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Abstract
We consider the inverse problem for the polynomial
map that sends an 𝑚-tuple of quadratic forms in 𝑛

variables to the sum of their 𝑑th powers. This map cap-
tures the moment problem for mixtures of 𝑚 centered
𝑛-variate Gaussians. In the first nontrivial case 𝑑 = 3,
we show that for any 𝑛 ∈ ℕ, this map is generically one-
to-one (up to permutations of 𝑞1, … , 𝑞𝑚 and third roots
of unity) in two ranges:𝑚 ⩽

(𝑛
2

)
+ 1 for 𝑛 < 16 and𝑚 ⩽(𝑛+5

6

)
∕
(𝑛+1

2

)
−
(𝑛+1

2

)
− 1 for 𝑛 ⩾ 16, thus proving generic

identifiability for mixtures of centered Gaussians from
their (exact) moments of degree at most 6. The first
result is obtained by the explicit geometry of the tan-
gential contact locus of the variety of sums of cubes of
quadratic forms, as described by Chiantini andOttaviani
[SIAM J. Matrix Anal. Appl. 33 (2012), no. 3, 1018–
1037], while the second result is accomplished using the
link between secant nondefectivity with identifiability,
proved by Casarotti andMella [J. Eur.Math. Soc. (JEMS)
(2022)]. The latter approach also generalizes to sums of
𝑑th powers of 𝑘-forms for 𝑑 ⩾ 3 and 𝑘 ⩾ 2.
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1 INTRODUCTION

1.1 Motivation

Ever since the pioneering work of Pearson (original work in [27], but see, e.g., [1] for a mod-
ern exposition) on the separation of biological species, Gaussian mixture models are a highly
important tool for modern data analysis. Given the moments of a mixture 𝑌 of 𝑛-dimensional
normally distributed random variables 𝑌𝑖 ∼ (𝜇𝑖, Σ𝑖), one aims to recover the parameters
(𝜇1, Σ1), … , (𝜇𝑚, Σ𝑚) (up to permutation). One of the first and fundamental questions to ask
is under which circumstances there exists a unique solution, essentially justifying that the
parameters bear information that is “meaningful” for statistical inference. In this work, we are
concerned with the special case of centered Gaussians, that is, 𝜇1 = ⋯ = 𝜇𝑚 = 0 ∈ ℝ𝑛, and we
focus on moments of one, fixed degree. Then, the estimation problem turns out to be profoundly
related to an algebraic problem. Identify 𝑆𝑑(ℂ𝑛) with the vector space of degree-𝑑 homogeneous
polynomials in 𝑛-variables with complex coefficients. Given a sum

𝑚∑
𝑖=1

𝑞𝑑
𝑖
∈ 𝑆2𝑑(ℂ𝑛) (1.1)

of powers of quadratic forms 𝑞1, … , 𝑞𝑚 ∈ 𝑆2(ℂ𝑛), when canwe obtain the addends 𝑞𝑑
1
, … , 𝑞𝑑𝑚 up to

permutation? This is the decomposition problem for powers of quadratic forms. Note that if the 𝑞𝑖 ’s
are the quadratic forms corresponding to the covariance matrices Σ𝑖 ’s of the centered Gaussian
random vectors𝑌𝑖 ’s, then, up to a scalar factor, (1.1) corresponds to the 2𝑑thmoment of their (uni-
formly weighted) mixture 𝑌. We will fully explain the connection in Section 2. While, of course,
the decomposition problem asks to obtain the addends in the sense of algorithmic computation,
our set objective in the present work is just to examine when there exists a unique solution. In
that case, we say that identifiability holds. The smallest nontrivial case (and arguably also the
most interesting one) is when moments of degree 6 are given, that is, 𝑑 = 3. Indeed, note that for
𝑑 = 2, we cannot hope for identifiability since 𝑞2

1
+ 𝑞2

2
= 1

2
(𝑞1 + 𝑞2)

2 + 1

2
(𝑞1 − 𝑞2)

2.

1.2 Statement of main results

In the case of sextics as sums of cubes of quadratic forms, we obtain the following result about
general identifiability.

Theorem 1.1. Let 𝑛,𝑚 ∈ ℕ such that one of the following holds:

(1) 𝑛 > 16 and𝑚 ⩽
(𝑛+5

6

)
∕
(𝑛+1

2

)
−
(𝑛+1

2

)
− 1; or

(2) 𝑛 ⩽ 16 and𝑚 ⩽
(𝑛
2

)
+ 1.

Then, for general 𝑞1, … , 𝑞𝑚 ∈ 𝑆2(ℂ𝑛), the sextic 𝑡 =
∑𝑚
𝑖=1 𝑞

3
𝑖
has a unique representation as a sum

of𝑚 cubes of quadratic forms, up to permutation and third roots of unity.

Remark 1.2. Theupper bound inTheorem 1.1(1) relies on themain result in [6]. The latter result has
been improved in the recent preprint [24] appeared after the submission of the present paper. In
view of that result, the upper bound (1) of Theorem 1.1 holds already for 𝑛 > 11. See also Figure 1.
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IDENTIFIABILITY FOR MIXTURES OF CENTERED GAUSSIANS 2409

F IGURE 1 The gray-hatched area corresponds to the pairs (𝑛, 𝑑) for which Theorem 1.1 holds. The
red-crossed-hatched area is the region that would be covered by improving the upper bound (1) of Theorem 1.1 by
using the main result of the recent preprint [24] as explained in Remark 1.2. The green-dotted curves refer to
condition (1): note that the result holds only for 𝑛 > 16 because it requires that(𝑛+5

6

)
∕
(𝑛+1

2

)
−
(𝑛+1

2

)
− 1 > 2(

(𝑛+1
2

)
− 1) (cfr. Corollary 4.4). The blue-dashed line refers to condition (2) (cfr.

Section 4.2). The red-dashed-dotted line is the expected number of cubes needed to write a general complex sextic
as their sum, that is, ⌊dim𝑆6(ℂ𝑛)∕ dim𝑆2(ℂ𝑛)⌋: recall that if there are more addends, then generic identifiability
is impossible by dimensionality.

With the connection explained in Section 2, we directly obtain the following consequence about
degree-6 moments of mixtures of general centered Gaussians.

Corollary 1.3. Let 𝑛,𝑚 ∈ ℕ such that one of the following holds:

(1) 𝑛 > 16 and𝑚 ⩽
(𝑛+5

6

)
∕
(𝑛+1

2

)
−
(𝑛+1

2

)
− 1; or

(2) 𝑛 ⩽ 16 and𝑚 ⩽
(𝑛
2

)
+ 1.

Let 𝑌1 ∼ (0, 𝑞1), … , 𝑌𝑚 ∼ (0, 𝑞𝑚) centered normal distributions given by general psd covari-
ance forms 𝑞1, … , 𝑞𝑚 ∈ 𝑆2(ℝ𝑛). Let 𝑍1, … , 𝑍𝑚 be any other centered Gaussian random vectors on
ℝ𝑛 such that one of the following holds:

(a) the uniformly weighted Gaussian mixtures 𝑌 = 1

𝑚
(𝑌1 ⊕ …⊕ 𝑌𝑚) and 𝑍 =

1

𝑚
(𝑍1 ⊕ …⊕ 𝑍𝑚)

agree on the moments of degree 6; or
(b) for general 𝜆1, … , 𝜆𝑚 ∈ ℝ>0 and for 𝜇1, … , 𝜇𝑚 ∈ ℝ⩾0 both summing up to 1, the Gaussian mix-

tures 𝑌 = 𝜆1𝑌1 ⊕ …⊕ 𝜆𝑚𝑌𝑚 and 𝑍 = 𝜇1𝑍1 ⊕ …⊕ 𝜇𝑚𝑍𝑚 agree on the moments of degrees 6
and 4.

Then {𝑌1, … , 𝑌𝑚} = {𝑍1, … , 𝑍𝑚} and 𝑌 = 𝑍. In case (b), the corresponding mixing weights are
equal, too.

Remark 1.4. As mentioned in Remark 1.2, thanks to the main result of the recent preprint [24],
the upper bound (1) of Corollary 1.3 holds already for 𝑛 > 11. See also Figure 1.
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2410 BLOMENHOFER et al.

Condition (1) of Theorem 1.1 may be generalized to guarantee generic identifiability for sums
of arbitrary powers of high degree forms (cfr. Corollary 4.4). We highlight it here in the case of
powers of quadratic forms, which is the case that is relevant for mixtures of centered Gaussians.

Theorem 1.5. Fix 𝑑 ∈ ℕ. For any 𝑛,𝑚 ∈ ℕ such that

3

(
𝑛 + 1

2

)2

− 2

(
𝑛 + 1

2

)
<

(
𝑛 − 1 + 2𝑑

2𝑑

)
(1.2)

and

𝑚 ⩽

(
𝑛 − 1 + 2𝑑

2𝑑

)
∕

(
𝑛 + 1

2

)
−

(
𝑛 + 1

2

)
− 1.

Then, for general 𝑞1, … , 𝑞𝑚 ∈ 𝑆2(ℂ𝑛), the degree-2𝑑 form 𝑡 =
∑𝑚
𝑖=1 𝑞

𝑑
𝑖
has a unique representation

as a sum of𝑚 𝑑th powers of quadratic forms, up to permutation and third roots of unity.

Remark 1.6. Thanks to the main result of [24], the constraint (1.2) can actually be dropped. See
[24, Proposition 4.14].

1.3 Outline of this paper

In Section 2, we give a concise explanation of the connection between the decomposition problem
for cubes of quadratics and themoment problem for mixtures of centered Gaussians. In Section 3,
we recall the basic facts on the theory of secant varieties, while in Section 4, we recall the general
identifiability results that are then used to prove the main results. Some parts of our analysis are
verified on a computer. The computation is done with the Julia programming language [4] and
the MultivariatePolynomials.jl library [21]. Our code can be found on GitHub, see [29].

1.4 Related work

On the algorithmic side, Ge, Huang, and Kakade provided an algorithm that learns the param-
eters of mixtures of 𝑛-variate Gaussians of rank at most (

√
𝑛) from their moments of degree

at most 6 (see [16]). The paper considers a smoothed analysis framework, which is essentially a
numerically stable way of saying that the quadratics should be in general position. Mixtures of
centered Gaussians were recently studied in [15], with a particular focus toward their relation to
the decomposition problem for sums of powers of quadratics as well as circuit complexity. The
work of Garg, Kayal, and Saha [15] also studies the more general circuit model of sums of pow-
ers of low degree polynomials and was in fact a major motivation for the present work. Sums of
powers have been studied from the point of view of algebraic geometry, for example, [13, 22], and
recently appeared also in relation to polynomial neural networks [20].
In the usual terminology of additive decompositions, fixed positive integers 𝑑 and 𝑘, the (𝑘, 𝑑)-

rank (or short rank) of a degree-𝑑𝑘 form is the smallest number of degree-𝑘 forms needed to
write the given form as their sum of their 𝑑th powers. From an algebro-geometric point of view,
additive decompositions of polynomials are studied through secant varieties. In our context, the
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IDENTIFIABILITY FOR MIXTURES OF CENTERED GAUSSIANS 2411

𝑚th secant variety is the (Zariski) closure of the set of polynomials of degree 𝑑𝑘 of rank at most
𝑚.
Several interesting open questions are yet to be answered for decompositions of homogeneous

polynomials as sums of powers. First of all, what is the general rank, that is, the smallest number
of 𝑑th powers needed to write a general form of degree 𝑑𝑘 as their sum? For 𝑘 = 1, that is, sums
of powers of linear forms, it is worth recalling that the question is answered by the celebrated
Alexander–Hirschowitz Theorem [19] (see also [5]). For 𝑘 ⩾ 2, the complete answer is given in
the cases of binary forms and sums of squares in three and four variables in [22]. In general, it is
conjectured that the generic rank is as expected by dimension count ⌈(𝑛+𝑑𝑘−1

𝑑𝑘

)
∕
(𝑛+𝑘−1

𝑘

)⌉ unless
𝑑 = 2 (cfr. [22, Conjecture 1.2]). The latter question would be answered by knowing dimensions
of all secant varieties.
As for general identifiability, that is, uniqueness of the decomposition for a general point of a

secant variety, a complete answer is given in the case of sums of powers of linear forms (𝑘 = 1):
In [11], it was shown that in all but a few exceptional cases, identifiability holds for all subgeneric
ranks, while Galuppi [14] completed the classification of cases in which identifiability also holds
for generic ranks. For 𝑘 ⩾ 2, as far as we know, before the present work, only identifiability for
sextics as sums of cubes was recently addressed for rank 2 [28].
Generic identifiability in the range (1) of Theorem 1.1 is proved employing a result by Casarotti

and Mella [6], which translates the study of general identifiability to the study of dimensions of
secant varieties under certain constraints on rank and dimension. The dimension of the secant
varieties of varieties of powers is given by the main result of [25]. In the recent preprint [24]
appeared after the submission of the present paper,Massarenti andMella improve themain result
of [6], allowing for better bounds in Theorem 1.1; see Remark 1.2. In the range (2) of Theorem 1.1,
our analysis employs the geometric notion of weak defectivity and tangential contact loci due to
Chiantini and Ciliberto [7, 8] and is based on a series of works due to Chiantini, Ottaviani, and
Vannieuwenhoven [9–11], where the authors examine the question of generic tensor identifiability,
that is, under which conditions does a general tensor of fixed rank 𝑚 have a unique decomposi-
tion as a sum of 𝑚 simple (rank-1) tensors. Symmetric tensor decomposition corresponds to the
decomposition problem for powers of linear forms.
Specifically for cubes of linear forms in 𝑛 variables, the generic rank is in 𝜃(𝑛2), whereas effi-

cient algorithms for the decomposition problem succeeding in the smoothed analysis framework
are known up to rank 𝑛 (e.g., [2], with the original idea dating back to Jennrich, published via
Harshman [18]). Various other algorithms for symmetric tensor decomposition of order 3 exist.
Some efficient algorithms can exceed the rank-𝑛 threshold for “average case” problems and go
up to rank almost 𝑛1.5 (e.g., [17, 23]), by relying on the assumption that the rank-1 components
are drawn from a friendly distribution. Other algorithms can produce decompositions for all sub-
generic ranks, but sacrifice computational efficiency, cf. for example, the work of Bernardi and
Taufer [3]. This leaves a multiplicative gap of 𝜃(𝑛) between the regime where generic identifiabil-
ity holds and the regimewhere the rank-1 components can be efficiently computed in a smoothed
analysis framework.
For quadratic forms, the threshold of (

√
𝑛) due to Ge, Huang, and Kakade [16] might not

be the final answer either. One might conjecture that efficient algorithms are possible at least as
long as the rank is at most the number of variables. Any algorithm succeeding for superquadratic
rank 𝑚 ≫ dim𝑆2(ℂ𝑛) would by the aforementioned also have nontrivial implications on tensor
decomposition, as clearly from a 3-tensor

∑𝑚
𝑖=1 𝑞

⊗3
𝑖

∈ 𝑆3(𝑆2(ℂ𝑛)), we may compute the 6-form∑𝑚
𝑖=1 𝑞

3
𝑖
by applying a linear map. This explains our focus toward finding specific witnesses for
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2412 BLOMENHOFER et al.

quadratic-rank generic identifiability in Section 4.2, although we stress that our results do not
have algorithmic consequences.

2 SUMS OF POWERS OF QUADRATICS ANDMIXTURES OF
CENTERED GAUSSIANS

Notation. For any field 𝔽, let𝑋 = (𝑋1, … , 𝑋𝑛) be a set of variables of 𝔽𝑛. Let 𝔽[𝑋] = 𝔽[𝑋1, … , 𝑋𝑛] =⨁
𝑑⩾0 𝔽[𝑋]𝑑 be the standard graded polynomial ring where 𝔽[𝑋]𝑑 is identified with 𝑆𝑑(𝔽𝑛).

An 𝑛-variate Gaussian normal distribution  (𝓁, 𝑞) on ℝ𝑛 is given by a pair (𝓁, 𝑞) where 𝓁 ∈
ℝ[𝑋]1 is a linear form and 𝑞 ∈ ℝ[𝑋]2 a positive semidefinite (psd) quadratic form. Some authors
require 𝑞 to be positive definite, but even if 𝑞 has a nontrivial kernel, the pair (𝓁, 𝑞) still defines a
normal distribution on the affine subspace given by themean vector (𝓁(𝑒1), … ,𝓁(𝑒𝑛)) (𝑒𝑖 is the 𝑖th
coordinate vector) plus the orthogonal complement of the kernel of 𝑞 (in the maximal degenerate
case, that is, when 𝑞 = 0, this definition gives the Dirac distribution at the mean vector).
Expectations of polynomial expressions in some random variable 𝑌 are called moments of 𝑌.

The information of all moments of 𝑌 of degree 𝑑 ∈ ℕ0 are collected in the degree-𝑑moment form
𝑑(𝑌) ∶= 𝔼[⟨𝑋,𝑌⟩𝑑] = ∑|𝛼|=𝑑 (𝑑𝛼)𝔼[𝑌𝛼]𝑋𝛼 ∈ ℝ[𝑋]𝑑, where the integration is coefficient-wise
with respect to the 𝑋-coefficients. The moments of a random variable 𝑌 can be used to construct
a formal power series

𝔼[exp(⟨𝑋,𝑌⟩)] ∶= ∞∑
𝑑=0

1

𝑑!
𝑑(𝑌) ∈ ℝ[[𝑋]],

which is called the moment generating series of 𝑌. The expectation 𝔼 is taken 𝑋-coefficient-wise
over the randomness of 𝑌. For the case of a normally distributed random variable 𝑌 ∼ (𝓁, 𝑞),
this power series takes the very simple and convenient representation

𝔼[exp(⟨𝑋,𝑌⟩)] = exp(𝓁 +
𝑞

2
) =

∞∑
𝑑=0

1

𝑑!
(𝓁 +

𝑞

2
)𝑑 (2.1)

from which we can read all moments by comparing coefficients. In the case of a centered Gaus-
sian distribution, we have 𝓁 = 0 and therefore for each 𝑑 ∈ ℕ>0, the moments of degree 2𝑑 are
essentially given by the coefficients of 𝑞𝑑. All odd-ordermoments are zero for a centeredGaussian.
A mixture 𝑌 of𝑚 Gaussian random vectors 𝑌1,… , 𝑌𝑚 on ℝ𝑛 with mixing weights 𝜆1, … , 𝜆𝑚 ∈

ℝ⩾0 satisfying
∑𝑚
𝑖=1 𝜆𝑖 = 1 is a random vector sampled as follows: From a box containing indices

{1, … ,𝑚}, draw the index 𝑖 with probability 𝜆𝑖 and then take a sample of𝑌𝑖 . It is easy to see that for
any integrable function 𝑓 taking values in ℝ𝑛, 𝔼[𝑓(𝑌)] =

∑𝑚
𝑖=1 𝜆𝑖𝔼[𝑓(𝑌𝑖)]. We therefore sugges-

tively denote 𝑌 = 𝜆1𝑌1 ⊕ …⊕ 𝜆𝑚𝑌𝑚, to remind that on the level of moments and expectations,
a mixture random variable is essentially just a convex combination. “⊕” should not be confused
with the actual addition on ℝ𝑛. Let the Gaussian random vectors be given by pairs of linear and
psd quadratic forms (𝓁1, 𝑞1), … , (𝓁𝑚, 𝑞𝑚). The moment problem for mixtures of Gaussians asks to
obtain these parameter forms given the moments of the mixture up to a certain degree. In the
special case of centered Gaussians, that is, 𝓁1 =⋯ = 𝓁𝑚 = 0, then the degree 2𝑑moment form of
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IDENTIFIABILITY FOR MIXTURES OF CENTERED GAUSSIANS 2413

𝜆1𝑌1 ⊕ …⊕ 𝜆𝑚𝑌𝑚 is

𝑚∑
𝑖=1

𝜆𝑖𝑞
𝑑
𝑖

(2.2)

for each 𝑑 ∈ ℕ0, up to a scalar depending only on 𝑑. Since 𝜆𝑞𝑑 = (
𝑑
√
𝜆𝑞)𝑑 for each 𝜆 ∈ ℝ⩾0, 𝑞 ∈

𝑆2(ℂ𝑛), the expression in Equation 2.2 is overparameterized as long as we are only considering
moments of one, fixed degree. Let us set the problem in the uniform case, that is, assume that
𝜆1 = ⋯ = 𝜆𝑚 = 1

𝑚
. Then, the problem corresponds to identifiability for 𝑑th powers of real psd

quadratic forms.

Remark 2.1. Note that the psd quadratic forms are a (Zariski) dense subset of 𝑆2(ℝ𝑛). Since themap
(𝑞1, … , 𝑞𝑚) ↦

∑𝑚
𝑖=1 𝑞

𝑑
𝑖
is given by rational polynomials, its image when restricted to real points

(or even rational points) is (Zariski) dense in its complex image. Therefore, it suffices to show
generic identifiability for 𝑑th powers of complex quadratic forms.

Note that 6 (i.e., 𝑑 = 3) is the smallest degree for which we can hope for identifiability. Indeed,
the case of sums of squares (𝑑 = 2) is not identifiable due to the identity

𝑞21 + 𝑞
2
2 =

1

2
(𝑞1 + 𝑞2)

2 +
1

2
(𝑞1 − 𝑞2)

2.

Before proving the main result in Theorem 1.1 on general identifiability of sextics of certain
subgeneric ranks as sums of cubes, we show that indeed, it allows us to prove Corollary 1.3 on
identifiability of mixtures of centered Gaussians. Finally, we prove the following Theorem 2.2,
which generalizes the case 𝑑 = 3 of Corollary 1.3 for general values of 𝑑.

Theorem 2.2. Let 𝑛,𝑚, 𝑑 ∈ ℕ such that generic identifiability holds for 𝑑th powers of quadratic
forms in 𝑛 variables of rank𝑚 (cf., e.g., 1.1 and 4.4)
Let𝑌1 ∼ (0, 𝑞1), … , 𝑌𝑚 ∼ (0, 𝑞𝑚) centered normal distributions given by general psd covari-

ance forms 𝑞1, … , 𝑞𝑚 ∈ 𝑆2(ℝ𝑛). Let𝑍1, … , 𝑍𝑚 be any other centered Gaussian random vectors onℝ𝑛
such that one of the following holds:

(a) the uniformly weighted Gaussian mixtures 𝑌 = 1

𝑚
(𝑌1 ⊕⋯⊕𝑌𝑚) and 𝑍 =

1

𝑚
(𝑍1 ⊕⋯⊕ 𝑍𝑚)

agree on the moments of degree 2𝑑; or
(b) for general 𝜆1, … , 𝜆𝑚 ∈ ℝ>0 and for 𝜇1, … , 𝜇𝑚 ∈ ℝ⩾0 both summing up to 1, the Gaussian mix-

tures 𝑌 = 𝜆1𝑌1 ⊕⋯⊕ 𝜆𝑚𝑌𝑚 and 𝑍 = 𝜇1𝑍1 ⊕⋯⊕ 𝜇𝑚𝑍𝑚 agree on the moments of degree 2𝑑
and 2𝑑 − 2.

Then {𝑌1, … , 𝑌𝑚} = {𝑍1, … , 𝑍𝑚} and 𝑌 = 𝑍. In case (b), the corresponding mixing weights are
equal, too.

Proof of Theorem 2.2. Let 𝑝1, … , 𝑝𝑚 ∈ 𝑆2(ℝ𝑛) be quadratic psd forms such that

𝑍1 ∼ (0, 𝑝1), … , 𝑍𝑚 ∼ (0, 𝑝𝑚).

In case (a), we denote 𝜆𝑖 ∶= 𝜇𝑖 ∶=
1

𝑚
for each 𝑖 ∈ {1, … ,𝑚}, while in case (b), we fix 𝜆1, … , 𝜆𝑚

and 𝜇1, … , 𝜇𝑚 accordingly. Knowing that the degree 2𝑑moments of 𝑌 = 𝜆1𝑌1 ⊕⋯⊕ 𝜆𝑚𝑌𝑚 and
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2414 BLOMENHOFER et al.

𝑍 = 𝜇1𝑍1 ⊕⋯⊕ 𝜇𝑚𝑍𝑚 are equal, by Equation 2.2, we have
𝑚∑
𝑖=1

( 𝑑
√
𝜆𝑖𝑞𝑖)

𝑑 =

𝑚∑
𝑖=1

( 𝑑
√
𝜇𝑖𝑝𝑖)

𝑑, (2.3)

where the quadratic forms 𝑑
√
𝜆𝑖𝑞𝑖 are general for each 𝑖 ∈ {1, … ,𝑚} and 𝑑

√
⋅ denotes the unique

𝑑th root of a nonnegative real number. By Theorem 1.1 and Remark 2.1, we get

{ 𝑑
√
𝜆1𝑞1, … ,

𝑑
√
𝜆𝑚𝑞𝑚} = { 𝑑

√
𝜇1𝑝1, … ,

𝑑
√
𝜇𝑚𝑝𝑚}.

Note that for case (a), this is enough to conclude. In case (b), note that all of 𝜇1, … , 𝜇𝑚 are nonzero
and without loss of generality, let us assume that

𝑑
√
𝜆1𝑞1 =

𝑑
√
𝜇1𝑝1, … ,

𝑑
√
𝜆𝑚𝑞𝑚 = 𝑑

√
𝜇𝑚𝑝𝑚.

Write 𝛼1 ∶= 𝑑

√
𝜆1
𝜇1
, … , 𝛼𝑚 ∶= 𝑑

√
𝜆𝑚
𝜇𝑚
. Since the degree 2𝑑 − 2moments of 𝑌 and 𝑍 agree, we have

𝑚∑
𝑖=1

𝜆𝑖𝑞
𝑑−1
𝑖

=

𝑚∑
𝑖=1

𝜇𝑖𝑝
𝑑−1
𝑖

,

where the (𝑑 − 1)st powers of the quadratic forms 𝑞𝑑−1
1

, … , 𝑞𝑑−1𝑚 are linearly independent. From
substituting 𝑝𝑖 = 𝛼𝑖𝑞𝑖 and comparing coefficients in

𝑚∑
𝑖=1

𝜆𝑖𝑞
𝑑−1
𝑖

=

𝑚∑
𝑖=1

𝜇𝑖𝛼
𝑑−1
𝑖

𝑞𝑑−1
𝑖

,

we obtain ( 𝜆𝑖
𝜇𝑖
)
𝑑−1
𝑑 =

𝜆𝑖
𝜇𝑖
, which is only possible if 𝜇𝑖 = 𝜆𝑖 for each 𝑖 ∈ {1, … ,𝑚}. □

2.1 Other types of Gaussian mixture problems

Various other special cases of Gaussian mixture decomposition problems have been studied. In
the case of equal mixing weights, if all 𝑞1, … , 𝑞𝑚 are assumed to be zero, then the problem can
be translated into identifiability for special symmetric tensors. For example, in [11], the authors
showed generic identifiability frommoments of degree 3 for all subgeneric ranks. If all quadratics
are assumed to be equal (but not necessarily zero), then the problem can still be reduced to tensor
decomposition. This is clear from a statistical point of view, but can also be seen algebraically: if
𝑞 ∶= 𝑞1 = ⋯ = 𝑞𝑚, then the third-order moments attain the form

𝑚∑
𝑖=1

𝓁3
𝑖
+ 𝑞

𝑚∑
𝑖=1

𝓁𝑖 ,

where the point
∑𝑚
𝑖=1 𝓁𝑖 = 𝔼[𝑌1 +⋯ + 𝑌𝑚] is known, since it is the vector of first-order moments

of the mixture. Thus, one can shift the space such that
∑𝑚
𝑖=1 𝓁𝑖 = 0 and perform classical tensor

decomposition on this kind of Gaussian mixture problem.
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IDENTIFIABILITY FOR MIXTURES OF CENTERED GAUSSIANS 2415

The case of centered Gaussians is significantly more complex, even if Garg, Kayal, and Saha
[15, Section 1.3] argue that Gaussian mixtures in full generality might only be a slightly more
general class of polynomials than sums of powers of quadratics. Nevertheless, the assumption of
centeredness makes the moments easier to handle. For a normally distributed 𝑌 ∼ (𝓁, 𝑞), the
degree 6 moment form would otherwise consists of four terms. In order to compute them, we
would have to look at 𝑘 ∈ {3, 4, 5, 6} in Equation 2.1, obtaining

𝓁6 + 15𝑞𝓁4 + 45𝑞2𝓁2 + 15𝑞3

as the form whose coefficients are the degree 6 moments of 𝑌. Note that the moment form was
normalized so that the coefficient of 𝓁6 is 1.

3 PRELIMINARIES AND GENERAL NOTATION ON SECANT
VARIETIES

After reducing the identifiability problem for mixtures of centered Gaussians to the problem of
identifiability of sums of powers of quadratic forms, we recall the basic notations about secant
varieties and contact loci that are the basic tools of a geometric approach to the question and will
be used in the next section to prove Theorem 1.1.

Notation. For 𝑚 ∈ ℕ>0 and elements 𝑣1, … , 𝑣𝑚 of a vector space, let ⟨𝑣1, … , 𝑣𝑚⟩ denote the
subspace spanned by them. For projective linear subspaces ℙ(𝑉1), … , ℙ(𝑉𝑚) ⊂ ℙ(𝑉), we write∑𝑚
𝑖=1 ℙ(𝑉𝑖) for the smallest projective linear subspace containing all of them.

Definition 3.1 (Secant variety). Let𝑊 be a variety embedded in an affine or projective space and
𝑚 ∈ ℕ>0. The𝑚th secant variety of𝑊 is the Zariski-closure of the union of subspaces spanned by
𝑚 elements of𝑊, that is,

𝜎𝑚(𝑊) =
⋃

𝑥1,…,𝑥𝑚∈𝑊

⟨𝑥1, … , 𝑥𝑚⟩.
Notation. Recall that the projective space ℙ𝑁 is the space of equivalence classes of ℂ𝑁 ⧵ {0} with
respect to the relation that identifies vectors that are one multiple of each other. For any line
through the origin 0 ∈ ℂ𝑁+1, we associate a projective point [𝑥] ∈ ℙ𝑁 where 𝑥 is a nonzero point
of the line. Given a subvariety𝑊 of the projective space ℙ𝑁 , let𝑊 denote the affine cone of𝑊,
which is the set of all representatives of projective points of𝑊 together with the origin, that is,

𝑊 ∶= {0} ∪
⋃

[𝑥]∈𝑊

{𝑥} ⊆ ℂ𝑁+1.

Remark 3.2. In terms of affine cones, the secant variety has a convenient parameterization: Let
𝑊 and𝑚 be as in Definition 3.1. Then 𝜎𝑚(𝑊) is the closure of the image of

𝜓𝑚,𝑊 ∶ 𝑊𝑚 → 𝜎𝑚(𝑊), (𝑥1, … , 𝑥𝑚) ↦

𝑚∑
𝑖=1

𝑥𝑖. (3.1)
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2416 BLOMENHOFER et al.

From the latter parameterization, it is clear that in order to hope for generic identifiability, we
need a first necessary condition: dim𝑊𝑚 = dim𝜎𝑚(𝑊). The left-hand side is equal to𝑚 ⋅ dim𝑊

and is clearly an upper bound for the actual dimension of the (cone of) the𝑚th secant variety. It
is called expected dimension and, whenever it is not attained, we say that the variety is𝑚-defective.
The computation of dimensions of secant varieties, and in particular the classification of defective
ones, is a difficult challenge in classical algebraic geometry. The following is the main tool to
approach the problem, due to Terracini [30], which describes the general tangent space of the
secant variety 𝜎𝑚(𝑉) in terms of𝑚 general tangent spaces of𝑊.

Notation. Given an affine variety𝑊 and a point 𝑥 ∈ 𝑊, 𝑇𝑥𝑊 denotes its tangent space at 𝑥. If
𝑊 is a projective variety, embedded in ℙ𝑁 , then, abusing notation, we will also write 𝑇𝑥𝑊 for the
embedded projective tangent subspace.

Lemma 3.3 (Terracini’s lemma [30]). Let𝑊 be a variety and consider for𝑚 ∈ ℕ the secant 𝜎𝑚(𝑊).
For general points 𝑥1, … , 𝑥𝑚 ∈ 𝑊 and general 𝑥 ∈ ⟨𝑥1, … , 𝑥𝑚⟩ ⊆ 𝜎𝑚(𝑊), we have that

𝑇𝑥𝜎𝑚(𝑊) =

𝑚∑
𝑖=1

𝑇𝑥𝑖𝑊.

Terracini’s lemma gives us a way to determine whether the map (3.1) is generically finite: a first
necessary condition for generic identifiability.

Proposition 3.4. Let𝑊 be an irreducible variety and𝑚 ∈ ℕ0 such that for general 𝑥1, … , 𝑥𝑚 ∈ 𝑊,
the tangent spaces at 𝑥1, … , 𝑥𝑚 are skew, that is,

𝑚∑
𝑖=1

𝑇𝑥𝑖𝑊 =

𝑚⨁
𝑖=1

𝑇𝑥𝑖𝑊. (3.2)

Then the map (3.1) is generically finite.

Proof. Let 𝑥1, … , 𝑥𝑚 ∈ 𝑊 be general points. By Lemma 3.3 and generality of 𝑥1, … , 𝑥𝑚, the left-
hand side of Equation 3.2 has the dimension of 𝜎𝑚(𝑊), while

⨁𝑚
𝑖=1 𝑇𝑥𝑖𝑊 ≅ 𝑇(𝑥1,…,𝑥𝑚)𝑊

𝑚 has
the dimension of𝑊𝑚. Let 𝑥 ∈ ⟨𝑥1, … , 𝑥𝑛⟩ be a general point. The fiber dimension formula yields
together with Terracini’s lemma (Lemma 3.3) and the assumption,

dim𝜓−1𝑚,𝑊(𝑥) = dim𝑊𝑚 − dim𝜎𝑚(𝑊) = dim

𝑚⨁
𝑖=1

𝑇𝑥𝑖𝑊 − dim

𝑚∑
𝑖=1

𝑇𝑥𝑖𝑊 = 0.
□

Proposition 3.4 gives a tool to examine whether a mixture decomposition problem has only
finitely many solutions, basically only requiring us to calculate the dimension of certain vector
spaces. Answering the question of identifiability requires further analysis, since the question is a
priori not just about the dimension of the generic fibers of 𝜓𝑚,𝑊 , but also about their cardinality.
In other words, we need to show that the map 𝜓𝑚,𝑊 is actually birational. If so, we say that both
𝜓𝑚,𝑊 and 𝜎𝑚(𝑊) are generically identifiable.
However, in [6], it is shown that under certain numerical assumptions, proving non-𝑚-

defectivity implies generic (𝑚 − 1)-identifiability. We will employ this fact in Section 4.1.
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IDENTIFIABILITY FOR MIXTURES OF CENTERED GAUSSIANS 2417

On the other hand, in a series of papers [9–11], the geometry of the so-called tangential contact
locus has been used to study identifiability for tensor decompositions. We will follow the same
idea in Section 4.2.

Definition 3.5. Let𝑊 a variety,𝑚 ∈ ℕ>0 and 𝑥 = (𝑥1, … , 𝑥𝑚) ∈ 𝑊𝑚 an𝑚-tuple of smooth points
of𝑊with skew tangent spaces. The (𝑚th) tangential contact locus 𝑊(𝑥) of𝑊 at 𝑥 is the projective
subvariety of

Γ𝑊(𝑥) ∶=

{
𝑦 ∈ 𝑊 ∣ 𝑇𝑦𝑊 ⊆

𝑚∑
𝑖=1

𝑇𝑥𝑖𝑊

}
,

consisting of points 𝑧 ∈ Γ𝑊(𝑥) such that the irreducible components of Γ𝑊(𝑥) passing through 𝑧
contain at least one of 𝑥1, … , 𝑥𝑚.

An easy semicontinuity argument enables us to check general identifiability only by studying
the tangential contact locus of a specific decomposition 𝑡 = 𝑥1 +⋯ + 𝑥𝑚. Indeed, a more general
statements holds, see, for example, [10, Proposition 2.3]

4 IDENTIFIABILITY FOR POWERS OF FORMS

Let𝑉𝑘,𝑑 = {𝑞𝑑 ∣ 𝑞 ∈ ℙ(𝑆𝑘(ℂ𝑛))} denote the projective variety of 𝑑th powers of degree-𝑘 forms. We
suppress the dependency on 𝑛 ∈ ℕ.

Proposition 4.1. For 𝑘, 𝑑 ∈ ℕ, the map

𝜄 ∶ ℙ(𝑆𝑘(ℂ𝑛)) → 𝑉𝑘,𝑑 ⊆ ℙ(𝑆𝑘𝑑(ℂ𝑛)), 𝑝 ↦ 𝑝𝑑

is an embedding.

Proof. The map 𝜄 can be regarded as the following composition:

ℙ(𝑆𝑘(ℂ𝑛))
𝜈𝑑
MM→ ℙ(𝑆𝑑(𝑆𝑘(ℂ𝑛)))

𝜋𝐸
MM→ ℙ(𝑆𝑘𝑑(ℂ𝑛)),

where:

∙ 𝜈𝑑 is the 𝑑th Veronese embedding sending linear forms to their degree-𝑑 power;
∙ 𝜋𝐸 is the orthogonal linear projection induced by the decomposition

𝑆𝑑(𝑆𝑘(ℂ𝑛)) = 𝑆𝑘𝑑(ℂ𝑛) ⊕ 𝐸,

where 𝐸 is the degree-𝑑 part of the ideal of the 𝑘th Veronese embedding of ℙ(ℂ𝑛).

The center of the projection 𝐸 does not intersect the second secant variety 𝜎2(𝜈𝑑(ℙ(𝑆𝑘(ℂ𝑛)))).
Indeed, all forms in the latter secant variety are either of the form 𝓁𝑑−1𝑚 or 𝓁𝑑 + 𝑚𝑑, where
𝓁, 𝑚 are linear forms, and they are both completely reducible, since 𝑙𝑑 + 𝑚𝑑 = Π𝑑

𝑖=1
(𝑙 + 𝜁𝑖𝑚)

where 𝜁 = 𝑒
2𝜋𝑖
𝑑 is a primitive 𝑑th root of unity. However, the Veronese variety is irreducible and
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2418 BLOMENHOFER et al.

is not contained in any hyperplane. Therefore, 𝜎2(𝜈𝑑(ℙ(𝑆𝑘(ℂ𝑛)))) ∩ 𝐸 = ∅ so that the projection
𝜋𝐸 restricted to the image 𝜈𝑑(ℙ(𝑆𝑘(ℂ𝑛))) is an isomorphism and the composition 𝜋𝐸◦𝜈𝑑 is an
embedding. □

We prove general identifiability for the𝑚th secant variety of 𝑉𝑘,𝑑 with two approaches.

4.1 From nondefectivity to identifiability

In [6], Casarotti andMella derive general identifiability as a consequence of the next-order secant
having expected dimension.

Theorem 4.2 [6, Introduction]. Let 𝑊 be a smooth variety of dimension 𝑛 ∈ ℕ and let 𝑚 ∈ ℕ.
Assume that the𝑚th secant variety is of (expected) dimension𝑚(𝑛 + 1) − 1 and𝑚 > 2𝑛. Then𝑊 is
(𝑚 − 1)-identifiable.

By simple computation of differentials, it is immediate to notice that the tangent space to 𝑉𝑘,𝑑
at 𝑞 = 𝑝𝑑 is given by {ℎ𝑝𝑑−1 ∣ ℎ ∈ 𝑆𝑘(ℂ𝑛)}. Therefore, by Terracini’s lemma (Lemma 3.3), in order
to prove that secant varieties of 𝑉𝑘,𝑑 have the expected dimension, we only have to show that the
tangent spaces 𝑇𝑝𝑑

1
𝑉𝑘,𝑑, … , 𝑇𝑝𝑑𝑚

𝑉𝑘,𝑑 are skew for a general choice of the 𝑝𝑖 ’s. That is equivalent to
say that the degree-𝑘𝑑 part of the ideal (𝑝𝑑−1

1
, … , 𝑝𝑑−1𝑚 ) has maximal dimension. This is implied

by a more general fact related to Fröberg’s conjecture on Hilbert series of general ideals.
Given a homogeneous ideal 𝐼 ⊂ ℂ[𝑋], the Hilbert series of the associated quotient ring is

HS(ℂ[𝑋]∕𝐼; 𝑇) =
∑
𝑖∈ℕ

dim(ℂ[𝑋]𝑖∕𝐼𝑖)𝑇
𝑖 ∈ ℕ[[𝑇]],

where 𝐼𝑖 ∶= 𝐼 ∩ ℂ[𝑋]𝑖 . Fröberg’s Conjecture [12] says that given a general ideal 𝐼 = (g1, … , g𝑚) ⊂

ℂ[𝑋] with deg(g𝑖) = 𝑑𝑖 , the Hilbert series is given by the formula[∏𝑚
𝑖=1(1 − 𝑇

𝑑𝑖 )

(1 − 𝑇)𝑛

]
, (4.1)

where [⋅] means that the power series obtained by the fraction is truncated before the first non-
positive coefficient. In [26, Conjecture 2], it is conjectured that, whenever deg(𝑝𝑖) > 1, the ideal
(𝑝𝑑−1
1

, … , 𝑝𝑑−1𝑚 ) has the Hilbert series (4.1) for 𝑑𝑖 = (𝑑 − 1)𝑘 and for a general choice of the 𝑝𝑖 ’s,
namely, [

(1 − 𝑇(𝑑−1)𝑘)𝑚 ⋅
∑
𝑗∈ℕ

(
𝑛 − 1 + 𝑗

𝑛 − 1

)
𝑇𝑗

]
.

If the latter holds, then it is immediate to see that the coefficient of 𝑇𝑑𝑘 is(
𝑛 − 1 + 𝑘𝑑

𝑛 − 1

)
−𝑚

(
𝑛 − 1 + 𝑘

𝑛 − 1

)
= dimℂ[𝑋]𝑘𝑑 − 𝑚 ⋅ dimℂ[𝑋]𝑘,

that is, the tangent spaces 𝑇𝑝𝑑
1
𝑉𝑘,𝑑, … , 𝑇𝑝𝑑𝑚

𝑉𝑘,𝑑 are skew.
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IDENTIFIABILITY FOR MIXTURES OF CENTERED GAUSSIANS 2419

For fixed positive integers 𝑎, ℎ, Nenashev showed in [25, Theorem 1] that the coefficient of 𝑇𝑎+ℎ
of theHilbert series of an ideal 𝐼 is as prescribed by (4.1)whenever 𝐼 = (g1, … , g𝑚)withdeg(g𝑖) = 𝑎,
where the g𝑖 ’s are chosen generically from a nonempty variety  ⊂ 𝑆𝑑(ℂ𝑛) that is closed under
linear transformation, and𝑚 ⩽

dimℂ[𝑋]𝑎+ℎ
dimℂ[𝑋]ℎ

− dimℂ[𝑋]ℎ.
In conclusion, by applying the latter result for 𝑎 = (𝑑 − 1)𝑘, ℎ = 𝑘 and  is the tangential

variety of 𝑉𝑘,𝑑, that is, = {𝑝𝑑−1ℎ | 𝑝, ℎ ∈ 𝑆𝑘}, we immediately deduce the following.

Theorem 4.3. The dimension of the𝑚th secant variety of 𝑉𝑘,𝑑 is as expected, that is,

dim𝜎𝑚𝑉𝑘,𝑑 = 𝑚 ⋅ dimℂ[𝑋]𝑘 − 1

for𝑚 ⩽
dimℂ[𝑋]𝑘𝑑
dimℂ[𝑋]𝑘

− dimℂ[𝑋]𝑘 .

Therefore, by Theorem 4.2 and since generic 𝑚-identifiability implies generic (𝑚 − 1)th
identifiability, we have the following identifiability result.

Corollary 4.4. The 𝑚th secant variety of 𝑉𝑘,𝑑 is generically 𝑚-identifiable for 𝑚 ⩽
dimℂ[𝑋]𝑘𝑑
dimℂ[𝑋]𝑘

−

dimℂ[𝑋]𝑘 − 1, provided that 2(dimℂ[𝑋]𝑘 − 1) <
dimℂ[𝑋]𝑘𝑑
dimℂ[𝑋]𝑘

− dimℂ[𝑋]𝑘 .

In particular, in the (𝑘, 𝑑) = (2, 3) case, we obtain the condition (1) of the main Theorem 1.1.
Indeed, note that the condition required by Corollary 4.4, that is,

2

((
𝑛 + 1

2

)
− 1

)
<

(𝑛+5
6

)
(𝑛+1

2

) −(
𝑛 + 1

2

)
,

holds if and only if 𝑛 > 16.

Corollary 4.5 (Theorem 1.1, Condition (1)). Let 𝑛,𝑚 ∈ ℕ such that 𝑛 > 16. Then, for 𝑚 ⩽(𝑛+5
6

)
∕
(𝑛+1

2

)
−
(𝑛+1

2

)
− 1 and general 𝑞1, … , 𝑞𝑚 ∈ 𝑆2(ℂ𝑛) and general 𝑡 ∈ ⟨𝑞3

1
, … , 𝑞3𝑚⟩, there is a

unique representation of 𝑡 as sum𝑚 cubes of quadratic forms.

Corollary 4.4 provides results also for sums of higher powers of high degree forms. In the case
of power of quadratics (𝑘 = 2), the condition required by Corollary 4.4 reduces to

3

(
𝑛 + 1

2

)2

− 2

(
𝑛 + 1

2

)
<

(
𝑛 − 1 + 2𝑑

2𝑑

)
and Theorem 1.5 follows. The latter inequality holds for pairs (𝑛, 𝑑) in the region represented in
Figure 1.

4.2 Tangential contact locus for cubes of quadratics

The second approach relies on an earlier result due to Chiantini and Ottaviani [9], which provides
generic identifiability as a consequence of a dimension argument for the tangential contact locus.
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2420 BLOMENHOFER et al.

A semicontinuity argument enables us to check general identifiability only by studying the
tangential contact locus of a specific decomposition 𝑡 = 𝑥1 +⋯ + 𝑥𝑚. The following two results
link identifiability with the dimension of the tangential contact locus.

Proposition 4.6 [10, Proposition 2.3]. Let𝑊 be an irreducible, nondegenerate variety of dimension
𝑛 ⩾ 2, which is not𝑚-defective. If the generic element of 𝜎𝑚(𝑊) is not identifiable, then for general
𝑥 ∈ 𝑊𝑚 and each 𝑖 ∈ {1, … ,𝑚}, the tangential contact locus 𝑊 to 𝑊 at 𝑥 must contain a curve
through 𝑥𝑖 .

Theorem 4.7 [9, Proposition 2.4]. Let𝑊 be a nondegenerate, irreducible smooth variety and 𝑚 ∈

ℕ>0. Consider the following statements:

(i) The𝑚th secant map 𝜓𝑚,𝑊 is generically identifiable.
(ii) For every𝑚 general points 𝑥1, … , 𝑥𝑚 ∈ 𝑊,𝑇𝑥1𝑊,… , 𝑇𝑥𝑚𝑊 are skew spaces and the dimension

of 𝑊(𝑥1, … , 𝑥𝑚) at every 𝑥𝑖 is zero.
(iii) There exist𝑚 specific points 𝑥1, … , 𝑥𝑚 ∈ 𝑊 with skew tangent spaces

𝑇𝑥1𝑊,… , 𝑇𝑥𝑚𝑊

such that the dimension of 𝑊(𝑥1, … , 𝑥𝑚) at a specific 𝑥𝑖 is zero.

Then we have (iii)⇒(ii)⇒(i).

In order to prove the identifiability result, we will construct a specific set of quadratic forms
𝑞1, … , 𝑞𝑚, where 𝑚 =

(𝑛
2

)
+ 1, such that the tangential contact locus at 𝑞1, … , 𝑞𝑚 consists only

of the points 𝑞1, … , 𝑞𝑚 with skew tangent spaces. This proves by Theorem 4.7 that the secant of
rank up to

(𝑛
2

)
+ 1 is identifiable, for any 𝑛 ∈ ℕ. We will use variables 𝑋 = (𝑋1, … , 𝑋𝑛) as local

affine coordinates. Given 𝑞1, … , 𝑞𝑚 ∈ ℂ[𝑋]2, we denote, by abuse of notation, with ̂(𝑞1, … , 𝑞𝑚)

the affine cone of the preimage of the tangential contact locus at the points [𝑞3
1
], … , [𝑞3𝑚] via the

map 𝜄 from Proposition 4.1. Similarly, we denote by Γ̂(𝑞1, … , 𝑞𝑚) ∶= ˆ𝜄−1(Γ𝑉2,3 ([𝑞
3
1
], … , [𝑞3𝑚])) the

preimage via 𝜄 of Γ𝑉2,3 at 𝑞1, … , 𝑞𝑚, cf. Definition 3.5. This notation suppresses the dependency on
the variety 𝑉 ∶= 𝑉2,3, which depends on the number 𝑛 of variables. Making the expression for
tangent spaces at 𝑉 explicit, we have:

Γ̂(𝑞1, … , 𝑞𝑚) =

{
𝑝 ∈ ℂ[𝑋]2 ∣ ∀ℎ ∈ ℂ[𝑋]2 ∶ ∃ℎ1, … , ℎ𝑚 ∈ ℂ[𝑋]2 ∶ 𝑝

2ℎ =

𝑚∑
𝑖=1

𝑞2𝑖 ℎ𝑖

}
.

Definition 4.8. For 𝑖, 𝑗 ∈ {1, … , 𝑛} with 𝑖 < 𝑗, define

𝑞𝑖𝑗 ∶= (𝑋𝑖 + 𝑋𝑗)
2 (4.2)

and let

𝑛 ∶= {(𝑋𝑖 + 𝑋𝑗)
2 ∣ 𝑖, 𝑗 ∈ {1, … , 𝑛}, 𝑖 < 𝑗} ∪ {𝑋21}.

We call 𝑛 the binomial set of quadratics in dimension 𝑛. Up to relabeling, we can write 𝑛 =

{𝑞1, … , 𝑞(𝑛2)+1
}, where the order of the elements is arbitrary.
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IDENTIFIABILITY FOR MIXTURES OF CENTERED GAUSSIANS 2421

Remark 4.9. It is an easy consequence of the previous Definition 4.8 that the following equality
holds for 𝑛 ⩾ 2:

𝑛−1 ∪ {4𝑋
2
1} = {𝑝(𝑋1, … , 𝑋𝑛−1, 𝑋1) ∣ 𝑝 ∈ 𝑛},

where with 𝑝(𝑋1, … , 𝑋𝑛−1, 𝑋1), we denote the evaluation of the polynomial 𝑝 ∈ ℂ[𝑋]2 at
(𝑋1, … , 𝑋𝑛−1, 𝑋1).

Theorem 4.10. The tangent spaces at elements of the binomial set 𝑛 are skew, that is,

𝑇𝑞1𝑉 +⋯ + 𝑇𝑞(𝑛2)+1
𝑉 = 𝑇𝑞1𝑉 ⊕⋯⊕ 𝑇𝑞(𝑛2)+1

𝑉.

Proof. We proceed by induction on 𝑛. For 𝑛 ⩽ 5, we verify the statement on a computer. The code
may be found on GitHub [29]. Therefore, we can assume that 𝑛 ⩾ 6 and that the claim on 𝑘 is
true for all 𝑘 < 𝑛. Let ℎ1, ℎ𝑖𝑗 ∈ 𝑆2(ℂ𝑛), where 𝑖, 𝑗 ∈ {1, … , 𝑛} and 𝑖 < 𝑗. Suppose that

0 = ℎ1𝑋
4
1 +

∑
1⩽𝑖<𝑗⩽𝑛

ℎ𝑖𝑗(𝑋𝑖 + 𝑋𝑗)
4. (4.3)

We have to show that ℎ1 = ℎ𝑖𝑗 = 0 for all 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑛. Denote ℎ𝑗𝑖 ∶= ℎ𝑖𝑗 . Since 𝑛 is symmetric
under permutations of {𝑋2, … , 𝑋𝑛}, we can interchange any two variables not equal to 𝑋1. Thus,
without loss of generality, the only two cases to consider are (𝑖, 𝑗) = (2, 3) and (𝑖, 𝑗) = (1, 2). Let
us first consider the case (𝑖, 𝑗) = (2, 3). Since 𝑛 ⩾ 6, we may apply the substitution

𝜑4 ∶ ℂ[𝑋] → ℂ[𝑋1, … , 𝑋3, 𝑋5 … ,𝑋𝑛], 𝑋4 ↦ 𝑋1

to reduce to a case with one variable less. We obtain

0 = 𝜑4(ℎ1)𝑋
4
1 +

∑
1⩽𝑘<𝑙⩽𝑛
4∉{𝑘,𝑙}

𝜑4(ℎ𝑘𝑙)(𝑋𝑘 + 𝑋𝑙)
4 +

𝑛∑
𝑘=1

𝜑4(ℎ4𝑘)(𝑋𝑘 + 𝑋1)
4. (4.4)

Now note that the form (𝑋2 + 𝑋3)
4 can only occur in the first summation, yielding 𝜑4(ℎ23) =

0. Therefore, by construction, (𝑋1 − 𝑋4) divides the quadratic form ℎ23. Repeating this same
argument with the substitutions

𝜑5 ∶ 𝑋5 ↦ 𝑋1

𝜑6 ∶ 𝑋6 ↦ 𝑋1

yields that (𝑋1 − 𝑋5) and (𝑋1 − 𝑋6) divide ℎ23, too. Since these linear forms are coprime, (𝑋1 −
𝑋4)(𝑋1 − 𝑋5)(𝑋1 − 𝑋6) must divide ℎ23, which for degree reasons is only possible if ℎ23 = 0.
By symmetry of 𝑛, we get that ℎ𝑖𝑗 = 0 for all pairs {𝑖, 𝑗} not containing 1. Thus, Equation 4.3
simplifies to

0 = ℎ1𝑋
4
1 +

𝑛∑
𝑗=1

ℎ1𝑗(𝑋1 + 𝑋𝑗)
4. (4.5)
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2422 BLOMENHOFER et al.

As for the (𝑖, 𝑗) = (1, 2) case: If ℎ12 were not the zero form, then ℎ12(𝑋1 + 𝑋2)4 would contain
a monomial of degree at least 4 in 𝑋2. Since all other addends in Equation 4.5 can only contain
monomials of degree at most 2 in𝑋2, the terms of degree at least 4 in𝑋2 from ℎ12(𝑋1 + 𝑋2)

4 could
not cancel with any other addend from (4.5). After a short argument left to the reader, this forces
ℎ12 = 0 and by symmetry thus ℎ13 =⋯ = ℎ1𝑛 = 0. Finally, we also must have ℎ1 = 0, as it is the
only remaining term in (4.5). □

Nowwe show that the tangential contact locus for the binomial set is zero dimensional at each
point of the binomial set.

Theorem 4.11. For 𝑛 ∈ ℕ, and each 𝑞 ∈ {𝑞1, … , 𝑞(𝑛2)+1
}, locally around 𝑞, ̂(𝑞1, … , 𝑞(𝑛2)+1) only

contains points from the line ℂ𝑞.

Proof. We use affine notation and proceed by induction on the number 𝑛 of variables. The base
cases 𝑛 ⩽ 5 were verified on a computer, see [29].
Thus, let us assume 𝑛 ⩾ 6. As 𝑛 is invariant under permutations of 𝑋2,… , 𝑋𝑛, it suffices to

show the claim at 𝑞 ∈ {𝑋2
1
, (𝑋1 + 𝑋2)

2, (𝑋2 + 𝑋3)
2}. In particular, we may assume that 𝑞 is a poly-

nomial in 𝑋1, 𝑋2, 𝑋3. As we work locally around 𝑞, it does not matter whether we show the
statement for Γ̂ or ̂, cf. Definition 3.5. We thus have to show that there exists a neighborhood
 ⊆ ℂ[𝑋]2 of 𝑞 such that ∩ Γ̂(𝑞1, … , 𝑞𝑚) ⊆ ℂ𝑞. Consider the substitution

𝜑∶ ℂ[𝑋] → ℂ[𝑋1, … , 𝑋𝑛−1],

whichmaps𝑋𝑛 to𝑋1 and leaves the rest unchanged.Note𝜑(𝑞) = 𝑞, as𝑛 ⩾ 6. By induction hypoth-
esis, we know that there exists a neighborhood  ⊆ ℂ[𝑋1, … , 𝑋𝑛−1]2 of 𝑞 such that  ∩ Γ̂(𝑛−1) ⊆

ℂ𝑞. This means that for all

𝑝 ∈ 𝜑−1() ∩ Γ̂(𝑞1, … , 𝑞𝑚),

there is 𝜆 ∈ ℂ such that 𝜑(𝑝) = 𝜆𝑞. In other words,

(𝑋1 − 𝑋𝑛)|(𝑝 − 𝜆𝑞).
Repeating the same argument with the substitution 𝜑′ that maps 𝑋𝑛−1 to 𝑋1, we obtain another
neighborhood  ′ with the property that for each

𝑝 ∈ 𝜑′−1( ′) ∩ Γ̂(𝑞1, … , 𝑞𝑚),

it holds that 𝜑′(𝑝) = 𝜆′𝑞.
Let  = 𝜑−1() ∩ 𝜑′−1( ′), then for each 𝑝 ∈  ∩ Γ̂(𝑞1, … , 𝑞𝑚), we can find 𝜆, 𝜆′ ∈ ℂ and

linear forms 𝓁,𝓁′ ∈ ℂ[𝑋]1 such that

𝜆𝑞 + 𝓁(𝑋1 − 𝑋𝑛) = 𝑝 = 𝜆′𝑞 + 𝓁′(𝑋1 − 𝑋𝑛−1). (4.6)

Finally, we have that 𝓁 has to be a polynomial in the variables {𝑋1, 𝑋𝑛−1}: indeed, if a variable 𝑋𝑗
for some 𝑗 ∉ {1, 𝑛 − 1} occurred in 𝓁, then themonomial𝑋𝑗𝑋𝑛 on the left-hand side of (4.6) could
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IDENTIFIABILITY FOR MIXTURES OF CENTERED GAUSSIANS 2423

not cancel with any other terms on the left-hand side, but does also not occur on the right-hand
side. It follows that 𝑝 is a polynomial in {𝑋1, 𝑋2, 𝑋3, 𝑋𝑛−1, 𝑋𝑛}. Thus, we reduced to the case of
five variables and proved the claim. □

Remark 4.12.

(a) Our results donot imply that themixture of cubes of quadratics
∑
𝑞∈𝑛

𝑞3 has a unique decom-
position as a sum of

(𝑛
2

)
+ 1 cubes of quadratics! In [11], the authors consider some sufficient

criteria for the identifiability of specific tensors that maybe, albeit with unnegligible effort,
could be transferred to the setting of cubes of quadratics. We did not do any work regarding
specific identifiability for cubes of quadratics.

(b) We verify Theorem 4.10 and Theorem 4.11 for 𝑛 = 5 on a computer. The code is publicly avail-
able onGitHub, see [29]. This base case can be verified using onlymethods of numerical linear
algebra (such as determining dimensions of certain vector spaces of polynomials) and should
therefore be easy to reproduce independently.
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