
Generating k EPR-pairs from an n-party resource state

Sergey Bravyi∗ Yash Sharma† Mario Szegedy‡ Ronald de Wolf§

Abstract

Motivated by quantum network applications over classical channels, we initiate the study
of n-party resource states from which LOCC protocols can create EPR-pairs between any k
disjoint pairs of parties. We give constructions of such states where k is not too far from the
optimal n/2 while the individual parties need to hold only a constant number of qubits. In the
special case when each party holds only one qubit, we describe a family of n-qubit states with k
proportional to log n based on Reed-Muller codes, as well as small numerically found examples
for k = 2 and k = 3. We also prove some lower bounds, for example showing that if k = n/2
then the parties must have at least Ω(log log n) qubits each.

1 Introduction

1.1 Generating EPR-pairs from a resource state

Quantum communication networks combine several quantum computers to enable them to solve
interesting tasks from cryptography, communication complexity, distributed computing etc. Build-
ing a large-scale quantum communication network is a daunting task that will take many years,
but networks with a few small quantum computers are under construction and may start to appear
in the next few years [WEH18].

Figure 1: State of n =
4 parties with 6 EPR-
pairs

These networks are either based on channels that physically communicate
quantum states, or rely on classical communication in tandem with shared
entanglement, or a combination of both. Communication over classical chan-
nels cannot increase entanglement, so in the absence of quantum channels we
have to rely on prior entangled states. For example, if two parties share an
EPR-pair, 1√

2
(|00⟩+ |11⟩), then one party can transmit (“teleport”) a qubit

to the other via two classical bits of communication, consuming the EPR-pair
in the process [BBC+93]. If we want to enable many qubits to be sent in this
way, then we could start with an entangled state where each pair among the
n parties shares its own EPR-pair. This would allow any pair to exchange a qubit, but would
require us to start with a rather large initial entangled state of

(
n
2

)
EPR-pairs, and each of the n

parties would need to hold n− 1 qubits (see Figure 1 for n = 4).
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Now suppose that we know in advance that only some k pairs out of the n parties will be
required to exchange a qubit, but we do not know in advance what those k pairs are. In this paper
we study what initial n-party resource states are sufficient or necessary to achieve this task. Note
that an EPR-pair between two parties allows them to exchange a qubit in either direction via local
operations and classical communication (LOCC), and conversely the ability to exchange a qubit
between two parties allows them to share an EPR-pair (one party locally creates the EPR-pair and
sends one of its qubits to the other party). This shows that the ability to exchange qubits between
any k disjoint pairs of parties is essentially equivalent to the ability to establish EPR-pairs between
any k disjoint pairs. We focus on the latter task in this paper.

We call an n-party state |ψ⟩ k-pairable if for every k disjoint pairs {a1, b1}, . . . , {ak, bk} of
parties, there exists an LOCC protocol that starts with |ψ⟩ and ends up with a state where each
of those k pairs of parties shares an EPR-pair. The local quantum operations and the classical
communication are free, but we do care about the number of qubits per party in |ψ⟩: the fewer the
better. The same resource state |ψ⟩ has to work for every possible k-pairing, so it is fixed before
the pairing task is given. For example, the n-qubit GHZ-state

1√
2
(|0n⟩+ |1n⟩)

is 1-pairable: in order to obtain an EPR-pair between two parties Alice and Bob, the other n− 2
parties can measure their qubit in the Hadamard basis and communicate the classical measurement
outcomes to Alice and Bob, who convert their remaining 2-qubit state into an EPR-pair if one of
them (say Alice) does a Z-gate conditioned on the parity of the n− 2 bits they received.

The GHZ-example has the minimal possible 1 qubit per party, but unfortunately k is only 1
there. We are interested in resource states that are k-pairable for larger k ≤ n/2. We give both
upper and lower bounds for k-pairability, considering both the situation where we allow m > 1
qubits per party (but not too many), and the situation where we insist that each of the n parties
has only the minimal m = 1 qubits.

1.2 Our results 1: constructions of k-pairable resource states

In Section 2 we first study k-pairable resource states where each of the n parties is allowed to have
O(1) qubits (hence |ψ⟩ will have O(n) qubits in total). We show that we can make k as large as
n/polylog(n) while each party holds only 10 qubits. Roughly, the idea is to take a special kind of
n-vertex expander graphs that guarantee existence of k edge-disjoint paths for any k disjoint pairs,
let each edge in the graph correspond to an EPR-pair, and create the k desired EPR-pairs via
entanglement-swapping along the edge-disjoint paths. If we allow m = O(log n) qubits per party
instead of m = O(1), then we can construct k-pairable resource states with k = n/2, meaning that
from our fixed resource state we can create EPR-pairs across any perfect matching of the n parties
into disjoint pairs.1 This result essentially requires only classical off-the-shelf routing arguments.

Since qubits are expensive, especially when lots of error-correction is needed to protect them,
we also look at what is possible when each party holds only 1 qubit, which is of course the bare

1Note that if we allow one party to hold many more qubits than the others, then we could use a star graph, where
the central party shares an EPR-pair with each of the n− 1 other parties, and uses entanglement-swapping (see the
proof of Lemma 1) to link up the k pairs as desired. This (2n− 2)-qubit state is k-pairable for the maximal k = n/2,
and n− 1 parties hold the minimal 1 qubit. However, the central party holds n− 1 qubits and has to do all the work
in obtaining the k-pairing. In the spirit of the small quantum networks of small quantum computers that we’ll have
in the near and medium-term future, we prefer constructions where none of the parties needs to hold many qubits.
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minimum. In this case, we construct n-party (which in this case is the same as n-qubit) resource
states for the case k = 1 for arbitrary n (this corresponds to the GHZ-state). For k ≥ 2 it is not
clear that k pairability is a property monotone in n. What we have is that k-pairable states exist
for k = 2 for n = 16 and higher powers of 2 (we also give numerical evidence for the existence of a
2-pairable state on n = 10 qubits); for k = 3 for n = 32 and higher powers of 2; and for arbitrary k
for n = 23k and higher powers of 2. These resource states will be superpositions over the codewords
in a Reed-Muller code, and we use the stabilizer formalism to design LOCC protocols for obtaining
the desired k EPR-pairs from the resource state. Our construction is efficient in the sense that all
steps in the LOCC protocol can be computed in time poly(n). To prove correctness of the protocol
we reduce the problem of EPR-pair generation to a version of the polynomial regression problem:
constructing a multi-variate F2-valued polynomial of fixed degree that takes prescribed values at
a given set of points. One of our main technical contributions is developing tools for solving a
particular family of such polynomial regression problems.
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Figure 2: Informal summary of our constructions. We consider resource states of different type shared among
n parties such that each party holds a fixed number of qubits ranging between 1 and log (n). The last row
shows the pairability parameter k—the number of EPR-pairs that can be generated by LOCC starting from
the respective resource state. For simplicity, we ignore constant factors in the log (n) scaling and ignore
minor restrictions on the number of parties n in certain cases, see Sections 2,3 for details. Our proof of
k-pairability is analytic in all cases except for n = 10 and 32 where we provide only a computer-aided proof.

1.3 Our results 2: obstructions

Next we look at obstructions, namely lower bounds on the achievable tradeoff between n, k, and m.
First consider the case where we can pair up any k = n/2 disjoint pairs. An ideal resource state
would allow us to do this (i.e., be n/2-pairable) with only m = 1 qubits per party. As mentioned
above, we have shown that k-pairability with only 1 qubit per party is indeed achievable if k ≪ n/2,
but in Section 4 we show it is not achievable if k = n/2: in that case m = Ω(log log n) qubits per
party are needed. The proof is by an intricate dimension-counting argument, which gives upper
and lower bounds on the dimension of the space of states that can be reached (with non-zero
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probability) by LOCC protocols on a fixed nm-qubit resource state |ψ⟩. In Section 5 we extend

this approach to the case of partial pairings, so where k < n/2, showing m = Ω
(
log

(
k logn

n log logn

))
in

this more general case. In particular, if m = O(1) then k can be at most O
(
n log logn

logn

)
= o(n), so

achieving something close to complete pairability (i.e., k = Ω(n)) requires a super-constant number
of qubits per party. Up to the power of the polylog, this matches our construction of k-pairable
states with k = n/polylog(n) and m = 10 qubits per party (Section 1.2).

1.4 Related work

To the best of our knowledge, the problem of what resource states allow LOCC protocols to con-
struct EPR-pairs between any k pairs of parties has not been studied before. However, we are aware
of a number of related works, which we will briefly discuss here.2 These works can be organized
into two categories.

Entanglement routing assisted by quantum communication.

Here some parties are allowed to exchange qubits in addition to performing LOCC on the initial
resource state.

Schoute et al. [SMI+16] consider quantum networks where parties can create EPR-pairs with
their immediate neighbors and then use entanglement-swapping combined with efficient routing
algorithms to create desired long-distance entanglement. This differs from our approach in allowing
the ability to create new EPR-pairs when needed (which requires quantum communication), while
we allow only LOCC starting from one fixed entangled resource state.

Hahn, Pappa, and Eisert [HPE19] also study a quite similar problem to ours, but starting from
a network where some parties are linked via a quantum channel, while some other parties are not
(directly) linked at all. In addition to efficiently generating EPR-pairs they also study generating
GHZ-states between specified parties.

Pant et al. [PKT+19] study how a network whose nodes are connected via lossy optical links
and have limited quantum processing capabilities, can obtain EPR-pairs simultaneously between
many pairs of nodes; their limitations per node are analogous to our goal of having only few qubits
per party, but they allow quantum communication while we allow only classical communication.

Restricted variants of k-pairability.

Here the parties are only allowed to perform LOCC on the initial resource state. The parties may
be able to generate k EPR pairs for some but not all choices of such pairs.

Miguel-Ramiro, Pirker, and Dür [MPD23] consider resource states interpolating between the two
extreme cases discussed in our introduction: the GHZ state shared among n parties and

(
n
2

)
EPR

states shared between each pair of parties. This work proposed clustering and merging algorithms
that produce resource states with the desired functionality. However, these methods do not appear
to provide k-pairable resource states with few qubits per party.

2We won’t go over the literature on quantum network coding (which assumes the ability to send qubits over specific
edges) nor the massive experimental physics literature on preparation of entangled states on actual noisy hardware
such as optical links and repeaters.
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Du, Shang, and Liu [DSL17] study a problem similar to ours but starting from resource states
that consist only of pre-shared EPR-pairs between adjacent parties in a given network. Like us,
they use entanglement-swapping to create EPR-pairs between distant parties.

Contreras-Tejada, Palazuelos, and de Vicente [CPdV22] gave similar constructions as we gave in
Section 2 (with EPR-pairs on the edges of an n-vertex graph), but focus primarily on the question
for what type of graphs the long-range entanglement survives constant amounts of noise on the
edges.

Illiano et al. [IVK+22] study 1-pairable states with the additional property that the identity of
the one pair that ends up sharing an EPR-pair remains unknown to the other n− 2 parties (in fact
one can get this easily from the n-party GHZ-state if the other parties broadcast their measurement
outcomes to everyone rather than sending it only to the two parties that want an EPR-pair).

Meignant, Markham, and Grosshans [MMG19] and Fischer and Townsley [FT21] studied what
is roughly a partial “dual” of our problem: how many EPR-pairs between which parties of a given
n-party network are necessary and sufficient to generate a classically given n-party graph state?

Dahlberg, Helsen, and Wehner [DHW20] show that it is NP-complete to decide whether a
classically given n-party stabilizer state can be transformed into a set of EPR-pairs on specific
qubits using only single-qubit Clifford operations, single-qubit Pauli measurements and classical
communication (such protocols are more restricted than the LOCC we allow in our paper). They
also give some algorithms to do the transformation in some special cases [DHW18].

2 Constructions with multiple qubits per party

In this section we combine classical network routing strategies and the standard entanglement
swapping protocol to construct n-party k-pairable resource states with k nearly linear in n, such
that each party holds at most m = O(1) qubits. Increasing the number of qubits per party from a
constant to m = O(log n) yields maximally pairable resource states with k = n/2.

Suppose G = (V,E) is a graph with n vertices V = {1, 2, . . . , n}. Vertex i ∈ V represents the
i-th party. We place two qubits at every edge (i, j) ∈ E such that in total there are n = 2|E|
qubits. Define an n-party resource state

|ψG⟩ =
⊗

(i,j)∈E

|Φi,j⟩,

where |Φi,j⟩ is an EPR-pair located on an edge (i, j). The state |ψG⟩ is shared among n parties
such that the two qubits located on an edge (i, j) ∈ E are assigned to the parties i and j who share
the EPR-pair |Φi,j⟩. Thus each party shares one EPR-pair with each of its neighbors. Accordingly,
each party holds at most d qubits, where d is the maximum vertex degree of G.

Lemma 1. The resource state |ψG⟩ is k-pairable if for any choice of k disjoint pairs of vertices
{a1, b1}, . . . , {ak, bk} in the graph G, there exist k edge-disjoint paths P1, . . . , Pk ⊆ E such that the
path Pi connects vertices {ai, bi}.

Proof. Suppose Charlie shares an EPR-pair with Alice and another EPR-pair with Bob. The
following well-known entanglement-swapping protocol uses LOCC to create an EPR-pair between
Alice and Bob. First, Charlie measures the parity of his two qubits in the standard basis {|0⟩, |1⟩},
sends the 1-bit measurement outcome to Bob, and conditioned on it he applies a σx (bitflip)
on his second qubit and Bob applies a σx to his qubit. This results in a 4-qubit GHZ-state
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1√
2
(|0000⟩+|1111⟩). Now Charlie measures each of his two qubits in the Hadamard basis {|+⟩, |−⟩},

sends the parity of the two outcomes to Bob, who conditioned on that bit applies a σz (phaseflip)
to his qubit. It may be verified that now Alice and Bob share an EPR-pair.

The creation of the k EPR-pairs using the k edge-disjoint paths is now fairly straightforward:
the parties on the path from ai to bi use the EPR-pairs with their neighbors on the path to create
an EPR-pair between ai and bi via entanglement-swapping. Because the k paths are edge-disjoint,
no edge (=EPR-pair) is used more than once.

Below it will be convenient to relax the edge-disjointness condition in Lemma 1 and consider
pairability by nearly edge-disjoint paths. More precisely, suppose p ≥ 1 is an integer. Consider a
resource state |ψG⟩⊗p such that each copy of |ψG⟩ is shared among n parties as specified above.
Then each party holds at most pd qubits, where d is the maximum vertex degree of G. Each party
shares p EPR-pairs with each of its neighbors. An immediate corollary of Lemma 1 is the following.

Corollary 2. The resource state |ψG⟩⊗p is k-pairable if for any choice of k disjoint pairs of vertices
{a1, b1}, . . . , {ak, bk} in the graph G, there exist k paths P1, . . . , Pk ⊆ E such that the path Pi

connects vertices {ai, bi} and each edge of G belongs to at most p paths.

To keep the number of qubits per party small, we would like the graph G to have a small vertex
degree and, at the same time, allow vertex pairability by (nearly) edge-disjoint paths for any choice
of k disjoint vertex pairs. We would like to maximize the pairability parameter k while keeping the
vertex degree d as small as possible. Luckily, the problem of constructing such graphs has been
already studied due to its importance for classical communication networks. A graph G = (V,E)
is said to have edge expansion h if for any subset of vertices S ⊆ V with |S| ≤ |V |/2, the number
of edges that have exactly one endpoint in S is at least h|S|. We shall use the following fact.

Fact 1 (Broder, Frieze, Upfal [BFU94]). For any constants d ≥ 3 and h > 1 there exists a
constant c > 0 such that the following is true. Suppose G is an n-vertex d-regular graph with edge
expansion at least h. Then for any choice of k ≤ n/ logc (n) disjoint vertex pairs in G there exists a
family of paths P1, . . . , Pk connecting the chosen pairs of vertices such that every edge of G belongs
to at most two paths. These paths can be found in time poly(n).

It is known [Bol88] that d-regular graphs with edge expansion h > 1 exist for any constant
d ≥ 5 and all large enough n. Thus Corollary 2 and Fact 1 imply that for all large enough n there
exist k-pairable resource states with k = n/polylogn and at most 10 qubits per party.

Let us say that a graph G is path-pairable if the number of vertices n is even and the condition
of Lemma 1 holds for k = n/2. We shall need the following fact stated as Corollary 2 in [GMM17].

Fact 2 (Győri, Mezei, Mészáros [GMM17]). For any integer q ≥ 1 there exists a d-regular
n-vertex path-pairable graph with d = 18q and n = 18q.

Combining Lemma 1 and Fact 2 we infer that m = O(log n) qubits per party suffices for
complete pairings, in contrast with the naive resource state where every one of the

(
n
2

)
pairs shares

an EPR-pair and hence each party holds m = n− 1 qubits.

Corollary 3. There exists a family of n-party (n/2)-pairable resource states with m = 18 log18(n) ≈
4.3 log2(n) qubits per party.
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3 Constructions that use only one qubit per party

In this section we study k-pairability of n-party quantum states under the most stringent restriction:
each party holds only one qubit (obviously, k-pairability with k ≥ 1 is impossible if some party has
no qubits). This problem is well-motivated since qubits, especially error-corrected logical qubits,
built on top of multiple physical qubits, are expensive and we would prefer to have n-party k-
pairable resource states with as few qubits per party as possible.

We have already seen that the n-qubit GHZ-state shared by n parties is 1-pairable. Naively,
one might think that the GHZ-example is already best-possible and k = 1 is as far as one can get
with one qubit per party. Surprisingly, this naive intuition turns out to be wrong. Here we give
examples of k-pairable states with one qubit per party for an arbitrary k. We choose the resource
state |ψ⟩ as the uniform superposition of codewords of a suitable linear code C of codelength n.
The GHZ-example |ψ⟩ = 1√

2
(|0n⟩ + |1n⟩) with k = 1 is the special case with the repetition code

C = {0n, 1n}.
To achieve k-pairability for k ≥ 2 we choose C as the Reed-Muller code RM(k − 1,m) with a

suitable parameterm, see below for details.3 The LOCC protocol converting |ψ⟩ to the desired EPR-
pairs can be described by a pair of disjoint subsetsX,Z ⊆ [n] such that all qubits contained in Z and
X are measured in the standard basis {|0⟩, |1⟩} and the Hadamard basis {|+⟩, |−⟩} respectively.
The protocol creates EPR-pairs on 2k qubits contained in the complement [n] \ (X ∪ Z). Here
|±⟩ = (|0⟩ ± |1⟩)/

√
2. Finally, a Pauli correction σx or σz is applied to each EPR qubit a1, . . . , ak.

The correction depends on the measurement outcomes and requires classical communication from
parties in X ∪ Z to parties a1, . . . , ak.

Our construction is efficient in the sense that the subsets of qubits X and Z can be computed
in time O(n) for any given choice of EPR qubits. Furthermore, the initial resource state |ψ⟩
can be prepared by a quantum circuit of size O(n2). While describing the subsets X and Z is
relatively simple, proving that the resulting LOCC protocol indeed generates the desired EPR-
pairs is considerably more complicated in the case k ≥ 2, as compared with the GHZ-example
for k = 1. For resource states based on Reed-Muller codes RM(k − 1,m), we will see below that
the proof can be reduced to solving a polynomial regression problem: constructing a polynomial
f : Fm

2 → F2 of degree k−1 whose values f(x) are fixed at a certain subset of points x. The number
of qubits n = n(k) used by our construction is given by n(2) = 16, n(3) = 32, and n(k) = 23k for
k ≥ 4 (note that the number of qubits is the same as the number of parties throughout this section).
While this scaling n(k) may be far from optimal, the main value of our result is demonstrating
that k-pairability with an arbitrary k is possible in principle even in the most restrictive setting
with one qubit per party. To the best of our knowledge, this was not known prior to our work. We
leave as an open question whether k-pairable states based on Reed-Muller codes can achieve a more
favorable scaling n(k) = poly(k) or even the scaling n(k) = O(k polylog(k)) that can be achieved
if we allow 10 qubits per party instead of 1 (end of Section 2). Such an improvement may require
consideration of more general LOCC protocols that use all three types of Pauli measurements, in
the σx, σy, σz bases.

Finally, we describe a numerically-found example of a 10-qubit 2-pairable state with one qubit
per party; this is more efficient than the 16-qubit 2-pairable state from the above results. This
example is based on a stabilizer-type resource state and an LOCC protocol with Pauli measure-

3We follow the standard notation for the parameter m of Reed-Muller codes. It should not be confused with the
number of qubits per party, which equals 1 throughout this section.
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ments. We also show that no stabilizer state with n ≤ 9 qubits is 2-pairable using only Pauli
measurements. In that sense our 10-qubit example is optimal.

The rest of this section is organized as follows. We introduce CSS-type resource states and give
sufficient conditions for k-pairability of such states in Section 3.1. Reed-Muller codes and their
basic properties are described in Section 3.2. We define resource states based on Reed-Muller codes
and describe our LOCC protocol for generating EPR-pairs in Section 3.3. A proof of k-pairability
for k = 2, 3, and for an arbitrary k is given in Sections 3.4, 3.5, and 3.6 respectively. Finally, we
describe the 10-qubit 2-pairable example in Section 3.7.

3.1 Pairability of CSS stabilizer states

To describe our construction we need more notation. Let Fn
2 = {0, 1}n be the n-dimensional vector

space over F2. Given a vector f ∈ Fn
2 and a bit index j, let f(j) ∈ {0, 1} be the j-th bit of f .

We write f · g =
∑n

j=1 f(j)g(j) for the dot product of vectors f, g ∈ Fn
2 . Unless stated otherwise,

addition of binary vectors and the dot product are computed modulo two. The weight of a vector
f ∈ Fn

2 is the number of bits j such that f(j) = 1. A linear code of length n is simply a linear
subspace C ⊆ Fn

2 . Vectors f ∈ C are called codewords. The code is said to have distance d if any
nonzero codeword has weight at least d. The dual code of C, denoted C⊥, is the subspace of vectors
f ∈ Fn

2 such that f · g = 0 for all g ∈ C. An affine subspace of dimension d is a set of vectors
{f +h | f ∈ C}, where C ⊆ Fn

2 is a linear subspace of dimension d and h ∈ Fn
2 is some fixed vector.

Suppose our n-qubit resource state |ψ⟩ has the form

|ψ⟩ = |C⟩ := 1√
|C|

∑
f∈C

|f⟩, (1)

where C ⊆ Fn
2 is a linear code. Such states are known as Calderbank-Shor-Steane (CSS) stabilizer

states [CS96, Ste96, CRSS98]. It is well-known that the state |C⟩ can be prepared by a quantum
circuit of size O(n2) for any linear code C, see for instance [AG04]. We begin by deriving a sufficient
condition under which a CSS stabilizer state is k-pairable. Below we assume that each of the n
parties holds only one qubit.

Lemma 4 (Pairability of CSS stabilizer states). Suppose C ⊆ Fn
2 is a linear code. Suppose

for any set of k disjoint pairs of qubits {a1, b1}, . . . , {ak, bk} there exists a partition of the n qubits
into three disjoint subsets

{1, 2, . . . , n} = EXZ (2)

such that E = {a1, b1, . . . , ak, bk} and the following conditions hold for all i = 1, 2, . . . , k:

CSS1: ∃ f ∈ C such that f(ai) = f(bi) = 1 and for all p ∈ EZ \ {ai, bi}: f(p) = 0

CSS2: ∃ f̄ ∈ C⊥ such that f̄(ai) = f̄(bi) = 1 and for all p ∈ EX \ {ai, bi}: f̄(p) = 0

Then the n-qubit state |C⟩ = 1√
|C|

∑
f∈C |f⟩ is k-pairable.

Here and below we use shorthand set union notationXY ≡ X∪Y wheneverX and Y are disjoint
sets. The desired EPR-pairs can be generated in three steps. First, each qubit p ∈ Z is measured
in the standard basis {|0⟩, |1⟩} and each qubit p ∈ X is measured in the Hadamard basis {+⟩, |−⟩}.
Next, each party p ∈ XZ broadcasts their binary measurement outcome to a1, . . . , ak. Finally, a
Pauli correction is applied to each qubit ai; this may depend on the measurement outcomes.

8



Proof of Lemma 4. We assume some familiarity with the stabilizer formalism [CS96, Got98,
NC02]. Let σxj and σzj be single-qubit Pauli operators acting on the j-th qubit tensored with the

identity on all other qubits. The resource state |C⟩ has Pauli stabilizers4

σx(f) ≡
∏

p : f(p)=1

σxp for f ∈ C

and
σz(f̄) ≡

∏
p : f̄(p)=1

σzp for f̄ ∈ C⊥.

Thus we have σx(f)|C⟩ = σz(f̄)|C⟩ = |C⟩. Suppose f and f̄ obey conditions CSS1, CSS2 for some
pair {ai, bi}. Let mp = ±1 be the measurement outcome on a qubit p ∈ XZ. Condition CSS1
implies that the stabilizer σx(f) commutes with Pauli operators σzp on qubits p ∈ Z, which are
measured in the standard basis. Thus σx(f) and {mpσ

x
p | p ∈ X} are stabilizers of the final state

after the measurement. We infer that the final state is stabilized by

Sx
i = σx(f)

∏
p∈X : f(p)=1

mpσ
x
p = σxaiσ

x
bi

∏
p∈X : f(p)=1

mp.

Here the second equality follows from CSS1. Likewise, CSS2 implies that the stabilizer σz(f̄)
commutes with Pauli operators σxp on qubits p ∈ X, which are measured in the Hadamard basis.
Thus σz(f̄) and {mpσ

z
p | p ∈ Z} are stabilizers of the final state. We infer that the final state is

stabilized by

Sz
i = σz(f̄)

∏
p∈Z : f̄(p)=1

mpσ
z
p = σzaiσ

z
bi

∏
p∈Z : f̄(p)=1

mp.

Here the second equality follows from CSS2. This is only possible if the final state contains an
EPR-pair on the qubits {ai, bi}, up to a Pauli correction σxai and/or σzai . The correction can be
applied via LOCC if each party p ∈ XZ broadcasts their measurement outcome mp to all parties
a1, . . . , ak.

Thus it suffices to show that for any k ≥ 1 one can choose a sufficiently large n and a linear
code C ⊆ Fn

2 that satisfies k-pairability conditions CSS1 and CSS2 of Lemma 4. Below we will
choose C from the family of Reed-Muller codes [MS77] to achieve this.

3.2 Reed-Muller codes

First, let us record the definition and some basic properties of Reed-Muller codes. Let m ≥ 1 be an
integer. A Boolean function f : Fm

2 → F2 can be considered as a binary vector of length n = 2m

which lists the function values f(x) for all inputs x ∈ Fm
2 in some fixed (say, the lexicographic)

order. For example, if m = 2 and f(x) = 1 + x1x2 then we can consider f as a length-4 binary
vector

[f(00), f(10), f(01), f(11)] = [1, 1, 1, 0].

4Note that σx(f)|C⟩ = 1√
|C|

∑
g∈C σx(f)|g⟩ = 1√

|C|

∑
g∈C |f + g⟩ = 1√

|C|

∑
g′∈C |g′⟩ = |C⟩ for any f ∈ C. Here the

third equality uses the fact that C is a linear code, i.e., a subspace. Furthermore, σz(f̄)|C⟩ = |C⟩ since σz(f̄)|g⟩ =

(−1)f̄ ·g|g⟩ = |g⟩ for any f̄ ∈ C⊥ and g ∈ C.
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Reed-Muller code RM(r,m) has length n = 2m and its codewords are the n-bit vectors associated
with m-variate degree-r polynomials f : Fm

2 → F2. One can choose generators of RM(r,m) as a
set of monomials

∏
j∈S xj where S runs over all subsets of [m] of size at most r. The monomial

associated with the empty set S = ∅ is the constant-1 function. For example, RM(0,m) is the
repetition code of length n = 2m since there are only two degree-0 polynomials: f(x) ≡ 1 and
f(x) ≡ 0. We shall use the following facts.

Fact 3 (Code parameters). The Reed-Muller code RM(r,m) has dimension

D(r,m) =

r∑
p=0

(
m

p

)

and distance 2m−r.

Fact 4 (Dual code). Suppose 0 ≤ r < m. Then RM(r,m)⊥ = RM(m− r − 1,m).

Fact 5 (Affine invariance). Suppose A ∈ Fm×m
2 is an invertible matrix, and b ∈ Fm

2 is a vector.
If f : Fm

2 → F2 is a degree-r polynomial, then the function f ′(x) = f(Ax + b) is also a degree-r
polynomial. The map f → f ′ is a bijection of the set of all m-variate degree-r polynomials.

For the proof of Facts 3, 4, 5, see e.g. Chapter 13 of [MS77]. As a consequence of Fact 5, the
resource state |C⟩ with C = RM(r,m) is invariant under a permutation of the n = 2m qubits defined
as Wφ|f⟩ = |f ′⟩, where f ′(x) = f(φ(x)) for all x ∈ Fm

2 . Here φ : Fm
2 → Fm

2 is any invertible affine
map. In other words, Wφ|C⟩ = |C⟩. This generalizes the symmetry of the n-qubit GHZ-state which
is invariant under any permutation of the n qubits.

Recall that minimum-weight codewords of a linear code are non-zero codewords whose weight
equals the code distance.

Fact 6 (Codewords from affine subspaces). A vector f ∈ Fn
2 is a minimum-weight codeword

of RM(r,m) if and only if the support of f is an (m− r)-dimensional affine subspace of Fm
2 .

For the proof see, e.g., Proposition 2 and Corollary 4 in [AJ92]. We shall see that verification of
conditions CSS1 and CSS2 of Lemma 4 with C = RM(r,m) can be reduced to (multiple instances
of) the following problem.

Problem 1 (Polynomial regression). Find a degree-r polynomial f : Fm
2 → F2 that satisfies a

system of equations
f(xi) = gi for i = 1, . . . , s (3)

where x1, . . . , xs ∈ Fm
2 are distinct points and g1, . . . , gs ∈ {0, 1}.

Lemma 5. The polynomial regression problem has a solution f if at least one of the following
conditions is satisfied: (1) s < 2r+1, or (2) s = 2r+1 and

∑s
i=1 gi = 0.

Here the sum
∑s

i=1 gi is evaluated modulo two.

Proof. RM(r,m)⊥ = RM(m− r − 1,m) by Fact 4. The code RM(m− r − 1,m) has distance 2r+1,
see Fact 3, and thus every 2r+1 − 1 columns of its parity check matrix are linearly independent.
The parity check matrix M of RM(m− r − 1,m) is the generator matrix of its dual, RM(r,m), so

10



the above implies that if s < 2r+1, then the rank of the matrix MX formed by the columns of M
with indices from X = {x1, . . . , xs} is s, so FX

2 is in the span of the rows of MX .
If s = 2r+1, then the rank of MX is either 2r+1 or 2r+1 − 1. If 2r+1, we proceed as above. If

2r+1 − 1, the only linear combination of the columns of MX that gives the zero-vector, is the sum
of all columns of MX , and a vector (g1, . . . , gs) ∈ FX

2 can be generated from the rows of MX if and
only if

∑s
i=1 gi = 0 mod 2.

3.3 Resource state and LOCC protocol

Our candidate k-pairable state is a CSS stabilizer state |C⟩ with

C = RM(k − 1,m) (4)

and a suitable parameter m = m(k). To describe the subsets of qubits X,Z ⊆ Fm
2 satisfying

conditions CSS1 and CSS2 of Lemma 4, we need one extra piece of notation.

Definition 1. Suppose S ⊆ Fm
2 is a non-empty subset. An affine subspace spanned by S, denoted

Aff(S), is defined as

Aff(S) =

{∑
v∈T

v | T ⊆ S and |T | = 1 (mod 2)

}
. (5)

Thus Aff(S) contains all vectors that can be written as a sum of an odd number of vectors
from S. For example, Aff({a}) = {a}, Aff({a, b}) = {a, b}, and Aff({a, b, c}) = {a, b, c, a+ b+ c}.
Note that |Aff(S)| = 2d, where d ≤ |S| − 1 is the dimension of Aff(S).

Let n = 2m be the number of qubits. Suppose our goal is to generate k EPR-pairs on pairs of
qubits {a1, b1}, . . . , {ak, bk}. Define a subset of “EPR qubits”

E = {a1, b1, . . . , ak, bk}

and a family of k affine subspaces S1, . . . ,Sk ⊆ Fm
2 such that

Si = Aff({ai, bi, c1, c2, . . . , ck} \ {ci}) ⊆ Fm
2 (6)

where c1, . . . , ck ∈ Fm
2 are vectors that will be appropriately defined in Sections 3.4, 3.5, 3.6. The

c-vectors may depend on the a’s and b’s. The set of EPR qubits E is obviously contained in the
union of S1, . . . ,Sk. We choose the subsets of qubits X and Z in Lemma 4 as

X = Fm
2 \ (S1 ∪ . . . ∪ Sk) and Z = (S1 ∪ . . . ∪ Sk) \ E (7)

The subsets E,X,Z are pairwise disjoint and Fm
2 = EXZ. We illustrate the relationships between

these sets in Figure 3. In the GHZ-example one has k = 1 and S1 = {a1, b1}. In this case Z = ∅
and X = Fm

2 \ {a1, b1}, that is, the LOCC protocol requires only measurements in the Hadamard
basis. In the rest of this section we prove that the vectors c1, . . . , ck in Eq. (6) can always be chosen
such that the subsets X and Z satisfy conditions CSS1 and CSS2 of Lemma 4.
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X

<latexit sha1_base64="9ad5iLbbEpYqkPCt+/1dIGu5KEg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZqdfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ+6Lq1aqXzVqlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8fuFGM5A==</latexit>

Z

<latexit sha1_base64="UAeo+R0BkzuoZI5SL5eWLwPwkhI=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNRo9ELx4hkUeEDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJb3ZpygH9GB5CFn1Fip/tArltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdlr1K+rFdK1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+ALtZjOY=</latexit>

E

<latexit sha1_base64="Y7Mu/GT/xt2ceg0gXuTIkqGMyAI=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKRI9BETwmYB6QLGF20puMmZ1dZmaFEPIFXjwo4tVP8ubfOEn2oIkFDUVVN91dQSK4Nq777eTW1jc2t/LbhZ3dvf2D4uFRU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj25nfekKleSwfzDhBP6IDyUPOqLFS/a5XLLlldw6ySryMlCBDrVf86vZjlkYoDRNU647nJsafUGU4EzgtdFONCWUjOsCOpZJGqP3J/NApObNKn4SxsiUNmau/JyY00nocBbYzomaol72Z+J/XSU147U+4TFKDki0WhakgJiazr0mfK2RGjC2hTHF7K2FDqigzNpuCDcFbfnmVNC/KXqV8Wa+UqjdZHHk4gVM4Bw+uoAr3UIMGMEB4hld4cx6dF+fd+Vi05pxs5hj+wPn8AZuFjNE=</latexit>

S1 [ . . . [ Sk = EZ

<latexit sha1_base64="hUEHKfcOIagosygkmFx1VXr6VWc=">AAACFXicbVDLSgMxFM3UV62vUZdugkVwIWVGKroRiiK4rGgf2BmGTCbThmaSIckIZehPuPFX3LhQxK3gzr8xfSBaPXDh5Jx7yb0nTBlV2nE+rcLc/MLiUnG5tLK6tr5hb241lcgkJg0smJDtECnCKCcNTTUj7VQSlISMtML++chv3RGpqOA3epASP0FdTmOKkTZSYB/kHkYMXg8DF3o4SyH0WCS0mjy+zT48hRe3gV12Ks4Y8C9xp6QMpqgH9ocXCZwlhGvMkFId10m1nyOpKWZkWPIyRVKE+6hLOoZylBDl5+OrhnDPKBGMhTTFNRyrPydylCg1SELTmSDdU7PeSPzP62Q6PvFzytNME44nH8UZg1rAUUQwopJgzQaGICyp2RXiHpIIaxNkyYTgzp78lzQPK261cnRVLdfOpnEUwQ7YBfvABcegBi5BHTQABvfgETyDF+vBerJerbdJa8GazmyDX7DevwCgmp05</latexit>

Fm
2 = EZX

<latexit sha1_base64="Gt7pzEg335z+ZudS2ZBY60wtZrc=">AAAB/XicbVDLSgMxFM3UV62v8bFzEyyCqzJTKroRiqK4rGAf2I5DJk3b0CQzJBmhDsVfceNCEbf+hzv/xkw7C209EDiccy/35AQRo0o7zreVW1hcWl7JrxbW1jc2t+ztnYYKY4lJHYcslK0AKcKoIHVNNSOtSBLEA0aawfAi9ZsPRCoails9iojHUV/QHsVIG8m39zoc6UEQJFdjv3zP4Rm8vGv5dtEpORPAeeJmpAgy1Hz7q9MNccyJ0JghpdquE2kvQVJTzMi40IkViRAeoj5pGyoQJ8pLJunH8NAoXdgLpXlCw4n6eyNBXKkRD8xkmlXNeqn4n9eOde/US6iIYk0Enh7qxQzqEKZVwC6VBGs2MgRhSU1WiAdIIqxNYQVTgjv75XnSKJfcSun4plKsnmd15ME+OABHwAUnoAquQQ3UAQaP4Bm8gjfryXqx3q2P6WjOynZ2wR9Ynz8Q2ZRT</latexit>

Figure 3: Measurement pattern for the resource state |C⟩, where C = RM(k−1,m) and C⊥ = RM(m−k,m).
We consider n = 2m qubits. Each qubit is labeled by an m-bit string. Qubits are partitioned into three
disjoint subsets, EXZ, where E = {a1, b1, . . . , ak, bk} is the set of EPR qubits, Z is the set of qubits measured
in the standard basis {|0⟩, |1⟩} and X is the set of qubits measured in the Hadamard basis {|+⟩, |−⟩}. We
choose Z = (S1 ∪ . . . ∪ Sk) \ E, where the Si are k-dimensional affine subspaces of Fm

2 , see Eq. (6). These
subspaces are chosen such that Si∩E = {ai, bi} for all i. We choose X as the complement of EZ. A codeword
f̄ ∈ C⊥ satisfying condition CSS2 for some pair of EPR qubits {ai, bi} is chosen as the characteristic function
of the subspace Si, that is, f̄(x) = 1 if x ∈ Si and f̄(x) = 0 if x ∈ Fm

2 \ Si. A codeword f ∈ C satisfying
condition CSS1 is constructed using the polynomial regression, see Lemma 5.

3.4 2-pairability

We now need to show how to choose c1, . . . , ck. We begin with the simple case k = 2.

Lemma 6. Suppose k = 2 and m ≥ 4. Choose any vector c ∈ Fm
2 \ Aff(E) and let c1 = c2 = c.

Then the subsets X, Z defined in Eqs. (6,7) satisfy conditions CSS1 and CSS2 with C = RM(1,m).

Proof. Note that a vector c as above exists since |Aff(E)| ≤ 2|E|−1 = 8 and |Fm
2 | ≥ 16 for m ≥ 4.

Specializing Eq. (6) to the case k = 2 and c1 = c2 = c one gets

S1 = {a1, b1, c, a1 + b1 + c} and S2 = {a2, b2, c, a2 + b2 + c}. (8)

The assumption that c /∈ E implies that the Si are 2-dimensional affine subspaces, and in particular,
|Si| = 4 (i = 1, 2). We claim that

Si ∩ E = {ai, bi}. (9)

Indeed, by definition, ai, bi ∈ Si. Suppose a1 ∈ S2. Since all EPR qubits are distinct, the inclusion
a1 ∈ S2 is only possible if a1 = c or a1 = a2 + b2 + c. In both cases c ∈ Aff(E), which contradicts
the choice of c. Thus a1 /∈ S2. Applying the same arguments to a2, b1, b2 proves Eq. (9).

Let us first check condition CSS2 with i = 1 (the same argument applies to i = 2). Choose

f̄(x) =

{
1 if x ∈ S1

0 otherwise
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Since S1 is a 2-dimensional affine subspace, Fact 6 implies that f̄ ∈ C⊥. We have f̄(a1) = f̄(b1) = 1
since a1, b1 ∈ S1. From Eq. (9) one gets EX ∩ S1 = E ∩ S1 = {a1, b1}. Thus f̄(v) = 0 for all
v ∈ EX \ {a1, b1}, as claimed. This proves condition CSS2.

Let us check condition CSS1 with i = 1 (the same argument applies to i = 2). We can invoke
Lemma 5 (polynomial regression) with r = 1 and s = 4 to show that there exists a degree-1
polynomial f : Fm

2 → F2 such that

f(a1) = f(b1) = 1 and f(a2) = f(b2) = 0. (10)

We can use condition (2) of Lemma 5 since s = 2r+1 = 4. By definition, f is a codeword of
C = RM(1,m) and f(a1) = f(b1) = 1. We need to check that f(v) = 0 for all v ∈ EZ \ {a1, b1}.
By definition,

EZ \ {a1, b1} = (S1 ∪ S2) \ {a1, b1} = {a2, b2, c, a1 + b1 + c, a2 + b2 + c}.

We already know that f(a2) = f(b2) = 0 by Eq. (10). Since f is a degree-1 polynomial, one has

f(a1 + b1 + c) = f(a1) + f(b1) + f(c) = 1 + 1 + f(c) = f(c).

Likewise, f(a2 + b2 + c) = 1 + 1 + f(c) = f(c). If f(c) = 0, then we are done. Suppose f(c) = 1.
Since c ̸∈ Aff(E) there is an affine subspace S with co-dimension one, which contains Aff(E), but
c ̸∈ S. Let g be the linear function that is 0 on S and 1 on S. Let h = f+g. Then h on a1, b1, a2, b2
takes the same values as f , but h(c) = 0, and we apply the above argument for h instead of f .
This proves CSS1.

3.5 3-pairability

In the case k = 3 we choose m = 5 and C = RM(2, 5). The resource state |C⟩ requires n = 32
qubits. We checked conditions CSS1 and CSS2 of Lemma 4 numerically using exhaustive search
over all tuples of EPR qubits and all choices of vectors c1, c2, c3 in the definition of subsets X
and Z. It was observed that for any tuple {a1, b1, a2, b2, a3, b3} of EPR qubits, there exists at
least one choice of the c-vectors such that X and Z obey conditions CSS1 and CSS2. The search
space was pruned by exploiting the affine invariance of Reed-Muller codes, see Fact 5. Namely,
choose any invertible affine map φ : Fm

2 → Fm
2 such that φ(a1) = 0m and φ(b1) = 10m−1. Fact 5

implies that a permutation of the n = 2m qubits described by φ is an automorphism of C. Thus
this permutation of qubits leaves the resource state |C⟩ invariant and we can assume w.l.o.g. that
a1 = 0m and b1 = 10m−1. We also pruned the search over the c-vectors by imposing a constraint
c1 + c2 + c3 = 0 which is analogous to the constraint c1 = c2 used for k = 2. The remaining search
over a2, b2, a3, b3 took less than one hour on a laptop computer. Note that the affine invariance
of Reed-Muller codes also implies that |RM(2,m)⟩ is 3-pairable for all m ≥ 5 since we can always
apply an affine map φ as above such that φ(ai) and φ(bi) has nonzeros only on the first 5 bits.
We note that the choice of parameters r = 2, m = 5 is minimal for 3-pairability of resource states
|RM(r,m)⟩, as follows from a simple code distance argument.5

5k-pairability of the CSS resource state |C⟩ requires both codes C and C⊥ to have minimum distance at least 2k
since otherwise a stabilizer of |C⟩ may have support on a subset of the EPR qubits a1, b1, . . . , ak, bk and anti-commute
with some stabilizer of the target EPR-pairs. In particular, 3-pairability requires C and C⊥ to have distance at least 6.
Reed-Muller codes C = RM(r,m) do not have this property for r = 1 and m ≤ 4, see Facts 3, 5. Meanwhile, the code
RM(2, 5) is self-dual and has distance 8.
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3.6 k-pairability for an arbitrary k (and sufficiently large n)

In this section we prove that the resource state |RM(k − 1,m)⟩ is k-pairable for any k ≥ 2 and
m ≥ 3k (note that the number of parties can be any n = 2m ≥ 23k). First let us exploit the affine
invariance of Reed-Muller codes (Fact 5) to convert the set of EPR qubits a1, b1, . . . , ak, bk into a
certain standard form. Choose a linear invertible map φ : Fm

2 → Fm
2 such that φ(ai) and φ(bi)

have zeros on the first k bits for all i (recall that we label the n = 2m qubits by m-bit strings). This
is always possible for m ≥ 3k. Since the state |RM(k− 1,m)⟩ is invariant under the permutation of
the n = 2m qubit-labels associated with φ, we can replace ai, bi by φ(ai) and φ(bi). Accordingly,
from now on we assume that ai and bi have zeros on the first k bits. The linear map φ can be
computed in time O(m3) using Gaussian elimination. In addition, we can assume that

{a1, b1, . . . , ak, bk} ∩ {0m, a1 + b1, . . . , ak + bk} = ∅. (11)

Indeed, to see this, suppose h ∈ Fm
2 is a vector whose first k bits are zero, and none of the vectors

ai + h or bi + h belongs to the set {0m, a1 + b1, . . . , ak + bk}. Using the affine invariance of Reed-
Muller codes one can replace ai and bi by ai + h and bi + h. The new vectors ai, bi obey the extra
condition Eq. (11). The number of bad hs (hs we should not pick) is at most

|{a1, b1, . . . , ak, bk}| · |{0m, a1 + b1, . . . , ak + bk}| = 2k(k + 1)

(upper bounding the number of all possible differences between the two sets). The number of hs
we can pick from (all those vectors starting with k 0s) is at least 22k. Now 2k(k + 1) < 22k (which
holds for all k ≥ 2) gives the claimed property. Hence, from now on we assume Eq. (11).

We choose vectors c1, . . . , ck in Eq. (6) as the basis vectors of Fm
2 such that the j-th bit of cj

is 1 and all other bits of cj are 0,

cj = [0, . . . , 0︸ ︷︷ ︸
j−1

, 1, 0, . . . , 0︸ ︷︷ ︸
m−j

], j = 1, . . . , k. (12)

Thus the c-vectors are supported on the first k bits while all a- and b-vectors are supported only
on the last m − k bits. Next we use Eqs. (6,7) to define the subsets of qubits X,Z ⊆ Fm

2 to be
measured in the Hadamard (X) and in the standard (Z) basis, respectively. For convenience, we
restate the definitions of X, Z, and Si below.

X = Fm
2 \ (S1 ∪ . . . ∪ Sk) and Z = (S1 ∪ . . . ∪ Sk) \ E,

Si = Aff({ai, bi, c1, c2, . . . , ck} \ {ci}).
It remains to prove that X and Z satisfy conditions CSS1, CSS2 of Lemma 4 with

C = RM(k − 1,m) and C⊥ = RM(m− k,m).

Below we shall use the following property.

Proposition 7. The affine subspace Si is k-dimensional and obeys

Si ∩ E = {ai, bi}. (13)
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Proof. We have |Si| = 2k since all c-vectors are linearly independent and have zeros on the last
m− k bits, while ai, bi have zeros on the first k bits and ai ̸= bi. Thus Si is k-dimensional.

Let us check Eq. (13). By definition, Si contains both ai and bi. Suppose i ̸= j and aj ∈ Si.
Then aj is an odd linear combination of vectors {ai, bi, c1, c2, . . . , ck} \ {ci}. Recall that the last
m−k bits of all c-vectors are zero and the first k bits of all a- and b-vectors are zero. Thus aj must
be an odd linear combination of vectors ai and bi only. This is only possible if aj = ai or aj = bi.
However, we assumed that all EPR qubits a1, b1, . . . , ak, bk are distinct. Thus aj /∈ Si. The same
argument shows that bj /∈ Si.

First let us check condition CSS2 with i = 1 (the same argument works for any i). Choose a
function f̄ : Fm

2 → F2 as

f̄(x) =

{
1 if x ∈ S1

0 otherwise

Since S1 is a k-dimensional affine subspace, Fact 6 implies that f̄ ∈ C⊥. We have f̄(a1) = f̄(b1) = 1
since a1, b1 ∈ S1. From Eq. (13) one gets EX ∩ S1 = E ∩ S1 = {a1, b1}. Thus f̄(v) = 0 for all
v ∈ EX \ {a1, b1}, as claimed. This proves condition CSS2.

Checking condition CSS1 requires more technical work, and we strongly encourage the reader
to first study the proof of a quite general special case in Appendix A, which is much simpler.

As before, we can focus on the case i = 1 (the same argument works for any i). Then condition
CSS1 is equivalent to the existence of a degree-(k − 1) polynomial f : Fm

2 → F2 such that

f(a1) = f(b1) = 1 and f(x) = 0 for all x ∈ (S1 ∪ . . . ∪ Sk) \ {a1, b1}. (14)

Any degree-(k − 1) polynomial f : Fm
2 → F2 can be written as

f(x) =
∑
T⊊[k]

fT (x)
∏
j∈T

xj (15)

where fT : Fm
2 → F2 is some polynomial of degree k − 1− |T | that depends only on the variables

xk+1, . . . , xm. It remains to choose the polynomials fT with 0 ≤ |T | ≤ k−1. We shall use induction
on |T | starting with T = ∅. At each induction step we shall use polynomial regression (Lemma 5)
to argue that the desired polynomial fT exists (there is no need to construct fT explicitly). Given
∅ ≠ T ⊊ [k], define the following set of m-bit strings

e(T ) =

{
{ai, bi | i ∈ [k] \ T} if |T | is even,

{0m} ∪ {ai + bi | i ∈ [k] \ T} if |T | is odd. (16)

Proposition 8. Consider a function f(x) of the form Eq. (15), where the fT (x) are some functions
that depend only on the variables xk+1, . . . , xm. Then f(x) satisfies condition Eq. (14) iff:

f∅(a1) = f∅(b1) = 1, f∅(ai) = f∅(bi) = 0 for 2 ≤ i ≤ k, (17)

and for every ∅ ≠ T ⊊ [k] and every x ∈ e(T ):

∑
U⊆T

fU (x) = 0

equivalently, fT (x) =
∑
U⊊T

fU (x)

 (18)
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Proof. CSS1 requires that f takes given values on S = S1 ∪ . . . ∪ Sk, namely f(a1) = f(b1) = 1,
and f must be zero on the rest of S. When we plug these input values into Eq. (15), it is a
straightforward calculation to see that Eq. (17) exactly says that f(ai) = f(bi) = 1 if and only
if i = 1, and Eq. (18) exactly says that f(x) = 0 for all x ∈ S \ E. More precisely, Eq. (18) for
some ∅ ̸= T ⊊ [k] and x ∈ e(T ) expresses exactly f(y) = 0 for y = χT + x ∈ S, where χT is the
characteristic vector of T . Eq. (16) was engineered so that the above y ranges over all of S \E.

In the rest of the section we concentrate our efforts on finding a family {fT }T⊊[k] of polynomials
that satisfy Proposition 8. Below we focus on the case when k is even. The analysis for odd k
requires only a few minor modifications, as detailed in Appendix B.

For fixed k, ais and bis we recursively (in the increasing size of |T |) construct fT , and inductively
show that fT has the desired properties. To enable induction, we supplement Eqs. (17,18) with a
few extra conditions on the polynomials fT . Let ℓ ≥ 0 be an integer. We will say that a family of
polynomials fT : Fm

2 → F2 labeled by subsets T ⊊ [k] with |T | ≤ ℓ is valid if all conditions stated
below are satisfied for |T | ≤ ℓ:

I1: fT depends only on the variables xk+1, . . . , xm

I2: fT has degree k − 1− |T |

I3: f∅(a1) = f∅(b1) = 1 and f∅(ai) = f∅(bi) = 0 for 2 ≤ i ≤ k

I4: fT (x) =
∑

U⊊T fU (x) for every non-empty set T ⊊ [k] and every x ∈ e(T )

I5: fT ≡ 0 if |T | is odd and |T | ≤ k − 3

I6: fT (0
m) = fT (ai + bi) = 0 if i /∈ T and |T | ≤ k − 4

I7: fT (ai) = fT (bi) if i /∈ T and |T | ≤ k − 2

Here (I1,I3,I4) are the conditions stated in Proposition 8 and (I2) ensures that a polynomial f(x)
constructed from the family {fT }T⊊[k] according to Eq. (15) has degree k − 1. Thus (I1,I2,I3,I4)
alone imply CSS1. We shall use induction on ℓ to prove that a valid family of polynomials exists
for all ℓ ≤ k − 1. The extra conditions (I5,I6,I7) facilitate analysis of the induction step.

The base case of the induction is ℓ = 0. Then a valid family is a single polynomial f∅. Condition
(I2) demands that f∅ has degree dT = k − 1. Conditions (I4) and (I5) can be skipped for T = ∅.
Condition (I7) follows trivially from (I3). It remains to check (I3,I6) Note that conditions (I3)
and (I6) with T = ∅ are imposed at disjoint set of points, see Eq. (11). Thus (I3) and (I6) are
consistent. We fix the value of f∅ at s = 2k points in (I3) if k ≤ 3, and at s = 3k + 1 points in
(I3,I6) if k ≥ 4. We can show that the desired polynomial f∅ exists using Lemma 5. Below we
always apply the lemma to polynomials satisfying condition (I1). This is justified since the first k
bits of all vectors ai and bi are zero. If k ≤ 3 then we have s = 2k ≤ 2dT+1 = 2k. Thus we can use
part (2) of Lemma 5. The extra condition

∑s
i=1 gi = 0 of the lemma is satisfied since (I3) fixes the

value of f∅ to 1 at an even number of points. If k ≥ 4 then we have s = 3k + 1 < 2dT+1 = 2k and
thus we can use part (1) of Lemma 5.

We shall now prove the induction step. Suppose we have already constructed a valid family of
polynomials fT with |T | ≤ ℓ− 1. Consider a subset T ⊊ [k] with |T | = ℓ such that 1 ≤ ℓ ≤ k − 2.
The case ℓ = k − 1 will be considered afterwards.
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Suppose |T | is odd. Since k is even and ℓ ≤ k − 2, this is only possible if |T | ≤ k − 3. We set
fT ≡ 0 to satisfy (I5). Then conditions (I2), (I6), (I7) are satisfied automatically. Condition (I3)
can be skipped since T ̸= ∅. Condition (I4) with fT ≡ 0 demands that

∑
U⊊T fU (x) = 0 for any

x ∈ e(T ). Since |T | is odd, e(T ) is the set of points 0m and ai + bi with i /∈ T . Each term fU (x)
with odd |U | vanishes due to (I5). Each term fU (x) with even |U | vanishes for x ∈ e(T ) due to (I6)
since |U | ≤ |T | − 1 ≤ k − 4. Thus choosing fT ≡ 0 satisfies (I4).

Suppose |T | is even. Condition (I2) demands that fT has degree dT = k − 1− |T |. Conditions
(I3), (I5) can be skipped since |T | is even and T ̸= ∅. We claim that (I7) follows from (I4). Indeed,
we have x ∈ e(T ) iff x = ai or x = bi with i /∈ T . We have fT (x) =

∑
U⊊T fU (x) due to (I4). If |U | is

odd then fU ≡ 0 due to (I5) since |U | ≤ |T |−1 = ℓ−1 ≤ k−3. If |U | is even then |U | ≤ |T |−2 ≤ k−4.
Thus fU (ai) = fU (bi) since (I7) holds for fU . This implies fT (ai) = fT (bi) for any i /∈ T , as claimed
in (I7). It remains to check (I4,I6). We fix the value of fT at s = |e(T )| = 2(k− |T |) points in (I4)
if |T | ≥ k− 3. We fix the value of fT at s = |e(T )|+ k− |T |+1 = 3(k− |T |) + 1 points in (I4,I6) if
|T | ≤ k − 4. Consider first the case |T | ≥ k − 3. Then |T | = k − 2 since k and |T | are even. Thus
s = 2(k − |T |) = 4 and 2dT+1 = 2k−|T | = 4. We can use part (2) of Lemma 5 to construct fT . The
extra condition

∑s
i=1 gi = 0 of the lemma is equivalent to∑

x∈e(T )

∑
U⊊T

fU (x) = 0. (19)

Each term fU (x) with odd |U | vanishes due to (I5) since |U | ≤ |T |−1 = k−3. Each term fU (x) with
even |U | obeys fU (ai) = fU (bi) for i /∈ T since fU obeys (I7). Thus we have

∑
x∈e(T ) fU (x) = 0 for

any U ⊊ T which implies Eq. (19). Thus the desired polynomial fT exists by part (2) of Lemma 5,
that is, we have checked (I4) in the case |T | ≥ k−3. Condition (I6) can be skipped in this case. In the
remaining case, |T | ≤ k−4, we can use part (1) of Lemma 5 since s = 3(k−|T |)+1 < 2dT+1 = 2k−|T |

for |T | ≤ k − 4. Thus conditions (I4,I6) are satisfied.
It remains to prove the induction step for ℓ = k − 1. Suppose we have already constructed a

valid family of polynomials fT with |T | ≤ k− 2. Consider a subset T ⊊ [k] with |T | = k− 1. Since
we assumed that k is even, |T | is odd. Condition (I2) demands that fT has degree k− 1− |T | = 0,
that is, fT is a constant function. We can skip conditions (I3,I5,I6,I7) since none of them applies
if |T | = k − 1. It remains to check (I4). Note that e(T ) = {0m, ai + bi} for some i ∈ [k] such that
T = [k] \ {i}. Condition (I4) fixes the value of fT (x) at x = 0m and at x = ai + bi. Since we want
fT to be a constant function, it suffices to check that the desired values fT (0

m) and fT (ai + bi) are
the same. Substituting the desired values from (I4), we have to check that∑

U⊊T

fU (0
m) + fU (ai + bi) = 0. (20)

The sum contains terms with |U | ≤ |T |−1 = k−2. All terms fU with odd |U | must have |U | ≤ k−3
since k is even. Such terms vanish due to (I5). All terms fU with even |U | ≤ k − 4 vanish due to
(I6). Thus we can restrict the sum Eq. (20) to terms with |U | = k − 2. However, fU is a degree-1
polynomial if |U | = k− 2 due to (I2). Thus fU (0

m) + fU (ai + bi) = fU (ai) + fU (bi) and Eq. (20) is
equivalent to ∑

U⊊T
|U |=k−2

fU (ai) + fU (bi) = 0. (21)

Since fU obeys (I7), we have fU (ai) = fU (bi), which implies Eq. (21). We have now verified (I4).
This completes the proof of the induction step.
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Accordingly, having shown that both conditions CSS1 and CSS1 of Lemma 4 are satisfied, we
can now conclude that the resource state |RM(k − 1,m)⟩ is k-pairable.

3.7 10-qubit 2-pairable example

The 2-pairable state of Section 3.4 used n = 16 qubits. Extending 2-pairability to states with
fewer qubits would be good. Here we give a 10-qubit example and describe Pauli measurements
generating k = 2 EPR-pairs for all choices of such pairs (modulo certain symmetries).

We choose the resource state |ψ⟩ as the graph state associated with the 10-vertex “wheel graph”
shown in Figure 4:

|ψ⟩ =
∏

(i,j)∈E

CZi,j |+⟩⊗10. (22)

Here E is the set of graph edges and CZ is the controlled-Z gate.

Figure 4: 10-vertex “wheel graph”. The corresponding 10-qubit graph state is 2-pairable with one qubit per
party (to avoid confusion: the center of the picture is not an 11th vertex).

The number of ways to choose two EPR-pairs {a1, b1} and {a2, b2} is 3
(
n
4

)
= 630 for n = 10

qubits. However, the number of cases we need to consider can be reduced by noting that the graph
state |ψ⟩ is invariant under certain permutations of qubits and local Clifford operations. Indeed, if
Wφ is a permutation of n qubits (considered as a unitary operator) and C is a product of single-qubit
Clifford gates such that Wφ|ψ⟩ = C|ψ⟩, then an LOCC protocol generating EPR-pairs {a1, b1} and
{a2, b2} can be easily converted into one generating EPR-pairs {φ(a1), φ(b1)} and {φ(a2), φ(b2)}.
This conversion requires only relabeling of qubits and local basis changes.

Suppose qubits are labeled by elements of the cyclic group Z10 = {0, 1, . . . , 9}. Clearly, |ψ⟩ is
invariant under the cyclic shift of qubits, j → j + 1 and inversion j → −j. Here and below qubit
indexes are computed modulo 10. Consider a permutation φ : Z10 → Z10 such that φ(j) = 3j. Let
Wφ be the 10-qubit unitary that implements the permutation φ. We claim that

Wφ|ψ⟩ = H⊗10|ψ⟩, (23)

where H is the Hadamard gate. Indeed, it is known [RBB03] that the graph state |ψ⟩ has stabilizers

Sj = σxj
∏

i : (i,j)∈E

σzi = σxj σ
z
j−1σ

z
j+1σ

z
j+5, j ∈ Z10.

Thus |ψ⟩ is also stabilized by

S′
j := Sj−3Sj+3Sj+5 = σzjσ

x
j−3σ

x
j+3σ

x
j+5.

It follows that H⊗10|ψ⟩ is stabilized by

S′′
j := H⊗10S′

jH
⊗10 = σxj σ

z
j−3σ

z
j+3σ

z
j+5 =WφSiW

†
φ,
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where i = φ−1(j). Thus W †
φH⊗10|ψ⟩ is stabilized by Si for all i ∈ Z10, which implies Eq. (23).

Since |ψ⟩ is also invariant under the cyclic shift of qubits, we can assume w.l.o.g. that a1 = 0.
The permutation φ maps 0 to 0 while any qubit b1 ∈ Z10 \ {0} can be mapped to either 1, or 2, or
5 by repeated applications of φ. Thus we can assume w.l.o.g. that a1 = 0 and b1 ∈ {1, 2, 5}.

For each of the remaining choices of EPR-pairs we numerically examined all 36 Pauli mea-
surement bases on qubits Z10 \ {a1, b1, a2, b2} and computed the final post-measurement state of
qubits a1, b1, a2, b2 using the standard stabilizer formalism. To test whether the final state is locally
equivalent to the desired EPR-pairs, we checked whether the entanglement entropies of the final
state obey S(ai) = S(bi) = 1 and S(aibi) = 0 for i = 1, 2. The entanglement entropy of a stabilizer
state can be extracted from its tableaux as described in [FCY+04]. Any two-qubit stabilizer state
of qubits ai, bi satisfying S(ai) = S(bi) = 1 and S(aibi) = 0 has to be maximally entangled and thus
equivalent to the EPR-pair modulo single-qubit Clifford gates. We found a Pauli basis generating
maximally-entangled states on qubits {a1, b1} and {a2, b2} in all considered cases, see Figure 5. We
also observed that the graph state |ψ⟩ is not 2-pairable if the Pauli bases are restricted to σx and
σz only.

1122ZZXXZZ
112X2ZXXZZ
112ZX2XXZX
112ZZZ2XZZ
112XYZY2YZ
112ZXXYY2Y
112ZXXXXZ2
11Z22ZZZZZ
11Z2Y2ZZYY
11X2ZZ2XZZ
11Z2ZZZ2XZ
11Z2ZZZZ2Z
11X2YYYXZ2
11XY22YXZY

11XX2Z2XZZ
11ZX2ZZ2XZ
11ZX2ZZZ2Z
11ZY2YZZY2
11XZX22XZX
11ZZX2Z2XX
11ZZX2ZZ2X
11ZZX2ZZZ2
11XXZY22YY
11XYYX2Y2X
11XZXX2XZ2
11ZZZZZ22Z
11ZZXXZ2X2
11ZZXXZZ22

1212ZZYYXY
121X2ZXXXX
121ZY2YXYY
121ZYY2YYY
121XZZX2XX
121ZZYYY2Y
121ZZYYXY2
1X122ZZXXZ
1Z12Z2YYYY
1Z12ZY2XYY
1X12ZZZ2XZ
1Z12YYYX2Y
1Z12YYYYY2
1Z1X22YYYX

1Z1X2Z2XXX
1Z1X2ZZ2XX
1Z1Y2XXY2Y
1Z1Y2XYYY2
1Z1XX22ZZX
1Z1YZ2X2YY
1Z1XX2ZZ2X
1X1ZX2ZZZ2
1Z1XZZ22XX
1Z1XXX2Z2X
1Z1YYX2YZ2
1Z1XYYY22X
1Z1YYYY2Z2
1X1ZXXZZ22

122ZY1YZZY
12Z2Y1XYYY
12XX21XXXX
12XXX12XXX
12ZYX1Y2YY
12ZYX1XY2Y
12ZYY1YYY2
1Z22Z1ZZZZ
1Z2X21XXZZ
1Z2XX12XZZ
1Z2ZZ1Z2ZZ
1Z2ZZ1ZX2Z
1X2YX1XYY2
1XX221YYXY

1ZZ2Y12YYZ
1ZZ2Z1Z2XZ
1ZZ2Z1ZZ2Z
1XX2Z1ZZX2
1ZZX212XXZ
1ZZY21Y2YZ
1ZZX21XX2Z
1XXX21XXX2
1XXYY122XY
1ZZXX12X2Z
1XXXX12XX2
1ZZZZ1Z22Z
1XXZZ1Z2X2
1XYZY1YZ22

Figure 5: Measurement patterns for the 10-qubit 2-pairable resource state associated with the “wheel graph”.
Here ’1’ and ’2’ stand for the EPR qubits {a1, b1} and {a2, b2} respectively. A qubit labeled by ’X’, ’Y’,
or ’Z’ is measured in the Pauli basis σx, σy, and σz respectively. Here we only consider the case a1 = 0
and b1 ∈ {1, 2, 5}. All other cases can be obtained by a permutation of qubits that leaves the resource state
invariant (modulo a bitwise Hadamard).

We verified numerically that no stabilizer state with n < 10 qubits is 2-pairable using LOCC
protocols based on Pauli measurements, by checking all possible 9-qubit graph states as listed
in [AMSDS20]. The code is available at https://github.com/yashsharma25/generating-k-epr-pairs

4 Obstructions for complete pairings (k = n/2)

Now we turn from constructions to proving limitations on all possible k-pairable resource states.
Let n be the number of parties as in the previous sections. Since we are talking about complete
pairings in this section, we assume here that n is divisible by 2. For a pairing

π = {{a1, b1}, . . . , {an/2, bn/2}} with ∪ π = [n]
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the tensor product |π⟩ of the n/2 EPR-pairs,

|π⟩ =
n/2⊗
i=1

|+⟩ai,bi

is a state on n qubits, where by definition |+⟩a,b = 1√
2
(|0a0b⟩+ |1a1b⟩).

For our first type of lower bounds we assume that the n parties want to achieve all possible
complete pairings on [n]. Then we find a super-constant lower bound on the required number m of
qubits per party:

Theorem 9. Suppose |ψ⟩ is a fixed state of nm qubits shared by n parties such that each party
holds m qubits of |ψ⟩. Suppose that for any pairing π of n qubits a transformation |ψ⟩ → |π⟩⊗ |wπ⟩
is realizable by an LOCC protocol such that at the end of the protocol the i-th qubit of |π⟩ belongs
to the i-th party for all i, and |wπ⟩ is an arbitrary state on the qubits not belonging to |π⟩.6 Then

m = Ω(log log n).

The proof of this theorem is going to be a dimension calculation, but with a twist. Given a
starting state |ψ⟩ we estimate the dimension of the space that contains all those states that can be
obtained (with positive probability) from |ψ⟩ by an LOCC protocol. We want to compare this with
the dimension of the space induced by all possible states that should arise as output, where we let
the input range over all possible pairings. This by itself, however, will not yield the desired lower
bound. The mathematical idea is that rather than representing each state by itself, we represent
it by its rth tensor power, where r will be carefully set in the magnitude of Θ(log n). Let

Lr = span( |π⟩⊗r | π is an n-qubit pairing )

be the linear space induced by the rth tensor powers of all possible output states. Before stating a
lower bound on dim(Lr) we prove a lemma:

Lemma 10. Let π and ρ be two pairings. Then ⟨π|ρ⟩ = 2µ−n/2, where µ is the number of cycles
in π ∪ ρ, as a graph on vertex set [n].

Proof. Note that the graph π ∪ ρ (the union of the two perfect matchings π and ρ on the same
vertex set [n]) is a collection of cycles. We have

⟨π|ρ⟩ =
∑
x∈Λ

1

2n/2

where Λ ⊆ {0, 1}n is the set of binary strings, corresponding to the vertex labeling λ of the graph
π ∪ ρ such that for every {ai, bi} ∈ π we have λ(ai) = λ(bi), and for every {a′i, b′i} ∈ ρ we have
λ(a′i) = λ(b′i). In other words, the labeling λ must be constant on each connected component of
π ∪ ρ. Therefore,

|Λ| = 2# of connected components of π ∪ ρ = 2# of cycles in π ∪ ρ.

6Without loss of generality we may assume |wπ⟩ = |0n(m−1)⟩.
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Lemma 11. There exist constants C,C ′ > 0 such that dim(LC′+log2 n) ≥ nn/4 · 2−Cn

Proof. Let A = [n/2], B = [n/2 + 1, n]. Let

V = {π | π is an n-qubit pairing with ai ∈ A, bi ∈ B for 1 ≤ i ≤ n/2 }

We define an undirected graph G on V by

V (G) = V

E(G) = {(π, ρ) ∈ V 2 | π ̸= ρ and π ∪ ρ consists of at least n/4 cycles}

Let us view each π ∈ V as a 1-1 map from A to B. Then (π, ρ) ∈ E(G) if and only if πρ−1 is
a permutation on A with at least n/4 cycles. If we fix π, then as ρ varies, πρ−1 runs through
all permutations of A = [n/2]. Thus, every vertex of G has degree D, where D is the number of
permutations of [n/2] having at least n/4 cycles. Let c(n, ℓ) be the unsigned Stirling numbers of
the first kind. It is known that c(n, ℓ) is exactly the number of permutations of n elements with ℓ
disjoint cycles. Thus

D =

n/4∑
ℓ=0

c(n/2, n/4 + ℓ)

It is also known that
c(n, n− ℓ) =

∑
0≤i1<i2<···<iℓ<n

i1i2 · · · iℓ

The right-hand side above is at most(
n

ℓ

)
· (n− ℓ) · · · (n− 1) ≤ 2n

(n− ℓ− 1)!
(n− 1)!

Therefore:

D =

n/4∑
ℓ=0

c(n/2, n/4 + ℓ) ≤ (n/2)! · 2

n

n/4∑
ℓ=0

2n/2

(n/4 + ℓ− 1)!
≤ (n/2)!

2n/2

(n/4− 1)!
− 1.

Then,
|V |
D + 1

=
(n/2)!

D + 1
≥ (n/4− 1)!

2n/2
,

implying the existence of an independent set in G of size at least (n/4− 1)!/2n/2 by a well-known
greedy argument: pick a vertex to add to the independent set, remove it and its ≤ D neighbors,
and continue with the remaining graph. Using Stirling’s formula to estimate the factorials, there is
a C (≈ 1+ 1

4 log2 e, when n→ ∞) such that (n/4−1)!/2n/2 ≥ nn/4 ·2−Cn. Let I be an independent

set in G of size nn/4 ·2−Cn (we ignore rounding to an integer for simplicity). Define the linear space

LI,r = span( |π⟩⊗r | π ∈ I ).

From now on we set r = C ′ + log2 n, where C
′ = 1+ 4C (≈ 5 + log2 e, when n→ ∞). It is enough

to show that we have dim(LI,r) = |I| (= nn/4 · 2−C), since LI,r ≤ Lr. Let us define the |I| × |I|
Gram matrix G of the {|π⟩⊗r}π∈I system:

Gπ,ρ = ⟨π|ρ⟩r π, ρ ∈ I
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For dim(LI,r) = |I| it is sufficient to show that G has full rank.
Gershgorin’s circle theorem implies, for any (complex) square matrix A: if Ri =

∑
j: j ̸=i |Ai,j | <

|Ai,i| for all indices i, then A has full rank.
In order to apply this theorem, we compute for the π-row of our matrix G:

∑
ρ∈I:ρ ̸=π

|Gπ,ρ| ≤
∑

ρ∈I:ρ̸=π

2−nr/4 ≤ 2−nr/4|I| = 2

−n(1+4C+log2 n︸ ︷︷ ︸
r

)/4

· nn/4 · 2−Cn︸ ︷︷ ︸
size of I

< 1

where we used Lemma 10. Since in addition, Gπ,π = 1 for all π ∈ I, Gershgorin’s circle theorem
implies that our matrix G has full rank. Hence dim(LI,r) = |I| = nn/4 · 2−Cn.

Lemma 11 says that for any fixed state |ψ⟩, the possible outputs (over all input pairings π), when
taking their rth tensor power with r = Θ(1) + log n, should span a space of dimension ≥ nΘ(logn).

This number we have to compare with the dimension of the span of rth tensor powers of possible
states that can be produced by an LOCC protocol from |ψ⟩. Although LOCC protocols may use
unlimited classical communication, they cannot create new entanglement, so all entanglement in
their final state is a local linear transformation of the entanglement that already existed in the
starting state |ψ⟩.

When each party only possesses m qubits, where m is very small, the variety of states that an
LOCC protocol can produce from |ψ⟩ is limited in the way we describe below.

To capture this limitation, notice that any LOCC protocol can be described by a completely
positive trace-preserving (CPTP) map, with separable Kraus operators. It follows that for any
pairing π there exists a product Kraus operator

Kπ = Kπ
1 ⊗Kπ

2 ⊗ · · · ⊗Kπ
n (24)

such that Kπ
i maps m qubits to one qubit for all 1 ≤ i ≤ n and for all pairings π:

Kπ|ψ⟩ = cπ|π⟩ for some cπ ̸= 0 (25)

Define:
Mr = span( (K|ψ⟩)⊗r | K = K1 ⊗K2 ⊗ · · · ⊗Kn)

where the Ki are arbitrary operators mapping m qubits to one qubit (Ki may depend on i), and
|ψ⟩ is our fixed starting state. From Equations (25) and (24) we get the subspace inclusion

Lr ≤ Mr

and hence, using Lemma 11, for some C,C ′ > 0 we have dim(MC′+log2 n) ≥ nn/4 · 2−C . However,
when m = o(log log n) this cannot be the case because of the following upper bound:

Lemma 12. dim (Mr) ≤
(
2m+1 + r − 1

2m+1 − 1

)n

.

Proof. Linear operators Ki that map m qubits to one qubit can be considered as vectors in a
complex space of dimension D = 2m+1 (use the vectorized form of operators). Crucially, the r-fold

tensor products K⊗r
i live in the symmetric subspace of

(
CD

)⊗r
, which has dimension(

D + r − 1

D − 1

)
(26)
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(this is where the big saving occurs: without the information that the vector is in the symmetric
subspace, we would have to calculate with Dr instead of the above expression, and would get only
a trivial bound). It follows that operators of the form K⊗r = K⊗r

1 ⊗ · · · ⊗K⊗r
n span a linear space

of operators with dimension at most (
D + r − 1

D − 1

)n

(27)

Thus states of the form (K|ψ⟩)⊗r = K⊗r|ψ⟩⊗r with a fixed |ψ⟩ span a linear space with dimension
upper bounded by Equation (27). SubstitutingD = 2m+1, one gets the statement of the lemma.

It is now an easy calculation to show that with r = Θ(log n), the above lemma together with
Lemma 11 gives

2m = Ω

(
log n

log r

)
.

This implies m = Ω(log log n) and concludes the proof of Theorem 9.

5 Obstructions for partial pairings

In this section we generalize the result of the previous section to partial pairings and show:

Theorem 13. Let n be an integer, k ≤ n/2, and |ψ⟩ be a k-pairable state for n parties where each
party has m qubits. Then

k = O

(
n2m

log log n

log n

)
Proof. For technical reasons we assume that n is divisible by 4. In the proof we also assume
that k ≥ n/ log n, since otherwise there is nothing to prove: the expression in parentheses on the
right-hand side is always larger than n/ log n. A k-pairing of [n] is

π = {{a1, b1}, . . . , {ak, bk}} with ∪ π ⊆ [n], | ∪ π| = 2k

We denote the set of k-partial pairings on [n] with Πn,k. As in the previous section, we assume that
each party has m qubits, and one of these m is designated as the output qubit, which will hold a
qubit of an EPR-pair at the end of the protocol whenever π involves the party in question. The
goal is to be able to produce

|π⟩ = |0n−2k⟩ ⊗
k⊗

i=1

|+⟩ai,bi

from some fixed initial nm-qubit resource state |ψ⟩, for all π ∈ Πn,k. We note that in the above
tensor product the listing order of the qubits depends on π, and we list only the n qubits designated
to be output bits. (We list even those designated output qubits of parties that are not covered
by the current partial matching π, since they will participate in the output for other πs.) For the
remaining n(m− 1) qubits, we assume w.l.o.g. that they end up in the |0⟩-state, and hence are not
entangled with the rest. To achieve this the parties can set these qubits to |0⟩ by a local operation.

The proof is a slight variation of our proof for the complete-pairing case. There dim (Mr) was
calculated, and similarly to the previous section this dimension upper bounds the dimension of

Lk,r = span
(
|π⟩⊗r | π ∈ Πn,k

)
.

The calculation is very similar to the case of complete pairings:
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1. We will find nΘ(k) different πs such that their rth tensor powers, where r = Θ(log n), are
linearly independent. (In the complete pairing case it was nΘ(n) different πs.)

2. Setting r = Θ(log n) is still the only reasonable choice. Further, the approach breaks down
at m > log logn, so we will be satisfied with investigating m ≤ log log n. With the above
parameters for r and m we have 2m+1 + r − 1 = Θ(r), hence via Lemma 12 we have:

dim (Mr) ≤
(
Θ(r)

2m

)n

≤ rΘ(2mn).

3. Similarly to our argument in the previous section, the dimension of Lk,r must lower bound
the dimension of MC logn, which is rΘ(2mn) = 2Θ(n2m log logn).

4. Combining 1 and 3, we get Θ(k log n) ≤ Θ(n · 2m log log n), which implies Theorem 13.

Points 2-4 require no explanation as they just reiterate ideas of the previous section. However, we
need to prove Point 1.

First we prove the analogue of Lemma 10 for partial pairings.

Lemma 14. Let π and ρ be two partial pairings with k pairs. Then

⟨π|ρ⟩ = 2µ−k

where µ is the number of cycles in π ∪ ρ, as a graph on vertex set [n].

Proof. We have:

⟨π|ρ⟩ =
∑
x∈Λ

1

2k

where Λ ⊆ {0, 1}n is the set of binary strings, corresponding to the vertex labeling, λ, of the graph
π ∪ ρ such that for every {ai, bi} ∈ π we have λ(ai) = λ(bi), and for every {a′i, b′i} ∈ ρ we have
λ(a′i) = λ(b′i) and furthermore every element of vertex set [n] that is not covered by both a π-edge
and a ρ-edge (that is, elements not in (∪π)∩ (∪ρ)) must get label 0.7 Thus, only the cycles in π∪ρ
can be labeled two ways, and no more than two ways, since the edges of π and ρ force the condition
that all labels over the cycle must be either 0 or 1. (Paths cannot be labeled two ways as the label
at their endpoint is fixed to 0.) This calculation of |Λ| gives the formula.

We let A = [n/2], B = [n/2 + 1, n] and define

V = {π ∈ Πn,k | π is an n-qubit partial pairing with ai ∈ A, bi ∈ B for 1 ≤ i ≤ k }

Then |V | =
(n/2

k

)
(n/2)!/(n/2− k)!. We need a lower bound on |V |. Using the well-known bounds(

n/2

k

)
≥

( n
2k

)k
and k! ≥ e−kkk

7The formula for ⟨π|ρ⟩ comes from computing the inner product in the most straightforward way: we notice that
both |π⟩ and |ρ⟩ have only two kinds of entries: 0 and 1/

√
2k. Then we just identify those entries where both |π⟩ and

|ρ⟩ are non-zero and compute the number of such entries.
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one gets

|V | =
(
n/2

k

)2

k! ≥
( n
2k

)2k
e−kkk =

n2k

kk(4e)k
≥ n2k

(n/2)k(4e)k
= nk(2e)−k,

where the second inequality follows from k ≤ n/2. We again create a graph with:

V (G) = V

E(G) = {(π, ρ) ∈ V 2 | π ̸= ρ and π ∪ ρ has at least k/2 cycles}

Note that G is again regular as in the previous section, since it is vertex-symmetric. Like before,
we want to lower bound |V |/(D+1) where D is the degree of a π ∈ V , which is then a lower bound
on the size of a maximal independent set in G. In fact, for an arbitrary fixed π ∈ V we have:

D + 1 = |{ρ ∈ V | π ∪ ρ has at least k/2 cycles}|

To upper bound the size of D, w.l.o.g. let π = {{1, 1 + n/2}, . . . , {k, k + n/2}}: we match the
first k vertices in the first half with the first k vertices in the second half. We can upper bound the
number of neighbors of π by enumerating them, each possibly multiple times. To define a somewhat
elaborate enumeration, first notice that the nodes of any cycle in π ∪ ρ must be fully contained in
the vertex set ∪π = [1, k] ∪ [1 + n/2, k + n/2]. Assume ρ is a neighbor of π such that π ∪ ρ has
µ cycles. Pick an (arbitrary) point in every cycle, such that the selected points belong to A. Let
these points be 1 ≤ p1 < · · · < pµ ≤ k, and let

P = {pi}1≤i≤µ

Let 2Li be the length of the cycle that goes through pi (all cycles have even length, because the
edges alternate between π and ρ), and denote:

Kν =
ν∑

i=1

Li 1 ≤ ν ≤ µ

K = {Kν}1≤ν≤µ

Since Kµ ≤ k, we have K ⊆ [k]. Finally, let us define

R = {a ∈ A | a is an A-endpoint of some edge in ρ}

The triplet (P,K,R) with one piece of additional information, which will be defined next, will
determine ρ. The number of (P,K,R) triplets is 2O(n), since all three of P,K,R can be given as
subsets of sets of size at most n (e.g., K is a subset of [n] due to Kµ ≤ n).

Let us now understand the magnitude of the additional information8 that together with (P,K,R)
determines ρ. It will turn out that this information is ck log n bits, where very crucially, c is less

8We could have chosen information-theoretic terminology for our explanation, where we relate the |V |/(D + 1)
ratio to the mutual information between ρ and π. We have opted for an equivalent counting explanation, but the
reader has to bear in mind, that our underlying intuition is that every cycle that ρ and π jointly create, increases
their mutual information by Ω(logn) bits (essentially, the edge of ρ that “closes the cycle” is cheap to communicate,
given π). The ratio |V |/(D + 1) is simply the exponential of this mutual information.
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than 1 (in fact, c will be essentially 1/2). This implies an upper bound on D + 1, which in turn
implies the following lower bound on the size of the largest independent set in G:

|V |
D + 1

≥ nk(2e)−k︸ ︷︷ ︸
lower bound on |V|

· 2−O(n)︸ ︷︷ ︸
due to (P ,K ,R)

· 2−ck logn︸ ︷︷ ︸
due to additional information

= n(1−c)k(2e)−k2−O(n). (28)

Additional data that with (P,K,R) uniquely determines ρ, given that ρ is π’s neighbor in G:

We shall define an order e1, . . . , ek of edges of ρ. We will denote the B-endpoint of ei by qi.

Before telling the order, note that the cycles in π ∪ ρ already have a natural order, modulo the
(P,K,R) information, namely the ith cycle is the cycle that contains pi. To “extend” this order to
the edges we introduce:

1. Among all edges of ρ those edges come earlier that are edges of some π ∪ ρ cycle.

2. If two edges both participate in a π∪ρ cycle, but these two cycles are different, then the edge
comes first that belongs to an earlier cycle.

We need to tell how to order edges within the same cycle. Also, we need to tell how to order
edges that do not belong to any cycle.

Ordering of edges of ρ that belong to a given cycle.
If the cycle is the ith cycle, we simply walk through the the cycle and order the ρ-edges as we
encounter them. The walk-through starts from pi with a ρ-edge (which determines that in which
orientation we follow the cycle). For instance, consider the first cycle. For this example notice that
if eℓ is a cycle-edge in π ∪ ρ, then {qℓ − n/2, qℓ} ∈ π belongs to the same cycle as eℓ. We get:

e1 is the edge of ρ with A-endpoint p1
e2 is the edge of ρ with A-endpoint q1 − n/2
e3 is the edge of ρ with A-endpoint q2 − n/2

· · ·
eL1 is the edge of ρ with A-endpoint qL1−1 − n/2

Ordering of edges of ρ that do not belong to any cycle:

These edges are simply ordered by the numerical value of their A-endpoints: edges with a
smaller A-endpoint come earlier.

Let us now assume that Alice has to specify ρ to Bob. First Alice gives Bob the (P,K,R)
triplet. Then she starts to tell Bob q1, q2, . . .. (Recall, qi is the B-endpoint of ei.) Two remarkable
observations lead to our conclusions.

1. Even though Alice only tells the B-endpoints to Bob, Bob will (recursively) figure out the
A-endpoints as well. This is in fact trivial. For instance, the A-endpoint of e1 is p1, which
is known to Bob, since (P,K,R) is given to him, etc. When the last cycle is exhausted, Bob
knows this (this is after Kµ edges had been encountered—the total number of cycle-edges;
Kµ in turn is given as the last element of the K-sequence), and from then on Bob relies on
R to get the A-endpoints.
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2. When Alice arrives at an edge that closes a π ∪ ρ cycle, she does not need to send the B-
endpoint of this edge! It is simply pi + n/2, if the cycle was the ith cycle. In other words, it
is the other endpoint of the edge of π incident to pi. Therefore, we just assume that Alice
skips telling the B-endpoint of the last edge of every cycle. But how does Bob know that he
has arrived at the last edge of the current cycle? He knows this, because the cycle lengths
are encoded in K: the length of the ith cycle is Ki −Ki−1 if i ≥ 2 and K1 for i = 1.

In summary, the information Alice gives to Bob besides (P,K,R) to identify ρ, is the q1, q2, . . .
sequence, but crucially, completely leaving out from this sequence the B-endpoints of all the cycle-
closing edges. We have µ cycle-closing edges. Describing any qℓ takes log n bits, since qℓ ∈ [n].
Therefore:

The number of bits Alice needs to send Bob to fully describe a ρ that creates µ cycles with π is:

O(n) + (k − µ) log n

In conclusion, the number of different ρs that form µ cycles with π can be upper bounded by
2O(n)nk−µ. To upper bound D, recall that µ is allowed to vary from k/2 to k, so D + 1 is upper
bounded by (k2 +1)2O(n)nk/2+1. Thus, looking back at Eq. (28) and using that k ≤ n, there exists

an independent set of size nk/22−O(n) in G. Consequently, we can find a set of that many partial
permutations such that if π ̸= ρ belongs to this set, then the inner product of |π⟩⊗r and |ρ⟩⊗r is at
most 2−kr/2. Setting r to be 2 log n (generously, in fact: we care only about the k ≥ n log logn

logn case,

hence the 2O(n) factor becomes no(k)) and applying Gershgorin’s circle theorem in the same fashion
as in the proof of Lemma 11 in the previous section, we prove Point 1 and conclude the proof of
Theorem 13.

Theorem 13 has the following consequence for the case where each party is restricted to a
constant number of qubits:

Corollary 15. Let |ψ⟩ be a k-pairable state for n parties where each party has m = O(1) qubits.

Then k = O

(
n
log log n

log n

)
.

As mentioned in the introduction, up to the power of the polylog this matches our expander-
based construction of k-pairable states where m = 10 and k ≥ n/polylog(n) (Corollary 3).

6 Conclusion and future work

In this paper we initiated the study of n-party resource states from which LOCC protocols can
create EPR-pairs between any k disjoint pairs of parties. These EPR-pairs then enable quantum
communication over a classical channel via teleportation. Our focus was on the tradeoff between
the number k of to-be-created EPR-pairs (which we want to be large) and the number m of qubits
per party (which we want to be small).

This work leaves open several questions for future work:

• Our constructions of k-pairable states may be far from optimal, and it would be interesting to
improve them. For example, it might be possible to significantly reduce the number of qubits
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n(k) of our Reed-Muller-based construction of k-pairable states with one qubit per party.
Also, the case m = 2 remains largely open since two qubits per party is not enough to realize
entanglement swapping protocols on expander graphs, see Section 2. All our constructions
are based on stabilizer-type resource states. Can one improve the tradeoff between k and m
using more general resource states? Can one express the pairability parameter k in terms of
some previously studied entanglement measures?

• Regarding lower bounds (obstructions), we showed in Section 4 that a resource state for
complete pairings (n = k/2) requires m = Ω(log log n) qubits per party. Can we improve this
lower bound to m = Ω(log n) qubits, matching the upper bound we obtained from expander
graphs at the end of Section 2? Our lower bounds are actually for a stronger model, applying
to LOCC protocols that produce the desired state with positive probability; there may be
better upper bounds in this setting, and/or stronger lower bounds for LOCC protocols that
are required to succeed with probability 1.

• How well do our resource states behave under noise? Contreras-Tejada, Palazuelos, and de
Vicente [CPdV22] already proved some negative results here for the type of constructions we
gave in Section 2 (with EPR-pairs on the edges of an n-vertex graph), showing that genuine
multipartite entanglement only survives constant amounts of noise per edge if the graph has
a lot of connectivity.

• We can ask a very similar classical question, where the classical analogue of an EPR-pair is
a uniform bit shared between two parties and unknown to all others. Such shared secret bits
can then be used for secure communication over public classical channels (via the one-time
pad), similarly to how shared EPR-pairs can be used for secure quantum communication
over public classical channels (via teleportation). We believe our techniques can be modified
to obtain non-trivial results about the question: what classically correlated n-party resource
states are necessary and sufficient for LOCC protocols (with public classical communication)
to generate such secret shared bits between any k disjoint pairs of parties? One difference is
that the straightforward classical analogue of the GHZ-state (a uniformly random bit known
to all n parties) is not 1-pairable in this classical sense.

Acknowledgements. We thank Carlos Palazuelos for a pointer to [CPdV22] and Jorge Miguel-
Ramiro for a pointer to [MPD23].
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William Wootters. Teleporting an unknown quantum state via dual classical and
Einstein-Podolsky-Rosen channels. Physical Review Letters, 70:1895–1899, 1993.

28



[BFU94] Andrei Z. Broder, Alan M. Frieze, and Eli Upfal. Existence and construction of edge-
disjoint paths on expander graphs. SIAM Journal on Computing, 23(5):976–989, 1994.
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A Constructing an f that satisfies condition CSS1, when all ai, bi
are independent

In this appendix we give a proof for a simpler but instructive special case of how we satisfy CSS1 in
Section 3.6. The additional assumption of our special case is to suppose that a1, b1, . . . , ak, bk ∈ Fm

2

are linearly independent.
Let L be the linear subspace of Fm

2 spanned by c1, . . . , ck and a1, b1, . . . , ak, bk (so in particular,
m = 3k). Let x1, . . . , xm be (mod 2) variables. Then the above 3k vectors define 3k linear functions
over L: every vector x ∈ L can be uniquely written as

x =

k∑
i=1

αiai + βibi + γici

for some binary coefficients αi, βi, γi that are functions of x = (x1, . . . , xm). As such, all these
functions are linear, since when writing down x+x′ as above, we add the corresponding coefficients.
In the sequel we shall create higher-degree polynomials over x1, . . . , xm from these linear functions
(e.g., α1(x)β1(x) is a quadratic function).

Let S ≡ S1∪S2∪. . .∪Sk. Note that S ⊆ L. Condition CSS1 (with i = 1) asks for a degree-(k−1)
polynomial f such that

f(a1) = f(b1) = 1 and f(x) = 0 for all x ∈ S \ {a1, b1}. (29)
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Let us show that Eq. (29) is satisfied if we choose f as

f(x) = (α1(x) + β1(x))g(x) (mod 2), (30)

where
g(x) =

∑
M⊊[k]

∏
j∈M

γj(x) (mod 2). (31)

The polynomial f defined in Eq. (30) has degree k, because α1(x)+β1(x) has degree 1 and g(x) has
degree k − 1. However, we will see that the restriction of f onto S coincides with a degree-(k − 1)
polynomial.

First, we show that

g(x) =

{
1 if γ1(x) = γ2(x) = · · · = γk(x),
0 otherwise

Indeed, extending the sum over M in Eq. (31) to all subsets M ⊆ [k] would give a function∏k
j=1(1 + γj(x)) which is zero mod 2 unless γj(x) = 0 for all j. The missing monomial

∏k
j=1 γj(x)

associated with the subset M = [k] is zero unless γj(x) = 1 for all j.
By definition of Sj , any vector x ∈ Sj can be written as a sum of an odd number of vectors

from the set {aj , bj , c1, . . . , ck} \ {cj}. In particular, γj(x) = 0 for any x ∈ Sj . Thus the restriction
of g(x) onto S is zero unless γj(x) = 0 for all j. In the latter case one has x = aj or x = bj for
some j ∈ [k]. If j = 1 then f(x) = 1 since α1(x) + β1(x) = 1. If j ≥ 2 then f(x) = 0 since
α1(x) = β1(x) = 0. This proves Eq. (29).

Next we claim that degree-k monomials in f(x) can be replaced by monomials of degree at most
k − 1 without changing the restriction of f onto S. Indeed, the sum of all degree-k monomials in
f(x) can be written as

f ′(x) = (α1(x) + β1(x))
k∑

i=1

∏
j∈[k]\{i}

γj(x) (mod 2). (32)

Supose x ∈ S. We claim that f ′(x) = 1 iff x = a1+ c2+ · · ·+ ck or x = b1+ c2+ · · ·+ ck. Indeed, if
x ∈ Sj for j ≥ 2 then f ′(x) = 0 since α1(x) = β1(x) = 0. Suppose x ∈ S1. Then γ1(x) = 0 and thus
f ′(x) = (α1(x)+β1(x))γ2(x) · · · γk(x) (mod 2). By definition of S1, one can write x as a sum of an
odd number of vectors from the set {a1, b1, c2, . . . , ck}. Hence f ′(x) = 1 iff x = a1 + c2 + · · · + ck
or x = b1 + c2 + · · ·+ ck.

If k is even then none of the vectors a1+ c2+ · · ·+ ck and b1+ c2+ · · ·+ ck belongs to S1. Thus
f ′(x) = 0 for all x ∈ S. If k is odd, the same arguments as above show that

f ′(x) =

k∏
j=2

γj(x) for any x ∈ S. (33)

Thus we can replace f ′(x) by a monomial of degree either zero (if k is even) or degree k − 1 (if k
is odd) without changing the restriction of f onto S. This proves condition CSS1.

A numerical example: Let k = 4, m = 12, and let
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a1 = 000010000000
b1 = 000001000000
a2 = 000000100000
b2 = 000000010000
a3 = 000000001000
b3 = 000000000100
a4 = 000000000010
b4 = 000000000001

We also set ci = xi for 1 ≤ i ≤ 4, so c1 = 100000000000, etc. To address condition CSS1
for i = 1 we want to write down a degree-3 polynomial f(x1, . . . , x12) over F2 that on the set
EZ = S1∪ . . .∪Sk takes value 1 on a1 and b1, and 0 on the rest of EZ. (By symmetry then we can
write down similar functions for i = 2, 3, 4.) Let w4(x) be the Hamming weight of the first 4 bits of
x and let w−8(x) be the Hamming weight of the last 8 bits of x. Notice that for all x ∈ EZ we have
w4(x) ≤ 3 and w−8(x) ≤ 2, and even within this restriction some weight combinations (w4, w−8(x))
may never arise for any element of EZ. Such weight combinations we will call “impossible pairs.”
For each weight combination we have calculated the number of elements of EZ that have that
weight combination, see the table below. We put an asterisk (rather than 0) in the entries that
represent impossible weight combinations.

PPPPPPPPPw−8

w4 0 1 2 3

0 ∗ 4 ∗ 4

1 8 ∗ 24 ∗
2 ∗ 12 ∗ 4

The entries are not hard to calculate, and to give a typical example we calculate the (1, 2)-
entry: There are 8 weight-1 strings of the last 8 bits, and 6 weight-2 strings of the first 4 bits.
However, not all elements of the set {a1, b1, a2, . . . , b4} can be added to some element of the set
{c1 + c2, . . . , c3 + c4}. For instance c1 + c2 + a1 does not occur in EZ, as S1 does not contain c1.
It is easy to see that these bad combinations are half of all possible 8 · 6 = 48 combinations, hence
we obtain 24 as the (1, 2)-entry of the table.

Observe now that |EZ| = 56 > 16, so Lemma 5 cannot be applied directly to get a degree-3
polynomial. Let us now construct a degree-3 polynomial f : F12

2 → F2 that restricted to EZ satisfies
condition CSS1 for i = 1. First note that f satisfies CSS1 for i = 1 if

∀x ∈ EZ : f(x) = 1 ⇐⇒ w4(x) = 0 ∧ x5 + x6 = 1.

Consider now the polynomial

g(x) = 1 +
4∑

i=1

xi +
∑

1≤i<j≤4

xixj

One can easily check that

When w4(x) = 0 1 2 3
then g(x) mod 2 = 1 0 0 1

and that the polynomial f(x) = (x5 + x6) g(x) then takes values on EZ exactly as needed. (For
instance, when w4 = 3 and x ∈ EZ then x5 + x6 will always give zero, etc.)
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B Induction step of Section 3.6: modifications for odd k

Here we extend the proof of k-pairability given in Section 3.6 to odd values of k. Suppose ℓ ≥ 0
is an integer. We say that a family of polynomials fT : Fm

2 → F2 labeled by subsets T ⊊ [k] with
|T | ≤ ℓ is valid if it satisfies the following conditions.

I1: fT depends only on the variables xk+1, . . . , xm

I2: fT has degree k − 1− |T |

I3: f∅(a1) = f∅(b1) = 1 and f∅(ai) = f∅(bi) = 0 for 2 ≤ i ≤ k

I4: fT (x) =
∑

U⊊T fU (x) for any non-empty set T ⊊ [k] and any x ∈ e(T )

I5: fT ≡ 0 if |T | is odd and |T | ≤ k − 3

I6: fT (0
m) = fT (ai + bi) = 0 if i /∈ T and |T | ≤ k − 4

I7: fT (ai) = fT (bi) if i /∈ T and |T | ≤ k − 3

These conditions are identical to the ones given in Section 3.6, except for condition (I7) which is
now imposed only for |T | ≤ k−3. Below we assume that k is odd. As before, we shall use induction
on ℓ to prove that a valid family of polynomials exists for all ℓ ≤ k − 1.

The base of induction is ℓ = 0. Then a valid family is a single polynomial f∅. The construction
of f∅ is identical to the one given in Section 3.6.

We shall now prove the induction step. Suppose we have already constructed a valid family of
polynomials fT with |T | ≤ ℓ− 1. Consider a subset T ⊊ [k] with |T | = ℓ such that 1 ≤ ℓ ≤ k − 2.
The case ℓ = k − 1 will be considered afterwards.

Suppose |T | is odd. Condition (I2) demands that fT has degree dT = k − 1 − |T |. Condition
(I3) can be skipped since T ̸= ∅. Consider two cases.
Case 1: |T | ≤ k− 3. Then (I5) demands fT ≡ 0. This automatically satisfies (I6,I7). It remains to
check (I4) which is equivalent to ∑

U⊊T

fU (x) = 0 (34)

for x ∈ e(T ). Note that e(T ) consists of points 0m and ai + bi with i /∈ T . All terms fU (x) with
odd |U | vanish due to (I5). All terms fU (x) with even |U | obey (I6). Since |U | ≤ |T | − 1 ≤ k − 4,
we have fU (0

m) = 0 and fU (ai + bi) = 0 due to (I6). Thus all terms fU (x) = 0 vanish, that is,
Eq. (34) is satisfied.
Case 2: |T | ≥ k − 2. Then |T | = k − 2 since both k and |T | are odd. We can skip (I5,I6,I7). Thus
we just need to satisfy (I4). It fixes the values of fT at s = |e(T )| = k− |T |+1 = 3 points, namely,
0m and ai + bi with i /∈ T . Since s = 3 < 2dT+1 = 2k−|T | = 4, the desired polynomial fT exists by
part (1) of Lemma 5.

Suppose |T | is even. Condition (I2) demands that fT has degree dT = k − 1− |T |. Conditions
(I3),(I5) can be skipped since |T | is even and T ̸= ∅. We claim that (I7) follows from (I4). Indeed,
we have x ∈ e(T ) iff x = ai or x = bi with i /∈ T . We have fT (x) =

∑
U⊊T fU (x) due to (I4). If |U | is

odd then fU ≡ 0 due to (I5) since |U | ≤ |T |−1 = ℓ−1 ≤ k−3. If |U | is even then |U | ≤ |T |−2 ≤ k−4.
Thus fU (ai) = fU (bi) since (I7) holds for fU . This implies fT (ai) = fT (bi) for any i /∈ T , as claimed
in (I7). It remains to check (I4,I6). We fix the value of fT at s = |e(T )| = 2(k − |T |) points in
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(I4) if |T | ≥ k − 3. We fix the value of fT at s = |e(T )| + k − |T | + 1 = 3(k − |T |) + 1 points
in (I4,I6) if |T | ≤ k − 4. Consider first the case |T | ≥ k − 3. Then |T | = k − 3 since k is odd,
|T | is even, and |T | = ℓ ≤ k − 2. Thus s = 2(k − |T |) = 6 < 2dT+1 = 2k−|T | = 8. Part (1) of
Lemma 5 implies that the desired polynomial fT exists. Next consider the case |T | ≤ k − 4. Then
s = 3(k−|T |)+1 < 2dT+1 = 2k−|T |. Part (1) of Lemma 5 implies the desired polynomial fT exists.

It remains to prove the induction step for ℓ = k − 1. Suppose we have already constructed a
valid family of polynomials fT with |T | ≤ k− 2. Consider a subset T ⊊ [k] with |T | = k− 1. Since
we assumed that k is odd, |T | is even. Condition (I2) demands that fT has degree k− 1− |T | = 0,
that is, fT is a constant function. We can skip conditions (I3,I5,I6,I7) since none of them applies
if |T | = k − 1. It remains to check (I4). Note that e(T ) = {ai, bi} for some i ∈ [k] such that
T = [k] \ {i}. Condition (I4) fixes the value of fT at ai and bi. Since we want fT to be a constant
function, it suffices to check that the desired values fT (ai) and fT (bi) are the same. Substituting
the desired values from (I4), we have to check that∑

U⊊T

fU (ai) + fU (bi) = 0. (35)

All terms fU (ai) + fU (bi) with |U | ≤ k − 3 vanish since fU obeys (I7). Thus we can restrict the
sum Eq. (35) to terms with |U | = k − 2. However fU is a degree-1 polynomial if |U | = k − 2 due
to (I2). Thus fU (ai) + fU (bi) = fU (0

m) + fU (ai + bi) and Eq. (35) is equivalent to∑
U⊊T

|U |=k−2

fU (0
m) + fU (ai + bi) = 0. (36)

Since fU obeys (I4) and |U | is odd, we have fU (X) =
∑

V ⊊U fV (x) for x = 0m or x = ai+ bi. Thus
Eq. (36) is equivalent to ∑

U⊊T
|U |=k−2

∑
V ⊊U

fV (0
m) + fV (ai + bi) = 0. (37)

All terms fV with odd |V | vanish due to (I5) since |V | ≤ |U | − 1 = k − 3. All terms fV with
even |V | and |V | ≤ k − 4 vanish due to (I6). Thus we can restrict the sum Eq. (37) to terms with
|V | = k − 3 and it suffices to check that∑

U⊊T
|U |=k−2

∑
V ⊊U

|V |=k−3

fV (0
m) + fV (ai + bi) = 0. (38)

However, each term fV (0
m) and fV (ai + bi) is counted exactly two times: if V = T \ {p, q} then

one can choose U = T \ {p} or U = T \ {q}. Since we do all arithmetic modulo two, this implies
Eq. (38). Thus (I4) is satisfied. This completes the induction step for odd k.
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