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We consider clustering games in which the players are embedded into a network and want to coordinate
(or anti-coordinate) their strategy with their neighbors. The goal of a player is to choose a strategy that
maximizes her utility given the strategies of her neighbors. Recent studies show that even very basic variants
of these games exhibit a large Price of Anarchy: A large inefficiency between the total utility generated in
centralized outcomes and equilibrium outcomes in which players selfishly maximize their utility.

Our main goal is to understand how structural properties of the network topology impact the inefficiency
of these games. We derive topological bounds on the Price of Anarchy for different classes of clustering games.
These topological bounds provide a more informative assessment of the inefficiency of these games than the
corresponding worst-case Price of Anarchy bounds. More specifically, depending on the type of clustering
game, our bounds reveal that the Price of Anarchy depends on the maximum subgraph density or the maxi-
mum degree of the graph. Among others, these bounds enable us to derive bounds on the Price of Anarchy
for clustering games on Erdős-Rényi random graphs. Depending on the graph density, these bounds stand in
stark contrast to the known worst-case Price of Anarchy bounds.

Additionally, we characterize the set of distribution rules that guarantee the existence of a pure Nash
equilibrium or the convergence of best-response dynamics. These results are of a similar spirit as the work
of Gopalakrishnan et al. [19] and complement work of Anshelevich and Sekar [4].
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1 INTRODUCTION

Clustering games on networks constitute a class of strategic games in which the players are embed-
ded into a network and want to coordinate, or anti-coordinate, their choices with their neighbors.
These games capture several key characteristics encountered in applications such as opinion forma-
tion, technology adoption, information diffusion, or virus spreading on various types of networks,
e.g., the Internet, social networks, and biological networks.

Different variants of clustering games have recently been studied intensively in the algorithmic
game theory literature, both with respect to the existence and the inefficiency of equilibria, see,
e.g., References [4, 5, 16, 20, 21, 24, 30, 33]. Unfortunately, several of these studies reveal that
the strategic choices of the players may lead to equilibrium outcomes that are highly inefficient.
Arguably the most prominent notion to assess the inefficiency of equilibria is the Price of Anarchy

(PoA) [29], which refers to the worst-case ratio of the optimal social welfare and the social welfare
of a (pure) Nash equilibrium. It is known that even the most basic clustering games exhibit a
large, sometimes even unbounded, Price of Anarchy (see below for details). These negative results
naturally trigger the following questions: Is this high inefficiency inevitable in clustering games
on networks? Or, can we trace more precisely what causes a large inefficiency? These questions
constitute the starting point of our investigations:

Our main goal in this article is to understand how structural properties of the

network topology impact the Price of Anarchy in clustering games.

In general, our idea is that a more fine-grained analysis may reveal topological parameters of the
network that can be used to derive more accurate bounds on the Price of Anarchy. Given the many
applications of clustering games on different types of networks, our hope is that such topological
bounds will be more informative than the corresponding worst-case bounds.

Clearly, this hope is elusive for a number of fundamental games on networks whose inefficiency
is known to be independent of the network topology. Arguably, the most prominent example are
selfish routing games whose Price of Anarchy has been analyzed in the seminal works by Rough-
garden and Tardos [36] and Roughgarden [35]. But, in contrast to these games, clustering games
exhibit a strong locality property induced by the network structure, i.e., the utility of each player
is affected only by the choices of her direct neighbors in the network. This observation also mo-
tivates our choice of quantifying the inefficiency by means of topological parameters rather than
other parameters of the game.

In this article, we derive topological bounds on the Price of Anarchy for different classes of clus-
tering games. Our bounds reveal that the Price of Anarchy depends on different topological param-
eters in the case of symmetric and asymmetric strategy sets of the players: While they exhibit a de-
pendency on the maximum subgraph density for symmetric clustering games, they reveal a depen-
dency on the maximum degree for asymmetric clustering games. Using these topological bounds,
we are able to derive improved bounds for certain special graph classes as simple corollaries.

We also use our topological bounds to obtain a precise understanding of the Price of Anarchy
of clustering games on Erdős-Rényi random graphs [18]. Our results reveal that, depending on
the density of the graph, the Price of Anarchy improves significantly over the known worst-case
bounds. To the best of our knowledge, this is also the first work that addresses the inefficiency of
equilibria on random graphs.1

The applicability of our topological Price of Anarchy bounds is not limited to the class of Erdős-
Rényi random graphs. The main reason for using these graphs is that their structural properties

1Valiant and Roughgarden [37] study the Braess paradox in large random graphs; but their work has a different focus than
ours (see Section 1.3 for more details).
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Price of Anarchy of Clustering Games on Networks 11:3

are well-understood. In particular, our topological bounds can be applied directly to any graph
class of interest for which the above topological parameters are well-understood.

Apart from our topological Price of Anarchy bounds, we also give a complete characterization
of what type of distribution rules, which determine how utility generated by two adjacent players
in the network is split when they (anti-)coordinate, guarantee the convergence of best-response
dynamics in symmetric clustering games. These results extend and complement the results by
Gopalakrishnan et al. [19] and Anshelevich and Sekar [4].

Altogether, our results give a more fine-grained view on clustering and coordination games.

1.1 Our Clustering Games

We study a generalization of the unifying model of clustering games introduced by Feldman and
Friedler [16]: We are given an undirected graph G = (V ,E) on n = |V | nodes whose edge set E =
Ec ∪Ea is partitioned into a set of coordination edges Ec and a set of anti-coordination edges Ea . The
game is called a coordination game if all edges are coordination edges and an anti-coordination game

(or cut game) if all edges are anti-coordination edges. Further, we are given a set [c] = {1, . . . , c}
of c > 1 colors and non-negative edge weights w = (we )e ∈E .2 Each node i corresponds to a player
who chooses a color si ∈ Si from a set of colors Si ⊆ [c] that are available to her. We say that the
game is symmetric if Si = [c] for all i ∈ V and asymmetric otherwise. An edge e = {i, j} ∈ E is
satisfied if either (i) it is a coordination edge and both i and j choose the same color or (ii) it is an
anti-coordination edge and i and j choose different colors. The goal of player i is to choose a color
si ∈ Si such that the weight of all satisfied edges incident to i is maximized.

We consider a generalization of these games by incorporating additionally: (i) individual player
preferences, as in Reference [33], and (ii) different distribution rules, as in Reference [4]: We assume
that each player i has a preference function qi : Si → R≥0 that encodes her preferences over the
colors in Si . Further, player i has a split parameter ξi j ≥ 0 for every incident edge e = {i, j} that
determines the share she obtains from e: If e is satisfied, then i obtains a proportion of ξi j/(ξi j +ξ ji )
of the weightwe of e . The utility ui (s ) of player i with respect to strategy profile s = (s1, . . . , sn ) is
then the sum of the individual preference qi (si ) and the total share of all satisfied edges incident to
i . We consider the standard utilitarian social welfare objectiveu (s ) =

∑
i ui (s ). We use ξ̄e to denote

the disparity of an edge e = {i, j}, defined as ξ̄e = max{ξi j/ξ ji , ξ ji/ξi j }, and let ξ̄ = maxe ∈E ξ̄e refer
to the maximum disparity of all edges. We say that the game has the equal-split distribution rule if
ξ̄ = 1; equivalently, ξi j = ξ ji for all {i, j} ∈ E.

Our clustering games generalize several other strategic games, which were studied extensively
in the literature before. For example, they generalize max cut games and not-all-equal satisfia-

bility games [20], max k-cut games [21], coordination games [5], clustering games [16], and anti-

coordination games [30]. In turn, the class of clustering games that we study here can be gener-
alized naturally. We consider several such extensions here. However, as we show, our results do
not carry over to any of these (slightly) more general settings. In that sense, our results are best
possible with respect to the generality of the class of clustering games considered here. We present
these results in Appendix A.

1.2 Our Contributions

We derive results for symmetric and asymmetric clustering games. We only elaborate on our main
findings for symmetric clustering games below; our results for the asymmetric case are detailed
in Section 5. An overview of the bounds derived in this article is given in Table 1.

2We use [k] to denote the set {1, . . . , k } for a given integer k ≥ 1.
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11:4 P. Kleer and G. Schäfer

Table 1. Overview of Our Topological Price of Anarchy Bounds for Symmetric and
Asymmetric Clustering Games

SYMMETRIC CLUSTERING GAMES

Graph topology Coord. Indiv. Distr. Topological PoA PoA

only pref. ξ (our bounds) (prev. work)

arbitrary ✗ ✓ + 1 + (1 + ξ̄ )ρ (G ) (Thm. 1)

c [4, 16]

planar ✗ ✓ + ≤ 4 + 3ξ̄ (Cor. 2)
arbitrary ✗ ✓ 1 1 + 2ρ (G ) (Cor. 4)
arbitrary ✗ ✓ 1 ≤ 2 + 2ρ (Gc ) (Thm. 5)
sparse random ✓ ✓ 1 Θ(1) (Cor. 6)
dense random ✓ ✗ 1 Ω(c ) (Thm. 7)

ASYMMETRIC COORDINATION GAMES

Graph topology Coord. Indiv. Distr. (α ,k )-Topological PoA (α ,k )-PoA

only pref. ξ (our bounds) (prev. work)

arbitrary ✓ ✗ 1 ≤ 2αΔ(G ) (Thm. 14) ≤ 2α n−1
k−1arbitrary ✓ ✗ 1 ≥ α ( Δ(G )

k−1 − 1) (Thm. 14)
dense random ✓ ✗ 1 Ω(αn) ≥ 2α n−k

k−1 + 1
sparse random ✓ ✗ 1 Θ

(
α ln(n)
ln ln(n)

)
(Thm. 15)

[33]
+ common color ✓ ✗ 1 O (1) (Thm. 17)

A “+” or “1” in the column “Distr. ξ ” indicates whether the distribution rule ξ is positive or equal-split, respectively. ξ̄ is
the maximum disparity, and c is the number of colors. The parameters ρ (G ) and Δ(G ) refer to the maximum subgraph
density and maximum degree of G , respectively. The stated bounds for random graphs hold with high probability.

1. Topological bounds on the Price of Anarchy. We show that the Price of Anarchy for sym-
metric clustering games is bounded as a function of the maximum subgraph density of G, which
is defined as ρ (G ) = maxS ⊆V {|E[S]|/|S |}, where |E[S]| is the number of edges in the subgraph
induced by S . More specifically, we prove that PoA ≤ 1 + (1 + ξ̄ )ρ (G ) and that this bound is tight
already for coordination games. Using this topological bound, we are able to show that the Price
of Anarchy is at most 4 + 3ξ̄ for clustering games on planar graphs and 1 + 2ρ (G ) for coordi-
nation games with equal-split distribution rule. We also derive a (qualitatively) refined bound of
PoA ≤ 2 + 2ρ (G[Ec ]) for clustering games with equal-split distribution rule. In particular, this
bound reveals that the maximum subgraph density with respect to the graphG[Ec ] (or simplyGc )
induced by the coordination edges Ec only, is the crucial topological parameter determining the
Price of Anarchy.

These bounds provide more refined insights than the known (tight) bound of PoA ≤ c (number
of colors) on the Price of Anarchy for (i) symmetric coordination games with individual preferences
and arbitrary distribution rule [4] and (ii) clustering games without individual preferences and
equal-split distribution rule [16], both being special cases of our model. An important point to
notice here is that this bound indicates that the Price of Anarchy is unbounded if the number of
colors c = c (n) grows as a function of n. In contrast, our topological bounds are independent of c . In
particular, they provide improved bounds when c is large, while the maximum subgraph density is
small. Moreover, our refined bound of 2 + 2ρ (G[Ec ]) mentioned above provides a nice qualitative
bridge between the facts that for max-cut (or anti-coordination) games the Price of Anarchy is
known to be constant, whereas for coordination games the Price of Anarchy might grow large.

2. Price of Anarchy for Random Coordination Games. By using our topological bounds, we
are able to derive bounds on the Price of Anarchy for coordination games on random graphs. We
focus on the Erdős-Rényi random graph model [18], also known as the G (n,p)-model, where each
graph consists ofn nodes and every edge is present independently with probabilityp ∈ [0, 1]. More
specifically, we show that with high probability the Price of Anarchy is constant for coordination
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games on sparse random graphs, i.e.,p = d/n for some constantd > 0, with equal-split distribution
rule. In contrast, we show that with high probability the Price of Anarchy remains Ω(c ) for dense
random graphs, i.e., p = d for some constant 0 < d ≤ 1. We leave it as an interesting open
question to understand what happens for p in the intermediate regime between the sparse and
dense extremes.

Note that our constant bound on the Price of Anarchy for sparse random graphs stands in stark
contrast to the deterministic bound of PoA = c [4, 16], which could increase with the size of
the network. However, our bound for dense random graphs reveals that we cannot significantly
improve upon this bound through randomization of the graph topology.

It is worth mentioning that all our results for random graphs hold against an adaptive adversary

who can fix the input of the clustering game knowing the realization of the random graph. To
obtain these results, we need to exploit some deep probabilistic results on the maximum subgraph
density and the existence of perfect matchings in random graphs.

3. Convergence of Best-response Dynamics. In general, pure Nash equilibria are not guaran-
teed to exist for clustering games with arbitrary distribution rules ξ , even if the game is symmetric
[4]. While some sufficient conditions for the existence of pure Nash equilibria, or the convergence
of best-response dynamics, are known (see also Reference [4]), a complete characterization is elu-
sive so far.

In this work, we instead obtain a complete characterization of the class of distribution rules
that guarantee the convergence of best-response dynamics in clustering games on a fixed network
topology. We prove that best-response dynamics converges if and only if ξ is a generalized weighted

Shapley distribution rule. Our proof relies on the fact that there needs to be some form of cyclic

consistency similar to the one used in Reference [19]. In fact, our characterization results regarding
the existence of pure Nash equilibria and convergence of best-response dynamics are conceptually
similar to the work of Chen et al. [11] and Gopalakrishnan et al. [19]. We refer to Section 4 for
more details.

Prior to our work, the existence of pure Nash equilibria was known for certain special cases of
coordination games only, namely, for symmetric coordination games with individual preferences
and c = 2 [4], and for symmetric coordination games without individual preferences [16]. To
the best of our knowledge, this is the first characterization of distribution rules in terms of best-
response dynamics, which, in particular, applies to the settings in which pure Nash equilibria are
guaranteed to exist for every distribution rule [4, 16].

1.3 Related Work

The literature on clustering and coordination games is vast; we only include references relevant
to our model here. The proposed model above is a mixture of special cases of existing models
considered in References [4, 5, 16, 33].

Anshelevich and Sekar [4] consider symmetric coordination games with individual preferences
and (general) distribution rules. They show existence of α-approximate k-strong equilibria, (α ,k )-
equilibria for short, for various combinations; in particular, (2,k )-equilibria always exist for any
k . Moreover, they show that the number of colors c is an upper bound on the PoA. Apt et al. [5]
study asymmetric coordination games with unit weights, zero individual preferences, and equal-
split distribution rules. They derive an almost complete picture of the existence of (1,k )-equilibria
for different values of c . Feldman and Friedler [16] introduce a unified framework (as introduced
above) for studying the (strong) Price of Anarchy in clustering games with individual preferences
set to zero and equal-split distribution rules. In particular, they show that the number of colors is
an upper bound on the PoA and that 2(n − 1)/(k − 1) is an upper bound on the (1,k )-PoA. Rahn
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and Schäfer [33] consider the more general setting of polymatrix coordination games with equal-
split distribution rule, of which our asymmetric coordination games with individual preferences
are a special case. They show a bound of 2α (n − 1)/(k − 1) on the (α ,k )-PoA and that an (α ,k )-
equilibrium is guaranteed to exist for any α ≥ 2 and any k .

There is also a vast literature on different variants of anti-coordination (or cut) games; see, e.g.,
References [21, 24] and the references therein, which are also captured by our clustering games. In
a recent paper, Carosi and Monaco [10] consider so-called k-coloring games. Moreover, clustering
and coordination games were also studied on directed graphs [5, 9]. Finally, certain coordination
and clustering games can be seen as special cases of hedonic games [14]; we refer the reader to
Reference [7] for, in particular, a survey of recent literature on (fractional) hedonic games. Identi-
fying topological inefficiency bounds for these type of games, as well as for clustering games on
directed graphs, could be an interesting direction for future work.

Regarding the study of the inefficiency of equilibria on random graphs, closest to our work
seems to be the work by Valiant and Roughgarden [37]. They study the Braess paradox on large
Erdős-Rényi random graphs and show that for certain settings the Braess paradox occurs with
high probability as the size of the network grows large. The study of randomness in games has
also received some attention in other settings; see, e.g., References [2, 6]. These are mostly settings
with small strategy sets and random utility functions and are not comparable with ours. We only
focus on randomness in the graph topology of the game.

In the case of equal-split distribution rules, our clustering games can also be modelled as con-
gestion games [34]. The inefficiency of pure Nash equilibria in congestion games has received a
lot of attention; see, e.g., References [1, 8, 12, 13, 26, 28] and references therein. However, none of
these results are directly applicable to the clustering games considered in this work. Finally, our
games are also a special case of so-called distributed welfare games as studied, e.g., by Marden and
Wierman [32].

2 PRELIMINARIES

An instance of a clustering game is given by Γ = (G, c, S, ξ ,w,q), where:

—G = (V ,E) is an undirected graph whose set of edges E = Ec ∪ Ea is partitioned into coordi-
nation edges Ec and anti-coordination edges Ea ;

— c ≥ 2 is the total number of colors that are available;
— S = (Si )i ∈V = ×i ∈V Si is the Cartesian product of the strategy sets, where Si ⊆ [c] with
|Si | ≥ 2 is the subset of colors available to player i ∈ V ;

— ξ = (ξi j ) is the distribution rule, where ξi j ≥ 0 specifies a split parameter for every player
i ∈ V and every incident edge {i, j} ∈ E;

—w = (we )e ∈E specifies the edge weights, where we ≥ 0 is the weight of edge e ∈ E;
—q = (qi )i ∈V defines the players’ individual preferences, whereqi : Si → R≥0 is the individual

preference function of player i ∈ V .

Whenever we refer to a clustering game below, we assume that all of the above input parameters
are non-trivial; we specify the respective restrictions otherwise.

Each node i ∈ V corresponds to a player whose goal is to choose a color si ∈ Si from the set of
colors available to her to maximize her utility functionui . Given a strategy profile s = (s1, . . . , sn ) ∈
S , the utility of player i is defined as

ui (s ) = qi (si ) +
∑

{i, j }∈Ec :si=sj

ξi j

ξi j + ξ ji
·wi j +

∑
{i, j }∈Ea :si�sj

ξi j

ξi j + ξ ji
·wi j .
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We say that an edge {i, j} ∈ E is satisfied in a strategy profile s ∈ S if either (i) si = sj and {i, j}
is a coordination edge, or (ii) si � sj and {i, j} is an anti-coordination edge.

We assume that the distribution rule ξ satisfies ξi j + ξ ji > 0 for every edge e = {i, j} ∈ E; in
particular, not both i and j have a zero split for edge e . We say that ξ is positive if ξi j > 0 and ξ ji > 0
for all e = {i, j} ∈ E; we also write ξ > 0. Further, ξ is called the equal-split distribution rule if
ξi j = ξ ji for all e = {i, j} ∈ E; we also indicate this by ξ = 1. The disparity of an edge e = {i, j} is
defined as ξ̄e = max{ξi j/ξ ji , ξ ji/ξi j } and we use ξ̄ = maxe ∈E ξ̄e to denote the maximum disparity.

We say that the clustering game is symmetric if Si = [c] for every player i ∈ V and asymmetric

otherwise. If we focus on symmetric clustering games, then we omit the explicit reference of the
strategy sets S = ×i ∈V Si with Si = [c]. A clustering game is called a coordination game if Ea = ∅
and an anti-coordination game, or cut game, if Ec = ∅. We use n = |V | to refer to the number of
players.

A strategy profile s = (s1, . . . , sn ) ∈ S is an α-approximate k-strong equilibrium with α ≥ 1 and
k ∈ [n], or (α ,k )-equilibrium for short, if for every set of players K ⊆ V with |K | ≤ k and every
deviation s ′K = (s ′i )i ∈K , there is at least one player j ∈ K such that α · uj (s ) ≥ uj (s−K , s

′
K ). That is,

for any joint deviation of the players in K from strategy profile s , there is at least one player that
cannot improve her utility by more than a factor α .

Let (α ,k )-NE(Γ) be the set of all (α ,k )-equilibria of a game Γ. The (α ,k )-Price of Anarchy of Γ
is then defined as

(α ,k )-PoA(Γ) = max
s ∈(α, k )-NE(Γ)

u (s∗)

u (s )
,

where s∗ a strategy profile maximizing the social welfare objectiveu (s ) =
∑

i ∈V ui (s ). For a class of
clustering games G the (α ,k )-Price of Anarchy is given by (α ,k )-PoA(G) = supΓ∈G (α ,k )-PoA(Γ).
We only consider pairs (α ,k ) for which (α ,k )-NE(Γ) � ∅ for all Γ ∈ G. When α = 1 and k = 1, we
simply write PoA(·) instead of (1, 1)-PoA(·).

2.1 Graph Theory

We consider undirected simple graphs G = (V ,E) where E = Ec ∪ Ea ⊆ {{i, j} : i, j ∈ V } is a
partition of the edges in coordination and anti-coordination edges. We usually write n = |V |. For
a subset F ⊆ E, we write G[F ] for the subgraph of G formed by the edges of F . For a subset S ⊆ V ,
we writeG[S] = (S,E[S]) for the induced subgraph on S , where E[S] = {{i, j} ∈ E : i, j ∈ S }. We say
that a node i ∈ V is adjacent to an edge e ∈ E if i ∈ e . A graph is complete if E = {{i, j} : i, j ∈ V }.
Furthermore, a graph is triangle-free if it contains no complete induced subgraph on three nodes.
Finally, a graph is planar if, informally speaking, it can be drawn in R2 without crossings; see, e.g.,
Reference [38] for a formal definition.

A matching M ⊆ E is a collection of edges so every node inV is adjacent to at most one edge in
M . A perfect matching M is a collection of edges such that every node inV is adjacent to precisely
one edge; in particular, this means that |M | = n/2. A maximum matching is a matching so no other
matching in G has larger cardinality.

The degree of a node i ∈ V is defined as d (i ) = |{j : {i, j} ∈ E}| and the maximum degree of a
graph G is defined as

Δ(G ) = max
i ∈V

d (i ).

The maximum subgraph density of a graph G is defined as

ρ (G ) = max
S ⊆V

{
|E[S]|
|S |

}
.
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2.2 Random Clustering Games

In our probabilistic framework to study the Price of Anarchy of random clustering games, we use
the well-known Erdős-Rényi random graph model [18], denoted by G (n,p): There are n nodes and
every undirected edge is present independently with probability p = p (n) ∈ [0, 1]. Although this
model was first introduced by Gilbert, it is often referred to as the Erdős-Rényi random graph model.
We say that a random graph is sparse if p = d/n for some constant d > 0, and it is dense if p = d
for some constant 0 < d < 1. In this article, we focus on random graph instances with equal-split
distributions rules. Some of our results naturally extend to more general distribution rules, but we
omit the details here, because they do not provide additional insights.

We continue with defining the Price of Anarchy for games with a random graph topology. Fix
some probability p = p (n) ∈ [0, 1] and let β = β (n, c (n)) be a given function. Define GGn

= {Γ :
Γ = (Gn , c (n), ξ ,w,q)} as the set of all clustering games on random graph Gn ∼ G (n,p) with at
most c (n) available colors. We say that the Price of Anarchy for random clustering games is at most

β with high probability, or PoA(GGn
) ≤ β for short, if

PGn∼G (n,p )
(
PoA(GGn

) ≤ β )
) ≥ 1 − o(1),

where the asymptotics in o(1) is with respect to n → ∞. We use a similar definition if we want to
lower bound the Price of Anarchy.

Finally, for a constant β independent of n and c , we say that the Price of Anarchy for random

clustering games is β with high probability, or PoA(GGn
) → β for short, if for all δ > 0

PGn∼G (n,p )
(|PoA(GGn

) − β | ≤ δ
) ≥ 1 − o(1),

where again the asymptotics in o(1) is with respect to n → ∞.
All our results for clustering games on random graphs hold with high probability.

2.3 Shapley Distribution Rules

We adapt the definition of Shapley distribution rules for resource allocation games [19] to our
setting. A distribution rule ξ corresponds to a generalized weighted Shapley distribution rule if and
only if there exists a permutation σ of the players in V and weight vector γ ∈ RV

≥0 such that the
following two conditions are satisfied for every edge e = {i, j}:

(i) If ξi j = 0, then σ (i ) < σ (j ).

(ii) If ξi j , ξ ji > 0, then
ξi j

ξi j+ξ ji
=

γi

γi+γj
.

If all weights are strictly positive, then the resulting distribution rule is a weighted Shapley distri-

bution rule. If γi = γj , then for all i, j ∈ V the resulting distribution rule is an unweighted Shapley

distribution rule. Note that this case corresponds to an equal-split distribution rule.

3 REFINED BOUNDS ON THE PRICE OF ANARCHY

In this section, we first establish our topological bound on the Price of Anarchy for symmetric
clustering games and then use it to derive new bounds for some special cases as well as random
clustering games.

3.1 Topological Price of Anarchy Bound

Our topological bound depends on the maximum subgraph density ofG,which is defined as ρ (G ) =
maxS ⊆V {|E[S]|/|S |}, where |E[S]| is the number of edges in the subgraph induced by S . Recall that
ξ̄ refers to the maximum disparity.
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Theorem 1 (Density Bound). Let Γ = (G, c, ξ ,w,q) be a symmetric clustering game with ξ > 0.

If a pure Nash equilibrium exists for the game Γ, then PoA(Γ) ≤ 1 + (1 + ξ̄ )ρ (G ) and this bound is

tight in general.

Proof. Let s and s∗ be a Nash equilibrium and a social optimum, respectively. Consider an edge
{i, j} ∈ E and assume without loss of generality that ui (s ) ≤ uj (s ), so ui (s ) = min{ui (s ),uj (s )}. If

{i, j} is a coordination edge, then ui (s ) ≥ ui (s−i , sj ) ≥
ξi j

ξi j+ξ ji
· wi j , where (s−i , sj ) is the strategy

profile in which player i deviates to the color of player j and all other players play according to s .

Suppose {i, j} is an anti-coordination edge. If si � sj , then we trivially have ui (s ) ≥ ξi j

ξi j+ξ ji
·wi j by

non-negativity of the weights and individual preferences. If si = sj , then the same inequality holds
by using the Nash condition for some color that is not sj . Recall that such a color exists, because
we assume that |Si | ≥ 2 for all i . In either case, we conclude that

wi j ≤
(
1 +

ξ ji

ξi j

)
ui (s ) ≤

(
1 +max

e ∈E
ξ̄e

)
ui (s ) = (1 + ξ̄ )ui (s ). (1)

Moreover, by exploiting that s is a Nash equilibrium and the non-negativity of the edge weights,
we obtain for every i ∈ V , ui (s ) ≥ ui (s−i , s

∗
i ) ≥ qi (s∗i ).

Using that the sum of the weights of all satisfied edges in s∗ is at most the sum of all edge
weights, we obtain

u (s∗) ≤
∑
i ∈V

qi (s∗i ) +
∑

e={i, j }∈E

wi j ≤
∑
i ∈V

ui (s ) + (1 + ξ̄ )
∑
{i, j }∈E

min{ui (s ),uj (s )}.

If we can find a value M such that∑
{i, j }∈E

min{ui (s ),uj (s )} ≤ M ·
∑
i ∈V

ui (s ), (2)

then it follows that u (s∗) ≤ (1 + (1 + ξ̄ ) ·M )u (s ). We show that M = maxS ⊆V {|E[S]|/|S |} satisfies
Equation (2).

Let N (i ) = {j ∈ V : {i, j} ∈ E} be the set of neighbors of i . Define

mi =
���{j ∈ N (i ) : (ui (s ) < uj (s )) or (ui (s ) = uj (s ) and i < j )}���

and note that
∑

i ∈V mi = |E |. We can assume without loss of generality that
∑

i ∈V ui (s ) = 1, since
the expression in Equation (2) is invariant under multiplication with a constant positive scalar.
Moreover, the players may be renamed such that u1 (s ) ≤ u2 (s ) ≤ · · · ≤ un (s ).

We continue by showing that M is an upper bound for the linear program (P) given below, in
which the variables are the ui = ui (s ), and themi are considered constants. The dual program (D)
is given on the right.

(P) max
∑

i ∈V uimi (D) min z
s.t. u1 + u2 + · · · + un = 1 s.t. −πi + πi+1 + z =mi for i = 1, . . . ,n − 1

0 ≤ u1 ≤ u2 ≤ · · · ≤ un −πn + z =mn

πi ≥ 0 for i = 1, . . . ,n
z ∈ R

.

We now construct a feasible dual solution for (D). Set

z∗ = max
l ∈V

⎧⎪⎨
⎪
⎩

∑n−1
i=l

mi

n − l
⎫⎪⎬
⎪
⎭
.

We will often use that (n − l )z∗ ≥ ∑n−1
i=l

mi for any fixed l . In particular, with l = n − 1, we find
z∗ ≥ mn , so π ∗n := z∗ −mn ≥ 0. Then, we define π ∗n−1 := π ∗n + z

∗ −mn−1 = 2z∗ − (mn−1 +mn ) ≥ 0.
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11:10 P. Kleer and G. Schäfer

Using induction, it then easily follows that π ∗i := π ∗i+1 + z
∗ −mi ≥ 0 for all i = 1, . . . ,n − 2 as well.

We have constructed a feasible dual solution with objective function value z∗. Using weak duality,
it follows that for any feasible primal solution u = (u1, . . . ,un ), we have

∑
{i, j }∈E

uimi ≤ max
l ∈V

⎧⎪⎨
⎪
⎩

∑n−1
i=l

mi

n − l
⎫⎪⎬
⎪
⎭
≤ max

S ⊆V

{
|E[S]|
|S |

}
,

since the term in middle is precisely the density of the induced subgraph on the nodes l , . . . ,n.
This completes the proof of the upper bound.

We continue with showing tightness, even for coordination games. LetG = (L∪R,E) be a complete
bipartite graph between node-sets L and R, with |L| = � and |R | = r , and assume that all edges in
E are coordination edges. We show tightness using a weighted Shapley distribution rule. That is,
for any value γ = max{i, j }∈E ξ̄i j , there is also some weighted Shapley distribution rule that attains
this value. The nodes in L get a fixed weight γ , with γ ≥ 1, and the nodes in R get a fixed weight 1.

We define C = A ∪ B ∪ {c0} where A contains colors {a1, . . . ,a� } and B = {b1, . . . ,br }. Assume
that every i ∈ L has an individual preference of qi (ai ) = qi (c0) = γ/(1 + γ ) for colors ai and c0,
and every player j ∈ R an individual preference of qj (bj ) = qj (c0) = 1/(1 + γ ) for colors bj and
c0, and all other individual preferences for a player k and color c̄ are qk (c̄ ) = 0. Furthermore, all
edge weights are set to wi j = 1. Consider the strategy profile s in which player i ∈ L plays ai , and
j ∈ R plays bj . This profile is a Nash equilibrium with u (s ) = � · γ/(1 + γ ) + r · 1/(1 + γ ). A social
optimum evolves when every player plays color c0. The resulting profile s∗ has social welfare

u (s∗) = � · γ

1 + γ
+ r · 1

1 + γ
+ r · �.

Here, the first two terms arise from the individual preferences of the nodes in L and R, respec-
tively. The last term arises because coordination takes place between all pairs of nodes (�, r ) ∈ L×R;
remember that we consider a complete bipartite graph. It then follows that

u (s∗)

u (s )
= 1 +

r · �
� · γ/(1 + γ ) + r · 1/(1 + γ )

.

By letting r → ∞, we find a lower bound of 1 + � · (1 + γ ). Note that for � and r fixed, the densest
subgraph is the whole graph and has density r�/(� + r ) that converges to � as r → ∞. �

We use our topological bound to derive deterministic bounds on the Price of Anarchy for two
special cases of clustering games. Note that these bounds cannot be deduced from References
[4, 16].

Corollary 2 (Planar Clustering Games). Let Γ = (G, c, ξ ,w,q) be a symmetric clustering

game on a planar graphG with ξ > 0. If a pure Nash equilibrium exists for the game Γ, then PoA(Γ) ≤
4 + 3ξ̄ .

Proof. By Euler’s formula, |E (H ) | ≤ 3|V (H ) | − 6 ≤ 3|V (H ) | for any planar graph H , see, e.g.,
Reference [38, Corollary 13.4(i)]. Further, any induced subgraph H of a planar graph G is again
planar, and, hence, the maximum subgraph density is also at most 3. Using this in Theorem 1
proves the claim for general planar graphs. �

For planar graphs that are also triangle-free, we can give a slightly better bound. The result in
Corollary 3 also shows that the linear dependence on ξ̄ in Corollary 2 is necessary.

Corollary 3 (Planar Triangle-free Clustering Games). Let Γ = (G, c, ξ ,w,q) be a symmet-

ric clustering game on a triangle-free planar graph G with ξ > 0. If a pure Nash equilibrium exists

for the game Γ, then PoA(Γ) ≤ 3 + 2ξ̄ and this bound is tight in general.
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Proof. It is known that |E (H ) | ≤ 2|V (H ) | − 4 ≤ 2|V (H ) | for any triangle-free planar graph H ;
see, e.g., Reference [38, Corollary 13.4(ii)]. Also here, any induced subgraph H of a triangle-free
planar graphG is again triangle-free and planar. This then yields an upper bound of 1+ 2(1+ ξ̄ ) =
3+ 2ξ̄ . To show tightness, we can use a similar construction as in the proof of Theorem 1. We rely
on the fact that for any � and r there exists a bipartite (and therefore triangle-free) planar graph
G = (L ∪ R,E) with L = {x1, . . . ,x� } and R = {y1, . . . ,yr }, for which |E | = 2(r + �) − 4; see, e.g.,
Reference [15]. The graph can be constructed by connecting both x1 and x2 to all nodes in R and in
addition also x3, . . . ,x� to both r1 and r2. This gives in total 2r + 2(� − 2) = 2(r + �) − 4 edges. One
can then use exactly the same construction in Theorem 1, which now gives for the ratio between
the utilities of the Nash equilibrium s and the social optimum s∗

u (s∗)

u (s )
= 1 +

2(r + �) − 4

� · γ/(1 + γ ) + r · 1/(1 + γ )
,

i.e., we have replaced the factor r�, the total number of edges in a complete bipartite graph, with
2(r + �) − 4. By letting r → ∞, we find a lower bound of 1 + 2(1 + γ ) that gives the desired
result. �

Corollary 4 (Eqal-split Coordination Games). Let G be a given undirected graph, and let

GG be the set of all symmetric coordination games Γ = (G, c, 1,w,q) with equal-split distribution

rule on G. Then PoA(GG ) = 1 + 2ρ (G ).

We emphasize that the bound in Corollary 4 is tight on every fixed graph topology G, rather
than only in the value of ρ (G ).

Proof of Corollary 4. The upper bound follows directly from Theorem 1. We prove the lower
bound by constructing an instance of a coordination game as follows: Let S ⊆ V be arbitrary
and consider the induced subgraph on S . Assume without loss of generality that S = {1, . . . ,σ }
with σ = |S |. Define the set of colors as C = {c1, . . . , cσ } ∪ {c0}. We give every player i ∈ S an
individual preference of one for colors ci and c0 and zero for all other colors. Further, the individual
preferences of all nodes in V \ S are set to zero. The weight of all edges in E[S] is set to 2 and the
weight of all edges in E \ E[S] is set to zero.

Consider a strategy profile s in which every player i ∈ S chooses color ci and every player
i � S chooses an arbitrary color. Then s is a Nash equilibrium with social welfare u (s ) = |S |.
However, the strategy profile s∗ in which every player chooses color c0 is a social optimum with
social welfare u (s∗) = |S | + 2|E[S]|. This implies that u (s∗)/u (s ) = 1 + 2|E[S]|/|S |. The result now
follows by choosing S as a subset of maximum subgraph density. �

It is known that the Price of Anarchy of anti-coordination games is 2 (see, e.g., Reference [24]),
which is not reflected by our bound in Theorem 1. Intuitively, this suggests that a large Price of
Anarchy is caused by the coordination edges of the graph. Theorem 5 reveals that this intuition is
correct: It shows that the maximum subgraph density with respect to the coordination edges only is
the determining topological parameter. Note that it captures the bound of 2 for anti-coordination
games.

Theorem 5. Let Γ = (G, c, 1,w,q) be a symmetric clustering game with equal-split distribution

rule. Then

1 + 2ρ (G[Ec ]) ≤ PoA(Γ) ≤ 2 + 2ρ (G[Ec ]),

where G[Ec ] is the subgraph induced by the coordination edges Ec .
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Proof. The proof is a modification of the proof of Theorem 1. Let s be a Nash equilibrium and
s∗ a socially optimal strategy profile. For notational convenience, we write ui = ui (s ) for i ∈ V .
The proof relies on the following two claims:

Claim 1. For any coordination edge {a,b} ∈ Ec , it holds that

wab ≤ 2 min{ua (s ),ub (s )}. (3)

Proof. Assume without loss of generality that ua (s ) ≤ ub (s ). Then

ua (s ) ≥ ui (s−a , sb ) ≥ 1

2
wab ,

where (s−a , sb ) is the strategy profile in which player a deviates to the color of player b and all
others play their strategy in s . Rewriting gives wab ≤ 2ua (s ). �

Claim 2. 3 It holds that ∑
i ∈V

qi (s∗i ) +
∑
{i, j }∈Ea

wi j ≤ 2
∑
i ∈V

ui (s ). (4)

Proof. First note that for the Nash equilibrium s is holds that

ui (s ) ≥ ui (s−i , s
∗
i ) ≥ qi (s∗i ) +

1

2

∑
j :{i, j }∈Ea,sj�s∗i

wi j . (5)

Also, for every player i and some fixed color �i with �i � s∗i , it holds that

ui (s ) ≥ ui (s−i , �i ) ≥ 1

2

∑
j :{i, j }∈Ea,sj��i

wi j ≥
1

2

∑
j :{i, j }∈Ea,sj=s∗i

wi j . (6)

The last inequality is true, as {j : {i, j} ∈ Ea , sj = s∗i } ⊆ {j : {i, j} ∈ Ea , sj � �i }, because s∗i � �i .
Adding up Equations (5) and (6) yields

2ui (s ) ≥ qi (s∗i ) +
1

2

∑
j :{i, j }∈Ea

wi j . (7)

Adding up Equation (7) for every player i then yields Equation (4). To see this, one should observe
that every edge {i, j} ∈ Ea appears in precisely two summations, that of player i and j. �

Combining Equations (3) and (4), we find

u (s∗) ≤
∑
i ∈V

qi (s∗i ) +
∑
{i, j }∈Ec

wi j +
∑
{i, j }∈Ea

wi j ≤ 2 ·
∑
i ∈V

ui (s ) +
∑
{i, j }∈Ec

2 ·min{ui (s ),uj (s )}

≤ 2 · u (s ) + 2 ·max
S ⊆V

{
|Ec [S]|
|S |

}
u (s ), (8)

where the final step follows from similar arguments as in the proof of Theorem 1.
The lower bound can be achieved using a similar construction as in the proof of Corollary 4.

�

3We are grateful to Dr. Wennan Zhu for suggesting this claim and for its proof as given here.
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3.2 Price of Anarchy for Random Coordination Games

We now turn to our bounds for random coordination games. Recall that, for random graphs, we
consider equal-split distribution rules only. We first show that for sparse random graphs the Price
of Anarchy is constant with high probability.

Corollary 6 (Sparse Random Coordination Games). Let d > 0 be a constant. Let GGn
be the

set of all symmetric coordination games Γ = (Gn , c, 1,w,q) on graphGn ∼ G (n,d/n) with equal-split

distribution rule. Then there is a constant β = β (d ) such that PoA
(GGn

) → β .

Proof. Anantharam and Salez [3] prove that the maximum subgraph density of a random graph
Gn approaches a constant β = β (d ) with high probability; approximations of this constant can be
found in Reference [22]. Combining this with the bound in Corollary 4 proves the claim. �

As we show in Theorem 7, the result of Corollary 6 does not hold for sufficiently dense random
graphs if the number of available colors grows large.

Theorem 7 (Dense Random Coordination Games). Let (cn )n∈N → ∞ be a sequence of avail-

able colors and let 0 < d ≤ 1 be a constant independent of n. Let GGn
(cn ) be the set of all symmetric

coordination games Γ = (Gn , cn , 1,w, 0) on graph Gn ∼ G (n,d ) with cn common colors, equal-

split distribution rule, and no individual preferences. Then there is a constant β = β (d ) such that

PoA
(GGn

(cn )
) ≥ βcn .

We note that this lower bound holds even for coordination games without individual preferences
(as studied in Reference [16]). Basically, this bound implies that, for dense graph topologies, we
cannot significantly improve upon the Price of Anarchy bound of c by References [4, 16], even if
we randomize the graph topology.

Proof of Theorem 7. We first construct a deterministic instance Γ with Price of Anarchy Ω(cn )
and then show that we can embed this construction into a random graph with high probability.

Consider a graphG = (V ,E) and let c be the number of available colors. LetM = {e1, . . . , e� } ⊆ E
be a matching of size at most c . LetVM be the set of nodes that are matched in M . Define the weight
of an edge e ∈ E as

we =

⎧⎪⎪⎨
⎪⎪
⎩

2 if e ∈ M
1 if e ∈ E[VM ] \M
0 otherwise

,

where E[VM ] is the set of edges of the induced subgraph on VM = {i : i ∈ e for some e ∈ M }, i.e,
the induced subgraph of the nodes that are matched in M .

Consider the strategy profile s in which the nodes in ea play color a, for a = 1, . . . , �, and all
other nodes play an arbitrary color, say, color �. Note that � distinct colors are used in this profile,
which is possible because � ≤ c by assumption. Furthermore, we have u (s ) = 2�, as every edge in
M is satisfied, and therefore contributes 1 to the social welfare of s . We claim that s is a pure Nash
equilibrium. To see this, first note that all nodes i � VM are only adjacent to edges with weight
zero, and so playing color � is a best response for them, independently of the colors played by the
nodes in VM . We next consider a node i ∈ ea ∈ M for an arbitrary a = 1, . . . , �. We write j for the
other node in ea , i.e., ea = {i, j}. Becausewea

= 2, all individual preferences are zero, we only have
coordination edges, and consider an equal-split distribution rule, the utility of player i in profile s
is ui (s ) = 1. To see that color a is a best response for player i , note that if she deviates to another
color b ∈ [�] \ {a}, then she derives a utility of 1/2 from every node in eb she is adjacent to, as
edges e ∈ E[VM ] \M have weight we = 1. Since |eb | = 2, this means the maximum utility she can
obtain is 1, which happens in case she is adjacent to both nodes in eb .
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Next, consider the strategy profile s∗ in which all players choose a common color, say, color 1.
Since every edge is then satisfied, and there are no individual preferences, it follows that the profile
s∗ is a social optimum. Because all edges e ∈ E[VM ] have weight we ∈ {1, 2}, it holds that u (s∗) ≥
|E[VM ]|. This then implies that

PoA(Γ) ≥ |E[VM ]|
2�

≥ |E[VM ]|
2c

. (9)

We next show how to embed the above deterministic construction in a random graph, with high
probability. Let Gn = (Vn ,En ) ∼ G (n,d ) and write Vn = {1, . . . ,n}. Let

N = min{2cn , 2n/2�}.
Note that 2n/2� = n − 1 if n is odd, and 2n/2� = n if n is even. Because we will be working with
a matching, it is convenient to work with an even number of nodes, hence, this definition of N .
Note that N → ∞ whenever n → ∞.

We claim that with high probability the induced subgraph on nodesWN = {1, . . . ,N } contains
(1) Ω(c2

n ) edges, and (2) a perfect matching.
We start by proving property (1). Note that

μ = E[En[WN ]] = d ·
(
N

2

)
= Ω(c2

n ),

where the last equality holds by definition of N . Using Chernoff’s bound, it follows that
P (En[Wn] < μ/2) ≤ exp(−μ/8) = exp(−Ω(c2

n )/8) → 0 as n → ∞, since then cn → ∞ by
assumption.

We continue with the proof of property (2). It uses the following result (see, e.g., Reference [17]):
For every fixed 0 < d ≤ 1 it holds that

lim
n→∞
PGn∼G (n,d ) (Gn contains a perfect matching) = 1.

By applying this result to the random (induced) subgraph on WN and using that cn approaches
infinity as n → ∞, property (2) follows.

Now, if two events An and Bn , our properties (1) and (2), respectively, happen with high proba-
bility as n → ∞, then their intersectionAn∩Bn also happens with high probability as n → ∞. This
means that the subgraph on WN contains Ω(c2

n ) edges and a perfect matching, with high proba-
bility. Using the deterministic construction of the first part of the proof on the subgraphWN then
gives

PoA(Γ) ≥
Ω(c2

n )

4cn
= Ω(cn ).

This completes the proof. �

4 CONVERGENCE OF BEST-RESPONSE DYNAMICS

In this section, we derive our characterization results for the convergence of best-response dy-
namics in symmetric clustering games and for the existence of pure Nash equilibria in symmetric
coordination games. Recall that best-response dynamics is said to converge if any sequence of
player deviations, where in each step the deviating player chooses a most profitable deviation,
converges in a finite number of steps to a pure Nash equilibrium. Basically, for symmetric cluster-
ing games our characterization shows that best-response dynamics is guaranteed to converge to
a pure Nash equilibrium if and only if ξ is a generalized weighted Shapley distribution rule. For
the special case of symmetric coordination games with c ≥ 3, we can further strengthen this char-
acterization result and show that a pure Nash equilibrium is guaranteed to exist if and only if ξ is
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a generalized weighted Shapley distribution rule. This complements a result of Anshelevich and
Sekar [4].

4.1 Symmetric Clustering Games

We provide a characterization of distribution rules that guarantee the convergence of best-response
dynamics in symmetric clustering games.

Theorem 8 (Best-response Convergence). Let GG,c,ξ be the set of all symmetric clustering

games Γ = (G, c, ξ ,w,q) on a fixed graphG with c common colors and distribution rule ξ . Then best-

response dynamics is guaranteed to converge to a pure Nash equilibrium for every clustering game in

GG,c,ξ if and only if ξ corresponds to a generalized weighted Shapley distribution rule.

In general, this characterization does not hold if the condition of “guaranteed convergence of
best-response dynamics” is replaced by “guaranteed existence of a pure Nash equilibrium” (as
in Reference [19] or Reference [11]): There are settings where on a fixed graph G, a pure Nash
equilibrium is guaranteed to exist even if ξ is not a generalized weighted Shapley distribution rule,
e.g., in the case of c = 2 or in coordination games with no individual preferences.

The proof of Theorem 8 relies on the following lemma. In the proofs of Lemma 9 and Theorem 8,
all player or edge indices are always modulo n.

Lemma 9. Consider a symmetric clustering game (H , 2, ξ ,w,q) on a cycle H = 〈1, . . . ,n〉 with n
players and c = 2 colors. If for every strategy profile s it is a best-response for every player i to choose

a color that satisfies at least edge {i, i + 1}, then there exists a best-response sequence that does not

converge to a Nash equilibrium.

Proof. We first construct an initial state s0 using only colors k1 and k2. Set s0
1 = k1, and itera-

tively, for i = 2, . . . ,n − 1, set s0
i such that edge {i − 1, i} is satisfied (using only colors k1 and k2).

The color for sn is chosen in such a way that at least one of the edges {n − 1,n} or {n, 1} is not
satisfied (this can always be done, since if color k1 would satisfy both edges, that color k2 would
satisfy neither, and vice versa). Now, either (i ) precisely n − 1 edges of the cycle are satisfied in s0

or (ii ) precisely n − 2 edges are satisfied in s0 (and two consecutive edges are not).
Case (i): There are precisely n − 1 edges satisfied. This case is illustrated in Figure 1. Note that

currently edge {n, 1} is not satisfied. Therefore, by assumption, it is a best-response for player n
to switch to its other color. But the situation after this switch is isomorphic to the starting profile
s0, that is, if we would have started the numbering at node n instead of node 1. Therefore, we can
repeat the same argument, and in particular, after 2n of such best-response steps, we are back in
s0. Roughly speaking, during this process the unsatisfied edge moves over the whole cycle twice.
After n steps, we are essentially also in the same situation as s0, but now with the roles of k1 and
k2 interchanged.

Case (ii): There are precisely n − 2 edges satisfied except for the two consecutive edges {n − 1,n}
and {n, 1}. This case is illustrated in Figure 2. If player n would switch to its other color (which
is a best-response move), then we would find a Nash equilibrium, however, we do not choose
player n. Instead, we let player n − 1 switch to its other color (which is a best-response move by
assumption), then afterwards, it is a best-response for player n−2 to switch as well (to satisfy edge
{n − 2,n − 1}), and we continue this in decreasing player order up until (and including) player 2.
In particular, we are then in the situation where again precisely n − 2 edges are satisfied except
two consecutive edges, which are now {n, 1} and {1, 2}. This situation is equivalent to the starting
state s0, and in particular by repeating this process n times, we are back in s0. This completes the
proof. �
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Fig. 1. This is an example with n = 6 players. The satisfied edges are bold, and the unsatisfied edges are
dashed. The cycle on the left illustrates the initial state s0, the middle one the situation after player n has
deviated, and the right one illustrates the situation after players n,n−1, . . . , 3 have deviated. The same steps
are given for Case (ii) in Figure 2.

Fig. 2. This is an example with n = 6 players. The satisfied edges are bold, and the unsatisfied edges are
dashed. The cycle on the left illustrates the initial state s0, the middle one the situation after player n−1 has
deviated, and the right one illustrates the situation after players n − 1,n − 2, . . . , 2 have deviated. The same
steps are given for Case (i) in Figure 1.

Proof of Theorem 8. If ξ corresponds to a generalized weighted Shapley distribution rule,
then the convergence of best-response dynamics follows immediately from the fact that the
game can be modeled as a resource allocation game (see Appendix B). Such games, with gener-
alized weighted Shapley distribution rules, are potential games; see, e.g., Reference [19] for de-
tails. We now continue with the other direction, i.e., assume that best-response dynamics always
converge.

The idea of the proof is to show that the pair (G, ξ ) has a certain nice structure if best-response
dynamics is guaranteed to converge, from which it will be easy to conclude that ξ is a generalized
weighted Shapley distribution rule. To define this nice structure, we need the help of an auxiliary
digraph D = (Q,A). The nodes in the setQ = {V1, . . . ,Vr } form a partition of the players inV , that
is,V = V1 ∪V2 ∪ · · · ∪Vr . This partition is constructed by looking at the subgraph G>0 = (V ,E>0)
of G given by edges {i, j} from which both i and j get strictly positive utility if it is satisfied and
the weight wi j is non-zero, i.e.,

E>0 (G ) = {{i, j} : ξi j , ξ ji > 0 and wi j > 0}.

We write G1
>0, . . . ,G

r
>0 for the connected components of G>0, with Vt = V (Gt

>0) = {vt1, . . . ,vtzt
}

and Et = E (Gt
>0) for t = 1, . . . , r . In other words, Vt consists of the zt players that form the

connected component Gt
>0. For given a,b ∈ {1, . . . , r }, there is a directed arc (Va ,Vb ) ∈ A if and

only if there exists an i ∈ Va and j ∈ Vb such that ξ ji = 0, and, thus, ξi j > 0, as ξi j + ξ ji > 0.
Note that, initially, it is not obvious whether D can have a self-loop or not. We next show
that
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(1) The digraph D does not have a directed cycle or self-loop, i.e., it is acyclic.
(2) Within every component Vt = {vt1, . . . ,vtzt

} there exist numbers γ1, . . . ,γzt
such that

ξi j

ξi j + ξ ji
=

γi

γi + γj

whenever i, j ∈ Vt .

The above two conditions (1) and (2) together are sufficient to guarantee that ξ is a generalized
weighted Shapley distribution rule. To see this, first note that the weights γ1, . . . ,γn yielded by
condition (2) also satisfy condition (ii) in Section 2.3, because an edge {i, j} with ξi j , ξ ji > 0 is
contained in exactly one of the components G1

>0, . . . ,G
r
>0, and so i and j are then always in the

same Vt whenever ξi j , ξ ji > 0. Furthermore, since D is acyclic, we can find a topological ordering
of the partition sets V1, . . . ,Vr . By renaming the partition sets, we may assume without loss of
generality that the ordering is (V1,V2, . . . ,Vr ). The permutation

σ = (v11, . . . ,v1z1 ,v21, . . . ,v2z2 , . . . ,vr 1 . . .vr zr
)

then satisfies condition (i) in Section 2.3, because (V1, . . . ,Vr ) is a topological ordering. That is, in
σ , we start with the nodes inV1, followed by those inV2, and so on. The constructed vector γ and
permutation σ then together show that ξ is a generalized weighted Shapley distribution rule. It
therefore remains to show that the conditions (1) and (2) above are satisfied.

We start with showing that condition (1) is true. For sake of contradiction, first suppose that D =
(Q,A) has a self-loop, that is, (Vt ,Vt ) ∈ A for some t . This means that there are nodes vh ,v1 ∈ Vt

such that ξvhv1 > 0 and ξv1vh
= 0. We write eh = {vh ,v1} for the edge in the original graph

G. Furthermore, as Gt
>0 is a connected component, there exists a simple path (v1, . . . ,vh ) in Gt

>0
where both ξvivi+1 , ξvi+1vi

> 0, for the edges ei = {vi ,vi+1} for i = 1, . . . ,h − 1. We write H =
〈v1,v2, . . . ,vh−1,vh〉 for the resulting simple cycle in the original graph G obtained by the path
(v1, . . . ,vh ) concatenated with the edge {eh , e1}. We will next create an instance of a symmetric
clustering game, of which the relevant part takes place on the cycle H , for which best-response
dynamics is not guaranteed to converge. Set wv1v2 = 1 and iteratively define the weights wvivi+1

so

ξvivi−1

ξvivi−1 + ξvi−1vi

·wvi−1vi
<

ξvivi+1

ξvivi+1 + ξvi+1vi

·wvivi+1 (10)

for i = 2, . . . ,h mod h. All other edge weights, of edges not in H , are set to zero. Individual pref-
erences qi (si ) for every player are set to K =

∑
e ∈E we for two fixed colors k1 and k2, and zero

otherwise. In particular this means that for all players v1, . . . ,vh on the cycle H , only colors k1

and k2 can potentially be a best response in any strategy profile. By construction, it will always
be a best response for player vi to satisfy edge {vi ,vi+1}. For player v2, . . . ,vh this claim follows
directly from Equation (10). For player v1 it is true as she derives zero utility from edge {vh ,v1} if
it is satisfied, because ξv1vh

= 0, and strictly positive utility from {v1,v2} if it is satisfied. Because
of the fact that for every player vi it is always a best response to satisfy {vi ,vi+1}, we are in the
situation of Lemma 9, and, thus, we may conclude that best-response dynamics is not guaranteed
to converge.

Second, suppose that D contains a directed cycle. The argument showing that best-response
dynamics is not guaranteed to converge is very similar to the case of a self-loop. We can now
construct a cycle H in G that traverses multiple components Gt

>0, and, in particular, contains
multiple edges from the set E \ E>0 (G ). Because of the fact that the edges in E \ E>0 (G ) form a
directed cycle in D, the procedure in Equation (10) still can be used to define the edge weights
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for the edges in H to make sure that every player vi always tries to satisfy the edge {vi ,vi+1}. In
particular, for any edge {vi ,vi+1} in which one of the two players receives the full share, this will
always bevi , because the edges of H that are contained in E \E>0 (G ) form a directed cycle in D. If
the cycle would not have been directed, then this would mean that for some edge {vi ,vi+1} player
vi+1 would get the full share, i.e., ξvivi+1 = 0, and then the procedure in Equation (10) cannot be
used as for that i , the right-hand side in Equation (10) would be zero. Individual preferences qi

and remaining edge weights, of edges not inH , can be chosen just as in the case of a self-loop in D.

We continue with proving condition (2). The proof is the same for every component so fix anyGt
>0.

To make things easier notation-wise, we will write Vt = {1, . . . , z}. The goal is to show that there
exist numbers γ1, . . . ,γz such that

ξi j

ξi j + ξ ji
=

γi

γi + γj
(11)

for every {i, j} ∈ Et . It is clear that if we can find such a vector (γ1, . . . ,γz ), and multiply every γi

with a fixed constant d > 0, then the weights d · γi also satisfy Equation (11). In particular, this
implies that we may fix γ1 as we like without loss of generality. We next fix a spanning tree T in
Gt

>0 to obtain the values of γ2, . . . ,γz . We root the tree at the node 1, and set

γj =
ξr2r1ξr3r2 . . . ξrhj

rhj −1

ξr1r2ξr2r3 . . . ξrhj −1rhj

· γ1,

where (r1, r2, . . . , rhj
) is the unique path from player 1 = r1 to player j = rhj

in T . Setting γj in
this way guarantees that Equation (11) is satisfied for the edges of the spanning treeT . To see this,
note that Equation (11) for an edge {i, j} ∈ E (T ) is equivalent to

γi =
ξi j

ξ ji
· γj . (12)

Now, if there is some edge e = {v1,v2} ∈ E (Gt
>0) \E (T ) with the property that Equation (11) is not

satisfied, then we get

γv1 �
ξv1v2

ξv2v1

· γv2 . (13)

Let H = 〈v1, . . . ,vh〉 be the unique cycle in T ∪ e containing edge e . It then follows that

ξ (H ) :=
ξv2v1ξv3v2 . . . ξv1vh

ξv1v2ξv2v3 . . . ξvhv1

� 1,

which can be seen by multiplying Equation (13) with the Equations in (12) for the edges on E (H ) \
e . The expression ξ (H ) = 1 is analogue to the cyclic consistency property of Gopalakrishnan
et al. [19]. We will show that ξ (H ) � 1 implies that best-response dynamics is not guaranteed to
converge.

We let ei = {vi ,vi+1} for i = 1, . . . ,h (mod h). Assume that ξ (H ) < 1. This can be done without
loss of generality by changing the orientation of the cycleH if needed. Then there exists a constant
τ > 0 so

(1 + τ )n · ξ (H ) < 1.

Set wv1v2 = 1 and iteratively define the weights wei
so

ξvivi−1

ξvivi−1 + ξvi−1vi

·wei−1 =
ξvivi+1

ξvivi+1 + ξvi+1vi

·wei
(14)
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for i = 2, . . . ,h. We then define the weights w ′vivi+1
= (1 + τ )i ·wvivi+1 for i = 1, . . . ,h. All other

edge weights, of edges not in H , are set to zero. Individual preferences qi (si ) for every player are
set to K =

∑
e ∈E we for two fixed colors k1 and k2, and zero otherwise. This is similar to what we

did in the proof of condition (1). For players v2, . . . ,vh it is now always a best-response to choose,
among k1 and k2, the color that satisfies edge {i, i + 1}. This follows from the fact that the weights
w ′vivi+1

satisfy
ξvivi−1

ξvivi−1 + ξvi−1vi

·w ′vi−1vi
<

ξvivi+1

ξvivi+1 + ξvi+1vi

·w ′vivi+1
.

This is the same idea used in the proof of condition (1), based on the inequality in (10). For player
v1 the argument is slightly more involved. Suppose it is not a best response for v1 to satisfy the
edge {v1,v2}. Then

ξv1vh

ξv1vh
+ ξvhv1

·weh
· (1 + τ )n ≥

ξv1v2

ξv1v2 + ξv2v1

·we1 . (15)

If we multiply all equalities in Equation (14) with each other for i = 2, . . . ,h, and the result also
with Equation (15), then after simplification we find (1+τ )nξ (H ) ≥ 1, which contradicts the choice
of τ . As for all players v1, . . . ,vh it is a best response to satisfy edge {vi ,vi+1}, and we are again in
the situation of Lemma 9. This leads to a contradiction and concludes the proof. �

Corollary 10. The characterization in Theorem 8 also is true if GG,c,ξ is replaced by either:

(i) The setHG,c,ξ ,0 = {Γ : Γ = (G, c, ξ ,w, 0) with Ea = ∅} of symmetric coordination games on G,

with c common colors, and distribution rule ξ , but without individual preferences qi .

(ii) The set GG,2,ξ ,0 = {Γ : Γ = (G, 2, ξ ,w, 0)} of symmetric clustering games on graph G with 2
common colors, and distribution rule ξ , but without individual preferences qi .

The first setting corresponds to certain models in References [4, 16]. Also note that the sec-
ond setting cannot hold true with c ≥ 3 by considering a cycle of length three with only anti-
coordination edges. That is, if there are no individual preferences qi , then any best-response se-
quence will in at most three steps end up in a strategy profile in which all three players have a
different color. Such a profile is always a pure Nash equilibrium in case there are no individual
preferences, and so any best-response sequence will converge.

Proof of Corollary 10. To prove the first case, one should observe that if there are only co-
ordination edges in the proof of Theorem 8, it is not necessary to set the individual preferences
qi (si ) to the sum of the we for two chosen colors k1 and k2, and zero otherwise. Instead, one can
set all individual preferences equal to zero, i.e., let them play no role in the game. This is allowed,
because when all players start with either color k1 or k2, then no player can have some other color
k ∈ [c] \ {k1,k2} as a best response, since there are only coordination edges and no individual
preferences.

For the second case, note that when there are only two colors k1 and k2 available to the players,
then every player will always play either of these colors. There is then no need to use the individual
preferences qi to force players to always use one of these colors as a best response. �

4.2 Symmetric Coordination Games

We next consider the special case of symmetric coordination games in which the common strategy
set contains c ≥ 4 colors. We can strengthen the characterization result of Theorem 8 in this case.
We prove in Theorem 11 that a pure Nash equilibrium is guaranteed to exist if and only if ξ is
a generalized weighted Shapley distribution rule. This complements a result of Anshelevich and
Sekar [4].
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Theorem 11. Let GG,c,ξ = {Γ : Γ = (G, c, ξ ,w,q)} be the set of all symmetric coordination

games on G, with common strategy set {1, . . . , c} for c ≥ 4 and distribution rule ξ . Then a pure

Nash equilibrium is guaranteed to exist for every game in GG,c,ξ if and only if ξ corresponds to a

generalized weighted Shapley distribution rule.

Our arguments are conceptually similar to those of Gopolakrishnan et al. [19], however, they
are technically different. We elaborate on the connection between Theorem 11 and the work in
Reference [19] in Appendix B. We essentially show a similar result as in Reference [19], but for
a more restricted setting than the resource allocation games considered there. Nevertheless, the
result in Theorem 11 allows us to fully characterize which distribution ξ guarantee equilibrium
existence, thereby completing results of Anshelevich and Sekar [4], who only partially address this
question.

In particular, Anshelevich and Sekar [4] provide an example showing that for general distribu-
tion rules, pure Nash equilibria are not guaranteed to exist. On the positive side, they show that if
the distribution rule has the so-called correlated coordination condition, then pure Nash equilibria
are guaranteed to exist. This condition is actually the same as saying that the local distribution
rule corresponds to a weighted Shapley distribution rule, and the proof of Theorem 1 in Refer-
ence [4] is essentially a direct consequence of the work of Hart and Mas-Collel [23] who charac-
terize the (weighted) Shapley value in terms of a (weighted) potential function. Theorem 11 allows
us to precisely characterize which distribution rules ξ guarantee (pure) equilibrium existence in
symmetric coordination games for arbitrary weight functions w and individual preferences qi . In
particular, we note that generalized weighted Shapley distribution rules (see preliminaries) still
guarantee equilibrium existence. This follows from Reference [19] by observing that these coordi-
nation games are resource allocation games (see Appendix B). We then show that these distribution
rules are also necessary in a certain sense, already in the case of four colors.

Proof of Theorem 11. The idea of the proof is similar to that of Theorem 8. We again consider
the graph G>0, with its connected components Gt

>0 for t = 1, . . . , r , and the auxiliary graph D =
(Q,A), which is defined in the same way. Again, the goal will be to show that

(1) The digraph D does not have a directed cycle or self-loop, i.e., it is acyclic.
(2) Within every component Vt = {vt1, . . . ,vtzt

} there exist numbers γ1, . . . ,γzt
such that

ξi j

ξi j + ξ ji
=

γi

γi + γj

whenever i, j ∈ Vt .

For similar reasons as in the proof of Theorem 8, this is sufficient to conclude that ξ is a
generalized weighted Shapley distribution rule. To prove conditions (1) and (2), the idea is again
for both conditions to create an instance on a cycle H and derive a contradiction. For the proof
here, we are trying to derive a stronger contradiction than that in the proof of Theorem 8, namely,
that a pure Nash equilibrium does not exist as opposed to showing that best-response dynamics is
not guaranteed to converge. However, we only have coordination edges and no anti-coordination
edges, which makes the situation manageable.

We again start with the proof of condition (1) for the case thatD contains a self-loop correspond-
ing to a cycle H = 〈v1, . . . ,vh〉. We start by fixing wv1v2 = 1 and then repeatedly choose wvivi+1

so
ξvivi−1

ξvivi−1 + ξvi−1vi

·wvi−1vi
<

ξvivi+1

ξvivi+1 + ξvi+1vi

·wvivi+1 (16)
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Fig. 3. Sketch of instance on cycle H in case D has self-loop. For every node, we have indicated its two colors
for which it has a nonzero individual preference and have underlined its preferred color of the two.

for i = 2, . . . ,h. Compared to the proof of Theorem 8, the individual preferences of the players will
play an important role in this proof. Let C = {1, . . . , c} and let M =

∑
e we . For some arbitrarily

fixed δ > 0, we define

qvh−1 (j ) =
⎧⎪⎪⎨
⎪⎪
⎩

M + δ if j = 1
M if j = 2
0 else,

qvh
(j ) =

⎧⎪⎪⎨
⎪⎪
⎩

M + δ if j = 2
M if j = 4
0 else,

and qv1 (j ) =
⎧⎪⎪⎨
⎪⎪
⎩

M + δ if j = 1
M if j = 4
0 else

.

The constant M is used to, roughly speaking, mimic asymmetric strategy sets. It will be important,
later on, that δ can be chosen arbitrarily close to zero. The individual preferences for players
v2, . . . ,vh−2 are chosen differently. For i = 2, . . . ,h − 2, we choose δi such that

ξvivi−1

ξvivi−1 + ξvi−1vi

·wvi−1vi
< δi <

ξvivi+1

ξvivi+1 + ξvi+1vi

·wvivi+1 , (17)

which is possible because we have a strict inequality in (16). We then define

qvi
(j ) =

⎧⎪⎪⎨
⎪⎪
⎩

M + δi if j = 3
M if j = 1
0 else,

for i = h − 2,h − 4, . . . and

qvi
(j ) =

⎧⎪⎪⎨
⎪⎪
⎩

M + δi if j = 2
M if j = 1
0 else,

for i = h − 3,h − 5, . . .

Note that we essentially only need four colors to define the individual preferences as above, mean-
ing that this construction works for any c ≥ 4. Player i’s preferred color is the unique color for
which its individual preference is the highest, for i = 1, . . . ,h. Furthermore, it is obvious by the
definition of M , that in any pure Nash equilibrium every player will play one of its two colors
for which it has nonzero individual preference. Therefore, from now on, we will slightly abuse
terminology and say that every player only has two colors, namely, those with nonzero individual
preference. A sketch of the instance onH is given in Figure 3. All edges not inH , and all individual
preferences of nodes not in H , are set to zero.
We will argue that the resulting instance has no pure Nash equilibrium s .

Case 1: Player vh−1 plays color 1 in s . Then player vh−2 will also play color 1 in s . This claim is
true, because if vh−2 would be playing color 3, then in particular the edge {vh−2,vh−3} cannot be
satisfied, as vh−3 does not have color 3. By construction of δh−2 and the weight wvh−2vh−1 it is then
optimal for player vh−2 to player color 1 as well. Repeating this argument yields that vh−2, . . . ,v1
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will all play color 1 in s . Note that in particular player v1 obtains no utility from the edge {vh ,v1}
as ξv1vh

= 0, becausevh andv1 are the players that give rise to the self-loop in D. Sincevh−1 andv1

play color 1 in s , playervh cannot obtain any utility from the edges {vh ,vh−1} and {vh ,v1} and thus
it will play its preferred color 2 in s . However, with δ chosen small enough, it will then be optimal
for player vh−1 to deviate to color 2. This contradicts the fact that s is a pure Nash equilibrium.

Case 2: Player vh−1 plays color 2 in s . As player vh−2 cannot play color 2, it must be that player
vh also plays color 2, otherwise player vh−1 would not derive any utility from the edges {vh−1,vh }
and {vh−1,vh−2} but then it would be optimal for vh−1 to play its preferred color 1. Because player
vh−2 cannot play 2, and therefore not obtain any utility from the edge {vh−2,vh−1}, it will play its
preferred color 3 in s . Note that this is the optimal choice for vh−2 even if the edge {vh−2,vh−3}
would be satisfied by definition of δh−2. Repeating this argument, all playersvh−2, . . . ,v1 will play
their preferred color. In particular, this means thatv1 will play color 4 in s . However, then it will be
optimal for playervh to deviate to color 4 as well. This contradicts that s is a pure Nash equilibrium.

The completes the proof that D cannot have a self-loop. The case that D contains a cycle
proceeds along similar lines, because of the same reasons as why these cases are similar in the
proof of Theorem 8.

We continue with the proof of condition (2). Set wv1v2 = 1 and iteratively define the weights wei

so
ξvivi−1

ξvivi−1 + ξvi−1vi

·wei−1 =
ξvivi+1

ξvivi+1 + ξvi+1vi

·wei
(18)

for i = 2, . . . ,h. We then define the weights w ′vivi+1
= (1 + τ )i ·wvivi+1 for i = 1, . . . ,h, where τ is

chosen similarly as in the proof of Theorem 8. All other edge weights, of edges not in H , are set to
zero as well as individual preferences of all nodes not in H . The weightsw ′vivi+1

for i = 1, . . . ,h−1,
satisfy

ξvivi−1

ξvivi−1 + ξvi−1vi

·w ′vi−1vi
<

ξvivi+1

ξvivi+1 + ξvi+1vi

·w ′vivi+1
.

The individual preferences are set similarly as in the the proof of condition (1) above, but this time,
we choose δi , for i = 2, . . . ,h − 2, to satisfy

ξvivi−1

ξvivi−1 + ξvi−1vi

·w ′vi−1vi
< δi <

ξvivi+1

ξvivi+1 + ξvi+1vi

·w ′vivi+1
.

By choosing δ , used in the definition of the individual preferences of vh−1,vh , and v1, sufficiently
small, we can carry out exactly the same argument as in the proof of condition (2) of Theorem 8
to make sure that v1 prefers to satisfy {v1,v2} over satisfying {vh ,v1}. Using the same reasoning
as in the case of condition (1) above, it can then be shown that the resulting instance has no pure
Nash equilibrium. �

5 RESULTS FOR ASYMMETRIC COORDINATION GAMES

In this section, we present our results for asymmetric coordination games. We focus on coordina-
tion games with equal-split distribution rule and no individual preferences.

5.1 Approximate Nash Equilibria

Apt et al. [5] show that the (1, 1)-PoA of coordination games is unbounded if c ≥ n + 1. Notably,
this holds for arbitrary graph topologies with unit weights and without individual preferences. We
slightly generalize this observation. We show that the Price of Anarchy is unbounded if and only
if c ≥ χ (G ) + 1, where χ (G ) is the chromatic number of G.
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Theorem 12. Let GG (c ) be the set of all coordination games Γ = {G, c, (Si )i ∈V , 1, 1, 0} on graphG
with c colors and equal-split distribution rule. Then, for any α ≥ 1, we have (α , 1)-PoA(GG (c )) = ∞
if c ≥ χ (G ) + 1 and finite if c < χ (G ).

Proof of Theorem 12. For a given coloring ofG with colors a1, . . . ,aχ (G ) , we assign a strategy
set of {ai ,a0} to all nodes that are colored with color i ∈ {1, . . . , χ (G )}. In particular, the strategy
profile s in which every player chooses its color ai from the coloring is a pure Nash equilibrium
with utility u (s ) = 0, whereas the profile s∗ in which every player chooses a0 is a socially optimal
profile with u (s∗) = |E (G ) |. This shows unboundedness if c ≥ χ (G ) + 1.

If c < χ (G ), then in every strategy profile s there is at least one edge e ∈ E (G ) such that its
endpoints have the same color in s . This shows boundedness. �

We can exploit the above insight to prove that if the number of colors c is a constant, then the
Price of Anarchy is unbounded for sparse random graphs, while it is bounded by some constant
for dense random graphs:

Theorem 13 (Constant Strategy Sets). Let α ≥ 1 and let c ≥ 3 be a given integer. Let GGn,c

be the set of all coordination games Γ = (Gn , c, (Si )i ∈V , 1, 1, 0) on graph Gn ∼ G (n,p) with strategy

sets Si ⊆ [c] for every player i .

— Then there exists a constant d = d (c ) such that for p ≤ d/n, we have

lim
n→∞
PGn∼G (n,p )

(
(α , 1)-PoA

(GGn,c
)
= ∞)

= 1.

— In contrast, if p ∈ (0, 1) is constant, then there exists a constant β0 = β0 (p, c ) such that

lim
n→∞
PGn∼G (n,p )

(
(α , 1)-PoA

(GGn,c
) ≤ β0

)
= 1.

Proof. For sparse Erdős-Rényi graphs G ∼ G (n,d/n) for constant d > 0, it is known that the
chromatic number is a constant β = β (d ) with high probability; see Reference [31]. It is not hard to
see that this constant is non-decreasing ind . However, forG ∼ G (n,p) withp constant independent
of n, a standard argument shows that with high probability as n → ∞, there is a constant β = β (p)
such that every subset of more than βn nodes contains Θ(n2) edges. Since the maximum number
of colors in a strategy set is bounded by c , there is at least one subset of n/c nodes such that all
players in this set play the same color in a given Nash equilibrium s . This means that the social
cost of any Nash equilibrium is Θ(n2). Moreover, since all edge-weights are one, it follows that the
social cost of an optimal strategy profile isO (n2). This proves that there is a constant β0 dependent
on both c and p. �

5.2 Approximate k-strong Equilibria

In general, approximate Nash equilibria are not guaranteed to exist in asymmetric coordination
games; see, e.g., Reference [5]. In this section, we consider the Price of Anarchy of (α ,k )-equilibria
withk ≥ 2. It is known that the (α ,k )-PoA of coordination games is between 2α (n−1)/(k−1)+1−2α
and 2α (n−1)/(k−1) for k ≥ 2 [33]. In particular, the (α ,k )-PoA grows like Θ(αn) if k is a constant.

We derive a topological bound on the (α ,k )-Price of Anarchy that depends on the maximum
degree Δ(G ) of the graph G.

Theorem 14 (Degree Bound). Let α ≥ 1, k ≥ 2, c ≥ 3, and letG be an arbitrary graph. Let GG (c )
be the set of all coordination games Γ = (G, c, (Si )i ∈V , 1,w, 0) on graph G with c colors, equal-split

distribution rule, and no individual preferences. Then

α ·max

{
1,

Δ(G )

k − 1
− 1

}
≤ (α ,k )-PoA(GG (c )) ≤ 2α · Δ(G ).
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Proof. We first construct the lower bound. The following assumptions can be made without
loss of generality:

— We assume that α = 1. This is allowed, because an (α ,k )-equilibrium is also an (α ′,k )-
equilibrium for any α ′ ≥ α .

— We assume that Δ(G ) > k − 1. Otherwise, we have a trivial lower bound of one.
— We assume that the game has c = 3 colors. This is allowed, because we consider asymmetric

strategy sets. That is, in case c > 3 the colors in {4, 5, 6, .., c} will not appear in any strategy
set.

We consider a game with three colors {a,b, c}. Let i ∈ V be a node of maximum degree, and let
j∗1, . . . , j

∗
k−1 ∈ N (i ) be k − 1 fixed neighbors of i . We give players i and j∗

l
for l = 1, . . . ,k − 1 a

strategy set of {a,b}, and all other nodes a strategy set of {a, c}. Moreover, edges {i, j} get a weight
of wi j = 1 for j = j∗1, . . . , j

∗
k−1, wi j = α for all j ∈ N (i ) \ {j∗1, . . . , j∗k−1} and all other edges a weight

of zero. It is not hard to see that the strategy profile s in which sv = b for v = i, j∗1, . . . , j
∗
k−1, and

sv = c otherwise, is a k-equilibrium with utility u (s ) = k − 1. The strategy profile s∗ in which all
players choose color a is clearly a socially optimal state with utility u (s∗) = α (Δ(G ) − k + 1) + k .
This proves the lower bound.

It remains to proof the upper bound. Consider an instance Γ = (G, c, (Si )i ∈V , 1,w, 0). Let s be
an (α ,k )-equilibrium and let s∗ be an optimal strategy profile. Let V = S ∪T be a partition of the
node set, where S = {i ∈ V : ui (s ) > 0} and T = {i ∈ V : ui (s ) = 0}.

Let i, j ∈ T and suppose that e = {i, j} ∈ E. We claim that either we = 0, or e is unsatisfied in s∗.
Suppose that we > 0 and e is satisfied in s∗. Then, in particular, it follows that i and j both have
a color c ′ in their strategy set, i.e., Si ∩ S j � ∅. Since ui (s ) = uj (s ) = 0, this means that they can
(jointly) profitably deviate to c ′, contradicting the fact that s is a k-equilibrium. That is, either one
of the players chose c ′ in s , in which case the other player can deviate to c ′ to improve her utility,
or i and j can jointly deviate to c ′, which is feasible, because k ≥ 2.

The above implies that

u (s∗) ≤
∑

{i, j }∈E (s ∗ ):{i, j }∩S�∅
wi j =

∑
{i, j }∈E (s ∗ ):{i, j }∩S�∅ and wi j >0

wi j ,

where E (s∗) is the set of satisfied edges in s∗. We now show that the latter summation is at most
2αΔ(G ) · u (s ), which completes the proof.

First, let i ∈ S and j ∈ T , and suppose that e = {i, j} is satisfied in s∗ with we > 0. The fact that
e is satisfied in s∗ implies that i and j have a common color c ′ in their strategy sets. By definition,
we have uj (s ) = 0, so it must be that α · ui (s ) ≥ wi j/2 otherwise i and j could (jointly) profitably
deviate to c ′. Second, let i ∈ S and j ∈ S , and suppose that e = {i, j} is satisfied in s∗ with we > 0.
Similar arguments imply that either α · ui (s ) ≥ wi j/2 or α · uj (s ) ≥ wi j/2 (or both).

In particular, this implies that the edges in {e ∈ E (s∗) : we > 0 and e∩S � ∅} can be partitioned
into sets E1, . . . ,E |S | defined as Ei = {{i, j} : i ≺ j ∈ N (i ) and α ·ui (s ) ≥ wi j/2} for all i ∈ S , where
≺ is some total ordering on the nodes in S . That is, in case bothui (s ) ≥ wi j/2 anduj (s ) ≥ wi j/2, we
assign edge {i, j} to the node that is lower in the ordering ≺. Note that |Ei | ≤ Δ(G ). By definition
of the set Ei , we now have that∑
{i, j }∈E (s ∗ ):{i, j }∩S�∅ and wi j >0

wi j ≤ 2α
∑
i ∈S

∑
{i, j }∈Ei

ui (s ) ≤ 2αΔ(G )
∑
i ∈S

ui (s ) = 2αΔ(G )
∑
i ∈V

ui (s ),

where the last equality holds, because ui (s ) = 0 for all i ∈ T = V \ S . �

We now use this result to bound the (α ,k )-Price of Anarchy for random graphs. Note that, by
exploiting the topological bound of Theorem 14, it suffices to bound the maximum degree of the
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corresponding random graph. The maximum degree of random graphs drawn according to the
Erdős-Rényi random graph model is well understood; see, e.g., the work of Frieze and Karonski
[17].

In particular, for dense random graphs with constant p = d ∈ (0, 1), the maximum degree of a
random graph satisfies Δ(G ) ∼ Θ(n); see, e.g., Reference [17, Chapter 3]. So, for these graphs the
(α ,k )-Price of Anarchy still grows like Ω(αn), as in the worst case.

In contrast, we obtain an improved bound for sparse random graphs.

Theorem 15. Let α ≥ 1, k ≥ 2, and d > 0 be constants. Let (cn )n∈N be a sequence of integers

with cn ≥ 3 for all n. Let GGn
(cn ) be the set of all coordination games Γ = (Gn , cn , (Si )i ∈V , 1,w, 0)

on graph Gn ∼ G (n,d/n) with cn colors, equal-split distribution rule and no individual preferences.

Then

(α ,k )-PoA(GGn
(cn )) = Θ

(
α ln(n)

ln ln(n)

)
.

Proof. The bounds follow directly from Theorem 14 and the fact that for a random graph
Gn ∼ G (n,d/n) with p = d/n, we have Δ(Gn ) ≈ O (ln(n)/ ln ln(n)) with high probability; see,
e.g., Reference [17, Chapter 3]. �

If, in addition, the strategy sets are drawn according to a sequence of distributions that satisfy
the so-called common color property, and all weights are equal to one, corresponding to the games
studied in Reference [5], then we can even prove that the (α ,k )-Price of Anarchy is bounded by a
constant.

Definition 16 (Common Color Property). For a sequence of integers (cn )n∈N, we say that a
sequence of probability distributions (Fn )n∈N over 2[cn ] \ ∅ satisfies the common color prop-

erty if there exists some constant d0 > 0, independent of n, such that for A1
n ,A

2
n ∼ Fn ,

infn P
(
A1

n ∩A2
n � ∅

)
≥ d0.

Intuitively, the common color property requires that with positive probability any two players
have a color in common in their strategy sets. In particular, this condition is satisfied if we draw
the strategy sets uniformly at random from 2[c]\∅withd0 =

1
2 . We remark that in the deterministic

setting the Price of Anarchy does not improve if all players have a color in common [33].

Theorem 17. Let α ≥ 1, k ≥ 2, and d > 0 be constants. Let (cn )n∈N be a sequence of integers with

cn ≥ 3 for all n and let (Fn )n∈N be a sequence of strategy set distributions satisfying the common

color property. Let GGn, (Si )i∈V (cn ) be the set of all coordination games Γ = (Gn , cn , (Si )i ∈V , 1, 1, 0)
on graph Gn ∼ G (n,d/n) with cn colors, strategy set Si ∼ Fn for every i , equal-split distribution

rule, unit weights, and no individual preferences. Then there exists a constant β = β (d,α ) such that

(α ,k )-PoA(GGn, (Si )i∈V (cn )) ≤ β .

The proof of Theorem 17 relies on the following probabilistic result regarding the maximum
size of a matching in Erdős-Rényi random graphs [25]:

Lemma 18 ([25]). Let δ > 0 be fixed. Then there is a constant μ∗ = μ∗ (d ) such that

lim
n→∞
PGn∼G (n,d/n) ( |μ (Gn )/n − μ∗ | ≥ δ ) = 0,

where μ (Gn ) is the size of a maximum matching in Gn .

Proof of Theorem 17. LetM (Gn ) be a maximum matching inGn of size μ (Gn ). For a fixed edge
e = {i, j} ∈ M (Gn ), the probability that the strategy sets Si and S j of players i and j satisfy Si∩S j � ∅
is at leastd0 by the common color property. Here, we implicitly use that the strategy sets are drawn
independently from the graph topology. Combining this with the lemma above, it follows that
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there exists a constant β0 = β0 (d0) such that with high probability there exist β0n pairwise node-
disjoint edges in Gn for which the players corresponding to the endpoints have a common color
in their strategy set. This follows from standard Chernoff bound arguments similarly as in the
proof of Theorem 7. As a consequence, ui (s ) +uj (s ) ≥ 1/(2α ) for any (α ,k )-equilibrium, because
otherwise player i and j could jointly deviate, as k ≥ 2, to their common color.

This implies that there exists a constant β1 = β1 (d0,α ) such that with high probability

(α ,k )-PoA
(
GGn, (Si ) (cn )

)
≤ β1

μ (Gn )

n
.

Finally, using again standard Chernoff bound arguments as in the proof of Theorem 7, it follows
that μ (Gn )/n ≤ β2 (d ) with high probability. This completes the proof. �

The statement of Theorem 17 does not hold for k = 1. To see this, consider the uniform distri-
bution over strategy sets {s0, s1}, . . . , {s0, sn }. In the strategy profile where every player picks her
color different from s0, at most a constant number of edges will be satisfied with high probability.
Thus, (α , 1)-PoA ≥ βn for some β with high probability.

APPENDICES

A ON POSSIBLE EXTENSIONS OF COORDINATION GAMES

We discuss some possible (natural) extensions of the coordination game model introduced in
Section 2. However, we show that the results obtained in Section 3 and/or Section 4 no longer
hold for these extensions.

A.1 Global Distribution Rules

A first natural generalization would be to look at more “global” distribution rules. However, already
for slight generalizations of local distribution rules, it can be shown that there exist distribution
rules that do not correspond to a generalized weighted Shapley distribution rule, but still guarantee
the existence of a pure Nash equilibrium.

For example consider edge-based distribution rules defined by a function дe : N × 2N → R for
every e = {a,b} ∈ E determining shares дe (i, S ) = ξi,e,S so if players a and b play the same color,
and {a,b} ⊆ S ⊆ N is the set of all players that also play that common color, then player i ∈ S
receives a share of

ξi,e,S∑
j ∈S ξ j,e,S

wab

of the edge weight wab , that is, his utility in strategy profile s is

ui (s ) = qi (si ) +
∑

e ∈E :e⊆Csi

ξi,e,Csi∑
j ∈Csi

ξ j,e,Csi

we ,

where Csi
is the set of all players choosing color k = si . For example, this captures the case of

egalitarian sharing in which every edge weight is shared equally between all players choosing the
same color (if ξi,e,S = 1 for all i ∈ S).

We show that there exists an edge-based distribution rule, not corresponding to a generalized
weighted Shapley value, that guarantees the existence of a pure Nash equilibrium. Consider the
graph G = (V ,E) with V = {1, 2, 3} and E = {1, 2}. We define ξ3, {1,2},S = 0 for S = {1, 2, 3}, that is,
player 3 never gets a share of edge {1, 2}. Moreover, we define ξ1, {1,2}, {1,2} = ξ2, {1,2}, {1,2} = 1, but
ξ1, {1,2}, {1,2,3} = 1 and ξ1, {1,2}, {1,2,3} = 3. That is, if players 1 and 2 play a common color, and player
3 a different color, then the edge-weight is split evenly, whereas if player 3 also plays the same
color, then the shares are 1/4w12 for player 1, and 3/4w12 for player 2. Roughly speaking, although
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player 3 never receives a share from edge w12, he does in fact influence how the edge-weight is
split between players 1 and 2.

For any fixed number of colors, and sets of individual preferences, and any weight w12, it can
be shown that any better-response sequence converges to a pure Nash equilibrium. This claim
follows by observing that player 3 is not influenced by players 1 and 2, and so in any best response
sequence she will appear at most once (in the corresponding step, she will deviate to the color
yielding the highest individual preference). After this step, players 1 and 2 will always converge to
a pure Nash equilibirum, as their distribution rule corresponds to a weighted Shapley distribution
rule.

A.2 Hypergraph Coordination Games

Another natural extension would be to consider hypergraph coordination games where edges can
have size larger than two as well. However, here the Price of Anarchy immediately becomes un-
bounded already on instances with one hyperedge of size three. This can easily be seen by con-
structing a symmetric instance with edge weight 1, without individual preferences, and three com-
mon colors. If all three players choose a different color, then that strategy profile s is a pure Nash
equilibrium with u (s ) = 0. If all players play the same color, then the resulting strategy profile s∗

is a social optimum with u (s∗) = 1.

A.3 Color-dependent Edge Weights

Another possible extension would be to introduce color-dependent edge weights, so the edge-
weights split between two players can differ, depending on the common color that they have.
The characterizations in Theorems 8 and 11 still hold. The results in Theorems 8 and 11 are even
stronger, since we can obtain the characterization already in the special case that the edge-weights
are actually color-independent. However, the Price of Anarchy becomes unbounded already for
symmetric coordination games on a graph with one edge. To see this claim, assume that the players
forming the endpoints of the edge have no individual preferences and that c = 2. For the first color,
we set the edge weight we,1 = 0, and for the second color, we set we,2 = 1. If both players play
color 1, then we obtain a pure Nash equilibrium s with u (s ) = 0, and if both players play color 2,
then we obtain the social optimum s∗ with u (s∗) = 1.

B RESOURCE ALLOCATION GAMES

A resource allocation game [19, 32] G = (N ,R, (Si )i ∈N , (Wr )r ∈R , ( fr )r ∈R ) is given by a set N =
{1, . . . ,n} of players, a set R = {1, . . . ,m} of resources, and strategy sets Si ⊆ 2R for players i ∈ N .
Moreover, Wr : 2N → R denotes the welfare function for resource r ∈ R and fr the distribution
rule of resource r ∈ R. A distribution rule f W : N × 2N for welfare function W is mapping with
f (i, S ) = 0 if i � S ⊆ N . We assume that the f W

r are efficient, meaning that
∑

i ∈S fr (i, S ) =Wr (S )
for all S ⊆ N .

For a given strategy profile s = (s1, . . . , sn ) ∈ S the utility (pay-off) of player i is defined as

ui (s ) =
∑
r ∈si

fr (i,Nr (s ))

with Nr (s ) = {i ∈ N : r ∈ sj } the set of players using resource r in profile s .
A well-known result from cooperative game theory states that for any fixed welfare function

W , there exist real numbers (βW
T

)T ⊆N such that

W (S ) =
∑

T ⊆N

βW
T дT (S ),
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where, for T ⊆ 2N , дT : 2N → R is the welfare functions given by дT (S ) = 1 if T ⊆ S and zero
otherwise. A distribution rule f W is said to have a base decomposition [19] if it can be written as

f W (i, S ) =
∑

T ⊆N

βW
T f T (i, S ),

where f T (i, S ) is given by f T (i, S ) = 0 if T � S , and, if T ⊆ S , f T (i, S ) = ωT where ω (i ) = 0 if
i � S , and ω (i ) > 0 for at least one i ∈ S . This is equivalent to saying that the distribution rules f T

for the welfare functions дT is a generalized weighted Shapley distribution rule [19].

B.1 Clustering Games as Resource Allocation Games

For a fixed graph G = (V ,Ec ∪ Ea ), distribution rule ξ , and c ∈ N, any game in G (G, c, ξ ) can be
modeled as a resource allocation game. That is, for every Γ ∈ G, there exists a resource allocation
game Ψ = (N ,R, (Si )i ∈N ,W , f

W ) with a one-to-one correspondence between the strategy profiles
of Γ and Ψ that preserves improving moves. Here, every resource is equipped with welfare function

W (S ) =
∑

T ⊆{V ,E }
βW

T дT , (19)

where βW
T
= 1 if T ∈ V or T ∈ E with τ (T ) = 1, and βW

T
= −1 if T ∈ E with τ (T ) = 0. Note that

the welfare functionW is independent of w and q. Moreover, the distribution rule f W has a base
decomposition given by ξ . That is, the value βW

T
for T = {i} with i ∈ V is always given to player

i , and for T ∈ E, the corresponding weight βT
W ∈ {−1, 1} is split among the players in T according

to ξ (note that this yields an efficient distribution rule).
The modeling of a clustering game as a resource allocation game is done by including many

copies of a single resource, a technique also used by Gopalakrishnan et al. [19]. The details of this
procedure are not hard to derive and left to the reader at this point.

B.2 Interpretation of Theorem 11

Gopalakrishnan et al. [19] show the impressive result that, for any fixed welfare functionW , if a
distribution rule f W guarantees the existence of a pure Nash equilibrium in every resource allo-
cation game (N ,R, (Si )i ∈N ,W , f

W ), for arbitrary N ,R, and (Si )i ∈N ), then the distribution rule f W

must be a generalized weighted Shapley distribution rule. We refer the reader to Reference [19]
for the formal definition of generalized weighted Shapley distribution rules for general resource
allocation games. Moreover, any generalized weighted Shapley distribution rule guarantees pure
Nash equilibrium existence [19].

Roughly speaking, they first show that if an equilibrium is guaranteed to exist in every game
where resources are equipped with welfare functionW , then the distribution rule f W must have
a base-decomposition (as introduced above). They then continue by showing that generalized
weighted Shapley distribution rules (which are base-decomposable by definition) are the only ones
guaranteeing existence among all base-decomposable distribution rules.

In Theorem 11, we essentially give an alternative, but also stronger, proof for this final step of
the proof of Gopalakrishnan et al. [19], in the (very) special case whereW is of the form (19) and
βT

W > 0 for allT ∈ {V ,E}. That is, we show that if a pure Nash equilibrium is always guaranteed to
exist in a coordination game with individual preferences, where there are three common strategies
(colors), then the distribution rule must be a generalized weighted Shapley distribution rule. This
then implies the result of Gopalakrishnan et al. [19], since coordination games with individual pref-
erences essentially form a subclass of all resource allocation games where resources are equipped
withW (using the modeling of clustering games as resource allocation games mentioned before).
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Fig. 4. Counter-example for Theorem 1 in the case of a clustering game with anti-coordination edges.

However, Example 19 below illustrates that, in general, this is not true if βT
W < 0 for someT ∈ E.

That is, if certain coefficients βT
W are negative, then in general it does not suffice to focus on the sub-

class of corresponding clustering games to derive that ξ must be a generalized weighted Shapley
distribution rule. In this case, one has to make use of more complex resource allocation games, i.e.,
more complex than clustering games with individual preferences, to guarantee that ξ is a gener-
alized weighted Shapley distribution rule (the resource allocation games used by Gopalakrishnan
et al. [19] for this final step are indeed more complex than clustering games in this case).

Example 19. Consider the instance in Figure 4, and let ξ be some arbitrary local distribution
rule. Fix arbitrary weights w12,w23, and w31 and individual preferences qi

l
for i = 1, 2, 3 and l ∈

C = {1, . . . , c ′}. (We use c ′ here to denote the number of strategies in the common strategy set
instead of c .) We claim that a pure Nash equilibrium always exists.

Consider the strategy profile in Figure 4 and assume without loss of generality that a is the color
for which player 1 his individual preference is maximal, i.e., a = arg max{q1 (l ) : l ∈ C}. If there is
some profile s ′ = (a, c,b) with a � b, c (but possibly b = c) where c and b are best-responses for,
respectively, players 2 and 3, then we find a pure Nash equilibrium by definition of a.

It now suffices to show that for any profile of the form (a, c,b) where either player 2 or 3 has
a best-response to a, we can always perform a sequence of best-response moves that end up in a
pure Nash equilibrium. Assume without loss of generality that a is a best-response for player 2 in
the profile (a, c,b). This in particular implies that

a = arg max{q2 (l ) : l ∈ C}.
We now consider player 3 in the profile (a,a,b).

(1) Player 3 only has a as best-response. Then, we let player 3 switch to a to get the profile
(a,a,a). Note that a is still a best-response for player 2 as well, since w23 is non-negative and
edge {2, 3} is now satisfied as well. To summarize, both players 2 and 3 are playing a best-
response in the profile (a,a,a). Now, if player 1 has a best-response different from a, say, c ,
then in particular a remains a best-response for both players 2 and 3 in the profile (c,a,a),
since edges {1, 2} and {1, 3} are anti-coordination edges and their weights are non-negative.
That is, (c,a,a) is a pure Nash equilibrium.

(2) Player 3 has only b as best-response. Then both players 2 and 3 are playing a best-response
in the profile (a,a,b). Now suppose player 1 has a different best-response than a.

(i) Player 1 has a best-response to some color d � b. Then a is still a best-response for
player 2 in the profile (d,a,b). If player 3 now has a best-response other than b, then it
must be a, otherwise he would have had a response better than b in the profile (a,a,b)
as well. Clearly, in the profile (a,a,d ) both players 2 and 3 are playing a best-response.
If player 1 still has a best-response, then it must be b (otherwise, he would have had a
different best-response than d before). The profile (a,a,b) is a pure Nash equilibrium.

(ii) Player 1 only has a best-response to b. Then a is still a best-response for player 2 in
(b,a,b). Suppose that player 3 has a best-response other than b. If a is a best-response for

ACM Transactions on Economics and Computation, Vol. 11, No. 3-4, Article 11. Publication date: December 2023.



11:30 P. Kleer and G. Schäfer

player 3, then we reach the pure Nash equilibrium (b,a,a), since player 2 clearly plays a
best-response, and player 1 cannot have a better response, otherwise deviating to b in the
profile (a,a,b) was not a best-response.

Therefore, suppose player 3 has a best-response different from a, say, e . Then b is still
a best-response for player 1. If player 2 has a better response than a, then it must be e ,
otherwise a would not have been a best-response in the initial profile. Clearly, player 3
plays a best-response in the profile (b, e, e ). If player 1 still has a better response than b,
then it must be a, otherwise b would not have been a best-response in the profile (b,a,b).
The resulting profile (a, e, e ) is a pure Nash equilibrium, since player 3 cannot play a better
response, otherwise e would not have been a best-response in the profile (a,b,b).

(3) Player 3 has c � a,b as best-response. Player 2 now cannot have a best-response to some
color f � c , otherwise a would not have been a best-response in the initial profile (a,b,b).
Therefore, suppose that c is a best-response. Then the resulting profile (a, c, c ) is a pure Nash
equilibrium, since player 1 has maximum possible utility, and player 3 clearly has no better
response than c , otherwise c would not have been a best-response in (a,a,b). We can now
assume to be in the profile (a,a, c ) in which players 2 and 3 play a best-response.

(i) Player 1 has a best-response to d � c. Then either the resulting profile (d,a, c ) is a pure
Nash equilibrium or player 3 still has a best-response to a, but then the resulting profile
(d,a,a) is a pure Nash equilibrium.

(ii) Player 1 has a best-response to c. Then player 2 still has a as best-response. Suppose
that player 3 now has a better response. If it a, then the resulting profile (a,a, c ) is a pure
Nash equilibrium. Therefore, suppose that player 3 has a better response to some color
д � a. Then c is still a best-response for player 1. If a is also still best-response for player
2, then (c,a,д) is a pure Nash equilibrium. Therefore, suppose that player 2 has a better
response. Then this must be д (similar reasoning as before). Clearly, in the profile (c,д,д)
player 3 is still playing a best-response. Suppose that player 2 still has a better-response,
then this must be a. The profile (a,д,д) is a pure Nash equilibrium.
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