ek for i ∈ [l]
and θu,vi = (−1)∆u,vi/ek+1 for i ∈ [D]\[l]. If u ∈ Veven, then the weights (see (12)) satisfy√

wk+1

wk
=

ek
ek+1

=
1

rk
,

meaning
1

ek
√
wk

=
1

ek+1
√
wk+1

.

Additionally, since u ∈ Veven, it holds that (−1)∆u,vi (−1)∆u,vj = −1 for any i ∈ [ℓ] and j ∈ [D]\[ℓ],
meaning |θu⟩ ∝ |ψ̂0(u)⟩. Since for u ∈ Veven we defined Ψ⋆(u) to be the alternative Fourier neigh-
bourhood (see Definition 4.6) and the Fourier basis states form an orthonormal basis, it follows that
⟨ψ⋆|θu⟩ = 0.

Now if instead u ∈ Vodd, then we know that wk = wk+1 and (−1)∆u,vi (−1)∆u,vj = 1 for any i ∈ [ℓ]
and j ∈ [D]\[ℓ]. So |θu⟩ ∝

∑
v∈Γ(u) θu,v |u, v⟩. Since for u ∈ Vodd we defined Ψ⋆(u) = {|ψu⟩ = |ψ̂0(u)⟩},

it follows by the conservation of the flow θ that ⟨ψu|θu⟩ =
∑

v∈Γ(u) θu,v = 0.

Knowing that we can apply Lemma 2.7 for our multidimensional electrical network, we now show
how to use this information to solve Problem 4.5.
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Algorithm 1 Solving the one-dimensional random hierarchical graph problem
Input: One-dimensional random hierarchical graph G = (V,E) with adjacency list oracle OG, the
ℓ-bit string corresponding to the starting vertex s ∈ V , a success probability parameter δ.

Output: The ℓ-bit string corresponding to the ending vertex t ∈ V .

1. Set i = 1, T1 = Θ(log(Rs,tDwn)) and T2 = Θ(Rs,tDwn log(1/δ)).

2. For j = 0 to T1, run phase estimation on the multidimensional quantum walk operator UABalt

and state |ψ+
s ⟩ to precision O( ϵ2

Rs,tws∥|p⟩∥), where ϵ = 1
2Rs,tDwn

, and measure the phase register.
If the output is “0”, return the resulting state |θ′⟩ and immediately continue to Step 3.

3. Measure |θ′⟩ to obtain an outcome |u, v⟩, representing the edge (u, v) ∈ E. Check if u or v
is equal to t and if this is the case, return the ℓ-bit string corresponding to t. Otherwise, if
i < T2, increment i by 1 and return to Step 2.

4.1 The algorithm

In this section, we provide a quantum algorithm that approximates the s-t electrical flow state and
samples from it to find the ending vertex t ∈ V in a one-dimensional random hierarchical graph. As
an example of such a one-dimensional random hierarchical graph, we then apply our algorithm to the
welded tree graph.

Theorem 4.9. Let G be a D-regular one-dimensional random hierarchical graph on the line supergraph
of length n with edge ratios r0, . . . , rn−1. Let wn =

∏⌊n/2⌋
k=1 ( 1

r2k−1
)2 and let each vertex in G be identified

by an ℓ-bit string where ℓ = Θ(n). Given access to an adjacency list oracle OG to the graph G, there
exists a quantum algorithm that solves Problem 4.5 with success probability 1−O(δ) and cost

O
(
∥|p⟩∥R4

s,tD
4w3

n log(Rs,tDwn) log(1/δ)
)

queries, O
(
n ∥|p⟩∥R4

s,tD
5w3

n log(Rs,tDwn) log(1/δ)
)

time.

Proof. The proof consists of a cost and success probability analysis of Algorithm 1. By Lemma 2.7, each
run of phase estimation in Step 2 succeeds with probability at least Θ

(
1

Rs,tD

)
. Hence the probability

that at least a single out of the T1 = Θ(log(Rs,tDwn)) runs succeed is constant.
Suppose that we had a perfect copy of |θ⟩, then after measuring it we would obtain an edge

(u, v) ∈ E containing the vertex t with probability

1

Rs,t

∑
u∈Γ(t)

θ2u,t
wu,t

=
1

Rs,tDwn
.

Instead, we have access to a state |θ′⟩, which by Lemma 2.7 satisfies

1

2

∥∥|θ′⟩ ⟨θ′| − |θ⟩ ⟨θ|
∥∥
1
≤ ϵ =

1

2Rs,tDwn
.

Hence by measuring |θ′⟩, we obtain an edge (u, v) ∈ E that contains the vertex t with probability
at least Θ

(
1

Rs,tDwn

)
. The probability that a single out of the at most T2 = Θ(Rs,tDwn log(1/δ))

repetitions succeeds in returning the vertex t is therefore at least

1−
(
1−O

(
1

Rs,tDwn

))T2

≥ 1−O(δ).

For the cost of Step 2, each iteration of the phase estimation requires

O

(
∥|p⟩∥Rs,tD

ϵ2

)
= O(∥|p⟩∥R3

s,tD
3w2

n)
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calls to UABalt . By Lemma 4.7, each such call has a cost of O(1) queries and O(nD) elementary
operations. Since we can set up the initial state |ψs⟩ in the same cost and we run at most T1 · T2
iterations of phase estimation, we find that the total contribution of Step 2 to the cost is

O
(
∥|p⟩∥R4

s,tD
4w3

n log(Rs,tDwn) log(1/δ)
)

queries, O
(
n ∥|p⟩∥R4

s,tD
5w3

n log(Rs,tDwn) log(1/δ)
)

time.

For the cost of Step 3, we must only verify whether u or v is equal to t, which can be done in zero
queries and O(ℓ) = O(n) elementary operations. So the cost of Step 2 dominates the total cost of the
algorithm.

4.1.1 Welded tree Problem

As an example to show the power of this electrical flow sampling approach, we show that Algorithm 1
can be used to solve the welded tree problem in polynomial time, thus achieving an exponential speedup
compared to any classical algorithms, which was originally shown in [CCD+03].

A welded tree graph consists of two full binary trees of depth h and contains 2h+2 − 2 vertices.
See Figure 5 for an example of such a graph. The leaves of both trees are connected via two disjoint
perfect matchings. This makes it a one-dimensional random hierarchical graph on the line supergraph
of length n = 2h+ 1. For each k ∈ {0, . . . , 2h+ 1}, every node Sk contains

sk =

{
2k if k ∈ {0, . . . , h}
22h+1−k if k ∈ {h+ 1, . . . , 2h+ 1},

vertices, meaning that its edge ratios are equal to

rk =

{
2 if k ∈ {1, . . . , h}
1
2 if k ∈ {h+ 1, . . . , 2h+ 1}.

Since V = 2h+2−2, we find that ℓ = 2h satisfies 2ℓ ≫ |V |, meaning each vertex is assigned a 2h-bit
string as an identifier.

Problem 4.10 (The welded tree problem). Given an adjacency list oracle OG for the welded tree graph
G of depth h and the 2h-bit string associated to the starting vertex s ∈ {0, 1}2h, the goal is to output
the 2h-bit string associated to the other root t.

Before we apply Theorem 4.9 to the welded tree graph, we first obtain a little more insight about
its weights wk. Our weight assignment from (12) will in this example match the weight assignment
from [JZ23] (see Equation 31 in their work):

wk =

{
2−2⌈k/2⌉ if k ∈ {1, . . . , h+ 1}
2−2(h+1−⌈k/2⌉) if k ∈ {h+ 2, . . . , 2h+ 1}. (16)

Theorem 4.11. Given an adjacency list oracle OG to the welded tree graph G, there exists a quantum
algorithm that solves Problem 4.10 with success probability 1−O(δ) and cost

O
(
n5 log(n) log(1/δ)

)
queries, O

(
n6 log(n) log(1/δ)

)
time.

Proof. The theorem can be derived by bounding the quantities Rs,t, D,wn and ∥|p⟩∥ in Theorem 4.9.
From (16) we see that wn = 1/2. Additionally, the effective resistance from (14) can be computed to
find that Rs,t = Θ(n). Since D = 3 and ps = Rs,t is the largest potential value, we only need to bound
∥|p⟩∥:

∥|p⟩∥2 = 2

Rs,t

n∑
k=0

∑
u∈Sk

p2uwu ≤ Rs,t

n∑
k=0

skwu = O(n2).

The result of Theorem 4.9 is worse than the state of the art algorithm for the welded trees problem
by [JZ23], which has cost O(n) queries and O(n2) time, but it exemplifies how sampling from the
electrical flow can provide an exponential speedup.
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Figure 5: The welded tree graph with depth h = 3: the black vertices are the vertices in Veven, where
the edge directions are reversed and where all adjacent edges have the same weight and direction.

5 An exponential speedup for pathfinding using alternative electrical
flow sampling

In this section, we show that the quantum electrical flow in a multidimensional electrical network
can also be used to show an exponential quantum-classical separation for the pathfinding problem
relative to an oracle. We achieve this by constructing, and sampling from the s-t alternative electrical
flow that we defined in Definition 3.3, which is the flow achieving minimal energy out of all unit s-t
flows satisfying Kirchhoff’s Alternative law, and we show that it also satisfies Ohm’s Alternative Law
through explicitly constructing the alternative potential palt. In all of this section we assume that the
parameter n is odd for readability, but the everything can be slightly modified to also hold for even n.

5.1 Example graph G1

Since the graph that we will try to find an s-t path for is quite large, we start by analysing the
s-t alternative flow and alternative potential for smaller graphs that will form the building blocks
for the larger graph. We start with a network G1 = (V,E,w), whose vertex set is given by V =
{s, v1, v2, v3, v4, v5, v6, v7, v8, t}. We have visualised G1, with its directed edge set and weights in
Figure 6. These directions and weights give rise to the star states |ψu⟩ for each u ∈ V , but we will also
consider additional the following additional alternative neighbourhoods for the vertices v2, v3, v8 ∈ V :

|ψalt
v2 ⟩ =

√
2

3

(
− |v2, v4⟩+

1

2
|v2, s⟩+

1

2
|v2, v5⟩

)
,

|ψalt
v3 ⟩ =

√
2

3

(
1

2
|v3, v1⟩ − |v3, v6⟩+

1

2
|v3, v7⟩

)
,

|ψalt
v8 ⟩ =

√
2

3

(
1

2
|v8, t⟩ − |v8, v5⟩+

1

2
|v8, v6⟩

)
.

(17)

Any s-t alternative unit flow θalt must be conserved at every vertex and satisfy θalts,v1 = x, θalts,v2 = y

for some x, y ∈ [0, 1] such that x + y = 1. For θalt to also satisfy Kirchhoff’s Alternative Law (see
Definition 3.2), the flow coming into any vertex v2, v3, v8 through the edge with the highest weight,
must evenly be distributed along the other two neighbours. This is visualised in Figure 6 and we end up
with a single parameter x (because y = 1− x) that parametrises all possible s-t alternative unit flows
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θalt on G1. The energy of each such θalt can be explicitly calculated to see that E(θalt) = 5y2+4x2+3,
and the energy is therefore minimised for x = 5/9, resulting in the alternative effective resistance to
be Ralt

s,t = 47/9.
We now explicitly construct the alternative potential palt corresponding to this s-t alternative

electrical flow, that satisfies palts,v1 = palts,v2 = Ralt
s,t = 47/9, paltt,v8 = 0 and Ohm’s Alternative Law (see

Definition 3.5). We do this by constructing the states |palt|u ⟩ ∈ span{Ψ⋆(u)} from (10):

|palt|s ⟩ =
47

9
|s, v1⟩+

47

9
|s, v2⟩ , |palt|v1⟩ = −43

9
|v1, s⟩+

43

9
|v1, v3⟩ ,

|palt|v2⟩ = −42

9
|v2, s⟩+

38

9

√
1

4
|v2, v4⟩+

46

9

√
1

4
|v2, v5⟩ , |palt|v3

⟩ = −39

9
|v3, v1⟩+

52

9

√
1

4
|v3, v7⟩+

26

9

√
1

4
|v3, v6⟩ ,

|palt|v4⟩ = −2

√
1

4
|v, u⟩+ 2

√
1

4
|v, t⟩ , |palt|v5

⟩ = −4

√
1

4
|v5, v8⟩ − 4

√
1

4
|v5, v7⟩ − 4

√
1

4
|v5, v2⟩ ,

|palt|v6⟩ = −2

√
1

4
|v6, v8⟩ − 2

√
1

4
|v6, v4⟩ − 2

√
1

4
|v6, v3⟩ , |palt|v7⟩ = −44

9

√
1

4
|v7, v3⟩+

44

9

√
1

4
|v7, v5⟩ ,

|palt|v8⟩ = − |v8, t⟩+ 0

√
1

4
|v8, v6⟩) + 2

√
1

4
|v8, v5⟩ , |palt|t ⟩ = 0 |t, v8⟩ .

It is straightforward to verify that these states indeed satisfy Ohm’s Alternative Law as well as
the equations palts,v1 = palts,v2 = 47/9, paltt,v8 = 0. It is also clear that |palt|u ⟩ ∈ span{Ψ⋆(u)} for every u

without additional alternative neighbourhoods, i.e. u ∈ {s, v1, v4, v5, v6, v7, t}, since all edge potentials
are the same. For u ∈ {v2, v3, v8}, we can confirm that |palt|u ⟩ ∈ span{Ψ⋆(u)} by calculating that all the
amplitudes of |palt|u ⟩ sum to 0.

5.2 Example graph G2

The second example graph G2 = (V,E,w) (see Figure 7) is build by combining the graph G1 (see
Figure 6) with three welded tree graph W1,W2,W3 (see Figure 5). The “starting” root of these three
welded tree graphs are w1, w4 and w6 respectively. In the next section we will compose our final graph
for the pathfinding example from multiple such G2 graphs.

As discussed in Section 4.1.1, the welded tree graph is an example of a one-dimensional random
hierarchical graph with nodes {S0, S1, · · · , Sn}. We additionally saw that for the weight assignments,
edge directions and alternative neighbourhoods in Section 4.1.1, we ended up with an s-t electrical
flow that matched the s-t alternative electrical flow, as it also satisfied Kirchhoff’s Alternative Law.
From the perspective of electrical networks, we can therefore interpret each welded tree graph Wi can
as an edge of resistance Ri, but we will formalise this intuition shortly. The weights and directions of
W1 in G2 match those from Section 4.1.1, so Ri = R, where R is the effective resistance of a welded
tree graph of depth n (see (14)). The weights of W2 and W3 have been multiplied by a factor of
1/4, and their edge directions are reversed (because their respective roots are w4 and w6, so we have
R2 = R3 = 4R.

In G2, the motivation for the alternative neighbourhoods, edge directions and weight assignments
in the network G1 become clear. Just like for the one-dimensional random hierarchical graphs in
Section 4, these assignments induces a partition of V into Veven and Vodd (visualised by blue vertices in
Figure 7). For each vertex u ∈ Veven, all adjacent edges have the same weight and direction, allowing
us to easily generate the star state |ψu⟩. For each u ∈ Vodd\{s, t}, we have |ψu⟩ ∈ Ψ⋆(u) = Ψ̂⋆(u). Like
in Section 4, we can assume without loss of generality that we know for any u ∈ V whether it belongs
to Veven or Vodd by keeping track of the parity of the distance from s that is initially 0, and flips every
time the algorithm takes a step.

Since the welded tree graph sends through all flow coming into one root to the other, any s-t
alternative unit flow on G2 is equivalent to a s-t alternative unit flow on G1, with the addition that
we also have flow running through each welded tree graph. By Figure 6 and Figure 7 we therefore see
that the energy of a s-t alternative unit flow θalt can be decomposed by the energy in G1 in addition
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with the energy on these welded tree graphs and is hence given by

E(θalt) = 5y2 + 4x2 + 3 +R1y
2 +R2

(x
2

)2
+R3

(y
2

)2
= (2 + 5R)y2 + (4 +R)x2 + 3.

This is minimised by taking x = (2R + 5)/(3R + 9), meaning y = 1 − x = (R + 4)/(3R + 9). For
readability, we actually keep x in the resulting alternative effective resistance, but simplify it slightly
by making use of that for these values of x and y we have (2 + 5R)y = (4 +R)x:

Ralt
s,t = (2 + 5R)y2 + (4 +R)x2 + 3 = (4 +R)(x2 + xy) + 3 = (4 +R)x+ 3.

We now explicitly construct the alternative potential palt corresponding to this s-t alternative
electrical flow, that satisfies palts,w1

= palts,v2 = Ralt
s,t = (4 + R)x + 3, paltt,v5 = 0 and Ohm’s Alternative

Law. We do this by constructing the states |palt|u ⟩ ∈ span{Ψ⋆(u)} from (10). We slightly abuse notation
however and only show the edges visible in Figure 7, meaning we will not explicitly write down the
amplitudes and basis states for edges inside the welded tree graphs:

|palt|s ⟩ = (3 + 5y + 2Ry) |s, w1⟩+ (3 + 4x+Rx) |s, v2⟩ , |palt|w1
⟩ = −(3 + 4y + 2Ry) |w1, s⟩ ,

|palt|w2
⟩ = (3 + 4y +Ry) |w2, v1⟩ , |palt|w3

⟩ = −(2 + 2x+ 2Rx)
√

1

4
|w3, v2⟩ ,

|palt|w4
⟩ = −(2 + 2x)

√
1

4
|w4, v3⟩ , |palt|w5

⟩ = −(4 + 2y + 2Ry) |w5, v1⟩ ,

|palt|w6
⟩ = (4 + 2y) |w6, v4⟩ , |palt|t ⟩ = 0 |t, v5⟩ ,

|palt|v1⟩ = −(3 + 3y +Ry) |v1, w2⟩+ (4 + 4y + 2Ry)
√

1

4
(|v1, w5⟩+ (2 + 2y))

√
1

4
|v1, v3⟩ ,

|palt|v2⟩ = (2 + 4x+ 2Rx)
√

1

4
|v2, w3⟩+ (4 + 2x)

√
1

4
|v2, v4⟩ − (3 + 3x+Rx) |v2, s⟩ ,

|palt|v3⟩ = −2

√
1

4
|v3, v5⟩ − 2

√
1

4
|v3, w4⟩ − 2

√
1

4
|v3, v1⟩ ,

|palt|v4⟩ = −4

√
1

4
|v4, v5⟩ − 4

√
1

4
|v4, v2⟩ − 4

√
1

4
|v4, w6⟩ ,

|palt|v5⟩ = − |v5, t⟩+ 0

√
1

4
|v5, v3⟩) + 2

√
1

4
|v5, v4⟩ .

It is straightforward to verify that these states indeed satisfy Ohm’s Alternative Law for all edges
outside the welded tree graphs as well as the equations palts,w1

= palts,v2 = Ralt
s,t, since (2+5R)y = (4+R)x

and that paltt,v5 = 0. It is also clear that |palt|u ⟩ ∈ span{Ψ⋆(u)} for every u ∈ {s, v3, v4, t}, since all edge
potentials. For u ∈ {v1, v2, v5}, we can confirm that |palt|u ⟩ ∈ span{Ψ⋆(u)} by calculating that all the
amplitudes of |palt|u ⟩ sum to 0. For the edges in the welded tree graphs, we have seen in Section 4.1.1
that the s-t alternative electrical flow through each welded tree graph satisfies Ohm’s Law. This means
there exist potential values for all vertices (and hence edges), that are smaller than the potential at the
root where the flows enters, in at each welded tree graph that satisfy Ohm’s Alternative Law. These
are consistent with our potential palt since

(paltw1,s − paltw2,v1)
1

y
= (paltw3,v2 − paltw4,v3)

1

x
=
(
paltw5,v1 − paltw6,v4

) 1

y
= R.

Recall from the proof of Theorem 4.11 that for a welded tree graph of depth n we have R = Θ(n),
meaning that Ralt

s,t = Θ(n). For the alternative potential, since for each edge potential we have
paltu,v = O(n), we find by (10) that

|| |palt⟩ ||2 = 2

Ralt
s,t

∑
(u,v)∈E

(paltu,v)
2wu,v = O(n)

∑
(u,v)∈E

wu,v = O(n2).
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Figure 6: The graph G1 with corresponding edge directions where the blue vertices have an additional
alternative neighbour as defined in (17). For each (u, v) ∈

−→
E , the weights wu,v are denoted in black and

the flow values θaltu,v in red for any possible unit s-t alternative flow parametrised by x and y = 1− x.
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Figure 7: The graph G2 with corresponding edge directions where the blue vertices are the vertices
in Vodd and have the alternative neighbourhoods Ψ⋆(u) = Ψ̂⋆(u) (see Definition 4.6). Each diamond,
indexed by i ∈ [3] represents a welded tree graph of depth n. For each (u, v) ∈

−→
E , the weights wu,v are

denoted in black and the flow values θaltu,v in red for any possible unit s-t alternative flow parametrised
by x and y = 1−x. The black vertices are the vertices in Veven, where the edge directions are swapped
and where adjacent edges have the same weight and direction.
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Figure 8: The 1st welded tree graph in the i’th layer. For j ∈ {2, 3} the edge directions are simply
reversed. The black vertices are the vertices in Veven, where the edge directions are reversed and where
adjacent edges have the same weight and direction.

We could now apply Lemma 2.7 with parameters to obtain |ψ⟩ = |ψ+
s ⟩, |φ⟩ = |θalt⟩, |ϕ⟩ =

− 1√
2Ralt

s,t

|palt⟩ and p = 1
2Ralt

s,t
to approximate the state |θalt⟩. Since the energy along the s-t path

(s, v2), (v2, v4), (v4, v5), (v5, t) contains a constant fraction of the energy Ralt
s,t, we could then sample

from this state to recover a s-t path. However, since this path is of constant length, any classical
algorithm can also recover this path by an exhaustive search of its neighbours in constant time.

5.3 The total graph G

In this section, we construct a graph G by connecting n graphs isomorphic to G2 from Section 5.2 (see
Figure 7) as a path as indicated in Figure 9 and define a pathfinding problem for this type of graph.

Each layer contains three welded tree graphs W1,W2,W3 and the following 7 vertices

Vp,i := {vp,i,j : j ∈ [7]}.

These layers are connected through the fact that vp,i,7 = vp,(i+1),2 for every i ∈ [n−1]. The welded tree
graphs structure is shown in Figure 8 for j = 1 (the edge directions are simply reversed for j ∈ {2, 3})
and the weight assignment and edge directions for these welded tree graphs, as well as for the remaining
edges, are the same as for the graph G2 in Figure 7. The complete graph G is shown in Figure 9.
Due to this construction, each vertex have degree 3 except for the vertices s = vp,1,1 and t = vp,n,7. It
therefore induces the same partition of V into Veven and Vodd as in G2 (visualised by blue vertices in
Figure 9). For each vertex u ∈ Veven, all adjacent edges have the same weight and direction, allowing
us to easily generate the star state |ψu⟩. For each u ∈ Vodd\{s, t}, we have |ψu⟩ ∈ Ψ⋆(u) = Ψ̂⋆(u).

All these names va,b,c to refer to vertices are simply for notation purposes to properly define the
graph. Similar to the setting in Section 4, we assign a random name from the set {0, 1}3n to each
vertex u ∈ V . To access the neighbours of a particular vertex, we are given quantum access to an
adjacency list oracle OG for the graph G. Given an 3n-bit string σ ∈ {0, 1}3n corresponding to a vertex
u ∈ V , the adjacency list oracle OG provides the bit strings of the neighbouring vertices in Γ(u). If σ
does not correspond to any vertex, which will most often be the case than not since 23n ≫ |V |, the
oracle instead returns ⊥.

As the graph G consists of n identical subgraphs isomorphic to G2, the flow and potential vector
analysis almost directly follows from Section 5.2. Starting with the s-t alternative electrical flow θalt,
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Figure 9: The total graph G showing all edge directions and edge weights. The blue vertices are
the vertices in Vodd and have the alternative neighbourhoods Ψ⋆(u) = Ψ̂⋆(u) (see Definition 4.6). The
black vertices are the vertices in Veven, where the edge directions are swapped and where adjacent edges
have the same weight and direction. Each diamond, indexed by j ∈ [3] represents the j′-th welded tree
graph in that layer. See Figure 8 for a detailed overview of the welded tree graph’s structure.
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we can obtain this flow by simply connecting n s-t alternative electrical flows on each copy of G2. This
results in an alternative effective resistance Ralt

s,t = Θ(n2). The alternative potential palt can also be
obtained directly from combining all the alternative potentials from each copy of G2, where we add
((4 +R)x+ 3)(n− i) to each edge potential obtained from the copy of G2 in the i’th layer. This way
we ensure that for every i ∈ [n− 1]

|paltvp,i+1,1
⟩ = ((4 +R)x+ 3)(n− i) |ψvp,i+1,1⟩ ,

meaning || |palt⟩ || = O(n2). We now consider the following problem on the graph G, for which we
exhibit a quantum algorithm that can solve the given problem in exponentially faster than any classical
algorithm can.

Problem 5.1 (The pathfinding problem on a graph G). Given an adjacency list oracle OG to the
graph G (as defined in Section 5.3) and the names of the starting vertex s = 03n, the goal is to output
the names of vertices of an s-t path.

5.4 The algorithm

In this section, we provide a quantum algorithm that can find the s-t shortest path in G and hence
solves Problem 5.1 in polynomial time.

Algorithm 2 Quantum algorithm for solving Problem 5.1
Input: Graph G as defined in Section 5.3, the starting vertex s = 03n, a success probability parameter
δ > 0.

Output: The labels of an s-t path on G.

1. Set i = 1, S = ∅, T1 = Θ(log(n)) and T2 = Θ(n2 log(n/δ)).

2. For j = 0 to T1, run phase estimation on the multidimensional quantum walk operator UABalt

and state |ψ+
s ⟩ to precision O(ϵ2/n2), where ϵ = O(1/n2), and measure the phase register. If

the output is “0”, return the resulting state |θ′⟩ and immediately continue to Step 3.

3. Measure |θ′⟩ to obtain an outcome |u, v⟩, representing the edge (u, v) ∈ E, and add it to S. If
i < T2, increment i by 1 and return to Step 2.

4. Search through S using Breadth First Search for an s-t path and output the path if it is found.

Theorem 5.2. Let the graph G be defined as in Section 5.3. Given an adjacency list oracle OG to the
graph G, there exists a quantum algorithm that solves Problem 5.1 with success probability 1 − O(δ)
and cost

O
(
n10 log(n) log(n/δ)

)
queries, O

(
n11 log(n) log(n/δ)

)
time.

Proof. The proof consists of a cost and success probability analysis of Algorithm 2, where we focus on
the success probability that the algorithm outputs the path

P = ((s, vp,1,2), (vp,1,2, vp,1,3), (vp,1,3, vp,1,4), . . . , (vp,n,4, t)).

We invoke Lemma 2.7 with parameters |ψ⟩ = |ψ+
s ⟩, |φ⟩ = |θalt⟩, |ϕ⟩ = − 1√

2Ralt
s,t

|palt⟩ and p =

1
2Ralt

s,t
. By Lemma 2.7 each run of phase estimation in Step 2 succeeds with a probability of at least

Θ
(

1
Rs,t

)
= Θ

(
1
n2

)
. Hence the probability that at least a single out of the T1 = Θ(log(n)) runs succeed

is constant.
Suppose that we had a perfect copy of |θalt⟩, then after measuring it we would obtain an edge

(u, v) ∈ P with probability at least

min
(u,v)∈P

1

Ralt
s,t

(θaltu,v)
2

wu,v
= Ω

(
1

n2

)
.
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Instead, we have access to a state |θ′⟩, which by Lemma 2.7 satisfies

1

2

∥∥|θ′⟩ ⟨θ′| − |θ⟩ ⟨θ|
∥∥
1
≤ ϵ = O

(
1

n2

)
.

Hence by measuring |θ′⟩, we obtain an edge (u, v) ∈ E that contains the vertex t with probability at
least Ω

(
1
n2

)
. The probability that all edges in P are present in S after reaching Step 4 is due to the

union bound therefore at least

1− |P|
(
1−O

(
1

n2

))T2

≥ 1−O(δ).

For the cost of Step 2, each iteration of the phase estimation requires

O

(
∥ |palt⟩ ∥Ralt

s,t

ϵ2

)
= O(n8)

calls to UABalt . By Lemma 4.7, each such call has a cost of O(1) queries and O(n) elementary operations.
Since we can set up the initial state |ψs⟩ in the same cost and we run at most T1 ·T2 iterations of phase
estimation, we find that the total contribution of Step 2 to the cost is

O
(
n10 log(n) log(n/δ)

)
queries, O

(
n11 log(n) log(n/δ)

)
time.

For the cost of Step 4, we must only do a Breadth First Search to search for any s-t path in the
subgraph defined by the edges in S. Since identifying the vertex s and t can both be done using a single
operation due to them having a distinct degrees, the total cost of this step is O(T2) = O(n2 log(nδ))
queries and other basic operations. So the cost of Step 2 dominates the total cost of the algorithm.

5.5 Classical lower bound

In this section we show that our Algorithm 2 actually provides an exponential speedup compared to
any classical algorithm under the assumption that the following welded tree pathfinding problem is
classically hard. To simplify the proof of our lower bound for the pathfinding problem Problem 5.1,
we use the following assumption and the known classical lower bound of the welded tree problem.

Problem 5.3 (The welded tree pathfinding problem). Given an adjacency list oracle OG to the welded
tree graph G and the names of the starting vertex s and the ending vertex t, the goal is to output the
names of the vertices of an s-t path.

It is folklore that the welded tree pathfinding problem is classically difficult, however, there is no
formal statement as far as we are aware.

Assumption 5.4. There exist constants c1 > 0 and c2 ∈ (0, 2) such that any classical algorithm
that makes at most 2n/6 number of queries to OG to the welded tree graph G solves Problem 5.3 with
probability at most c1 · 2−c2n.

Lemma 5.5 (Theorem 9 in [CCD+03]). For the welded tree problem Problem 4.10, any classical
algorithm that makes at most 2n/6 queries to the oracle OG finds the ending vertex or a cycle with
probability at most 4 · 2−n/6.

We follow the proof of the lower bound proof in [Li23], which in turn is based on the lower bound
proof in [CCD+03]. To prove the lower bound, we analyse the difficulty of any classical algorithm A
winning a simpler game:
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Game A Let n be odd and let G be the graph as defined in Section 5.3. Let Game A be the game
where any classical algorithm A wins if it outputs the name of one of the vertex vp,(n+1)/2,1, or if the
vertices visited by A contain a cycle. Following [CCD+03], the additional cycle condition that allows
A to win in Game A allows us to analyse the success probability of A winning. This analysis involves
determining whether a random embedding of a random rooted binary tree into the random graph G
contains a cycle or the vertex vp,(n+1)/2,1.

Given the starting vertex s, the random embedding of a rooted binary tree T into the graph G is
defined as a function π from the vertices of T to the vertices of G such that π(ROOT) = s and such
that for any (u, v) ∈ E, we also have that π(u), π(v) are neighbours in T . We say that an embedding
π is proper if π(u) ̸= π(v) for u ̸= v. We say that T exits under π if π(v) = vp,(n+1)/2,1. The random
embedding can be obtained as follows:

1. Set π(ROOT) = s.

2. Let i and j be the two neighbours of ROOT in T and let u and v be the neighbours of s in
G. With probability 1/2 set π(i) = u and π(j) = v, and with probability 1/2 set π(i) = v and
π(j) = u.

3. For any vertex i in T , if i is not a leaf and π(v) /∈ {s, vp,(n+1)/2,1}, let j and k denote the children
of vertex i, and let ℓ denote its parent. Let u and v be the two neighbours of π(i) in G other
than π(ℓ). With probability 1/2 set π(i) = u and π(j) = v, and with probability 1/2 set π(i) = v
and π(j) = u.

Theorem 5.6. Let G be the graph defined in Section 5.3. Let c1, c2 be the constants from Assump-
tion 5.4 and assume that this assumption is true. Then any classical algorithm that makes at most
2n/6 queries to OG solves Problem 5.1 with probability at most (5 + c1) · 2−min{c2,1/6}n.

Proof. Let T be a random rooted binary tree with 2n/6 vertices and π(T ) be the image in the graph
G under the random embedding π. Given the name of the starting vertex s, similar to [CCD+03], the
probability of A winning Game A can be expressed as the probability that π(T ) contains a cycle or
the vertex vp,(n+1)/2,1.

First, A has to enter a welded tree subgraph to find a cycle, as seen in Figure 9. There are two
possibilities to get a cycle in a welded tree subgraph. One is to find a cycle that contains only one
root in one of the welded tree subgraphs. In this case, Lemma 5.5 states that, in one of the welded
tree subgraphs, starting from one root, any classical algorithm that makes at most 2n/6 queries to the
oracle and finds the other root or a cycle with probability at most 4 ·2−n/6. The other is to find a cycle
that contains two roots of a welded tree subgraph. By Assumption 5.4, any classical algorithm that
makes at most 2n/6 queries to the oracle and finds such a cycle with probability at most c1 · 2−c2n.

We can now assume that A will not encounter any cycle. Conditioned on this fact, the probability
that A finds the name of the vertex vp,(n+1)/2,1 can be expressed as the probability that π(T ) contains
the vertex vp,(n+1)/2,1, for which π must follow the corresponding path 2n times, which has probability
2−2n. Since there are at most 2n/6 tries on each path of T and there are at most 2n/6 paths, the
probability of finding the name of the vertex vp,(n+1)/2,1 is by the union bound at most 2n/32−2n ≤
2−5n/3. We have the same result if the given name is t. Therefore, given the name of the starting
vertex s and t, the probability of A finding the vertex vp,(n+1)/2,1 is 2 · 2n/32−2n ≤ 2−5n/3.

By combining the two cases with the union bound, we find that the probability of A winning Game
A is at most 2−5n/3 + (4 + c1) · 2−min{c2,1/6}n ≤ (5 + c1) · 2−min{c2,1/6}n. Since solving Problem 5.1
automatically wins Game A, the theorem follows.

Remark 5.7. The authors conjecture that Assumption 5.4 can be removed by showing a classical lower
bound for the welded tree pathfinding problem Problem 5.3, perhaps by making use of the recent lower
bound technique of finding a marked vertex in random hierarchical graphs developed in the recent work
by [BLH23].
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6 Multidimensional electrical network and the alternative incidence
matrix

In this section, inspired by the connection between the electrical network G = (V,E,w) and the
incidence matrix B of G, we rebuild the connection between the multidimensional electrical network
and its alternative incidence matrix Balt. We then use this connection to prove the uniqueness of the
s-t alternative flow θalt and the existence of the alternative potential palt that satisfy Ohm’s Alternative
Law.

6.1 The incidence matrix, Kirchhoff’s Law and Ohm’s Law

We start by restating the connection between on one hand the incidence matrix of a network G and
on the other hand Kirchhoff’s Law and Ohm’s Law. We follow [Vis13, section 4] in doing so.

Definition 6.1 (The edge-vertex incidence matrix). Let G = (V,E,w) be a network (See Defini-
tion 2.1). The incidence matrix B ∈ C

−→
E×V of G, is the matrix whose rows are indexed by (u, v) ∈

−→
E ,

whose columns are indexed u ∈ V and whose only non-zero entries are given by

B(u,v),u =
√
wu,v, B(u,v),v = −√

wu,v.

Let W ∈ C
−→
E×

−→
E be the weighted diagonal matrix with diagonal entries W(u,v),(u,v) = 1/

√
wu,v and

0 elsewhere for where (u, v) ∈
−→
E . By considering a flow θ on G = (V,E,w) not only as a function

on
−→
E , but also as a vector in C

−→
E , we can multiply it with the matrix W to obtain the weighted flow

vector Wθ ∈ C
−→
E with entries (Wθ)u,v = θu,v/

√
wu,v for the row indexed by (u, v) ∈

−→
E . The norm of

Wθ is therefore precisely given by
√
E(f). By the introduction of Wθ, we can rephrase Kirchhoff’s

Law from Definition 2.5 as a linear equation involving the incidence matrix B. Fix some ordering of
the columns of B of the form s, u1, . . . , u2, t for some u1, u2 ∈ V \{s, t} and define the basis vectors
ei ∈ Cn which have a 1 at the i-th location and zero elsewhere.

Definition 6.2 (Kirchhoff’s Law (incidence matrix)). Let θ be any unit s-t flow on an electrical network
G = (V,E,w). Let B be the incidence matrix of G. Then θ satisfies

BTWθ =



∑
v∈Γ(s) θs,v∑

v∈Γ(u1)
θu1,v

...∑
v∈Γ(u2)

θu2,v∑
v∈Γ(t) θt,v


=



1

0

...

0

−1


= es − et. (18)

Recall from Definition 2.2 that the s-t electrical flow is the flow that minimises E(θ) for all unit
s-t flows θ. Since E(θ) = ∥Wθ∥2, this means that the s-t electrical flow corresponds to the ‘smallest’
(in norm) solution to (18), that is, the unique s-t flow θ such that its flow vector satisfies Wθ ∈
ker(BT )⊥. We can therefore recover Wθ by making use of the Moore-Penrose inverse (also known as
the pseudoinverse) of BT , denoted by BT+. For any matrix A, the Moore-Penrose inverse A+ (not to
be confused with the conjugate transpose A†), is the unique matrix satisfying

AA+A = A, A+AA+ = A+, (AA+)† = AA+, (A+A)† = A+A, (19)

and it is well known that A+ maps ran(A) to ker(A)⊥. Hence by left-multiplying both sides of (18)
with BT+, we recover the following important property of electrical networks:

Theorem 6.3 (Theorem 4.7 in [Vis13]). Let θ be the s-t electrical flow on a network G = (V,E,w).
Let B be the incidence matrix of G. Then its flow vector Wθ is given by

Wθ = BT+(es − et). (20)
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Just like we did with θ, we can also consider a potential vector p as a vector (hence the name)
in CV with entries pu for the row indexed by u ∈ V . In doing so, we can rephrase Ohm’s Law from
Definition 2.6 as a linear equation involving the incidence matrix B. Fix some ordering of the rows of
B of the form (u1, v1), . . . , (u2, v2) ∈

−→
E .

Definition 6.4 (Ohm’s Law (incidence matrix)). Let θ be the s-t electrical flow on an electrical network
G = (V,E,w). Let B be the incidence matrix of G. Then there exists a potential vector p such that

Bp =


√
wu1,v1 (pu1 − pv1)

...

√
wu2,v2 (pu2 − pv2)

 =


θu1,v1√
wu1,v1

...

θu2,v2√
wu2,v2

 =Wθ. (21)

In Section 2.2 we have said that we may assume the potential vector p satisfying Ohm’s Law to
satisfy ps = Rs,t and pt = 0, which is easier to see from the incidence matrix perspective.

Lemma 6.5. Let θ be the s-t electrical flow on an electrical network G = (V,E,w) with effective
resistance Rs,t. Then there exists a potential vector p satisfying Ohm’s Law such that ps = Rs,t and
pt = 0.

Proof. From the incidence matrix B, we can obtain BTB, which is known as the weighted Laplacian
of G. It is well known in spectral graph theory (see e.g. Theorem 2.3 in [Vis13]), that BTB has 0 as
an eigenvalue with multiplicity 1. Since ker(B) = ker(BTB), not only does this mean that by setting
pt = 0, we still have a valid solution to (21), but this actually makes the remaining solution unique.
By left-multiplying both sides of (20) with (Wθ)T we obtain together with (21) that

Rs,t = ∥Wθ∥2 = (Wθ)TBT+(es − et) = pT (es − et) = ps − pt = ps. (22)

With the Moore-Penrose inverse we can in fact recover the potential from Lemma 6.5. To achieve
this, we remove the last column of B and last row of p to obtain B and p, effectively forcing pt = 0:

p =

p
0

 =

B+
Wθ

0

 . (23)

6.2 The alternative incidence matrix, Kirchhoff’s Alternative Law and Ohm’s
Alternative Law

What is it that makes the s-t electrical flow θ special, making it satisfy Ohm’s Law. Why is Ohm’s
Law not necessarily true for our s-t alternative flow? Even though all flow states live in the symmetric
subspace A⊥ by construction, we saw in (6) that the flow state |θ⟩ of the s-t electrical flow θ can be
written as

|θ⟩ = (I −ΠA)

√
2

Rs,t

∑
u∈V

pu
√
wu |ψu⟩ ,

meaning that |θ⟩ in fact lives in the the symmetric star space of H, which is contained in A⊥:

H+⋆ := span{(I −ΠA) |ψu⟩ : u ∈ V } = span{|ψ+
u ⟩ : u ∈ V }. (24)

Out of all s-t flows, the s-t electrical flow is the unique unit flows such that |θ⟩ is the only corre-
sponding flow state that is an element of H+⋆ (see e.g. [LP16]). We will not give a formal proof of
this statement, but the intuition is that any other s-t flow has a higher energy, i.e. higher norm, which
is due to containing a component that is orthogonal to all of H+⋆, namely a circulation. The column

29



space of the incidence matrix B is in fact isomorphic to H+⋆, where the column of B indexed by u ∈ V
represents

√
wu |ψ+

u ⟩ through the isometry

V : C|
−→
E | 7→ A⊥, where V (u, v) =

√
2(I −ΠA) |u, v⟩ =

1√
2
(|u, v⟩+ |v, u⟩) . (25)

Through the addition of alternative neighbourhoods (see Definition 3.1), the spaceH+⋆
G is effectively

enlarged. Define
V alt := {(u, i) ∈ V × N : i ∈ {0, 1, · · · , au − 1}}. (26)

Then instead of only considering the span of all |ψ+
u ⟩ for u ∈ V , we now consider the span of all

alternative neighbourhoods projected onto the symmetric subspace, meaning |ψ+
u,i⟩ :=

√
2(I−ΠA) |ψu,i⟩

for (u, i) ∈ V alt:

H+alt := span{|ψ+
u,i⟩ : u ∈ V, i ∈ {0, 1, · · · , au − 1}}. (27)

By modifying the incidence matrix B to ensure that its column space still represents the newly
modified H+alt

G , we obtain the alternative incidence matrix Balt.

Definition 6.6 (Alternative incidence matrix). Let G be a network and let Ψ⋆ be a collection of
alternative neighbourhoods. Let {|ψu,0⟩ , . . . , |ψu,au−1⟩} be an orthonormal basis for each Ψ⋆(u) ∈ Ψ⋆.
The alternative incidence matrix Balt ∈ C

−→
E×V alt of G is the matrix whose rows range over (u, v) ∈

−→
E ,

whose columns range over (u, i) ∈ V alt and whose only non-zero entries are of the form

Balt(u,v),(u,i) =
√
wu⟨u, v|ψu,i⟩, Balt(u,v),(v,j) =

√
wu⟨u, v|ψv,j⟩.

By Definition 3.1 we may assume that each |ψu,i⟩ only has real coefficients and that |ψu,0⟩ = |ψu⟩.
By substituting B with Balt in both (18) and (21), we can recover both Kirchhoff’s Alternative Law and
Ohm’s Alternative Law, showing that these are indeed their natural definitions with respect to perspec-
tive of the incidence matrix. Fix some ordering of the columns of B of the form s, (u1, i1), . . . , (u2, i2), t
for some u1, u2 ∈ V \{s, t} such that (u1, i1), (u2, i2) ∈ V alt.

Definition 6.7 (Kirchhoff’s Alternative Law (incidence matrix)). Let θalt be any alternative unit s-t
flow on an electrical network G = (V,E,w) with respect to a collection of alternative neighbourhoods
Ψ⋆. Let Balt be the alternative incidence matrix of G. Then θalt satisfies

BT
altWθalt =



∑
v∈Γ(s) θ

alt
s,v∑

v∈Γ(u1)

θaltu1,v√
wu1,v

√
wu1⟨u1, v|ψu1,i1⟩
...∑

v∈Γ(u2)

θaltu2,v√
wu2,v

√
wu2⟨u2, v|ψu2,i2⟩∑

v∈Γ(t) θ
alt
t,v


=



1

0

...

0

−1


= es − et. (28)

Recall from Definition 3.3 that the s-t alternative electrical flow is the flow that minimises E(θalt)
for all alternative unit s-t flows θalt (if any such flow exists). By applying the Moore-Penrose inverse
of BT

alt to (28), we prove that the s-t electrical flow is unique and thus well defined:

Theorem 6.8. Let θalt be the s-t alternative electrical flow on a network G = (V,E,w). Let Balt be
the alternative incidence matrix of G. Then Wθalt is given by

Wθalt = BT+
alt (es − et). (29)

Recall the isometry V defined in (25). The column of Balt indexed by (u, i) ∈ V alt is equal to
VT
(√

wu |ψ+
u,i⟩
)
, meaning that the column space of Balt is equal to VT

(
H+alt

)
. Moreover, the column

space of Balt is equal to the column space of BT+
alt , due to the properties of the Moore-Penrose inverse
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in (19). Combined with the fact that the state |θalt⟩ is related to the vector Wθalt via the equality√
Ralt

s,t |θalt⟩ = V (Wθ), we find that |θalt⟩ is an element ofH+alt. This means that there exist coefficients

palt(u,i) such that

|θalt⟩ = 1√
Ralt

s,t

∑
u∈V

au−1∑
i=0

palt(u,i)

√
wu |ψ+

u,i⟩ . (30)

The notation palt(u,i) seems to hint that these coefficients are related to the alternative potential
vector palt. This is indeed the case: by defining the potential vector palt as

paltu,v :=
(−1)∆u,v

√
wu,v

au−1∑
i=0

palt(u,i)

√
wu⟨u, v|ψu,i⟩, (31)

we guarantee that the state |palt⟩ satisfies ΠB |palt⟩:

|palt⟩ =

√
2

R(θalt)

∑
(u,v)∈

−→
E :s/∈(u,v)

√
wu,v(p

alt
u,v |u, v⟩ − paltv,u |v, u⟩)

=

√
2

Ralt
s,t

∑
u∈V \{s}

∑
v∈Γ(u)

au−1∑
i=0

palt(u,i)

√
wu⟨u, v|ψu,i⟩ |u, v⟩

=

√
2

Ralt
s,t

∑
u∈V \{s}

au−1∑
i=0

palt(u,i)

√
wu |ψu,i⟩ .

Due to the coefficients palt(u,i), we can therefore consider the alternative potential vector palt as a

vector in CV alt with entries palt(u,i) for the row indexed by (u, i) ∈ V alt. By substituting B with Balt in
(21) and combining this with (31), we recover Ohm’s Alternative Law:

Definition 6.9 (Ohm’s Alternative Law (incidence matrix)). Let θalt be any alternative unit s-t flow
on an electrical network G = (V,E,w) with respect to a collection of alternative neighbourhoods Ψ⋆.
Let Balt be the alternative incidence matrix of G. Then there exists an alternative potential vector palt

such that ΠB |palt⟩ = |palt⟩ and

Bpalt =


√
wu1,v1

(
paltu1,v1 − paltv1,u1

)
...

√
wu2,v2

(
paltu2,v2 − paltv2,u2

)
 =


θu1,v1√
wu1,v1

...

θu2,v2√
wu2,v2

 =Wθalt. (32)

Just like with the potential vector p, we may assume that the alternative potential vector palt

satisfying Ohm’s Alternative Law also satisfies palts = Ralt
s,t and paltt = 0

Theorem 6.10. Let θalt be the s-t alternative electrical flow on an electrical network G = (V,E,w)
with respect to a collection of alternative neighbourhoods Ψ⋆. Let Balt be the alternative incidence
matrix of G. Then there exists an alternative potential vector palt satisfying Ohm’s Alternative Law
such that palts = Ralt

s,t and paltt = 0.

Proof. We apply the same trick as in (23), so we remove the last column of Balt and last row of palt to
obtain Balt and palt, forcing paltt = 0 for the solution satisfying (32):

palt =

palt
0

 =

Balt
+
Wθalt

0

 . (33)
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By left-multiplying both sides of (29) with (Wθalt)T we obtain together with (32) that

Ralt
s,t =

∥∥∥Wθalt
∥∥∥2 = (Wθalt)

T
BT+(es − et) = palt

T
(es − et) = palts − paltt = palts . (34)

Due to Theorem 6.10, we may now apply Lemma 2.7 with the parameters |ψ⟩ = |ψ+
s ⟩, |φ⟩ = |θalt⟩,

|ϕ⟩ = − 1√
Ralt

s,tws

|palt⟩ and p = 1
Ralt

s,tws
, proving the following generalisation of Corollary 2.8:

Theorem 6.11. Let Ψ⋆ be a collection of alternative neighbourhoods on a network G = (V,E,w) and
let UABalt be the quantum walk operator with respect to Ψ⋆ as defined in (8). Then by performing phase

estimation on the initial state |ψ+
s ⟩ with the operator UABalt and precision O

(
ϵ2

Ralt
s,tws∥palt∥

)
, the phase

estimation algorithm outputs “0” with probability Θ

(
1

Ralt
s,tws

)
, leaving a state |θ′⟩ satisfying

1

2

∥∥∥|θ′⟩ ⟨θ′| − |θalt⟩ ⟨θalt|
∥∥∥
1
≤ ϵ.

6.3 Examples

We will now show how these results apply to the examples Figure 1 and Figure 2 from section Sec-
tion 3.4, which we have restated here in Figure 10 and Figure 11. Consider the graph G, consisting of
the vertex set V = {s, x, y, t} and directed edge set

−→
E = {(s, x), (x, y), (x, t), (y, t)}, where each edge

(u, v) ∈
−→
E has weight wu,v = 1/4, except for the edge (s, x), which has weight ws,x = 1. This graph is

visualised in Figure 10. These directions and weight assignments give rise to the following star states
for each of our 4 vertices:

|ψs⟩ = |s, x⟩ , |ψx⟩ =
√

2

3

(
− |x, s⟩+ 1

2
|x, y⟩+ 1

2
|x, t⟩

)
,

|ψy⟩ =
√
2

(
−1

2
|y, x⟩+ 1

2
|y, t⟩

)
, |ψt⟩ =

√
2

(
−1

2
|t, x⟩ − 1

2
|t, y⟩

)
.

By ordering the directed edges as (s, x), (x, y), (x, t), (y, t) and the vertices as s, x, y, t, we have that
the incidence matrix B of G and the Moore-Penrose inverse BT+ of its transpose are equal to

B =


1 −1 0 0

0 1
2 −1

2 0

0 1
2 0 −1

2

0 0 1
2 −1

2

 , BT+ =


3
4 −1

4 −1
4 −1

4

1
2

1
2 −5

6 −1
6

1
2

1
2 −1

6 −5
6

0 0 2
3 −2

3

 . (35)

The weighted diagonal matrix W is given by

W =


1 0 0 0

0 1
2 0 0

0 0 1
2 0

0 0 0 1
2

 . (36)

We can recover the electrical flow θ in Figure 10 using Theorem 6.3 to derive

Wθ =



θs,x√
ws,x

θx,y√
wx,y

θx,t√
wx,t

θy,t√
wy,t

 = BT+(es − et) =


3
4 −1

4 −1
4 −1

4

1
2

1
2 −5

6 −1
6

1
2

1
2 −1

6 −5
6

0 0 2
3 −2

3




1

0

0

−1

 =


1

2
3

4
3

2
3

 .
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1
1
4

1
4

1
4

wu,v for each (u, v) ∈
−→
E

s x

y

t

1
2
3

1
3

1
3

θu,v for each (u, v) ∈
−→
E

s x

y

t

11
3

8
3

4
3 0

pu for each u ∈ V

Figure 10: Graph G with its s-t electrical flow θ and corresponding potential p at each vertex.

This means that Rs,t = 1 + 4
9 + 16

9 + 4
9 = 11

3 . By invoking (23), where the matrix B and its
Moore-Penrose inverse B+ are equal to

B =


1 −1 0

0 1
2 −1

2

0 1
2 0

0 0 1
2

 , B
+
=


1 2

3
4
3

2
3

0 2
3

4
3

2
3

0 −2
3

2
3

4
3

 , (37)

we obtain that the potential at each vertex is given by

p =

p
0

 =

B+
Wθ

0

 =




1 2

3
4
3

2
3

0 2
3

4
3

2
3

0 −2
3

2
3

4
3



1

2
3

4
3

2
3


0


=


11
3

8
3

4
3

0

 , (38)

meaning that the potential state |p⟩ is equal to

|p⟩ =

√
2

Rs,t

∑
u∈V

pu
√
wu |ψu⟩ =

11

3
|s, x⟩ − 8

3
|x, s⟩+ 4

3
|x, y⟩+ 4

3
|x, t⟩ − 2

3
|y, x⟩+ 2

3
|y, t⟩ . (39)

We now consider the case where the vertex x ∈ V contains an additional alternative neighbourhood:
let Ψ⋆(x) = {|ψx⟩ , |ψalt

x ⟩} where

|ψalt
x ⟩ =

√
2

3
(
1

2
|s, x⟩ − |x, y⟩+ 1

2
|x, t⟩),

visualised in Figure 11. By taking

√
wx |ψx,1⟩ =

√
3

2

√
1

2
(− |x, y⟩+ |x, t⟩) = 1

2

√
3(− |x, y⟩+ |x, t⟩),

we find that {|ψx,0⟩ = |ψx⟩ , |ψx,1⟩} forms an orthonormal basis for Ψ⋆(x). For this basis we find that
the alternative incidence matrix Balt of G and Ψ⋆ and the Moore-Penrose inverse BT+

alt of its transpose
are equal to

Balt =


1 −1 0 0 0

0 1
2 −1

2

√
3 −1

2 0

0 1
2

1
2

√
3 0 −1

2

0 0 0 1
2 −1

2

 , BT+
alt =


3
4 −1

4 0 −1
4 −1

4

1
2

1
2 −1

3

√
3 −1

2 −1
2

1
2

1
2

1
3

√
3 −1

2 −1
2

0 0 −1
3

√
3 1 −1

 . (40)
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1
2
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1
2

θaltu,v for each (u, v) ∈
−→
E

s x

y

t

4
2

2
4

paltu,v for each (u, v) ∈
−→
E

s x

y

t

3
0

0
2

paltu,v for each (v, u) ∈
−→
E

Figure 11: Graph G where the blue vertex x has an additional alternative neighbourhood. The the s-t
alternative electrical flow θalt be with respect to this extra alternative neighbourhood is displayed, as
well as the corresponding potential vector palt.

We can recover the electrical flow θalt with respect to Ψ⋆ in Figure 11 using Theorem 6.8 to derive

Wθalt =



θalts,x√
ws,x

θaltx,y√
wx,y

θaltx,t√
wx,t

θalty,t√
wy,t

 = BT+
alt (es − et) =


3
4 −1

4 0 −1
4 −1

4

1
2

1
2 −1

3

√
3 −1

2 −1
2

1
2

1
2

1
3

√
3 −1

2 −1
2

0 0 −1
3

√
3 1 −1





1

0

0

0

−1


=


1

1

1

1

 .

This means that Ralt
s,t = 1 + 1 + 1 + 1 = 4. By invoking (33), where the matrix Balt and its

Moore-Penrose inverse B+
alt are equal to

Balt =


1 −1 0 0

0 1
2 −1

2

√
3 −1

2

0 1
2

1
2

√
3 0

0 0 0 1
2

 , Balt
+
=


1 1 1 1

0 1 1 1

0 −1
2

√
3 1

2

√
3 −1

2

√
3

0 0 0 2

 , (41)

we obtain that the alternative potential at each alternative neighbourhood is given by

palt =

palt
0

 =

Balt
+
Wθalts,t

0

 =




1 1 1 1

0 1 1 1

0 −1
3

√
3 1

3

√
3 −1

3

√
3

0 0 0 2




1

1

1

1


0


=



4

3

−1
3

√
3

2

0


, (42)

meaning that the alternative potential state |palt⟩ is equal to

|palt⟩ =
√

2

Ralt
s,t

∑
u∈V,i∈{0,...,au−1}

palt(u,i)

√
wu |ψ(u,i)⟩

= 4 |s, x⟩ − 3 |x, s⟩+ 3

2
|x, y⟩+ 3

2
|x, t⟩+ 1

2
|x, y⟩ − 1

2
|x, t⟩ − |y, x⟩+ |y, t⟩

= 4 |s, x⟩ − 3 |x, s⟩+ 2 |x, y⟩+ |x, t⟩ − |y, x⟩+ |y, t⟩ .

(43)
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A Proof of Lemma 2.7

Our analysis of the phase estimation algorithm, as in [Kit96], will use elements of the analyses in
[JZ23] and [Pid19], as well as the following lemma:
Lemma A.1 (Effective Spectral Gap Lemma [LMR+11]). Fix ϵ ∈ (0, π), and let Λϵ be the orthogonal
projector onto the eiθ-eigenspaces of UAB with |θ| ≤ ϵ. If |ϕ⟩ ∈ B, then

∥Λϵ(I −ΠA) |ϕ⟩∥ ≤ ϵ

2
∥|ϕ⟩∥ .

By the promise that |ψ⟩ = √
p |φ⟩ + (I − ΠA) |ϕ⟩ with ΠB |ϕ⟩ = |ϕ⟩, we can apply Lemma A.1 to

obtain
∥Λϵ (|ψ⟩ −

√
p |φ⟩)∥ = ∥Λϵ(I −ΠA) |ϕ⟩∥ ≤ ϵ

2
∥|ϕ⟩∥ . (44)

Let {θj}j∈J ⊂ (−π, π] be the set of phases of UAB, and let Πj be the orthogonal projector onto the
eiθj -eigenspace of UAB, so we can write

UAB =
∑
j∈J

eiθjΠj .

Phase estimation starts by making a superposition over t from 0 to T − 1 in the phase register and
conditioned on this register we apply U t

AB to |ψ⟩, creating

T−1∑
t=0

1√
T
|t⟩U t

AB |ψ⟩ =
∑
j∈J

T−1∑
t=0

1√
T
|t⟩ eitθjΠj |ψ⟩ .

The phase estimation algorithm then proceeds by applying an inverse Fourier transform, F †
T , to

the first register, and then measuring the result. The probability p′ of measuring 0 is

p′ :=

∥∥∥∥∥∥⟨0|F †
T ⊗ I

∑
j∈J

T−1∑
t=0

1√
T
|t⟩ eitθjΠj |ψ⟩

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
T−1∑
t=0

1√
T
⟨t| ⊗ I

∑
j∈J

T−1∑
t=0

1√
T
|t⟩ eitθjΠj |ψ⟩

∥∥∥∥∥∥
2

=
1

T 2

∥∥∥∥∥∥
∑
j∈J

T−1∑
t=0

eitθjΠj |ψ⟩

∥∥∥∥∥∥
2

=
1

T 2

∑
j∈J :θj ̸=0

∣∣∣∣1− eiθjT

1− eiθj

∣∣∣∣2 ∥Πj |ψ⟩∥2 + ∥Λ0 |ψ⟩∥2

=
1

T 2

∑
j∈J :θj ̸=0

sin2(Tθj/2)

sin2(θj/2)
∥Πj |ψ⟩∥2 + ∥Λ0 |ψ⟩∥2 ,

(45)

since
∣∣∣∑T−1

t=0 e
itθ
∣∣∣ = ∣∣∣1−eiθT

1−eiθ

∣∣∣, and |1− eiθ|2 = 4 sin2 θ
2 for any θ ∈ R.

For the lower bound on p′, we will use the identities sin2 θ ≤ θ2 for all θ, and sin2 θ ≥ 4θ2/π2

whenever |θ| ≤ π/2. Let Φ = π
T . If we apply this to (45), we find that

p′ ≥ 1

T 2

∑
j∈J :0<|θj |≤Φ

sin2(Tθj/2)

sin2(θj/2)
∥Πj |ψ⟩∥2 + ∥Λ0 |ψ⟩∥2

≥ 1

T 2

∑
j∈J :0<|θj |≤Φ

4(Tθj/2)
2/π2

(θj/2)2
∥Πj |ψ⟩∥2 + ∥Λ0 |ψ⟩∥2 ≥

4

π2
∥ΛΦ |ψ⟩∥2 .

By applying (44) with ϵ = 0 and the triangle inequality, we obtain

∥ΛΦ |ψ⟩∥ ≥ ∥Λ0
√
p |φ⟩∥ − ∥Λ0 (|ψ⟩ −

√
p |φ⟩)∥ =

√
p,

since |φ⟩ is an 1-eigenvector of U , thus concluding the lower bound.
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For the upper bound, we make use of the identity sin2 θ ≤ min{1, θ2} for all θ. In combination
with (44), this allows us to upper bound p′ from where we left off in (45) as

p′ ≤ 1

T 2

∑
j∈J :θj ̸=0

sin2(Tθj/2)

sin2(θj/2)

(
∥Πj (|ψ⟩ −

√
p |φ⟩)∥2 + ∥Πj

√
p |φ⟩∥2

)
+ ∥Λ0

√
p |ψ⟩∥2

=
1

T 2

∑
j∈J :|θj |<

√
1

∥|ϕ⟩∥T

sin2(Tθj/2)

sin2(θj/2)
∥Πj (|ψ⟩ −

√
p |φ⟩)∥2

+
1

T 2

∑
j∈J :|θj |≥

√
1

∥|ϕ⟩∥T

sin2(Tθj/2)

sin2(θj/2)
∥Πj (|ψ⟩ −

√
p |φ⟩)∥2 + p

T 2

∥∥∥∥∥∥
∑
j∈J

T−1∑
t=0

eitθjΠj |θ⟩

∥∥∥∥∥∥
2

≤ 1

T 2

∑
j∈J :|θj |<

√
1

∥|ϕ⟩∥T

π2T 2

4

∥|ϕ⟩∥
4T

+
1

T 2

∑
j∈J :|θj |≥

√
1

∥|ϕ⟩∥T

π2 ∥|ϕ⟩∥T ∥Πj (|ψ⟩ −
√
p |φ⟩)∥2 + p

≤ p+
17π2 ∥|ϕ⟩∥

16T
.

Finally, let |ψ′⟩ be the (normalised) post measurement state after measuring 0. We abbreviate
PE for the phase estimation algorithm followed by the projection onto measuring 0, as described in
(45), such that |ψ′⟩ = 1√

p′
PE |ψ⟩. Note that since |φ⟩ is an 1-eigenvector of U , we have |φ⟩ = PE |φ⟩,

meaning we can conclude the lemma via the inequality

1

2

∥∥|ψ′⟩ ⟨ψ′| − |φ⟩ ⟨φ|
∥∥
1
≤
√

1− |⟨ψ′|φ⟩|2 =

√
1− |⟨ψ|PE |φ⟩|2

p′
=

√
1− p

p′
≤

√
17π4 ∥|ϕ⟩∥

64Tp
.
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