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Bayesian Learning for the Robust Verification of Autonomous Robots

Xingyu Zhao*, Simos Gerasimou', Radu Calinescu®, Calum Imrie¥, Valentin Robu$ Yand David Flynn!

Abstract — Autonomous robots used in infrastructure inspection, space exploration and other critical missions
operate in highly dynamic environments. As such, they must continually verify their ability to complete the tasks
associated with these missions safely and effectively. Here we present a Bayesian learning framework that enables
this runtime verification of autonomous robots. The framework uses prior knowledge and observations of the verified
robot to learn expected ranges for the occurrence rates of regular and singular (e.g., catastrophic failure) events. Interval
continuous-time Markov models defined using these ranges are then analysed to obtain expected intervals of variation
for system properties such as mission duration and success probability. We apply the framework to an autonomous
robotic mission for underwater infrastructure inspection and repair. The formal proofs and experiments presented
in the paper show that our framework produces results that reflect the uncertainty intrinsic to many real-world systems,
enabling the robust verification of their quantitative properties under parametric uncertainty.

1 Introduction

Mobile robots are increasingly used to perform critical
missions in extreme environments, which are inaccessible
or hazardous to humans*** These missions range from the
inspection and maintenance of offshore wind-turbine mooring
chains and high-voltage cables to nuclear reactor repair and
deep-space exploration>©

Using robots for such missions poses major challenges 2/’
First and foremost, the robots need to operate with high levels
of autonomy, as in these harsh environments their interaction
and communication with human operators is severely
restricted. Additionally, they frequently need to make complex
mission-critical decisions, with errors endangering not just the
robot—itself an expensive asset, but also the important system
or environment being inspected, repaired or explored. Last but
not least, they need to cope with the considerable uncertainty
associated with these missions, which often comprise one-off
tasks or are carried out in settings not encountered before.

Addressing these major challenges is the focus of intense re-
search worldwide. In the UK alone, a recent £44.5M research
programme has tackled technical and certification challenges
associated with the use of robotics and Al in the extreme envi-

ronments encountered in offshore energy (https://orcahub)

org), space exploration (https://www.fairspacehub.org),
nuclear infrastructure (https://rainhub.org.uk), and
management of nuclear waste (https://www.ncnr.org. uk).
This research has initiated a step change in the assurance
and certification of autonomous robots—not least through
the emergence of new concepts such as dynamic assurance®
and self-certification® for robotic systems.
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Dynamic assurance requires a robot to respond to failures,
environmental changes and other disruptions not only by
reconfiguring accordingly,’? but also by producing new
assurance evidence which guarantees that the reconfigured
robot will continue to achieve its mission goals.® Self-certifying
robots must continually verify their health and ability to
complete missions in dynamic, risk-prone environments.® In
line with the “defence in depth” safety engineering paradigm,™
this runtime verification has to be performed independently
of the front-end planning and control engine of the robot.

Despite these advances, current dynamic assurance and
self-certification methods rely on quantitative verification
techniques (e.g., probabilistic’®™® and statistical'* model
checking) that do not handle well the parametric uncertainty
that autonomous robots encounter in extreme environments.
Indeed, quantitative verification operates with stochastic
models that demand single-point estimates of uncertain
parameters such as task execution and failure rates. These
estimates capture neither epistemic nor aleatory parametric
uncertainty. As such, they are affected by arbitrary estima-
tion errors which—because stochastic models are often
nonlinear—can be amplified in the verification process,™ and
may lead to invalid robot reconfiguration decisions, dynamic
assurance and self-certification.

In this paper, we present a robust quantitative verification
framework that employs Bayesian learning techniques to
overcome this limitation. Our framework requires only partial
and limited prior knowledge about the verified robotic system,
and exploits its runtime observations (or lack thereof) to
learn ranges of values for the system parameters. These
parameter ranges are then used to compute the quantitative
properties that underpin the robot’s decision making (e.g.,
probability of mission success, and expected energy usage)
as intervals that—unique to our framework—capture the
parametric uncertainty of the mission. Our framework is
underpinned by probabilistic model checking, a technique
that is broadly used to assess quantitative properties, e.g.,
reliability, performance and energy cost of systems exhibiting
stochastic behaviour. Such systems include autonomous
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robots from numerous domains'®, e.g., mobile service
robots'Z, spacecraft'®, drones'® and robotic swarms2. While
we present a case study involving an autonomous underwater
vehicle (AUV), the generalisability of our approach stems from
the broad adoption of probabilistic model checking for the
modelling and verification of this wide range of autonomous
robots. As such, we anticipate that our results are applicable
to autonomous agents across all these domains.

We start by introducing our robust verification framework,
which comprises Bayesian techniques for learning the
occurrence rates of both singular events (e.g., catastrophic
failures and completion of one-off tasks) and events observed
regularly during system operation. Next, we describe the
use of the framework for an offshore wind turbine inspection
and maintenance robotic mission. Finally, we discuss the
framework in the context of related work, and we suggest
directions for further research.

2 Robust Bayesian verification frame-
work

2.1 Quantitative verification

Quantitative verification is a mathematically based technique
for analysing the correctness, reliability, performance and
other key properties of systems with stochastic behaviour.222
The technique captures this behaviour into Markov models,
formalises the properties of interest as probabilistic temporal
logic formulae over these models, and employs efficient
algorithms for their analysis. Examples of such properties
include the probability of mission failure for an autonomous
robot, and the expected battery energy required to complete
a robotic mission.

In this paper, we focus on the quantitative verification
of continuous-time Markov chains (CMTCs). CTMCs are
Markov models for continuous-time stochastic processes
over countable state spaces comprising (i) a finite set of
states corresponding to real-world states of the system that
are relevant for the analysed properties; and (ii) the rates of
transition between these states. We use the following definition
adapted from the probabilistic model checking literature 222

Definition 1. A continuous-time Markov chain is a tuple
M:(SaSOaR)a (1)

where S is a finite set of states, so € S is the initial state, and
R:SxS—Ris a transition rate matrix such that the probability
that the CTMC will leave state s; € S within t >0 time units is
1—e t2aesven®E0s) ang the probability that the new state
is s;€S\{si} is pij=R(si:5;) | 22, e5\ (511 BASi:5k)-

The range of properties that can be verified using CTMCs
can be extended by annotating the states and transitions with
non-negative quantities called rewards.

Definition 2. A reward structure over a CTMC M = (S, s,
R) is a pair of functions (p,t) such that p: S — R is a state
reward function (a vector), and v: S x .S —Rx is a transition
reward function (a matrix).

CTMCs support the verification of quantitative properties
expressed in continuous stochastic logic (CSL)%® extended
with rewards %=

Definition 3. Given a set of atomic propositions AP, a€ AP,
pe0,1], I CR>q, rteR>o and<e {>,>,<,<}, a CSL formula
® is defined by the grammar:

® = true|a| PAD | =P | Py X @] | Pop [PUL D] | Sy [ @] |
R [I7"] | Roar [C=1] | R [F @] | R[]

Given a CTMC M =(S,so, R) with states labelled with atomic
propositions from AP by a function L:S — 24", and a reward
structure (p,¢) over M, the CSL semantics is defined with a
satisfaction relation |= over the states and paths (i.e., feasible
sequences of successive states) of M 2! The notation s}=®
means “® is satisfied in state s”. For any state s<.S, we have:

o s = true, s = aiff a € L(s), s = @ iff =(s = @), and
S ):q)l/\q)g iff s ):(I)l and S':q)g;

o 5= "Pu,y[ X P iff the probability - that ® holds in the state
following s satisfies xxip (probabilistic next formula);

o s = Puyp[®1 UL @] iff, across all paths starting at s, the
probability = of going through only states where &, holds
until reaching a state where &, holds at a time ¢t € I
satisfies xxip (probabilistic until formula);

o s=5.,[®] iff, having started in state s, the probability « of
M reaching a state where @ holds in the long run satisfies
xx1p (probabilistic steady-state formula);

e the instantaneous (R...[[=!]), cumulative (R..[C<!)),
future-state (Ry-[F'®]) and steady-state (R.-[S]) reward
formulae hold iff, having started in state s, the expected
reward z at time instant ¢, cumulated up to time ¢,
cumulated until reaching a state where & holds, and
achieved at steady state, respectively, satisfies z>r.

Probabilistic model checkers such as PRISM#* and
Storm?® use efficient analysis techniques to compute the
actual probabilities and expected rewards associated with
probabilistic and reward formulae, respectively. The formulae
are then verified by comparing the computed values to the
bounds p and r. Furthermore, the extended CSL syntax
P_+[X®], P—+[®,U®,), R_;[I!], etc. can be used to obtain
these values from the model checkers.

While the transition rates of the CTMCs verified in this
way must be known and constant, advanced quantitative
verification techniques®® support the analysis of CTMCs
whose transition rates are specified as intervals. The
technique has been used to synthesise CTMCs corresponding
to process configurations and system designs that satisfy
quantitative constraints and optimisation criteria,2”2% under
the assumption that these bounded intervals are available.
Here we introduce a Bayesian framework for computing these
intervals in ways that reflect the parametric uncertainty of
real-world systems such as autonomous robots.

2.2 Bayesian learning of CTMC transition rates

Given two states s; and s; of a CTMC such that transitions
from s; to s; are possible and occur with rate A, each transition



from s; to s; is independent of how state s; was reached
(the Markov property). Furthermore, the time spent in state
s; before a transition to s; is modelled by a homogeneous
Poisson process of rate A. Accordingly, the likelihood that ‘data’
collected by observing the CTMC shows n such transitions
occurring within a combined time ¢ spent in state s; is given
by the conditional probability:

I(\) = Pr(data|\) = (AT?" = @

In practice, the rate X is typically unknown, but prior beliefs
about its value are available (e.g., from domain experts or
from past missions performed by the system modelled by the
CTMC) in the form of a probability (density or mass) function
f(A). In this common scenario, the Bayes Theorem can be
used to derive a posterior probability function that combines
the likelihood I(\) and the prior f(\) into a better estimate for

A at time ¢: LA f(N)
f(\|data) = =00 F ()

where the Lebesgue-Stieltjes integral from the denominator

(3)

is introduced to ensure that f(\|data) is a probability function.

We note, we use Lebesgue-Stieltjes integration to cover in a
compact way both continuous and discrete prior distributions
f(N), as these integrals naturally reduce to sums for discrete
distributions. We calculate the posterior estimate for the rate
) at time ¢ as the expectation of (3):

A" =E[A |data] = W,
0

where we use capital letters for random variables and lower
case for their realisations.

(4)

2.3 Interval Bayesian inference for singular

events

In the autonomous-robot missions considered in our paper,
certain events are extremely rare, and treated as unique
from a modelling viewpoint. These events include major
failures (after each of which the system is modified to remove
or mitigate the cause of the failure), and the successful
completion of difficult one-off tasks. Using Bayesian inference
to estimate the CTMC transition rates associated with such
events is challenging because, with no observations of these
events, the posterior estimate is highly sensitive to the choice
of a suitable prior distribution. Furthermore, only limited
domain knowledge is often available to select and justify a
prior distribution for these singular events.

To address this challenge, we develop a Bayesian inference
using partial priors (BIPP) estimator that requires only
limited, partial prior knowledge instead of the complete

prior distribution typically needed for Bayesian inference.

For one-off events, such knowledge is both more likely to
be available and easier to justify. BIPP provides bounded
posterior estimates that are robust in the sense that the
ground truth rate values are within the estimated intervals.

To derive the BIPP estimator, we note that for one-off events
the likelihood (2) becomes

I(\) = Pr(dataj\) == (5)

because n =0. Instead of a prior distribution f()\) (required
to compute the posterior expectation (4)), we assume that
we only have limited partial knowledge consisting of m > 2
confidence bounds on f(\):

P’I"(Ei_l <>\§67):97 (6)
where 1 <i<m, 6; >0, and >_.",6; = 1. The use of such

bounds is a common practice for safety-critical systems. As
an example, the IEC61508 safety standard®® defines safety
integrity levels (SILs) for the critical functions of a system
based on the bounds for their probability of failure on demand
(pfd): pfd between 10~2 and 10~! corresponds to SIL 1, pfd
between 10~ and 10~2 corresponds to SIL 2, etc.; and testing
can be used to estimate the probabilities that a critical function
has different SILs. We note that Pr(A>ey) =Pr(A<e,)=1
and that, when no specific information is available, we can
use ¢y =0 and ¢,,, = +oo.

The partial knowledge encoded by the constraints (6) is
far from a complete prior distribution: an infinite humber of
distributions f(\) satisfy these constraints, and the result
below provides bounds for the estimate rate (4) across these
distributions.

Theorem 1. The set S, of posterior estimate rates @b
computed for all prior distributions f(\) that satisfy (6) has an
infinum )\; and a supremum \,, given by:

A min{ i el (en) (1 =)0 +€i1l(ei—1) w0

V1§i§m.x7;e[0,1]}, 7)

ST L)
Aun { D i l(X)0;
We provide a formal proof of Theorem [1]in Section 4.1
The values )\; and )\, can be computed using numerical
optimisation software packages available, for instance, within
widely used mathematical computing tools like MATLAB
and Maple. For applications where computational resources
are limited or the BIPP estimator is used online with tight
deadlines, we provide closed-form estimator bounds for m=3
(with m=2 as a subcase).

Corollary 1. When m=3, the bounds (7) and (8) satisfy:
61l(61)92

91+l(61)92’
>
A= { e2l(€2)02

V1<i<m.)\i€(ei1,ei]}. (8)

if 02(61762) > 62[(62)761[(61)
91 l €1 l €2
(e)l(e2) ©)

il Otherwise
and
611(61)91+€2l(62)92+ll(l)(l—gl—eg) . 1
l(61)91t £ , Ift<a
A < €1l(€1)01+%l(%)02+€2l(52)(1—91—92) Ifi<t<i (10)
“ l(e1)01 ’ € — — €

61l(€1)(01 +92)+€2[(62)(1791 792)
l(€1)91 )

Corollary 2. Closed-form BIPP bounds for m = 2 can be
obtained by setting e; =€, and 62=0 in (9) and (10).

otherwise
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Fig. 1: Robust Bayesian verification framework. The integration of Bayesian inference using partial priors (BIPP) and
Bayesian inference using imprecise probability with sets of priors (IPSP) with interval continuous-time Markov chain (CMTC)
model checking supports the online robust quantitative verification and reconfiguration of autonomous systems under

parametric uncertainty.

2.4 Interval Bayesian inference for regular

events

For CTMC transitions that correspond to regular events within
the modelled system, we follow the common practice®" of using
a Gamma prior distribution for each uncertain transition rate A:

Boz a—1_—B\
(a—l)!)\ e P

The Gamma distribution is a frequently adopted conjugate
prior distribution for the likelihood (2) and, if the prior knowl-
edge assumes an initial value () for the transition rate, the
parameters « >0 and 8> 0 must satisfy

fN)=TXa,p]= (1)

E(Tva,5]) = 5 =20
B

The posterior value A for the transition rate after observing

n transitions within ¢ time units is then obtained by using the

prior in the expectation (4), as in the following derivation

adapted from classical Bayesian theory 1

(12)

(o) (et )
57 (G ee) (@l te sy
Aty e (S )

f A\nta—le— A(t+ﬂ)d)\ f Anta—leg=AE+8)d\

n+o e A(t+ﬁ) n+oa—1e
()\ + _(t+ﬂ))’ fo (n+a)ante-t

f Anta—leg=AE+8)d\
n+af0 Anta—1o=AE8) 4\ n+a n—i—ﬂ)\(o

—A(t+8)
—(t+8)

dA

Jo At 1eAEH) AN t+8 48
8 t nt© t n
A —= A© —~, (13
t+p +t+61t t+(0) +t—|—t(0)t’ (13)

where ¢(9) = 3. This notation reflects the way in which the pos-
terior rate A(*) is computed as a weighted sum of the mean rate
7 observed over a time period ¢, and of the prior A0 deemed
as trustworthy as a mean rate calculated from observations
over a time period t(*). When #(*) <t (either because we have
low trust in the prior A(?) and thus (©) ~ 0, or because the
system was observed for a time period ¢ that is much longer
than t(?)), the posterior (T3) reduces to the maximum likelihood
estimator, i.e. A¥) ~ 2 In this scenario, the observations fully
dominate the estimator (13), with no contribution from the prior.

The selection of suitable values for the parameters #(©
and A\ of the traditional Bayesian estimator is very
challenging. What constitutes a suitable choice often depends
on unknown attributes of the environment, or several domain
experts may each propose different values for these param-
eters. In line with recent advances in imprecise probabilistic
modelling,*4"%4 we address this challenge by defining a robust
transition rate estimator for Bayesian inference using imprecise
probability with sets of priors (IPSP). The IPSP estimator
uses ranges [t 7] and AV, X©)] (corresponding to the
environmental uncertainty, or to input obtained from multiple
domain experts) for the two parameters instead of point values.

The following theorem quantifies the uncertainty that the
use of parameter ranges for ¢ and A\(9) induces on the
posterior rate (13). This theorem specialises and builds on
generalised Bayesian inference results®* that we adapt for the
estimation of CTMC transition rates.

Theorem 2. Given uncertain prior parameters t©) ¢ [t(0),
1] and A© e [\ X)), the posterior rate \*) from ({3) can
range in the interval \Y) X, where:

Z(O)A(O)-‘rn ifn )\(0)
PO B t= (14)
=) 1@\ 4, ,

o, Otherwise



and (0)X(0)
7(0)3(0 . -
B t *(Ao) +n, if % S)\(O)
)\(t) B TO) ¢ (15)
- t(O)X(“)+n ,
W, OtheI'WIse

We provide a formal proof of Theorem[2in Section

2.5 Robust verification and adaptation

Based on the methods defined earlier, we developed an
end-to-end verification framework for the online computation
of bounded intervals of CTMC properties. The verification
framework integrates our BIPP and IPSP Bayesian interval
estimators with interval CTMC model checking.?®' As shown
in Fig. |1} this involves devising a parametric CTMC model that
captures the structural aspects of the system under verification
through a SYSTEM MODELLER. This activity is typically
performed once at design time, i.e., before the system is put
into operation. By monitoring the system under verification, our
framework enables observing both the occurrence of regular
events and the lack of singular events during times when such
events could have occurred (e.g., a catastrophic failure not

happening when the system performs a dangerous operation).

Our online BIPP ESTIMATOR and IPSP ESTIMATOR use
these observations to calculate expected ranges for the rates
of the monitored events, enabling a MODEL GENERATOR to
continually synthesise up-to-date interval CTMCs that model
the evolving behaviour of the system.

The interval CTMCs, which are synthesised from the
parametric CTMC model, are then continually verified by the
PRISM-PSY MODEL CHECKER,?® to compute value intervals
for key system properties. As shown in Fig.[f]and illustrated
in the next section, these properties range from dependability
(e.g., safety, reliability and availability)*> and performance (e.g.,
response time and throughput) properties to resource use and
system utility. Finally, changes in the value ranges of these
properties may prompt the dynamic reconfiguration of the
system by a CONTROLLER module responsible for ensuring
that the system requirements are satisfied at all times.

3 Results: Robust verification of
robotic mission

3.1 Offshore infrastructure maintenance

We demonstrate how our online robust verification and
reconfiguration framework can support an AUV to execute
a structural health inspection and cleaning mission of the
substructure of an offshore wind farm. Similar scenarios
for AUV use in remote, subsea environments have been
described in other large-scale robotic demonstration projects,
such as the PANDORA EU FP7 project*® Compared
to remotely operated vehicles that must be tethered with
expensive oceanographic surface vessels run by specialised
personnel, AUVs bring important advantages, including
reduced environmental footprint (since no surface vessel
consuming fuel is needed), reduced cognitive fatigue for the

involved personnel, increased frequency of mission execution,
and reduced operational and maintenance cost.

The offshore wind farm comprises multiple floating wind
turbines, with each turbine being a buoyant foundation struc-
ture secured to the sea bed with floating chains tethered to
anchors weighing several tons. Wind farms with floating wind
turbines offer increased wind exploitation (since they can be
installed in deeper waters where winds are stronger and more
consistent), reduced installation costs (since there is no need
to build solid foundations), and reduced impact on the visual
and maritime life (since they are further from the shore).3”

The AUV is deployed to collect data about the condition of
k>1 floating chains to enable the post-mission identification
of problems that could affect the structural integrity of the
asset (floating chain). When the visual inspection of a chain
is hindered due to accumulated biofouling or marine growth,
the AUV can use its on-board high-pressure water jet to clean
the chain and continue with the inspection task.®

The high degrees of aleatoric uncertainty in navigation and
the perception of the marine environment entail that the AUV
might fail to clean a chain. This uncertainty originates from the
dynamic conditions of the underwater medium that includes un-
expected water perturbations coupled with difficulties in scene
understanding due to reduced visibility and the need to operate
close to the floating chains. When this occurs, the AUV can
retry the cleaning task or skip the chain and move to the next.

3.2 Stochastic mission modelling

Fig. [2| shows the parametric CTMC model of the floating chain
inspection and cleaning mission. The AUV inspects the i-th
chain with rate r*sP*t and consumes energy e;,,. The chain
is clean with probability p. and the AUV travels to the next
chain with rate r**2¥°! consuming energy e;, or the chain needs
cleaning with probability 1—p.. When the AUV attempts the
cleaning (x; =1), the task succeeds with chain-dependent rate
rélean causes catastrophic damage to the floating chain or
itself with rate rd*mage or fails with chain-dependent rate 72,
If the cleaning fails, the AUV prepares to retry with known
and fixed rate rP*P2*° requiring energy e,, and it either retries
cleaning (x; =1) or skips the current chain and moves to chain
i+1 (x; =0). After executing the tasks on the k-th chain, the
AUV returns to its base and completes the mission.

Since the AUV can fail to clean the i-th chain with non-
negligible probability and multiple times, this is a regular event
whose transition rate rfi! is modelled using the IPSP estimator
from (7) and (8). In contrast, the AUV is expected to not cause
catastrophic damage but, with extremely low probability, may
do so only once (after which the AUV and/or its mission are
likely to be revised); thus, the corresponding transition rates
rélean gnd rdamage gre modelled using the BIPP estimator
from (14) and (15). The other transition rates, i.e., those
for inspection (ri*sPect) travelling (r**2v¢!) and preparation
(rprerare) - are less influenced by the chain conditions and
therefore assumed to be known, e.g., from previous trials and
missions; hence, we fixed these transition rates.

When cleaning is needed for the i-th chain, the AUV
controller synthesises a plan by determining the control
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Fig. 2: Floating chain continuous-time Markov chain (CMTC) model. CTMC of the floating chain cleaning and inspection

mission, where ¢1, eo, ..

., ex represent the mean energy required to clean chains 1, 2, ..., k, respectively. The rate rf!

corresponds to a regular event and is therefore modelled using Bayesian inference using imprecise probability with sets
of priors (IPSP) from and (15). The rates r¢*" and r43m2&* correspond to singular events and are thus modelled using

Bayesian inference using partial priors (BIPP) from (7) and (8).

Table 1: System requirements for the AUV floating chain inspection and cleaning mission

ID Informal description

Formal specification®

R1 The probability of mission failure must not exceed 5%

R2 The expected energy consumption must not exceed the remaining energy Eies:
R3 Subject to R1 and R2 being met, maximise the number of cleaned chains

P<g 05" damage]
RS [F finish]
find argmax "% z; such that R1A R2

expressed in rewards-extended continuous stochastic logic (see Methods section)

parameter x; €{0,1} for all remaining chains i,i+1,...k so that
the system requirements in Table [1|are satisfied.

3.3 Robust verification results

We demonstrate our solution for robust verification and
adaptation using a mission in which the AUV was deployed
to inspect and, if needed, clean six chains placed in a
hexagonal arrangement (Fig. [3). We used m = 3 and the
BIPP estimator (7) and (8) for the transition rates r¢lcan
and rd*magewhich correspond to singular events. For
rélean we used e = 0.12+1(0,0.12), 6; = 0.10+2(0,0.001),
€2 = 0.904+1(0,0.90), 65 = 0.85 +2(0,0.0085), where U(z,y)
denotes a continuous uniform distribution with = and y
being its minimum and maximum values, respectively. For
rdamage we used e; = 1le-84+U(0,1e-8), 6 =0.88+1(0,0.0088),
€2=1e-T4+U(0,1e-7), 62 =0.10+14(0,0.001). For rf2!!, we used
) =[10+1(0,10)] and A =[0.0163+24(0,0.00163)]. During
the mission execution, the AUV performs the model checking
at every cleaning attempt so that runtime observations are
incorporated into the decision making process entailing also
that the currently synthesised plan is not necessarily used

at subsequent chains. Hence, the AUV only needs to check
system configurations where at least the current chain is to
be cleaned, thus halving the number of configurations to be
checked (since configurations with zz; =0 need not be checked).
If all of these checks that consider z; = 1 fail to satisfy the
requirements from Table [1} then the AUV decides to skip the
current chain and proceed to inspect and clean the next chain.

If a cleaning attempt at chain i failed, the AUV integrates this
observation in (14)(15), and performs model checking to de-
termine whether to retry the cleaning or skip the chain. Since
the AUV has consumed energy for the failed cleaning attempt,
the energy available is reduced accordingly, which in turn can
reduce the number of possible system configurations that can
be employed and need checking. The observation of a failed
attempt reduces the lower bound for the reliability of cleaning
x;, and may result in a violation of the reliability requirement
R1 (Table[f), which may further reduce the number of feasible
configurations. If the AUV fails to clean chain i repeatedly, this
lower bound will continue to decrease, potentially resulting in
the AUV having no feasible configuration, and having to skip
the current chain. Although skipping a chain overall decreases
the risk of a catastrophic failure (as the number of cleaning
attempts is reduced), leaving uncleaned chains will incur
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Fig. 3: Demonstration of autonomous underwater vehicle (AUV) inspection and cleaning mission. a Simulated AUV
mission involving the inspection of six wind farm chains and, if required, their cleaning. i) Start of mission; ii) cleaning chain
3; iili) cleaning final chain. At this point, the AUV cleaned three chains, skipped one, and one chain did not require cleaning.
b Plots of the outcome of the model checking carried out by the AUV at chain 3. Each row shows the configurations against the
requirements. (i-iii) Results during the first attempt at cleaning chain 3. (iv-vi) Results during the second attempt at cleaning.
(vii-ix) Results at the third and successful attempt at cleaning the chain. The configurations highlighted in yellow is the chosen

configuration for the corresponding attempt.

additional cost as a new inspection mission will need to be
launched, e.g., using another AUV or human personnel.

Fig. [3 shows a simulated run of the AUV performing an
inspection and cleaning mission (Fig. [3g). At each chain that
requires cleaning, the AUV decides whether to attempt to clean
or skip the current chain. Fig. [3p provides details of the prob-
abilistic model checking carried out during the inspection and
cleaning of chain 3 (Fig.[3a ii). Overall, the AUV performed mul-
tiple attempts to clean chain 3, succeeding on the third attempt.

The results of the model checking analyses for these

attempts are shown in successive columns in Fig. [3p, while
each row depicts the analysis of one of the requirements from
Table [T} A system configuration is feasible if it satisfies require-
ments R1 — the AUV will not encounter a catastrophic failure
with a probability of at least 0.95, and R2 — the expected en-
ergy consumption does not exceed the remaining AUV energy.
Lastly, if multiple configurations satisfy requirements R1 and
R2, then the winner is the configuration that maximises the
number of chains cleaned. If there is still a tie, the configuration
is chosen randomly from those that clean the most chains.



In the AUV’s first attempt at chain 3 (Fig. [3p (i, ii, iii)), all
the configurations are feasible, so configuration 1 (highlighted,
and corresponding to the highest number of chains cleaned)
is selected. This attempt fails, and a second assessment is
made (Fig. [3p (iv, v, vi)). This time, only system configurations
2-8 are feasible, and as configurations 2, 3, and 5 maximise
R3, a configuration is chosen randomly from this subset (in
this case, configuration 3). This attempt also fails, and on
the third attempt (Fig. [3p (vii, viii, ix)), only configurations 4-8
are feasible, with 5 maximising R3, and the AUV adopts this
configuration and succeeds in cleaning the chain.

In this AUV mission instance, the AUV controller is
concerned with cleaning the maximum number of chains and
ensuring the AUV returns safely. In other variants of our AUV
mission, the system properties from requirements R1 and R2
could also be used to determine a winning configuration in
the event of a tie between multiple feasible configurations. For
example, it might be optimal for the AUV to consume minimal
energy in this scenario. Thus, the energy consumption
from requirement R2 can be used as a metric to choose a
configuration as a tie-breaker.

We also measured the overheads associated with exe-
cuting the online verification process. Figure [4] shows the
computation overheads incurred by the RBV framework for
executing the AUV-based mission. The values comprising
each boxplot have been collected over 10 independent runs.
Each value denotes the time consumed for a single online
robust quantitative verification and reconfiguration step when
the AUV attempts to clean the indicated chain. For instance,
the boxplot associated with the ‘Chain 1’ (‘Chain 2’) label
on the x-axis signifies that the AUV attempts to clean chain
1 (chain 2) and corresponds to the time consumed by the
RBV framework to analyse 64 (32) configurations. Overall,
the time overheads are reasonable for the purpose of this
mission. Since the AUV has more configurations to analyse at
the earlier stages of the mission (e.g., when inspecting chain
1), the results follow the anticipated exponential pattern. The
number of configurations decreases by half each time the
AUV progresses further into the mission and moves to the
next chain. Another interesting observation is that the length
of each boxplot is small, i.e., the lower and upper quartiles
are very close, indicating that the RBV framework showcases
a consistent behaviour in the time taken for its execution.

The consumed time comprises (1) the time required to com-
pute the posterior estimate bounds of the modelled transition
rates, 5l pfail 1 < <k, and rdamase ysing the BIPP and
IPSP estimators; (2) the time required to compute the value
intervals for requirements R1 and R2 using the probabilistic
model checker PRISM- PsY2%; and (3) the time needed to find
the best configuration satisfying requirements R1 and R2, and
maximising requirement R3. Our empirical analysis provided
evidence that the execution of the BIPP and IPSP estimators
and the selection of the best configuration have negligible over-
heads with almost all time incurred by PRISM-PsY. This out-
come is not surprising and is aligned with the results reported
in<® concerning the execution overheads of the model checker.

The simulator used for the AUV mission, developed on top
of the open-source MOOS-IvP middleware,*® and a video
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Fig. 4: Verification time overheads. Time taken by our
robust Bayesian verification framework to execute the online
quantitative verification and reconfiguration step over 10
independent runs when the robot attempts to clean the
indicated chain.

showing the execution of this AUV mission instance are
available at http://github.com/gerasimou/RBV.

4 Discussion & Conclusions

Unlike single-point estimators of Markov model parame-
ters,>*2 our Bayesian framework provides interval estimates
that capture the inherent uncertainty of these parameters,
enabling the robust quantitative verification of systems such as
autonomous robots. Through its ability to exploit prior knowl-
edge, the framework differs fundamentally from, and is superior
to, a recently introduced approach to synthesising intervals for
unknown transition parameters based on the frequentist theory
of simultaneous confidence intervals>2%43  Fyrthermore,
instead of applying the same estimator to all Markov model
transition parameters like existing approaches, our framework
is the first to handle parameters corresponding to singular and
regular events differently. This is an essential distinction, espe-
cially for the former type of parameter, for which the absence
of observations violates a key premise of existing estimators.
Our BIPP estimator avoids this invalid premise, and computes
two-sided bounded estimates for singular CTMC transition
rates—a considerable extension of our preliminary work to
devise one-sided bounded estimates for the singular transition
probabilities of discrete-time Markov chains 44

The proposed Bayesian framework is underpinned by the
theoretical foundations of imprecise probabilities®>=* and Con-
servative Bayesian Inference (CBI),4>* integrated with recent
advances in the verification of interval CTMCs?® In particular,
our BIPP theorems for singular events extend CBI significantly
in several ways. First, BIPP operates in the continuous domain
for a Poisson process, while previous CBI theorems are
applicable to Bernoulli processes in the discrete domain. As
such, BIPP enables the runtime quantitative verification of
interval CTMCs, and thus the analysis of important properties


http://github.com/gerasimou/RBV

that are not captured by discrete-time Markov models. Second,
CBl is one-side (upper) bounded, and therefore only supports
the analysis of undesirable singular events (e.g., catastrophic
failures). In contrast, BIPP provides two-sided bounded
estimates, therefore also enabling the analysis of “positive”
singular events (e.g., the completion of difficult one-off tasks).
Finally, BIPP can operate with any arbitrary number of
confidence bounds as priors, which greatly increases the
flexibility of exploiting different types of prior knowledge.

As illustrated by its application to an AUV infrastructure main-
tenance mission, our robust quantitative verification framework
removes the need for precise prior beliefs, which are typically
unavailable in many real-world verification tasks that require
Bayesian inference. Instead, the framework enables the ex-
ploitation of Bayesian combinations of partial or imperfect prior
knowledge, which it uses to derive informed estimation errors
(i-e., intervals) for the predicted model parameters. Combined
with existing techniques for obtaining this prior knowledge,
e.g., the Delphi method and its variants*® or reference class
forecasting,*® the framework increases the trustworthiness
of Bayesian inference in highly uncertain scenarios such as
those encountered in the verification of autonomous robots.

Based on recent survey papers®>2 that provide in-depth
discussions on the challenges and opportunities in the field
of autonomous robot verification, it has become evident
that a common taxonomy emerges, primarily revolving
around two key dimensions. The first dimension centres
on the specification of properties under verification, which
includes various types of temporal logic languages®® The
second dimension pertains to how system behaviours are
modeled/structured. In this regard, formal models such as
Belief Desire Intention, Petri Nets, and finite state machines,
along with their diverse extensions, have emerged as popular
approaches to capturing the intricate dynamics of autonomous
systems. Our approach falls within the category of methods
utilising CSL and CTMCs for the verification of robots.
However, unlike the existing methods from this category>>24,
we introduced treatments of the model parameters uncertainty
via robust Bayesian learning methods, and integrated them
with recent research on interval CMTC model checking.

Another important approach for verifying the behaviour of au-
tonomous agents under uncertainty uses hidden Markov mod-
els (HMMs).>>7 HMM-based verification supports the anal-
ysis of stochastic systems whose true state is not observable,
and can only be estimated (with aleatoric uncertainty given by
a predefined probability distribution) through monitoring a sepa-
rate process whose observable state depends on the unknown
state of the system. In contrast, our verification framework sup-
ports the analysis of autonomous agents whose true state is
observable but for which the rates of transition between these
known states are affected by epistemic uncertainty and need
to be learnt from system observations (as shown in Figure ).
As such, HMM-based verification and our robust verification
framework differ substantially by tackling different types of au-
tonomous agent uncertainty. Because autonomous agents
may be affected by both types of uncertainty, the comple-
mentarity of the two verification approaches can actually be
leveraged by using our BIPP and IPSP Bayesian estimators in

conjunction with HMM-based verification, i.e., to learn the tran-
sition rates associated with continuous-time HMMs that model
the behaviour of an autonomous agent. Nevertheless, achiev-
ing this integration will first require the development of generic
continuous-time HMM verification techniques since, to the best
of our knowledge, only verification techniques and tools for the
verification of discrete-time HMMs are currently available.

Although our method demonstrates promising potential, it
is not without limitations. One limitation is scalability—as the
complexity of the robot’s behaviour and the environment grow,
the number of unknown parameters to be estimated at runtime
may increase, leading to increased computational overheads
for our Bayesian estimators. Additionally, the method requires
a certain level of expertise to construct the underlying CTMC
model structure. This demands understanding both the
robot’s dynamics and the environment in order to model them
as a CTMC, making the approach less accessible to those
without specialised knowledge. Last but not least, a challenge
inherent to all Bayesian methods involves the acquisition of
appropriate priors. While our robust Bayesian estimators
mitigate this issue by eliminating the need for complete and
precise prior knowledge, establishing the required partial
and vague priors can still pose challenges. These limitations
suggest important areas for future work.

5 Methods

5.1

To prove Theorem [1, we require the following preliminary
results.

BIPP estimator proofs.

Lemma 1. Ifi(-) is the likelihood function defined in (5), then
g:(0,00) =R, g(w)=w-1"*(w) is a concave function.

Proof. Since g(w)=w-(—22) and ¢ >0, the second derivative
of g satisfies

d’q d nw 1 1

_ | —_—— | =—— 1

dw? dw{ t t} wt<0 (16)
Thus, g(w) is concave. O

Proposition 1. With the notation from Theorem([1} there exist
m values A\ € (eg,€1], A2 € (e1,€2], -+, A € (€m—1,€m] SUCh
that sup S, is the posterior estimate (4) obtained by using as
prior the m-point discrete distribution with probability mass
f()\l) = PT()\:)\z) =0; fori= 1,2,...m.

Proof. Since f(\) =0 for A ¢ [eo,en], the Lebesgue-Stielties
integration from the objective function (4) can be rewritten as:

5oL A FO)AA
E(A |data) = =2
BTNV

(17)



The first mean value theorem for integrals (e.g. [58, p. 249])
ensures that, for every i = 1,2, ..., m, there are points
AisA; € [€;-1,€;] such that:

[ ivioar=iog [ som=ioos 18)
[ N Oa=xi00 [ Fim=xiogs (19

or, after simple algebraic manipulations of the previous results,

()
NN

E[Z(A) |€1'_1 §A§ez]
=E[A-I(A) |ei1 <A<¢]]

Using the shorthand notation w=1(\) for the likelihood function
(hence w > 0), we define g: (0,00) = R, g(w)
According to Lemmal[] g()
we have:

is a concave function, and thus

NN,

E[A-I(A)€i-1 <A<ei]
E[W- 17X (W) |e;_1 <171 W) <]
Elg(W)]ei-1 <I7H (W) <e/]
g(E[W|ez 1<~ 1 <el)
EW |1 <UTH (W) <e):

ITHEW o1 <ITHW) <¢))
E[I(A)]ei—1 <A<e]-I7HE[I(A) | e—1 <A<e])

()11 IN)
Al

IN

(22)

A
Ai), (23)
where the inequality step is obtained by applying Jensen’s
inequality.4>/>2

We can now use (18), and to establish an upper

bound for the objective function (17):

N8 SN
E(A |data) = == <= (24)
I8 SIOW6;
i=1 i=1

This upper bound is attained by selecting an m-point discrete
distribution f,(\) with probability mass 9 at A=\, for
i=1,2,...,m (since substituting f(-) from (17) with this f,(-)
yields the rhs result of (24)). As such, maxmsmg this bound
reduces to an optimisation problem in the m-dimensional
space of ()\1,)\2,...,>\m) S (60,61] X (61,62] X e X (em_l,em]. This
optimisation problem can be solved numerically, yielding a
supremum (rather than a maximum) for S, in the case when
the optimised prior distribution has points located at A\; =¢; 4
fori=1,2,....m. O

Proposition 2. With the notation from Theorem(d] there exist
m values x1,xs,....xm €[0,1] such that infS), is the posterior es-
timate (4) obtained by using as prior the (m-1)-point discrete
distribution with probability mass f(ey) = Pr(A =€) = x161,
f(EZ) = PT’()\ = 61') = (1 712)91 +iL’i+19i+1 for 1 <i<m, and
flem)=Pr(A=¢pn)=1—2m)0mn.

=w- 17 (w).

Proof. We reuse the reasoning steps from Proposition |1|up to
inequality (22), which we replace with the following alternative
inequality derived from the Converse Jensen’s Inequality©!
and the fact that g(w) is a concave function (cf. Lemmal(i):

=E[g(W)|ei—1 <I"' (W) <ej]

> l(q,l)—E[W | €i—1 Sl_l(W) Sei}

- I(€i—1)—1(es)

E[W |e;i_1 <I7' (W) <ei]—l(e:)
o)1) g(l(€i-1))

_Me €; Me €;
i) —l(e) l( Z)+l(6i_1)—l(ei) ic1l(€i—1)

We can now establish a lower bound for (17):

Ail(N)

g(le:))

+

SN0

E(A|data) = =~
> 1)

i=1

L [ Ueim1)—1(A) UXi)=U(es)
2(@7—1@@“@‘)* e n=1(es)

€i—1l(5i—1)>9i
> i=

where z; is defined as:

oo ) —l(e)
! l(éi_l)—l(q’)

The result is essentially in the same form as the result
obtained by using a 2m-point distribution in which, for each
interval [e;—1,¢;], there are two points located at A=¢;_; and
A =¢; and the probability mass associated with these points
is x;0; and (1—x;)0; respectively. Intuitively, z; is the ratio of
splitting the probability mass 6; between the two points since,
according to (28), z; €[0,1].

Furthermore, the points on the boundaries of two succes-
sive intervals are overlapping, which effectively reduces the
number of points from 2m to m+1. Expanding yields an
(m+1)-point discrete distribution f;(\) with probability mass
fl(Eo) =104, fl(ei) = (1 71’1)07 +Ii+10i+1 for 1 <i<m and
fi(em)=(1—2,)0,,. As such, minimising reduces to an
m-dimensional optimisation problem in xy,xs,...,z,,, which
can be solved numerically given other model parameters.
Finally, since (6) requires that €;_1 <\; <e¢;, we have 0<x; <1,
and thus the posterior estimate is an infimum (rather than a
minimum) of S, when the solution of the optimisation problem
corresponds to a combination of x1, s, ..., x,, values that
includes one or more values of 1. O

(28)

We can now prove the main theoretical result from Section 1.2.
In the supplementary material, we use this result to prove
Corollaries {land
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Proof of Theorem [1} Propositions [1] and [2] imply that the
set of posterior estimates A over all priors that satisfy the
constraints (6) has:

1. the infinum ), from (7), obtained by using the prior f())
from Proposition [2in (4);

2. the supremum ), from (8), obtained by using the prior
f(X) from Proposition []in ().
O

5.2

A formal proof for the results from and is provided
below.

IPSP estimator proofs.

Proof of Theorem 2, To find the extrema for the posterior rate
A, we first differentiate (T3) with respect to A(©:

()

As t©) >0 and ¢ >0, this derivative is always positive, so

d
d\©)

+(0)
O

0) 1 (0)
AV = min M (29)
N t(U)e&(O)E(O)] t(O) +t
and o
< +tO\
/\(t) = max A 4 (30)
t© e[t 7] t(0) ¢

We now differentiate the quantity that needs to be minimised
in (29) with respect to t(:

d (tOX)4n

OGO 1) OV )1 AOpp

dt© \ 10 4¢ (t© +¢)2

As this derivative is non-positive for A”) € (0,] and positive
for A” > 2 the minimum from (29) is attained for 1 = 7
in the former case, and for ° = ¢ in the latter case, which
yields the result from (14). Similarly, the derivative of the
quantity to maximise in (30), i.e.,

is non-positive for A0 ¢ (0,2] and positive for A0 2, so
the maximum from is attained for t° =¢® in the former
case, and for 0 =1 in the latter case, which yields the result

from and completes the proof. O

X(O)t—n

(O 12

10X 4y
) 4-¢

d
dt©)

5.3 BIPP estimator evaluation.

Fig. [5| shows the results of experiments we carried out
to evaluate the BIPP estimator in scenarios with m = 3

(Figs. and m = 2 (Fig. confidence bounds by
varying the characteristics of the partial prior knowledge. For

(tO) +¢)2

?

11

m = 3, the upper bound computed by the estimator exhibits
a three-stage behaviour as the time over which no singular
event occurs increases. These stages correspond to the three
A, regions from (10). They start with a steep A, decrease for
t< é in stage 1, followed by a slower )\, decreasing trend for
é <t< i in stage 2, and approaching the asymptotic value

"1“0;7%2) as the mission progresses through stage 3. Similarly,

the lower bound \; demonstrates a two-stage behaviour, as
expected given its two-part definition (9), with the overall value
approaching 0 as the mission continues and no singular event
modelled by this estimator (e.g., a catastrophic failure) occurs.

Fig. [oa| shows the behaviour of the estimator for different
0, values and fixed 8-, €; and e, values. For higher 6, values,
more probability mass is allocated to the confidence bound
(e0,€1], yielding a steeper decrease in the upper bound A, and
a lower )\, value at the end of the mission. The lower bound
A, presents limited variability across the different 6, values,
becoming almost constant and close to 0 as 6, increases.

A similar decreasing pattern is observed in Fig. 5B} which
depicts the results of experiments with 6,,e; and e, fixed, and
6, variable. The upper bound A, in the long-term is larger for
higher 6, values, resulting in a wider posterior estimate bound
as \, converges towards its theoretical asymptotic value.

Allocating the same probability mass to the confidence
bounds, i.e., #; =6, =0.3 and changing the prior knowledge
bounds ¢; and e, affects greatly the behaviour of the BIPP
estimator (Fig. [5c). When ¢ and e, have relatively high
values compared to the duration of the mission (e.g., see the
first three plots in Fig [5c), the upper bound A, of the BIPP
estimator rapidly converges to its asymptotic value, leaving no
room for subsequent improvement as the mission progresses.
Similarly, the earlier the triggering point for switching between
the two parts of the lower bound ), calculation (9), the earlier
A reaches a plateau close to 0.

Finally, Fig. [5d shows experimental results for the special
scenario comprising only m = 2 confidence bounds. In this
scenario, replacing 62 = 0 in (9) as required by Corollary
gives a constant lower bound )\; =0 irrespective of the other
BIPP estimator parameters. As expected, the upper bound )\,
demonstrates a twofold behaviour, featuring a rapid decrease
until t= ﬁ followed by a steady state behaviour where A\, = -

5.4 IPSP estimator evaluation.

Fig. [6] shows the results of experiments we performed to
analyse the behaviour of the IPSP estimator in scenarios
with varying ranges for the prior knowledge [t©,#(?)] and
A(©,X©]. A general observation is that the posterior rate

intervals [A(®), X(t)] become narrower as the mission pro-
gresses, irrespective of the level of trust assigned to the prior
knowledge, i.e., across all columns of plots (which correspond
to different [t(*) #(*)] intervals) from Fig. |6al Nevertheless, this
trust level affects how the estimator incorporates observations
into the calculation of the posterior interval. When the trust
in the prior knowledge is weak (in the plots from the leftmost
columns of Fig. [6a), the impact of the prior knowledge on the
posterior estimation is low, and the IPSP calculation is heavily
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Fig. 5. Experimental analysis of the Bayesian inference using partial priors (BIPP) estimator. Systematic experimental
analysis of the BIPP estimator showing the bounds ), and ), of the posterior estimates for the occurrence probability of
singular events for the duration of a mission. Each plot shows the effect of different partial prior knowledge encoded in (6)
on the calculation of the lower (7) and upper (8) posterior estimate bounds. The red circles indicate the time points when
the different formulae for the lower and upper bounds in (@) and (10), respectively, become active.
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carried out for [¢t”),#?)] = [1000,1000] and included both narrow and wide [A” ,A*] intervals, which are shown in blue dotted lines (----)
and green dashed lines (—— —), respectively. In all experiments, the unknown actual rate A was in the prior interval [\ X(©)].

Fig. 6: Experimental analysis of the Bayesian inference using imprecise probability with sets of priors (IPSP) estimator.
Systematic experimental analysis of the IPSP estimator showing the bounded posterior estimators for regular events.

influenced by the observations, resulting in a narrow interval. of the prior knowledge to the posterior estimation becomes
In contrast, when the trust in the prior knowledge is stronger higher, and the IPSP estimator produces a wider interval.

(in the plots from the rightmost columns), the contribution In the experiments from the first row of plots in Fig.[F the
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(unknown) actual rate A = 3 belongs to the prior knowledge
interval \?, X©]. As a result, the posterior rate interval
A X®] progressively becomes narrower, approximating X
with high accuracy. As expected, the narrower prior knowledge
(blue dotted line) produces a narrower posterior rate interval
than the wider and more conservative prior knowledge (green
dashed line).

When the prior knowledge interval [A‘”) X(©)] overestimates
or underestimates the actual rate \ (second and third rows
of plots from Fig. respectively), the ability of IPSP to adapt
its estimations to reflect the observations heavily depends
on the characteristics of the sets of priors. For example, if
the width of the prior knowledge [\ X(©] is close to X and
t©) < t, then IPSP more easily approaches )\, as shown
by the narrow prior knowledge (blue dotted line) in Fig [62]
for [t 0] € {[5,15],[75,125],[750,1250]}. In contrast, wider
narrow prior knowledge (green dashed line) combined with
higher levels of trust in the prior, e.g., [t(*),£)] € {[1500,2500]},
entails that more observations are needed for the posterior
rate to approach the actual rate X\. When the actual rate is, in
addition, nonstationary, change-point detection methods can
be employed to identify these changes®2©3 and recalibrate
the IPSP estimator. Finally, Fig. [b] shows the behaviour of
IPSP for different actual rate \ values, i.e., A< {0.03,0.3,3,30}.
As )\ increases, more observations are produced in the same
time period, resulting in a smoother and narrower posterior
bound estimate.

Data availability

The data supporting the RBV findings and a video
of the robotic mission in simulation are available
athttps://gerasimou.github.io/RBV.

Code availability
All code developed in this project is freely available
athttp://github. com/gerasimou/RBV.
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Supplementary Notes 1: Introduction

This supplementary material document includes:

e The proofs to Corollary 1 and Corollary 2 from Section 2.3 of the main paper.
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e Details of the experimental settings for the offshore infrastructure maintenance case study from Section 3 of

the main paper.

Supplementary Methods 1: Corollary Proofs

Corollary 1. When m = 3, the bounds (6) and (7) in Theorem 1 of the main paper satisfy:

e [Pl v .
B Fi(e2)03 otherwise
and
B
Ay < elz(el)01+%l<%3?:14)r;f1(62)(1_91_92)7 i é e i o
€1l(e1)(01462)+eal(e2)(1—01—62) I

l(e1)01 )
Proof. When m = 3, Eq. (7) of Theorem 1 says, there is a supremum A, ;,=3:

)\1l()\1)91 + )\2l(/\2)92 + )\3[(/\3)(1 — 60 — 92)

Auym=3 = max (S3)

{0< A1 <e1<Aa<ea<Az3<+o0} l()\l)gl + l()\g)gg + l()\g)(l — 91 — 92)

Similarly, Eq. (6) of Theorem 1 shows, when m = 3, there is an infimum X; ,,=3:

Z [611(61)(1 — IEz)gl —+ ei_ll(ei_l)xﬂi]

Nm=3 = min =13 (S4)

{0<e,;<1,vie[1..3]} [1(e:)(1 — 24)0; + 1(€5—1)x:0;]
1=1..3

where g = 0 and €3 = 400 (and thus I(eg) =1, lim I(e3) =0and lim ezl(ez) =0).

ez3—+o0 €3 ——+00



First, we prove the result of (S2). By taking the partial derivative of the objective function in (S3) w.r.t. Ay,
we know the derivative is always positive, irrespective of the values Ay and A3 take in their respective ranges, as
shown below (note 0 < A1 < €1 < Ay <€ < A3 < +00):

a>\1[(A1)91+>\2l()\2)92+>\3l()\3)(1—91 —02)
l()\l)91+l()\2)92+l()\3)(1791792)

o\
e’)‘ltﬁl [e’Altﬂl + eikztgg (1 — ()\1 — )\Q)t) + 67/\3t(1 —0; — 92)(1 — ()\1 — Ag)t)}
(B_Altel + €_>‘2t92 + 6_)‘3t(1 — 6 — 92))2

>0 (S5)

This implies that the maximum point lies in the hyperplane of Ay = ¢;. Thus, we substitute A; = ¢; into (S3) and
reduce the problem to:

61l(61)91 + /\21()\2)92 + )\3[()\3)(1 -0, — 92)

)\u m=3 — ma S6
m=3 {€1<)\2S62<)§\3<+OO} l(el)ﬁl + l()\g)oz + l(/\g)(l — 0] — 02) ( )
l(€1)01 + Aal(A2)b2 + A3l(A3)(1 — 61 — 6
< max e1l(e1)0h + Aal(A2)02 + Asl(A3)( 1—062) (S7)
{€1<)\2S62<)\3<+OO} l(€1)91
61l(61)91+62l(62)92+%l(%)(1701702) 1
1(€1)01 t< €
< 61l(€1)91+%l(%)02+62[(62)(1791792) 1 < ¢ < 1 (88)
B R
€1t(€1)(U1+02)F€ai(€2)(1—01—02 1
l(€1)01 t> €
where the last step is due to the fact that the function #l(x) is unimodal over [0, 1] with a maximum point at z = 7.
Thus, the last step says:
e When t < é (i.e. 2 < 1): the function A3l(A3) can reach its maximum at A3 = 1 in the range (e2,+00);

While, since Ay € (€1, €s], the function Apl(\2) cannot reach Ao = 1

75 80 we set Ay = €2 to maximise the
objective function.

1
t

€1, €2]; While, since Ag € (e, +00], the function A3l(\g) cannot reach As = 1, so we set A3 = €2 to maximise
t
the objective function.

o When é <t< é (ie. €1 < % < €9): the function A2l(A3) can attain its maximum at Ay = 7 in the range

e Whent > i (i.e. + < e1) both the functions Azl(A3) A2l(A2) take the left endpoints in their range to maximise
the objective function, so we set A3 = €5 and Ay = €.

Substitute the values of Ay and A3 into the objective function in those three cases, we obtain the results of (52).

Now we prove the result of (S1). If we denote the objective function in (S4) as a fraction W, then
1)12)‘1:3)

take its partial derivative w.r.t. xs:

Nu(zi,x2,23)
O Delorianrs) _ Le2)(1 =01 — 02)[((1 — 21)01 + 2202) (€2 — €1)l(e1) + e2161]
= >0 (S9)
O De(x1, 22, 3)?

Thus to minimise the objective function, we set x3 = 0. Then we take its partial derivative w.r.t. xy:

Nu(zq,22,0)
ODetrr0) _ —ti[erl(e1) De(a1,22,0) + (1 — (1)) Nu(wr, 22,0)] _ o ($10)
0x1 De(xq,x9,0)?

Thus to minimise the objective function, we set 1 = 1. Now we take its partial derivative w.r.t. xo:

Nu(l,z2,0)
O Belia0) _ 02[02(e1 — €2)l(€1)l(e2) + O1€e1l(e1) — O1€eal(e€2)] (S11)
0zo De(1,x2,0)2

whose sign is determined by other model parameters. Thus, we set @2 = 1o, (¢, —es)i(e1)i(ea)+01e11(e1)—01 eal(e2) <0 Where
15 is an indicator function — it equals 1 when predicate S is true, and 0 otherwise.
Nu(zy,x2,3)

Delnr za.zs)” W€ obtain two cases

Substitute 1 = 1,73 = 0 and T2 = 1o, (c, —e;)i(e1)i(e2)+01€11(e1) 1 e2l(es)<0 INLO
in (S1).

O
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Corollary 2. The closed-form BIPP bounds for m = 2 can be obtained respectively by setting e; = €; and 65 =0
in the results (S1) and (S2).

Proof. When m =2, Eq. (7) of Theorem 1 becomes the supremum A, =2 such that (note, 6 =1 — 67):

A1l(A1)01 + A2l(A2)(1 —61)

Auym=2 = ma S12
m=2 {0§/\1§e1<>§2<+oo} l()\l)tgl + l(/\Q)(l — 91) ( )
Similarly, Eq. (6) of Theorem 1 becomes the infimum A; ,,—o:
\ _ min eol(€eo)x161 + erl(e)(1 — 21)01 + exl(er)w2(1 — 01) + e2l(e2)(1 — 22)(1 — 6y) (S13)
lm=2 {0<27,<1,0<22<1} 1(60)33101 —|—l(€1)(1 —$1)91 —|—l(€1)l‘2(1 —01)—|—l(€2)(1 —.132)(1 —01)
where €g = 0 and €5 = +00.
First, we prove the bound ), ,,—> satisfies:
611(61)91-&-%[(%)(1—01) 1
Auym=2 < { G b<g (S14)
’ £ t> L
01 - €

for which we proceed in two steps:
1. We show the optimised point in the two dimensional space of A; and Ay must lie in the plane of A\; = ¢;.
2. In the plane of \; = €1, a closed-form expression can be derived from the monotonicity analysis of As.

By taking the partial derivative of the objective function in (S12) w.r.t. A1, we know the derivative is always positive,
irrespective of the value take A2 in its respective range, as shown in (S15) below (note, 0 < A < €1 < Ag < 400):

e Mt e N2t(1_
8A167A1121123A2t(1£101)01) _ @_/\1t91 [e_)qt@l + e—)\zt(l — 91)(1 — ()\1 — )\Q)t)] <0 (815)
o\ B (e M10; + e—22t(1 — 6;))2

This implies that the maximum point lies in the plane of Ay = ¢;. Now we reduce the optimisation problem from a
two-dimensional space to the one-dimensional space of Ag. Thus, by substituting A; = €1 in to the r.h.s. of (S12),
we have:

611(61)91 + )\2[()\2)(1 — 91)
Aum=2 < max
=2 esal (en)fr +1(A2) (1= 6y)
< max 611(61)91 + )\2[()\2)(1 — 91)
{Aa>er} 1(61)91

61[(61)91+%l(%)(1—91) t < L

< 1(e1)01 €1 (S16)
&+ t>1
1 - €

where the last step of (S16) is because of the monotonicity analysis of the term Asl(A2) as follows. Depends on the
the observable ¢:

e When ¢; < %, A2l(A2) attains its maximum at the critical point Ay = %, in the range Ay > €;. Thus, we

substitute A2 = 1 and obtain the first case in result (S16).

e When ¢; > %, in the range Ay > €1, we know the supremum of A2l(\3) is attained at the boundary point

A2 = €1 . Thus, we substitute Ao = €; and obtain the second case in result (516).

Second, we prove the infimum );,,— = 0 with the optimal point at z; = 1,25 = 0. Since [(0) = 1,
lim I(ez) =0and lim egl(ez) =0, (S13) can be rewritten as:
€2 ——+00 €2 ——+00
. 61[(61)(1 — x1)91 + 611(61)1‘2(1 — 91)
min
{0<z1<1,0<zo<1} X101 + l(€1)(1 — .’131)01 + l(€1)$2(1 — 91)

(S17)

)\l,m:2 =

20



The partial derivative of the objective function in (S17) w.r.t. xs is:

61l(El)(1—I1)91+61l(€1)$2(1—91)

AN Lo — x?l—(ef))e(ll— j;))lilj; g O (S18)
Thus we set 22 = 0 in (S17) to reduce the problem to:
Mm=2 = {Ogn;ilrél} 361;111—5-6}()6(11)(196—1)96011)91 (519)
The partial derivative of the objective function in (S19) w.r.t. z; is:
UG _ —el(er) <0 ($20)
0rq [z1 4+ (1 — 21)l(e1)]?

Thus we set x1 = 1 in (S19), and obtain \;,,=2 = 0. Note, the result of 0 is attainable meaning we cannot find a
lower bound that bigger than 0 for the given optimisation problem.

Finally, substitute ez = €; and 62 = 0 in the results (S2) and (S1), we obtain the results of (S14) and 0 which
are the closed-form BIPP bounds for m = 2.
O

Supplementary Methods 2: Offshore Infrastructure Maintenance Ex-
periments

Simulation Platform

AUV
.Chain to be inspected
.Cham skipped
Chain currently being cleaned
. No cleaning needed

Chain cleaned

Catastrophic failure

Figure 1: Illustration of our robust Bayesian verification framework for the structural health inspection and cleaning mission using an autonomous
underwater vehicle (AUV) at the point when the AUV inspects the final floating chain.

In Section 2 of the main paper, we demonstrate the application of our robust Bayesian verification framework
using a case study that involves an autonomous underwater vehicle (AUV) executing a structural health inspection
and cleaning mission of the substructure of an offshore wind farm. The offshore wind farm consists of multiple
floating wind turbines. Each turbine is a buoyant foundation structure secured to the sea bed with floating chains
tethered to anchors. The AUV is deployed to collect data about the condition of the floating chains to enable the
post-mission identification of problems that could affect the structural integrity of the chains. Figure 1 shows the
AUV during the inspection of the last floating chain.
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Figure 2: High-level MOOS-IvP architecture with the RBV framework implementation

The AUV-based mission is built on top of the open-source framework MOOS-IvP!, a widely used platform for
the implementation of autonomous applications with AUVs. When used for the execution of oceanic missions,
MOOS-IvP is deployed on the payload computer of an AUV, facilitating the decoupling of the vehicle’s autonomy
from the navigation and control system running on the main AUV computer [1].

An AUV-based system leveraging MOOS-IvP is structured as a community of independent applications running
in parallel that communicate via a MOOS database (MOOSDB) using a publish-subscribe architecture. Figure 2
shows the high-level architecture of MOOS-IvP. Applications publish messages in the form of key-value pairs with
specified frequencies, sharing information about AUV components that an application monitors. Interested listening
applications can use the keys to subscribe to messages and receive a notification when an update of that message
becomes available.

The autonomous operation in MOOV-IvP is instrumented through a collection of behaviours, i.e., combinations
of boolean logic constraints and piecewise-linear utility functions parametrised, for example, with parameters of
the navigation and control system such as heading, speed or depth. During mission execution, the IvP Helm,
the decision-making component of MOOS-IvP, periodically collects and reconciles the instantiated behaviours. If
multiple behaviours are active simultaneously, the IvP Helm executes Interval Programming (IvP) multi-objective
optimisation to determine the optimal action, i.e., an optimal point in the decision space defined by the constraints
and utility functions. This optimal action is expressed as a set of key—value pairs and is published to the MOOSDB
so that interested (subscribing) applications can receive this update and act upon it.

To realise the AUV-based floating chain inspection and maintenance mission, we extended the MOOS-IvP
framework and developed a new MOOS application (called RBV in Figure 2) that implements the overall mission
scenario and controls the mission execution. In particular, the RBV application employs the built-in behaviours
MOOS-IvP (e.g., waypoint and station keep) to model the AUV mission and leverages the starting and ending con-
dition of these behaviours to instrument the decision-making via the IvP Helm. Furthermore, the RBV application
provides several configuration parameters that enable the execution of custom experiments. For instance, users can
define the probabilities and rates characterising the behaviour of each chain (i.e., specialising the continuous-time
Markov chain — CTMC, model in the main paper), thus, affecting the UAV behaviour. Using a seed as a configura-
tion parameter enables to reduce the non-determinism of the simulator, thus enhancing the reproducibility of the
experiments and the robustness of the results obtained.

The open-source RBV source code, the full experimental results, additional information about RBV, including a
video of the floating chain inspection and maintenance mission, are available at https://github.com/gerasimou/
RBV.

Experimental Methodology

We evaluated the capabilities of our RBV framework by performing a wide range of experiments that assess both
the decision support offered by the framework and its overheads. Accordingly, we instrumented the simulation
platform described in Section with the implemented RBV framework (main paper, Figure 1) and realised the
AUV-driven structural health inspection and cleaning mission presented in Section 2 of the main paper. Given the
parametric CTMC model of the mission (main paper, Figure 2), we consider as unknown parameters the chain-

dependent transition rate for cleaning the i-th chain (rflean), and the mission-dependent transition rates for causing

Thttp://www.moos-ivp.org
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Figure 3: Computed value intervals for the reliability requirement R1, the probability that the AUV will not encounter a catastrophic failure
during its mission (top) and energy requirement R2, the expected energy consumption (bottom), over successive attempts for the same AUV
configuration. After a failed attempt, each new attempt for the same chain and AUV configuration results in a wider interval for the key system
requirements R1 and R2.

catastrophic damage to a floating chain or itself (r42™m28¢) and for failing to clean (rfi).2

We assemble the interval CTMC model using the BIPP and IPSP estimators to learn these unknown model
parameters. In particular, we use the BIPP estimator to quantify the rate values associated with the singular
events of cleaning the i-th chain (r¢1°*") and encountering a catastrophic failure (rd2m2¢). The former corresponds
to successfully completing a difficult one-off task, and the latter models a major failure. Since the AUV may
try multiple times to clean a particular chain, we model the corresponding transition rate (rf) using the IPSP

estimator, which is suitable for events observed regularly during system operation.

Results

We have already presented how our RBV framework supports the runtime verification of mission-critical autonomous
robots for a typical scenario of the AUV-based offshore wind-turbine inspection and maintenance mission (main
paper, Figure 3). We also measured the overheads associated with executing the online verification process (main
paper, Figure 4). Furthermore, we systematically analysed the operation of both BIPP and IPSP estimators in
several scenarios with varying levels of partial prior knowledge (main paper, Figures 5 and 6).

In this section, we present additional results for the end-to-end application of the RBV framework, focusing on
the AUV behaviour over multiple failed attempts to clean a specific chain. Figure 3 shows the verification results
for requirements R1 — quantifying the probability of the mission completing successfully (top) and R2 — quantifying
the expected energy consumption of the AUV (bottom) across successive attempts for the same AUV configuration.
In each of these plots and irrespective of the system property measured, the computed value intervals become
wider as the number of failed AUV attempts to clean the chain increases. For instance, consider requirement R1
and configuration 1 (shown on the top left in Figure 3), which shows a small increase in the reliability interval
for the three initial attempts to clean the chain. Despite the interval becoming wider, the reliability threshold
of 0.95 is satisfied; thus, this configuration is feasible and is included in the candidates set for further analysis
using requirement R3 — selecting the configuration that maximises the number of chains cleaned. In contrast, the
computed reliability interval for the fourth attempt violates the reliability threshold; thus, this configuration is

2Since the floating chains are spatially located in the same area, we model the failure rate 71! as a homogeneous parameter affecting

all chains of the mission similarly. Nevertheless, our RBV framework can be easily adapted to support modelling an individual transition
rate for failing to clean (rf?il) each i-th chain.



infeasible. No valid configuration exists in the fourth attempt, and the AUV decides to skip the chain and move to
the next.

A similar pattern of wider value intervals is also observed for the energy consumption property (R2). In this
case, the energy threshold decreases for each new attempt as the AUV has consumed energy trying to clean the
chain in the previous attempts. Consequently, this requirement is more restrictive and leads to excluding further
configurations; see, for instance, the violated energy threshold in attempt 3 for configurations 4 and 9.

The wider intervals over each successive failed attempt correspond to the increased uncertainty concerning the
AUV’s operation and its capacity to fulfil the mission successfully. The rationale underpinning this behaviour is
that since both transition rates r¢1°2 and rdamase employ the BIPP estimator, the posterior estimate bounds for
both transition rates are wider and converge towards their theoretical asymptotic values (main paper, Section 4.4).
However, since the prior knowledge for the Tglea“ rate is higher than the rd2™2g¢ rate the posterior bounds for the
rélean rate decline much faster than those of the r42m3¢ rate, leading to a more conservative estimate and a wider
interval for requirements R1 and R2.
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