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Abstract

In Computed Tomography (CT), an image of the in-
terior structure of an object is computed from a set
of acquired projection images. The quality of these
reconstructed images is essential for accurate analy-
sis, but this quality can be degraded by a variety of
imaging artifacts. To improve reconstruction quality,
the acquired projection images are often processed
by a pipeline consisting of multiple artifact-removal
steps applied in various image domains (e.g., outlier
removal on projection images and denoising of recon-
struction images). These artifact-removal methods
exploit the fact that certain artifacts are easier to
remove in a certain domain compared with other do-
mains.

Recently, deep learning methods have shown
promising results for artifact removal for CT images.
However, most existing deep learning methods for CT
are applied as a post-processing method after recon-
struction. Therefore, artifacts that are relatively dif-
ficult to remove in the reconstruction domain may
not be effectively removed by these methods. As an
alternative, we propose a multi-stage deep learning
method for artifact removal, in which neural networks
are applied to several domains, similar to a classical
CT processing pipeline. We show that the neural
networks can be effectively trained in succession, re-
sulting in easy-to-use and computationally efficient
training. Experiments on both simulated and real-
world experimental datasets show that our method
is effective in reducing artifacts and superior to deep
learning-based post-processing.

1 Introduction

CT is a non-invasive imaging technique that has be-
come widely popular in various fields. CT allows for
the analysis of the internal structure of objects in
a non-invasive manner. Popular application fields
of CT include medical imaging for disease diagnos-
tics, industrial non-destructive testing, and security
screening for parcel and luggage inspection [18]. CT
systems used in those fields can differ significantly,
as they must provide specific scanning capabilities
required for the specific task. Despite these differ-
ences, CT systems typically follow a similar workflow
for obtaining images of the object’s interior structure.
The typical workflow involves three sequential stages.
First, the data is acquired as projection images, each
of which encodes a directional X-ray view of the ob-
ject. Second, the acquired projection images are con-
verted to sinogram images. Finally, using the sino-
gram images, reconstruction images are computed,
which display the internal structure of the object and
are therefore suitable for further analysis.

The accuracy of CT analysis heavily relies on the
quality of the reconstructed images. However, in
many cases, the image quality can be insufficient for
further analysis. These effects are particularly chal-
lenging in low-dose CT, which is widely used in mod-
ern CT systems to reduce radiation dose and scan-
ning time. In low-dose CT, the acquired projection
images typically contain significant amounts of noise,
caused by the relatively low photon count received
at each detector pixel. Noisy projection images re-
sult in high noise levels in the reconstructed images,
hampering the detection of object features for further
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analysis.
Reducing the noise in reconstructed CT images has

been an active field of research for many years. Clas-
sical approaches of noise reduction include filtering
of the reconstructed image [16], iterative reconstruc-
tion [27, 45], and Block-matching with 3D filtering
(BM3D) [11]. Recently, deep-learning-based methods
have become increasingly popular due to their supe-
rior noise reduction results over classical approaches.
Many popular deep learning methods for CT noise
reduction use a post-processing approach, in which
a convolutional neural network (CNN) is applied to
the final reconstruction images [8, 33,54].
In addition to noise, a variety of artifacts can be

introduced in the acquisition of projection images
[5]. They propagate through the processing pipeline
and result in artifacts in reconstruction images. For
example, variations in detector response can cause
ring-like artifacts to appear in reconstruction im-
ages [6,35]. Similarly, single outliers captured by the
detector can cause zingers [29], resulting in crossing-
line artifacts in the reconstructed images. The key
difference between noise and these other types of arti-
facts is that they are typically non-local in the recon-
struction image. Non-local artifacts are challenging
to reduce in reconstruction images by methods that
exploit local image information, such as the popular
post-processing deep learning methods [15].
In this paper, we present a deep learning method

for artifact reduction in CT images that is specifically
designed for reducing non-local artifacts in addition
to noise. The idea of our approach is to follow a
similar approach to existing classical methods for re-
ducing such artifacts, in a multi-stage manner that
spans across the different data domains.
Existing processing pipelines typically include a

range of classical (i.e. non-learning) methods aimed
at reducing artifacts that are non-local in the recon-
struction image [3, 4, 6, 10, 13, 17, 23, 28, 29, 31, 32, 39,
42, 46–48, 50]. These methods aim to suppress the
artifacts at an early stage in the processing pipeline.
Examples are the reduction of zingers [13, 17, 29, 39],
which can be carried out by detecting and filter-
ing outliers in the projection images, and ring ar-
tifacts [3,4,6,23,28,31,32,42,46,47,50], which can be
reduced by detecting and filtering lines in the sino-

gram images. Although these methods are effective
and commonly used at experimental facilities, they
have several disadvantages. First, they typically re-
quire the correct setting of several parameters to re-
duce artifacts properly, which are difficult to choose
a priori. Second, the methods can introduce addi-
tional artifacts themselves, especially if the parame-
ters were not set optimally. In contrast, in this paper
we present a computationally efficient data-driven
approach that can automatically learn the parame-
ters for effective artifact reduction, without introduc-
ing additional artifacts further on in the pipeline.

Our approach is based on exploiting the fact that
each artifact corresponds to particular stages of the
processing pipeline where it can be naturally mit-
igated. To take advantage of this, we propose to
use a sequence of three CNNs, each trained to tar-
get artifacts at a specific processing step. First, the
projection images are processed by a CNN to reduce
artifacts that are relatively easy to reduce in projec-
tion images. The sinogram image and the output of
this first CNN are then processed by a second CNN
operating in the sinogram domain. Finally, a third
CNN is applied to the reconstruction images, in ad-
dition to the reconstructed outputs of the first and
second CNNs, to produce the final artifact-reduced
reconstruction image. To ensure computationally ef-
ficient training, we train the three CNNs indepen-
dently in a sequential manner. We show that high-
quality references for each stage, essential for training
using supervised learning, can be obtained in several
ways in practice, for example by scanning reference
objects with a high-dose and/or a large number of
projections. Details on obtaining reference data are
discussed in Section 3.3.

Our method shares similarities with unrolled deep
learning methods [1,2] as both apply neural networks
to different domains. Unrolled methods, typically ap-
plied in the sinogram and reconstruction domains,
can implicitly learn to reduce certain artifacts. Nev-
ertheless, they do not explicitly map sinograms to
artifact-free sinograms, potentially limiting their ar-
tifact reduction capabilities. Additionally, unrolled
methods involve multiple computationally costly to-
mographic operations both during training and ap-
plication, leading to substantial computational costs
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that can hinder their practical application. In con-
trast, the neural networks in our method can be
trained and applied sequentially, avoiding the high
computational costs of iteratively performing tomo-
graphic operations. This advantage allows for com-
putationally efficient artifact reduction and easy use
in practice.

This paper is organized as follows. Section 2 pro-
vides an overview of the related concepts and nota-
tion that underlie our motivation for the proposed
method. In Section 3, we describe the details of our
method, which involves using a series of CNNs to
reduce artifacts at different stages of the processing
pipeline, and describe ways of obtaining high-quality
reference data for training. Section 4 covers the ex-
perimental design and implementation specifics. In
Section 5, we present and analyze the experimental
results. Section 6 is dedicated to discussing the im-
plications and significance of our findings. Lastly, in
Section 7, we conclude the paper by highlighting po-
tential application areas for our method.

2 Notation and concepts

Different CT scanning configurations exist, such as
parallel beam, circular cone-beam, and helical cone-
beam. Our method is applicable for both parallel
and cone-beam CT, and it works with circular and
helical trajectories. In this work, we focus on the
parallel and circular cone-beam CT.

In this section, we first provide a comprehensive
overview of the CT pipeline that forms the basis
of our method. We then define the general nota-
tion for CT artifacts that arise from the acquisition
process and show how they propagate through the
pipeline, leading to artifacts in the reconstructed im-
ages. Next, we discuss deep learning-based denoising
methods for CT images and define their notations.
Finally, we introduce and define the notations for
classical artifact reduction operations that are per-
formed at different steps of the pipeline. This foun-
dation establishes the context and terminology for
our proposed artifact reduction method.

2.1 CT pipeline

We present a model of a CT pipeline, illustrated in
Figure 1, with three sequential steps. First, the CT
system scans the object and acquires a series of pro-
jection images. Second, those projection images are
rearranged into sinogram images. Finally, the recon-
structed images are computed. While in cone-beam
CT systems, the conversion from projection images
to sinogram images is not necessary for reconstruc-
tion, we still include this step to reduce non-local
artifacts on sinogram images, such as ring artifacts.
Thus, our proposed pipeline is suitable for both par-
allel and cone-beam CT.

Given a detector with M ×N pixels and Nθ scan-
ning angles, the object is scanned along a trajectory,
producing projection images p ∈ RNθ×M×N . We
first introduce the rearrange operation, denoted as
T , where

T : RNθ×M×N → RM×Nθ×N . (1)

We define sinogram images as the rearranged pro-
jection images s ∈ RM×Nθ×N . In the reconstruc-
tion stage, reconstruction methods are applied to the
sinogram images to compute the reconstructed im-
ages r ∈ RZ×Y×X . The reconstruction operation is
R, where

R : RM×Nθ×N → RZ×Y×X . (2)

The projection images p, sinogram images s, and
reconstructed images r represent the same underly-
ing object and are three data representations in the
pipeline.

2.2 Artifacts

We focus on noise, ring, and zinger artifacts. For a
general artifact introduced by the imaging process,
we illustrate its propagation through the pipeline,
leading to artifacts in the reconstructed images. Ad-
ditionally, we provide schematic representations of
the different artifacts in each pipeline stage to facili-
tate a better understanding of their characteristics.

Corrupted projections p̂ = {x̂1, ..., x̂Nθ
} consist of

a series of corrupted projection images x̂i, and are
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Figure 1: Schematic representation of a typical CT pipeline, consisting of three stages: projection, sinogram,
and reconstruction stage.

a combination of the underlying clean projection im-
ages p and artifacts n,

p̂ = p+ n. (3)

For example, n can contain noise, offsets of pixel
values that cause ring artifacts, and/or outliers that
cause zinger artifacts. In a scenario where no artifact
removal steps are included in the CT pipeline and, for
illustration, we assume a linear reconstruction opera-
tion Rlin, the resulting reconstruction images would
be expressed as r̂:

r̂ = Rlin (T (p̂)) = Rlin (T (p)) +Rlin (T (n)) . (4)

Here, Rlin (T (p)) represents the ideal artifact-free
reconstruction image, andRlin (T (n)) represents the
artifacts originating from artifact term n in corrupted
projection images. In this manner, artifacts that oc-
cur during acquisition are passed through the pipeline
and become artifacts in the reconstructed images.
In the following, we describe three common artifact
types encountered in (high-energy) CT systems. Ex-
isting methods for reducing artifacts are discussed in
Section 2.4.

2.2.1 Noise

Poisson noise is a common artifact in CT, arising
from insufficient photon counts at the detector [5].
Low-dose CT can suffer from strong noise artifacts
due to fewer photons captured by the detector pix-
els. Poisson noise is introduced during acquisition
and presents as local disruptions in projection im-
ages. It corresponds to a local perturbation in all
stages of the CT pipeline, as illustrated in Figure 2.

Figure 2: Representations of noise, ring, and zinger
artifact in projection, sinogram, and reconstruction
stages. Red patterns are schematic illustrations of
distortions. Noise is a local artifact in images of
all stages. A distorted pixel value in the projec-
tion images becomes a line in the sinogram, resulting
in a ring artifact in the reconstructed image. Ex-
tremely high pixel values remain as high-value spots
in the sinogram and cause crossing lines in the recon-
structed image as zinger artifacts.
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2.2.2 Ring Artifact

Ring artifacts arise from systematic detector errors,
such as miscalibrated or defective elements in the de-
tector. For example, as demonstrated in Figure 2, a
detector element may record its value with an addi-
tive offset applied to the actual data [5, 35]. Consis-
tent detector offsets in the projection images trans-
late to straight lines in sinogram images and become
ring-like artifacts in the reconstructed images.

2.2.3 Zinger Artifact

Zinger artifacts often appear in high-energy CT, such
as synchrotron CT. It is caused by extremely high-
value spots in projection images because the detec-
tor occasionally records high-energy photons [29].
These erroneously high values don’t correspond to
the scanned object. Since these spots’ occurrence is
stochastic among projections, they appear as promi-
nent local spots in sinograms, as shown in Figure 2.
After reconstruction, the local artifacts become cross-
ing streaks in the reconstructed images.

2.3 Denoising with Deep Learning

Deep learning methods have shown promising results
in CT image denoising. One popular approach for
denoising low-dose CT is using a CNN as a post-
processing step on reconstructed images [8, 33, 54].
To gain such denoising ability, the CNN is trained in
a supervised manner, learning the mapping from low-
quality reconstructed images to their corresponding
high-quality ones. We explain denoising with a CNN
on reconstructed images in the following.
We use the notation fθ to represent the CNN,

where θ corresponds to the network’s trainable pa-
rameters. In post-processing deep learning for CT
images, the CNN is applied directly to the corrupted
reconstruction image r̂ to produce a denoised recon-
struction image rPP:

rPP = fθ(r̂) (5)

Note that in this paper we will focus on CNNs
that process two-dimensional images using two-
dimensional convolutional operations, as these

are computationally more efficient than three-
dimensional CNNs. Since CT images are typically
large, i.e. often larger than 10003 pixels, 3D CNNs
can have prohibitive computational costs. The nota-
tion in Equation 5 represents applying the 2D CNN
fθ to each of the Z slices of r̂ separately, and collect-
ing the Z output images in rPP.

To determine the parameters θ of the CNN fθ such
that rPP approximates an artifact-free reconstruc-
tion, supervised learning is often used. In supervised
learning, we assume that for a set of N t corrupted re-
constructions r̂i we have corresponding high-quality
reference reconstructions rHQ

i available, resulting in

a training set X = {(r̂1, rHQ
1 ), . . . , (r̂Nt , rHQ

Nt )}. High-
quality reconstructions can be obtained in various
ways, for example by scanning with a high radiation
dose, acquiring a large number of projection images,
or applying advanced reconstruction techniques for a
set of reference objects. Given the training set X,
suitable parameters for the post-processing CNN can
be found by minimizing the following objective func-
tion:

θ∗ = argmin
θ

Nt∑
i=1

L
(
fθ(r̂i), r

HQ
i

)
, (6)

where L is a loss function measuring the difference
between the CNN output and the reference image.

Post-processing CNN methods have proven effec-
tive in reducing noise from CT images in a wide va-
riety of applications. However, CNNs typically learn
to exploit local information due to their use of small
convolution kernels, even when their depth allows
for large receptive fields. Therefore, we expect post-
processing deep learning methods to be less effective
for artifacts that are non-local in the reconstruction
domain than for local artifacts. In Figure 3, results
are shown for an experiment to test this hypothe-
sis. The results show that the post-processing deep
learning-based methods indeed perform well for noise
reduction, but yield suboptimal results for non-local
ring and zinger artifacts in addition to noise. This ob-
servation is the main motivation for developing the
multi-stage method presented in this paper.

5



1.27

1.27

0.23

0.23
19.15

19.99

0.69

0.72

w
ith

 n
oi

se
w

ith
 g

lo
ba

l a
rti

fa
ct

s

referencepost-processing resultcorrupt

Figure 3: Comparison of deep learning-based post-
processing performance on reconstructed images af-
fected by noise and non-local artifacts. The red and
green insets show enlarged views of the affected areas.
PSNR and SSIM values are provided in the top-right
and lower-right corners, respectively.

2.4 Classical Artifact Reduction
Methods

In practice, classical (i.e. non-learning) artifact re-
duction methods are typically performed at differ-
ent stages of the CT pipeline. Table 2.4 provides
an overview of representative methods for reducing
noise, ring, and zinger artifacts, and indicates the
stages in the pipeline where they are applied. Ring
artifact reduction is typically performed at the sino-
gram stage, while zinger artifact reduction is often
applied to projections. On the other hand, denois-
ing techniques are commonly used to process recon-
structed images directly. To describe the various ar-
tifact reduction methods, we define the operations
Ap, As, and Ar to denote the artifact reduction op-
erations for projection, sinogram, and reconstructed
images, respectively. In a pipeline that includes such
methods, the reconstruction image rPL is computed
by applying the methods at each stage:

rPL = Ar (R (As (T (Ap (p̂))))) . (7)

We introduce some classical methods for reducing
noise, ring, and zinger artifacts that fit as Ap, As,

and Ar in the pipeline. Classical denoising methods,
often post-processing based, can reduce noise by cal-
culating the pixel value from its neighbors, like me-
dian or Wiener filtering. Total Variation (TV)-based
regularization methods [41] reduce noise iteratively
under the local smoothness assumption. BM3D is
based on the similarity of patches within an image
[11]. These classical denoising methods can be math-
ematically expressed as Ar in Equation 7, since they
are applied to reconstructed images. Often, noise re-
duction is performed (either explicitly or implicitly)
by the reconstruction method R as well.

Ring artifacts, which appear as straight lines in
sinograms, are often reduced by filtering these lines.
Methods like [4,6,23,31] reduce the ring artifact by fil-
tering the straight lines in the sinogram stage. Some
methods [7, 44] transform reconstructed images into
the polar coordinate system, transforming rings into
straight lines for line detection-based approaches.
The common ring artifact reduction method that acts
on sinogram images can be expressed as As in Equa-
tion 7. Zinger artifacts are often reduced in the pro-
jection images by filtering. For example, Tomopy [17]
provides a zinger reduction function using median fil-
ters. The operation on projection images can be ex-
pressed as Ap in Equation 7.

3 Algorithm

In this section, we present our proposed multi-stage
artifact reduction method and its motivation. We
then provide a detailed description of the method,
along with the training procedure of the CNNs and
ways to obtain high-quality reference data for train-
ing. Finally, we discuss the key design choices that
make our method computationally efficient.

3.1 Motivation for Multi-stage Arti-
fact reduction

In the context of the CT pipeline described in Equa-
tion 7, deep learning-based denoising methods can
be viewed as using a CNN fθ to act as Ar. How-
ever, for reconstructed images corrupted by glob-
ally distributed artifacts in addition to noise, post-
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Table 1: Overview of artifact reduction methods at different stages of the CT pipeline.
Artifact Projection Sinogram Reconstruction
Noise [14,21,25,51] [9, 20,26,27,33,37,38,43,53,55,56]
Ring [10,48] [3, 4, 6, 23,28,31,32,42,46,47,50] [7, 22,30,32,44,52,57]
Zinger [13,17,29,39] [22]

processing can be insufficient, as shown in Figure 3.
Classical methods reduce such artifacts effectively by
processing the projection and sinogram data before
reconstruction in the pipeline. This inspires the use
of neural networks to replace Ap and As in addition
to only replacing Ar. In this way, the advantage of a
classical CT pipeline is maintained, as some artifacts
are easier to remove in projection or sinogram images
than in reconstruction images. Compared with classi-
cal methods, using neural networks has the advantage
that they can be optimized to each problem setting in
a data-driven way, remove the need for setting sensi-
tive parameters correctly, and ensure computational
efficiency during the inference phase.

3.2 Multi-stage Artifact reduction

Our data-driven method, shown schematically in Fig-
ure 4, employs three CNNs serving as Ap, As, and
Ar in Equation 7. Each stage employs a distinct neu-
ral network to process the projection, sinogram, and
reconstruction data sequentially. The processed data
from the previous stages are fed into each subsequent
stage, improving the artifact reduction performance.
The three CNNs are trained independently in a se-
quential manner, ensuring computationally efficiency
during training.

In the first stage, we use a CNN fp
θp

to act as Ap

for processing projection images in the Equation 7.
We obtain processed projections p∗ by applying fp

θp

on the corrupted projections p̂,

p∗ = fp
θp
(p̂). (8)

As in Equation 5, the notation represents applying
the 2D CNN fp

θp
to each of the Nθ projections of p̂,

and collecting the Nθ output images in p∗.
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Figure 4: Our proposed multi-stage artifact reduction
method. Red patterns are schematic illustrations of
distortions and their resulting artifacts.

In the second stage, we use another CNN fs
θs

as
As to process sinogram images in Equation 7. fs

θs
takes both corrupted sinograms T (p̂) and the pro-
cessed projections T (p∗) as input, and output pro-
cessed sinograms s∗,

s∗ = fs
θs (T (p̂) , T (p∗)) . (9)

As above, the notation represents applying the 2D
CNN fs

θs
to each of the M sinograms of p̂ and T (p∗),

and collecting theM output images in s∗. In the final
stage, we use the third CNN fr

θr
to act as Ar for

the reconstructed images in Equation 7. The input
to the network consists of corrupted reconstructions
R (T (p̂)), reconstructions of the output of the first
stage R (T (p∗)), and reconstructions of the output
of the second stage R (s∗):

r∗ = fr
θr (R (T (p̂)) ,R (T (p∗)) ,R (s∗)) (10)

As above, the notation represents applying the 2D
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CNN fr
θr

to each of the Z slices of R (T (p̂)),
R (T (p∗)), and R (s∗), and collecting the Z output
images in r∗. Our method is summarized in Algo-
rithm 1.

Algorithm 1 Inference method

Input: low-quality projection images p̂, recon-
struction method R, trained networks fp

θp
, fs

θs
, and

fr
θr
.
Output: reconstruction images with reduced ar-

tifacts r∗

1: procedure Inference
2: Apply fp

θp
to p̂ to obtain projection images

p∗ = fp
θp
(p̂).

3: Rearrange the low-quality projection images
p̂ and the output of the first CNN p∗ to obtain
sinogram images T (p̂) and T (p∗)

4: Apply fs
θs

to the two sets of sinogram im-
ages to obtain output sinogram images s∗ =
fs
θs
(T (p̂) , T (p∗))

5: Reconstruct the low-quality projection im-
ages and the outputs of both CNNs to obtain
R (T (p̂)) ,R (T (p∗)) ,R (s∗)

6: Apply fr
θr

to the three sets of recon-
struction images from the previous step to
obtain output reconstruction images r∗ =
fr
θr

(R (T (p̂)) ,R (T (p∗)) ,R (s∗))
7: end procedure

3.3 Training Procedure

It is possible to view the multi-stage method de-
scribed in Algorithm 1 as one large neural network
that takes the corrupted projections and produces
a reconstruction, with a set of learnable parame-
ters Θ = {θp, θs, θr}. Any training approach suit-
able for such mappings, including the training ap-
proaches commonly used for post-processing deep
learning methods, would be, at least in principle, ap-
plicable to find suitable values for Θ. However, even
though the neural networks used in our approach are
2D, the fact that the method includes rearrange op-
erations T and reconstruction operations R necessi-
tates that such end-to-end training approaches have

to be performed in 3D. As explained above, the large
size of typical CT problems makes such 3D training
prohibitively computationally expensive. As an alter-
native, we propose a computationally efficient way of
training the three CNNs separately in a sequential
manner, ensuring practical applicability.

In the following, we will describe our proposed
training procedure using a supervised learning ap-
proach, although other learning approaches such as
self-supervised learning are possible as well. For
the supervised training, high-quality reference pro-
jections, sinograms, and reconstructions are required.
These high-quality references can be obtained in var-
ious ways, depending on the practical use case. One
possibility is to scan the reference objects with a high
dose and a large number of projections. In this case,
reference reconstructions can be obtained by recon-
structing the acquired high-quality data. If the set of
projection angles of the low-quality scan is included
in the set of projection angles of the high-quality
scan, high-quality projections can be obtained by se-
lecting the matching angles. If the projection angles
do not match, one possibility is to simulate projec-
tions of high-quality reconstructions for the correct
low-quality angles, for example using the ASTRA
toolbox [49]. An alternative to high-dose reference
scans is to create reconstructions with reduced ar-
tifacts for the reference objects by using advanced
experimental setups that suppress artifacts [35, 58],
and/or use sophisticated processing techniques with
carefully chosen parameter settings. Afterward, pro-
jections from high-quality reconstruction can be sim-
ulated to obtain high-quality projections and sino-
grams.

We start by training CNN fp
θp

to find suitable pa-
rameters θp. Similar to the supervised learning de-
scribed in Section 2.3, we assume that that for a
set of N t scanned objects with corrupted projec-
tions p̂i we have corresponding high-quality reference
projections pHQ

i available, resulting in a training set

Xp = {(p̂1,p
HQ
1 ), . . . , (p̂Nt ,pHQ

Nt )}. Given the train-
ing set Xp, suitable parameters for fp

θp
can be found
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by minimizing the following objective function:

θ∗p = argmin
θp

Nt∑
i=1

Lp
(
fp
θp
(p̂i),p

HQ
i

)
(11)

After training fp
θp
, we continue by training the

CNN fs
θs

that acts in the sinogram domain. Sim-
ilar to above, we assume that for the same set of
N t scanned objects, we have pairs of corrupted sino-
grams ŝi = T (p̂i) and corresponding high-quality ref-

erence sinograms sHQ
i available. Note that in this

case, it could happen that the high-quality sinograms
include more projection angles, i.e. have more rows,
than the corrupted sinograms. In this case, we up-
sample the corrupted sinograms to match the number
of rows before using them as input to the neural net-
works. For all N t reference objects, we also compute
projections p∗

i = fp
θ∗
p
(p̂i) corresponding to the output

of the first trained network. Given the training set,
suitable parameters for fs

θs
can be found by minimiz-

ing the following objective function:

θ∗s = argmin
θs

Nt∑
i=1

Ls
(
fs
θs(ŝi, T (p∗

i )), s
HQ
i

)
(12)

Finally, we train the CNN fr
θr

that acts in the re-
construction domain. Similar to above, we assume
that for the same set of N t scanned objects, we have
pairs of corrupted reconstructions r̂i = R(ŝi) and
corresponding high-quality reference reconstructions
rHQ
i available. For all N t reference objects, we also
compute sinograms s∗i = fs

θ∗
s
(ŝi, T (p∗

i )) correspond-
ing to the output of the second trained network.
Given the training set, suitable parameters for fr

θr
can be found by minimizing the following objective
function:

θ∗r = argmin
θr

Nt∑
i=1

Lr
(
fr
θr (r̂i,R(T (p∗

i )),R(s∗i )), r
HQ
i

)
(13)

The training approach is summarized in Algorithm 2.

4 Experiments

In this section, we explain the purpose of our exper-
iments and describe the datasets, on which we con-

Algorithm 2 Training procedure

Input: low-quality projection images p̂i and high-
quality projections pHQ

i , sinograms sHQ
i , and recon-

structions rHQ
i for a set of N t reference objects. Loss

functions Lp, Ls, and Lr.
Output: weights of CNNs: θ∗p, θ

∗
s , θ

∗
r .

1: procedure Training
2: Train in the projection domain to obtain θ∗p =

argminθp
∑Nt

i=1 L
p
(
fp
θp
(p̂i),p

HQ
i

)
.

3: Compute projections p∗
i = fp

θ∗
p
(p̂i) corre-

sponding to the output of the first trained net-
work.

4: Train in the sinogram domain to obtain θ∗s =

argminθs
∑Nt

i=1 L
s
(
fs
θs
(ŝi, T (p∗

i )), s
HQ
i

)
.

5: Compute sinograms s∗i = fs
θ∗
s
(ŝi, T (p∗

i )) cor-
responding to the output of the second trained
network.

6: Train in the reconstruc-
tion domain to obtain θ∗r =

argminθr
∑Nt

i=1 L
r
(
fr
θr
(r̂i,R(T (p∗

i )),R(s∗i )), r
HQ
i

)
.

7: end procedure
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duct those experiments. In addition, we describe our
implementation details and introduce the metrics we
used to asses those experiments.

4.1 Experiment Design

We conducted four tailored experiments to validate
our method. First, we used a simulated dataset to
compare our approach against a deep learning post-
processing technique. Second, we contrasted it with
classical artifact reduction tools followed by deep
learning-based post-processing, notably the outlier
removal and Fourier-Wavelet ring removal from To-
moPy [31], underscoring challenges in optimal pa-
rameter selection for classical techniques. Third, we
integrated our solution into a standard cone-beam
CT pipeline, examining the effect of different source-
object distances (SODs) and comparing efficiency be-
tween cone-beam and parallel-beam CT. Fourth, us-
ing an experimental CT dataset, we assessed our
method’s real-world robustness, emphasizing its su-
periority over deep learning post-processing and its
potential for seamless integration into existing CT
pipelines.

4.2 Datasets

4.2.1 Simulated data

We generated simulated cylinder foam phantoms us-
ing the package foam ct phantom [34]. For each ex-
perimental setup, two phantoms were generated: one
for training and one for testing purposes. Each phan-
tom consisted of 100000 non-overlapping bubbles of
varying sizes randomly distributed within a cylinder.
While the training and testing phantoms contained
the same number of bubbles, they were generated
with different spacing configurations. Projection im-
ages of 512 × 512 pixels were simulated for 1024 an-
gles equally distributed in 180◦ with a parallel beam
geometry. For the cone-beam experiment a similar
setup was used, with the detector positioned at the
center of the foam phantom cylinder to achieve an
ideal object-detector distance of zero and the source-
object distance varied to produce different cone an-
gles in the experiment. To simulate low-dose pro-

jections, the generated projection images were cor-
rupted with Poisson noise in the same way as de-
scribed in [34], i.e. through converting projection
data to raw photon counts. For more noise gener-
ation details, we refer to [34]. In this approach, the
noise level is controlled by two parameters: the aver-
age absorption γ and the incident photon count I0.
In our experiments, we set the average absorption γ
such that roughly half of the photons are absorbed by
the object and vary the photon count I0 to generate
different noise levels.

We simulate ring and zinger artifacts based on
their respective occurrence mechanisms. Ring arti-
facts were simulated by introducing fixed deviations
to a randomly selected subset of detector pixels, mim-
icking the scenario where certain elements of the de-
tector recorded values with systematic errors. The
deviations, denoted as dring ∈ RM×N , were deter-
mined based on the percentage of affected pixels Pring

and standard deviation σring:

dring = M (Pring)N
(
0, σ2

ringI
)
, (14)

where M (Pring) represents a fixed mask with Pring

percentage of pixels set to one and the rest set to
zero. The corrupted projections p̂ = {x̂1, ..., x̂Nθ

}
were obtained by adding dring to each projection im-
age xi:

x̂i = xi + dring. (15)

The parameter Pring controls the amount of ring-like
artifacts in a single reconstructed slice, while a larger
σring results in higher pixel values of occurred rings.
In the following, σring is fixed at 0.005, and Pring is
adjusted to change the severity.

To simulate zinger artifacts, we replaced a small
subset of randomly chosen pixel values with exces-
sively high values in certain projection images. The
excessively high values were aimed to simulate the
highest values that a detector can receive. The sever-
ity of the zinger artifact is controlled using three
parameters: the percentage of affected projections
Pproj, the percentage of affected pixels in the affected
projection Pzinger, and the excessively high value v.
We set Pproj at 10%, indicating that 10% of the to-
tal number of projection images were affected and
fixed v at 5. We use Pzinger to vary the severity of
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Figure 5: Example image with various levels of ar-
tifacts on a simulated foam phantom dataset. The
artifacts, including noise, ring artifacts, and zinger
artifacts, were generated by varying the parameters
I0, Pring, and Pzinger, respectively. The PSNR and
SSIM metrics with respect to the ground truth image
are provided for each reconstructed image, displayed
in the bottom left.

the zinger artifact, where increasing Pzinger leads to
more streaks in every reconstructed slice.

In addition to noise and ring artifacts, the quality
of the reconstructed image was further degraded in
low-quality data by using only 256 projection images,
while high-quality data used all 1024 projection im-
ages. The reconstruction images were computed us-
ing the GPU-accelerated FBP and FDK implementa-
tions of the ASTRA toolbox [49]. The reconstructed
phantom consisted of 512×512×512 voxels, and a cir-
cular filter from TomoPy [17] was applied to remove
the corners of each slice. Figure 5 shows examples of
the simulated foam phantom with artifacts of differ-
ent severity levels, showing that reducing I0 leads to
more noise and increasing Pring and Pzinger results in
more severe ring and zinger artifacts, respectively, in
the reconstructed images.

4.2.2 Experimental data

To validate our method, we utilized a real-world
experimental dataset. The dataset we used is the

fatigue-corrosion dataset from TomoBank [12].
This dataset consists of 25 distinct tomographic
datasets of an aluminum alloy at various stages of
fatigue cycles. Each dataset includes 1500 projec-
tion images of size 2560× 2160 pixels, with the 1500
projections being equally distributed over 180◦. Ad-
ditionally, ten dark fields and ten flat fields were cap-
tured before scanning and provided in each dataset.

For training and testing, we selected tomo 00056

with 14346 fatigue cycles and tomo 00055 with 14300
fatigue cycles. To create high-quality data, we per-
formed flat-field correction using the median of all ten
flat fields and dark fields. To produce correspond-
ing low-quality data, we used one flat field and one
dark field (randomly selected) for flat-field correc-
tion and selected 500 equally-spaced projection im-
ages out of the original 1500 projections. We re-
constructed both low- and high-quality data using
the GPU-accelerated FBP implementation of the AS-
TRA toolbox [49]. Slight ring and zinger artifacts
were still present, even after using the median flat
fields and dark fields. Therefore, we applied addi-
tional processing steps for the high-quality data us-
ing TomoPy [17]: a median filter-based zinger re-
moval algorithm on the projection images, and a po-
lar coordinate-based ring removal algorithm on the
reconstructed images. Parameters for these algo-
rithms were chosen by visual assessment.

4.3 Implementation

The neural networks used in this work are the UNet
network [40] and the mixed-scale dense (MS-D) net-
work [36]. For our method, we used UNets with 4
intermediate channels and an MS-D network with a
depth of 100 for every stage. The trainable param-
eters of the network used in each stage are shown
in Table 2. As a comparison, we also trained UNet
and MS-D networks as deep learning-based post-
processing methods. Since our method consists of
three stages with three separate neural networks, we
increased the intermediate channels to 7 for UNet and
depth to 180 for the MS-D network to make sure that
the networks used in both approaches had a similar
number of parameters, as shown in Table 2.

At each stage, the networks are trained for 200,
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Table 2: Number of trainable parameters of used neural networks, both for our proposed method (total)
and the deep learning-based post-processing method we compare with (post-proc.).

network stage 1 stage 2 stage 3 total post-proc.

UNet 122389 122425 122461 367275 373234
MS-D 45652 46553 47454 139659 146972

200, and 500 epochs with ADAM optimizer [24], L2
loss function, and initial learning rate of 10−3. The
training for the last stage was chosen to be longer
than the first two stages because it had more compli-
cated image features to learn in this stage. The deep
learning-based post-processing networks were trained
for 900 epochs to match the total epochs number. All
training sessions used an early stopping strategy: if
the validation loss was not improved for 10 successive
epochs or the total training time exceeded 14 days,
the training was stopped. The training data for the
projection and reconstruction stage was augmented
with horizontal flipping, vertical flipping, and rota-
tion, while the training data for the sinogram stage
was augmented with horizontal and vertical flipping
only.
In this work, we used Peak Signal to Noise Ra-

tio (PSNR) and Structural Similarity Index Measure
(SSIM) as our performance metrics. These metrics
were derived from high-quality reference data, and
they facilitated the comparison of our method’s per-
formance with other techniques. Both PSNR and
SSIM calculations were based on the reference data’s
range.

5 Results

5.1 Simulated data

We summarize the results on simulated data in three
different aspects: (i) comparison of our method and
deep learning-based post-processing; (ii) artifact re-
duction in each stage; (iii) impact of used neural net-
works in our method. We test various severity levels
of Poisson noise, ring artifacts, and zinger artifacts
by varying the corresponding parameters I0, Pring,
and Pzinger. The figures shown in this section were

based on artifact levels I0 = 30, Pring = 0.1, and
Pzinger = 0.001.

5.1.1 Comparison with post-processing

Figure 6 contrasts our multi-stage method with
deep learning-based post-processing. Our multi-stage
method yields images closer to the high-quality ref-
erence, effectively reducing ring and zinger artifacts
unlike post-processing, which struggles with globally
distributed ring artifacts. The difference also shows
quantitatively in the PSNR and SSIM values: our
method yields a PSNR of 22.25 dB and SSIM of
0.76, surpassing post-processing’s PSNR of 19.89 dB
and SSIM of 0.70. Table 3 details these compar-
isons for different artifact severities, with our method
consistently outperforming in PSNR and SSIM met-
rics. Particularly when globally distributed artifacts
and noise are present, our method shows significant
improvement, emphasizing the effectiveness of pro-
cessing across projection, sinogram, and reconstruc-
tion stages. These results show that globally dis-
tributed artifacts can be difficult to reduce with post-
processing methods, but easy to reduce if processing
also takes place in the projection and sinogram stage
before reconstruction in the pipeline.

5.1.2 Artifact reduction in each stage

The impact of our multi-stage strategy on artifact re-
duction was evaluated by examining results at each
stage, as shown in Figure 7. Initial projection im-
age processing effectively reduced most zinger arti-
facts and some ring artifacts, with PSNR and SSIM
improving to 18.17 dB and 0.45, respectively. Sub-
sequent sinogram processing reduced most ring arti-
facts, though at the expense of some high-resolution
details, further enhancing PSNR to 18.80 dB and
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corrupt post-processing ours reference
1.40 19.89 22.25

0.23 0.70 0.76

Figure 6: Results comparison of our method and deep learning-based post-processing. The red insets indicate
enlarged views. The PSNR (top left) and SSIM (bottom left) are shown in each image.

Table 3: Comparison of our method with deep learning-based post-processing on the simulated foam phantom
dataset, PSNRs and SSIMs are shown as the average of all slices, with best values shown in bold.

Parameters PSNR/SSIM
(I0, Pring, Pzinger) corrupt method UNet MS-D

30, 0.1, 0.001 1.14/0.23
post-proc. 19.14/0.69 19.47/0.70

our 20.92/0.74 21.75/0.76

100, 0.1, 0.001 4.07/0.27
post-proc. 21.18/0.73 21.98/0.75

our 23.56/0.78 24.50/0.79

200, 0.1, 0.001 4.95/0.29
post-proc. 22.27/0.76 23.15/0.77

our 25.00/0.79 25.69/0.80

100, 0, 0 8.47/0.35
post-proc. 24.16/0.78 24.14/0.78

our 24.79/0.79 25.59/0.80

100, 0.2, 0 3.04/0.26
post-proc. 20.86/0.70 21.77/0.74

our 22.96/0.77 24.06/0.78

100, 0.4, 0 0.70/0.23
post-proc. 20.01/0.71 21.02/0.73

our 22.34/0.77 23.48/0.78

100, 0, 0.005 3.20/0.26
post-proc. 21.57/0.75 21.02/0.73

our 24.37/0.79 23.65/0.78

100, 0, 0.01 0.90/0.23
post-proc. 20.18/0.73 20.97/0.73

our 24.33/0.79 24.86/0.79
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SSIM to 0.47. The final stage of processing the re-
constructed images restored numerous image details,
smoothed the image, and significantly elevated the
PSNR to 22.25 dB and SSIM to 0.76.

5.1.3 Neural network architecture

Both UNet and MSD-Net effectively reduced arti-
facts in our method. However, it is worth noting
that other image-to-image neural networks could also
be suitable replacements for them. Additionally, dif-
ferent neural networks could be used for each stage
of our method. Our results in Table 3 showed that
MSD-Net achieved superior metrics in almost every
case, for both our method and deep learning-based
post-processing. MSD-Net’s performance may be at-
tributed to its lower number of trainable parameters
compared to UNet. Specifically, the MSD-Net used
for post-processing had only 47454 trainable param-
eters, while the UNet had 122461 trainable parame-
ters. The low number trainable parameters of MSD-
Net can help to reduce the risk of over-fitting in cases
with a limited amount of training data [33].

5.2 Comparison with classical meth-
ods and deep learning

In this experiment, we compared classical methods
followed by deep learning-based post-processing to
our method using the foam phantom dataset with ar-
tifact level I0 = 100, Pring = 0.1, and Pzinger = 0.001.
Five parameters needed determination for the classi-
cal methods. Using grid search, we tested various pa-
rameter combinations and calculated the MSE error
for 3840 settings against reference projection data.
Despite achieving the lowest MSE, the reconstructed
image exhibited new artifacts around the rotation
center. To address this issue, we visually assessed the
reconstructed slices of processed data and selected a
different combination of parameters. This new com-
bination had slight ring artifacts but no severe ad-
ditionally introduced artifacts. We show results for
both combinations of parameters, with the specific
parameter settings shown in Table 7 in the Appendix.
The data was processed by classical methods with

the determined values and reconstructed using FBP.

Table 4: Comparison of the average PSNR and SSIM
values of our proposed method with classical methods
combined with deep learning-based post-processing
on the simulated foam phantom dataset. The values
are calculated as the average of all slices.

PSNR/SSIM
method pre-processed result

no artifact removal 4.07/0.27 -
grid 8.58/0.33 22.76/0.77

grid+visual 8.10/0.33 23.41/0.77
our - 24.50/0.79

A 180-layer deep learning-based MS-D network was
then trained. After training, both the classical meth-
ods and the trained MS-D network were applied to
the test data. Results were contrasted with our multi-
stage method, shown in Fig 8. These results indi-
cate that artifacts from the initial setup persist af-
ter post-processing, affecting reduction performance.
Our multi-stage method outperformed both classical
and post-processing approaches, even with visually
determined parameters for classical algorithms. Av-
erage metrics across slices are in Table 4. The results
highlight the drawback of classical methods that pa-
rameters have to be set correctly to work properly,
and choosing suboptimal values can result in addi-
tional artifacts. In contrast, our data-driven method
requires no parameter tuning and outperforms classi-
cal methods combined with deep learning-based post-
processing.

5.3 Cone-beam CT

To assess the effectiveness of our multi-stage method
for cone-beam CT, we performed an experiment using
the simulated foam phantom dataset. We simulated
cone-beam CT with varying SODs on these phan-
toms and introduced fixed levels of artifacts (I = 100,
Pring = 0.1, and Pzinger = 0.001). Evaluation met-
rics were then computed for all test phantom recon-
struction images and averaged. Parallel-beam recon-
structed images served as our reference.

Table 5 demonstrates that our method effectively
improved the PSNRs and SSIMs of the original cor-
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Figure 7: Method output of all three stages. The sinograms are cropped to squares for demonstration
purposes. The red insets indicate enlarged views. The PSNR (top left) and SSIM (bottom left) are shown
in each image.
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Figure 8: Results comparison of classical methods and our proposed method. The red insets indicate the
enlarged views. PSNR and the SSIM are given in the top left and bottom left corners, respectively.
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rupted data for all SODs. As the cone angle de-
creased, the PSNRs and SSIMs increased and ap-
proached the results obtained from parallel-beam re-
construction, indicating better artifact reduction per-
formance. This experiment confirms that our method
is applicable to cone-beam CT and achieves superior
artifact reduction results, particularly as the cone an-
gle decreases.

5.4 Real-world experimental data

The performance of our method on real-data data
was similar to that on simulated data, as it was
able to reduce artifacts effectively. Figure 9 shows
the output of each stage in our method as well as
deep learning-based post-processing as a comparison.
The results show that the unprocessed corrupt re-
constructed image includes severe ring, zinger, and
noise artifacts. Similar to the simulated data, the
first stage of processing reduced some ring and most
zinger artifacts, while the ring and zinger artifacts
were further reduced in the second stage. The final
stage improved the image quality and reduced the re-
maining noise. As we compare our final stage output
with deep learning-based post-processing, we can see
that post-processing failed to reduce ring and zinger
artifacts in this slice while our multi-stage method
reduced them effectively.

The average PSNR and SSIM on all reconstructed
slices are listed in Table 6. The results show that our
method achieved better metrics than deep learning-
based post-processing regardless of the used neu-
ral network architecture. Specifically, MS-D Net
achieved better metrics than UNet using our method,
but worse metrics than UNet in the post-processing
setting. This result could be related to underfitting,
as, even with a depth of 180, the trainable parame-
ters of MS-D Net may still be too few on this dataset
with 2560 × 2560 pixel images. MS-D Net achieved
better metrics than UNet in our setting, indicating
that our multi-stage strategy might require smaller
networks than post-processing.

5.5 Computation time

We conducted a computational comparison between
our method and post-processing using a simulated
foam phantom with artifact levels I0 = 30, Pring =
0.1, and Pzinger = 0.001 using MS-D network. The
raw corrupted projection consisted of 256 projection
images of size 512 × 512 pixels. The computations
were performed on a workstation equipped with an
Intel i7-11700KF CPU and Nvidia RTX3070 GPU.

In our method, the raw projection underwent three
sequential stages, with each stage involving a sepa-
rate CNN. Additionally, the processed sinogram im-
ages were upsampled four times in the sinogram
stage. As shown in Figure 10, the total inference time
for our method was 56.18 seconds, while for post-
processing it was 41.40 seconds. The training time
for each stage of our multi-stage training was 9 min-
utes, 6 hours 50 minutes, and 3 hours 38 minutes, re-
spectively. The total training time of our multi-stage
training was 10 hours and 37 minutes. In contrast,
the training time for post-processing was around 14
hours and 31 minutes.

6 Discussion

The experiments performed in this paper indicate
that the proposed multi-stage method effectively re-
duces artifacts in CT images, outperforming clas-
sical methods combined with post-processing and
deep learning-based post-processing. Our method
achieves accurate artifact reduction on both the sim-
ulated and experimental datasets. In particular, our
method demonstrates a greater advantage over post-
processing when severe ring and zinger artifacts are
present in the reconstructed images. However, even
when only noise is present in the reconstructed im-
ages, our multi-stage strategy still outperforms post-
processing. a qs Our method has several advantages
over existing methods. First, it employs a multi-stage
approach that reduces artifacts accurately in their
natural domain, where the artifact is easier to reduce
than in other domains. By processing data in the
projection, sinogram, and reconstruction domains,
our method can effectively reduce different artifacts
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Table 5: Results of our method on cone-beam CT images. PSNR and SSIM are shown in the table.

PSNR/SSIM
cone angle (◦) 22.62 11.42 7.62 5.72 4.58 3.82 0

corrupt 5.66/0.28 5.73/0.29 5.70/0.29 5.66/0.29 5.62/0.29 5.60/0.29 4.07/0.27
ours 19.55/0.63 22.07/0/73 22.85/0.75 23.41/0.76 23.45/0.77 23.53/0.77 24.50/0.79

corrupt stage 1 stage 2 stage 3 reference
2.12 32.11 34.87 35.20

0.21 0.61 0.76 0.77

33.56

0.70

post-processing

Figure 9: Results comparison of our method and deep learning-based post-processing on fatigue-corrosion

datasets. The output of all three stages of our method is shown. The red insets indicate enlarged views.
The PSNR (top left) and SSIM (bottom left) with respect to the reference image are shown in the image.
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Table 6: Comparison of our method with deep
learning-based post-processing on an experimental
dataset.

method network PSNR SSIM

unprocessed n/a 6.22 0.21

post-proc.
UNet

36.70 0.80
our 36.85 0.80

post-proc.
MS-D

36.04 0.78
our 37.13 0.82

10 20 30 40 50 60

10 20 30 40 50 60

time/s

time/s

ours

post-proc.

8.17 25.54 13.784.96

39.49

reconstruction CNN inference

56.18

41.40

Figure 10: Comparison of inference time between our
method and post-processing. Our method involves
reconstructing the raw projection, the processed pro-
jection, and the processed sinogram, requiring three
passes through CNNs at each stage. In contrast,
post-processing only involves reconstructing the raw
projection and applying it to the image domain CNN.

jointly. Second, the neural networks in each stage can
be selected and trained independently to optimize
performance for specific artifacts, enabling compu-
tationally efficient training. Third, our method can
be easily integrated into existing CT pipelines with-
out reducing the throughput of pipelines. Overall,
our method provides an efficient and effective solu-
tion for reducing artifacts in CT images.

Although high-quality reference data can be ac-
quired in various manners as explained, such as
scanning with high-dose CT, using more sophisti-
cated reconstruction methods, or additional post-
processing steps, our proposed method still relies
on these extra steps to obtain high-quality reference
data. These steps may require additional time and
effort in real-world scenarios. Therefore, it is worth
exploring the integration of our multi-stage strategy
with self-supervised methods, for example by apply-
ing Noise2Inverse [19] in a multi-stage manner. This
could potentially reduce the reliance on high-quality
reference data and improve the applicability of our
method in real-world scenarios.

In principle, the proposed method for artifact re-
duction could be extended to other computational
imaging modalities with similar processing pipelines.
In many settings, reconstructed images are computed
through a series of processing steps in different do-
mains, with artifacts in the measurements propagat-
ing through the pipeline resulting in artifacts in the
reconstructed images. The key idea of applying deep
learning within the pipeline instead of only at the
end of the pipeline could be beneficial to improve the
image quality of other imaging modalities, e.g. mag-
netic resonance imaging (MRI) or positron emission
tomography (PET). By incorporating our multi-stage
strategy into these modalities, artifact reduction can
be achieved in their natural domain, potentially lead-
ing to improved image quality.

7 Conclusion

In this work, we present a novel multi-stage artifact
reduction method for CT images. Our approach in-
volves three stages, each targeting a different type
of image artifact in its corresponding domain: pro-

18



jection, sinogram, and reconstruction. We employ
three separate neural networks, one for each stage,
to jointly reduce artifacts in their respective do-
mains. The networks are trained independently from
each other in a sequential manner, ensuring com-
putationally efficient training. Our experimental re-
sults demonstrate that our method outperforms deep
learning-based post-processing techniques in terms of
artifact reduction accuracy, both for simulated data
and real-world experimental data. Furthermore, our
approach is applicable to both parallel- and cone-
beam CT, making it a versatile tool that can be in-
tegrated into existing CT pipelines to improve image
quality.
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Appendix

Table 7 includes the chosen parameters of classical
artifact reduction methods.
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