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Abstract

We introduce a weighted and unconstrained variant of the

well-known minimum k union problem: Given a bipartite

graph G(U, V,E) with weights for all nodes in V , find a set

S ⊆ V such that the ratio between the total weight of the

nodes in S and the number of their distinct incident nodes

in U is maximized. Our problem, which we term Heavy

Nodes in a Small Neighborhood (HNSN), finds applications

in marketing, team formation, and money laundering detec-

tion. For example, in the latter application, S represents

bank account holders who obtain illicit money from some

peers of a criminal and route it through their accounts to

a target account belonging to the criminal. We prove that

HNSN can be solved exactly in polynomial time via linear

programming. As the size of G can be very large in prac-

tice, we also develop a near linear-time greedy heuristic. In

addition, we formalize a money laundering scenario involv-

ing multiple target accounts and show how our algorithms

can be extended to deal with it. Our experiments on real

and synthetic datasets show that our algorithms find optimal

or near-optimal solutions, outperforming a natural baseline,

and that they can detect money laundering much more ef-

fectively and efficiently than a state-of-the-art method.

Keywords: Minimum k union, Dense subgraph discovery,

Combinatorial optimization, Money laundering detection.

1 Introduction

The minimum k union problem [7, 8] is a well-known
combinatorial optimization problem asking to select k
sets from a collection of sets that have the minimum
union size (i.e., k sets that together contain the fewest
distinct elements). It can also be modeled as a small
set expansion problem [8], where there is a bipartite
graph G(U, V,E) whose left side U represents elements,
right side V represents sets, and there is an edge
(u, v) ∈ E between a node u ∈ U and a node v ∈ V ,
if and only if the set corresponding to v contains the
element corresponding to u. Then, minimum k union
is clearly equivalent to the problem of finding a set
S ⊆ V of k nodes, in order to minimize the size of their
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neighborhood N(S) (i.e., the number of distinct nodes
incident to the nodes in S). We introduce a weighted,
unconstrained variant of this problem, which we term
Heavy Nodes in a Small Neighborhood (HNSN):

Problem 1. (HNSN) Given a bipartite graph
G(U, V,E), where each v ∈ V has degree d(v) > 0, and
a weight function w : V → R≥0, find a set S ⊆ V

of nodes such that
∑

v∈S w(v)

|N(S)| is maximized, where

N(S) = {u : ∃(u, v) ∈ E ∧ u ∈ U, v ∈ S}.
Example 1. The solution of HNSN on the graph be-
low, where the weights of nodes in V appear on their

right, is S = {v1}, since
∑

v∈S w(v)

|N(S)| is maximized to 1.2
2 .
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(We assume that w() is evaluated in
O(1) time.) The degree requirement en-
sures that G has no isolated nodes in V ;
these would be added to a solution, as they
only increase the objective function.

HNSN is motivated by the following
real-world applications:

A.1 Profitable product set discovery : U represents
all products for sale, V all previously purchased bundles
of products, and an edge (u, v) ∈ E that product u
was sold in a bundle v. Each bundle v brought a profit
w(v) to a retailer (e.g., the sum of the profit of each
product in v [23], or a fraction of that). HNSN outputs
a collection of bundles that has the largest ratio between
the total profit and the number of distinct products in
these bundles. Such bundles can be greatly beneficial
to a retailer, as retailers often wish to know the set
of products that generate a large profit when sold in
specific bundles. This knowledge can be exploited by
a retailer to buy such products cheaply in bulk, or
transport and store them with lower costs [19].

A.2 Team formation [26]: U represents a set of
workers and V a set of jobs. Each edge (u, v) ∈ E
represents that a worker u ∈ U has some of the skills
required for accomplishing a job v ∈ V . A job v
is accomplished when all relevant workers (i.e., the
incident nodes of v) are hired to do it; this results in
a profit w(v) to a company. HNSN outputs a set S of
jobs that are performed by a set N(S) of workers and
have the largest total profit per hired worker ratio.

A.3 Money laundering detection [5, 6]: Smurfing is
a key money laundering technique [14, 22, 17, 21]. It
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starts with a criminal (detection target) who distributes
their illicit money into peers. These peers deposit the
money into their bank accounts and perform transac-
tions with other peers who then transfer the money, or
a large part of it, into the bank account of the criminal.
Their goal is to hide the original source of money, so that
it appears it came from legitimate sources. HNSN can
be used to detect this single-target smurfing attack. U
and V correspond to bank account holders, and an edge
(u, v) ∈ E represents a transaction performed between
u ∈ U and v ∈ V . The target is represented by a node
t, connected to all nodes in V . The peers who receive
money from the criminal are part of U and those who
transfer money to the criminal are part of V . The weight
w(v) represents how suspicious the money flow through
v is (see Section 4). Furthermore, a suspicious peer cor-
responding to v typically receives money from few peers
corresponding to nodes in U [17, 14], since more trans-
actions increase the risk that this peer is caught. Thus,
the output of HNSN is a set of peers (corresponding
to a subset of V ) who are the most suspicious based
on both their weights and on that they received money
from few others (corresponding to a subset of U).

Contributions. We introduce the HNSN prob-
lem and design algorithms offering different effective-
ness/efficiency trade-offs. Specifically:

1. Unlike minimum k union that is NP-hard to solve
exactly [8], we show that HNSN can be solved exactly in
polynomial time. In particular, we design a highly non-
trivial Linear Programming (LP) algorithm for HNSN
and prove that it solves HNSN exactly.

2. We design a greedy heuristic for HNSN and show
that it can be implemented in near linear time.

3. We examine how smurfing attacks can be de-
tected based on HNSN. Beyond the single-target attack
in A3, which can be directly tackled by our algorithms,
we investigate a multi-target attack, in which there is
a third layer in G containing multiple target accounts.
We extend HNSN to a problem for detecting this attack
and design adaptations of our algorithms for it.

4. We conducted experiments on 5 real datasets and
synthetic ones showing that our algorithms find opti-
mal or near-optimal solutions to HNSN, outperforming
a natural baseline [20] on effectiveness and/or efficiency.
We also show, using a real dataset, that our algorithms
can detect money laundering substantially more effec-
tively and efficiently than a state-of-the-art method [17].

Contributions 1, 2, 3, and 4 are presented in Sec-
tions 2, 3, 4, and 6. We defer related work to Section 5.

2 Exact LP Algorithm

We assign a binary variable xi to each node vi ∈ V of G
such that xi = 1, if vi ∈ S and xi = 0 otherwise. Also,

we assign a binary variable yj to each node uj ∈ U
such that yj = 1 if uj ∈ N(S) (i.e., uj is incident to
any node in a solution S ⊆ V ) and yj = 0 otherwise.
Furthermore, we consider an arbitrary ordering of nodes
in V and assign a (non-negative) weight wi = w(vi) to
every node vi ∈ V . Then, to solve HNSN, we need to
solve the following Linear-Fractional Integer Program:

max
(∑|V |

i=1 wi · xi

)/∑|U|
j=1 yj(2.1a)

s.t.

|U|∑
j=1

yj > 0(2.1b)

xi ≤ yj , (uj , vi) ∈ E(2.1c)
xi ∈ {0, 1}, i ∈ [1, |V |](2.1d)
yj ∈ {0, 1}, j ∈ [1, |U |].(2.1e)

Constraint 2.1b is added due to the degree require-
ment d(v) > 0, for each v ∈ V , in Problem 1, which
implies |N(S)| > 0, for any S ⊆ V . Constraint 2.1c
is added because, if a node vi is contained in S, all its
incident nodes are contained in N(S) and, if vi is not
contained in S, its incident nodes may still be contained
in N(S). At this point, it is not obvious that we can
solve the program in Eq. 2.1 in polynomial time.

To solve the program in polynomial time, we trans-
form it as follows. First, we linearize its objective func-
tion based on the Charnes-Cooper transformation [4].
That is, we introduce a variable y0 = 1∑|U|

j=1 yj

> 0, which

can be defined due to Constraint 2.1b, and using y0 we
rewrite the program in Eq. 2.1 as:

max y0 ·
∑|V |

i=1 wi · xi(2.2a)

s.t. y0 ·
|U|∑
j=1

yj = 1(2.2b)

|U|∑
j=1

yj > 0(2.2c)

xi ≤ yj , (uj , vi) ∈ E(2.2d)
xi ∈ {0, 1}, i ∈ [1, |V |](2.2e)
yj ∈ {0, 1}, j ∈ [1, |U |](2.2f)
y0 ∈ R>0.(2.2g)

Second, we observe that Constraint 2.2c is redun-
dant, since it is satisfied from the requirement y0 > 0
(Constraint 2.2g) and from Constraint 2.2b. We also
relax the integrality requirement for all variables xi and
yj , writing the program in Eq. 2.2 as the following non-
linear program:

max y0 ·
∑|V |

i=1 wi · xi(2.3a)

s.t. y0 ·
|U|∑
j=1

yj = 1(2.3b)

xi ≤ yj , (uj , vi) ∈ E(2.3c)
xi ∈ [0, 1], i ∈ [1, |V |](2.3d)
yj ∈ [0, 1], j ∈ [1, |U |](2.3e)
y0 ∈ R>0.(2.3f)
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Last, by setting zi = y0 · xi and qj = y0 · yj in the
program of Eq. 2.3, we get the Linear Program below.
We obtain Constraint 2.4c by multiplying both parts of
Constraint 2.3c by y0 and substituting with zi and qj .

max
∑|V |

i=1 wi · zi(2.4a)

s.t.

|U|∑
j=1

qj = 1(2.4b)

zi ≤ qj , (uj , vi) ∈ E(2.4c)
zi ∈ [0, 1], i ∈ [1, |V |](2.4d)
qj ∈ [0, 1], j ∈ [1, |U |].(2.4e)

2.1 LP Optimality and Complexity. While LP
relaxations do not generally lead to optimal solutions,
we prove that the LP in Eq. 2.4 yields an optimal
solution to HNSN, by showing that the value of this LP
is lower bounded and upper bounded by the objective
value of HNSN. Our proof uses some ideas from [3] but
our problem and its LP formulation are quite different.

Lemma 2.1. (Lower bound) For any set S ⊆ V , the

value of the program in Eq. 2.4 is at least
∑

v∈S w(v)

|N(S)| .

Proof. We will show that, for a set S ⊆ V , there exists

a feasible solution (z̄, q̄) with value
∑

v∈S w(v)

|N(S)| , where

z̄ = {z̄i | vi ∈ V } and q̄ = {q̄j | uj ∈ U}. For each node
vi ∈ S, set z̄i = 1

|N(S)| . For each node vi ∈ V \ S, set

z̄i = 0. For each node uj ∈ N(S), set q̄j = 1
|N(S)| . For

each node uj ∈ U \N(S), set q̄j = 0. Since
∑|U |

j=1 q̄j =∑
j:uj∈N(S) q̄j = |N(S)| · 1

|N(S)| = 1, Constraint 2.4b

is satisfied. Clearly, all other constraints are satisfied
too. Thus, (z̄, q̄) is a feasible solution to the LP and

as such it has value
∑|V |

i=1 wi · z̄i. Furthermore, it holds∑|V |
i=1 wi · z̄i =

∑
i:vi∈S wi · z̄i =

∑
v∈S w(v)

|N(S)| . The first

equality holds by the way we set the z̄i’s and the second

by the way we assigned the wi’s. Since
∑|V |

i=1 wi · z̄i =∑
v∈S w(v)

|N(S)| , we have
∑|V |

i=1 wi · zi ≥
∑

v∈S w(v)

|N(S)| .

Lemma 2.2. (Upper bound) Given a feasible solu-
tion of the program in Eq. 2.4 with value τ , we can

construct S ⊆ V such that
∑

v∈S w(u)

|N(S)| ≥ τ .

Proof. Consider a feasible solution (z̄, q̄) to the program
in Eq. 2.4. Let n−(vi) ⊆ U be the set of incident nodes
to a node vi ∈ V and n+(uj) ⊆ V be the set of incident
nodes to a node uj ∈ U . Without loss of generality, we
assume z̄i = minj:uj∈n−(vi) q̄j , for all i ∈ [1, |V |]. This
is because Constraint 2.4c holds, for any uj ∈ U that is
incident to vi and z̄i must be maximal due to Eq. 2.4a.

We define: (I) collections of sets S and N indexed
by a parameter r ≥ 0: S(r) = {i | z̄i ≥ r} and N(r) =
{j | q̄j ≥ r}; and (II) a function F (r) =

∑
i∈S(r) wi that

outputs the total weight of nodes with indices in S(r).

We show that N(r) is comprised of the indices of
nodes that are incident to the nodes whose indices are
in S(r). First, we show that if i ∈ S(r), then each
of its corresponding j’s is contained in N(r). Indeed,
i ∈ S(r) implies z̄i = minj:uj∈n−(vi) q̄j ≥ r. Thus, for
every uj ∈ n−(vi) (i.e., for every incident node uj of
vi), it holds that q̄j ≥ r, which implies that each j that
corresponds to i is contained in N(r), by the definition
of N(r). Then, we show that if each j corresponding
to an i is contained in N(r), then i ∈ S(r). Indeed,
if each j corresponding to an i is contained in N(r),
then q̄j ≥ r holds, for each such j, by the definition
of N(r). Thus, minj:uj∈n−(vi) q̄j ≥ r also holds. This
implies that z̄i ≥ r and i ∈ S(r), by the S(r) definition.

(a) (b)

Figure 1: Illustration of (a) the first and (b) the second
equality of Eq. 2.5.

We will prove that
∫∞
0
|N(r)| dr =

∑|U |
j=1 q̄j . We

define rj as the largest r resulting in a subset N(rj) of
N(r) with |U | − αj nodes, where α1 = 0 and αj ≥ 1,
for j ∈ [2, |U |] (see Fig. 1a). Thus, all nodes in U with
q̄j ≥ rj are contained in N(rj) and also in every N(rj′),
j′ ∈ [1, j). Furthermore, αj+1 − αj nodes in U are
contained in N(rj) \N(rj+1); these nodes have q̄j = rj .

If all q̄j ’s are equal (i.e., each uj ∈ U has q̄j = r1),∫∞
0
|N(r)| dr= |N(r1)| = |U | ·r1 =

∑|U |
j=1 q̄j . Otherwise,

Eq. 2.5 holds (see also Fig. 1):∫∞
0
|N(r)| dr = (|U | − α1) · r1+(2.5)

(|U | − α2) · (r2 − r1) + . . .+ (|U | − α|U |) · (r|U | − r|U |−1)

= r1(α2 − α1) + r2(α3 − α2) + . . .+ r|U |(|U | − α|U |) =
∑|U |

j=1 q̄j .

The first equality holds due to the definition of N(r)
and rj ’s, and the second one holds trivially (see also
Fig. 1b). The third equality holds because the αj+1−αj

nodes that are contained in N(rj) \N(rj+1) have equal
q̄j ’s, as mentioned above. Thus, each summand in
r1(α2 − α1) + . . . + r|U |(|U | − α|U |) corresponds to a
group of nodes with equal q̄j ’s, and this summand is
equal to the sum of the q̄j ’s in the group. Therefore,

r1(α2 − α1) + . . .+ r|U |(|U | − α|U |) =
∑|U |

j=1 q̄j .

In addition,
∑|U |

j=1 q̄j = 1 due to Eq. 2.4b, which
holds because (z̄, q̄) is a feasible solution. Thus, we have
proved that

∫∞
0
|N(r)| dr= 1.

Similarly, we have
∫∞
0
F (r) dr=

∑|V |
i=1 wi · z̄i, which

is the value of the objective function of the program in
Eq. 2.4. Let us denote this value by τ .
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We claim that there exists an r such that F (r)
|N(r)| ≥ τ .

Suppose that such an r does not exist. Then, for every

r, it holds that F (r)
|N(r)| < τ which implies

∫∞
0
F (r) dr <

τ ·
∫∞
0
|N(r)| dr = τ · 1 = τ . However, we have shown

that
∫∞
0
F (r) dr = τ , so we have a contradiction.

To find an r such that F (r)
|N(r)| ≥ τ , we check all

combinatorially distinct sets N(r) by setting r = q̄j for

every uj ∈ U . Let r′ be one r such that F (r′)
|N(r′)| ≥ τ .

Then, we construct an S = {vi ∈ V | z̄i ≥ r′} such that
F (r′)
|N(S)| =

∑
i:vi∈S

wi

|N(S)| ≥ τ and
∑

v∈S w(v)

|N(S)| ≥ τ .

Putting Lemmas 2.1 and 2.2 together, we obtain:

Theorem 2.1. (Optimality and Construction)
Let OPT be the value of an optimal solution to the
program in Eq. 2.4. Then, the following holds:

(2.6) max
S⊆V

∑
v∈S w(v)

|N(S)|
= OPT.

Further, a set S ⊆ V with maximum
∑

v∈S w(v)

|N(S)| can be

constructed from an optimal solution to this program.

Proof. Due to Lemma 2.1, OPT≥ maxS⊆V

∑
v∈S w(v)

|N(S)|

(consider the set S∗ = arg maxS⊆V

∑
v∈S w(v)

|N(S)| ). Due to

Lemma 2.2, maxS⊆V

∑
v∈S w(v)

|N(S)| ≥ OPT. Thus, Eq. 2.6

holds. The proof of Lemma 2.2 gives a construction

of a set S that maximizes
∑

v∈S w(v)

|N(S)| from the optimal

solution to the program in Eq. 2.4.

Our algorithm solves the program in Eq. 2.4 and
then constructs an optimal solution S. Since this
program is linear, its solution can be obtained in O(n2.5)
time [25], where n is the total number of variables and
constraints; see [12] for the state of the art. S can be
constructed as in the proof of Lemma 2.2. However,
it is also possible to construct S in O(|V |) time given
an optimal solution (z∗, q∗) of the program in Eq. 2.4.
Specifically, we identify each z∗i ∈ z∗ such that z∗i > 0
in O(|V |) time and construct S = {vi ∈ V | z∗i > 0}.

We will prove that S = {vi ∈ V | z∗i > 0} is an
optimal solution to HNSN. Since (z∗, q∗) is optimal
for the program in Eq. 2.4, (x∗, y∗) is optimal for the
program in Eq. 2.2, where x∗ is comprised of each x∗i =
z∗i /y

∗
0 , i ∈ [1, |V |], y∗ is comprised of each y∗j = q∗j /y

∗
0 ,

j ∈ [1, |U |], and y∗0 = 1∑|U|
j=1 y∗j

. Since (x∗, y∗) is optimal,

y∗0 ·
∑|V |

i=1 wi ·x∗i is maximum, subject to the constraints
of the program in Eq. 2.2, which are all satisfied.

For any i ∈ [1, |V |], vi ∈ S implies z∗i > 0. Further,
z∗i > 0 implies: (I) x∗i = 1; and (II) q∗j > 0, for each
uj ∈ N(S), from Eq. 2.4c, which in turn implies y∗j = 1,
for each uj ∈ N(S). Also, for any i ∈ [1, |V |], vi /∈ S

Algorithm 1 Greedy(G, w)
1: i← 0; Ri ← V

2: while Ri 6= ∅ do

3: if ∃ v ∈ Ri s.t. |N(Ri)| − |N(Ri \ {v})| > 0 then

4: Select v ∈ Ri s.t.
w(v)

|N(Ri)|−|N(Ri\{v})|
is minimum

5: else

6: Select v ∈ Ri s.t.
w(v)
|N({v})| is minimum

7: Ri+1 ← Ri \ {v}
8: i← i+ 1

9: return S ← argmaxRj :j∈[0,|V |)

∑
v∈Rj

w(v)

|N(Rj)|

implies z∗i = 0, which in turn implies x∗i = 0, and
y∗j = 0, for each uj /∈ N(S), due to Eq. 2.2a. Thus, for

the S we constructed, y∗0 ·
∑|V |

i=1 wi · x∗i = 1∑
j:uj∈N(S) y

∗
j
·∑|V |

i=1 wi · x∗i = 1
|N(S)| ·

∑|V |
i=1 wi · x∗i =

∑
i:vi∈S

wi

|N(S)| .

Since the constraints of the program in Eq. 2.2 are
satisfied, Eq. 2.2c implies

∑
j:uj∈N(S) y

∗
j = |N(S)| > 0.

Thus,
∑

i:vi∈S
wi

|N(S)| =
∑

v∈S w(v)

|N(S)| is maximum subject to

|N(S)| > 0, and therefore S is an optimal solution.

3 Greedy Heuristic

Greedy is a “peeling” algorithm for HNSN (see Algo-
rithm 1), which: (I) iteratively removes from the graph
a node of V whose removal does not substantially reduce
the value of the objective function of HNSN; (II) com-
putes the value of the objective function for the set of
remaining nodes after each iteration; and (III) outputs
a best set S of remaining nodes over all iterations.

Let Ri ⊆ V be the set of remaining nodes up until
iteration i. Greedy aims to find an Ri with large∑

v∈Ri
w(v)

|N(Ri)| , by removing from Ri−1 a node v ∈ V with

small weight w(v), so that
∑

v∈Ri
w(v) is still large, and

with many neighbors, so that |N(Ri)| becomes much
smaller. As we show next, if there is a node v in Ri with
at least one neighbor with degree 1 in the graph induced
by the nodes in Ri and their incident nodes N(Ri)
(Line 3), one such node v with minimum ratio between
w(v) and the number of such neighbors is selected for
removal (Line 4). Otherwise, a node v with minimum
ratio between w(v) and its degree is selected (Line 6).
After each node removal, Greedy memorizes the set
of remaining nodes (Line 7). Last, it returns the set
of remaining nodes with a largest objective value over
all iterations (Line 9). This is performed because the
objective function of HNSN is clearly non-monotone
(i.e., it may increase or decrease after a node removal).

Efficient Implementation. A direct implementation
of Greedy takes O(|E|·|V |) time because computing all
ratios requires traversing G, which takes O(|V |+ |E|) =
O(|E|) time per iteration. We next show a near linear-
time implementation of Greedy.
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Line 3. We observe that the difference in Line 3
is equal to the number of neighbors of v that have
degree 1 in the graph induced by the nodes in Ri

and those in N(Ri). This is because |N(Ri \ {v})| =
|N(Ri)| − |N({v})| + |N(Ri \ {v}) ∩ N({v})| and thus
|N(Ri)| − |N(Ri \ {v})| is equal to |N({v})| − |N(Ri \
{v})∩N({v})|, which is exactly the number of neighbors
of v with degree 1. Thus, before Line 2, we build a
perfect hashtable with an entry for each node v ∈ V
that has at least one neighbor in U with degree 1, in
O(|V |) total time. If v is removed in Line 7, we delete
its entry from the hashtable in O(1) time. We also check
the degree of each neighbor u ∈ U of v and if the degree
of u has become 1, we add the single neighbor of u in
the hashtable in O(1) time. This takes O(|E|) time over
all iterations. We can thus perform the check in Line 3
in O(1) time: if the hashtable is nonempty, the check
succeeds. Therefore, the total time for Line 3 over all
iterations is O(|V |+ |E|) = O(|E|).

Line 4. The key is to: (I) identify nodes whose
ratio must be updated in an iteration; and (II) update
their ratios and find a minimum ratio, instead of
computing all ratios from scratch to find a minimum.

Regarding issue I, we noted above that, for a node v,
the denominator in Line 4 in iteration i is equal to the
number of neighbors of v with degree 1, in the graph
induced by the nodes in Ri and those in N(Ri). Let
v′ be the node that was removed in iteration i − 1.
We observe that the denominator for v changes during
iteration i only when v and v′ have at least one common
neighbor whose degree after the removal is 1. This is
because removing v′ reduces the degree of each neighbor
of v′ by 1 and the neighbors in N({v}) ∩N({v′}) with
degree 2 before the removal (and thus degree 1 after) are
considered in the denominator for v. Thus, to identify
every node v whose ratio must be updated in iteration i,
we find the common neighbors between v′ and v having
degree 2 before the removal, for each v ∈ Ri.
Example 2. In the graph below, where the weights of
nodes in V appear on their right, R0 = V = {v1, v2, v3}.
Greedy first removes v1 from R0; thus R1 = {v2, v3}.
The ratio for v2 needs updating, as v2 and v1 have
a common neighbor, u2, which has degree 1 after the

removal of v1. In fact, w(v2)
|N(R0)|−|N(R0\{v2})| = 1

1 and
w(v2)

|N(R1)|−|N(R1\{v2})| = 1
2 . The ratio for v3 does not need

updating; w(v3)
|N(R0)|−|N(R0\{v3})| = w(v3)

|N(R1)|−|N(R1\{v3})| .

u1

u2

u3

u4

v1

v2

v3

2

1

1

Regarding issue II, during a pre-
processing step, we identify every node v ∈
V such that |N(Ri)| − |N(Ri \ {v})| > 0.
For each such node v, we add: (1) its ratio

w(v)
|N(Ri)|−|N(Ri\{v})| in a height-balanced bi-

nary search tree T ; and (2) an entry in a

perfect hashtable H with key v and value a pointer to
the ratio of v in T . After removing a node v′ in itera-
tion i− 1 (Line 7), we find the nodes whose ratios need
updating, which we call affected nodes, by finding each
neighbor u ∈ U of v′ that has degree 2 and then the
other neighbor of u. Next, we search each affected node
in H. If an affected node is contained in H, we update
its ratio in T , following the pointer; otherwise, we add
entries for this affected node in H and in T .

Note that: (1) Each removed node v′ in iteration
i − 1 changes the ratio of O(|N({v′})|) nodes in Ri.
Thus, there are O(|E|) affected nodes over all iterations
and finding them takes O(|E|) time. (2) If an affected
node v is found in H, its ratio is updated in O(log(|V |))
time: O(1) time for finding v in H; and O(log(|V |)) for
updating its ratio in T . Otherwise, the entries for v inH
and in T are added in O(log(|V |)) total time. Thus, the
total cost of Line 4 over all iterations is O(|E| · log(|V |)).

Line 6. During a preprocessing step, we identify
every node v ∈ V that has no neighbor in U with degree
1 in O(|E|) time. For each such node v, we add: (1) an

entry 〈 w(v)
|N({v})| , v〉 in a doubly linked list L; and (2) an

entry v in a perfect hashtable HL whose key is v and
value is a pointer to the entry of v in L. We sort L in
increasing order in terms of ratio. To implement Line 6,
we iterate over L and check if the node in the second
element of the current entry of L has been selected in
Line 4. In this case, we delete its entries from L and
from HL, and continue iterating. Otherwise, we select
this node as v, delete its entries from L and fromHL and
stop iterating. Note that L remains sorted; as we do not
delete nodes in U , the denominators of the ratios, and
hence the ratios, do not change. Thus, the extra time
required by Line 6 over all iterations is O(|V | · log(|V |)),
the time to build and sort L.

Line 7. We remove v from Ri. Then, we find and
deal with the affected nodes, as discussed before.

Line 9. This line can be implemented in O(|E|)
time, by computing the numerator and denominator of∑

v∈Rj
w(v)

|N(Rj)| decrementally as we remove nodes. Specifi-

cally, we maintain an array A storing the degree of each
node in U . We also maintain the number PA of elements
of the array A with positive value. After removing v
(Line 7), we update the degrees of the nodes in N({v})
in A and also PA, if needed. Since in every iteration

i, it holds that |N(Ri)| = PA, we compute
∑

v∈Ri
w(v)

|N(Ri)|

as
∑

v∈Ri
w(v)

PA
and maintain the maximum over all it-

erations and its corresponding Ri. The latter Ri will
be returned in Line 9. This decremental update takes
O(|E|) time amortized over all iterations because each
node in U is accessed as many times as its degree, and
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the total degree of all nodes in U is |E|.
Based on the above, we obtain the following result:

Theorem 3.1. Greedy can be implemented in O(|E| ·
log(|V |)) time.

We also consider a variation of Greedy without
Lines 3-5, referred to as FastGreedy. It takes O(|E|+
|V |·log(|V |)) time and trades effectiveness for efficiency.

4 Applications to Money Laundering Detection

Money Laundering (ML) is the process of transforming
crime profits into legitimate assets [5]. ML involves
three steps [5]: (I) placement, in which illicit money
from a criminal is placed into the financial system;
(II) layering, in which this money is separated from its
source through layering financial transactions that aim
to elude detection; and (III) integration, in which the
money, or a fraction of it, is returned to the criminal
from what seem to be legitimate sources.

Smurfing [17, 21, 14, 22] is a key layering tech-
nique for attacking anti-money laundering systems. It
involves a criminal who distributes their illicit money to
peers. Then, the peers perform financial transactions,
in which the money flows from their accounts to the ac-
counts of other peers and eventually to the criminal’s
target account(s). The peers are called smurfs.

We focus on detecting two types of smurfing attacks
considered in [17, 14, 21]: single-target and multi-target.

Single-target Attack. This attack has been discussed
in Introduction and can be detected by solving HNSN.
A node t that represents the target’s account and its
incident edges play no role in HNSN. Thus, t and these
edges are omitted from the input to HNSN. We focus
on graphs with no edges among nodes in V , as they are
generally more suspicious [14, 16].

Our suspiciousness measure is the objective func-

tion
∑

v∈S w(v)

|N(S)| of HNSN, with w(v) = ov
iv+bv

, for each

node v ∈ V ; ov is the amount of money sent by v to
t, iv is the total amount of money v receives from its
incident nodes in U , and bv is the account balance of v
before any money transfers take place. We consider the
account balance, as it is not necessarily negligible (e.g.,
normal account holders may have a large account bal-
ance) [21]. We assume iv + bv > 0; e.g., banks require a
non-zero balance in order to maintain an account.

If a solution S ⊆ V of HNSN has large
∑

v∈S w(v)

|N(S)| ,

the subgraph induced by S and N(S) models a highly
suspicious money flow to t. This captures two facts: (I)
Smurfs receive money from few others [17, 14]. This
is because a criminal usually trusts a small number of
peers (nodes in U) to distribute their money to, as a
larger number increases the risk of being caught. (II)
Smurfs often aim not to leave much money in their

accounts, as their accounts may be frozen [17, 22].

Multi-target Attack. The attack involves multiple
targets, representing multiple criminals or a criminal
with multiple accounts. The input graph is a tripartite
graph G(U, V,W,E), where W represents users receiving
money from others in V . The degree of each node in W
is in [1, |V |]. The targets correspond to a subset of W .

Our suspiciousness measure is
∑

v∈S w(v)

|N(S)|+|M(S)| , where

N(S) and each w(v) is as before, and M(S) = {w :
∃(v, w) ∈ E ∧ v ∈ S,w ∈ W} is the subset of nodes in
W that receive money from the nodes in S. A set S ⊆ V
with small |M(S)| is preferred, as the number of targets
is typically small (e.g., up to 8 for real ML flows detected
in [21]). Our measure is fundamentally different from
that of [17] and offers three benefits: (I) It can be used
to compare subgraphs with nodes transferring different
amounts of money. (II) It considers the balance bv,
which is important as a larger bv implies a higher
account retention risk and thus that an account is less
likely fraudulent. (III) It allows distinguishing between
subgraphs with the same number of nodes and total
ingoing and outgoing amounts but different topologies.

Detecting the Multi-target Attack. We extend
HNSN for the multi-target case, as follows:

Problem 2. (Multi-target HNSN (MHNSN))
Given a tripartite graph G(U, V,W,E), where each
v ∈ V has at least one incident node in U and
at least one incident node in W , and a weight
function w : V → R≥0, find a set S ⊆ V of

nodes such that
∑

v∈S w(v)

|N(S)|+|M(S)| is maximized, where

N(S) = {u : ∃(u, v) ∈ E ∧ u ∈ U, v ∈ S} and
M(S) = {w : ∃(v, w) ∈ E ∧ v ∈ S,w ∈W}.

Each v ∈ V must have at least one incident node
in U and at least one incident node in W , as we are
interested in detecting money flows from nodes in U to
target nodes through v. This ensures that at least one
node in U and at least one node in W is connected to
a node in S and hence |N(S)| > 0 and |M(S)| > 0 .
Thus, at least one smurf in U sends money to another
smurf in S that then sends money to nodes in W . As
in the single-target case, w(v) = ou

iu+bu
, for each v ∈ V .

The LP algorithm for HNSN can easily be adapted
to solve MHNSN exactly in polynomial time. Greedy
and FastGreedy can also be easily adapted to tackle
MHNSN. The details of these algorithms are deferred
to the full version of the paper.

5 Related Work

Related Problems. HNSN is a weighted and uncon-
strained variant of the minimum k union problem, which
has been studied theoretically in [7, 8]. As discussed in
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Introduction, minimum k union can be formulated as a
small set expansion problem. Alternatively, it can be
formulated as a problem asking for k hyperedges of a
hypergraph with the minimum size of their union, for a
given integer k [8]. HNSN can be viewed as a weighted
and unconstrained version of this formulation, where
each u ∈ U corresponds to a hypernode, each v ∈ V to
a hyperedge with a weight w(v), and the neighbors of v
are the hypernodes of the hyperedge corresponding to
v. HNSN and minimum k union are related to dense
subgraph problems (see [15], for a survey). Two well-
known such problems are the densest subgraph prob-
lem [3], which asks for a subgraph with maximum av-
erage degree, and the densest k-subgraph problem [9],
which asks for a subgraph of k nodes with maximum
average degree, for a given integer k. The equivalent of
these problems in hypergraphs are the densest subhy-
pergraph problem [11] and the densest k-subhypergraph
problem [8, 7]. Both are well studied [11, 2, 24, 8].

Related Applications. Money laundering detec-
tion [5] can be performed using rule-based or machine-
learning approaches (see [6], for a survey). Our work is
more relevant to approaches for detecting smurfing at-
tacks from graph data [14, 21, 22, 17]. The approaches
of [14] and [21] output all subgraphs that are isomor-
phic to certain graph patterns. Unlike [14] and [21], our
approach outputs the most suspicious subgraph, with-
out restricting its topology to that of specific patterns.
The approach of [22] considers a streaming setting and
tracks statistics for each account over time to identify
suspicious accounts. The closest work to ours is [17].
It proposes a suspiciousness measure, which has some
weaknesses, addressed by our measure (see Section 4),
and FLowScope, a greedy algorithm that is less effec-
tive and efficient than our algorithms (see Section 6).

Profitable product set discovery falls into the area of
utility mining [10]. This area mainly focuses on identify-
ing patterns with sufficiently high utility, while HNSN
seeks to identify sets having a largest ratio between util-
ity and the number of distinct items contained in them,
as such sets can be beneficial to a retailer [19].

6 Experimental Evaluation

Datasets. For the profitable product set discovery ap-
plication, we used 5 real, benchmark datasets, obtained
from https://bit.ly/3S5y0de, and synthetic datasets
(see Table 1). The real datasets contain utilities (prof-
its) of items (nodes in U) which we summed up to obtain
the transaction (node v ∈ V ) utility, following [23]. The
synthetic datasets model bipartite graphs with given
|U |, |V |, and |E|, in which edges are formed between
randomly selected nodes. The degrees of nodes in V are
in [1, 50] and sampled from a Zipfian distribution with

Dataset |U | |V | |E|
Foodmart (FM) 1,559 4,141 18,319

E-commerce (EC) 3,468 14,975 174,354
Liquor (LI) 4,026 52,131 410,609

Fruithut (FR) 1,265 181,970 652,773
YooChoose (YC) 107,256 234,300 507,266

SYN 2,000 500,000 50,000,000
Czech Financial Dataset (CFD) 60,606 1,496 138,256

Table 1: Dataset characteristics.

parameter 0.1; such power-law degree distributions are
often encountered in real graphs. The largest synthetic
dataset is called SYN. For the money laundering detec-
tion application, we used the Czech Financial Dataset
(CFD), which contains anonymous money transfers of
a Czech bank. It has been used in [17, 22] and is avail-
able from https://bit.ly/2OzDm2R. CFD has been
pre-processed by keeping transactions from and to other
banks, creating a tripartite graph G(U, V,W,E).

Setup. We evaluated our algorithms, Exact LP
(LP), Greedy (GR), and FastGreedy (FGR), by
comparing them to GreedRatio [1, 20] (GRR), a
state-of-the-art method for minimizing a ratio of non-
negative monotone submodular functions. As in [1],
we ensured that there is at least one v ∈ V with
w(v) > 0 and applied GRR to minimize |N(S)|∑

v∈S w(v) ,

which is equivalent to maximizing the objective function
of HNSN. This is because: (I) |N(S)| is non-negative,
monotone (as 0 < |N(S)| ≤ |N(T )|, for any S ⊆ T ⊆
V ), and submodular (as a coverage function [13]); and
(II)

∑
v∈S w(v) is non-negative monotone (as w(v) ∈

R≥0) and submodular (as it is clearly modular) [13].
GRR takes O(|E| · |V |) time and cannot be sped up by
lazy evaluation [18], which is applicable for minimizing
the ratio of a modular to a submodular function [1]. In
addition, we compared our algorithms to FlowScope
(FL) [17] in the context of money laundering detection.
FL takes O(|E| · log(|V |)) time when applied to a
tripartite graph as in our case. We did not compare to
[21, 14, 22], as they deal with different problems and/or
are applied to different settings (see Section 5).

All experiments ran on an AMD EPYC 7702 CPU
with 256GB RAM. We implemented our algorithms in
C++ and used Gurobi 9.5.2 in LP. The implementation of
FL was obtained from https://bit.ly/3LHigea. See
https://bitbucket.org/hnsn/sdm2023/ for our code
and datasets.

Profitable Product Set Discovery. We first exam-
ined the effectiveness and efficiency of all methods on
the 5 real datasets. Fig. 2a shows the scores for all

methods in HNSN (i.e.,
∑

v∈S w(v)

|N(S)| for a solution S of

HNSN), and Fig. 2b shows the corresponding runtimes.
LP performed the best, especially in the FR and YC
datasets, as it is exact. Notably, LP was faster than
the competitor GRR, in EC, FR, and YC (e.g., up to
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two orders of magnitude faster in the largest dataset
YC). Our GR and FGR algorithms performed simi-
larly to GRR in terms of effectiveness but were three
orders of magnitude faster on average, as they take
O(|E| · log(|V |)) and O(|E| + |V | · log(|V |)) time, re-
spectively, whereas GRR takes O(|E| · |V |) time.
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Figure 2: (a) Score
∑

v∈S w(v)

|N(S)| for all methods on real

datasets. (b) Runtime (s) on real datasets.

We also used synthetic datasets. To thoroughly
evaluate effectiveness, we applied all algorithms on
500 graphs, each constructed by sampling a number
of records (transactions) uniformly at random from a
dataset. We performed this process for all datasets,
sampling 10,000 transactions from LI and YC, and
1,000 from all other datasets. The results in Fig. 3
are analogous to those in Fig. 2a. LP was the best,
GR outperformed GRR in the FM and YC datasets
(the difference was statistically significant at p value
< 0.005) and performed similarly in the other datasets
(the difference was not statistically significant at p value
< 0.005). GR constructed solutions within 76.7% from
the optimal, on average over all tested graphs. FGR
was slightly less effective than GR.
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Figure 3: Score
∑

v∈S w(v)

|N(S)| on random subgraphs, produced
from all real datasets.

In addition, we measured runtime using subgraphs
of SYN with varying |E| or |V | (see Fig. 4). Again,
GR and FGR were faster than GRR by several orders
of magnitude. For example, GR and FGR needed less
than 2 minutes and 5 seconds, respectively, to process
SYN, which contains 50 million edges, while GRR
needed 2.6 hours. LP was faster than GRR by 2.1
times on average, albeit exact and much more effective.
FGR scaled better than GR with |E| (see Fig. 4a) and
performed similarly when |V | was close to |E| (see the
last point in Fig. 4b), since FGR needs O(|E| + |V | ·
log(|V |)) time and GR needs O(|E| · log(|V |)) time.

In sum, LP is exact and reasonably fast, GR is
slightly less effective but substantially faster, and FGR
trades some effectiveness for much higher efficiency.
GRR is as effective as GR is but slower than LP and
orders of magnitude slower than our other methods.
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Figure 4: Runtime (s) on subgraphs of SYN with |U | = 2000
and varying: (a) |E| for |V | = 105; and (b) |V | for |E| = 106.

Money Laundering Detection. We first detected
the most suspicious subgraph from the CFD dataset
using each of our methods. All found the same solution;
a subgraph with 21 nodes (8 source, 1 middle, and
12 target) and small balance before and also after
the bank transactions (3,120 and 19,672, respectively).
FL detected a much larger subgraph with 122 nodes
(87 source, 1 middle, and 34 target) and much larger
balance before and also after the transactions (15,087
and 92,581, respectively). The smaller size and balance
of the subgraph detected by our algorithms suggest that
it is more suspicious [17, 21]. Also, this subgraph is 3.22
times more suspicious according to our measure.

We also compared our algorithms with FL, follow-
ing the methodology of [22]. That is, we injected a
fraudulent pattern in CFD and examined whether or
not it can be detected. We injected two types of patterns
from [21], modeling single and multi-target attacks; see
Fig. 5. We generated over 1, 000 different patterns. To
favor FL, we used balance bv = 0, for each v ∈ V .

u1 v2

...

v1

v|V |

w1

(a)

u1 v

u|U |

w1

w|W |

... ...

(b)

Figure 5: (a) Single-target pattern. (b) Multi-target pattern.
The notation “...” denotes additional nodes and edges.

For the single-target patterns, we used |V | ∈ [1, 18]
and sampled each weight w(v) ∈ (0, 1] from a normal
distributionN (µ, σ = 0.1). We tried all combinations of
|V | ∈ {1, 2, 4, 6, ..., 18} and µ ∈ {0.5, 0.55, 0.6, ..., 1}. All
our algorithms detected all injected patterns, whereas
FL did not detect any injected pattern when |V | ≥ 8.

For the multi-target patterns, we considered two
configurations. In the first, we tried all combinations
of |U |, |V | ∈ {1, 2, . . . , 6} and w(v) ∈ {0.5, 0.55, . . . , 1}.
Each node v ∈ V had the same w(v). Again, all
our algorithms detected all injected patterns, whereas
FL did not detect any injected pattern when w(v) <
0.8. In the second configuration, we sampled w(v) ∈
(0, 1] from a normal distribution N (µ, σ = 0.1) with
µ ∈ {0.7, 0.75, . . . , 0.9}. For each mean value µ, we
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constructed 100 patterns with |U | and |V |, selected
uniformly at random from [1, 6]. As can be seen in
Table 2, all our methods detected all injected patterns,
while FL detected between 18% and 66% of them.

Mean (µ) 0.7 0.75 0.8 0.85 0.9

Our methods 100% 100% 100% 100% 100%
FL 18% 31% 49% 68% 66%

Table 2: Percentage of detected fraudulent patterns by our
methods and by FL [17] for different mean values.

Our methods were much faster than FL; FGR
was faster than GR and LP was slower than GR.
For single-target patterns, FL needed on average 8.5
seconds, while LP 1.2 seconds; GR and FGR needed
0.14 and 0.12 seconds, respectively. For multi-target
patterns, FL needed on average 6.3 seconds, while
LP 1.5 seconds; GR and FGR needed 0.14 and 0.11
seconds, respectively.

In sum, our methods detected a more suspicious
graph than FL from the real dataset CFD and also de-
tected injected patterns more accurately and efficiently.
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