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Abstract—In X-ray Computed Tomography (CT), projections
from many angles are acquired and used for 3D reconstruction.
To make CT suitable for in-line quality control, reducing the
number of angles while maintaining reconstruction quality is
necessary. Sparse-angle tomography is a popular approach for
obtaining 3D reconstructions from limited data. To optimize its
performance, one can adapt scan angles sequentially to select the
most informative angles for each scanned object. Mathematically,
this corresponds to solving and optimal experimental design
(OED) problem. OED problems are high-dimensional, non-
convex, bi-level optimization problems that cannot be solved
online, i.e., during the scan. To address these challenges, we pose
the OED problem as a partially observable Markov decision
process in a Bayesian framework, and solve it through deep
reinforcement learning. The approach learns efficient non-greedy
policies to solve a given class of OED problems through extensive
offline training rather than solving a given OED problem directly
via numerical optimization. As such, the trained policy can
successfully find the most informative scan angles online. We
use a policy training method based on the Actor-Critic approach
and evaluate its performance on 2D tomography with synthetic
data.

Index Terms—X-ray CT, optimal experimental design, adaptive
angle selection, reinforcement learning.

I. INTRODUCTION

X -RAY Computed Tomography (CT) is a non-destructive
method widely used to evaluate the quality of complex

internal structures in industrial parts. However, there is a trade-
off between high-quality reconstruction and scanning speed,
as a time-consuming full 360-degree rotation is typically
needed to obtain comprehensive information. Kazantsev [1]
and Varga et al. [2] have pointed out that angles are not equally
informative. Therefore, reducing the number of angles by
extracting more informative data can help to improve the trade-
off between reconstruction quality and scanning efficiency.
This trade-off can be formulated as a bi-level optimization
problem with respect to angle parameters [3]. The low-level
optimization problem formulates the image reconstruction
based on the chosen, limited projection data, while the high-
level optimization problem finds angles that optimize the
reconstruction quality.

Bayesian Optimal Experimental Design (OED) is a mathe-
matical framework that enables the acquisition of informative
experimental designs while minimizing experimental costs
[4, 5]. In Bayesian OED, the prior distribution represents the
current belief about the underlying ground truth, while the
posterior distribution refers to the updated belief after taking

into account the new measurements obtained through the
selected design. The difference between the prior and updated
posterior reflects the change in uncertainty or equivalently
the amount of information gained from the experiments. In
simultaneous experimental design, we apply this procedure
to select the optimal viewing angles in a single step, while
in sequential experimental design, the goal is to select the
viewing angles step-by-step, based on the projection data that
has been collected so far. It is this variant of the experimental
design problem that we are interested in, as it can adapt the
selected viewing angles to the object under investigation. Two
widely used methods for measuring the uncertainty reduction
or information gain in Bayesian OED are D-optimality, and
A-optimality [6]. D-optimality measures the information gain
using the Kullback-Leibler divergence to compare the poste-
rior and prior distributions, while A-optimality computes the
expected error between the underlying ground truth and the re-
construction. However, the high dimensionality, computational
cost, and typically unknown or unobtainable prior distribution
prevents the direct application of the aforementioned technique
for sequential optimal design in real-time CT imaging.

Several methods have been proposed to address these is-
sues. Implicit prior information has been the focus of some
researchers. To this end, Batenburg et al. [7] and Dabravolski
et al. [8] used a set of template images comprising Gaussian
blobs to represent prior distribution samples and introduced
an upper bound [9] to approximate the information gain,
indicating the solution set’s diameter. Gaussian distribution has
been used as a tractable method for the prior distribution in
[6]. Burger et al. sequentially selected the projection angle and
the source-receiver pair’s lateral position considering a specific
region of interest and explored Bayesian A- and D-optimality
to update the posterior in the covariance matrix and mean after
each experimental step. Helin et al. [10] extended this work
to non-Gaussian distributions and employed a Total Variation
(TV) prior to enhance edges. In practice, a lagged diffusivity
iteration generated a series of Gaussian approximations for
the TV prior. Additionally, Barbano et al. [11] proposed a
linearized deep image prior that incorporated information from
the pilot measurements as a data-dependent prior. They then
used a conjugate Gaussian-linear model to determine the next
informative angles sequentially. However, these methods can
be time-consuming and are not well-suited for fast in-line
applications.

In an industrial context, the use of Computer-Aided Design
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(CAD) models is a common form of prior information. CAD
models enable offline optimization by allowing angle acqui-
sition using simulation tools. Fischer et al. [12] used a CAD
model of the object to optimize task-specific trajectories based
on the detectability index proposed by Stayman et al. [13]. The
detectability index is computed using the modulation transfer
function and noise power spectrum to evaluate its fitness with
a user-defined frequency template. In addition to task-specific
optimization, Herl et al. [14] considered data completeness
optimization using a Tuy-based metric. Meanwhile, Victor
et al. [15] obtained a complete set of angles using either a
simulation model or a CAD model and then used the discrete
empirical interpolation method and related variants to sub-
sample from the set of angles. Once a trajectory is optimized
offline sequentially by a CAD model, it can apply fast in the
real application. Nonetheless, the alignment of the optimized
trajectory outcome to the real-world coordinate system through
proper registration is crucial before executing the real scan
[16]. Hence, these methods lack genuine adaptability in in-
line applications.

In terms of the methods discussed above, achieving adap-
tivity while maintaining a fast scan for in-line settings still
presents a significant challenge. Additionally, informative an-
gles are typically selected in a greedy manner after evaluating
all available angle candidates. In the field of medical CT,
Shen et al. [17] addressed this issue by training a deep
reinforcement learning agent on a medical CT image data
set to personalize the scanning strategy sequentially. They
utilized a gated recurrent unit as a policy network that maps all
the previous measurements to a probability distribution over
discrete angles and a radiation dose fraction. The next angle is
chosen by sampling from this distribution. This way, around
60 are chosen sequentially.

We also leverage deep reinforcement learning to address
the aforementioned challenges in our work but we focus on
the application of industrial, in-line CT inspection instead
of medical CT: We are considering very few scan angles
(< 10), simple image features, but a potentially large inter-
subject variation due to arbitrary placement and changing
samples. For these reasons, we diverge from [17] by using
the reconstruction space as the main state variable, avoiding
problems caused by the increasing number of measurements.
Due to this we use very different network architectures to
parameterize the learned policy. By employing a deep re-
inforcement learning approach, we can train the policy to
facilitate adaptive angle selection, offering a more efficient
alternative to solving the high-dimensional, non-convex, bi-
level optimization problem. Figure (1) illustrates the proposed
reinforcement learning approach for X-ray CT to solve this
OED problem.

The contributions of this work include a novel formulation
of the angle selection problem as a POMDP, the use of the
Actor-Critic approach from the field of reinforcement learning
to address the OED problem, and the development of an
adaptive approach that can be fast applied in in-line CT
applications.

The structure of this paper is as follows. In section II,
we present the background on CT reconstruction, Bayesian
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Fig. 1. The interaction between the environment and the agent during policy
training

OED, and reinforcement learning. In section III, we discuss
the formulation of this experimental design as a POMDP
and describe the computation of the policy gradient using
the Actor-Critic approach. We provide a set of numerical
experiments in section IV to assess the performance of our
proposed method. Finally, in section V and section VI, we
discuss and summarize our findings.

II. BACKGROUND

A. CT Reconstruction

In sparse-angle tomography, the challenge lies in accurately
reconstructing an image from incomplete measurement data,
where only a limited number of angles are acquired. This
inverse problem is severely ill-posed, meaning that small errors
in the measurements could result in a large reconstruction
error, or that several reconstructions are consistent with the
measurements [18]. The Filtered Back-Projection (FBP) al-
gorithm, a traditional analytical reconstruction method, has
limitations when used for sparse-angle tomography. It assumes
that the measurements are acquired with low noise over the
full angular range, resulting in inferior reconstructions when
applied to limited data [19].

To address this challenge, it is necessary to incorporate prior
information into the reconstruction algorithm to compensate
for the limited data [19, 20]. Regularised algebraic reconstruc-
tion methods have been proposed to incorporate such prior
information efficiently. When applied to limited data, these
can result in more stable and accurate reconstructions.

Therefore, we represent the object that we would like to
reconstruct as x̄ ∈ Rn where n ∈ N represents the number of
pixels or voxels. A single noisy measurement y at angle θ is
generated as

y(θ) = A(θ)x̄+ ϵ, (1)

with ϵ ∼ N (0, σ2I) and A(θ) is a discretization of the Radon
transform along angle θ.

The reconstructed image from M measurements along
angles θ = {θ1, . . . , θM} is obtained via

x̂(θ) = argmin
x

1
2

M∑
k=1

∥A(θk)x− y(θk)∥22 + αL(x), (2)
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where L(x) is a regularization term representing prior infor-
mation for x.

B. Bayesian OED

Bayesian OED is a statistical framework that optimizes the
design of an experiment by trading off the information gain
with the cost of an experiment.

In the context of X-ray CT experimental design, the utility
function in Bayesian OED measures the reconstruction quality,
where the true underlying ground truth x̄ is estimated by
x̂(θ) from measurements y ∈ Y obtained under experimental
conditions specified by θ ∈ D. The optimal design θ∗

maximizes the expectation of the utility function over the
design space D with respect to the measured data y and the
model parameter x̄.

Sequential OED is an approach that adjusts the design pa-
rameters as new data is acquired. This is achieved by treating
the experiment as a sequential decision-making process, where
the aim is to select the most informative design parameters
based on the observed data to maximize the utility function. In
the kth step of an X-ray CT experiment, the process involves
generating observed data using a data model πdata(yk|x̄; θk)
(as shown in Equation (1)), updating the posterior distribution
of x given the observed data up to step k (denoted by
πpost(xk|y1:k;θ1:k) in Equation (2)), obtaining the reconstruc-
tion for the underlying ground truth. Subsequently, the most
informative angle θk+1 is selected as the next design parameter
to be used, which maximizes the utility function.

C. Reinforcement Learning

Reinforcement learning is a widely used approach for se-
quential decision-making, allowing agents to learn how to map
the current state to actions that maximize the total reward for
the entire process [21]. Since it considers the long-term effects
of actions, reinforcement learning can realize non-greedy
sequential decision-making. This approach is based on the
Markov Decision Processes (MDPs) framework {S,A, πt, R},
which consists of a set of states S , a set of actions A, a
transition operator πt representing the conditional probability
distribution from the current state to the next state after
selecting an action, and a reward function: S × A → R that
provides feedback from the environment at each time step.

A policy πpolicy in reinforcement learning is a mapping
from the current state to a probability distribution of actions:
πpolicy(ak|sk).

In MDPs with a finite number of states, the process begins
from an initial state s1 with a probability distribution πs(s1).
The agent follows a policy that maps the initial state to the
first action, leading the agent to transition to the next state
and receive a reward from the environment. This process
is repeated until a terminal state is reached, generating a
trajectory or an episode τ = (s1, a1, r1, ..., sM , aM , rM ) of
M steps.

In practical applications, the problems encountered may
not conform to the idealized framework of a reinforcement
learning problem. To address this, POMDPs are utilized. A
POMDP can be defined as a tuple {S,A,O, πt, πe, R}, where

two additional components are included in addition to the ones
in the standard MDP formulation: a finite observation set O
and an observation function πe that defines the conditional
probability distribution over the observation in the underlying
state after executing an action. Since the agent has limited
knowledge about the underlying state in POMDPs, the policy
must either map historical observations to the next action or
extract information from historical observations in the form of
a belief state.

Reinforcement learning aims to find the optimal policy
with parameters w, denoted as π∗

policy(.;w), that generates
the trajectory or episode τ to maximize the expected total
reward. The objective function for reinforcement learning can
be expressed as follows:

J(w) = Eτ∼πchain

M∑
k=1

γk−1rk,

where πchain = πs(s1)

M∏
k=1

πpolicy(ak|sk;w)πt(sk+1|sk, ak).

(3)
The objective function measures the expected total reward

with a discount factor γ ∈ (0, 1] to account for future uncer-
tainty, and πchain represents the trajectory generation process
by the policy.

The total rewards for one trajectory are obtained after
the agent completes an episode. The expectation over all
trajectories can be estimated by sampling many trajectories. To
enhance the process’s efficiency, some reinforcement learning
approaches utilize value functions that evaluate the expected
future benefits from the kth step following the policy. The
state-value function V (sk) quantifies the expected cumulative
reward from state sk, taking into account all possible trajec-
tories following the current policy that start from this state.

III. METHODS

A. Sequential OED as a POMDP

We take the reconstruction as a belief state rather than
considering measurements as the state, as done in [17]. To
formulate the problem, we adopt a Bayesian OED framework
and model it as a POMDP. The POMDP formulation for the
X-ray CT experiment is defined as follows:

• Observation space O: The observation space is defined
as the set of measurements generated by the data model
expressed in Equation (1).

• State space S: The ground truth x̄ represents the un-
derlying state. The current reconstruction (belief state)
of the underlying state, denoted by x̂(θ1:k), is obtained
using the SIRT algorithm with box constraints [22] as
specified in Equation (2). For ease of notation, we use x̂k

to represent the reconstruction at the kth step. In addition,
we maintain a vector bk to keep track of the angles that
have been selected before the kth experiment to prevent
repeating the same angles.

• Action space A: The action space is a discrete design
space consisting of 180 integer angles from the range
[0◦, 180◦).
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• Transition function πt and observation function πe: The
transition function πt is deterministic, as the underlying
state remains unchanged. On the other hand, the data
model πe given by Equation (1) serves as the observation
function, from which we only consider measurement
samples.

• Reward function R: The reward function is defined based
on the PSNR value between the reconstruction obtained
after selecting the angle θk and its ground truth. Two
reward settings are considered, both of which correspond
to A-optimality in Bayesian OED.:

– End-to-end setting: The reward is given as follows:

R(x̂k+1, x̄) =

{
PSNR(x̂k+1, x̄) if k = M

0 otherwise

If the fixed number of angles M is reached, the
episode terminates, and the final PSNR value is
given. Otherwise, the agent receives a reward of 0.

– Incremental setting: The reward is given as follows:

R(x̂k+1, x̂k, x̄) = PSNR(x̂k+1, x̄)−PSNR(x̂k, x̄)

The reward represents the improvement in the current
reconstruction quality compared to the previous step.

B. Actor-Critic method for policy optimization

The Actor-Critic method is a novel category in the field of
reinforcement learning for computing the policy gradient on
the objective function described in Equation (3). The proposed
approach leverages the concept of value functions and utilizes
a state-value function to obtain the expected future rewards
at the current state, thereby expediting the learning process.
Additionally, this method parameterizes the value function.
The Temporal-Difference (TD) error [21] is employed in
this approach, which calculates the discrepancy between the
estimated value function for the current state and the sum of
the current reward and the discounted estimated value function
for the next state. This enables the state-value function to be
updated through bootstrapping and provides a direction for
policy gradient.

At the beginning of each episode, a zero matrix and a
zero vector are used as the initial state and action vector,
respectively. The complete algorithm is presented in Algorithm
(1).

C. Network architecture

The proposed method requires the agent to extract relevant
features from high-dimensional images to increase learning
efficiency, which is accomplished using a deep neural encoder
network. The architecture of the encoder network and the
Actor-Critic network is shown in Figure (2), with the input
image being of dimension 128 × 128. The neural network’s
connection weights represent the policy parameters w1 and
the state-value function parameters w2.

The proposed model adopts a shared encoder network
between the actor and critic networks. This shared encoder net-
work comprises three convolutional neural networks (CNNs)

Algorithm 1 Actor-Critic.
1: Initialize the policy parameters w1 and the value function

parameters w2 randomly. Set step sizes αw1 > 0 and
αw2 > 0

2: for each episode do:
3: Get a phantom sample x̄ then initialize x̂1 = 0 and

b1 = 0 (first state of this episode).
4: for k = 1, ...,M :
5: Select the angle based on the soft-max policy,

which maps the inputs to a probability distribution
that sums to 1: θk ∼ πpolicy(·|x̂k, bk;w1)

6: Get new measurements yk from Equation (1)
7: Reconstruct new image x̂k+1 from Equation (2)

and get a new vector bk+1

8: Get reward rk using end-to-end setting
R(x̂k+1, x̄) or incremental setting R(x̂k+1, x̂k, x̄)
Estimate the state-values V̂ (x̂k, bk;w2) and
V̂ (x̂k+1, bk+1;w2) using a neural network

9: Compute TD error:
δk ← rk + γV̂ (x̂k+1, bk+1;w2)− V̂ (x̂k, bk;w2)
(If k = M , V̂ (x̂k+1, bk+1;w2) = 0)

10: Update policy function parameters w1:
w1 ← w1 +αw1∇w1

log πpolicy(θk|x̂k, bk;w1)δk

11: Update value function parameters w2:
w2 ← w2 + αw2∇w2

V̂ (x̂k, bk;w2)δk
12: end for
13: end for

each with padding and group normalization, followed by a
leaky Rectified Linear Unit (ReLU) activation and a max
pooling operation for down-sampling. The shared encoder
network consists of a total of 13,320 parameters. Furthermore,
the following actor and critic networks are separate and have
170,820 and 900,601 parameters, respectively.

Figure (2) outlines the process by which the network
operates in the context of the actor-critic method. The encoder
network takes the reconstruction x̂k as input and produces a
feature vector in the bottleneck layer, which is flattened into
a 1D vector and concatenated with the 1D action vector bk.
The resulting information is then fed into the following actor
and critic networks.

The actor network uses a Soft-max policy to map the
information to a probability distribution over all possible
angle candidates in the action space, while the critic network
estimates the state-value function V̂ (x̂k, bk;w2). Based on
the probability distribution generated by the actor network,
the agent selects the next angle θk and subsequently collects
measurements to obtain a new reconstruction x̂k+1. The action
vector is updated as bk+1 accordingly.

To compute the policy gradient and update the parameters
in the value function using TD error in Algorithm (1), the
new reconstruction x̂k+1 and the new action vector bk+1

are fed into the network again. This is done to calculate a
new state-value function V̂ (x̂k+1, bk+1;w2). Once an angle is
selected, both the policy parameters w1 and the value function
parameters w2 are updated once.
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Fig. 2. The combined network architecture first consists of an image
encoder branch that processes the current reconstruction. Then, the code
is concatenated with the previous action vector and fed into a network
parameterizing the policy (Actor, left bottom) and a network estimating the
state value (Critic, right bottom).

IV. NUMERICAL EXPERIMENTS

We examine in intuitive numerical experiments whether the
learned policies are really able to sequentially adapt the scan
angles to the object (a-posteriori adaptation). For this, we use
various simple numerical phantoms for which the informative
angles are well-known. Throughout our experiments, we focus
on parallel-beam geometry and simple 2D tomography using
synthetic data. The code and synthetic data are available on
Github 1.

A. Data sets

In our numerical experiments, we consider several shapes
depicted in Figure (3). All phantoms in the data sets have a size
of 128×128 and are binary images. To assess the adaptability
of the agent to dynamic environments, each data set includes
phantoms with different rotations, causing a shift in their
informative angles. These rotations are represented by 36
equally spaced angles ranging from 0◦ to 179◦. Additionally,
the phantoms in each data set exhibit various scaling and shifts.
Nonetheless, these modifications do not alter the informative
angles, thereby preserving the consistency of informative
angles across the scaled and shifted phantoms. By including
these scaling and shifts, we aim to ensure the agent’s ability

1https://github.com/tianyuan1wang/SeqAngleRL

d1) d2)

d3) d4)

Fig. 3. Twenty samples with identical shapes but varying scales, shifts, and
rotations from each data set.

to recognize the same object despite its size and location
variations.

d1) Circles: The first data set consists of circles with vary-
ing locations and radii. Due to its uniform curvature, a circle
does not have a relatively higher concentration of informative
angles. To obtain an accurate reconstruction, angles must be
equidistantly distributed.

d2) Ellipses: Unlike circles, ellipses have a major axis
and a minor axis. The major axis serves as a preferential
direction, making angles around it more informative, as shown
in references [7] and [23].

d3) Triangles: Triangles, characterized by one angle of 90◦

and two angles of 45◦, possess three preferential directions,
causing the informative angles to be tangential to their edges.

d4) Mixed phantoms: The final data set consists of a
mixture of phantoms, including triangles from d3), regular
pentagons, and regular hexagons, each of which has its own
preferential directions.

B. Implementation

For all of our experiments, the sequential experimental
process for each data set in Figure (3) follows Algorithm
(1). To generate the measurement data, we utilize the ASTRA
Toolbox [24, 25], considering a projection size of 1.5× 128.
The reconstruction is performed using the SIRT algorithm with
box constraints [0,1] for 150 iterations.

The encoder and Actor-Critic neural network architectures
are illustrated in Figure (2). During training, we set the
discount factor γ to 0.99 and assign weights of 1.0 and 0.5
to the actor loss and critic loss, respectively. To encourage
exploration during training, we incorporate an entropy loss
with a weight of 0.01. For optimization of the parameters, we
employ the Adam optimizer [26] with a learning rate of 10−4

and weight decay of 10−5.
The number of phantoms used for training differs between

experiments, with experiments d1) to d3) consisting of 3,000
training phantoms, while experiment d) has 9,000 training
phantoms. the number of episodes required for convergence

https://github.com/tianyuan1wang/SeqAngleRL
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Fig. 4. Comparison of policies considering different numbers of angles for
the circles data set: the results demonstrate the training outcomes over the
last 2,000 episodes. The box represents the interquartile range in these plots,
spanning from the first to the third quartile of the data distribution. The median
value is displayed as a line within the box. The whiskers extend from the box
to illustrate the range of the data distribution beyond the interquartile range.

during training also varies among experiments, with exper-
iment d1) requiring 100,000 episodes, experiments d2) and
d3) requiring 150,000 episodes, and experiment d4) requiring
300,000 episodes.

To assess the generalization ability of the Actor-Critic agent,
a set of testing experiments for d2) to d4) is performed to
evaluate its ability to identify previously unseen rotations of
phantoms, representing out-of-distribution data. The number
of test phantoms varies across the conducted experiments,
denoted as d2) to d4). Specifically, 300 test phantoms are used
in experiments d2) and d3), while 900 are used in experiments
d4).

In addition, we consider two reward functions: incremental
and end-to-end settings. An equidistant policy is introduced as
a benchmark to compare the performance of the Actor-Critic
policy with un-informed and non-adaptive angle selection
method.

The subsequent sections will present the training and testing
outcomes on the aforementioned data set and compare the
Actor-Critic policies utilizing two reward settings and the
equidistant policy.

C. Experiment 1 - Uniform informative angles

In the first experiment, we aim to evaluate the performance
of the Actor-Critic policy on the circles data set, which have
a uniform distribution of informative angles. It is known that
the equidistant benchmark is the optimal policy for this data
set. Our objective is to investigate whether the Actor-Critic
policy approaches the equidistant policy in performance.

As depicted in Figure (4), the equidistant policy exhibits
enhanced performance for the circular phantoms compared to
the Actor-Critic policies with diverse reward configurations.
Furthermore, we observed that the performance of the Actor-
Critic policy with end-to-end reward surpasses that of the
policy with incremental reward as the number of angles
increases.

Figure (5) presents two samples considering three and seven
angles obtained from the Actor-Critic policy with the end-to-
end reward setting. This result demonstrates that the Actor-

Fig. 5. Results of the end-to-end reward setting for two circle phantoms
considering three and seven angles.

Fig. 6. Comparison of policies considering different numbers of angles for
the ellipses data set: the results demonstrate the training outcomes over the
last 2,000 episodes. The box represents the interquartile range in these plots,
spanning from the first to the third quartile of the data distribution. The median
value is displayed as a line within the box. The whiskers extend from the box
to illustrate the range of the data distribution beyond the interquartile range..

Critic agent tends to distribute the selected angles evenly,
although the number of angles is different.

D. Experiment 2 - Non-uniform informative angles
In contrast to circles, informative angles in ellipses are

found to be concentrated around its major axis.
The training outcomes of the ellipse phantoms over the final

2,000 episodes are shown in Figure (6), which indicates that
the Actor-Critic policies exhibit superior performance. As the
number of angles increases, the results for the three policies
get closer. This is because a sufficient number of angles
around the major axis have already been obtained, even for
the equidistant policy, to achieve a high-quality reconstruction.
Notably, the Actor-Critic policy with the end-to-end reward
setting achieves the best performance. Figure (7) presents the
results for two ellipse phantoms, demonstrating that the agent
can discern the rotation of the ellipse and concentrate the
distribution of the angles around the informative area. As the
number of angles increases, the agent increases the number of
angles around the major axis.

Table (I) reports the test outcomes for the ellipses data set
with three to seven angles. Consistent with the training results,
the Actor-Critic policies demonstrate superior performance
compared to the benchmark, with the policies becoming pro-
gressively closer as the number of angles increases. The end-
to-end reward setting still shows the best average performance,
though it has a higher variance.
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TABLE I
PERFORMANCE COMPARISON OF POLICIES ON OUT-OF-DISTRIBUTION TEST FOR ELLIPSES REGARDING THE PSNR VALUES

Policies 3 4 5 6 7
Learned adaptive policy (end-to-end) 23.16 ± 1.02 25.10 ± 0.72 25.73 ± 1.20 26.31 ± 0.82 26.87 ± 1.06
Learned adaptive policy (increment) 22.78 ± 0.92 24.90 ± 0.73 25.67 ± 0.77 26.33 ± 0.79 26.86 ± 0.73

Equidistant policy 22.40 ± 0.74 24.27 ± 0.73 25.35 ± 0.69 26.16 ± 0.64 26.73 ± 0.62

Fig. 7. Results of the end-to-end reward setting for two ellipse phantoms
considering three and seven angles.

Fig. 8. The Actor-Critic and equidistant policy performance were compared
for the triangles data set. The results are shown in this Figure, where the
curves represent the mean values, and the color bands indicate the variances.

E. Experiment 3 - Explicit informative angles

The third experiment focuses on evaluating the ability of the
Actor-Critic agent to identify explicit informative angles for
phantoms with sharp edges, namely triangles. These phantoms
have well-defined informative angles that are tangential to their
edges, and thus, it is of interest to investigate if the agent can
successfully locate these angles. The results of this experiment
will provide insight into the performance of the Actor-Critic
agent in detecting preferential directions for phantoms with
sharp edges.

In this study, a fixed number of five angles is employed.
As shown in Figure (8), both reward settings for the Actor-
Critic agent outperform the equidistant policy. Specifically,
training using the incremental reward setting demonstrates
faster convergence, whereas the end-to-end reward setting
yields the best performance.

The training results demonstrate that the Actor-Critic agent
tends to select the first two angles as fixed angles, with particu-
lar emphasis on the first angle, while the second angle exhibits
some uncertainty. Subsequently, the agent would select three
informative angles to optimize the reconstruction process. This
behavior is consistent with the fact that the initial state is set
as a zero matrix and a zero vector with no prior information,

Fig. 9. The personalized strategies for triangle phantoms achieved by the
Actor-Critic policy are demonstrated in these sample results obtained under
the end-to-end reward setting.

TABLE II
PERFORMANCE COMPARISON OF POLICIES ON OUT-OF-DISTRIBUTION

TEST FOR TRIANGLES REGARDING THE PSNR VALUES

Policies Triangles
Learned adaptive policy (end-to-end) 24.07 ± 2.07
Learned adaptive policy (increment) 23.78 ± 1.80

Equidistant policy 20.64 ± 1.05

and the agent, therefore, prioritizes gathering information by
fixing the first angle or first two angles before personalizing
the strategies based on the different phantoms encountered.

Figure (9) presents two samples of the agent’s performance
in an end-to-end reward setting, in which the agent selects
the initial two angles of 44◦ and 153◦. Subsequently, for the
right phantom, the agent selects 76◦, 115◦, and 165◦ as the
following three angles, while for the left phantom, the agent
chooses 97◦, 136◦, and 3◦. Notably, these angles are almost
tangential to the edges of the triangle phantoms.

We observe that the agent tends to select more angles around
the informative angles or repeat its selection when the first two
angles are close to the informative angles. Again, this behavior
can be explained by the informative angles containing the most
relevant information for accurate reconstruction.

In regards to the out-of-distribution test, Table (II) demon-
strates that the Actor-Critic policies outperform the equidistant
benchmark. Furthermore, it is observed that the end-to-end
reward setting achieves the highest quality in terms of recon-
struction.

F. Experiment 4 - Mixed phantoms with explicit informative
angles

In this study, we aim to investigate the capacity of an Actor-
Critic agent to recognize and distinguish between different
phantoms with varying informative angles and their rotation.
In this study, a fixed number of seven angles is employed.
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Fig. 10. The Actor-Critic and equidistant policy performance were compared
for the mixed phantoms data set, including mixed phantoms, and mixed
phantom with 5% Gaussian noise. The results are shown in this Figure,
where the curves represent the mean values, and the color bands indicate
the variances.

Similar to Experiment 3, shown in Figure (10), the training
for the mixed phantoms reveals that the incremental reward
setting facilitates faster convergence, while end-to-end reward
setting results in better performance. Figure (11) illustrates
the performance of the end-to-end reward setting. It fixes the
first two angles to 137◦ and 46◦ for the hexagon and triangle,
respectively, while it selects 137◦ and 65◦ for the pentagon
as the first two angles because of some uncertainty for the
second angle as mentioned in Experiment 3. The agent then
selects the subsequent informative angles based on this prior
information by the fixed angles.

Furthermore,we investigate the impact of Gaussian noise on
an Actor-Critic agent’s ability to select informative angles for
phantoms. Our results, presented in Figure (10), demonstrate
that the performance gap between the equidistant and Actor-
Critic policies is reduced in the presence of 5% Gaussian noise
on the measurements. Specifically, our training results show
that the incremental reward setting yields nearly identical total
rewards to the equidistant policy, suggesting that the presence
of noise negatively impacts the training process. Additionally,
comparing the result samples from end-to-end rewards in
Figures (11) and (12), we find that the noise in measurements
has a substantial influence on the angle selection strategy,
including the fixed angles and the informative angles selection
orders afterward. To better understand the differences between
the two policies in Figures (11) and (12), we show the
policy results for triangles in Figure (13). Our analysis reveals
that the policy for clean data is tightly clustered around
informative angles, whereas the policy for noisy data is more
broadly distributed. We also observe that the policy realizes
adaptive angle selection, where the probability of a chosen
angle decreases significantly, followed by an increase in the
probability of some angles with a small probability.

Based on the results for the PSNR values presented in

Table (III), it can be observed that the Actor-Critic policies,
with both end-to-end and incremental rewards, outperform
the equidistant policy. In addition, adding noise to the mea-
surements reduces the performance gap between the policies.
Notably, the end-to-end reward setting still exhibits the highest
performance. Moreover, the model’s performance on noisy
measurements improves when testing the model trained on
clean measurements compared to the model trained on noisy
measurements, confirming that the training on noisy measure-
ments degrade the performance of the Actor-Critic policies.

V. DISCUSSION

The results demonstrate that for classes of phantoms with
a clear informative angles, the reinforcement learning policy
are able to achieve superior performance compared to the
uninformed, equidistant policy. As the informative angles were
differing for each individual phantom and were not shared
along the whole class of phantoms, no informative angles
could be known a-priori. We therefore demonstrated that the
policies learned truly preform a-posteriori adaptation. This
complements the findings from [17], whose numerical studies
could not answer this important question.

Importantly, the trained reinforcement learning policies ex-
hibit generalization capabilities on the test dataset, including
rotations not encountered during training. Interestingly, adding
measurement noise reduces the achievable gains in perfor-
mance, and understanding and mitigating the reason for this
will be a topic for future research.

In addition, we conducted numerical experiments to com-
pare end-to-end and incremental reward functions. The end-to-
end reward function achieves the highest average performance
on both the training and test datasets. This indicates its effec-
tiveness in guiding the reinforcement learning agent toward
optimal solutions. On the other hand, the incremental reward
function demonstrates faster convergence during training. In
the future, we will investigate further how to design reward
functions that share both of these desirable properties.

In the future, our work can be extended in the following
ways: Firstly, instead of using SIRT as an image reconstruc-
tion method, we will use deep learning-based reconstruction
methods, trained end-to-end. Secondly, more complex reward
functions can be designed to achieve task-specific angle selec-
tion. For example, to detect defects in in-line quality control,
one could reward angle selection policies that improve the
contrast between the defect and its embedding. Thirdly, we
restricted ourselves to a simple 2D parallel-beam geometry to
obtain scenarios in which optimal angle selection strategies are
known, and the results of trained policies can be interpreted
more easily. In the future, we will extend the approach to more
complex and realistic 3D geometries with additional degrees
of freedom, such as tilting and zooming.

VI. CONCLUSION

Compared to classical, computationally prohibitive ap-
proaches to solve the sequential OED problem of adaptive
angle selection in X-ray CT, deep reinforcement learning
avoids direct gradient computation on the high-dimensional,
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Fig. 11. The personalized strategies for mixed phantoms achieved by the Actor-Critic policy are demonstrated in these sample results obtained under the
end-to-end reward setting.

Fig. 12. The personalized strategies for mixed phantoms with 5% Gaussian noise on measurements achieved by the Actor-Critic policy are demonstrated in
these sample results, obtained under the end-to-end reward setting.

Fig. 13. Comparison of policies for triangles. The policy on the left is trained on clean data, while the policy on the right is trained on noisy data. The
probabilities are scaled by log 5 to magnify the small probabilities. The red star on each colored line represents the selected angle based on the corresponding
probability distribution. Once an angle is selected, its probability becomes zero or is decreased for subsequent selections.

TABLE III
PERFORMANCE COMPARISON OF POLICIES ON OUT-OF-DISTRIBUTION TEST FOR MIXED PHANTOMS AND MIXED PHANTOMS WITH 5% GAUSSIAN

NOISE ON MEASUREMENTS REGARDING THE PSNR VALUES

Policies Mixed phantoms Mixed phantoms (5%) Mixed phantoms (5%) - clean training
Learned adaptive policy (end-to-end) 24.85 ± 1.64 21.52 ± 1.63 21.82 ± 1.83
Learned adaptive policy (increment) 24.15 ± 1.55 20.98 ± 1.75 21.56 ± 1.80

Equidistant policy 22.94 ± 0.76 20.75 ± 1.37 20.75 ± 1.37

non-convex, bi-level optimization problem. Instead, it learns
non-greedy strategies to solve it for a particular class of
phantoms during an offline training phase which can then
be applied fast and efficiently online to scans of new phan-
toms. We posed the sequential OED problem as a POMDP
and utilized the Actor-Critic network combining a shared
encoder network to learn an optimal policy. In our numeri-

cal studies with 2D CT scenarios mimicking industrial, in-
line CT inspection, we could demonstrate that our approach
learns efficient, truly adaptive policies that achieve better
performance in terms of reconstruction quality. We introduced
two different reward function settings, namely, the end-to-end
and incremental reward settings. Both settings lead to stable
learning processes, consolidating reinforcement learning as a
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reliable and extremely promising method for sequential OED.
To conclude, our work demonstrates the potential of using
reinforcement learning for solving sequential OED problems
in inverse problems and imaging - in particular to automate
angle selection and improve CT imaging efficiency, providing
a flexible and adaptive approach for various CT imaging
scenarios in the Industry 4.0.
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