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Abstract

We study ‘Merlinized’ versions of the recently defined Guided Local Hamiltonian problem,
which we call ‘Guidable Local Hamiltonian’ problems. Unlike their guided counterparts,
these problems do not have a guiding state provided as a part of the input, but merely come
with the promise that one exists. We consider in particular two classes of guiding states:
those that can be prepared efficiently by a quantum circuit; and those belonging to a class of
quantum states we call classically evaluatable, for which it is possible to efficiently compute
expectation values of local observables classically. We show that guidable local Hamiltonian
problems for both classes of guiding states are QCMA-complete in the inverse-polynomial
precision setting, but lie within NP (or NgP) in the constant precision regime when the
guiding state is classically evaluatable.

Our completeness results show that, from a complexity-theoretic perspective, classical
Ansitze selected by classical heuristics are just as powerful as quantum Ansétze prepared by
quantum heuristics, as long as one has access to quantum phase estimation. In relation to
the quantum PCP conjecture, we (i) define a complexity class capturing quantum-classical
probabilistically checkable proof systems and show that it is contained in BQ PNPI for con-
stant proof queries; (ii) give a no-go result on ‘dequantizing’ the known quantum reduction
which maps a QPCP-verification circuit to a local Hamiltonian with constant promise gap;
(iii) give several no-go results for the existence of quantum gap amplification procedures
that preserve certain ground state properties; and (iv) propose two conjectures that can be
viewed as stronger versions of the NLTS theorem. Finally, we show that many of our results
can be directly modified to obtain similar results for the class MA.
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1 Introduction

Quantum chemistry and quantum many-body physics are generally regarded as two of the
most promising application areas of quantum computing [Aar09, BBMC20]. Whilst perhaps the
original vision of the early pioneers of quantum computing was to simulate the time-dynamics of
quantum systems [Ben80,Fey18], for many applications one is interested in stationary properties.
One particularly noteworthy quantity is the ground state energy (which corresponds to the
smallest eigenvalue) of a local Hamiltonian describing a quantum mechanical system of interest,
say a small molecule or segment of material. The precision to which one can estimate the ground
state energy plays a crucial role in practice: for instance, in chemistry the relative energies of
molecular configurations enter into the exponent of the term computing reaction rates, making
the latter exceptionally sensitive to small (non-systematic) errors in energy calculations. Indeed,
to match the accuracy obtained by experimentation for such values one aims for an accuracy
that is smaller than so-called chemical accuracy, which is about 1.6 millihartree.! This quantity
— which reads as a constant — is defined with respect to a (physical) Hamiltonian whose norm
grows polynomially in the system size and particle dimension, and thus chemical accuracy is
in fact a quantity that scales inverse polynomially in the system size when one considers (sub-
Jnormalized Hamiltonians, which is often the case in the quantum computing / Hamiltonian
complexity literature.

The problem of estimating the smallest eigenvalue of a local Hamiltonian up to some additive
error (the decision variant of which is known as the local Hamiltonian problem) is well-known
to be QMA-hard when the required accuracy scales inversely with a polynomial, where QMA is
the quantum analogue of the class NP, also known as Quantum Merlin Arthur. Therefore, it is
generally believed that, without any additional help or structure, quantum computers are not
able to accurately estimate the smallest eigenvalues of general local Hamiltonians, and there
is some evidence that this hardness carries over to those Hamiltonians relevant to chemistry
and materials science [OIWF22]. A natural question to ask is then the following: how much
‘extra help’ needs to be provided in order to accurately estimate ground state energies using a
quantum computer?

In the quantum chemistry community, it is often suggested that this extra help could come
from a classical heuristic that first finds some form of guiding state: a classical description
of a quantum state that can be used as an input to a quantum algorithm to compute the
ground state energy accurately [LLST22]. Concretely, this comes down to the following two-
step procedure [GHLGM?22]:

e Step 1 (Guiding state preparation): A classical heuristic algorithm is applied to obtain a
guiding state |1)), which is hoped to have ‘good’ fidelity with the ground space.

e Step 2: (Ground state energy approximation): The guiding state [¢)) is used as input to
Quantum Phase Estimation (QPE) to efficiently and accurately compute the correspond-
ing ground state energy.

Step 2 of the above procedure can be formalised by the Guided k-local Hamiltonian problem
(k-GLH), which was introduced in [GLG22] and shown to be BQP-complete under certain
parameter regimes that were subsequently improved and tightened in [GHLGM22, CFW22,
CFG™23]. The problem k-GLH is stated informally as follows: given a k-local Hamiltonian H,
an appropriate classical ‘representation’ of a guiding state |u) promised to have (-fidelity with
the ground space of H, and real thresholds b > a, decide if the ground state energy of H lies
above or below the interval [a,b]. In a series of works [GLG22, GHLGM22, CFW22, CFG*23],

1This quantity, which is ~1 kcal/mol, is chosen to match the accuracy achieved by thermochemical experi-
ments.
2‘Good’ here means at least inverse polynomial in the number of qubits the Hamiltonian acts on.



it was shown that 2-GLH is BQP-complete for inverse polynomial precision and fidelity, i.e.
b—a > 1/poly(n) and ¢ = 1 — Q(1/ poly(n)) respectively. In contrast, when b —a € (1)
and ¢ = (1), k-GLH can be efficiently solved classically by using a dequantised version of the
quantum singular value transformation.

The GLH problem forms the starting point of this work. We study ‘ Merlinized’ versions of GLH
— in which guiding states are no longer given as part of the input but instead are only promised
to exist — and use these as a way to gain some insight into important theoretical questions in
quantum chemistry and complexity theory. In the subsequent paragraphs, we introduce some
of the motivating questions guiding the study of the complexity of these so-called ‘guidable’
local Hamiltonian problems.

Ansiitze? for state preparation. Step 1 of the aforementioned two-step procedure generally
requires one to have access to classical heuristics capable of finding guiding states whose energies
can be estimated classically (as a metric to test whether candidate states are expected to be close
to the actual ground state or not). Furthermore, these ‘trial states’ should also be preparable as
quantum states on a quantum computer, so that they can be used as input to phase estimation
in Step 2. In [GLG22], inspired by a line of works that focused on the dequantization of quantum
machine learning algorithms [Tan19, CGL120,JGS20], a particular notion of ‘sampling-access’
to the guiding state u is assumed. Specifically, it is assumed that one can both query the
amplitude of arbitrary basis states, and additionally that one can sample basis states according
to their Iy norm with respect to the overall state u.* Whilst this can be a somewhat powerful
model [CHM21], it is closely related to the assumption of QRAM access to classical data, and
thus in the context of quantum machine learning (where such access is commonly assumed),
it makes sense to compare quantum machine learning algorithms to classical algorithms with
sampling access to rule out quantum speed-ups that come merely from having access to quantum
states that are constructed from exponential-size classical data.

However, for quantum chemistry and quantum many-body applications, this type of access
to quantum states seems to be somewhat artificial. From a theoretical perspective, one might
wonder to what extent this sampling access model ‘hides’ some complexity, allowing classical
algorithms to perform well on the problem when they otherwise would not.

Finally, one may ask whether the fact that the ground state preparation in Step 1 con-
siders only classical heuristics might be too restrictive. Quantum heuristics for state prepa-
ration, such as variational quantum eigensolvers [TCC'22] and adiabatic state preparation
techniques [AL18], have so far mostly been considered as quantum approaches within the NISQ
era. However, one can argue that even in the fault-tolerant setting, such heuristics will likely
still be viable approaches to state preparation, in particular when used in conjunction with
Quantum Phase Estimation.

The quantum PCP conjecture. Arguably the most fundamental result in classical com-
plexity theory is the Cook-Levin Theorem [Coo71,Lev73], which states that constraint satisfac-
tion problems (CSPs) are NP-complete. The PCP theorem [ALM'98, AS98], which originated
from a long line of research on the complexity of interactive proof systems, can be viewed as

3An Ansatz (plural Ansitze) is a German word often used in physics and mathematics for an assumption
about the form of an unknown function or solution which is made in order to facilitate the solution of some
problem. An Ansatz for state preparation refers to an assumption (restriction) on the states that are prepared
on a quantum computer, for example to matrix product states or stabilizer states.

4In this work we slightly abuse notation by making a distinction between the vector representing a quantum
state, which we will denote as ‘u’, and that same vector instantiated as a quantum state (e.g. living on a quantum
computer), which we will denote by ‘|u)’. Of course, these are the same mathematical object (u = |u) € C*"),
and we only use the different notation to make our theorem statements and proofs clearer.



a ‘strengthening’ of the Cook-Levin theorem. In its proof-checking form, it states that all de-
cision problems in NP can be decided, with a constant probability of error, by only checking
a constant number of bits of a polynomially long proof string y (selected randomly from the
entries of y). There are also alternative equivalent formulations of the PCP theorem. One, due
to Dinur [Din07], is in terms of gap amplification: it states that it remains NP-hard to decide
whether an instance of CSP is either completely satisfiable, or whether no more than a constant
fraction of its constraints can be satisfied. It is straightforward to show that this formulation
is equivalent to the aforementioned proof-checking version.

Naturally, quantum complexity theorists have proposed proof-checking and gap amplification
versions of PCP in the quantum setting. Given the close relationship between QMA and the
local Hamiltonian problem, the most natural formulation is in terms of gap amplification: in this
context, the quantum PCP conjecture roughly states that energy estimation of a (normalized)
local Hamiltonian up to constant precision remains QMA-hard. This conjecture is arguably one
of the most important open problems in quantum complexity theory and has remained unsolved
for nearly two decades. In a recent breakthrough result, the NLTS conjecture was proven to
be true, which (amongst other things) means that an important class of Ansétze (constant
depth quantum circuits) are not expressive enough to estimate the ground state energies of
all Hamiltonians up to even constant precision, which is a prerequisite for quantum PCP to
hold [ABN22]. However, there have also been some no-go results: for example, a quantum PCP
statement cannot hold for local Hamiltonians defined on a grid, nor on high-degree or expander
graphs [BH13].

One way to shed light on the validity of the quantum PCP conjecture can be to study
PCP-type conjectures for other ‘Merlinized’ complexity classes. Up until this point, PCP-type
conjectures have not been considered for other classes besides NP and QMA.5 However, there
is the beautiful result of [AG19], which studies the possibility of a gap amplification procedure
for the class MA by considering a particular type of Hamiltonian: uniform stoquastic local
Hamiltonians. The authors show that deciding whether the energy of such a Hamiltonian is
exactly zero or inverse polynomially bounded away from zero is MA-hard, but that the problem
is in NP when this interval is increased to be some constant. Consequently, this implies that
there can exist a gap-amplification procedure for uniform stoquastic Local Hamiltonians (in
analogy to the gap amplification procedure for constraint satisfaction problems in the original
PCP theorem) if and only if MA = NP — i.e. if MA can be derandomized. Since MA C QMA,
this result also shows that if a gap amplification procedure for the general local Hamiltonian
problem would exist that ‘preserves stoquasticity’, then it could also be used to derandomize
MA.

1.1 Summary of main results

1.1.1 Completeness results for the guidable local Hamiltonian problem

Inspired by classical heuristics that work with Ansétze to approximate the ground states of
local Hamiltonians, we define a general class of states that we call classically evaluatable and
quantumly preparable.

Definition 1.1 (Informal) (Classically evaluatable and quantumly preparable states, from
Definition 3.2). We say that an n-qubit state u is classically evaluatable if

(i) it has an efficient classical description which requires at most a polynomial number of bits
to write down and

This is barring a result by Drucker which proves a PCP theorem for the class AM [Drull]; though there is
no direct relationship between QMA and AM and hence it is not clear whether this gives any intuition about the
likely validity of the quantum PCP conjecture.



(ii) one can, given such a description, classically efficiently compute expectation values of
O(log n)-local observables of u.

In addition, we say that the state is also quantumly preparable if (iii) there exists a quantum
circuit that prepares u as a quantum state |u) using only a polynomial number of two-qubit gates.

In the main text we consider a more general version of the definition above, which also
allows for probabilistic estimation of expectation values, and we provide four concrete examples
of Ansétze that satisfy all three conditions: matrix product states (MPS), stabilizer states,
constant-depth quantum circuits and IQP circuits. We also relate classically evaluatable states
to the samplable states of [GLG22|, and show that if one allows for an error in the estimation
of local observables, it forms in fact a larger class of quantum states (Theorem 3.1).

Our main focus is on a new family of local Hamiltonian problems, which we call Guidable local
Hamiltonian problems, in which we are promised that the ground state is close (with respect to
fidelity) to a certain state from a particular class of states.

Definition 1.2 (Informal) (Guidable Local Hamiltonian problems, from Definition 3.3). Guid-
able Local Hamiltonian Problems are a class of problems defined by having the following input,
promise, either extra promise 1 or extra promise 2, and output:

Input: A k-local Hamiltonian H with |H|| < 1 acting on n qubits, threshold parameters a,b € R
such that b —a > § > 0 and a fidelity parameter ¢ € (0, 1].

Promise: We have that either \o(H) < a or \g(H) > b holds, where A\o(H) denotes the ground
state energy of H.

Extra promises: Let Il be the projection on the subspace spanned by the ground states of H.
Then for each problem class, we have that either one of the following promises hold:

1. Classically Guidable and Quantumly Preparable k-LH (CGaLH*(k,d,()): there ex-
ists a classically evaluatable and quantumly preparable state u € C*" for which HHgsqu >

¢,

2. Quantumly Guidable k-LH (QGalLH(k,d,()): There exists a quantum circuit of poly-
nomially many two-qubit gates that produces the state |¢) for which |4 ]¢>H2 > (.

Output:
o If \(H) < a, output YES.

o If \o(H) > b, output NO.

A guidable local Hamiltonian problem variant for a different class of guiding states was already
introduced in [GLG22] without giving any hardness results. Using techniques from Hamiltonian
complexity we obtain the following completeness results.

Theorem 1.1 (Informal) (Complexity of guidable local Hamiltonian problems, from Corol-
lary 4.1 and Theorem 4.2). For constant k and § = 1/ poly(n), we have that both CGaLH*(k, d, ¢)
and QGaLH(k, 6, () are QCMA-complete when ¢ € (2(1/ poly(n)),1 — Q(1/ poly(n))).

We also obtain similar complexity results for a guidable version of the quantum satisfiability
problem (see Appendix D). A direct corollary of the above theorem is the following.

Corollary 1.1 (Classical versus quantum state preparation). When one has access to a quantum
computer (and in particular quantum phase estimation), then having the ability to prepare any
quantum state preparable by a polynomially-sized quantum circuit is no more powerful than
the ability to prepare states from the family of classically evaluatable and quantumly preparable
states, when the task is to decide the local Hamiltonian problem with precision ©(1/ poly(n)).

5In fact QGaLH(k, 6, ¢) remains QCMA-hard all the way up to ¢ = 1.



It should be noted that our result does not imply that all Hamiltonians which have efficiently
quantumly preparable guiding states also necessarily have guiding states that are classically
evaluatable. All this result says is that for any instance of the guidable local Hamiltonian
problem with the promise that there exist guiding states that can be efficiently prepared by
a quantum computer, there exists an (efficient) mapping to another instance of the guidable
local Hamiltonian problem with the promise that there exist guiding states that are classically
evaluatable and quantumly preparable. Whilst this reduction is efficient in the complexity-
theoretic sense, it might not be for practical purposes, as it would likely remove all the structure
present in the original Hamiltonian. Hence, the main implication of our result is not that these
kinds of reductions are of practical merit, but that they provide some theoretical evidence as to
why the aforementioned classical-quantum hybrid approach of guiding state selection through
classical heuristics combined with quantum energy estimation might indeed be a promising
quantum approach to quantum chemistry and quantum many-body physics.

We complement our quantum hardness results with classical containment results (of the classi-
cally guidable local Hamiltonian problem), obtained through a deterministic dequantized ver-
sion of Lin and Tong’s ground state energy estimation algorithm [LT20]. Here CGaLH is just as
CGaLH* but without the promise of the guiding state being classically preparable (see Defini-
tion 3.3 in the main text).

Theorem 1.2 (Informal) (Classical containment of the classically guidable local Hamilto-
nian problem, from Theorem 5.2.). Let k = O(logn). When ¢ is constant, we have that
CGalH(k,d,¢) is in NP when when ¢ is constant and is in NgP when { = Q(1/ poly(n)). Here
NgP is just as NP but with the verifier circuit being allowed to run in quasi-polynomial time.

Through a more careful analysis of when exactly the quantum hardness vanishes, the picture of
Figure 1 emerges, which characterises the complexity of CGaLH*(k, d, () for relevant parameter
settings in the desired precision and promise on the fidelity.

Q1)  QPcPlo(1)] NgP!

Theorem 5.2

NP

Theorems 5.2 and 5.3

1/poly(n) QMA QCMA

Corollary 4.1

Promise gap ¢

1/exp(n) 1/poly(n) Q(1) 1-1/poly(n) 1—1/exp(n)
Fidelity ¢

Figure 1: Complexity characterization of CGaLH*(k,d, () over parameter regime 6 and ¢, for
k= O(1). Any classification indicates completeness for the respective complexity class, except
for NgP, for which we only know containment (indicated by the ‘t’). Here completeness for
certain parameter combinations means that for all functions of the indicated form, the problem
is contained in the complexity class, and for a subset of these functions the problem is also hard.
The results for QPCP[O(1)] and QMA follow directly from [AALV09] and [KSV02].

1.1.2 Quantum-classical probabilistically checkable proofs

We introduce the notion of a quantum-classical probabilistically checkable proof system in the
following way.



Definition 1.3 (Informal) (Quantum Classical PCP, from Definition 6.3). A QCPCP[q] pro-
tocol consists of a polynomial-time quantum verifier V' that uses poly(n) ancilla qubits and is
given an input x € {0,1}" and a classical proof y € {0,1}P™)  where p(n) < poly(n), from which
it queries at most q bits non-adaptively. The verifier measures the first qubit and accepts only
if the outcome is |1). A promise problem A = (Ayes, Ano) belongs to the class QCPCP[q] if it
has a QCPCPq] verifier system with the following properties

Completeness. If x € Ay, then there exists a classical proof y such that the verifier
accepts with probability at least 2/3.

Soundness. If x € A,,, then for all classical proofs y the verifier accepts with probability
at most 1/3.

Note that we have that QCPCP[O(1)] trivially contains CGaLH with any constant promise gap
and any constant fidelity,” since we have shown that this problem is in NP (Theorem 5.2)
and therefore admits a classical PCP system to solve the problem. Note that replacing the
classically evaluatable states with samplable states in the promise, as in [GLG22], does not
necessarily mean that the problem is in QCPCP[O(1)] as we do not know whether MA admits
a (quantum-classical) PCP.

We first prove two basic facts about QCPCP: we show that it allows for weak error reduction
(Proposition 6.1) and that the non-adaptiveness restriction does not limit the power of the
class when the number of proof queries is constant (Theorem 6.1). Our ‘quantum-classical
PCP conjecture’ then posits that QCPCP[O(1)] = QCMA, analogously to the quantum PCP
conjecture which states that QPCP[O(1)] = QMA (here QPCP[g] denotes the complexity class
associated with quantum probabilistically checkable proof systems).®

Our main result regarding QCPCP[O(1)] is that we can provide a non-trivial upper bound on
the complexity of the class.

Theorem 1.3 (Informal) (Upper bound on QCPCP, from Theorem 6.2).
QCPCP[O(1)] € BQPNP,

Here BQPNP[I] is the class of all problems that can be solved by a BQP-verifier that makes
a single query to an NP-oracle. The key idea behind the proof is that a quantum reduction can
be used to transform a QCPCP verification circuit to a local Hamiltonian that is diagonal in
the computational basis, and thus can be solved with a single query to an NP oracle. Using
this upper bound, we then show that if our quantum-classical PCP conjecture is true, then
NPBQ” ¢ BQPNP. This inclusion would have the effect that one could show that NP C BQP =
PH C BQP, i.e. that if NP is contained in BQP then so is the entire polynomial hierarchy.”
Such a result would provide strong evidence that quantum computers are indeed not capable of
solving NP-hard problems.

1.1.3 Three implications for the quantum PCP conjecture

Finally, we use our obtained results on QCPCP and CGalLH to obtain two interesting results
and a new conjecture with respect to the quantum PCP conjecture. First, we give evidence

"Recall that the problem is QCMA-hard when the promise gap is inverse polynomial in the number of Hamil-
tonian terms instead, even when the fidelity is constant (but < 1).

8The question of whether a PCP can be shown for QCMA was also raised briefly in [BGK22].

9This would contrast the result by [AIK21] which shows that NPE®” ¢ BQPVF relative to an oracle. However,
since our inclusion goes via QCMA C QCPCP[O(1)], which would likely require non-relativizing techniques just
as was the case for the classical PCP Theorem, the conjecture and this result could simultaneously be true.



that it is unlikely that there exists a classical reduction from a QPCP-system (see Definition 6.2
for a formal definition) to a local Hamiltonian problem with a constant promise gap having
the same properties as the known quantum reduction (see for example [Gril8]), unless BQP C
QCPCP[O(1)] € NP, something that is not expected to hold [Aar10, RT22].

Theorem 1.4 (Informal) (No-go for classical polynomial-time reductions, from Theorem 7.1).
For all constant € < 1/6 there cannot exist a classical polynomial-time reduction from a QPCP[O(1)]
verification circuit V' to a local Hamiltonian H such that, given a proof 1),

[PV accepts [4)] = (1 = (| H |[$))] < e,
unless QCPCP[O(1)] € NP (which would imply BQP C NP).

This provides strong evidence that allowing for reductions to be quantum is indeed necessary
to show equivalence between the gap amplification and proof verification formulations of the
quantum PCP conjecture [AAV13].

Second, our classical containment results of CGaLH* with constant promise gap can be viewed
as no-go theorems for a gap amplification procedure for QPCP having certain properties, as
illustrated by the following result.

Theorem 1.5 (Informal) (No-go results for Hamiltonian gap amplification, from Theo-
rem 7.2). There cannot exist a gap amplification procedure for the local Hamiltonian problem
that preserves the fidelity between the ground space of the Hamiltonian and any classically eval-
uatable state up to a

e multiplicative constant, unless QCMA = NP, or

e multiplicative inverse polynomial, unless QCMA C NgP.

This result is analogous to the result of [AG19], which rules out a gap amplification procedure
that preserves stoquasticity under the assumption that MA # NP.1° Moreover, we point out
that many Hamiltonian gadget constructions do satisfy such fidelity-preserving conditions, and
indeed are precisely those that were used in [GHLGM?22] and [CEFW22] to improve the hardness
results for the guided local Hamiltonian problem.!! We obtain similar results for the class MA
by considering a variant of CGaLH that restricts the Hamiltonian to be stoquastic (Appendix C).

Third, we can use our results to formulate a stronger version of the NLTS theorem (and an
alternative to the NLSS conjecture [GLG22]), which we will call the No Low-energy Classi-
cally evaluatable States conjecture. This conjecture can hopefully provide a new stepping stone
towards proving the quantum PCP conjecture.

Conjecture 1.1 (Informal) (NLCES conjecture, from Conjecture 7.1). There exists a family
of local Hamiltonians { Hy, }nen on n qubits, and a constant B > 0, such that for every classically
describable state u € C*" as per Definition 3.2, we have for sufficiently large n that

(ul Hu) > Ao(Hn) + 8.

100r taking a different view, proving the existence of such gap amplifications would allow one to simultaneously
prove that MA can be derandomized (or even RP if it exhibits some additional properties) [AG19].

"For a quantum version of gap amplification one would typically expect locality-reducing Hamiltonian gadgets
as part of the procedure, to compensate for a “powering step” which consists of taking powers of the Hamil-
tonian (which therefore increases locality). It is already known that the current best-known locality-reducing
gadgets [BDLT08] cannot be used because they increase the norm of the Hamiltonian by a constant factor, which
results in an unmanageable decrease of the relative promise gap. Our result shows that even if one would find
better constructions that don’t have this effect, they would still have to satisfy the additional constraints as
described in Theorem 7.2.



Just as is the case for the NLSS conjecture and the NLTS theorem, the NLCES conjecture
would, if proven to be true, not necessarily imply the quantum PCP conjecture. For example,
it might be that there exist states that can be efficiently described classically but for which
computing expectation values is hard (just as, for example, tensor network contraction is #P-
hard in the worst case [SWVCO07,BMT15]). Furthermore, as we have shown in this work, states
with high energy but also a large fidelity with the ground state suffice as witnesses to decision
problems on Hamiltonian energies, and these would not be excluded by a proof of the NLCES
conjecture above. To make this more concrete, we also formulate an even stronger version of
the NLCES conjecture, which states that there must be a family of Hamiltonians, for which no
classically evaluatable state has good fidelity with the low energy spectrum (Conjecture 7.2).

1.2 Overview of techniques

QCMA-hardness proof for guidable local Hamiltonian problems. We follow a sim-
ilar proof structure as used in the BQP-hardness proofs of the Guided Local Hamiltonian
problem [GLG22, GHLGM22, CFW22, CFG'23]. This construction begins with a BQP circuit
V =Vpr_1...Vy and applies Kitaev’s circuit-to-Hamiltonian construction, which transforms V'
to a 5-local Hamiltonian H = Hi, + Helock + Hprop + Hout- By applying several tricks one is able
to ensure that the ground state of the Hamiltonian has a non-negligible fidelity with a certain
classical guiding state. However, at this point, there are several obstacles which prevent one
from directly adopting the same proof in the QCMA setting, i.e. when starting with a QCMA
verification circuit U. This mostly comes down to the fact that U, unlike a BQP-circuit, has
an additional input register for the witness. This creates many valid ‘history states’ (which are
0-eigenvectors of the Hamiltonian Hi, + Hclock + Hprop), giving us less control over and knowl-
edge about the actual ground state of the Hamiltonian generated by the circuit-to-Hamiltonian
construction.

To work around this, we use several tricks in our new construction. First, we use the CNOT-
trick, introduced in [WJBO03], to ‘force’ all witnesses to be classical. Second, we show that there
exists a randomized reduction from a QCMA protocol with verification circuit U to one in which
the verification circuit U satisfies both (i) that there exists a unique accepting witness in the
YES-case and (ii) this witness is accepted with probability 1. By applying a ‘majority vote’-type
of error reduction, we can ensure that the acceptance probabilities of all other witnesses are
suppressed exponentially close to zero. Next, we apply the small-penalty circuit-to-Hamiltonian
mapping of [DGF22], which allows us to control the bounds on the energies in the low-energy
subspace of the Hamiltonian. Combining this with the aforementioned randomized reduction,
we find that the ground space of H is now one-dimensional and consists only of the history state
corresponding to the uniquely accepting witness in the YES-case. This allows us to construct
a corresponding semi-classical subset state (which we show to be classically evaluatable and
quantumly preparable) that has good fidelity with this history state, and use this as our guiding
state. We also apply the pre-idling and block-encoding tricks from [GLG22] to increase fidelity
with the guiding state and to handle the NO-case, respectively. Finally, by using locality-
reducing Hamiltonian gadget constructions that preserve the ‘classical evaluatibility’ of the
guiding state, we arrive at our final result.

A deterministic spectral amplification algorithm. Our classical algorithm is inspired by
the techniques developed in [GLG22], which in a more general setting dequantizes the quantum
singular value transformation [GSLW19] for sparse matrices. Our technique can essentially be
viewed as a dequantization of Lin and Tong’s ground state energy estimation algorithm [LT20]:
here one assumes access to a unitary Upg that implements a block-encoding of H. Since H is
Hermitian, a polynomial function applied to H can be viewed as acting on the eigenvalues of
H. An approximate low-energy subspace projector can then be constructed using a polynomial
which approximates the sign function, using a result from [HC17]. We construct a similar
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algorithm, but this time in a classical deterministic setting, assuming the input states of being
of the form of classically evaluatable states (see Section 1.1). We measure the complexity of our
dequantization algorithm by counting the number of expectation values of local observables that
have to be computed, which follows straightforwardly from applying the multinomial theorem to
the polynomial approximation we consider. Finally, we derive the complexity of the algorithm
when it is applied to solving the Hamiltonian energy decision problems considered in this paper.

1.2.1 Relation to previous work

The starting point of this paper is the guided local Hamiltonian problem, introduced in [GLG22].
Our work diverges from theirs in two principle directions: 1) whereas their work focuses pre-
dominantly on the case in which a guiding state is given as a part of the input, we focus here
on the ‘guidable’ version of the problem — i.e. when a guiding state is only promised to exist!'?;
and 2) we consider a more general and natural family of guiding states, namely what we term
classically evaluatable states.

Direction 1) allows us to introduce and consider the idea of a quantum-classical PCP
(QCPCP) conjecture and, combined with our results on the hardness of the guidable local Hamil-
tonian problem, obtain results about the relationship between problems admitting QCPCPs and
other computational complexity classes. The move from ‘guided’ to ‘guidable’ here is necessary:
without the notion of a witness, a PCP framework cannot be considered.

Direction 2) puts our results in a more general setting, and in particular one that is somewhat
more relevant to questions surrounding the application of quantum computers to hard problems
in chemistry and physics. In particular, as we show in Section 3, our notion of classically
evaluatable states captures many Ansétze commonly used for estimating ground state energies
of physically relevant Hamiltonians. Moreover, the set of e-classically evaluatable states captures
a larger set of states than those that are sampleable, as we discuss in Section 3. Moving to this
class of states allows us to weaken the fairly stringent assumptions of the original guided local
Hamiltonian problem.

In [WJBO03], the authors consider a QCMA-complete problem of a similar flavour to ours,
namely deciding whether a 3-local Hamiltonian has low energy states that can be prepared using
a polynomially bounded number of elementary quantum gates. Apart from the specificity of the
requirement (preparable via polynomial-time quantum circuits vs. classically evaluatable), this
differs in an important way from the type of constraint that we consider in this work: that the
requirement on the ground states of the Hamiltonian is regarding their fidelity with a particular
class of quantum states, not that they themselves belong to that class. We elaborate more on
these differences at the end of Section 3.

1.3 Open questions and future work

A non-trivial lower bound on quantum PCP. A trivial lower bound on the computational
power of quantum PCP is NP, which follows from the standard PCP theorem. Our formulation
of the QCPCP provides a way to prove the first non-trivial lower bound on quantum PCP.
Since the proofs in QCPCP are always (or can be forced to be) classical, one might hope to
do this by using some of the techniques used to prove (formulations of the) PCP theorem, like
exponentially long PCPs, PCPs of proximity, alphabet reduction etc., which could carry over
more easily to the QCPCP setting as compared to QPCP.

Proof checking versus the local Hamiltonian formulations of quantum PCPs. An-
other obvious lower bound to QPCP (or QCPCP) comes from BQP C QPCP, since the verifier

"?This was briefly touched upon in [GLG22]), where it was shown that the local Hamiltonian problem for all
Hamiltonians whose ground space has constant fidelity with samplable states can be estimated up to constant
precision in MA, but without any hardness results.
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can simply ignore the proof. However, the relationship between BQP and NP is very much
unclear: it is generally believed that for both classes there exist problems that are exclusively
contained in only one of them. In this work we show that it is unlikely that there exists a
classical reduction from a QPCP verifier circuit to a local Hamiltonian problem with a constant
promise gap that has the same properties as the known quantum reduction. This means that
it is entirely possible that the generic local Hamiltonian problem with constant promise gap is
contained NP, whilst the proof checking version of QPCP is not, provided that the quantum
reduction from the proof checking formulation to the local Hamiltonian problem can indeed not
be ‘dequantized’.'® That is, despite results that show ‘equivalence‘ of the proof-checking and
local Hamiltonian variants of the quantum PCP conjecture, the two variants could actually have
quite different computational power since equivalence is shown only under quantum reductions.
It would be interesting to explore the possibility of different complexities for the proof checking
and local Hamiltonian variants of QPCP further.

The (strong) NLCES conjecture. It would be interesting to see whether the family of
Hamiltonians used to prove the well-known NLTS conjecture, or constructions inspired by the
proof thereof (in particular Hamiltonians that arise from error-correcting codes), can also be
used to prove (weaker versions of) our NLCES conjecture (see Conjecture 7.1). Note that
our NLCES conjecture is strictly stronger than NLTS, since it includes all states that can be
prepared by constant depth quantum circuits (i.e. those states covered by the NLTS conjecture),
but also includes states that require super-constant quantum depth, for example arbitrary
Clifford circuits'4, matrix-product states, etc.

MA containment of guidable stoquastic LH. It is well-known that for stoquastic Hamil-
tonians, deciding if the ground state energy is < a or > b with b — a = Q(1/poly(n)) is
StogMA-complete, for arbitrary b > a inverse polynomially separated, but MA-complete when
a =0 and b = 1/poly(n) [AGL20]. In [Bral5], it is shown that for a much stronger type
of assumption on the existence of a guiding state than what we consider, the problem is also
MA-complete for arbitrary b > a inverse polynomially separated. Showing MA-containment for
our definition of guidable stoquastic local Hamiltonian problems (with arbitrary a,b, inverse
polynomially separated) could provide a way to study the exact relationship between StogMA
and MA.

The classical guiding state existence assumption. As discussed in [GHLGM22,CFW22],
the existence of practical quantum advantage based on the previously mentioned two-step pro-
cedure is only expected if there exist guiding states, quantum or classical, that have not too
much (exponentially close) but also not too little (exponentially small) fidelity with the ground
space of the Hamiltonian under study. Whilst there is some literature that (partially) explores
this direction [BLH*21, TME"18, LLZ"22], it would be useful and interesting to study this
assumption in the special case of Ansétze that describe classically evaluatable and quantumly
preparable states. This could provide numerical evidence to support the results that we have
shown from a complexity-theoretic perspective: that classical heuristics combined with quan-
tum phase estimation is indeed the right way to approach fault-tolerant quantum advantage in
chemistry.

3Indeed, it could be that the local Hamiltonian problem with constant promise gap is contained in some
complexity class C. Then so long as BQP C C, it is possible that the proof checking version of QCPCP is
strictly more powerful than the local Hamiltonian version (i.e. QCPCP C C), since the quantum reduction cannot
necessarily be performed ‘inside’ C.

4This has in fact recently been proven for Clifford circuits, see [CCNN23].
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2 Preliminaries

2.1 Notation

We write A\;(A) to denote the ith eigenvalue of a Hermitian matrix A, ordered in non-decreasing
order, with A\g(A4) denoting the smallest eigenvalue (ground state energy). When we write ||-|
we refer to the operator norm when its input is a matrix, and Euclidean norm for a vector.

2.2 Some basic definitions and results from complexity theory

Let us first recall a couple of basic definitions and results from (quantum) complexity theory,
which is central to this work. All complexity classes will be defined with respect to promise
problems (and not languages). To this end, we take a (promise) problem A = (Ayes, Ano) to
consist of two non-intersecting sets Ayes, Ano C {0,1}* (the YES and NO instances, respectively).
We have that Ajyy = {0,1}*\ Ayes U Apo is the set of all invalid instances, and we do not care
how a class behaves on problem instances z € A,y (it can accept or reject arbitrarily, see the
paragraph ‘oracle access’ for a more elaborate discussion on what this entails).

Definition 2.1 (P). A promise problem A = (Ayes, Ano) is in P if and only if there exists
a polynomial-time verifier circuit V. which takes as input a string x € {0,1}* and decides on
acceptance or rejection of x such that

o if x € Ayes then V(x) accepts.
o ifx € Ay, then V(x) rejects.

Definition 2.2 (NP). A promise problem A = (Ayes, Ano) is in NP if and only if there exists a
polynomial-time verifier circuit V and a polynomial p, where V' takes as input a string x € {0,1}*
and a p(|x|)-bit witness y and decides on acceptance or rejection of x such that

o if x € Ayes then there exists a y such that V(z,y) accepts.
o if x € Ay, then for every y we have that V(x,y) rejects.

Definition 2.2a (NgP). If the above wverifier circuit V is instead allowed to run in quasi-
polynomzial time, i.e. 20(log®(n)) for some constant ¢ > 0, we talk about the complexity class NqP
(Non-deterministic quasi-Polynomial time).

Definition 2.3 (MA). A promise problem A = (Ayes, Ano) is in MA[c, s] if and only if there
exists a probabilistic polynomial-time verifier circuit V' and a polynomial p, where V' takes as
input a string x € {0,1}* and a p(|z|)-bit witness y and decides on acceptance or rejection of x
such that

o if x € Ayes then there exists a y such that V(x,y) accepts with probability > c,
o if x € Ay, then for every y we have that V(z,y) accepts with probability < s,

where ¢ — s = Q(1/ poly(n)). When ¢ =2/3 and s = 1/3 we omit the [c, s] notation and call the
class MA.

Definition 2.3a (UMA). The class UMA|c, s] has the same definition as MA but with the
extra constraint that if x € Ayes then there exists only a single y* such that V(x,y*) accepts
with probability > c(= 2/3), and otherwise for all y # y* we have that V(x,y) accepts with
probability < s(=1/3).

Definition 2.4 (QMA). A promise problem A = (Ayes, Ano) is in QMA[c,s] if and only if there
exists a quantum polynomial-time verifier circuit V. and a polynomial p : N — N, where V
takes as input a string x € {0,1}* and a p(|z|)-qubit witness quantum state |1p) and decides on
acceptance or rejection of x such that
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o if x € Ay, then there exists a poly(n)-qubit witness state 1)) such that V(x, |¢z)) accepts
with probability > c,

o if x € Ay, then for every purported poly(n)-qubit witness state |¢), V(x, 1)) accepts with
probability < s,

where ¢ — s = Q(1/ poly(n)). If c=2/3 and s = 1/3, we abbreviate to QMA.

Definition 2.5 (QCMA). A promise problem A = (Ayes, Ano) is in QCMA[e,s] if and only if
there exists a quantum polynomial-time verifier circuit V- and a polynomial p : N — N, where V
takes as input a string x € {0,1}* and a p(|z|)-qubit witness computational basis state |y) and
decides on acceptance or rejection of x such that

o if v € Ayes then there exists a poly(n)-qubit computational basis state |y) such that
V(z,|y)) accepts with probability > c,

o if v € Ay, then for every purported poly(n)-qubit computational basis state |y), V(z, |y))
accepts with probability < s,

where ¢ — s = Q(1/poly(n)). If c=2/3 and s = 1/3, we abbreviate to QCMA.

Definition 2.5a (UQCMA). The class UQCMA[c, s] has the same definition as QCMA but
with the extra constraint that if x € Ayes then there exists only a single poly(n)-qubit witness
computational basis state |y*) such that V(z,|y*)) accepts with probability > c(= 2/3), and
otherwise for all |y) # |y*) V(x,|y)) accepts with probability < s(=1/3).

Unlike QMA, it is known that a lot of the behaviours exhibited by the classical complexity
classes NP and MA hold for QCMA as well. An example of this, and one that we use later,
is a result from [ABOBS22| stating that there exists a randomized reduction from QCMA to
UQCMA.

Lemma 2.1 (Randomized reduction from QCMA to UQCMA [ABOBS22]). Let (U, p1,p2) de-
scribe a promise problem in QCMA, where U is the description of a quantum circuit which takes
an input = of length || = n, a witness y with length |y| = poly(n). Denote p1 and py with
p1 — p2 = Q1/poly(n)) for the soundness and completeness parameters, respectively. Then
there exists a randomized reduction to a UQCMA instance <ﬁ,ﬁ1,ﬁ2>, such that if there exists
a witness y s.t. (U,p1,p2) accepts with probability larger than py then there exists a single y*
s.t. <ﬁ,p~1,p~2> accepts with probability > p1, and accepts all other y with probability < pa, and
if (U, p1,p2) accepts with probability < po for all y then (U, p1,pa) accepts with probability < pa
for all y. This randomized reduction succeeds with probability Q(1/|y]).

Another one of these properties is the equivalence of one-sided and two-sided error in the ac-
ceptance and rejectance probabilities, which just as in the MA setting holds for QCMA (assuming
robustness under the choice of the universal gate-set that is used to construct the verification
circuits). Formally, this is established via the following lemma.

Lemma 2.2 (Perfect completeness QCMA [JKNN12)). Let G = {H, X, Toffoli} be a fized gate
set. For any c,s € [0,1] satisfying ¢ — s > 1/q for some polynomial q(n) : N — R<q, we have
that

QCMAg|c, s] € QCMAg|1, s'],

where s’ =1 (1 — (c— s)) (1+(1+c—3)2) < 1.
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Oracle access For a (promise) class C with complete (promise) problem A, the class P¢ = P4
is the class of all (promise) problems that can be decided by a polynomial-time verifier circuit
V with the ability to query an oracle for A. If V' makes invalid queries (i.e. = € Aj,y), the
oracle may respond arbitrarily. However, since V is deterministic, it is required to output the
same final answer regardless of how such invalid queries are answered [GY19,Gol06]. Hence,
the answer to any query outside of the promise set should not influence the final output bit. For
a function f, we define P€/] to be just as P€ but with the additional restriction that ¥V may ask
at most f(n) queries on an input of length n.'> One defines NP€ or NPC! in the same way but
replacing the polynomial-time deterministic verifier V' by a nondeterministic polynomial-time
verifier V', taking an additional input y € {0, 1} for some polynomial p(n).

2.3 Locality reducing perturbative gadgets

Perturbative gadgets are standard techniques from the Hamiltonian complexity toolbox and
are used to transform one Hamiltonian into another whilst approximately preserving the (low-
energy) spectrum. We will use such gadgets here, and will be particularly interested in those that
preserve not only the low-energy spectrum of the original Hamiltonian, but also the structure
of the low-energy eigenstates. In [CMP18], the authors introduce the following definition of
simulation, and demonstrate via the use of perturbative gadgets that there are families of
Hamiltonians which can be ‘reduced’ to different families of Hamiltonians with simpler /lower
locality interactions. Note that these results originally only applied to qubits, but can be
extended to qudits [PM21].

Definition 2.6 (Approximate Hamiltonian simulation [CMP18]). We say that an m-qubit
Hamiltonian H' is a (A, n,€)-simulation of a n-qubit Hamiltonian H if there exists a local

encoding E(H) = V(H® P+ H ® Q)VT such that

1. There exists an encoding E(H) = V(H® P+ H® Q)V' such that £(1) = Poanry and
|V = V|| <n, where P<a(ury is the projector onto the subspace spanned by eigenvectors
of H' with eigenvalue below A,

2. HH/SA —<5'~(H)H <€, where HL 5 == PcpyH'.

Here, V is a local isometry that can be written as V = ®;V;, where each V; is an isometry acting
on at most 1 qubit, and P and Q are locally orthogonal projectors such that P+ Q = I, and M
is the complex conjugate of M. Moreover, we say that the simulation is efficient if m and |H'||
are at most O (poly(n, n~t el A)), and the description of H' can be computed in poly(n) time
given the description of H.

For guided local Hamiltonian problems one is not just interested in the energy values, but also
in what happens to the actual eigenstates throughout such transformations. In [GHLGM?22],
Appendix B, the authors check for a large range of Hamiltonian transformations to what extent
the initial eigenstates are affected. In order to obtain our results, we need the following lemma
which summarizes a whole chain of reductions in [GHLGM22].

Lemma 2.3 (‘Classical evaluability’-preserving eigenstate encodings). Suppose H is an arbi-
trary k-local Hamiltonian on n qubits with a non-degenerate ground state |g) separated from
excited states by a gap v. Then H can be efficiently (A, n,€) simulated by a 2-local Hamiltonian
H' on m = poly(n) qubits which has a non-degenerate ground state |g'), such that

|Estare(lg)) = |9} <m+ OB e),

where Egare(+) appends only states of a semi-classical form as a tensor product to |g), i.e. pre-
serves the classical evaluability as in Definition 3.2.

Y5This is different from the convention, where usually O(f(n)) is used instead.
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Proof. This follows immediately from the proofs of Proposition 2 and Proposition 3 in [GHLGM22],
while making the observation that all encodings up to the Spatially sparse 2-local Hamiltonian
(with Pauli interactions with no Y-terms) only append states that satisfy the definition of poly-
sized subset states (see the proof of Theorem 4.1 in the main text) to the original eigenstate of
H. O

3 Guidable local Hamiltonian problems

3.1 Classically evaluatable states

Let us first introduce Gharibian and Le Gall’s definition of query and sampling access to quan-
tum states [GLG22], which slightly generalizes the original definition as first proposed by Tang
used to dequantize quantum algorithms for recommendation systems [Tan19].

Definition 3.1 (Query and sampling access, from [GLG22]). We say that we have query and
&-sampling access to a vector u € CN if the following two conditions are satisfied:

(1) we have access to an O (poly(log(N))-time classical algorithm Q,, that on input i € [N]
outputs the entry u;.

(ii) we have access to an O (poly(log(N))-time classical algorithm SQ,, that samples from a
probability distribution p : [N] — [0, 1] such that
. wil? wil?
pi) € |- gl
[l il

for all j € [N].
(11i) we are given a real number m satisfying |m — ||u||| < &||u]|.

We simply say that we have sampling access to u (without specifying &) if we have 0-sampling
access.

In this work we propose a new class of quantum states, conceptually different from those of
Definition 3.1, which we will call classically evaluatable quantum states. Our main motivations
for doing so are the following;:

1. It seems rather difficult to find Ansétze that are used in practice for ground state energy
estimation that satisfy all conditions of Definition 3.1. As one of the main motivations of
this work is to investigate the power of quantum versus classical state preparation when
one has access to Quantum Phase Estimation, we wanted to define a class of states that
can both be prepared efficiently on a quantum computer and which contains a large class
of Ansétze commonly used in practice.

2. Analogous to Dinur’s construction, one would expect that determining if a local Hamilto-
nian has ground state energy exactly zero or some constant away from zero is QMA-hard
if the quantum PCP conjecture is true. However, there are arguments from physics'®
on why one might expect this problem to be in NP [PH11]. To study the question of
containment in NP it is necessary to be able to work with states within a deterministic
setting, and therefore it does not make sense to rely on a form of sampling access which
inherently relies on a probabilistic model of computation.

18T this setting the LH problem becomes equivalent to determining whether the free energy of the system
becomes negative at a finite temperature. One expects then that at such temperatures, the system loses its
quantum characteristics on the large scale, making the effects of long-range entanglement become negligible.
Hence, this means that the ground state of such a system should have some classical description, which places
the problem in NP [Arall].
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3. To add to the previous point, being able to study containment in NP comes with the
additional advantage of being able to make statements about whether the problem admits
a PCP by the classical PCP theorem. No such theorem is currently known for MA, and
we exploit this further in Section 6 where we introduce a new type of ‘quantum’ PCP.

We will define these quantum states in a slightly more general setting for completeness — by
allowing for probabilistic computation of expectation values as well — but this will not be
important for the remainder of this work.

Definition 3.2 (e-classically evaluatable and quantumly preparable states). Let O be some
O(log n)-local observable satisfying ||O|| < 1, for which we have an efficient classical description
(in the sense that we can query all its matriz elements efficiently). We say a state u € C?" is
e-classically evaluatable if

(i) there exists a classical description of u, denoted as desc(u), which requires at most poly(n)
bits to write down, and

(ii) there ezists a classical probabilistic algorithm Qo which, given desc(u), computes an es-
timate Z such that |2 — (u|Ou) | < € in time O(poly(n,1/e)), with success probability
>2/3.

Furthermore, we say a state u € C?" is also quantumly preparable if

(iii) there exists a quantum circuit V' of at most poly(n) 1- and 2-qubit gates that prepares u
as a quantum state, i.e. |u). The description of V' can be computed efficiently using some
efficient classical algorithm Ay, which only takes desc(u) as an input.

Finally, if e = 0 and the algorithm used in (i) is deterministic instead of probabilistic, we simply
say that u 1s classically evaluatable.

Note that it is not required that u is normalized, however by requirement (ii) it is possible to
calculate the norm of u. Normalization is of course required for v to be quantumly preparable.
Also note that if condition (iii) holds, condition (ii) (for ¢ > 0) is no longer necessary in
order to work with the class of states as a suitable Ansatz provided that one has access to a
quantum computer, since there exist quantum algorithms to estimate the expectation values
of the observables up to arbitrarily precise inverse polynomial precision. However, the current
definition allows one to adopt the two-step classical-quantum procedure of classical Ansatz
generation and quantum ground state preparation, as described in Section 1.

To demonstrate the practical relevance of Definition 3.2, we give four examples of Ansétze
which all satisfy the required conditions to be (e-)classically evaluatable and quantumly prepara-
ble. The first two examples will also be perfectly samplable, as in Definition 3.1, of which the
proofs are given in Appendix A.

Example 3.1 (Matrix-product states with bounded bond and physical dimensions). Matrix-
product states are quantum states of the following form

)= S DA A A o)
{s}
(s4)

where s; are qudits of ‘physical’ dimension p, the A, are complex, square matrices of bond

dimension D (except at the ‘edges’ Agsi) and Agsn_l), where they are vectors of dimension D),
and n denotes the total number of qudits. We say that the bond dimension is bounded if it is
at most polynomial in n, and that the physical dimension is bounded if it is taken to be some
constant independent of n. MPS are also 0-samplable, which is shown in Appendix A.

Conditions check:
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(i) The MPS is fully determined by the set of matrices {A;*}, and can be described explicitly
using at most npD? = O(poly(n)) complex numbers.

(ii) (u|O|u) can be computed exactly in time O(npD?), which is efficient as long as none of
the parameters grows exponentially in n. Since O is O(log(n))-local, it can be represented
by a matrix product operator acting on at most O(log(n)) qubits and with bond dimension
therefore at most p@1°&(™) = O(poly(n)) for constant p [Oril4, Schll].

(iii) An MPS on n qubits with bond dimensions D can be prepared on a quantum computer
up to distance e using at most O(nD log(D)?log(n/e)) 1- and 2-qubit gates and requiring
[log(D)] additional ancilla qubits. A method for constructing such a circuit can be found
in Appendix B and is based on [SSV105].

Example 3.2 (Stabilizer states). Gottesmann and Knill [Got98] showed that there exists a
class of quantum states, containing states that exhibit large entanglement, that can be effi-
ciently simulated on a classical computer. These states are called stabilizer states and are those
generated by circuits consisting of Clifford gates, C = (CNOT, H, S) where S = v/Z is a phase
gate, starting on a computational basis state. Any measurement of local Pauli’s on these states
can be efficiently classically simulated. Amongst other things, stabilizer states have been used
to formulate error correcting codes [Ste03], study entanglement [BDSW96], and in evaluating
quantum hardware through randomised benchmarking [KLR'08]. Stabilizer states are also
0-samplable, again shown in Appendix A.

Conditions check:

(i) Any stabilizer state can be described by a linear depth circuit consisting of Clifford gates
starting on the |0™) state [MR18]. A possible description of such a circuit is a list of tuples
(q1,92,t,g), where ¢ (resp. g2) denotes the first (resp. second) qubit that g € C acts on
at depth ¢t. This description takes at most (’j(nQ) bits to write down.

(ii) The Gnottesman-Knill [Got98] theorem shows that stabilizer states allow for strong classi-
cal simulation and efficient classical computation of probabilities for Pauli measurements.
This in particular allows for the calculation of expectation values of log-local observable.

ili) The description is given as a quantum CiI‘CUit, which can be implemented to prepare the
quantum state.

We will now give two examples of Ansétze that have been shown to not be &-samplable,
even up to some large constant values of &.

Example 3.3 (Constant depth quantum circuits). Constant depth quantum circuits are circuits
that, given some fixed gate set G with just local operations, are only allowed to apply at most
t = O(1) consecutive layers of operations from G on some initial quantum state, which we
take to be the all-zero state |0...0). An example of constant depth quantum circuits that
are used as classical Ansdtze would be the simple case of the product state Ansatz, where
one only considers one-qubit gates applied per site. Product state Ansétze are widely used
in classical approximation algorithms to Local Hamiltonian problems, see for example [BH13,
GP19]. In [TD04] it was shown that the ability to perform approximate weak sampling from
the output of a constant depth quantum circuit up to relative error 0 < £ < 1/3 implies
that BQP C AM, which means that it is unlikely that constant depth quantum circuits are
&-samplable for any £ < 1/3.

Conditions check:
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(i) Let us for simplicity assume that we use a fixed gate set G of only two-qubit gates. A
possible description could be a concatenated string of tuples, where each tuple looks like
(q1,92,t,g), where q; (resp. g2) denotes the first (resp. second) qubit the g € G acts on
at depth t. This description takes at most poly(n) bits to write down.

(ii) (u| O |u) = (0|UT|OJU |0), where UTOU is a log(n)2t-local observable (via a light-cone
argument), and hence we can compute (0| UT|O|U |0) in time O (20(1°g(")2t) -poly(n))
which is O(poly(n)) if t = O(1).

(iii) This holds by definition.

By combining Example 3.2 and Example 3.3 we find that any state of the form UC |0"),
with U a constant-depth circuit and C' a Clifford circuit, is also classically evaluatable and
quantumly preparable. Our final example is of a class of states that are not perfectly classically
evaluatable, but are e-classically evaluatable for any e = Q(1/ poly(n).

Example 3.4 (Instantaneous quantum polynomial (IQP) circuits). IQP circuits start in |0™)
and apply a polynomial number of local gates that are diagonal in the X-basis, followed by
a computational basis measurement [BJS11]. An equivalent definition would be to consider
circuits with gates that are diagonal in the Z-basis, but then sandwiched in two layers of
Hadamard gates (again followed by a measurement in the computational basis). It is well
known that IQP circuits are difficult to sample from: if IQP circuits could be weakly simulated
to within multiplicative error 1 < ¢ < v/2, then the polynomial hierarchy would collapse to its
third level [BJS11]. Hence, they are not &-samplable for any ¢ < v/2 — 1. However, we will now
show that states generated by IQP circuits are e-classically evaluatable for all e = Q(1/ poly(n)).

Conditions check:

(i) This follows by definition, since all gates are local and there are only a polynomial number
of them.

(ii) This is a corollary from Theorem 3 in [BJS11], where it is shown that one can exactly
sample basis states on O(logn) qubits according to their lo-norm. Let C' be an IQP-circuit
of n qubits which produces the state |u) = C'|0™), and let S C [n] with |S| = O(logn) be
the qubits on which a O(logn)-local observable O acts. Following the proof of Theorem
3 in [BJS11], the state right before the last layer of Hadamard is given by

1 .
B=v > Ty,

z€Syen]\S

where the pair z,y € {0,1}" denotes the bit string state corresponding to the concatena-
tion (with the correct indexing) of the bit strings = € {0,1}/*! and y € {0,1}"715]. Here
f(x,y) is a phase function which can be computed efficiently, by accumulating the relevant
diagonal entries of the successive commuting gates. Since O does not act on the qubits
with indices [n] \ S, and they only get acted upon by Hadamards, further measurements
on this register should not influence any POVM that only acts on S by the no-signaling
principle. By this observation, the protocol is now very simple: one samples a random bit
string 3/ € {0,1}" !5 and computes the random variable

1 _ / . /
X, = ol Z (x| =@y gRISIO goISl il @) |41 |
z,2'€{0,1}I5]

which can be done exactly since |S| = O(logn) and f(x,y’) can be computed efficiently.
Since ||O] < 1, we have that E[X?] < 1 and |E[X;]| < 1, and therefore Var[X;] =
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E[X?] — E[X;)? < 2. Therefore, taking s = c/e* samples of X; (which are independent
random variables) and computing 2 = % Eie[s] X, ensures that

2= (u|Ou) [ <

with probability > 2/3, provided that ¢ > 6. This follows from a simple application of
Chebyshev’s inequality.

(iii) This follows also by definition.

In general quantum states will not be classically evaluatable (as that would imply QMA = NP
as they could be used as witnesses for the QMA-hard local Hamiltonian problem), and some
other notable examples of classes of states which are not expected to be classically evaluat-
able are Projected Entangled Pair States (PEPS) (since computing expectation values of local
observables is #P-hard [SWVCO07]) and collections of local reduced density matrices (to check
whether they are consistent with a global quantum state is QMA-hard [Liu07,BG22]).

We have seen that constant-depth quantum circuits are not even approximately samplable
(under the conjecture that BQP ¢ AM [TD04]). We can formalize this in the following propo-
sition which relates £-samplable states to &-classically evaluatable states.

Theorem 3.1. For any £ > 0, any £-samplable state is also O(§)-classically evaluatable. On
the other hand, there exist states that are perfectly classically evaluatable but not &'-samplable
for all 0 < & < 1/3, unless BQP C AM.

Proof. Let u € CN be a ¢é-samplable state with N = 27, The first part of the proposition follows
by checking the two conditions.

(i) w is described by giving the algorithms Q, and S§Q,. Both these algorithms run in
O(poly(log(N)))-time, which implies that both have an efficient description of length at
most O(poly(log(NN))) (in terms of local classical operations, i.e. logic gates).

(ii) Estimates of log-local observables can be calculated by using Theorem 3 in [GLG22]. Let
the polynomial P(z) = x (which has degree 1), the sparse matrix A be the N x N matrix
given by O (the log-local observable) tensored with identities acting on the locations on
which O does not act (which means that A is at most s = 200°8™) = poly(n)-sparse), and
v = u. This gives an estimate Z such that

5= (uOlu)| < e
in time O*(s2/¢) = poly(n,1/¢) for any € > 8, € > 0.

This shows that any &-samplable state is at least 8¢-classically evaluatable. The second part
follows directly from [TDO04], Theorem 3, which shows that the ability to perform approximate
weak sampling from the output of a constant depth quantum circuit up to relative error 0 < £ <
1/3 implies that BQP C AM, obstructing the ability to satisfy condition (ii) in Definition 3.1.
By Example 3.3, we already showed that constant-depth quantum circuits produce classically
evaluatable states, completing the proof. O

This gives rise to a (conjectured) hierarchical structure of states as depicted in Figure 2.
An interesting observation is a supposedly significant leap in the hierarchy when we allow for
a small error € in the definition of e-classically evaluatable states. A straightforward way to
explain this is by considering how it affects our ability to determine a global property of a
quantum state, like its energy with respect to a Hamiltonian H.

Let H be a sum of m log-local terms, i.e. H = Z;’gl H;, satisfying ||H|| < 1. If one wants
to evaluate the energy of an e-classically evaluatable state with respect to H up to accuracy
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all quantum states

e-classically evaluatable

&-samplable

Figure 2: Visualization of the (conjectured) relations between classes of quantum states consid-
ered in this work, given a Hilbert space of a fixed dimension. For MPS, we only consider states
with polynomially-bounded bond and local dimension. We have that £ < ¢/8 < 1/3, such that
by Theorem 3.1 we have that (i) all {-samplable states are also e-classically evaluatable and (ii)
constant-depth and IQP circuits are not £-samplable. One also expects that there are quantum
states (which can be prepared by a polynomial time quantum circuit) which are neither classi-
cally evaluatable nor samplable, or else QMA (QCMA) would be in NP or MA, respectively.

€/, then € has to be less than ¢ /m since in the worst case the error grows linearly with the
number of terms. Instead, £-samplable states have a requirement on the accuracy of sampling,
which is a property of the global state. [GLG22] shows that this property can be used for energy
estimation, where the requirement on £ only depends on the precision with which one wants to
measure the energy. We see this reflected in Theorem 3.1, which shows that if a state has the
property of being ¢-samplable this implies that the state is O(&)-classically evaluatable, but not
the other way around. However, we are not aware of any classes of states which are provably
only &-samplable for a constant, but small, £ > 0 (all examples that we give in this work are in
fact 0-samplable).

For the remainder of our work, we will focus on (0-)classically evaluatable states, which by
Definition 3.2 means that Q¢ is deterministic. A notable advantage of this approach, as opposed
to 0-samplable states, lies in its compatibility with deterministic algorithms, allowing us to give
NP containment results (see Section 5). This is also a prerequisite to make connections to MA
as well, see Appendix C.
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3.2 Variants of guidable local Hamiltonian problems

Let us define the following class of local Hamiltonian problems, which can be viewed as ‘Merlin-
ized’ versions of the original guided local Hamiltonian problem. We make a distinction between
different types of promises one can make with respect to the existence of guiding states: we ei-
ther assume that the guiding states are of the form of Definition 3.2 (with or without the promise
that the states are also quantumly preparable), or that there exists an efficient quantum circuit
that prepares the guiding state.

Definition 3.3 (Guidable Local Hamiltonian Problems). Guidable Local Hamiltonian Problems
are a class of problems defined by having the following input, promise, one of the extra promises
and output:

Input: A k-local Hamiltonian H with ||H|| < 1 acting on n qubits, threshold parameters a,b € R
such that b —a > § > 0 and a fidelity parameter ¢ € (0, 1].

Promise: We have that either \o(H) < a or A\g(H) > b holds, where \o(H) denotes the ground
state energy of H.

Extra promises: Denote Il for the projection on the subspace spanned by the ground state
of H. Then for each problem class, we have that either one of the following promises hold:

1. There ewists a classically evaluatable state u € C*" for which ||Hgsu||2 > (¢. Then the
problem is called the Classically Guidable Local Hamiltonian Problem, shortened
as CGaLH(k, d,¢). If u is also quantumly preparable, we call the problem the Classically

Guidable and Quantumly Preparable Local Hamiltonian Problem, shortened as
CGaLH*(k, 4, Q).

2. There exists a unitary V implemented by a quantum circuit composed of at most T =
poly(n) gates from a fized gate set G that produces the state |¢) =V |0) (with high proba-
bility), which has | |)||> > ¢. Then the problem is called the Quantumly Guidable
Local Hamiltonian problem, shortened as QGaLH(k, 4, ().

Output:
o If \o(H) < a, output YES.

o If \o(H) > b, output NO.

One can also consider other types of guiding states, for example the samplable states as
in Definition 3.1. This guidable local Hamiltonian problem variant was already introduced in
Section 5 of [GLG22].

The QGaLH(k, d, () problem is very similar to the low complexity low energy states problem
from [WJBO03], but differs in some key ways. In the low complexity low energy states problem
one is promised that for all states {|¢)} that can be prepared from |0...0) with a polynomially
bounded number of gates from a fixed gate set, one has that either there exists at least one such
|¢) such that (¢| H |¢) < a or for all these |¢) we have (¢| H |¢) > b. Instead, in QGaLH(k, 4, ()
one is promised that there exists a state |¢)) which can be prepared efficiently on a quantum
computer that has fidelity ¢ with the ground space of H. This promise in the fidelity does not
imply that the energy of this |¢) is necessarily low, as it might have a large fidelity with states
in the high-energy spectrum of H. Nevertheless, it does imply that in the YES-case there exists
a low complexity low energy state |¢). One can make use of the state |¢) that has significant
overlap with the ground state and use phase estimation to project |¢)) onto a state |¢) with
energy at least inverse polynomially close to the ground state (which implies |¢) can be prepared
by a quantum circuit). However, in the NO-case this promise on the fidelity implies that every
possible state [1)) has energy (| H [¢)) > b — O(1/exp(n)), as even in the NO-case it is still
possible to approximate the ground state energy up to polynomial precision. This is different
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from the NO-case of the low complexity low energy states problem, where there might exist
states with energy lower than a, as long as these states are not preparable by a polynomial-time
quantum circuit, making the QGaLH(k, d, () problem more restrictive than the low complexity
low energy states problem. In principle, this could be remedied by relaxing the requirement in
QGaLH(k,d,¢) from having fidelity with the ground space to having fidelity with the space of
states with sufficiently low energy in the YES-case only. All our results that follow would still
hold, and this new problem could then be seen as a generalisation of the low complexity low
energy states problem.

In the upcoming section we will characterize the complexity of these guidable local Hamiltonian
problems in various parameter regimes.

4 QCMA-completeness of guidable local Hamiltonian problems

Before we prove one of the main theorems of this work, we first prove the following claim,
which can be done by making some simple observations about the original proof constructions
in [ABOBS22] and [JKNN12]. Although not strictly needed to get a result, the use of the claim
does allow for an improvement in the parameter range for which the later theorem holds, at the
cost of resorting to randomized reductions.

Claim 4.1. UQCMA[c, s] € UQCMA[s'], where s’ < 1—Q(|y|~2), where |y| denotes the witness
length in the original UQCMAIc, s| protocol.

Proof. Let (U,p1,p2) be QCMA a promise problem, for which we assume that it only uses
gates from the gate set G = {H, X, Toffoli}, which is justified by the robustness of the class
under the choice of a universal gate set. The key observation is that the randomized reduction
described in [ABOBS22], which maps (U, p1,p2) to a UQCMA instance (U,p},p}}, only does so
by modifying the completeness and soundness parameters (uniformly random from a finite set)
and by adding a ‘filter’, again sampled uniformly at random from a pairwise independent hash
function family. This reduction succeeds with probability (1/|y|). The filter appends a solely
classical — but made reversible in order to allow for coherent unitary implementation — circuit in
front of the original QCMA circuit. Hence, this part of the new circuit can be implemented solely
by Toffoli gates, which are in our gate set G: therefore meeting the requirements of Lemma 2.2.
In the construction of [ABOBS22], the completeness and soundness parameters get mapped to
((k+1)/|y| and k/|y|, respectively, where k is randomly sampled from the set {1,...,|y| — 2}.
By Lemma 2.2, we have that s’ is then upper bounded by

. 1( <k+1 k:)) ( k+1 k:)2
s = max —(1-(——-— 1+(1+—" -
ke{l,....lyl-2} 2 [yl [yl
=1-Q(ly[?)
O

In QCMA the promises of completeness and soundness are always for computational basis
state witnesses. Hence, these might no longer hold when any quantum state can be considered as
witness: for example, in the NO-case there might be highly entangled states which are accepted
with probability > 2/3. When considering a circuit problem, the verifier (Arthur) can easily
work around this by simply measuring the witness and then proceeding his verification with
the resulting computational basis state. However, there is also another trick, which retains the
unitarity of the verification circuit — and which we will denote as the ‘CNOT-trick’ from now
on — to force the witness to be classical, first used in proving QCMA-completeness of the Low
complezxity low energy states problem in [WJB03]. Since the authors do not explain the precise
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mechanism behind the workings of this CNOT-trick, we provide a short proof of the lemma
below.

Lemma 4.1 (The ‘CNOT-trick’). Let p(n) : N — R, q(n) : N = Rsq be polynomials. Let V
be a quantum polynomial-time verifier circuit that acts on an n-qubit input register A, a p(n)-
qubit witness register B and a q(n)-qubit workspace register C, initialized to |0>®Q("). Denote
11y for the projection on the first qubit being zero. Let @) be the Marriott-Watrous operator of

the circuit, defined as

Q= (<x| ® I, ® <oy®‘1(">) Vi,V (|x> ® Iy ® \o>®q(")) .
Consider yet another additional p(n)-qubit workspace D initialized to \O>®p("), on which V' does
not act. Then by prepending V' with p(n) CNOT-operations, each of which is controlled by a
single qubit in register B and targeting the corresponding qubit in register D, the corresponding
Marriott- Watrous operator becomes diagonal in the computational basis.

Proof. Denote Ucnor for the 2p(n) qubit operation that acts on the two registers B and D, and
that for each | € [p(n)] applies a CNOT controlled by qubit [ in register B and targets qubit [
in register D. Consider the new verifier circuit V = VUcnot that acts on the registers A, B,C
and D, with the corresponding Mariott-Watrous operator Q. Let |i) and |j) for i, j € [2P(")] be
arbitrary computational basis states. Then we have

(i1Q1) = ((el @ (il @ (0] @ (0™ UonorV oV Uonor (o) @ 1) @ 0)%4) @ [0)*7™)
= ({al @ (il @ (01" & (i) VTV (|} @ 1) © 10) %) & [) )
1 (60 19 0 VI (1 190 0500
=01 (il Q17)

where we used the fact that V' and IIy themselves do not act on register D. Hence, the operator
Q is diagonal in the computational basis, where its entries are taken from the diagonal of Q. [

With this claim and lemma in our toolbox, we proceed to prove the following result, which
is one of the main technical contributions of this work.

Theorem 4.1. CGalLH(k,d,() is QCMA-hard under randomized reductions for k > 2, ( €
(1/poly(n),1 — 1/ poly(n)) and 6 = 1/ poly(n).

Proof. Let us first state a ‘basic version’ reduction, for which we prove completeness and sound-
ness, and finally improve its parameters in terms of the achievable fidelity and locality domains.

The reduction Let (U, p;,p2) be a QCMA promise problem that only uses gates from G =
{H, X, Toffoli}. By using Claim 4 and Lemma 2.2, we let (U, p1,p2) go through the following
chain of reductions using the following inclusions of complexity classes!”

QCMA C, UQCMA C UQCMA,,

where the final UQCMA; promise problem is defined as (U ,1,8"), where U takes as input z
and a witness § = (y,vy’) (where 3’ is an additional witness that denotes the probability of
acceptance, provided the prover is honest) of size w := |g| = O(poly(n)) (next to the original
witness y of the original QCMA promise problem), and consists of at most 7' = poly(n) gates,
and has completeness and soundness parameters 1 and s’ = 1 — Q(w™2), respectively. We will
now apply the following modifications to ((7 , 1,8

TFor the reader that does not like randomized reductions: one can also only consider the QCMA to QCMA;
reduction of this chain. In that case all parts — except for the locality reduction — of the proof below will still
hold, and we instead obtain the result for k > 6. An interesting open question would be if the result for £ > 2
can also be obtained without a randomised reduction.
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Figure 3: Illustration of the key ideas to construct the desired witness distribution in the YES-
case in the first part of the reduction. The blue lines are witnesses, for which their position
with respect to the y-axis represents the corresponding acceptance probabilities. The dark red
lines represent the completeness and soundness parameters. a) — b) represents the randomized
reduction from a QCMA-problem to a UQCMA one, b) — ¢) the reduction from UQCMA one
to a UQCMA;-problem, ¢) — d) the "unanimous vote” error reduction and finally d) — e) the
circuit-to-Hamiltonian mapping with the small penalty resulting in the Hamiltonian Hys, whose
ground state corresponds exactly the unique witness with acceptance probability 1. The light
blue shaded area represents the fact that we do not know the exact energy values corresponding
to non-accepting witnesses, except for the fact that they are separated from Ag(Hyes) by at least
Y(Hyes) = (1/M?) for our choice of e. Observe that if one was able to show that QMA C,
UQMA, one could use the same proof construction to show QMA-hardness of inverse-poly-
gapped Hamiltonians (in this setting we do not care about the fidelity, so perfect completeness
is not needed), for which we only yet know that they are QCMA-hard. This was already shown
in [ABOBS22], and rediscovered in this work.
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1. First, we force the witness to be classical by adding another register to which we ‘copy’
all bits of § (through CNOT operations), before running the actual verification protocol —
i.e. we use the CNOT trick of Lemma 4.1, which diagonalizes the corresponding Marriot-
Watrous operator in the computational basis, and in particular means that the acceptance
probability of the verifier can be maximized by using a classical witness.

2. We apply a slightly modified form of error reduction to the circuit. Since s’ = 1 —
Qw=?) > %, we have to resort to a “unanimous vote” instead of a “majority vote” in
our construction to exponentially suppress all witnesses in the NO-case, and all but one
witness!® (the one that achieves perfect completeness) in the YES-case close to zero. This is
done by applying the so-called “Marriot and Watrous trick” for error reduction, described
n [MWO04], which allows one to repeat the verification circuit several times whilst re-
using the same witness. By only accepting when all repetitions accept, one can quickly
verify that the probability of acceptance for the witness that was originally accepted with
probability 1 remains 1, and that for all other witnesses the probability of acceptance
becomes suppressed exponentially close to zero. More precisely, by repeating k times
we have that the probability of acceptance in the No-case is at most (1 — Q(1/w?))*
e~ Uk/w?) = o=p(n) for p a polynomial such that & > p(n)O(w?), implying that we need to
repeat the verification circuit only polynomially many times. Note that after these two
changes the protocol is still in UQCMA;, albeit with a new soundness parameter which is
now exponentially close to zero.

Let the resultmg protocol be denoted by (U 1,8), where U has an input register A, a witness
register W and ancilla reglster B, uses T gates and where § = 27°(®)  which is exponentially
close to zero. We denote y* for the (unique) witness with acceptance probability 1 in the
yEs-case. We will also write P(y) := Pr[U accepts (y)].

Consider Kitaev’s original 5-local clock Hamiltonian [KSV02] with a small penalty on Hoyt,
following [DGF22]:

Hyes = Hin + Heoek + Hprop + €Hoyt, (1)
with
Hi = (I — o)) ;@ Ly @ (I—10...00...0[) 5 ® |0)(0lc:,
Hout = ‘ ><0’out ® ’T> <T’Ca

T

Hock == Z‘ ><O|Cj ® ’1><1|Cj+1’
j=1
T

Hprop = ZHt where

-
Il

1

1. 1 -4 1 1
Hy = =500 [t = 1o = 500 @ [t = Ditle + 51 @ [1){tle + 51 © [t = 1)t = e,
(2)

where x denotes the input, C' denotes the ‘clock’ register consisting of T' = poly(n) qubits. The
class of history states parametrized by all possible witnesses 7 is then given by

(7)) \/ITZUt Ui |2) 41G)y 0. 0) g It - (3)

8Note that this is not the case if we do not go through unique QCMA as per the footnote above. However,
since we do use QCMA with perfect completeness, the history states corresponding to witnesses with acceptance
probability one will all be in the ground space of the resulting Hamiltonian. Hence, all steps of the proof will
still go through, except for the locality reduction which relies on the ground state being non-degenerate.
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Let g be the total number of qubits that Hy.s operates on. We will also consider another
Hamiltonian, H,,, given by

Hno = |1><1|z+bl, (4)

where b > 0 is a tunable constant. Note that H,, has a non-degenerate ground state with
energy b given by the all zeros state, and the spectrum after that increases in steps of 1 (and
so it in particular has a spectral gap of 1). Note that ||Hpe| = ¢ + b = O(poly(n)). The full
Hamiltonian we consider will now be

H = Hyes ®10) (0] p + Hno @ [1) (1| p - (5)

As a guiding state will use the following polynomially-sized subset state

T
tyes) = \/TLH > leh by 10-+-0) st 0

which satisfies ((0] (n(y*)]) |uyes) = 1/(T'+ 1) = O(1/ poly(N)). We will now show that for the
choice of b := Q(1/T°) and € := O(1/T*), our reduction achieves the desired result.

Verifying classical evaluatability and quantum preparability Condition (i) follows di-
rectly from the definition of polynomially-sized subset states. For condition (ii) we have that
(u| O |u) = ﬁ >ijes (il O ), for which (i| O [j) can be computed efficiently since O, restricted

to the Hilbert space it acts on, is described by a 20008m) x 2000gn) — )51y (n) X poly(n) matrix.
Since we only have to compute (i| O |j) a total of O (|S|?) = poly(n) times, this can be done
efficiently. Finally, for condition (iii), we have that such states can be trivially prepared using
O(poly(n)) quantum gates by using a series of controlled rotations on each qubit at a time. For
instance, a very simple application of the algorithm from Grover-Rudolph [GR02] would suffice.

Completeness and soundness Let us first analyse the YES-case. Here we have that the
history state |n(g*)) precisely gives (n(§*)| Hyes n(§*)) = 0. For a guiding state witness one
can use Since Hp, = b > 0, we must have that |n(g*))|0) is the ground state of H. However,
we are also interested in the spectral gap, since we need it to satisfy our b-parameter as well
as for the perturbative gadgets that reduce the locality. We now use a result from [DGF22],'
Appendix B, which uses the Schrieffer-Wolff transformation to bound the shift caused in the
energy levels due to Hgyg, allowing us to determine the relevant spectral gaps of Hyes. Let
Hy = Hin + Heock + Hprop and Hy = eHoyy, such that ||Hq|| = e. The ground space of Hy,
denoted as Sy, is then given by

So = span{|n(9)) |5 € {0,1}"}.

We know that any state that has no support on Sy must have energy at least Q(1/7%) [ADK*08],

and therefore Hy has a spectral gap of at least v(Hp) = Q(1/73) [ADK"08]. From [DGF22],

we have that in the ground space of the original Hamiltonian Hy, Hy.s has eigenvalues
1—P(y)

3 .2
Tl + O (T°€%), (6)

9Similar bounds to the ones in [DGF22] can be found in other works (e.g. [KKR06, ADKT08,CLN17]), although
we do not use these here.
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provided that e < «(Hp)/16. Let us now analyse the spectral gap of Hy, itself. If indeed
e < v(Hp)/16, we only have to consider states in the ground space of Hy, since all other states
will have energies larger than Q(1/T3). We have that

2P0 _ 1P

H o> : - + 0O (T
’Y( y68) - ge{OJI}ElulEl\{g*} T + 1 ¢ T + 1 ( ‘ )

=7 (1-27) £ 0 (1%
— 0(1/1)

if we set € := O(1/T*). Note that this is in accordance with the condition that € < v(Hp)/16 =
Q(1/73)

Now for the NO-case. We have that all witnesses 3§ get accepted by U with at most an
exponentially small probability, and hence have that Hyes = Q(1/T®). By our choice b we have
therefore ensured that the ground state in the NO-case must be the semi-classical polynomially
sized subset state |uno) := [09)|1), which has energy b = Q(1/T°). Hence, the promise gap
between YES and NO cases is § = Q(1/7°) — 0 = Q(1/79).

Increasing the fidelity range Note that in the NO-case we already have that the ground
state is a semi-classical poly-sized subset state. However, in the YES-case, the ground state is
a history state with only inverse polynomial fidelity with the semi-classical poly-sized subset
state |uyes). To work around this, we apply the same trick as in [CFW22]:2° by pre-idling the
circuit with a polynomial number of identities, of which we denote the total number by IV, the
fidelity with a semi-classical poly sized subset state can be made inverse polynomially close to
1. Let M =T + N = poly(n). For the new pre-idled circuit we have to replace in all our results
throughout our construction 7" by M, and then everything goes through as before.

Reducing the locality Finally, we show how to reduce the locality of the constructed Hamil-
tonian. Assume that we have already increased the fidelity as above, so that the number of
gates in the circuit is now M. Then the spectral gap of H, denoted as v(H), can be lower
bounded as

v(H) > min [y(H|zen,..), 7(H|zem,,)]
= min [4, (Q(1/M®) — Q(1/M°))]
= Q(1/M9).

Since the ground state is unique and inverse-polynomially gapped (in both the YES- and
NO-case), we can apply Lemma 2.3 to obtain a 2-local Hamiltonian H’ which (A, 7, €)-simulates
H, where we can take A = 1/ poly(n) > ~v(H) sufficiently large, n,e = 1/ poly(n) < ¢ sufficiently
small to ensure that the ground energy remains below some a’ in a YES instance and above some
b in a NO instance, such that & —a’ = § = Q(1/poly(n)) and so that ||Esate(|g)) — [9') || <
n+ O(yte), where |g) is |uyes) in a YES instance or |upo) in a NO instance, |g’) is the ground
state of H', and Estate(]g)) is as in Lemma 2.3. That is, H' approximates H in the low energy
spectrum (below A) in a way that the eigenvalues are perturbed by at most some small inverse-
polynomial, and where the ground state can be approximated by the old ground state, plus some
semi-classical state added as a tensor product. Finally, note that we can obtain |[H|| < 1 by
simply scaling down by some polynomial, as required by the problem definition. Note that this
will not change any of the statements as all relevant parameters and coefficients are (inverse)
polynomials in n, albeit of very large degree. O

20This trick is not original to [CFW22] and is well known, see e.g. [CLN17].
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Since polynomially-sized subset states are also samplable (see [GLG22]), our proof would
also go through if one considers a variant of the guidable local Hamiltonian problem which
considers samplable states as in Definition 3.1 instead. We have the following corollary.

Corollary 4.1. CGaLH*(k,0,() is QCMA-complete, where the hardness is under randomized
reductions, for k> 2, ¢ € (1/poly(n),1 —1/poly(n)) and § = 1/ poly(n).

Proof. Hardness follows from Theorem 4.1. Containment follows trivially from the fact that
the YES-and NO-cases can be distinguished by using desc(u) as a witness, and a verifier circuit
that prepares the quantum state |u) (which can be done efficiently possible because of the extra
condition on u) followed by quantum phase estimation to an accuracy strictly smaller than the
promise gap 9, see Theorem 2 in [CFW22]. O

Now that we have established QCMA-completeness for CGaLH*, we get QCMA-completeness
for QGaLH for free for the same range of parameter settings, as the latter is a generalization of
the former (containing CGaLH* as a special case), and containment holds by the same argument
as used in the proof of Corollary 4.1. However, with just a little bit of more work we can see
that QCMA-hardness for QGalLH actually persists for a larger range of parameter settings. For
this, we will use the following lemma by [LT20].

Lemma 4.2 (Ground state preparation with a-priori ground energy bound [LT20].). Suppose
we have a Hamiltonian H = Y . Ny(H) |¢g) (¢q|, where \py(H) < A1 (H), given through its
(o, m, 0)-block-encoding Up. Also suppose we have an initial state 1)) prepared by some circuit
Uprep With the promise that | (¢o|v) |* > T, and that we have the following bounds on the ground
energy and spectral gap: No(H) < p— A/2 < p+ A/2 < M\ (H), for some p, A € R. Then the
ground state can be prepared to fidelity 1 — € with probability 1 — v with the following costs:

1. Query complexity: O (% (log (%) log (%) log (%) + log (%))) queries to Ug and
O (% log (%) log (a{jA)) queries to Uprep,

2. Number of qubits: O (n+m+log($)),

3. Other one- and two-qubit gates: O (% (log (%) log (%) log (%) + log (%)))

Theorem 4.2. QGaLH(k,0) is QCMA-complete for k > 2,6 = ©(1/ poly(n)) and ¢ € (1/ poly(n),1—
1/exp(n), and even when ( =1 in the case where k > 6.

Proof. This follows immediately from the proof of Theorem 4.1, where the used history states
themselves can be prepared by a quantum circuit of at most poly(n) gates. Note that before we
evoke locality reductions through the perturbative gadgets the witnesses can be made exactly
by a quantum circuit?'. In the locality reduction, we can only ensure that we remain inverse
polynomially close to the original ground state. However, due to Lemma 4.2, this fidelity is
enough to guarantee the existence of a quantum circuit, still polynomial in n, that produces a
new quantum state which is inverse exponentially close to the actual ground state. Let Uprep
be the quantum circuit that creates |u) = Uprep |[0). Let us assume the worst case setting
in our construction of Theorem 4.1, where we have that I' = ¢ = Q(1/poly(n)), a = O(1),
A =~(H)=Q(1/T%), and p = A\o(Hyo) = Q(1/T%). Let m = O(1). Since the inverse fidelity ¢
appears only logarithmically in Lemma 4.2, we can prepare a state that is exponentially-close
in fidelity with (exponentially) high probability in

(0] 5 ~
o (poly(n)T5 <log (poly(n)T”) log (poly(n)) log <1g(yT)> + log (exp(n))>> = O (poly(n))

21Provided that the circuit will have all gates from G in its gate set.
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queries to Ug (the block encoding of H) and single qubit gates, as well as

o <poly(n) log (T7) log (T)) = O (poly(n))

queries to Uprep. O

There are a few more observations one can make about our proof of Theorem 4.1. First,
before the perturbative gadgets are applied, the ground state energy is exactly zero in the YES-
case and inverse polynomially large in the NO-case. This suggests that it might be possible
to modify the construction such that it actually shows a result for a quantum satisfiability
version for QCMA (which implies hardness for the more general local Hamiltonian version). In
Appendix D we show that this is indeed possible. Second, since the spectral gap is bounded by
some inverse polynomial, we also have as a direct corollary that 6-local frustration-free inverse
polynomially gapped Hamiltonians are QCMA-hard, extending the result in [ABOBS22].

5 Classical containment via spectral amplification

To complement our quantum hardness results with classical containment results in certain
parameter regimes, we will use a technique based on the dequantization of the quantum singular
value transformation as described in [GLG22]. Our algorithm differs conceptually from the one
proposed in [GLG22] in the following ways:

e We consider a different (and less restrictive) input model: whereas [GLG22] considers
access to states of the form of Definition 3.1, we use states that adhere to the requirements
as in Definition 3.2.

e For our purposes, we only consider local Hamiltonians (which are Hermitian sparse ma-
trices) and not arbitrary sparse complex matrices. This simplifies the algorithm in the
sense that we can view functions on these Hamiltonians as acting on the spectrum instead
of the singular values.

o We also simplify the algorithm by tailoring it exactly to ground state decision instead of
estimation problems, which allows us to use a different function acting on H as compared
to [GLG22] to solve the relevant problems.

Let us introduce and prove bounds on the complexity of the spectral amplification algorithm in
the next subsection. In the subsequent subsection, we will utilize this algorithm to put classical
complexity upper bounds on CGaLH(k,d, () in specific parameter regimes.

5.1 Spectral amplification

Let H = Z?:ol H; be a Hamiltonian on n qubits which is a sum of k-local terms H;, which
satisfies |H|| < 1. Since H is Hermitian, we can write H as

2" —1

H=" Xl (@i,
i=0

where \; € [—1,1] (by assumption on the operator norm) denotes the i’th eigenvalue of H with
corresponding eigenvector [¢;). Consider a polynomial P € R[x] of degree d, and write

P(x) = ag + a1z + - - + agz®.
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The polynomial spectral amplification of H for P is then defined as
P(H) = aol + ayH + --- + agH®

on 1 on 1
= aol +a1 ) Ni|va) (Wil + - +aa Y N [¥i) (Wil
om_1 - -
= P |vi) (@il
=0

Now for a € [—1, 1], denote

Mo = > [ (¢ (7)

{:\i<a}

for the projection on all eigenstates of H which have eigenvalues at most a, which we will call a
low-energy projector of H. Note that for any a > Ao, we must have that IIgIl, = 11,115 = Ilg.
We can utilize such a projector to solve CGaLH(k, d, ), simply by computing ||TI,, |u)|| for « = a
given a classically evaluatable state u. To see why this works, note that in the YES-case, for
the witness desc(u) we have that [T, |u)|| > ||ILgs |u)|| > +/C and in the NO-case we have that
|, |v)|| = O for states, which means that both cases are separated by /(. However, it is
unlikely that an efficient description exists of I1,, and even if it did, it would not be k-local and
therefore ||II, |u)|| would not even be necessarily efficiently computable.

The idea is now to approximate this low-energy projector II, by a polynomial in H. To see
this, note that II, can be written exactly as

1
I, = 5(1 —sgn(H —al)),

where sgn(z) is the sign function, which for our purposes is defined on R :— R as

1 if z >0,
() =9 _1 i<

From [HC17] we can then use the polynomial approximation of the sign function, which achieves
optimal scaling in its parameters &', €. and which can subsequently be shifted to obtain the
desired approximate low-energy projector Il,.

Lemma 5.1 (Polynomial approximation to the sign function, from [HC17]). For all §' >
0, € (0,1/2) there exists an efficiently computable odd polynomial P € Rlz| of degree d =

(@) (bg%#eq), such that
o forallx €[—2,2]:|P(z)| <1, and
o forallz € [—2,2]\ (=0",¢) : |P(x) — sgn(x)| < €.

Since Lemma 5.1 holds on the entire interval [—2,2], choosing any « € [—1,1] and scaling
the sgn(x) function with the factor 1/2 will ensure that the error, as in the lemma, will be < €/2.
Let go(z) : R — [0,1] defined as gq(z) = 1(1 — sgn(z — a)) be this function , with polynomial
approximation @), € R|x] of degree d. Note that ), can be written as a function of P as Q,(x) =
3(1 — P(z — ). We will write I, = Qo (H) for the corresponding polynomial approximation
of the approximate low-energy ground state “projector”. Note that I, is Hermitian (since H
is Hermitian), but that I, is no longer necessarily a projector and therefore l‘[2 =+ IL,,.

I, |u) H = /(| TTLIT, u) = /(u| T2 |u) =

v/ (u] (Qa(H))? |u), which means that we have to evaluate up to degree 2d powers of H. The
next lemma will give an upper bound on the number of expectation values that have to be
computed when evaluating a polynomial of H of degree d.

we now replace I, in ||II, [u)|| by II,, we get ‘
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Lemma 5.2. Given access to a classically evaluatable state u, a Hamiltonian H = Zﬁgl H;,
where each H; acts on at most k qubits non-trivially, and a polynomial Px] of degree d, there
exists a classical algorithm that computes (u| P(H)|u) in O(m?) computations of {u|O; |u),
where the observables {O;} are at most kd-local.

Proof. We have that
(ul P(H) |u) = (u| (a0l + a1 H + -+ agH" ) u)
=ap+ay (u| H|u)+ -+ ag (u| H |u) .

Let [ € [d + 1] be the different powers for which we have to compute (u|H'|u). By the
multinomial theorem, we have that H' can be written as

m—1 ! m—1
H — H | = ( ! > HF 8
(z; ) 2 TR N L

ko+ki+-+km—1=l;ko,k1,...,

where

l o
ko, ki, .. kme1/)  kolki!...km_1!

and we have that each term is at most kl local. The total number of expectation values that
have to be computed in order to compute (u| P(H) |u) is upper bounded by (under the fact that

m>1,1>0)
<e(m+l—1)>l
- l

()

M=

IN

d m-+1—1
Z l 1+
0

= l

IN

—

+
(]~

N
Il
—_

IA

d

§1+d<e+%)d
o ()

where we used an upper bound on the binomial coefficient of (Z) < (%)k and the fact that

l
(M) is monotonically increasing with respect to [, since

d <e(m + l))l - el (”Tm)l ((1+m)log(H2) +1)
dl l [+m

is positive for all m > 1, 1 > 0. Hence, a classical algorithm to compute (u| P(H) |u) would be
to evaluate the sum

- ; m—1
Z Z (ko,k‘l,.?.,km1> tI;J(:) @i <U|Htkt,|u>,

1=0 ko+k1+-+km—1=t;k0,k1,--,km—1>0

which requires at most O(m?) computations of at most kd-local observables. O
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All that remains to show is that for constant promise gap J, using a good enough approx-
imation II, with a suitable choice of «, will ensure that we can still distinguish both cases in
the CGaLH(k, 4, () problem in a polynomial (resp. quasi-polynomial) number of computations
of observables when ¢ = Q(1) (resp. ¢ = Q(1/poly(n))).

Theorem 5.1. Let H = Z?igl H; be some Hamiltonian, and desc(u) be a description of a
classically evaluatable state u € C*". Let a,b € [—1,1] such that b—a > &, where § > 0 is some
constant. Consider the following two cases of H, with the promise that either one holds:

(i) H has an eigenvalue < a, and ||[T|u)||* > ¢ holds, or
(i) all eigenvalues of H are > b.

Then there exists a classical algorithm that is able to distinguish between cases (i) and (ii) using
O (mC(log(l/\/Z))w))

computations of local expectation values, for some constant ¢ > 0.

Proof. Let I, := Qq(H), where @ is a polynomial of degree d, be the approximate low-energy
projector that approximates Il, = 3 (1+sgn(H — (al))). We set o := “TH’, §' = 0/2 and
¢ = e. Note that we can write Il as

on_q
Mo = ) Q) [¥i) (Wil
i=0
where we have that

1—€/2<Q(N\) <1 if)\ <a,
0<QO) <2 A D,
0<Q(\) <1 else,

by Lemma 5.1. The algorithm will consist of calculating Hﬁa |u>H, for sufficiently small €. Let
us analyse both cases.
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(i) H has an eigenvalue < a, and ||Tlg [u)||® > ¢ holds:
[t 2 ot

— || T |u) — (o, — T, IU>H

2n—1
= (g ) = {0 Js) (il = D QN i) (Wi | Mg )
i< =0

= |[Tgs Ju) — | D0 (1= Q) [vi) (Wil = D Q) [hi) (W] | Tgs |uw)

i< A >a

v

e fu) = D2 5 1) (il | T fu)

A <a

= Ml = 5 { D2 1) (il | s o)

’LA,L Sa

€
o LR )

= | s 1w = ST )|
(1= )M )]
> (1= VL.

(i) all eigenvalues of H are > b:
We must have that

oo <t

since A\; > b for all i € {0,...,2" — 1}.

Therefore, to be able to distinguish both cases, we must have that (1 —€/2)/¢ —€/2 > 0. We
set € := /(, such that the gap between both cases becomes equal to %(\/Z — (). We therefore
propose the following algorithm:

e ( = 1: compute E = (u| H |u) classically and check if £ < a or E > b. This takes m
computations of local expectation values.

e ( < 1: compute Hfla ]u)H using a polynomial of degree 2d where d = O(log(1/€'))/¢’, for
¢ := /¢ and 0’ = §/2. By Lemma 5.2, we have that this can be done in at most

O (mc(log(u\@)/a))

computations of expectation values of local observables, for some constant ¢. The differ-
ence between both cases will be 1/2(v/¢ — ¢) = Q(1/ poly(n)) when ¢ = Q(1/ poly(n).

O]

Remark 5.1. It should be straightforward to adopt the same derivation as above to a more
general setting by considering arbitrarily sparse matrices, a promise with respect to fidelity
with the low-energy subspace (i.e. all states with energy < \g + v for some small ), as well
as € > 0 for e-classically evaluatable states (see Definition 3.2). However, this would likely put
constraints on v and €, where € in principle has to scale inversely proportional to the number
of local terms in the Hamiltonian.
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Figure 4: Illustration of the approximate low-energy projector Il in both the YES-case (Figure
a)) and NO-case (Figure b)), with a = “T‘H’. The orange crosses correspond to the energy values,
and the attached shaded lines indicate the fidelity of the guiding state with the space spanned
by all eigenstates [i;) of H that have energy at most \;. The polynomial approximation of
the shifted sign function is displayed as Q,(x), and the small error approximation regimes are
indicated with the blue-shaded areas. In the red regime we do not have tight bounds on the error,
except that the function values are in [0, 1]. For small enough €, in the YES-case the contribution

- 2
I, |u) H should be larger than that computed in the NO-case

of the ground state to the value of ‘

due to contributions of higher energy values, as a result from an inexact implementation of the
low-energy projector.

5.2 Classical hardness and containment

All results in this section also hold when ‘CGalLH’ is replaced by ‘CGaLH*’, as the containment
trivially follows since CGaLH generalises CGaLH* and the hardness construction uses a diagonal
(i.e. classical) Hamiltonian, of which the ground states are basis states and can thus be prepared
on a quantum computer. To be able to make completeness statements when we consider NP,
let us start by first proving a (straightforward) hardness result.

Lemma 5.3. CGaLH(k,d,() is NP-hard for k > 2, § < O(1) and ¢ < 1, where k,0,( can also
be functions of n.

Proof. We will prove this by a reduction from gapped 3-SAT. Let 4-3-SAT be a promise decision
1

problem where we are given a formula ¢(z) = - Zﬁal C; with C; = x;, V 4, V x;,, with the
promise that either ¢(z) = 1 (output YES) or ¢(x) < « (output NO), where v € (0,1). From
(one of) the (equivalent) PCP theorem(s) we know that there exists a constant v € (0,1)
for which deciding on the correct output (we are allowed to output anything if the promise
doesn’t hold) is NP-hard [HO1]. Next, we apply the gadget from [AL21], which maps ¢(x) to
a 2-SAT instance with formula ¢/(z) = 10— St > jeno Cij- Here we have that ¢/(z) has
the property that for every clause C; there are 10 corresponding clauses C’{,j, J € [10] such
that, if a given assignment z satisfies a clause C; of ¢(x), then exactly 7 clauses of C{J can be
satisfied, and for those C; that are not satisfied by z, at most 6 clauses of C{J are satisfied.
Note that if ¢(x) = 1, we then must have that ¢'(z) = 7/10, and that if ¢(z) < -, we have
that ¢'(x) < 7/10y 4+ 6/10(1 — v) = (v + 6)/10. Hence, it is still NP-hard to distinguish
between those cases, and the promise gap between the YES- and the NO-case is %(1 —) =7,
which is some constant. Let us now map ¢'(z) into a 2-local diagonal Hamiltonian H’ such
that (x| H' |z) = ¢(x). This can be done without any circuit-to-Hamiltonian mapping, see for
example [Had21]. By our choice of ¢/(z), we have already ensured that the Hamiltonian is
(sub)-normalized. To turn the problem into a minimization problem, one can simply invert the
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spectrum by letting H = I — H’ (note that H' = 0). The eigenvectors of H are basis vectors —
and thus themselves classically evaluatable states for which ( =1 = O(1) — and its eigenvalues
are precisely the function evaluations of 1 — ¢(z). Hence, setting a := 3/10 and b := (4 —~)/10
gives us § =+ = O(1). O

Theorem 5.1 now gives us a very easy way to establish the following upper bounds on
CGalH(k,d,¢) when the required precision ¢ is only constant. Combined with Lemma 5.3, we
obtain the following result, reminiscent of Theorem 5 in [GLG22].

Theorem 5.2. CGaLH(k,d,() is NP-complete for k = O(log(n)), and constants 6 € (0,1] and
¢ € (0,1]. Purthermore, when ¢ = Q(1/ poly(n)) we have that CGaLH(k, d, () is in NgP.

Proof. NP-Hardness follows from Lemma 5.3. The containment statements follow from Theo-
rem 5.1, in which the proposed algorithm for m = O(n*), 6 € (0, 1] constant runs in polynomial
time when ( is constant and in quasi-polynomial time when ¢ = Q(1/poly(n)) (using the fact
that O(nlee(®)) = 2000e°(n)) for some constant ¢ > 0). O

Moreover, by a little more careful inspection one can show that the problem’s hardness
depends on how ¢ and ¢ relate to one another, as shown in the following theorem.

Theorem 5.3. Let f(n) : N — Ry, g(n) : N — Ry be some arbitrary functions with the prop-
erty that there exists some ng, such that for all n < ng we that 1/g(n)—1/f(n) = Q(1/exp(n)).
Then we have that CGaLH(k,d,() is NP-complete for k > 2,6 =1/g(n) and { > 1—1/f(n).

Proof. Hardness: NP-hardness follows again trivially from Theorem 5.3, by taking g(n) = O(1)
and letting f(n) be some arbitrarily large function such that f(n) > g(n), which gives a loose
lower bound on ¢ which can be as large as exactly 1.

Containment: To prove this we split the regime into the n > ng case and the n < ng case,
giving separate algorithms for both cases.

n < ng case: In this setting we have that n € [1,ng], which is a bounded domain. Therefore,
we can run the algorithm considered in the proof of Theorem 5.1 with the worst case parameter
settings on this interval, which is for 0* = max;,c(,,41) 9(n) and ¢* = min, ¢, 1] f(n) 22 Since
both §* and (* are then constants, this results in an algorithm that runs in a time polynomial
in n and, as long as 1 <n < ng, be able to distinguish between the YES and NO-cases.

n > ng case: The verifier expect to be given a desc(u) such that | (u|¢g) |> > ¢ =1 —1/f(n)
and checks if (u| H |u) < a + 1/f(n). Since H is a sum of local terms, by Lemma 5.2 the
verifier can efficiently calculate (u| H |u) (since this is a polynomial in H of degree 1) when
given desc(u). Let us now check completeness and soundness of this simple protocol. By the
definition of the problem, we must have that ||[H| < 1. We write |u) = oy |¢o) + az |¢g ), where

la1 | + |az|> = 1. Note that |az|? = 1 — ||Tgs |u>||2 >1-(¢> ﬁ Therefore, we must have
that in the YES-case

(ul H ) =l (ol H l60) + laaf? (05| H |6
< a+ lasf* (05| H |o7)
< at |HI/fn)
<a+1/f(n).

228ince n is a discrete variable on a bounded domain of constant size, one can always solve these optimization
problems in constant time by brute-force search.
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In the NO-case, we can simply evoke the variational principle
(ul H Ju) = Mo(H) 2 b=a+1/g(n) = a+1/f(n) +Q(1/exp(n)),

for all |u). Therefore, both cases are inverse exponentially separated, and can therefore be
distinguished from one another. O

6 Quantum-classical probabilistically checkable proofs

In this section we initiate the study of a new complexity class that sits right between the classical
and quantum PCPs. First, let us recall some basic definitions and facts about PCPs.

Definition 6.1 (Probabilistically checkable proofs (PCPs)). Let n € N be the input size and
q:N—=N,7r:N = N. A promise problem A = (Ayes, Ano) has a (r(n),q(n))-PCP verifier if
there exists a polynomial-time probabilistic algorithm V which takes an input x € {0,1}", and
has random access to a string ™ € {0, 1}* of length at most q(n)2"™), uses at most r(n) random
coins and makes at most q(n) non-adaptive queries to locations of 7, such that

o Completeness. If v € Ay, then there is a proof m such that V7 (x) accepts with cer-
tainty.

e Soundness. If y € Ay, then for all proofs m we have that V™ (x) accepts with probability
at most .
2

A promise problem A = (Ayes, Ano) belongs to PCP[q,r| if it has a (r(n),q(n))-PCP verifier.

The celebrated PCP theorem states that NP = PCP[O(1), O(logn)] [ALM'98, AS98]. Tt
also implies that there exists a constant « such that it is NP-hard to decide for a constraint
satisfaction problem with ‘promise gap’ o. Dinur [Din07] showed that this implication can be
obtained directly, by reducing from a constraint satisfaction problem with inverse polynomial
promise gap to one with a constant promise gap, whilst retaining NP-hardness. This type of
reduction is commonly referred to as gap amplification.

A quantum variant to PCP can naturally be defined as follows [AALV09, AAV13].

Definition 6.2 (Quantum Probabilistically Checkable Proofs (QPCP)). Let n € N be the input
size and p,q : N = N, ¢,5 : R>g = R>g with c —s > 0. A promise problem A = (Ayes, Ano) has
a (p(n),q(n),c, s)-QPCP-verifier if there exists a quantum algorithm V which acts on an input
|x) and a polynomial number of ancilla qubits, and takes an additional input a quantum state
|€) € C2p(n), from which it is allowed to access at most q(n) qubits, followed by a measurement
of the first qubit after which it accepts only if the outcome is |1), such that

Completeness. If x € Ayes, then there is a quantum state |§) such that the verifier
accepts with probability at least c,

Soundness. Ify € Ay, then for all quantum states |§) the verifier accepts with probability
at most s.

A promise problem A = (Ayes, Ano) belongs to QPCP[p, q, ¢, s] if it has a (p(n),q(n), c, s)-QPCP
verifier. If p(n) < poly(n), ¢ =2/3, and s = 1/3, we simply write QPCP[q].

And likewise, there is a formulation of the quantum PCP conjecture, using the above notion
quantum probabilistically checkable proofs (QPCPs).
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Conjecture 6.1 (QPCP conjecture - proof verification version). There exists a constant ¢ € N
such that

QMA = QPCP[q].

As in the classical PCP theorem, there exist equivalent formulations of the QPCP conjecture.
In particular, one can formulate the PCP theorem in terms of inapproximability of constraint
satisfaction problems (CSPs), analogously to the classical setting. In the context of the quan-
tum complexity classes (notably QMA), ‘quantum’ CSPs are generalized by local Hamiltonian
problems. The formulation of the quantum PCP conjecture in terms of inapproximability of
local Hamiltonians is:

Conjecture 6.2 (QPCP conjecture - gap amplification version). There exists a (quantum)
reduction from the local Hamiltonian problem with promise gap 2(1/ poly(n)) to another instance
of the local Hamiltonian problem with promise gap Q(1).

It is well known that, at least under quantum reductions, both conjectures are in fact equivalent:

Fact 6.1 ( [AALV09]). Conjecture 6.1 holds if and only if conjecture 6.2 holds.

6.1 Quantum-classical PCPs

We now consider the notion of a quantum PCP conjecture that, intuitively, conjectures the
existence of polynomial-time quantum verifiers for QCMA problems that need only check a
constant number of (the now classical) bits of the proof to satisfy constant completeness and
soundness requirements. More formally, this reads as:

Definition 6.3 (Quantum-Classical Probabilistically Checkable Proofs (QCPCP)). Let n € N
be the input size and p,q : N — N, ¢,s : R>g = R>g with ¢ —s > 0. . A promise problem
A = (Ayes, Ano) has a (p(n),q(n), c,s)-QCPCP-verifier if there exists a quantum algorithm V
which acts on an input |x) and a polynomial number of ancilla qubits, plus an additional bit
string y € {0, 1}2p(n) from which it is allowed to read at most q(n) bits (non-adaptively), followed
by a measurement of the first qubit, after which it accepts only if the outcome is |1), and satisfies:

Completeness. If x € Ayes, then there is a basis state state |y) such that the verifier
accepts with probability at least c,

Soundness. If y € A,,, then for all basis states |y) the verifier accepts with probability
at most s.

A promise problem A = (Ayes, Ano) belongs to QCPCP[p, q,c,s] if it has a (p(n),q(n),c,s)-
QCPCP werifier. If p(n) = O(poly(n)), ¢ = 2/3, and s = 1/3, we simply write QCPCP]q].

We remark that there are likely several ways to characterise a PCP for QCMA, with some be-
ing more or less natural than others. With that said, we believe that the above characterisation
is well-motivated for the following reasons:

1. It is a natural definition following the structure of a QPCP verifier as in Definition 6.2,
now with proofs given as in the standard definition of QCMA (see Definition 2.5).

2. QCPCP[O(1)] captures the power of BQP as well as NP (via the PCP theorem), which are
both believed to be strictly different complexity classes. Since techniques used to prove the
PCP theorem are difficult (or impossible) to translate to the quantum setting [AAV13],
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QCMA QPCP[O(1)]
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BQP NP = PCP|O(1), O(log(n))]

Figure 5: Known inclusions between some complexity classes and our proposed class QCPCP[],
with £ = O(1). A line drawn from complexity class A to another class B, where B is placed
above A means that A C B. Note that the complexity of our proposed class QCPCP[O(1)] is
non-trivial, as it contains both NP and BQP for which it is believed that both BQP ¢ NP and
BQP 5 NP.

studying QCPCP[O(1)] might provide a fruitful direction with which to obtain the first
non-trivial lower bound on the complexity of QPCP[O(1)]. Indeed, the currently best
known lower bound on the complexity of QPCP[O(1)] is NP via the PCP theorem, so does
not yet even capture BQP.

Given this definition for QCPCPs, our ‘quantum-classical’ PCP conjecture is naturally
formulated as follows.

Conjecture 6.3 (quantum-classical PCP conjecture). There exists a constant ¢ € N such that

QCMA = QCPCPJq].

If true, this conjecture would give a ‘QCMA lower bound’ on the power of quantum PCP
systems, showing that a PCP theorem holds for (quantum) classes above NP, taking a step
towards proving the quantum PCP conjecture. If it is false, but the quantum PCP conjecture
is true, then this suggests that QPCP systems must take advantage of the quantumness of their
proofs to obtain a probabilistically checkable proof system. In particular, since QCMA C QMA,
this would imply the existence of a quantum PCP system for every problem in QCMA, but not a
quantum-classical one, even though the problem admits a classical proof that can be efficiently
verified when we are allowed to look at all of its bits.

Note that we have that QCPCP[O(1)] trivially contains CGaLH(k, ¢, §) whenever k = O(logn)
¢ =Q(1) and 6 = Q(1), since we have shown in Theorem 5.2 that this problem is in NP and
therefore admits a classical PCP system to solve the problem. This would not apriori be clear
if we considered guiding states as in Definition 3.1, as we do not know a PCP for the class MA.

6.1.1 Useful facts about QCPCP

We begin by showing two basic properties of QCPCP, which we make use of later on. First, we
show the simple fact that QCPCP, just as is the case for PCP, allows for error reduction at the
cost of extra queries to the proof.

39



Proposition 6.1 (Strong error reduction for QCPCP). The completeness and soundness pa-
rameters in QCPCP can be made exponentially close in somet € N to 1 and 0, respectively, i.e.
c=1-—2"90 gnd s =290 by making tq instead of q queries to the classical proof.

Proof. This follows from a standard parallel repetition argument, running the QCPCP protocol
t times in parallel and taking a majority vote on the outcomes. Since the proof is classical,
it does not matter if the same parts of the proof are queried multiple times by different runs,
unlike the case when the proof is quantum. By taking a majority vote on the ¢ outcomes, this
yields the desired result by a Chernoff bound. O

Second, we show that when one is interested in QCPCP[O(1)], the non-adaptiveness restric-
tion in the definition does not limit the power of the class. The proof of this is similar to how one
would prove it for PCP[O(1), O(logn)], but encounters one difficulty. In the classical setting,
the probabilistic PCP verifier can be replaced by a deterministic one that has an auxiliary input
for a string which is taken uniformly at random. This way, one can ‘fix the randomness’ in the
verifier, and the queries to the proof form a decision tree on the choices over the values of the
proof bits, of which only one path can correspond to the actual proof. However, in the quantum
setting there is no such equivalent notion of ‘fixing quantumness’, and therefore at every step
the circuit might output different values for the indices of the proof that are supposed to be
queried, even when all preceding steps gave the same indices and yielded identical values for the
proof queries as compared to another run. Fortunately, it is easy to fix this by simply running
the circuit many times in a simulated manner, using randomly chosen ‘fake’ proof bits. The
probability that one matches the actual proof bits with the randomly chosen ones is small, but
still constant when the number of queries to the proof is constant. We formalize this in the
following theorem.

Theorem 6.1. Let QCPCP 4 be just as QCPCP but with the power to make adaptive queries to
the proof. We have that

QCPCP[O(1)] = QCPCP4[O(1)].

Proof. The ‘C’ is trivial since adaptive queries generalise non-adaptive ones, so we only have to
show ‘D’. Let V' be the circuit description of an adaptive QCPCP[O(1)] protocol which makes
q queries to a classical proof y. W.l.o.g., we can view V' as a quantum circuit that consists of
applying a unitary Vj to the input and some ancilla qubits all initialized in |0}, followed by a
measurement to determine which bit of the proof to read, after which a new qubit is initialized
in the basis state corresponding to the proof bit value, followed by another unitary V; that acts
on all qubits, and so on, until at the end a measurement of a single designated output qubit is
performed to decide whether to accept or reject (see Figure 6). We can simulate V' on proof y
non-adaptively in the following way. For a total of T'= C2? times, with C' > 1 some constant,
we pick a z € {0, 1}? uniformly at random, and run circuit V' where the answers to the proof
queries are taken to be the bits of z. The final output qubit is measured as usual. This yields
a total of T tuples (z,41,...,%4,0), where the first entry indicates the value of the sampled
z € {0,1}7, the second the ¢ indices of the bits that were supposed to be queried by V, and the
third the outcome of the final measurement, which has o = 1 if the circuit accepted and o = 0
if it rejected. For all T' simulations, we can check if each (z,41,...,14,) is consistent with the
actual proof y, i.e. whether z; = y;, for all [ € [¢], which requires at most ¢T" = ¢C2? = O(1)
queries to y. Since the probability that a randomly selected z is consistent with the proof y is
1/2%, we have that the probability that at least one of the z values in the tuples is consistent
with the proof satisfies

1

T
1 T C
P[At least one z;,,. .., 2;, consistent with y] > 1 — <1 - > >1

1+ L 24T 140

2q
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Nonadaptive QCPCP (QCPCP[g])
proof y
e Vi, .

\\Write /
Read |y i1> y s
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Reject
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Adaptive QCPCP (QCPCP 4[gq])
proof y

Yi yiq

Accept |
Reject
Write Yi; )7 i
Read | > - ad
Y ) - - -
lx) H | i) — - 4 | lig) ] -
0y 4V, Vo o Vi L

Figure 6: General quantum circuits for nonadaptive QCPCPs (QCPCP[g], top) versus adaptive
ones (QCPCP 4]g|, bottom). When we talk about making a ‘query’ to the classical proof we mean
a single read /write procedure, where a single proof bit is read from the proof and then used to
initialise a qubit into the basis state corresponding to the value of the bit. To determine which
part of the proof must be read, a measurement of some designated index qubits is performed,
which outputs a basis state(s) corresponding to index (indices) of the proof. The entire post-
measurement state is allowed to be an input to a subsequent quantum circuit.
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Now we loop over all collected tuples, and for the first tuple we encounter that is consistent
with the proof we check o: if o = 1 we accept, and if o = 0 we reject. If all of the tuples are
inconsistent with the proof, we reject. Hence, if the QCPCP 4 protocol has completeness ¢ and
soundness s, this QCPCP protocol has completeness ¢ = 2C/3(1 + C) and soundness 1/3. We
then have that the YES- and NO-cases are separated by at least

2C 1
— — - =Q(1).
3(1+C) 3 1)
if C' > 1. This can easily be boosted such that the completeness and soundness are > 2/3 and
< 1/3 at the cost of a constant multiplicative factor in the number of queries, by adopting the
strong error reduction of Proposition 6.1. Hence, QCPCP[O(1)] 2 QCPCP4[O(1)], completing
the proof. O

Remark 6.1. The above proof actually holds for all quantum algorithms that have ‘non-
quantum’ query access to a classical string and make only a constant of such queries.

There is an interesting observation one can make when looking more closely at the proof of
Theorem 6.1: the resulting non-adaptive protocol employs a quantum circuit only for generating
indices/output data needed for queries from the proof. Hence, once the queries are made, all
subsequent checks can be performed classically. This means a quantum-classical PCP that is
restricted to only using quantum circuits before the proof is accessed is just as powerful as the
more general definition as per Definition 6.3. In the next subsection we will see that this idea
allows one to put a non-trivial upper bound on the complexity of QCPCPs that make only a
constant number of queries to the proof.

6.2 Upper bound on QCPCP with constant proof queries

Here we show that QCPCP with a constant number of proof queries is contained in BQPNP[”,
i.e. in BQP with only a single query to an NP-oracle. The proof is rather long, but the idea is
simple: just as is the case for QPCP, a quantum reduction can be used to transform a QCPCP
system into a local Hamiltonian problem. However, since the proof is now classical, we can
either use the CNOT-trick of Lemma 4.1 to ensure that the resulting Hamiltonian problem is
diagonal in the computational basis, or directly learn a diagonal (i.e. classical) Hamiltonian that
captures the input/output behaviour of the QCPCP-circuit on basis state inputs.?*> The main
technical work required is to derive sufficient parameters in the reduction, thereby ensuring
that the reduction succeeds with the desired success probability. We first prove a lemma which
upper bounds the norm difference between a certain ‘learned’ Hamiltonian satisfying certain
accuracy constraints, and the actual Hamiltonian.

Lemma 6.1. Let H = .1, wiH; be a k-local Hamiltonian consisting of weights w; € [0, 1]
such that 3 ;e wi = W, and k-local terms H; for which [|[Hy|| <1 for all i € [m]. Let Q>y =
{ijw; > v} and Qo = [m] \ Qs.,, for some parameter v € [0,1]. Suppose H = Zieﬂ>7 wiH; is
another Hamiltonian such that, for all i € Q>~, we have |W; — w;| < € and HHI — I;Q < €.
Then

HH — FIH < m(’y + 60) + (W + m60)61

23We use the language of Hamiltonians here to be consistent with the QPCP setting, but this is not necessary.
Since the Hamiltonian is classical, we might as well say that we learn a polynomial P : {0, l}p("> — Rx>o.
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Proof.

+ Z w;H;

€0 >, 1€Q <y

i€,

<mvy+ Z wW; (fNIZ—Hz) +H¢(u~1i—wi)
iEQZ’Y

<my+ Z wW; (I:IZ—Hz) ‘ +HH2 (u?z'—w,')H
iEQZ’Y

<my+ Y || Hi — Hi|| + || Hill|; — wil
ieQZ’Y

<my+ Y (wi+e)er+ e
iEQZ’Y

<m(y+eo) + (W + meo)er,

where in going from line 1 to line 2 we used the triangle inequality and the definition of (1.,
from line 3 to 4 again the definition of {2>,, from line 4 to line 5 the triangle inequality, from
line 5 to 6 the absolute homogeneity of the norm, from 6 to 7 and 7 to 8 the properties on norm
and absolute value differences as stated in the lemma. O

We will also use the fact that the learning of the Hamiltonian parameters in the reduction
can be viewed as the well-known ‘Double dixie cup’ problem [New60]. In this problem, which
is a generalization of the coupon collector problem, a collector wants to obtain m copies of
each element from a set of n elements, via a procedure where every item is sampled with equal
probability. In our setting, we have that the probability over the items is non-uniform. However,
it is straightforward to obtain an upper bound on the non-uniform double dixie cup problem in
terms of the expectation value in the uniform setting, as illustrated by the following lemma:

Lemma 6.2 (Upper bound on the non-uniform double dixie cup problem). Given samples
Jfrom the set S, = [n], according to a distribution P, where min;ep, P(i) > v, let T}, (Sn) be the
random variable indicating the first time that all elements in S, have been sampled at least m
times according to distribution P. We write T,,(Sy) when the distribution over Sy, is uniform.
We have that

E[T7,(Sn)] < E[Tn(Sr1/47))s
where Sr1/y = [[1/7]] and

E[Tn(Sr1/47)] = [1/7TI[1/7] + (m = 1)[1/v] InIn[1/5]+ O ([1/71).

Proof. W.l.o.g., let the first n items of S/, correspond to the items in S,. We have for all
i € [n] that P (i) > v > P[sample i from Sy /,1]. Hence, if we have seen all elements of S}/, at
least m times, we also have seen all elements of S, at least m times, from which it follows that

E[T), (n)] < E[Tm(St147)];
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where

E[Tn(St1ys)] = [1/y[In[1/7] + (m = 1)[1/7] InIn[1/5] + O ([1/~])
is by the result of [New60]. O

We are now in a position to show the quantum reduction, which proceeds by learning the
probability distribution over which indices of the proof string are queried by the verifier circuit,
as well as the probability that the verification circuit V' of the QCPCP-verifier accepts when
those proof bits take on particular values.

Lemma 6.3. Let ¢ € N be some constant and x an input with |x| = n. Consider a QCPCP[q]
protocol with verification circuit Vy, (which is V' but with the input x hardcoded into the circuit),
and proof y € {0,1}P) | and let

Prlit, ..., i) = P[Vy queries the proof at indices (i1, ...,1q)]
and

2,(i1,ig) (2) = P[Vi accepts given proof bits i1, ... i, are queried and are given by yi, = 21,. .., Yi, = Zq)-

Let Q = [(i1,...,1q) : i € [p(n)],V] € [q]], Q>y = {(i1,...,iq) € QPz(i1,...,14) > v} and
Qey = Q\ Q>,, for some parameter v € [0,1]. Then there exists a quantum algorithm that,
for all (i1,...,iq) € Q> and all z € {0,1}4, provides estimates Polit,. .. ,iq) and S\%(il,_.’iq)(z)
such that

‘ﬁx(il,...,iq) — Py, .. ,iq)‘ < co,

and

A (i1,.nig) (2) — )‘x,(ih...,iq)(z)‘ <€y,

with probability 1 — ¢, and runs in time < poly(n,1/v,€p,€1,1/0).

Proof. Let t € [T] for some T € N to be specified later, and let O%* = ((ii’z, el i}i’z), o"*) be the
tuple resulting from the ¢’th simulation of V., in which the proof y was supposed to be queried
at indices i1, . ..,7; and in which those bits were assigned the values y;; = z1,...,y;, = z4. Now
consider the following quantum algorithm:

e For z € {0,1}4:
— Simulate V' for a total of T' times to obtain samples {O"*},¢[7).

.1,z 1,2
— For all observed (i77,...,i7"), set

~ # times o"* = 1|iy, ..., i, observed

/\x,(il,“.,z’q)(z) =

# times 71, ...,1, observed

.1,z 1,2
e For all observed (iy",...,i4"), set

L Sy # times (ii’z, el if]’z) observed
Pr(it,... i) = Z 54T .

z€{0,1}4
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The intuition is that in each tuple {O%*},c7), the (i7%,...,4g°) give us information to es-

timate the P,(i1,...,i)’s and the combination (i%%,...,i%),0%* allows us to estimate the
)‘x,(il,...,iq)<z)7s' Let us now show that there exists a T" not too large such that the criteria of
the theorem are satisfied. Since the P,(i1,...,i;) form a discrete distribution over the set €2,

we know by a standard result in learning theory (see for example [Can20]) that a total of
o (12 sti/0))
2
€0

samples of O%* (tI}e ‘z’-value is in fact irrelevant here) suffices to get, with probability at least
1 — 6o, estimates P, (i1, ...,1;) which satisfy

Polin, ... ig) — Pulin, ... ,iq)’ < e

To learn estimates 5\17(%”.@)(2) for a single index configuration (i1,...,%,) and proof configu-
ration z, Hoeffding’s inequality tells us that we only need

Sy:=0 <10g(12/51)>

€1

samples of O%* to have that ‘;\x,(il’m,iq)(z) — )\x,(il,m,iq)(z)‘ < €1, with probability 1 — §;. By
Lemma 6.2, we have that the expected number of samples needed such that this condition is
met for all i1,...,i, € >, is upper bounded by

i o[t 2] o )
which by Markov’s inequality means that
(el o[22 o (2D)

samples of O%% suffice to turn this into an algorithm that achieves success probability > 1 — 6.
To ensure that our entire algorithm succeeds with probability 1 — §, we require that

18021 — o)1 —o? 3 > 125

which can be achieved by setting 8y = 6/(2972), dp = §/4 and §; = 6/([1/7]2972). Then the
total number of samples T" that we must take satisfies

r < wsto (L) 2 (11 o [ w0 ([2]))

oo (L2 0) 27 (2] o (M52 [ 2]

2 ) 2
€ 0 €]

which yields a total runtime of O(poly(n, [1/v],1/9,1/€e1,1/€p)) when ¢ = O(1). O
We now have all the ingredients to obtain the main result of this section.

Theorem 6.2. For all constant ¢ € N, we have that

QCPCP[q] € BQPNPI,
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Proof. Consider a QCPCP protocol with verification circuit V,, (which is again V' with input z
hardwired into the circuit) which makes ¢ = O(1) non-adapative queries to a proof y € {0, 1}P(".
Let |[¢) = |x) ‘Ol(”)> ly). We have that?*

P[QCPCP protocol accepts y] = Z Polit, ..., iq))\%(ihwiq)(yil, Vi)
(’i1,...,iq)€Q
= (y| Z Pr(it, ..., iq) Z A (i,...ig) (2)2) (2] |y)
(i1,..-,0q) EQ z€{0,1}9

where H, is a Hamiltonian that is diagonal in the computational basis, and takes the form
Hy= > Palit,oig)Ho iy, i) »
(il,...,iq)EQ

with g-local terms given by

Hy iy,.ig) = Z (1- )\I,(il,-..,iq)(z))‘z> (]

z€{0,1}4

Here |2) (z| should be read as |z) (z|; _, , as it only acts on the ¢ qubits with indices 1, ... 1.
By Lemmas 6.1, 6.2, and 6.3, there exists a polynomial-time quantum algorithm that finds an
estimated Hamiltonian

g$ = Z ﬁz(il, .o 7iQ)gI,(i1,...,iq)7
(ilrnziq)EQeD
where

Hy (iyoig) = Z (1= Xp (i) (2)]2) (2]

z€{0,1}4

such that HHx — H,|| < € with probability > 1 — 8. This means that with probability > 1 — 6,

we have:

o 7€ P = Iy € {0,117 : (y Hly) < L+
o« € Pyp=Vy € {0,110 (y| Hyly) > % —c.

Note that % + € and % — € are separated by a constant for any constant ¢ < 1/6. Since our
reduction created a diagonal (and thus classical) Hamiltonian, which is a CGaLH(g, ¢, ) instance
with ¢ = 1 and 6 = Q(1), the corresponding g-local Hamiltonian problem can be solved in NP.2°
The BQPNPI! protocol would then consist of performing the quantum reduction to obtain the

24We write 1 — (y| Hx |y) only to follow the convention that the local Hamiltonian problem is usually stated as
a minimization problem.

2%We would like to stress here that the NP containment only holds because all complexity classes considered
are defined as classes of promise problems and not just languages. However, the promise on the final diagonal
Hamiltonian eigenvalue problem can be removed by using that (i) every diagonal entry of each local term is
only learned to a certain number of bits of precision and (ii) the eigenvalues of a sum of diagonal matrices
are given by the sums of the eigenvalues (here we have to consider the full matrix, so also with the tensored
identities which are left out in the notation). This way, one knows exactly what values the eigenvalues of the final
Hamiltonian can take, and one can simply modify the completeness and soundness parameters such that they
are both represented exactly by a certain number of bits and have a promise gap which is given by the difference
between two successive numbers in the used binary representation. The promise gap will shrink considerably
(and no longer be constant), but this is fine as the diagonal local Hamiltonian problem will still be in NP (it is
even for an exponentially small promise gap).
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CGalLH(q, ¢, 6) instance, followed by a single call to an NP oracle. This protocol succeeds with
the same success probability as the reduction (which can be made exponentially close to 1 with
polynomial overhead), which ensures completeness > 1 — § > 2/3 and soundness < § < 1/3 for
any 6 < 1/3.

O

The above theorem yields an interesting implication in a world where the quantum-classical
PCP conjecture is true, as illustrated by the following corollary.

Corollary 6.1. If Conjecture 6.3 is true, then we have that NPER® C BQPNP.

Proof. We only have to show that NPBR® C QCMA, since if Conjecture 6.3 is true it implies that
QCMA C QCPCP C BQPNPI ¢ BQPNP by Theorem 6.2. Let ¢(n) : N — N be a polynomial
and M'(z,y) be a deterministic polynomial-time verification circuit that uses as an additional
input a proof y and make queries to a BQP oracle II = (Ilycg, ITpo, ITiny) at most g(n) times as
a black box. We define z € {0, 1, J_}‘I(”) as the string that describes the sets that each query
input belonged to (here ‘1’ indicates I,y ). Define I = {i : z; = O or z; = 1}. Since M is
deterministic, we have that any string 2z’ that matches z on all indices I must produce the same
output, so all of such z’s can be considered correct query strings. For each ¢ € I, a QCMA
verifier can, conditioned on all previous z; for j < ¢ being computed such that it matches the
first 4 — 1 bits of a correct query string, perform the BQP computation required to compute z;
with success probability exponentially close to 1 (this follows by the fact that BQP allows for
probability amplification). If ¢ € [¢(n)] \ I, any output will match in a correct query string in
this case. Since there are a total of g(n) < poly(n) such queries, the overall success probability
of simulating a query sequence can be made > 2/3. The QCMA protocol then simply simulates
M" by executing all operations in M directly and replacing every oracle call by a direct BQP-
computation, which can be easily made to succeed with success probability > 2/3, ensuring
completeness and soundness. ]

An implication of Corollary 6.1 is that it can be used to show that under the assumption
NP C BQP and the quantum-classical PCP conjecture being true, we have that PH C BQP,
where the class PH is the union of all complexity classes in the polynomial hierarchy, i.e.
PH = PNP""" | This follows from

NPNP c NPBQP ¢ BQPNP c BQPBRP — BQP

)

where the first and the third ‘C’ are by assumption, the second is by the assumption of Con-
jecture 6.3 to be true and the last equality follows from the fact that BQP is self-low. We then
have that PH C BQP follows by induction, just as is the case for BPP [Zac88].25 Moreover, this
would also imply that under these assumptions QCMA C BQP, since

QCMA C QCPCP[O(1)] € BQPNP C BQPBRP C BQP.

Both of these implications would provide further evidence that it is unlikely that BQP C NP.

It is known that there exists an oracle relative to which the conclusion of Corollary 6.1 is not
true, i.e. there exists an oracle A relative to which NPBQP* Z BQPNP! [ATK21]. Nevertheless,
this does not necessarily mean the premise (i.e. the quantum-classical PCP conjecture) is false:
one can also easily construct an oracle separation between PCP and NP, and both classes are
now known to be equal [For94]. However, this suggests that, if Conjecture 6.3 is true, showing
so likely requires non-relativizing techniques, just as was the case for the PCP theorem.

26See also https://blog. computationalcomplexity.org/2005/12/pulling-out-quantumness.html.
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7 Implications to the quantum PCP conjecture

In this final section, we consider some implications from all previous sections to the quantum
PCP conjecture. We find that our results give insights into the longstanding open question of
whether the reduction from a QPCP verifier to a local Hamiltonian with constant promise gap
can be made classical. Furthermore, we give a no-go result for the existence of quantum gap
amplification procedures exhibiting certain properties (unless QCMA = NP or QCMA C NgP),
and our results allow us to pose a conjecture which generalizes NLTS (now Theorem [ABN22])
and provides an alternative to NLSS [GLG22].%7

7.1 ‘Dequantizing’ the QPCP-to-local-Hamiltonian quantum reduction

Recall Fact 6.1, which states that the two types of QPCP conjectures (i.e. the proof verification
and local Hamiltonian problem formulations) are known to be equivalent under quantum reduc-
tions. It has also been a longstanding open question whether the QPCP-to-local-Hamiltonian
reduction can be made classical [AAV13]. However, our definition of QCPCP[q] shows that it is
unlikely that a reduction having exactly the same properties as the known quantum reduction
exists, as illustrated by the following theorem.

Theorem 7.1 (No-go for classical polynomial-time reductions). Let ¢ € N constant. For all
constant € < 1/6 there cannot ezist a classical polynomial-time reduction from a QPCPlq| circuit
Ve (which is the QPCP[q] verifier circuit V' with the input x hardwired into it) to a O(q)-local
Hamiltonian H, such that, given a proof [1)),

[P[Ve accepts [¢)] — (1 — (| Ha [9))] <e,
unless QCPCP[q] € NP (which would imply BQP C NP).

Proof. This follows directly from the fact that a QPCP[q] protocol can simulate a QCPCP|¢]
protocol by using the exact same verification circuit V, and asking for basis states as quantum
proofs (this can be forced by measuring the ¢ qubits before any quantum operation acts upon
them). Since one can compute (y| H, |y) efficiently classically for any basis state y and local
Hamiltonian H,, we have that the behaviour of the QCPCP-system given a proof y can be
evaluated up to precision € by computing (y| H; |y), where H, is the O(q)-local Hamiltonian
induced by the QPCP verification circuit V. For any constant € < (¢ — s)/2 completeness and
soundness are ensured. O

7.2 Gap amplifications

We now consider the implications of Section 5 to gap amplifications of guidable local Hamilto-
nian problems.

Theorem 7.2 (No-go’s for quantum-classical gap amplification). There cannot exist

1. A polynomial time classical reduction from an instance of CGaLH(k,(,d) with k > 2,
some constant ¢ > 0, and 6 = ©(1/poly(n)) to some CGaLH(k’, (', 0") with k' > 2, some
constant ' > 0, and ' = Q(1),

unless QCMA = NP, and

2. A quasi-polynomial time classical reduction from an instance of CGaLH(k, (,0) with k > 2,
¢ = Q1/poly(n)), and § = O(1/poly(n)) to some CGaLH(K', (', 0") with k' > 2, {! =
Q(1/ poly(n)), and &' = Q(1),

27See also [CCNN23], which proposes a closely-related conjecture independently of this work.
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unless QCMA C NgP.
Proof. These all follow directly from Theorem 5.2. O

One can also interpret the no-go results for gap amplifications (points 1 and 2 in the above
theorem) in a more general setting: if one wants to prove the QPCP conjecture through a gap
amplification procedure a la Dinur, the procedure needs to have the property that it doesn’t
preserve ‘classically evaluatable’ properties of eigenstates (it cannot even maintain an inverse
polynomial fidelity with such states) unless at the same time showing that QCMA = NP (or
QCMA C NgP, which is also very unlikely)! Hence, this result can be viewed as a ‘QCMA-
analogy’ to the result from [AG19], where the authors showed that the existence of quantum
gap amplifications that preserve stoqasticity of Hamiltonians would imply that NP = MA. We
also point out that it is possible that — even though the complexity of QGaLH and CGaLH* was
in the inverse polynomial precision regime the same for all ( < 1—1/ poly(n) — it might very well
be that their complexities will differ when considering a constant precision, as our containment
results of Section 5 crucially use the properties of classically evaluatable states. We note that
many of the above results can also be easily adopted to the MA setting. All obtained results
and proofs are given in Appendix C.2.

7.3 Classically evaluatable states and QPCP

Finally, we close by formulating a new conjecture which can be viewed as a strengthening of the
NLTS theorem, or as an alternative to the NLSS conjecture of [GLG22] in light of our results,
and which must hold if the quantum PCP conjecture is true and QMA # NP.

Conjecture 7.1 (NLCES (no low-lying classically-evaluatable states) conjecture). There exists
a family of local Hamiltonians { Hy, }nen, where each H,, acts on n qubits, and a constant 8 > 0,
such that for every classically evaluatable state |u) € C*" as in Definition 3.2, we have that for
sufficiently large n that (u| H |u) > \o(Hy,) + 8.

Taking into account our results about the containment of the constant-gapped classically
guidable local Hamiltonian problem in NP — namely the insight that what really matters is the
fidelity of a classically evaluatable state with the low-lying energy subspace of the Hamiltonian,
and not the energy of the classically evaluatable state itself — we can also define a stronger
version of the NLCES conjecture, which must hold if the quantum PCP conjecture holds.

Conjecture 7.2 (Strong-NLCES conjecture). There exists a family of local Hamiltonians
{H\}nen, where each Hy acts on n qubits, and a constant f > 0, such that for sufficiently
large n we have that for all classically evaluatable states |u) € C%", as in Definition 3.2, we
have that |y ()48 [u) I* = o(1/ poly(n)). Here Iy ()4 is the projector onto the space
spanned by eigenvectors of H with energy less than A\o(Hy) + 5.

Note that the NLCES Conjecture is strictly weaker than the Strong-NLCES conjecture, and
that both do not necessarily imply the QPCP conjecture.
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A Perfect sampling access of MPS and stabilizer states

In this appendix we show that both matrix product states (MPS) and stabilizer states are
samplable states, by checking all three conditions of Definition 3.1.

Matrix product states: Let u be a N = 2™-dimensional vector described by an MPS of n
particles, bounded bond dimension D and local particle dimension d.

(i) Let i be the bit representation of i. The algorithm @), can simply be the evaluation of

Tr[Agsl)Ag”) . ..Agf”)] for s = 4, which can be done via a naive matrix multiplication
algorithm in time O(nD?), and thus clearly runs in time O (poly(log(N)) when d =
O(poly(n), D = O(poly(n).

(ii) We will use that expectation values that are a tensor product of 1-local observables can
be computed efficiently for a MPS im time O(nd?>D3) [VMCO08]. We assume that m is
already known (see item (iii)), and that our MPS is therefore normalized. The algorithm
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S§Q,, works as follows: one computes the probability that the first qubit is 1 by computing
the expectation value of the 1-local projector II; = |1)(1]|;. Let p1 = (u|Il; |u) and
po = 1 — p1. The algorithm now samples a bit j; € {0,1} according to distribution
{po,p1}, and computes the expectation value of the 2-local projector Il; 1 to obtain p;, 1
and pj, o, from which again a bit is sampled according to the distribution p;, o,p;,,1. This
procedure is repeated for all n— 2 remaining sites, which yields a sample j with probability
luj|®. The total time complexity of this procedure is O(n?d*D?) = O(poly(log N)), when
d = O(poly(n)) and D = O(poly(n)), as desired.

(iii) m can easily be computed by considering the overlap of the MPS with itself, which can be
done in time O(npD3) as the overlap can be viewed as the expectation value of a 0-local
observable.

Stabilizer states: Let u € C?", N = 2", be a stabilizer state on n qubits.

(i) This follows from the fact that basis states are stabilizer states, and that there exists an

algorithm Q, that computes inner products between stabilizer states in time O(n3) =
O(poly(log N)) [AGO4].

(ii) This follows from the fact that stabilizer states can be strongly simulated (i.e. marginals
can be computed), which allows for weak simulation as shown in [TDO04] at overhead n
for the cost of strong simulation. Using the strong simuation algorithm as in [AG04], this
gives an algorithm SQ,, that runs in time O(n3) = O(poly(log N)).

(iii) m =1 by definition.

B MPS to circuit construction

In this section, we show that any MPS on n qubits with bond dimension D can be implemented
on a quantum computer up to distance e, with respect to the 2-norm, in O(nD log(D)? log(Dn/¢))
one- and two-qubit gates and a O(npoly(D))-time classical pre-calculation. The result is based
on a result from [SSV*+05]. For completeness we will first repeat their result. Let H4 = CP and
HPB = C? be the Hilbert spaces characterising a D-dimensional ancillary system and a single
qubit, respectively. Then every MPS of the form

V) = (¢r| Vi ... Vi |é1)

with arbitrary maps Vi : Ha +— Ha @ Hp, and |¢1) , |¢F) € Ha is equivalent to a state
)= (e T 7160

with f/k : Ha— Ha ® Hp isometries and such that the ancillary register decouples in the last
step

Voo |61} = 16r) ® [0)

Note that this is the canonical form of the MPS and can be found using O(npoly(D)) classical
pre-calculation time. The isometries are of size 2D x D acting on the auxiliary system sequen-
tially and create one qubit each. Every Vi can be embedded into a unitary U : Ha @ Hp —
Ha ® Hp of size 2D x 2D, acting on the auxiliary system and a qubit initialised in |0) such

that Uy ‘gz;k> ® [0) =V ‘gzgk> This gives the quantum circuit
Un...Us ’&1> 10)°" = ‘$F> |¥) .
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‘¢~1> is a state in H 4 which can be generated on [log(D)] qubits, up to normalisation. By the
Solovay-Kitaev theorem, this state can be prepared up to distance € by a circuit of

O([log(D)]*Dlog([log(D)12D/e)) = O(Dlog(D)* log(1/e)

two and one-qubit gates. The unitaries Uy act on [log(D)] 4+ 1 qubits hence they can be
approximated up to error € in

O(([log(D)] + 1)*(D + 1) log(([log(D)] + 1)*(D + 1)/¢)) = O(Dlog(D)* log(D/e)).

Note that because every unitary incurs an error € the entire error can be bounded by ne, setting

individual error to € = £ ensures that the generated state is at most e far from the desired

state. This results in a circuit of complexity: O(nDlog(D)*log(nD/€)) generating the MPS up
to normalisation.

C Results for MA

Let us define yet another class of guidable local Hamiltonian problems, which constrains the
considered Hamiltonians to be of a specific form.

Definition C.1 (Classically Guidable Local Stoquastic Hamiltonian Problem). The Classi-
cally Guidable Local Stoquastic Hamiltonian Problem, shortened as CGaLSH(k,d, (),
has the same input, promise, extra promise and output as CGaLH(k,d,¢) but with the extra
constraint that the considered Hamiltonian is stoqastic. For our purposes this means that all m
k-local terms H; of the Hamiltonian H = 22—01 H; have real, non-positive off-diagonal matriz
elements in the computational basis.

By adopting the same proof structure as we used to prove Theorem 4.1, we can obtain a
similar result for CGaLSH. For this, we first define a coherent description of MA, denoted as
MA,.

Definition C.2 (Coherent classical verifier [BBT06]). A coherent classical verifier is a tuple
V = (n, ny, ne,ny, U), where

n = number of input bits
Ny =  number of witness bits
nog = number of ancillas |0)
ny = number of ancillas |+)
U = quantum circuit on n + ny + nog + ng qubits with X, CNOT and Toffoli gates.

The acceptance probability of a coherent classical verifier V' on input string x € {0,1}" and
witness state |¢) € (C2)®nw is defined as
P[Va xz, w} = <¢m| UTHoutU |¢m> )

where [Vi) = |x) |0)E"0 |[)E™ s the initial state and T,y = (0|0) ® Iose project the first qubit
onto the state |0).

Definition C.3 (MA,). The class MA[c, s] is the set of all languages L C {0,1}* for which there
exists a (uniform family of ) coherent classical verifier circuit V' such that for every x € {0,1}*
of length n = |x|,

e if x € L then there exists a poly(n)-qubit witness state |1;) such that V(x,|1,)) accepts
with probability > ¢(= 2/3),
e if & & L then for every purported poly(n)-qubit witness state |¢), V(z,|v)) accepts with
probability < s(=1/3).
Lemma C.1 ( [BBT06]). MA = MA,
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C.1 Proof of MA-hardness of the Classically Guidable Local Stoquastic Hamil-
tonian problem

Theorem C.1. CGaLSH(%,6,() is MA-hard for k > 7, ¢ € (1/poly(n),1 — 1/ poly(n)) and
d =1/ poly(n).

Proof. This follows by using a nearly identical construction as have used to prove Theorem 4.1,
but then starting from a MA, verification circuit (Definition C.2) instead of a quantum circuit
and with some minor changes. Let us go through the relevant steps of the construction and
verify that they preserve stoquasticity. We will not concern ourselves with reducing the locality,
and hence the parts of the construction needed to achieve this in the QCMA setting are left out.

e We have that MA,[c, s] = MA/[1, s], since this holds for MA and the MA,, verifier has the

same acceptance probability as the MA verifier.

e The CNOT- and Marriot and Watrous-tricks can be applied as the CNOT gate is part of
the allowed gate-set in Definition C.2.

e One can again use Kitaev’s clock construction with a small penalty € on Hyy;, where the
only terms that are off-diagonal in the computational basis come from Hpop and Hoye.
Inspection of these terms confirms that the Hamiltonian is stoquastic [BBT06]. Since the
Toffoli gate is a 3-local gate, we have that our Hamiltonian becomes 6-local.

e The block-encoding trick also preserves stoquasticity, as both blocks themselves are sto-
quastic. This does increase the locality of the Hamiltonian by 1, and therefore it becomes
7-local.

e Finally, the pre-idling can be done since the identity is trivially in any gate set.
O

Somewhat surprisingly, a variant of the guidable local Hamiltonian problem for stoqastic
Hamiltonians was already considered in a work by Bravyi in 2015 [Bral5].2® However, the
considered promise on the guiding state is different, as can be read from the following definition.

Definition C.4 ( [Bral5]). Let H be a stoquastic Hamiltonian. We will say that H admits a
guiding state if and only if there exists a pair of normalized n-qubit states 1, ¢ with non-negative
amplitudes in the standard basis such that v is the ground state of H, the function x — (z|p)
is computable by a classical circuit of size poly(n), and

{z[¢)

(z]g) > Doly(n)

for all x € {0,1}".

Using the Projection Monte Carlo algorithm with a variable number of walkers, Bravyi was
able to show MA-containment of a guided Stoquastic Hamiltonian problem that uses guiding
states satisfying Definition C.4. Note that Definition C.4 implies that the fidelity satisfies
| (¥|#) |2 = Q(1/ poly(n)), but that the converse is not necessarily true. Therefore, Bravyi’s
result cannot be directly used to obtain MA-containment of CGaLSH(k, d, (). We leave this as
an open problem for future work.

28See also [Liu21], which considers StogMA circuit problems where the witnesses are promised to be of a more
restricted form.
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C.2 PCP statements for MA

For MA it is not so clear how to define a PCP statement in a proof verification version, as the
verifiers used in the original PCP system are already probabilistic. In [AG19], the authors define
stoqastic PCP (SPCP) in the following way:

Conjecture C.1 (SPCP conjecture - frustration-free Hamiltonian version [AG19]). There exist
constants € > 0, k',d' > 0 and an efficient gap amplification procedure that reduces the problem
of deciding if a uniform stoquastic d-degree k-local Hamiltonian is frustration-free or at least
inverse polynomially frustrated, to the problem of deciding if a uniform stoquastic d'-degree
k' -local Hamiltonian is frustration-free or at least € frustrated.

Theorem C.2 ( [AG19]). If conjecture C.1 is true, then MA = NP.

We obtain similar results for our guidable stoquastic Local Hamiltonian problem, which
differs from [AG19] in the fact that the Hamiltonian does not have to be uniform and the
energy decision parameters can be arbitrary real numbers (instead of zero or bounded away
from zero, as is the case in deciding on the frustration of the Hamiltonian). However, this
comes with the extra constraint that there has to exist a classically describable guiding state,
as per Definition 3.2. Formally, we can define another version of a SPCP-conjecture in terms of
guidable Hamiltonians in the following way.

Conjecture C.2 (SPCP conjecture - guidable Hamiltonian version). CGaSLH(k, ¢, d) with k >
2, some constant ( > 0, and 6 = (1) is MA-hard under classical poly-time reductions.

Just as in the QCMA-setting (see Theorem 7.2), we obtain certain no-go results which must
hold if Conjecture C.2 is true.

Theorem C.3. Conjecture C.2 (SPCP conjecture) is true if and only if MA = NP.

Proof. The =" implication follows from Theorem 5.2, since CGaSLH(k, ¢, d) is a special case
of CGaLH(k,(,d). ‘<=’ follows from the fact that the NP-hard Hamiltonian in Lemma 5.3 is
diagonal, which therefore is also stoquastic. O

Furthermore, we can also give no-go results on the existence of stoquastic gap amplification
procedures.

Theorem C.4. There cannot exist

1. Stoquastic gap amplification: a polynomial-time classical reduction from an instance
of CGaSLH(k,(,0) with k > 2, some constant ¢ > 0, and 6 = ©(1/poly(n)) to some
CGaSLH(K, (', &) with k' > 2, some constant ' > 0, and ' = Q(1),

unless MA = NP, and

2. Stoquastic gap amplification (2): a quasi-polynomial time classical reduction from an
instance of CGaSLH(k, ¢, d) with k > 2, ( = Q(1/ poly(n)), and § = O(1/ poly(n)) to some
CGaSLH(K', (", ¢") with k' > 2, ' = Q(1/poly(n)), and &' = Q(1),

unless MA C NqgP.
Proof. This follows again from Theorem 5.2. O

Hence, these results might provide yet another way, next to [AG19], to derandomize the
class MA (i.e. show that MA = NP).
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D QCMA versions of Quantum SAT

The canonical NP-complete problem is satisfiability, and whilst the general local Hamiltonian
problem can be viewed as the ‘quantum analogue’ of satisfiability, one might argue that an even
closer analogue would be the slightly different problem of quantum satisfiability, introduced
in [Bra06]. In quantum satisfiability, shortened as k-QSAT, the Hamiltonian is given by a
sum of local projectors and the task is to decide whether there exists a quantum state |£)
such that all terms project |£) to zero or the expectation value of H is greater or equal than
some inverse polynomial, for all quantum states. k-QSAT was shown to be QMA -complete for
k > 3 [Bra06, GN16], and it can be solved in linear time classically when k& < 2 [ASSZ18].

In the case of QMA it is very much unclear whether QMA = QMA;, but for QCMA we
know that in fact QCMA = QCMA;, as mentioned before. The simple observation that in
our proof of Theorem 4.1 the ground state energy is exactly zero in the YES-case and inverse
polynomially large in the NO-case, hints that our construction actually shows a result for a
quantum satisfiability version for QCMA (which implies hardness for the more general local
Hamiltonian version), and indeed with some very minor modifications this can be shown to be
the case. First we formally define the ‘QCMA versions’ of satisfiability.

Definition D.1 (Guidable Quantum Satisfiability). Guidable Quantum Satisfiability Problems
are a class of problems defined as having the following input, promise, one of the extra promises
and output:

Input: A collection {Il; : i = 1,...,m} of k-local projectors acting on n qubits, a precision
parameter § > 0. Let the Hamiltonian H = ;" | II; be the sum of all these projectors.
Promise: Either there exists a state |w) s.t. II; |w) =0 for alli=1,...,m (i.e. \o(H)=0),
or otherwise > i, | (y|IL;|y) | > & for all states |y) € C*" (i.e. A\o(H) >6).

Extra promises: Denote 11y for the projection on the subspace spanned by the ground state
of H. Then for each problem class, we have that either one of the following promises hold, each
giving a different problem:

1. CGa-QSAT(k,d,¢) Classically Guidable Quantum Satifisfiability Problem :

There exists a classically evaluatable state u € C*" for which Hl‘[gsuH2 >q.

2. QGa-QSAT (k,,¢) Quantumly Guidable Quantum Satifisfiability Problem:
There exists a unitary V implemented by a quantum circuit composed of at most T =

poly(n) gates from a fized gate set G that produces the state |p) = V'|0), which has
ITgs [9)]1* > ¢

Output:
o If \o(H) =0, output YES.

o If \o(H) > 6, output NO.

Theorem D.1. CGa-QSAT(k,6,¢) is QCMA-complete for k > 6, § = ©(1/poly(n)) and ¢ €
(1/poly(n),1—1/poly(n)). QGa-QSAT(k,d,() is QCMA-complete for k > 6, § = ©(1/ poly(n))
and ¢ € (1/ poly(n),1].

Proof. We will follow the same hardness construction as was used to prove Theorem 4.1, mak-
ing the following three observations: (i) Definition D.1 requires that the Hamiltonian is an
unweighted sum of projectors. Note that the Hamiltonian of Eq. (1) is of this form except for
the fact that Hyy is weighted by a factor e, which is needed in order to be able to use Eq. 6.
We can easily work around this by instead of multiplying Hoy, by a factor e we add [1/€] times
each of the Hi,, Heock and Hprop terms, which allows one to follow the same analysis as when
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eHqy was used instead. (ii) Hyo of Eq. (4) is a sum of projectors, and the block-encoding trick
used to construct H of Eq. (5) ensures that all terms remain projectors. (iii) The ground state
energy is (before the locality reduction through the perturbative gadgets, which we do not apply
here) precisely 0 in the YES-case and inverse polynomially far from zero in the NO-case. This
also ensures containment through the use of quantum phase estimation. Also, note that we do
not have to scale down the Hamiltonian as ||H|| < 1 is not required by Definition D.1. O
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