
Feature Article: Polyglot Software Development

Polyglot Software Development: Wait, What?
Gunter Mussbacher, McGill University, Montreal, Canada / INRIA, France

Benoit Combemale, Université de Rennes, Rennes, France

Jörg Kienzle, ITIS Software, Universidad de Málaga, Málaga, Spain / McGill University, Montreal, Canada

Lola Burgueño, ITIS Software, Universidad de Málaga, Málaga, Spain

Antonio Garcia-Dominguez, University of York, York, UK

Jean-Marc Jézéquel, Université de Rennes, Rennes, France

Gwendal Jouneaux, Université de Rennes, Rennes, France

Djamel-Eddine Khelladi, Université de Rennes, Rennes, France

Sébastien Mosser, McMaster University, Hamilton, Canada

Corinne Pulgar, École de Technologie Supérieure, Université du Québec, Montreal, Canada

Houari Sahraoui, Université de Montréal, Montreal, Canada

Maximilian Schiedermeier, McGill University, Montreal, Canada

Tijs van der Storm, Centrum Wiskunde & Informatica / Rijksuniversiteit Groningen, The Netherlands

Abstract—The notion of polyglot software development refers to the fact that most
software projects nowadays rely on multiple languages to deal with widely different
concerns, from core business concerns to user interface, security, and deployment
concerns among many others. Many different wordings around this notion have
been proposed in the literature, with little understanding of their differences. In
this article, we propose a concise and unambiguous definition of polyglot software
development including a conceptual model and its illustration on a well-known,
open-source project. We further characterize the techniques used for the
specification and operationalization of polyglot software development with a feature
model, concentrating on polyglot programming. We conclude the article outlining
the many challenges and perspectives raised by polyglot software development.

M odern software development commonly re-
quires the use of several languages in al-
most all activities, whether it is requirements

engineering, programming in one or more languages,
or continuous integration and delivery. For example,
requirements may be specified using templates for use
cases or user stories and Gherkin scenarios [1]. Con-
tinuous integration and delivery may be specified with
GitHub Actions and build languages such as Maven
or Gradle [2]. The proliferation of domain-specific lan-
guages further adds to the incentive to use different
languages for an activity [3]. Even a so-called Ruby

XXXX-XXX © 2021 IEEE
Digital Object Identifier 10.1109/XXX.0000.0000000

project such as Mastodon, an open-source, distributed
social-media platform, in fact already uses many lan-
guages [4]. Besides Ruby, specifications in Docker
Compose, Dockerfile, GitHub Actions, Haml, HTML,
JavaScript, package.json, Rakefile, SCSS, and SQL
are used to handle UI, persistence, and build issues.
Mastodon is not an isolated example. In 2017, Mayer
et al. conducted a survey to gather responses from
139 professional software developers who reported an
average of 7 languages per project, with over 90%
of developers reporting problems related to language
interactions [5].

There are many reasons for why several lan-
guages are used in combination: socio-technical rea-
sons such as practitioners’s expertise/preferences and
best practices; conceptual reasons such as sepa-

Month Published by the IEEE Computer Society IEEE Software 1

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MS.2023.3347875

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

FEATURE

 Multi-Language
 Development

 Polyglot Programming /
 Polylingual Software

Cross-Language

Multi-
Lingual

Multi-Language Tools and
Development Environments.

 Hybrid Programming

Language Composition

1

2

3

4 5

6

7

8

10 11 12

9

Legend
1. “Lightweight Multilingual Software Analysis” doi.org/10.48550/arXiv.1808.01210
2. “CLCDSA: Cross Language Code Clone Detection using Syntactical Features and
 API Documentation” doi.org/10.1109/ASE.2019.00099
3. “On Multi-Language Software Development, Cross-Language Links and
 Accompanying Tools: a Survey of Professional Software Developers”
 doi.org/10.1186/s40411-017-0035-z
4. “Cross-Language Interoperability in a Multi-Language Runtime”
 doi.org/10.1145/3201898
5. “The Design Space of Multi-Language Development Environments”
 doi.org/10.1007/s10270-013-0376-y
6. “Multilanguage Debugger Architecture” doi.org/10.1007/978-3-642-11266-9_61
7. “Debug All Your Code: Portable Mixed-environment Debugging”
 doi.org/10.1145/1640089.1640105

 “Code Smells for Multi-language Systems” doi.org/10.1145/3361149.3361161
8. “An Empirical Assessment of Polyglot-ism in GitHub”
 doi.org/10.1145/2601248.2601269
 “Investigating the Effect of Polyglot Programming on Developers”
 doi.org/10.1109/VL/HCC51201.2021.9576404
 “Automated Support for Seamless Interoperability in Polylingual Software
 Systems” doi.org/10.1145/250707.239123
9. “Multi-paradigm modeling for cyber–physical systems: A systematic mapping
 review” doi.org/10.1016/j.jss.2021.111081
10. “Globalizing Modeling Languages” doi.org/10.1109/MC.2014.147
11. “Language Composition Untangled” doi.org/10.1145/2427048.2427055
12. “A Hybrid Synchronous Language with Hierarchical Automata: Static Typing and
 Translation to Synchronous Code” doi.org/10.1145/2038642.2038664

Multi-Paradigm
Modeling /
Globalization

FIGURE 1. Ambiguous Terms Related to Polyglot Software Development

ration of concerns, design decisions, and variabil-
ity management; technical reasons such as avail-
ability of libraries/functionality, efficiency, automa-
tion/reproduction, reasoning/analysis, and quality as-
surance; and business reasons such as coping with
legacy applications/systems, technological debt, and
vendor-lock in.

It is therefore no surprise that many communi-
ties are investigating the combination of several lan-
guages [6]. Yet, a long and ambiguous list of terms
exists for polyglot software development from different
communities. We illustrated all the terms we discov-
ered in Figure 1, and also provide references to rep-
resentative papers in the scientific literature that use
that terminology. While by no means exhaustive, this
list already showcases the lack of a common view,
that is to say: different communities often use the
same term with different meanings, or use different
terms for the same meaning. The effect is a vastly
ambiguous picture of the term polyglot, as well as a
merely blurry sketch of common associated implica-
tions for a development process. Our goal is to clarify
this fuzziness by providing a clear definition of polyglot
software development. In turn, this may qualify as a
common denominator for individual domain experts, to
leverage an anti-silo effect that facilitates the exchange
of contained knowledge.

In the remainder of this article, we first introduce
a conceptual model for polyglot software development

that allows us to clearly define polyglot software devel-
opment, its polyglot processes and tasks, and whether
polyglot stakeholders are required. We exemplify the
conceptual model with Mastodon and other examples.
We further characterize polyglot software development
and elaborate on polyglot programming, before con-
cluding with open challenges and perspectives.

CONCEPTUAL MODEL
To unify the large variety of terms related to the use of
languages, this section proposes a conceptual model
for software development with multiple languages in
Figure 2. Note that we focus only on those develop-
ment concepts that directly involve or somehow relate
to languages.

At the heart of our conceptual model is the Task,
which is a unit of work (e.g., “specify web views”) that
involves a set of StakeholderRoles (e.g., “developer”).
One Stakeholder may play one or more stakeholder
roles. A task requires the use of one or several Arti-
facts expressed in one or more Languages, because
the artifacts are either consumed as input or pro-
duced as output by the task. Some artifacts may be
integrated with each other using one or several Inte-
grationTechniques. A language offers one or more
Paradigms in which to formulate the intended prop-
erties or behavior of the system under development
(e.g., “object-oriented programming”, “functional pro-

2 Publication Title Month 2021

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MS.2023.3347875

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

FEATURE

gramming”, and “procedural programming” for Ruby).
An important distinction for a stakeholder role to

be associated with an artifact of a language is that
the role needs to actively edit something in the artifact
(e.g., write code, add a model element). If this is
not the case, then the stakeholder does not use the
language. Simply viewing or executing an artifact does
not qualify (e.g., the result of a model generation or
compilation, respectively). For example, while the task
of compiling code will require an input artifact and will
output bytecode/machine code, most stakeholders will
not directly engage with the compilation results. Hence,
the stakeholders do not use the bytecode/machine
code language nor do they use the language of the
input artifact since they do not edit it.

A ternary association is required since an artifact
may be expressed in several languages and a stake-
holder role may only use some of those languages.
For example, a performance specialist may edit only
the MARTE annotations in a UML class diagram.

To bring artifacts of languages together for a task,
a certain IntegrationTechnique is used, where each
artifact and its language(s) play a role, captured in
the conceptual model by the qualified associations be-
tween integration technique and artifact and between
integration technique and language.

For example, the “specify web views” task in
Mastodon involves the creation of a “Haml” output
artifact for the front-end developer and a “Ruby” output
artifact for the back-end developer. These developers
may in fact be the same person, as a stakeholder may
play multiple roles. Since this is a task that requires
integrating two or more languages, the task uses an
integration technique where Haml plays the role of
“template” and Ruby is the “interpreter”. The follow-
up runtime task “generate web views” that produces
artifacts in “HTML” from the integrated Haml+Ruby
specifications is a task that involves no editing stake-
holders, but has two input artifacts and one output
artifact.

Finally, during software development, tasks are typ-
ically performed in some order. For this purpose our
conceptual model contains the Process concept which
groups a set of tasks and a set of stakeholders. For the
sake of practicality we also allow processes to contain
subprocesses, i.e., to form hierarchies. We are not
explicitly modelling the partial ordering of tasks within a
process, though, as it is of no relevance regarding our
discussion on polyglotism. Implicitly a partial ordering
is established nevertheless, because tasks that require
input artifacts can only be performed once the artifacts
have been output by a preceding task in the process.

To finalize, we need to make the definition of a

task more precise to avoid confusion between process,
subprocesses, and tasks. A task is supposed to be
the smallest unit of work, i.e., it should not arbitrarily
consist of artifacts with many languages that are not
directly related to each other (e.g., one task is defined
for a whole process instead of splitting the process
into several atomic tasks). We can do this by adding a
constraint to the conceptual model.

A task may only contain artifact(s) of more than one
language if the languages are integrated by a tech-
nique.
context Task:
inv: roles.usedLanguages→asSet()→size() ≥ 2 implies

techniques.artifacts→includesAll(roles.editedArtifacts) and
techniques.languages→includesAll(roles.usedLanguages)

In the Mastodon project, for example, an activity
such as “specify web views and build script” that
includes Ruby, Haml, and Dockerfile, would have to
be modelled as two tasks.

POLYGLOTISM
Since the production of software always involves trans-
lation from human readable languages to machine
languages, all software development can be seen
as polyglot. However, we are going to give a more
nuanced definition of polyglot based on the use of
languages for a task as explained earlier.

The conceptual model introduced allows for think-
ing about polyglotism at multiple levels, i.e., at the
task and the process level, and also with respect to
stakeholder roles and stakeholders.

A task is polyglot if the stakeholder roles of the task
edit artifact(s) in more than one language.
context Task def isPolyglot(): Boolean =

roles.usedLanguages→asSet()→size() ≥ 2

For example, consider a task “specify web page”
with an output artifact in two languages, i.e., HTML and
CSS. The task could require two stakeholder roles, one
for HTML and one for CSS, or the same stakeholder
role for both languages. In both cases the task is poly-
glot, and an integration technique is required because
two languages are used in an edited artifact. Another
common situation occurs when a low-level language is
embedded within a high-level programming language.
For example, it is common to embed C code in Python
for increasing performance of computationally expen-
sive algorithms, and therefore any programming task
with such a setup is polyglot. However, if the task is
fully automated, i.e., there is no stakeholder role, then
the task is not polyglot. A polyglot task requires active

Month 2021 Publication Title 3

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MS.2023.3347875

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

FEATURE

ProcessStakeholder
0..*

subProcesses

1..*

stakeholders

StakeholderRole

Task

Artifact

IntegrationTechnique
0..* tasks

1..* processes

0..*

contexts

techniques

0..*

outputs 0..*

producedBy 0..*

0..* inputs

0..* consumedBy

LanguageParadigm

roles 1..*

task

1

0..* roles
0..*

roles

editedArtifacts

0..*

0..*

paradigms

languages

0..*

1..* languages

0..* artifacts

String

String

0..*

artifacts

0..*

languages

usedLanguages

0..*

Conceptual
Model

Feature Model

FIGURE 2. Conceptual Model for Polyglot Software Development and Feature Model Illustrating Different Integration Techniques

stakeholder involvement with multiple languages.

This distinction is also exemplified by the tasks
“write model transformation” and “run model transfor-
mation”. Both tasks are not polyglot. The former is not
polyglot because it involves a stakeholder role that ed-
its the output artifact in only a single language, e.g., an
ATL script for the model transformation, based on two
input artifacts, i.e., the metamodels for the source and
target languages of the transformation. The latter is not
polyglot because it is automated and does not involve
an active stakeholder role but three input artifacts (e.g.,
the ATL script and two models corresponding to the
source and target metamodels) and an automatically
created output artifact in the target language.

Similarly, the specification of a consistency rule
or an analysis script (e.g., energy consumption for
web pages) are tasks that are not polyglot unless

the specification itself requires multiple languages. The
metamodels of the languages for which a consistency
rule is specified are the input artifacts and not edited.
Likewise, the web pages that are analyzed are also
input artifacts that are not edited. The execution of
the consistency rule (which may perform changes to
the input models) and the running of the analysis are
automated, and hence they are not polyglot because
no stakeholder is actively involved.

Based on the definition of a polyglot task, similar
definitions for stakeholder roles, stakeholders, and pro-
cesses can be formulated.

A stakeholder role is polyglot if it requires to edit
artifact(s) in more than one language.
context StakeholderRole def: isPolyglot(): Boolean =

usedLanguages→asSet()→size() ≥ 2

4 Publication Title Month 2021

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MS.2023.3347875

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

FEATURE

A stakeholder needs to be polyglot if the union of roles
they play edit artifact(s) in more than one language.
context Stakeholder def: isPolyglot(): Boolean =

roles.usedLanguages→asSet()→size() ≥ 2

A process is polyglot if the stakeholder roles of the
tasks that it or any of its subprocesses contains edit
artifact(s) in more than one language.
context Process def: isPolyglot(): Boolean =

self.closure(subprocesses).tasks.roles.usedLanguages
→asSet()→size() ≥ 2

For example, the earlier Ruby+Haml “specify web
views” task has task-level polyglotism, but some other
systems may exhibit process-level polyglotism. For
example, in a “data visualization” process, one task
may use Python to transform data, and another task
may use R to visualize the transformed data. At the
uppermost process level, many modern systems will
exhibit polyglotism (e.g., using a formal requirements
language and an implementation language).

On the other hand, there are still many projects
which are not polyglot. For instance, there are numer-
ous domains such as data science, biology, or finance
whose projects use a single language (such as Python)
for all tasks (e.g., data curation, analysis, computation,
visualization, etc.). Such a task is represented in the
conceptual model by a task that produces an output ar-
tifact edited by a stakeholder role but only in the Python
language and without any integration technique.

In literature and practice, different communities re-
fer to the concepts in our conceptual model differ-
ently. This existing terminology (cf. Figure 1) can be
mapped to our conceptual model as follows. "Polyglot
development/programming" is in line with our defini-
tion of polyglotism. Within it, "multi-paradigm mod-
eling/globalization" are seminal approaches with an
explicit focus on language integration (or composition)
techniques. "Polyglot programming" and "Polylingual
software", as well as "multi-language development" re-
fer to a development process with tasks that span more
than one language, but multi-language development is
more general and refers to approaches without lan-
guage integration technique. These terms should not
be confused with "multi-lingual" software development
tools, which include all language-agnostic tools that
can be reused across a well-defined range of existing
languages. "Cross-language" refers to tools that can
operate across multiple languages while relating them
(e.g., when performing clone detection across Java
and Python programs, the tool not only has to work
on both Java and Python programs, but also has to
relate them). "Multi-language tools and development
environments" focus on the tooling aspect, but do not
contribute to the underlying foundations of software

development with multiple languages. In contrast, "lan-
guage composition" techniques refers to work on the
foundations for dealing with multiple languages, which
may involve polygot development, but also language
design and implementation for hybrid programming
languages, i.e., with multiple paradigms, but without
language integration techniques. Finally, "hybrid pro-
gramming" refers to a single language that combines
more than one paradigm (e.g., continuous and discrete
programming).

All communities depicted in Figure 1 build on the
foundations of model-driven engineering (MDE) as well
as language-oriented programming (LOP). In MDE,
models play a central role during software developent,
as the whole software life cycle is seen as a process
of model production, refinement, and integration [7].
Similary, in LOP a language is treated like any other
development artifact and instead of using general-
purpose languages, the creation and implementation
of domain-specific languages for solving problems is
preferred [8].

INTEGRATION TECHNIQUES
In this section, we provide more details on existing
language integration techniques mentioned in the con-
ceptual model by focusing on polyglot programming
and hence executable artifacts. Figure 2 depicts the
possible choices for the integration technique of ex-
ecutable artifacts as a feature model. Each feature
represents a choice.

Each integration technique requires at least one
choice for its Specification and one for its Opera-
tionalization. The former handles how we define the
interaction between languages at design time, and the
latter specifies how the interaction is realized during
execution. The specification can be implemented with
a Composition solution [9] and/or Interoperability so-
lution [10]. Composition covers all various techniques
from embedding of a language into another to unifying
two languages at the syntax and/or semantic levels.
We do not provide further details on the many existing
composition techniques and their classification, but the
interested reader is referred to this survey paper [11].

Interoperability covers the communication between
different languages. Interoperability needs to deal with
two important aspects, namely how data sharing
(SharedData) and Calls are handled. The calls be-
tween languages can either be Remote, when the call
goes through a network, or else Local. The shared
data can either be implemented with a SharedMem-
ory, a data streaming mechanism (DataStream), or
simply by one language writing some output that an-

Month 2021 Publication Title 5

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MS.2023.3347875

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

FEATURE

other language consumes as an input, for example
through a file on disk (OutputInput).

Operationalization represents how the specification
will be realized during execution. This can either be
achieved through Compilation and/or Interpretation,
i.e., either by executing the relationships between the
two languages at compile-time, e.g., Melange [12], or
by interpreting the specified relationships at runtime,
e.g., BCOoL [13].

For example, a Scala program calling Java libraries
fits the following choices in the feature model of Fig-
ure 2: shared memory and local call interoperability,
and compilation operationalization. Another example is
the case where code in one language invokes code
in another language, e.g., the new Foreign Function
and Memory (FFM) API in Java allows Java code to
invoke low-level code and access data outside the JVM
on the same machine. In other cases, interoperability
happens through the use of an interface definition
language, e.g., OpenAPI, from which client and server
stubs are generated. This integration technique would
use output/input and remote call interoperability. If, for
example, Python talks to compiled C++, then the op-
erationalization would use interpretation on the Python
side and compilation on the C++ side.

Taking again the example of Mastodon, different
integration techniques are used at various times. For
instance, the integration technique between Haml and
Ruby uses interoperability as specification through lo-
cal calls to Haml code as well as shared memory,
and is operationalized using the Haml interpreter. A
second used integration technique between Ruby and
JavaScript relies on interoperability as specification
with a data stream using Redis and remote calls, and
interpretation as operationalization.

As mentioned in the previous section, not every
integration technique is associated with a polyglot task
because stakeholder involvement is required. A fully
automated task that is not polyglot may still have an
integration technique. However, the earlier integration
techniques between Haml and Ruby and between
Ruby and JavaScript belong indeed to polyglot tasks,
since the stakeholders edit artifacts in all languages.

CHALLENGES AND PERSPECTIVES
As mentioned above, most software development is
already polyglot to some extent, and it is not surprising
that we see more and more languages appear in mod-
ern software projects, e.g., in order to build systems
more efficiently or to separate concerns (see sidebar).
Polyglot software development, however, faces many
technical, process-related, educational, and commu-

nity challenges. We discuss them and provide related
perspectives.

Technical Challenges and Perspectives
Some software development activities that are well un-
derstood within a single language become challenging
in polyglot software development. For example, we
need to develop novel and intuitive tools and tech-
niques for polyglot software comprehension, polyglot
software analysis (including, e.g., semantic alignment,
debugging, and profiling) and polyglot software doc-
umentation. Similarly, whereas testing each language
separately is well supported, testing the overall polyglot
program and its different interactions remains a chal-
lenge. Indeed, a test case would require to integrate
the “oracle states” of different programs written in
different languages.

Techniques for software security will have to be re-
visited in the context of polyglot software development.
For example, we need to ensure secure communica-
tion channels between languages and enable cross-
language access control.

When developing polyglot programs, we often have
to write the language integration logic from scratch.
As a first step, our current code generators should
be extended with a layer that automatically exposes
the services by system components written in one
language to the other languages. Ultimately, the goal
is to have full-fledged code generation for polyglot
programs that includes the integration logic.

Finally, new opportunities await with the application
of AI techniques to polyglot software development.
More specifically, we should investigate how to capi-
talize on multi-lingual trained LLMs [14].

Process-Related Challenges and
Perspectives
We must develop strategies to determine the most
appropriate combination of languages to use for a
given task, also taking into account the socio-technical
context. We might even benefit from identifying anti-
patterns of language combinations from unsuccessful
projects. We need to develop a theory for tradeoffs
between productivity and complexity involved with poly-
glotism. Adding a language that is well suited to a
task can speed up development, but it might also
increase the cognitive load for the developer and re-
quire a broader range of development skills. Finally, a
completely new challenge arises regarding language
evolution. As many languages are used and interact
with each other, when one evolves, others may be
impacted as well. We would need to develop tools and

6 Publication Title Month 2021

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MS.2023.3347875

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

FEATURE

techniques for polyglot impact analysis that can reason
over multiple languages simultaneously. Then, when
impacts are identified, they must be considered and
languages have to co-evolve accordingly.

Educational Challenges and Perspectives
Most software engineering curricula contain courses
that teach languages and paradigms, but only rarely
students are explicitly exposed to polyglot software
development with dedicated support for the coordi-
nated use of multiple languages [15]. We need to
find ways to use the presented conceptual model as
an education tool to convey the real-life complexities
to students who are used to “lab” projects, as well
as augment our teaching practices with examples of
polyglot development activities and techniques to give
a more holistic view of real-life software development.

Community Challenges and Perspectives
In this paper, we have identified similarities and vari-
abilities in the terminology related to polyglot develop-
ment used by various software engineering commu-
nities. Traditionally, different communities have been
working in relative isolation from each other, and work
like the one presented here can help break down the
silos that separate them. Yet this work needs to be
amended by the plethora of other communities dealing
with polyglotism to enable global cross-fertilization.

SIDEBAR
To make a program it takes a language and a machine.
One language, and a machine. At least in theory.
But practice asks for separation of concerns,
a division of labor between you, and me, and her.
The people demand speed and efficiency, but alas,
a language can compute anything, but is it fast?
So then we invite another and thus transgress
out of paradise with a bite, a sudden kiss of death,
and descend the tarpit of our festished Babylon,
sentenced to tame the Hydra that we have spawned.
Let’s study the techniques of our tongues’ embrace:
A language alongside another wants to communicate.
A language on top of another is one that generates.
A language within a language, a hatch for my escape.

So many tradeoffs at stake
when complexity procreates.

Tijs van der Storm

REFERENCES

1. M. S. Murtazina and T. V. Avdeenko, “Ontology-based
approach to the requirements engineering in agile
environment,” in 2018 XIV International Scientific-
Technical Conference on Actual Problems of Elec-
tronics Instrument Engineering (APEIE). IEEE,
2018, pp. 496–501.

2. M. Shahin, M. A. Babar, and L. Zhu, “Continuous
integration, delivery and deployment: a systematic re-
view on approaches, tools, challenges and practices,”
IEEE access, vol. 5, pp. 3909–3943, 2017.

3. T. Kosar, S. Bohra, and M. Mernik, “Domain-specific
languages: A systematic mapping study,” Information
and Software Technology, vol. 71, pp. 77–91, 2016.
[Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0950584915001858

4. A. Raman, S. Joglekar, E. D. Cristofaro, N. Sastry,
and G. Tyson, “Challenges in the decentralised web:
The mastodon case,” in Proceedings of the internet
measurement conference, 2019, pp. 217–229.

5. P. Mayer, M. Kirsch, and M. A. Le, “On multi-
language software development, cross-language
links and accompanying tools: a survey of
professional software developers,” Journal of
Software Engineering Research and Development,
vol. 5, no. 1, p. 1, 2017. [Online]. Available:
https://doi.org/10.1186/s40411-017-0035-z

6. T. Degueule, B. Combemale, A. Blouin, O. Barais,
and J.-M. Jézéquel, “Melange: A meta-language
for modular and reusable development of
dsls,” in Proceedings of the 2015 ACM
SIGPLAN International Conference on Software
Language Engineering, ser. SLE 2015. New
York, NY, USA: Association for Computing
Machinery, 2015, p. 25–36. [Online]. Available:
https://doi.org/10.1145/2814251.2814252

7. D. C. Schmidt, “Model-driven engineering,” IEEE
Computer, vol. 39, pp. 41–47, 2006.

8. R. Pickering, Language-Oriented Programming.
Berkeley, CA: Apress, 2010, pp. 327–349. [Online].
Available: https://doi.org/10.1007/978-1-4302-2390-
0_12

9. J. Kienzle, G. Mussbacher, B. Combemale,
and J. Deantoni, “A unifying framework for
homogeneous model composition,” Software &
Systems Modeling, vol. 18, no. 5, pp. 3005–
3023, Jan 2019. [Online]. Available: https:
//doi.org/10.1007/s10270-018-00707-8

10. M. Grimmer, R. Schatz, C. Seaton, T. Würthinger,
M. Luján, and H. Mössenböck, “Cross-language
interoperability in a multi-language runtime,” ACM

Month 2021 Publication Title 7

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MS.2023.3347875

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://www.sciencedirect.com/science/article/pii/S0950584915001858
https://www.sciencedirect.com/science/article/pii/S0950584915001858
https://doi.org/10.1186/s40411-017-0035-z
https://doi.org/10.1145/2814251.2814252
https://doi.org/10.1007/978-1-4302-2390-0_12
https://doi.org/10.1007/978-1-4302-2390-0_12
https://doi.org/10.1007/s10270-018-00707-8
https://doi.org/10.1007/s10270-018-00707-8

FEATURE

Trans. Program. Lang. Syst., vol. 40, no. 2, may 2018.
[Online]. Available: https://doi.org/10.1145/3201898

11. S. Erdweg, P. G. Giarrusso, and T. Rendel,
“Language composition untangled,” in Proceedings
of the Twelfth Workshop on Language Descriptions,
Tools, and Applications, ser. LDTA ’12. New York,
NY, USA: Association for Computing Machinery,
2012. [Online]. Available: https://doi.org/10.1145/
2427048.2427055

12. T. Degueule, B. Combemale, A. Blouin, O. Barais,
and J.-M. Jézéquel, “Melange: A meta-language
for modular and reusable development of
dsls,” in Proceedings of the 2015 ACM
SIGPLAN International Conference on Software
Language Engineering, ser. SLE 2015. New
York, NY, USA: Association for Computing
Machinery, 2015, p. 25–36. [Online]. Available:
https://doi.org/10.1145/2814251.2814252

13. M. E. Vara Larsen, J. DeAntoni, B. Combemale, and
F. Mallet, “A behavioral coordination operator lan-
guage (bcool),” in 2015 ACM/IEEE 18th International
Conference on Model Driven Engineering Languages
and Systems (MODELS), 2015, pp. 186–195.

14. T. Ahmed and P. Devanbu, “Multilingual training
for software engineering,” in 2022 IEEE/ACM
44th International Conference on Software
Engineering (ICSE). Los Alamitos, CA, USA:
IEEE Computer Society, may 2022, pp. 1443–1455.
[Online]. Available: https://doi.ieeecomputersociety.
org/10.1145/3510003.3510049

15. M. Ardis, D. Budgen, G. W. Hislop, J. Offutt, M. Se-
bern, and W. Visser, “Se 2014: Curriculum guidelines
for undergraduate degree programs in software en-
gineering,” Computer, vol. 48, no. 11, pp. 106–109,
2015.

BIOGRAPHIES

Prof. Gunter Mussbacher is an Associate Profes-
sor at McGill University. His research interests
include Model-Driven Requirements Engineering,
Software Language Engineering, Next-Generation
Reuse Frameworks, Sustainability, and Human Val-
ues. More information about him can be found at
http://www.ece.mcgill.ca/~gmussb1/. Contact him
at gunter.mussbacher@mcgill.ca.

Prof. Benoit Combemale is Full Professor of Soft-
ware Engineering at the University of Rennes,
France. He is teaching at the engineering school
ESIR, and he is co-head of the DiverSE research
team, joint between the IRISA and Inria labs. He is

also adjunct researcher in the team SM@RT of the
IRIT labs, Toulouse, France, scientific advisor of the
startup TwiinIT, and Editor in Chief of the Springer
Nature Journal on Software and Systems Model-
ing (SoSyM). His research interests include Model-
Driven Engineering (MDE), software language engi-
neering (SLE), software validation verification (VV)
and DevOps. More information at http://combemale.
fr/. Contact him at benoit.combemale@irisa.fr.

Prof. Jörg Kienzle is a researcher at ITIS Software,
Universidad de Málaga, Málaga, Spain, and Full
Professor at McGill University, Montréal, Québec,
Canada, where he leads the Software Composi-
tion and Reuse lab (SCORE). His research in-
terests include model-driven software develop-
ment, software product lines, separation of con-
cerns, reuse, software composition, and modular-
ity. Further information about him can be found
at https://djeminy.github.io. Contact him at Jo-
erg.Kienzle@uma.es or Joerg.Kienzle@mcgill.ca.

Prof. Lola Burgueño is an Associate Professor at
the University of Málaga, Spain. Her research inter-
ests include the application of artificial intelligence
to improve software development processes and
tools, uncertainty management during the software
design phase, and model-based software testing.
More information at https://lolaburgueno.github.io.
Contact her at lolaburgueno@uma.es.

Dr. Antonio Garcia-Dominguez is a Lecturer in
Software Engineering at the Department of Com-
puter Science of the University of York, and a
member of the Automated Software Engineering
research group. Antonio’s main research inter-
ests are model-driven software engineering (with
lines of work on scalability of MDSE and on run-
time models for explainability), and software test-
ing (specifically, search-based testing and meta-
morphic testing). More information at https://www-
users.york.ac.uk/~agd516/. Contact him at a.garcia-
dominguez@york.ac.uk.

Prof. Jean-Marc Jézéquel is a Professor at the Uni-
versity of Rennes and a member of the DiverSE
team at IRISA/Inria. Since 2024 he is President of
Informatics Europe. From 2012 to 2020 he was Di-
rector of IRISA, one of the largest public research
lab in Informatics in France. Since Sept. 2023, he
is a fellow of the Institut Universitaire de France
(IUF). His interests include model-driven software
engineering for software product lines. More infor-

8 Publication Title Month 2021

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MS.2023.3347875

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://doi.org/10.1145/3201898
https://doi.org/10.1145/2427048.2427055
https://doi.org/10.1145/2427048.2427055
https://doi.org/10.1145/2814251.2814252
https://doi.ieeecomputersociety.org/10.1145/3510003.3510049
https://doi.ieeecomputersociety.org/10.1145/3510003.3510049
http://www.ece.mcgill.ca/~gmussb1/
http://combemale.fr/
http://combemale.fr/
https://djeminy.github.io
https://lolaburgueno.github.io
https://www-users.york.ac.uk/~agd516/
https://www-users.york.ac.uk/~agd516/

FEATURE

mation at http://people.irisa.fr/Jean-Marc.Jezequel.
Contact him at jezequel@irisa.fr.

Gwendal Jouneaux is a Ph.D. student in software
engineering at University of Rennes (France) and
a member of the DiverSE research team. He is
interested in model-driven engineering, software
language engineering, domain-specific languages,
and in particular self-adaptable languages. More
information at https://www.gwendal-jouneaux.fr.
Contact him at gwendal.jouneaux@irisa.fr.

Dr. Djamel-Eddine Khelladi is a CNRS researcher
at the IRISA research lab in the DiverSE team,
Université Rennes 1, Rennes, France. His cur-
rent research interests are Software engineering,
Model-Driven Engineering, Software Evolution, Co-
evolution, Empirical Software Engineering, Incre-
mental Build, Scaling Code Analysis, Software Pro-
cesses. More information at http://people.irisa.fr/
Djamel-Eddine.Khelladi/. Contact him at djamel-
eddine.khelladi@irisa.fr.

Prof. Sébastien Mosser is Professor of software
engineering at McMaster University (Canada),
and a member of the McSCert research centre.
His research interests are related to domain-
specific modeling and software composition from
a language point of view. More information
at https://mosser.github.io/. Contact him at
mossers@mcmaster.ca.

Corinne Pulgar is a master student at Ecole
de Technologie Supérieure, Université du
Québec, Montréal, Quebec, Canada. More
information at https://www.linkedin.com/in/
corinne-pulgar-12a58190/. Contact her at
corinne.pulgar.1@ens.etsmtl.ca.

Houari Sahraoui is a professor at the Depart-
ment of Computer Science and Operations Re-
search of the Université de Montréal at Montréal,
Québec, Canada. His research interests include
artificial intelligence techniques applied to soft-
ware engineering, search-based software engineer-
ing, and model-driven engineering. Contact him at
sahraouh@iro.umontreal.ca.

Maximilian Schiedermeier is a Ph.D. student in
Computer Science at McGill University, Montréal
(Canada). His research focuses on DSL-based tools
for REST API development / security protocol in-
tegration and empirical assessments. More infor-

mation at https://m5c.github.io/. Contact him at
max.schiedermeier@mcgill.ca.

Prof. dr. Tijs van der Storm is senior researcher
and group leader of the Software Analysis & Trans-
formation (SWAT) group at CWI, and part-time Full
Professor of software engineering at the University
of Groningen (RUG). His expertise spans program-
ming languages, language engineering, domain-
specific languages (DSLs), meta programming,
and model-driven engineering. He is the chair of
VERSEN, the Dutch national association for soft-
ware engineering research, chair of IFIP TC2 Work-
ing Group on Programming Language Design, and
treasurer of the European Association for Pro-
gramming Languages and Systems (EAPLS). More
information can be found here: http://www.cwi.nl/
~storm. Contact him at storm@cwi.nl.

Month 2021 Publication Title 9

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MS.2023.3347875

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

http://people.irisa.fr/Jean-Marc.Jezequel
https://www.gwendal-jouneaux.fr
http://people.irisa.fr/Djamel-Eddine.Khelladi/
http://people.irisa.fr/Djamel-Eddine.Khelladi/
https://mosser.github.io/
https://www.linkedin.com/in/corinne-pulgar-12a58190/
https://www.linkedin.com/in/corinne-pulgar-12a58190/
https://m5c.github.io/
http://www.cwi.nl/~storm
http://www.cwi.nl/~storm

	CONCEPTUAL MODEL
	POLYGLOTISM
	INTEGRATION TECHNIQUES
	CHALLENGES AND PERSPECTIVES
	Technical Challenges and Perspectives
	Process-Related Challenges and Perspectives
	Educational Challenges and Perspectives
	Community Challenges and Perspectives

	SIDEBAR
	REFERENCES
	REFERENCES
	BIOGRAPHIES
	Biographies

