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Abstract

While seemingly undesirable, it is not a surprising fact that there are certain problems for
which quantum computers offer no computational advantage over their respective classical coun-
terparts. Moreover, there are problems for which there is no ‘useful’ computational advantage
possible with the current quantum hardware [BMN+21]. This situation however can be benefi-
cial if we don’t want quantum computers to solve certain problems fast - say problems relevant
to post-quantum cryptography. In such a situation, we would like to have evidence that it is
difficult to solve those problems on quantum computers; but what is their exact complexity?

To do so one has to prove lower bounds, but proving unconditional time lower bounds has
never been easy. As a result, resorting to conditional lower bounds has been quite popular in the
classical community and is gaining momentum in the quantum community. In this paper, by
the use of the QSETH framework [Buhrman-Patro-Speelman 2021], we are able to understand
the quantum complexity of a few natural variants of CNFSAT, such as parity-CNFSAT or
counting-CNFSAT, and also are able to comment on the non-trivial complexity of approximate-
#CNFSAT; both of these have interesting implications about the complexity of (variations of)
lattice problems, strong simulation and hitting set problem, and more.

In the process, we explore the QSETH framework in greater detail than was (required and)
discussed in the original paper, thus also serving as a useful guide on how to effectively use the
QSETH framework.
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1 Introduction

A popular classical hardness conjecture known as the Strong Exponential Time-Hypothesis (SETH)
says determining whether an input CNF formula is satisfiable or not cannot be done in time
O(2n(1−ε)) for any constant ε > 0 [IP01, IPZ01]. Several fine-grained lower bounds based on SETH
were shown ever since; see [Vas15, Wil18] for a summary of many such results. Some of the SETH-
hard problems are building blocks for fine-grained cryptography [BRSV17, LLW19]. Following
the introduction to SETH, hardness assumptions for variations of CNFSAT, for e.g., ⊕SETH
(conjecturing complexity of parity CNFSAT, output of the parity of satisfying assignments to
input CNF formula), #SETH (conjectures complexity of counting CNFSAT, output the count of
the satisfying assignments), were also proposed and several other fine-grained lower bounds based
on these variants of SETH were given [CDL+16].

When considering quantum computation the SETH conjecture is no longer true, as one can,
using Grover’s algorithm for unstructured search [Gro96], solve the CNFSAT problem in O(2

n
2 ·

poly(n)) time. However, conjectures such as #SETH or ⊕SETH are likely to still hold in the
quantum setting because a Grover-like quantum speedup is not witnessed when the task is to
compute the total number of satisfying assignments or to compute the parity of the total number
of satisfying assignments. This situation can in some cases be exploited to give better quantum lower
bounds than one would get from the conjectured quantum lower bound for the vanilla CNFSAT

problem. This makes it at least as relevant (if not more) to study variants of CNFSAT and their
implications in the quantum setting, as has been done classically. In fact, motivated by this exact
observation, Buhrman, Patro, and Speelman [BPS21] introduced a framework of Quantum Strong
Exponential-Time Hypotheses (QSETH) as quantum analogues to SETH, with a striking feature
that allows one to ‘technically’ unify conjectures such as quantum analogues of ⊕SETH, #SETH,
maj-SETH, etc. under one umbrella conjecture.

In this paper, we use the QSETH framework to ‘generate’ natural variations of QSETH such
as ⊕QSETH, #QSETH, maj-QSETH, etc., which otherwise (in our opinion) would already be
acceptable standalone conjectures in the quantum setting, and study some of their interesting
implications. Additionally, we also use the QSETH framework in proving non-trivial quantum
lower bounds for approximately counting the number of satisfying assignments to CNF formulas,
a problem whose complexity has been of interest in the classical setting [DL21]; we study its
quantum implications. See Section 2 for details. Proof of this result follows from a more detailed
exploration of the QSETH framework than what was required in the original paper. Thus, as
another contribution of this paper, we present a useful guide on how to effectively use the QSETH
framework.

The QSETH framework In their framework, Buhrman et al. consider the problem in which
one is given formula or circuit representation of a Boolean function f : {0, 1}n → {0, 1} and is
asked whether a property P : D ⊆ {0, 1}2n → {0, 1} on the truth table1 of this formula evaluates
to 1. They conjectured that when the circuit representation is obfuscated enough then for most
properties P (that are compression-oblivious properties as we will see in Definition 1.1), the time
taken to compute P on the truth table of poly(n)-sized circuits is lower bounded by Q(P ), i.e. the
1/3-bounded error quantum query complexity of P , on all bit strings of length 2n.

1Truth table of a formula φ on n variables, denoted by tt(φ), is a 2n bit string derived in the following way
tt(φ) = ©a∈{0,1}nφ(a); the symbol ◦ denotes concatenation.
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It is not hard to see that such a conjecture cannot be true for all properties. In principle, one
can construct properties for which the above statement would not hold. For instance, consider
a property P that is trivial on truth tables of small formulas (i.e., poly(n) size) but complicated
on formulas of longer length. These kinds of properties are likely to have very high quantum
query complexity, but in reality, it will be trivial to compute such a P on formulas of poly(n) size.
In order to prevent such scenarios the authors in [BPS21] introduce the notion of compression-
oblivious properties which they believe encompasses most of the naturally occurring properties.
See Sections 2.2 and 2.3 of their paper for a detailed discussion on this topic. To give a bit of
intuition, first consider the set of truth tables corresponding to the set of poly(n) size formulas
on n variables and consider the set of all the 2n bit strings. Compression-oblivious properties are
those properties for which one cannot save in computational time to compute them on a string
from the former set in comparison to computing the same property on strings from the latter set.
More formally,

Definition 1.1 (Compression Oblivious Properties [BPS21]). Let Γ denote a class of representation
such as poly-sized depth-2 circuits or poly-sized circuits of a more complex class. Then compression
oblivious properties corresponding to the class Γ, denoted by CO(Γ), are the set of (partial or total)
properties such that time taken to compute P on the truth table of the input circuit from Γ is at
least the quantum query complexity of P on all strings, i.e. Ω(Q(P )1−α) for all constants α > 0.

With that, they conjecture the following.

Conjecture 1.2 (QSETH framework [BPS21]). For each class of representations such as poly-
sized depth-2 circuits or poly-sized circuits of a more complex class, let us denote by Γ, for all
compression oblivious properties P of class Γ, given a circuit C ∈ Γ the time taken to compute P
on the truth table of C is at least Ω(Q(P )1−α) for all constants α > 0.

It is good to note that the QSETH framework allows us to consider formulas of complicated
classes, however, taking Γ as the class of all poly-sized CNF or DNF formulas suffices for the
results presented in this paper. Therefore, using AC0

2 to denote the class of all poly-sized CNF

and DNF formulas, we define AC0
2-QSETH as the following conjecture and use this as the main

conjecture of our paper.

Conjecture 1.3 (AC0
2-QSETH). For all compression oblivious properties P ∈ CO(AC0

2), given a
circuit C ∈ AC0

2 the time taken to compute P on the truth table of C is at least Ω(Q(P )1−α) for
all constants α > 0.

One can now almost directly use AC0
2-QSETH instead of the general QSETH framework to

understand the hardness of computing certain properties on truth tables of CNF formulas. The
emphasis on almost is because of the following two reasons: firstly, there are certain properties
that might be easy on CNF formulas and hard on DNF formulas which one has to formally verify,
and secondly, one needs to ensure that the property we are interested in is compression oblivious.
Moreover, for properties defined on N bit strings that can be computed in polylog(N) space and
have quantum query complexity ω̃(

√
N) it is not easy to show that they are compression oblivious,

as doing so would separate P from PSPACE; see Theorem 9 in [BPS21] for more details. This means
even for natural properties such as count or parity one cannot easily check if they are compression
oblivious. In such situations, we resort to conjecturing that the property is compression oblivious.
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See Figure 1 for a step-by-step guide on how we use the QSETH framework in a plug-and-play
fashion.

In comparison to the original QSETH paper where the framework was introduced and applied
to a more complex class of formulas,2 this paper instead serves as a guide to using QSETH for the
lowest level of formulas, i.e., poly-sized CNF and DNF formulas, in a more elaborate fashion.

Problem Variants Quantum lower bound Reference

CNFSAT

Vanilla 2
n
2
−o(n) Corollary 2.1

Parity 2n−o(n) Corollary 2.7

Majority 2n−o(n) Corollary 2.8

Strict Majority 2n−o(n) Corollary 2.8

Count 2n−o(n) Theorem 2.6

Countq 2n−o(n) Corollary 2.10

∆-Additive error

(√
2n

∆ +

√
ĥ(2n−ĥ)

∆

)1−o(1)

Theorem 2.15

γ-Multiplicative factor

(
1
γ

√
2n−ĥ
ĥ

)1−o(1)

Theorem 2.21

k-SAT
k = Θ(log(n))

Vanilla 2
n
2
−o(n) Section 4, [ACL+20]

Parity 2n−o(n) Corollary 2.24

Count 2n−o(n) Corollary 2.24

Countq 2n−o(n) Corollary 2.24

γ-Multiplicative factor

(
1
γ

√
2n−ĥ
ĥ

)1−o(1)

Corollary 2.25

Table 1: Overview of conditional lower bounds for variants of CNFSAT and k-SAT. The variable
ĥ in the above table is an arbitrary natural number satisfying γĥ ≥ 1. The multiplicative approxi-
mation factor γ is between 2−n to 1, and the additive approximate factor ∆ is between 2−1 to 2n.

Summary and technical overview

• We zoom into Buhrman et al.’s QSETH framework at the lowest-level formula class, i.e., the
class of polynomial-size CNFs and DNFs, and use it to study the quantum complexity of
variations of CNFSAT problems. The QSETH framework is quite general which also makes
it not entirely trivial to use it thus, we present a useful guide on how to effectively use the
AC0

2-QSETH conjecture, for e.g., what lemmas need to be proved and what assumptions
are needed to be made in order to understand the quantum complexity of CNFSAT and its
variants; see Figure 1.

• We can categorise the several variants of CNFSAT in two ways. First classification can be
done by the width of the CNF formulas, i.e., k-CNFs versus CNFs of unbounded clause
length; second, by the property of the truth table one needs to compute. See the summary
of all the variants and their respective quantum time lower bounds in Table 1 and see below
for the overview of the techniques used.

2The authors in [BPS21] extensively used QSETH framework for branching programs or equivalently NC circuits
to show non-trivial lower bounds for edit distance and longest common subsequence problems.
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Problem Variants Quantum lower bound Reference

Strong Simulation

Exact (with n bits precision) 2n−o(n) Theorem 3.2

Exact (with 2 bits precision) 2n−o(n) Corollary 3.3

∆-Additive error

(√
1
∆ +

√
ĥ(2n−ĥ)
2n∆

)1−o(1)

Corollary 3.5

γ-Multiplicative factor

(
1
γ

√
2n−ĥ
ĥ

)1−o(1)

Theorem 3.7

CVPp for p /∈ 2Z 2
n
2
−o(n) Section 4

Lattice Counting

(for non-even norm)

Vanilla 2n−o(n) Corollary 4.7

γ-Multiplicative factor

(
1
γ

√
2n−ĥ
ĥ

)1−o(1)

Corollary 4.8

q-count 2n−o(n) Corollary 4.10

Orthogonal Vectors

Vanilla n1−o(1) [ACL+20, BPS21]

Parity n2−o(1) Corollary 5.7

Count n2−o(1) Corollary 5.7

γ-Multiplicative factor

(
1
γ

√
n2−ĥ
ĥ

)1−o(1)

Corollary 5.7

Hitting Set

Vanilla 2
n
2
−o(n) Corollary 5.4

Parity 2n−o(n) Corollary 5.4

Count 2n−o(n) Corollary 5.4

γ-Multiplicative factor

(
1
γ

√
2n−ĥ
ĥ

)1−o(1)

Corollary 5.4

⊕Set Cover 2n−o(n) Corollary 5.9

Table 2: Overview of lower bounds based on AC0
2-QSETH. The variable ĥ in the above table is an

arbitrary natural number satisfying γĥ ≥ 1. The multiplicative approximation factor γ is between
2−n to 1, while the additive approximate factor ∆ is between 2−n−1 to 1.

– To prove the quantum time lower bounds for the property variants of CNFSAT problem
we invoke AC0

2-QSETH (Conjecture 1.3). But, AC0
2-QSETH conjectures the hardness

of properties on a set of CNF and DNF formulas. For properties like count, parity,
majority, etc., it easily follows from De Morgan’s laws that these properties are equally
hard on both CNF and DNF formulas. However, such arguments no longer hold when
the properties are approximate variants of count for which we give nontrivial proofs; see
Sections 2.3 and 2.4.

– Additionally, we also use AC0
2-QSETH to understand quantum complexity of k-SAT

and its property variants. As a first step we study the classical reduction from CNFSAT

to k-SAT given by [CIP06] and observe that the 2
n
2 quantum lower bound for k-SAT,

for k = Θ(log n), follows from the quantum lower bound of CNFSAT. Moreover, we
make an important observation that this reduction by [CIP06] is count-preserving3 and
can be used to conclude lower bounds for other counting variants of k-SAT. See Table 1
for the summary of these bounds.

3Should not be mistaken to be parsimonious, see Section 2.5 for details.
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• Having (somewhat) understood the complexities of the above-mentioned variants of CN-

FSAT, we then prove conditional quantum time lower bounds for lattice problem, strong
simulation, orthogonal vectors, set cover, hitting set problem, and their respective variants;
see Table 2.

– The quantum 2
n
2 time lower bound we present for CVPp (for p /∈ 2Z) follows from a

reduction from k-SAT to CVPp by [BGS17, ABGS21] and from the hardness result of
k-SAT we present. Though such a result would also trivially follow by using Aaronson
et al.’s version of QSETH, we stress that our hardness result of k-SAT is based on
basic-QSETH which is a more believable conjecture.4

– Additionally, we also discuss the quantum complexity of the lattice counting problem
(for non-even norm). We present a reduction, using a similar idea of [BGS17], from
#k-SAT to the lattice counting problem and we show a 2n time quantum lower bound
for the latter when k = Θ(log n). As mentioned earlier, we get a 2n time quantum lower
bound for #k-SAT, when k = Θ(log n), using AC0

2-QSETH.

– As another application to the bounds we get from the property variants of CNFSAT we
look at the strong simulation problem. It was already established by [CHM21, VDN10]
that strong simulation of quantum circuit is a #P-hard problem but in this work we give
exact lower bounds for the same. Additionally, using the lower bounds of approximate
counts of CNFSAT we are able to shed light on how hard it is to quantumly solve the
strong simulation problem with additive and multiplicative error approximation.

– Last but not least, we are also able to use the lower bounds for the property variants of
CNFSAT to give interesting lower bounds for orthogonal vectors, hitting set problem
and their respective variants. See Section 5 for more details.

Related work Our paper is a follow-up work to the original QSETH paper by [BPS21]; also the
list of problems for which we show lower bounds does not overlap with the problems studied in
[BPS21]. A basic version of QSETH was also introduced by Aaronson et al. [ACL+20] where they
primarily used it to study the quantum complexity of closest pair and bichromatic pair problems;
they also discuss the complexity of the (vanilla version of) orthogonal vector problem. Prior to
this work, a quantum hitting set conjecture was proposed and its implications were discussed in
Schoneveld’s bachelor thesis [Sch22] but their definition of hitting set is different from ours. In our
work, we observe that the parsimonious reduction from CNFSAT to hitting set (Definition 5.1)
given by [CDL+16] is easily quantizable, using which we get a QSETH-based lower bound.

Structure of our paper In Section 2, we discuss the quantum complexity of variants of CN-

FSAT problems, for e.g. #CNFSAT, ⊕CNFSAT, γ-#CNFSAT, etc., conditional on AC0
2-

QSETH. The broad idea to show the hardness results of these variants is quite similar; the several
lemmas only account for the properties being different. Using results from Section 2, we show quan-
tum time lower bounds for strong simulation problem in Section 3, lattice problems in Section 4,
and orthogonal vectors, hitting set and set cover in Section 5. We conclude with open questions
and future directions in Section 6. The appendix section of this paper contains proofs of theorems
that are long to state or lemmas of observational nature.

4If basic-QSETH from Buhrman et al.’s framework is false then Aaronson et al’s QSETH is also false, but the
implication in the other direction is not obvious.

5



Start

For a given property P show the quantum time complexity of P-CNFSAT

Invoke AC0
2-QSETH (Conjecture 1.3)

Easy to show
P ∈ CO(AC0

2)?
See Theorem 9
in [BPS21].

Conjecture compression obliviousness of P

Prove it

Is P ∈ CO(AC0
2)

(provably or
in conjecture)?

Cannot use AC0
2-QSETH for P

Compute the bounded error quantum query complexity of P, i.e. Qε(P) with ε =
1
3

Quantum time lower bound for computing P on CNF and DNF is Ω((Qε(P))
1−α) for all α > 0

Are CNFs at
least harder
in comparison
to DNFs for
computing P

Cannot comment on hardness of P-CNFSAT

Complexity of P-CNFSAT is Ω((Qε(P))
1−α) for all α > 0, under AC0

2-QSETH

End

Yes

No

No

Yes

No

Yes

Figure 1: Step-by-step guide on how to use the QSETH framework in a plug-n-play manner to
show hardness results for P-CNFSAT. Here P can be any (partial or total) Boolean property.
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2 Lower bounds for variants of CNFSAT using AC0
2-QSETH

We will now define several variants of CNFSAT problem and using AC0
2-QSETH understand

the quantum complexity of all of them. The consequences of these hardness results, some of which
follow immediately and the rest with some work, will be discussed in Sections 3 to 5. We begin with
some common variants of CNFSAT problem which are also very well studied classically [CDL+16];
we do this in Section 2.2. And, proceed with some less popular variants (Sections 2.3 to 2.5) but
with interesting consequences (presented in Sections 3 to 5).

2.1 Quantum complexity of CNFSAT

We first restate the quantum hardness of CNFSAT before delving into showing hardness results
for its other variants. Interestingly, for the property OR : {0, 1}2n → {0, 1}, where for x ∈ {0, 1}2n
we define OR(x) = 1 if |x| ≥ 1 and OR(x) = 0 whenever |x| = 0, we can explicitly prove that
OR ∈ CO(AC0

2 ) in the following way: The adversarial set {x : x ∈ {0, 1}2n and |x| ∈ {0, 1}} gives
the tight query bound for the property OR are truth tables of functions that can be represented
by O(n) sized CNF formulas. Namely, these are given by the formulas that accept a single possible
input, which can be constructed by using n clauses that each contain a single variable or its negation.
Also, note that computing OR on truth tables of DNF formulas of poly(n) length can be computed
in poly(n) time. Hence, using AC0

2-QSETH we can recover the following Basic-QSETH conjecture.

Corollary 2.1 (Basic-QSETH [BPS21]). If AC0
2-QSETH (Conjecture 1.3) is true then there

is no bounded error quantum algorithm that solves CNFSAT on n variables and m clauses in

O

(
2

n(1−δ)
2 mO(1)

)
time, for any δ > 0.

2.2 Quantum complexity of #CNFSAT, ⊕CNFSAT, #qCNFSAT and maj-CNFSAT

Definition 2.2. Some popular variants of CNFSAT.

1. #CNFSAT: Given a CNF formula φ on n input variables, output t where t = |{x : x ∈
{0, 1}n and φ(x) = 1}| is the number of satisfying assignments to φ.

2. ⊕CNFSAT: Given a CNF formula φ on n input variables, output t where t = |{x : x ∈
{0, 1}n and φ(x) = 1}| mod 2 is the parity of the number of satisfying assignments to φ.

3. #qCNFSAT: Given a CNF formula φ on n input variables and an integer q ∈ [2n] \ {1},
output t where t = |{x : x ∈ {0, 1}n and φ(x) = 1}| mod q is the q-count of the number of
satisfying assignments to φ.

4. maj-CNFSAT: Given a CNF formula φ on n input variables, output if majority of the
assignments satisfy φ, i.e., if t = |{x : x ∈ {0, 1}n and φ(x) = 1}| output 1 if t ≥ 2n−1 else
output 0.

5. st-maj-CNFSAT: Given a CNF formula φ on n input variables, output if a strict majority
of the assignments satisfy φ, i.e., if t = |{x : x ∈ {0, 1}n and φ(x) = 1}| output 1 if t > 2n−1

else output 0.

7



We now define the Boolean properties corresponding to items in Definition 2.2 for completeness.5

Definition 2.3. Some popular properties defined on Boolean bit strings.

1. count: Let count : {0, 1}N → [N ] ∪ {0} be a non-Boolean function such that count(x) =
|{i : x ∈ {0, 1}N and xi = 1}|.

2. parity: Let parity : {0, 1}N → {0, 1} be a Boolean function with parity(x) = |{i : x ∈
{0, 1}N and xi = 1}| mod 2.

3. countq: Let q be an integer and let countq : {0, 1}N → [q − 1] ∪ {0} be a non-Boolean
function with countq(x) = |{i : x ∈ {0, 1}N and xi = 1}| mod q.

4. majority: Let majority : {0, 1}N → {0, 1} be a Boolean function with

majority(x) =

{
1 if t ≥ N

2 ,

0 otherwise;

here t = |{i : x ∈ {0, 1}N and xi = 1}|.

And, there is also the following function almost similar to majority.

5. st-majority: Let st-majority : {0, 1}N → {0, 1} be a Boolean function with

st-majority(x) =

{
1 if t > N

2 ,

0 otherwise;

here t = |{i : x ∈ {0, 1}N and xi = 1}|.

Theorem 2.4 (Implicit in [BBC+01]). The bounded error quantum query complexity for count,
parity, majority and st-majority on inputs of N bit Boolean strings is Ω(N).

Proof. There is a seminal result by [BBC+01] where they show that the bounded-error quantum
query complexity of a (total) Boolean function f : {0, 1}N → {0, 1}, denoted by Q(f) is lower
bounded by the degree of a minimum-degree polynomial p that approximates f on all X ∈ {0, 1}N ,

i.e., |p(X)− f(X)| ≤ 1/3; let us denote this degree by d̃eg(f). Another important result by Paturi
[Pat92] showed that if f is a non-constant, symmetric6 and a total Boolean function on {0, 1}N
then d̃eg(f) = Θ(

√
N(N − Γ(f))) where Γ(f) = min{|2k−N +1| : fk 6= fk+1 and 0 ≤ k ≤ N − 1}

and fk = f(X) for |X| = k.
Using the above two results we can show the following:

1. Γ(parity) = 0 for odd N and Γ(parity) = 1 whenever N is even. Either ways Q(parity) =
Ω(Γ(f)) = Ω(N).

5Note that the QSETH framework though is defined on properties with Boolean outcomes it can be used for
non-Boolean properties like count or γ-count as we can instead consider the threshold versions of these properties
which are Boolean. In fact, we will soon see the inner working of all our hardness results actually rely on Boolean
properties.

6A symmetric Boolean function f : {0, 1}N → {0, 1} implies f(X) = f(Y ) for all X,Y whenever |X| = |Y |.
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2. Similar to the above item Γ(majority) = Γ(st-majority) = 0 for oddN and Γ(majority) =
Γ(st-majority) = 1 otherwise. Hence, Q(majority) = Ω(N) and Q(st-majority) = Ω(N).

3. Any of these above three properties can be computed from count. Hence, the quantum
query lower bound for count is also Q(count) = Ω(N).

As we don’t yet know how to prove compression-obliviousness of complicated properties (The-
orem 9 in [BPS21]) we instead conjecture that count, parity, majority and st-majority are
compression oblivious for poly-sized CNF and DNF formulas.

Conjecture 2.5. Let AC0
2 denote the class of poly(n) sized CNF and DNF formulas on n input

variables then the following properties

1. count : {0, 1}2n → [2n] ∪ {0},

2. parity : {0, 1}2n → {0, 1},

3. countq : {0, 1}2n → [q − 1] ∪ {0},

4. majority : {0, 1}2n → {0, 1}, and

5. st-majority : {0, 1}2n → {0, 1}

stated in Definition 2.3 are in CO(AC0
2).

We can now invoke AC0
2-QSETH (as mentioned in Conjecture 1.3) to prove the quantum

hardness for #CNFSAT, ⊕CNFSAT, maj-CNFSAT and st-maj-CNFSAT.

Theorem 2.6 (#QSETH). There is no bounded error quantum algorithm that solves #CNFSAT

on n variables andm clauses in O(2n(1−δ)mO(1)) time for any δ > 0 unless AC0
2-QSETH (Conjecture 1.3)

is false or count /∈ CO(AC0
2) (i.e., Item 1 of Conjecture 2.5 is false).

Proof. By way of contradiction let us assume that there exists a bounded-error quantum algo-
rithm A that solves #CNFSAT on n variables and m clauses in O(2n(1−δ)mO(1)) time for some
δ > 0. Then given a circuit C ∈ AC0

2 we do one of the following:

• if C is a poly-sized CNF formula then we use the algorithm A to compute the number of
satisfying assignments to C in O(2n(1−δ)mO(1)) time. Or,

• if C is a poly-sized DNF formula then we first construct the negation of C, let us denote by
¬C, in poly(n) time; using De Morgan’s law we can see that the resulting formula ¬C will be
a poly(n) CNF formula. Using A we can now compute the number of satisfying assignments
t to ¬C in O(2n(1−δ)mO(1)) time. The number of satisfying assignments to C would be then
2n − t.

The existence of an algorithm such as A would imply thatAC0
2-QSETH is false. Hence, proved.

Using similar arguments as in the proof of Theorem 2.6 we can conclude the following state-
ments.
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Corollary 2.7 (⊕QSETH). There is no bounded error quantum algorithm that solves ⊕CNFSAT

on n variables and m clauses in O(2n(1−δ)mO(1)) time for any constant δ > 0 unless AC0
2-QSETH

(Conjecture 1.3) is false or parity /∈ CO(AC0
2) (i.e., Item 2 of Conjecture 2.5 is false).

Corollary 2.8 (Majority QSETH). There are no bounded-error quantum algorithms that solve

1. maj-CNFSAT on n variables and m clauses in O(2n(1−δ)mO(1)) time, or

2. st-maj-CNFSAT on n variables and m clauses in O(2n(1−δ)mO(1)) time,

any constant δ > 0 unless AC0
2-QSETH is false or majority /∈ CO(AC0

2) (i.e., Item 4 of
Conjecture 2.5 is false).

We can extend the above-mentioned arguments to compute the total number of assignments in
Fq for any q ≥ 2 as well. To understand the complexity of #qCNFSAT (Definition 2.2) we first
need to understand the quantum query complexity of countq.

Lemma 2.9. Let 2 < q ≤ N
2 be an integer and let countq : {0, 1}N → [q − 1] be a func-

tion such that for any x ∈ {0, 1}N the countq(x) = count(x) mod q. Then Q(countq) =
Ω(
√
N(N − 2q + 1)).

Proof. Let dec-countq be a decision version of the countq defined for all x ∈ {0, 1}N as

dec-countq(x) =

{
1, if countq(x) = q − 1,

0, otherwise.
(1)

Beals et al. showed that the bounded error quantum query complexity of any Boolean function
is lower bounded by the approximate degree of that function [BBC+01]. When the function is non-
constant and symmetric then one can use Paturi’s theorem to characterise the approximate degree
of that function [Pat92]. It is easy to see that dec-countq is a non-constant symmetric function.
Combining both these results we get that Q(dec-countq) = Ω(

√
N(N − η(dec-countq))); we

compute the value of η(dec-countq) in the next paragraph.
For any symmetric Boolean function f : {0, 1}N → {0, 1} the quantity η(f) is defined as

η(f) = mink{|2k − N + 1|} such that fk 6= fk+1 and fk = f(x) for |x| = k with 1 ≤ k ≤ N − 1.
It is easy to see that dec-countq(x) = 1 only for x with hamming weight |x| = rq − 1 where r
is an integer and dec-countq(x) = 0 elsewhere. Let r′ be the integer such that r′q − 1 ≤ N

2 ≤
(r′ + 1)q − 1 then the k minimising η(dec-countq) is either r′q − 1 or (r′ + 1)q − 1. With a
back-of-the-envelope-calculation we can see that η(dec-countq) ≤ 2q − 1 which in turn implies
that N − η(dec-countq) ≥ N − 2q + 1. Therefore, Q(dec-countq) = Ω(

√
N(N − 2q + 1)).

As one can compute dec-countq using an algorithm that computes countq, we therefore have
Q(countq) = Ω(

√
N(N − 2q + 1)).

Using Conjectures 1.3 and 2.5 we can now conclude the following.

Corollary 2.10 (#qQSETH). Let 2 < q ≤ 2n−1. There is no bounded error quantum algorithm

that solves #qCNFSAT on n variables and m clauses in O

((√
2n(2n − 2q + 1)

)1−δ
mO(1)

)
time

for any constant δ > 0 unless AC0
2-QSETH (Conjecture 1.3) is false or countq /∈ CO(AC0

2) (i.e.,
Item 3 of Conjecture 2.5 is false).
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2.3 Quantum complexity of ∆-add-#CNFSAT

Instead of the exact number of satisfying assignments to a formula, one might be interested in its
additive error approximation. Towards that, we define the ∆-add-#CNFSAT as follows.

Definition 2.11 (∆-add-#CNFSAT). Given an input a CNFSAT formula on n Boolean vari-
ables and m clauses. The problem is to output an additive error approximation of the total number
of satisfying assignments, i.e., an integer d such that |d − d′| < ∆ where d′ is the number of
assignments to these n variables that satisfy the given formula and ∆ ∈ [1, 2n).

This problem (Definition 2.11) can be viewed as computing the following property on the truth
table of the given formula.

Definition 2.12 (∆-add-count). Given a Boolean string x ∈ {0, 1}N , the ∆-add-count(x) is
an integer such that |∆-add-count(x) − |x|| < ∆ where |x| = |{i : x ∈ {0, 1}N and xi = 1}| and
∆ ∈ [1, N).

The bounded-error quantum query complexity for computing ∆-add-count was studied in
[NW99]. They showed the following result.

Theorem 2.13 (Theorem 1.11 in [NW99]). Any quantum algorithm computing ∆-add-count(x)

for an x ∈ {0, 1}N and ∆ ∈ [1, N) (Definition 2.12) requires to make Ω

(√
N
∆ +

√
t(N−t)

∆

)
quantum

queries to x where t = |x|.

For values of ∆ = o(
√
t) we are unable to prove the compression-obliviousness of this property.

Hence, we make the following conjecture.

Conjecture 2.14. Let AC0
2 denote the class of poly(n) size CNF and DNF formulas on n

input variables the property ∆-add-count is compression oblivious corresponding to AC0
2, i.e.

∆-add-count ∈ CO(AC0
2).

One can now establish the time lower bound for computing the ∆-add-count on poly(n) sized
CNF and DNF formulas. However, this doesn’t automatically imply the same lower bound for
the case when there are only CNF formulas to consider. Fortunately, ∆-add-count is defined in
such a way that computing this property is equally hard for both CNF and DNF formulas. More
precisely, the following statement holds.

Theorem 2.15 (∆-add-#QSETH). Let n be an integer and let ∆ ∈ [12 , 2
n). Conditional on

AC0
2-QSETH (Conjecture 1.3) and Conjecture 2.14, there is no bounded error quantum algorithm

that solves ∆-add-#CNFSAT on CNF formulas with n variables and m = poly(n) clauses in

O

((√
N
∆ +

√
t(N−t)

∆

)1−α

mO(1)

)
time for any constant α > 0.

Proof. By way of contradiction let’s assume that there is an algorithm A such that given a CNF

formula it can compute the ∆-add-count on its truth table in O

((√
N
∆ +

√
t(N−t)

∆

)1−β

mO(1)

)

time for some constant β > 0.
Then, given a poly(n) sized DNF formula on n variables and m clauses, let us denote that by

φ, we can run Algorithm A on ¬φ and use its output which is a ∆ additive error approximation
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of the number of satisfying assignments to ¬φ to compute a ∆ additive error approximation of the
number of satisfying assignments to φ.

Let us denote the number of satisfying assignments of ¬φ by d′ and the output of Algorithm A by
d. This means we have |d−d′| < ∆. We claim that 2n−d will be a ∆ additive error approximation
of 2n − d′, which is the number of satisfying assignments of φ; |(2n − d)− (2n − d′)| = |d′ − d| < ∆.

Therefore, a O

((√
N
∆ +

√
t(N−t)

∆

)1−β

mO(1)

)
time (for some constant β > 0) algorithm for

computing ∆-add-count on truth table of CNF formulas also implies the same run time for
computing ∆-add-count on truth table of DNF formulas; this violates the combination of AC0

2-

QSETH and Conjecture 2.14. Hence, proved.

2.4 Quantum complexity of γ-#CNFSAT and other related problems

One other approximation of the count of satisfying assignments is the multiplicative factor approx-
imation, defined as follows.

Definition 2.16 (γ-#CNFSAT). Let γ ∈ (0, 1). The γ-#CNFSAT is defined as follows. The
input is a CNFSAT formula on n Boolean variables and m clauses. The problem is to output an
integer d such that (1 − γ)d′ < d < (1 + γ)d′ where d′ is the number of assignments to these n
variables that satisfy the given formula.7

The expression (1 − γ)d′ < d < (1 + γ)d′, which is same as (d′ − γd′) < d < (d′ + γd′), can be
categorised into the following two cases.

• Case 1 is when γd′ ≤ 1: in this regime, the algorithm solving γ-#CNFSAT is expected to
return the value d′ which is the exact count of the number of solutions to the CNFSAT

problem and from Theorem 2.6 we know that there is no O∗(2n(1−ε)) time algorithm, for any
constant ε > 0, that can compute the exact number of solutions to input CNF formula; this
is a tight lower bound.

• Case 2 is when γd′ > 1: in this regime, the algorithm solving γ-#CNFSAT is expected
to return value d which is the γ-approximate relative count of the number of solutions to
the CNFSAT problem. Using AC0

2-QSETH we are able to prove a lower bound for γ-
#CNFSAT that accounts for the approximation factor γ also when γd′ > 1. We use the rest
of this section towards proving this result.

In order to understand the hardness of γ-#CNFSAT we will first try to understand how hard it
is to compute the following property on poly-sized CNF and DNF formulas. Let fℓ,ℓ′ : D → {0, 1}
with D ⊂ {0, 1}N be a partial function defined as follows

fℓ,ℓ′ =

{
1, if |x| = ℓ,

0, if |x| = ℓ′.

7The same results hold if the approximation is defined with the equalities, i.e., (1 − γ)d′ ≤ d ≤ (1 + γ)d′. An
additional observation under this changed definition of γ-#CNFSAT is as follows. Given a CNF formula as input,
the algorithm for γ-#CNFSAT outputs 0 only when there is no satisfying assignment to that formula. Hence, one
can decide satisfiability of a given CNF formula using the algorithm for γ-#CNFSAT. Therefore, the same lower
bound from Basic-QSETH carries for this changed definition of γ-#CNFSAT.
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Nayak and Wu in [NW99] analysed the minimum degree of any polynomial approximating fℓ,ℓ′ and
by invoking the Beals et al. result [BBC+01] gave a lower bound on the quantum query complexity
of fℓ,ℓ′ as mentioned in the following statement.

Corollary 2.17 (Rephrasing Corollary 1.2 in [NW99]). Let fℓ,ℓ′ : D → {0, 1} where D ⊂ {0, 1}N
and

fℓ,ℓ′ =

{
1, if |x| = ℓ,

0, if |x| = ℓ′.

Let ∆ℓ = |ℓ−ℓ′| and let p ∈ {ℓ, ℓ′} such that |N2 −p| is maximized. Then the bounded error quantum

query complexity of fℓ,ℓ′ is Ω

(√
N
∆ℓ

+

√
p(N−p)

∆ℓ

)
.

Using AC0
2-QSETH we will now show that for a choice of ℓ, ℓ′ computing fℓ,ℓ′ on truth tables

of CNF formulas of poly(n) size requires Ω

(√
2n

∆ℓ
+

√
p(2n−p)

∆ℓ

)
time where ∆ℓ = |ℓ − ℓ′| and

p ∈ {ℓ, ℓ′} that maximises |2n−1 − p|. The only caveat (as also witnessed several times earlier) is
that we cannot prove the compression obliviousness of fℓ,ℓ′ hence we state and use the following
conjecture.

Conjecture 2.18. Let AC0
2 denote the class of poly(n) size CNF and DNF formulas on n input

variables then for any pair of integers ℓ ∈ [2n] ∪ {0} and ℓ′ ∈ [2n] ∪ {0} the property fℓ,ℓ′ is
compression oblivious corresponding to AC0

2, i.e. fℓ,ℓ′ ∈ CO(AC0
2).

8

We can now prove the following.

Lemma 2.19. Let n be an integer and let ℓ ∈ [2n] ∪ {0} and ℓ′ ∈ [2n] ∪ {0}. Then conditional on
Conjecture 2.18 and AC0

2-QSETH (Conjecture 1.3) then at least one of the following is true.

• There is no bounded error quantum algorithm that can compute fℓ,ℓ′ on the truth table of

poly(n) size CNF formulas defined on n variables in O∗
((√

2n

∆ℓ
+

√
p(2n−p)

∆ℓ

)1−δ
)

time for

any constant δ > 0.

• There is no bounded error quantum algorithm that can compute fN−ℓ,N−ℓ′ on the truth table

of poly(n) size CNF formulas defined on n variables in O∗
((√

2n

∆ℓ
+

√
p(2n−p)

∆ℓ

)1−δ
)

time

for any constant δ > 0.

Here ∆ℓ = |ℓ− ℓ′| and p ∈ {ℓ, ℓ′} is such that |2n−1 − p| is maximized.

Proof. Let N be an integer that we will fix later and let f ′ℓ,ℓ′ : {0, 1}N → {0, 1} be defined as follows

f ′ℓ,ℓ′ =

{
1, if |x| = N − ℓ,
0, if |x| = N − ℓ′.

8Note that, there are some values of ℓ, ℓ′ for which fℓ,ℓ′ will be provably compression oblivious, for e.g., ℓ = 1 and
ℓ′ = 0 would capture the OR property which is compression oblivious; see Section 2.1.
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It is not hard to see f ′ℓ,ℓ′ is the same as function fN−ℓ,N−ℓ′. Fortunately, both the functions
fN−ℓ,N−ℓ′ and fℓ,ℓ′ have the same value of ∆ℓ and h where h = p(N − p). Therefore the bounded

error quantum query complexity of f ′ℓ,ℓ′ is Ω

(√
N
∆ℓ

+

√
p(N−p)

∆ℓ

)
where ∆ℓ = |ℓ− ℓ′| and p ∈ {ℓ, ℓ′}

such that |N2 − p| is maximised; same as the bounded error quantum query complexity of fℓ,ℓ′ as
mentioned in Corollary 2.17.

Moreover, as f ′ℓ,ℓ′ is the same function fN−ℓ,N−ℓ′ it is therefore clear from Conjecture 2.18 that

f ′ℓ,ℓ′ ∈ CO(AC0
2) which means there is no bounded error quantum algorithm that can compute

f ′ℓ,ℓ′ or fℓ,ℓ′ on truth tables of poly(n) size CNF or DNF formulas defined on n input variables in

O∗
((√

2n

∆ℓ
+

√
p(2n−p)

∆ℓ

)1−δ
)

time for any constant δ > 0 unless AC0
2-QSETH is false. We will

now show that conditional on AC0
2-QSETH this result holds even when we restrict ourselves to

only poly(n) sized CNF formulas.
Having introduced f ′ℓ,ℓ′ we will now prove Lemma 2.19 using the following propositions.

• Proposition A There is no bounded error quantum algorithm that can compute fℓ,ℓ′ on

truth table of CNF formulas defined on n variables in O∗
((√

2n

∆ℓ
+

√
p(2n−p)

∆ℓ

)1−δ
)

time

for any δ > 0.

• Proposition B There is no bounded error quantum algorithm that can compute fℓ,ℓ′ on

truth table of DNF formulas defined on n variables in O∗
((√

2n

∆ℓ
+

√
p(2n−p)

∆ℓ

)1−δ
)

time

for any δ > 0.

• Proposition C There is no bounded error quantum algorithm that can compute f ′ℓ,ℓ′ on

truth table of CNF formulas defined on n variables in O∗
((√

2n

∆ℓ
+

√
p(2n−p)

∆ℓ

)1−δ
)

time

for any δ > 0.

• Proposition D There is no bounded error quantum algorithm that can compute f ′ℓ,ℓ′ on

truth table of DNF formulas defined on n variables in O∗
((√

2n

∆ℓ
+

√
p(2n−p)

∆ℓ

)1−δ
)

time

for any δ > 0.

Conditional on Conjecture 2.18 and AC0
2-QSETH the following statements hold.

• Claim 1 At least one of the propositions A or B is true.

• Claim 2 At least one of the propositions C or D is true.

• Claim 3 At least one of the propositions A or C is true; by way of contradiction let us
assume that both propositions A and C are false, this means there exist algorithms A,A′

that for an α > 0 and α′ > 0 compute fℓ,ℓ′ and f ′ℓ,ℓ′ on the truth table of poly(n) size

CNF formulas defined on n input variables in O∗
((√

2n

∆ℓ
+

√
p(2n−p)

∆ℓ

)1−α
)

time and in
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O∗
((√

2n

∆ℓ
+

√
p(2n−p)

∆ℓ

)1−α′
)

time, respectively. Moreover, if propositions A and C are

false then from Claims 1 and 2 we can deduce that both B and D must be true which means
there is no quantum algorithm that can compute fℓ,ℓ′ or f

′
ℓ,ℓ′ on the truth table of poly(n)

size DNF formulas on n input variables in O∗
((√

2n

∆ℓ
+

√
p(2n−p)

∆ℓ

)1−δ
)

time for any δ > 0.

However, given a DNF formula φ as an input to compute fℓ,ℓ′ on its truth table one can
instead compute f ′ℓ,ℓ′ on the negation of φ, let us denote by ¬φ, using algorithm A′ on ¬φ in

O∗
((√

2n

∆ℓ
+

√
p(2n−p)

∆ℓ

)1−α′
)

time which is a contradiction. This means at least one of the

two propositions A or C must be true which is exactly the statement of Lemma 2.19.

It is then not hard to see that for the values when ℓ+ ℓ′ = N the following result holds.

Corollary 2.20. Let n be an integer and let ℓ ∈ [2n] ∪ {0} and ℓ′ ∈ [2n] ∪ {0} such that ℓ + ℓ′ =
2n. Then there is no bounded error quantum algorithm that can compute fℓ,ℓ′ on the truth table

of poly(n) size CNF formulas defined on n variables in O∗
((√

2n

∆ℓ
+

√
ℓℓ′

∆ℓ

)1−δ
)

time for any

constant δ > 0 unless AC0
2-QSETH or Conjecture 2.18 is false; here ∆ℓ = |ℓ− ℓ′|.

Inspired by arguments used in the proof of Theorem 1.13 in [NW99], we will now use Corollary 2.20

to prove the following result. Our result holds for γ ∈
[

1
2n ,

1
2

)
; this range of γ suffices for our re-

ductions presented in the later sections.

Theorem 2.21 (γ-#QSETH). Let n be an integer and let γ ∈
[

1
2n ,

1
2

)
. Conditional on AC0

2-

QSETH and Conjecture 2.18, there is no bounded error quantum algorithm that solves γ-#CNFSAT

on n variables and m = poly(n) clauses

1. in O

((
1
γ

√
2n−ĥ
ĥ

)1−δ

mO(1)

)
time, for any constant δ > 0, whenever γĥ > 1, and

2. in O(2n(1−δ)mO(1)) time, for any constant δ > 0, whenever γĥ ≤ 1.

Here ĥ denotes the number of satisfying assignments to the input CNF formula.

We prove the first part of Theorem 2.21 in the following way and use the result from Theorem 2.6

for the second part. Given a value of γ ∈
[

1
2n ,

1
2

)
we will fix values of ℓ ∈ [2n]∪{0} and ℓ′ ∈ [2n]∪{0}

such that we are able to compute fℓ,ℓ′ on truth table of an input CNF formulas on n variables
and m clauses using the algorithm that solves γ-#CNFSAT. Hence, showing a lower bound on
γ-#CNFSAT using the lower bound result from Corollary 2.20.

Proof. LetN = 2n and let γ ∈
[

1
N ,

1
2

)
. Let ℓ = N

2 +⌈γt⌉ =
⌈
N
2 + γt

⌉
and ℓ′ = N

2 −⌈γt⌉ =
⌊
N
2 − γt

⌋
;

here t ∈ [N ] is a value that we will fix later but in any case, we have 1 ≤ ⌈γt⌉ < N
2 . With that, we
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are ensured that γℓ > 1
2 . We also make sure to choose values ℓ, ℓ′ in such a way that γℓ′ = Ω(1).

Clearly, ℓ+ ℓ′ = N and ∆ℓ = |ℓ − ℓ′| = 2⌈γt⌉ therefore by invoking the result from Corollary 2.20
we can say that for these values of ℓ, ℓ′ there is no bounded error quantum algorithm that can solve

fℓ,ℓ′ on truth table of CNF formulas in O

((√
N
⌈γt⌉ +

√
ℓ(N−ℓ)

⌈γt⌉

)1−δ

mO(1)

)
time, for any δ > 0;

let us denote this claim by (*).
Let A be an algorithm that computes γ-#CNFSAT to the relative error approximation γ, i.e.,

Algorithm A returns a value h such that (1 − γ)ĥ < h < (1 + γ)ĥ where ĥ is the actual number
of satisfying assignments of the input CNF formula. Given ℓ = N

2 + ⌈γt⌉ and ℓ′ = N
2 − ⌈γt⌉ there

are values of t ∈ [N ] such that we will be able to distinguish whether the number of satisfying
assignments to a formula is ℓ or ℓ′ using Algorithm A. As ℓ > ℓ′ in our setup, we want t such that
ℓ′(1 + γ) < ℓ(1− γ); it is then necessary that γN < 2⌈γt⌉; let us denote this as Condition 1.

Now we set the values of ℓ and ℓ′. Given a value of γ ∈
[

1
N ,

1
2

)
set ℓ =

⌈
N

2(1−γ)

⌉
and set

ℓ′ = N − ℓ; this means N
2(1−γ) ≤ ℓ < N

2(1−γ) + 1 and N(1−2γ)
2(1−γ) − 1 < ℓ′ ≤ N(1−2γ)

2(1−γ) and γN
(1−γ) ≤

|ℓ − ℓ′| < γN
(1−γ) + 2 therefore 2γℓ − 2γ ≤ |ℓ − ℓ′| < 2γℓ + 2.9 We know from claim (*) that all

algorithms that (for these values of ℓ, ℓ′) compute fℓ,ℓ′ on CNF formulas require Ω(L1−δ) time for

all δ > 0 where L = 1
γ

√
N−ℓ
ℓ+1 = Ω

(
1
γ

√
N−ℓ
ℓ

)
. Moreover, ℓ′ when expressed in terms of ℓ and γ is

as follows (ℓ − 1)(1 − 2γ) − 1 < ℓ′ ≤ ℓ(1 − 2γ). Therefore, we can see that L = Ω

(
1
γ

√
N−ℓ
ℓ

)
=

Ω

(
1−2γ
γ

√
N−ℓ′

ℓ′

)
= Ω

(
1
γ

√
N−ℓ′

ℓ′

)
; the last equality holds because 1−2γ

γ

√
N−ℓ′

ℓ′ > c0 · 1
γ

√
N−ℓ′

ℓ′

where c0 is some constant strictly less than 1.10

It is also easy to see that if ℓ = ⌈ N
2(1−γ)⌉ were to be expressed as N

2 + ⌈γt⌉ then for that value of

t we have ⌈γt⌉ ≥ Nγ
2(1−γ) >

Nγ
2 which satisfies Condition 1 implying that this is in the case where we

can use Algorithm A to distinguish whether the number of satisfying assignments to a formula is ℓ
or ℓ′. Hence given a CNF formula as input, we will be able to now use Algorithm A to distinguish

whether the number of satisfying assignments is ℓ or ℓ′. Let T = 1
γ

√
N−ℓ
ℓ + 1

γ

√
N−ℓ′

ℓ′ = O( 1γ

√
N−ℓ′

ℓ′ )

because ℓ′ < ℓ. If Algorithm A can solve the γ-#CNFSAT on an input CNF that has ĥ number

of satisfying assignments in O(( 1γ

√
N−ĥ
ĥ

)1−δmO(1)) time, for some constant δ > 0, then we are

essentially computing fℓ,ℓ′ in O(T 1−δmO(1)) time, which is a contradiction to claim (*); hence the
first part of the statement of Theorem 2.21 proved.

Proof of the second part of this theorem follows from Theorem 2.6 as the regime γĥ ≤ 1
translates to exactly counting the number of satisfying assignments.

9To view the calculations in a less cumbersome way one can use the fact that asymptotically ℓ = N
2(1−γ)

, ℓ′ =
N(1−2γ)
2(1−γ)

and |ℓ− ℓ′| = γN
(1−γ)

= 2γℓ.
10Note that we need c0 < 1 which means this would require that γ ∈ [ 1

N
, 1−c0

2
) instead of the range γ ∈ [ 1

N
, 1
2
)

that we considered earlier.
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2.5 Quantum complexity of #k-SAT and other related problems

While AC0
2-QSETH can be used to comment on the quantum hardness of several properties on

truth tables of CNF formulas, it however doesn’t immediately allow for making similar hardness
assumptions for bounded width k-CNF formulas. In fact, one has to be extremely careful while
making such general hardness assumptions in the case of bounded width CNF formulas, such
a thing can be witnessed in [AW21]. However, sometimes reductions from CNF-SAT to lattice
problems [BGS17], require that the width of the input formulas gets encoded exponentially as the
dimension of the vector of the lattice problems, which is undesirable when k approaches n, which
however is tolerable for smaller k. Hence, we would like to say something interesting about hardness
#k-SAT or ⊕k-SAT say when k = Θ(log n). Turns out that we can do so by basing the hardness
on #QSETH.

To do so, we use the randomised classical algorithm by Rainer Schuler [Sch05] that solves CNF-
SAT on n variables, m clauses in O(poly(n)2n(1−1/(1+logm))) expected time. This algorithm can be
viewed as a Turing reduction from SAT with bounded clause density to SAT with bounded clause
width, which was analyzed in [CIP06], a result that we directly use.

Algorithm 1 ReduceWidthk(ψ)

Input: CNF formula ψ
1: if ψ has no clause of width > k then
2: output ψ
3: else
4: let C ′ = {l1, . . . , lk′} be a clause of ψ of width k′ > k
5: C = {l1, . . . , lk}
6: ψ0 ← ψ − {C ′} ∪ {C}
7: ψ1 ← ψ ∧ ¬l1 ∧ ¬l2 ∧ · · · ∧ ¬lk
8: ψ1 ← Remove variables corresponding to literals l1, . . . , lk from ψ1 by setting l1 = 0, . . . , lk =

0
9: ReduceWidthk(ψ0)

10: ReduceWidthk(ψ1)

Algorithm 1, the ReduceWidthk subroutine takes an input a CNF formula, say ψ, of width
greater than k and then outputs a list of k-CNF formulas ψi where the solutions of the input
formula is the union of the solutions of the output formulas, i.e., sol(ψ) = ∪isol(ψi) where sol(φ)
denotes the set of satisfying assignments to a formula φ. In fact, it is not hard to see that the count
of the number of satisfying assignments also is preserved, i.e., |sol(ψ)| =∑i |sol(ψi)|.

Lemma 2.22 (Implicit from Section 3.2 in [CIP06]). Algorithm 1 takes as input a CNF formula
ψ on n input variables, m clauses, and is of width strictly greater than k and outputs a number
of k-CNF formulas ψi each defined on at most n input variables and at most m clauses such that
|sol(ψ)| =∑i |sol(ψi)|.

Proof. Let ψ = C ′
1 ∧C ′

2 ∧ · · · ∧C ′
m be the input CNF formula to Algorithm 1. The algorithm finds

the first clause C ′
i that has its width k

′ > k. Let C ′
i = (l1 ∨ l2 ∨ · · · ∨ lk′) and Ci = (l1 ∨ l2 ∨ · · · ∨ lk).

The algorithm then constructs two formulas ψ0 = ψ−{C ′
i}∪{Ci} and ψ1 = ψ∧¬l1∧¬l2∧· · ·∧¬lk.

Then recursively calls the subroutine on ψ0 and ψ1. We now claim the following.
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Claim 2.23. sol(ψ0) ∩ sol(ψ1) = ∅ and sol(ψ) = sol(ψ0) ∪ sol(ψ1), i.e., sol(ψ) = sol(ψ0) ⊔ sol(ψ1).

Proof. Let x ∈ sol(ψ0) and then the clause Ci(x) = (l1(x)∨· · ·∨ lk(x)) should evaluate to 1. Which
means ¬(l1(x)∨ · · · ∨ lk(x)) = 0, which using De Morgan’s laws implies (¬l1(x)∧ · · · ∧ ¬lk(x)) = 0,
which means that ψ1(x) = ψ(x) ∧¬l1(x)∧ · · · ∧ ¬lk(x) = 0. Similar argument can be used to show
that if x ∈ sol(ψ1) then x /∈ sol(ψ0). Therefore, sol(ψ0) ∩ sol(ψ1) = ∅.

What remains to show is sol(ψ) = sol(ψ0) ∪ sol(ψ1).

• If x ∈ sol(ψ0) then Ci(x) = 1 which implies C ′
i(x) = 1, therefore x ∈ sol(ψ). If x ∈ sol(ψ1)

then ψ1(x) = 1, but ψ1(x) = ψ(x) ∧ ¬l1(x) ∧ ¬l2(x) ∧ · · · ∧ ¬lk(x) which means ψ(x) = 1 as
well. Therefore, if x ∈ sol(ψ0) ∪ sol(ψ1) then x ∈ sol(ψ).

• If x ∈ sol(ψ) then ψ(x) = 1 which means C ′
i(x) = 1. However, C ′

i(x) = (l1(x) ∨ · · · ∨
lk(x)) ∨ (lk+1(x) ∨ · · · ∨ l′k(x)). Which means either (l1(x) ∨ · · · ∨ lk(x)) = Ci(x) = 1 or
(lk+1(x) ∨ · · · ∨ l′k(x)) = 1 or both evaluate to 1. If Ci(x) = 1 then ψ0(x) = 1 which would
mean x ∈ sol(ψ0). If Ci(x) = 0 then ψ1(x) = ψ(x) ∧ (¬Ci(x)) = 1 which means x ∈ sol(ψ1).

Therefore, sol(ψ) = sol(ψ0) ⊔ sol(ψ1).

Using the statement of Claim 2.23 we conclude that sol(ψ) = ⊔isol(ψi), consequently implying
that |sol(ψ)| =∑i |sol(ψi)|.

Using Lemma 2.22 from this paper and Lemma 5 in [CIP06] we will now show the hardness of
k-SAT and its popular counting variants when k = Θ(log n).

Corollary 2.24. Conditional on AC0
2-QSETH (Conjecture 1.3) and Conjecture 2.5, there are no

bounded error quantum algorithms that for k = Θ(log n) solve

1. k-SAT in O(2sn/2) time,

2. #k-SAT in O(2sn) time,

3. ⊕k-SAT in O(2sn) time,

4. ⊕qk-SAT in O(2sn) time,

for any constant s < 1, respectively.

Proof. Consider the ReduceWidthk algorithm. Let p be some path of length t in the tree T of
recursive calls to Algorithm 1. Let ψg be the output formula of width k on the path p. Let l, r be
the number of left, right turns respectively on path p. Every left branch in the path reduces the
width of exactly 1 clause to k, therefore l ≤ m. One the other hand, with additional poly(n,m) time
every right branch of path p reduces the number of variables by k, therefore r ≤ n/k. Therefore
number of paths in tree T with r right branches is at most

(
m+r
r

)
.

Now suppose there is an algorithm S that solves #k-SAT in 2ns for some s < 1 for all k =
Θ(log n). We can use the same arguments from Lemma 5 in [CIP06] to show that this algorithm
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S together with the ReduceWidthk subroutine we can solve #CNF-SAT (ignoring poly(n) factors)
in time at most

n/k∑

r=0

(
m+ r

r

)
2s(n−rk)

≤
n/k∑

r=0

(
m+ n

k

r

)
2s(n−rk)

=2sn
n/k∑

r=0

(
m+ n

k

r

)
1

2srk

≤2sn(1 + 1

2sk
)m+n

k

≤2sne
1

2sk
(m+n

k
)

since (1 + x) ≤ ex

≤2sn+
4m

2sk since we can assume that m ≥ n

k
.

For every s < 1 and m = poly(n) there is a setting of k = c log n for a constant c(s,m) such that
s + 4m

n2sk
< 1. Therefore, a 2ns (for some s < 1) algorithm for #k-SAT for k = Θ(log n) would

refute #-QSETH (Theorem 2.6). The same arguments hold for k-SAT or ⊕k-SAT as well.

Note that, we cannot extend the same arguments for the majority or st-majority or addi-
tive error approximation of count. However, these arguments extend to the multiplicative factor
approximation of the count.

Corollary 2.25. Let n be an integer and let γ ∈
[

1
2n ,

1
2

)
. Conditional on γ-#QSETH, there is

no bounded error quantum algorithm that for k = Θ(log n) solves γ-#k-SAT on n variables and
m = poly(n) clauses

1. in O

((
1
γ

√
2n−ĥ
ĥ

)1−δ

mO(1)

)
time, for any constant δ > 0, whenever γĥ > 1, and

2. in O(2n(1−δ)mO(1)) time, for any constant δ > 0, whenever γĥ ≤ 1.

Here ĥ denotes the number of satisfying assignments to the input k-CNF formula.

3 Quantum strong simulation of quantum circuits

We use the phrase strong simulation problem to mean strong simulation of quantum circuits which
is defined as follows.11

Definition 3.1 (The strong simulation problem). Given a quantum circuit C on n qubits, a strong
simulation of C computes the value of | 〈x|C |0n〉 |, up to a desired bits of precision, for some
specified x ∈ {0, 1}n.12

11Note that, this is different from weak simulation problem; a weak simulation samples from probability distribution
p(x) = | 〈0n|C |x〉 |2.

12Though in some papers the strong simulation problem requires that we output 〈x|C |0n〉 instead of | 〈x|C |0n〉 |,
we use this definition because it is more comparable to the definition of the weak simulation problem. Also, the lower
bound we present holds for either of these definitions.
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Figure 2: The circuit Cφ.

For a quantum circuit C, computing | 〈x|C |0n〉 | exactly, to a precision of n bits, is #P-hard
[CHM21, VDN10]. This means even a quantum computer will likely require exponential time to
strongly simulate another quantum circuit. In this section, we prove a more precise quantum
time bound for strongly simulating quantum circuits, both exactly and approximately; in the ap-
proximate case, we present complexity results for both multiplicative factor and additive error
approximation. Our results extend the results by [HNS20] in two directions: firstly, we give explicit
(conditional) bounds proving that it is hard to strongly simulate quantum circuits using quantum
computers as well. Secondly, we also address the open question posed by [HNS20] on the (condi-
tional) hardness of strong simulation up to accuracy O(2−n/2), however, our results are based on a
hardness assumption different from SETH or Basic QSETH.

The results presented in this section are based on two main components. Firstly, on the obser-
vation that the reduction from CNFSAT to the strong simulation problem given (in Theorem 3)
by [HNS20] encodes the count of the number of satisfying assignments; this fact allows us to use the
same reduction to reduce other variants of CNFSAT, such as #CNFSAT or ⊕CNFSAT, to the
strong simulation problem, moreover, the same reduction also allows us to reduce γ-#CNFSAT

and ∆-add-#CNFSAT to analogous variants of the strong simulation problem, respectively. As
the second main component, we use the quantum hardness of these variants of CNFSAT problem
discussed in Section 2.

We will first state the result of the exact quantum time complexity of the strong simulation
problem and then use that result to later show how hard it is for a quantum computer to strongly
simulate a quantum circuit with an additive error or a multiplicative factor approximation.

Theorem 3.2. There is no constant α > 0 such that one can solve the strong simulation problem
(Definition 3.1) up to a precision of n bits for an s-size circuit on n qubits in 2n(1−α)sO(1) time,
unless #QSETH (Theorem 2.6) is false.

The proof is identical to the proof of Theorem 3 by [HNS20] which we restate here for ease of
reading.
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Proof. Let φ be a CNF formula on n input variables and m = poly(n) clauses. Let C ′
φ denote the

reversible classical circuit, using TOFFOLI, CNOT and NOT gates, that tidily computes φ(x) for
all x ∈ {0, 1}n.13 One can construct circuit C ′

φ of width k with n ≤ k ≤ n + 2(⌈log n⌉ + ⌈logm⌉)
and size s ≤ 8× 3⌈log n⌉+⌈logm⌉ with sublinear space and polynomial time overhead; see Section 4.1
of [HNS20]. Let C ′′

φ denote the quantum analogue of the classical reversible circuit C ′
φ, i.e., for

the gates in C ′
φ, TOFFOLI and CNOT remain unchanged and NOT gate is replaced by X gate;

therefore, the width and size of C ′′
φ remains k and s, respectively.

Clearly, C ′′
φ : H → H where H denotes a 2k dimensional Hilbert space. Then, it is not hard to

see that C ′′
φ |x〉 |0k−n〉 = |x〉 |φ(x)〉 |0k−1−n〉. Let Cφ denote the quantum circuit in Figure 2; width

of this circuit is still k and size is O(s). With a bit of calculation, it can be shown that 〈0k|Cφ |0k〉
encodes the fraction of satisfying assignments to formula φ.

This means if there exists a constant α > 0 such that strong quantum simulation of circuit Cφ

on basis state |x〉 with x = 0k can be computed in T = 2k(1−α)sO(1) time up to k bits of precision,
then essentially this would reveal the count of the number of satisfying assignments formula φ in
time T . Plugging in the values of k ≤ n+2(⌈log n⌉+ ⌈logm⌉) and s ≤ 8×3⌈log n⌉+⌈logm⌉ = poly(n)
we get T ≤ 2n(1−α)nO(1) time; this would refute #QSETH (Theorem 2.6). Hence, proving the
statement of Theorem 3.2.

The following corollary also gives the same lower bound for 2-bits of precision but by us-
ing a different hardness assumption (which is Majority QSETH) addressing an open question by
[HNS20].14,15

Corollary 3.3. There is no 2n(1−α)sO(1) time quantum algorithm, for any constant α > 0, that can
solve the strong simulation problem (Definition 3.1) up to 2 bits of precision for an s-size circuit
on n qubits, unless Majority QSETH (Part 1 of Corollary 2.8) is false.

One can also try to solve the strong simulation problem with additive error approximation with
the following definition.

Definition 3.4. (∆′ additive error strong simulation) Given a quantum circuit C on n qubits,
output with ∆′ ∈ [ 1

2n+1 , 1) additive error the value d′ = | 〈0n|C |x〉 | for some specified x ∈ {0, 1}n,
i.e., output a value d such that |d− d′| < ∆′.

13A classical circuit C : {0, 1}n+w(n)+1 → {0, 1}n+w(n)+1 reversibly and tidily computes a function f : {0, 1}n →
{0, 1} if the following statements are true.

1. Circuit C reversibly computes f if C consists of reversible gates, such as {TOFFOLI, CNOT, NOT}, and

∀x ∈ {0, 1}n,∃W (x) ∈ {0, 1}w(n)
, C(x, 0w(n)

, b) = (x,W (x), b⊕ f(x)). (2)

2. Circuit C tidily computes f if

∀x ∈ {0, 1}n,∀b ∈ {0, 1}, C(x, 0w(n)
, b) = (x, 0w(n)

, b⊕ f(x)). (3)

14We must admit, this answer might not be an interesting enough answer to the open question by [HNS20] because
same observation can also be made in the classical setting by basing the hardness assumption on Majority SETH.
However, we still think it is an observation worthwhile to mention.

15Additionally, one needs to be careful about the definition of Majority SETH: mostly about what definition of
Majority is being used because if the formulas under consideration are k-SAT formulas then Majority can be computed
in polynomial time but Strict Majority still seems to require exponential time on k-SAT [AW21]. Hence, one way to
circumvent that would be to define SETH also on CNF formulas of unbounded width, which is exactly how QSETH
is defined.
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Using the reduction mentioned in Theorem 3.2 and the conjectured hardness of ∆-add-#CNFSAT

problem we can prove the following.16

Corollary 3.5. Conditional on ∆-add-#QSETH (Theorem 2.15), there is no bounded error quan-
tum algorithm that can solve the strong simulation problem of an s-sized circuit C on n qubits to

∆′ = ∆
2n ∈ [ 1

2n+1 , 1) additive error approximation in Õ

((√
2n

∆ +

√
ĥ(2n−ĥ)

∆

)1−α

sO(1)

)
time for

any constant α > 0, for a specified x ∈ {0, 1}n, upto n bits of precision; here ĥ = 〈0n|C |x〉 · 2n.

It is beneficial to note that, we only get (at best) a poly(n) time quantum lower bound for
the strong simulation problem when ∆′ = ∆

2n = O(1). Fortunately, this lower bound matches
the poly(n) time quantum upper bound for the strong simulation problem when ∆′ = O(1), see
Appendix A in the appendix for details. In fact, for some values of ĥ our lower bounds are also
tight in terms of ∆′; this reassures us of our proposed conjectures.

Additionally, we are also able to show strong simulation results with multiplicative error whose
definition is as follows.

Definition 3.6. (Multiplicative γ-approximate strong simulation) Given a quantum circuit C on n
qubits, output with γ multiplicative error the value d′ = | 〈0n|C |x〉 | for some specified x ∈ {0, 1}n,
i.e., output a value d such that (1− γ)d′ < d < (1 + γ)d′.

The exact arguments in the proof of Theorem 3.2 can be used to prove the following statement.

Theorem 3.7. Conditional on γ-#QSETH (Theorem 2.21), there is no bounded-error quantum al-
gorithm that can solve the strong simulation problem to multiplicative error approximation (Definition 3.6)
of an input circuit C on n qubits with error parameter γ ∈ [ 1

2n ,
1
2) in

1. in O

((
1
γ

√
2n−ĥ
ĥ

)1−δ

sO(1)

)
time, for any constant δ > 0, whenever γĥ ≥ 1, and

2. in O(2n(1−δ)sO(1)) time, for any constant δ > 0, whenever γĥ < 1.

Here ĥ = 〈0n|C |x〉 for a specific x ∈ {0, 1}n and s denotes the size of circuit C.

Proof. Let A denote an algorithm that for a given s-sized quantum circuit C on k qubits and a
given x ∈ {0, 1}k computes 〈0k|C |x〉 with γ multiplicative error approximation for a γ ∈ [ 1

2k
, 12) in

time

1. in O

((
1
γ

√
2k−ĥ
ĥ

)1−δ

sO(1)

)
time, for a constant δ > 0, whenever γĥ ≥ 1, and

2. in O(2k(1−δ′)sO(1)) time, for a constant δ′ > 0, whenever γĥ < 1;

here ĥ = 〈0k|C |x〉 · 2n.
Then, given a CNF formula φ on n input variables and m clauses, one can do the following to

approximately count the number of satisfying assignments to φ: first use the poly(n) reduction as

16Note that, the value of k in relation to n is such that 2k = Õ(2n); here k refers to the k used in the proof of
Theorem 3.2.
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in the proof of Theorem 3.2 to construct the quantum circuit Cφ of size s = poly(n) and width
k ≤ n+ 2(⌈log n⌉+ ⌈logm⌉). Then run algorithm A on quantum circuit Cφ and x = 0k as inputs.
The output would then be the γ multiplicative error approximation of the count of the number of
satisfying assignments to φ. Depending on the value of γ · ĥ, the run-time of this entire process is

either O

(
poly(n) +

(
1
γ

√
2k−ĥ
ĥ

)1−δ

sO(1)

)
= O

((
1
γ

√
2n−ĥ
ĥ

)1−δ

nO(1)

)
for some constant δ > 0

or O(2k(1−δ′)sO(1)) = O(2n(1−δ′)nO(1)) time, for an constant δ′ > 0. Either way, violating the
γ-#QSETH (Theorem 2.21).

4 Quantum lower bound for lattice counting and q-count problems

In this section, we would like to connect k-SAT to variants of lattice problems and then use the
QSETH lower bound we have in Section 2.5 to give quantum fine-grained complexity for those
lattice problems. For any set of n linearly independent vectors B = {b1, . . . , bn} from R

d, the
lattice L generated by basis B is

L(B) =





n∑

i=1

zibi : zi ∈ Z



 .

We call n the rank of the lattice L and d the dimension. The vectors B = {b1, . . . , bn} forms a
basis of the lattice. Given a basis B, we use L(B) to denote the lattice generated by B.

For 1 ≤ p <∞ the ℓp-norm ‖x‖p of any vector x ∈ R
d is defined by

‖x‖p :=
( d∑

i=1

xpi

)1/p
.

Additionally, the ℓ∞ norm of such a vector x is defined as ‖x‖∞ := maxi∈[d]|xi|. The ℓp unit ball

Bd
p ⊂ R

d is defined by {x ∈ R
d | ‖x‖p ≤ 1}.

Fine-grained complexity of lattice problems is quite widely studied in the classical case [BGS17,
ABGS21, AC21, AS18, BP20, BPT22]. Lots of variants of lattice problems have been considered
before, and the most well-studied one is the closest vector problem (with respect to ℓp norm).

Definition 4.1. For any 1 ≤ p ≤ ∞, the Closest Vector Problem CVPp is the search problem
defined as: The input is a basis B ∈ R

d×n of the lattice L and a target vector t. The goal is to
output a vector v ∈ L such that ‖v − t‖p = min

x∈L
‖x− t‖p.

CVPp is known to have a 2n SETH lower bound for any p 6∈ 2Z [BGS17, ABGS21], and for even
p, there seems a barrier for showing a fine-grained reduction from k-SAT to CVP [AK22]. Kannan
gave a nO(n)-time algorithm for solving CVPp for arbitrary p ≥ 1 [Kan83], while the best-known
algorithm for solving CVPp with noneven p is still ncn for some constant c. To get a conditional
quantum lower bound for CVPp for noneven p, given there is already a classical reduction from
k-SAT to CVPp using 2k · poly(n) time (for noneven p) [BGS17, ABGS21], either one can directly
use the QSETH framework by Aaronson et al. [ACL+20] to get a 2(0.5−ε)n lower bound, or we can
use Corollary 2.24 to get the same lower bound in our QSETH framework.17

17Basic QSETH assumption is weaker than the QSETH assumption in Aaronson et al [ACL+20], so our lower
bound under basic QSETH assumption (Conjecture 1.3 and Corollary 2.1) will also imply a lower bound under their
quantum SETH framework.
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A natural question is invoked here: Can we have a 2(0.5+ε)n quantum SETH lower bound for
any (variants of) lattice problems? The answer is yes by using the framework and the problems
introduced in Section 2.5 and by considering the counting variant of lattice problems. We begin
by introducing the (approximate) lattice counting problem and some other related problems as
follows:

Definition 4.2 (Lattice counting problem). For all γ ≥ 0 and 1 ≤ p ≤ ∞, the γ-approximate
Vector Counting Problem γ-VCPp is the counting problem defined as follows: The input is a lattice
a basis B ∈ R

d×n of lattice L(B), target vector t ∈ R
d, and radius r ∈ R+. The problem is to

output a value C satisfying |(L−t) ∩ r · Bd
p | ≤ C ≤ (1 + γ) · |(L−t) ∩ r · Bd

p |. If γ = 0, we simply
denote the problem as VCPp.

The (approximate) lattice counting problem was first introduced by Stephens-Davidowitz as a
promise problem [Ste16], and here we slightly modify the definition to make it a counting problem.
We also generalize the lattice vector counting problem to the q-count problem, as follows.

Definition 4.3 (Lattice q-count problem). For all γ ≥ 1, 1 ≤ p ≤ ∞, and q ∈ [2n]\{1}, the lattice
q-count Problem #q-VCPp is the lattice q-count problem defined as follows: The input is a lattice a
basis B ∈ R

d×n of lattice L(B), target vector t ∈ R
d, and radius r ∈ R+. The problem is to output

a value C = |(L−t) ∩ r · Bd
p | mod q. If q = 2, we simply denote the problem as ⊕VCPp.

One can consider the above two problems are the counting and the q-counting version of CVPp,
respectively. To connect these problems to the counting k-SAT, we should first introduce the
following geometric tool introduced by Bennett, Golovnev, and Stephens-Davidowitz [BGS17].

Definition 4.4 (Isolating parallelepiped). Let k be an integer between 3 and n. For all 1 ≤ p ≤ ∞,

we say that V ∈ R
2k×k and u ∈ R

2n define a (p, k)-isolating parallelepiped if ‖u‖p > 1 and
‖V x− u‖p = 1 for all x ∈ {0, 1}k \ {0k}.

For the sake of completeness, we will explain how to connect a k-CNF formula to an instance
of VCP using the above object. The proof is very similar to the proof of Theorem 3.2 of [BGS17].

Theorem 4.5. Let k be an integer between 3 and n. Suppose we have a (p, k)-isolating parallelepiped
(V,u) for some p = p(n) ∈ [1,∞) and can make quantum queries to oracles OV : |i〉 |s〉 |0〉 →
|i〉 |s〉 |Vis〉 and Ou : |i〉 |0〉 → |i〉 |ui〉 for i ∈ [2k] and s ∈ [k]. Then for every given input oracle
OΦ : |j〉 |w〉 |0〉 → |j〉 |k〉 |Cw(j)〉 of k-CNF formula ψ = C1 ∧ C2 ∧ · · · ∧ Cm for w ∈ [m] and

j ∈ [n], one can output oracles OB : |h〉 |j〉 |0〉 → |h〉 |j〉 |Bj(h)〉 of basis B ∈ R
(m·2k+n)×n for

each h ∈ [m · 2k + n] and j ∈ [n], Ot : |h〉 |0〉 → |h〉 |th〉 of target vector t ∈ R
m·2k+n for each

h ∈ [m · 2k + n], and radius r such that |sol(ψ)| =VCPp(B, t, r), using poly(n,m) queries to OV ,

O†
V , Ou, O

†
u, OΦ, O

†
Φ, and elementary gates.

Proof. Let d = m·2k+n and V = {v1, . . . ,vk} with vs ∈ R
2k for every s ∈ [k]. The basis B ∈ R

d×n

and target vector t ∈ R
d in the output instance have the form:

B =




B1

...

Bm

2 ·m1/p · In



, t =




t1

...

tm

m1/p · 1n



,
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with blocks Bw ∈ R
2k×n that correspond to the clause Cw = ∨ks=1ℓw,s and tw ∈ R

2n for each
w ∈ [m]. For each w ∈ [m] and j ∈ [n], the jth column (Bw)j of block Bw is

(Bw)j =





vw, if xj is the wth literal of clause w,

−vw, if ¬xj is the wth literal of clause w,

02d , otherwise,

and tw = u− ∑
s∈Nw

vs, where Nw = {s ∈ [k] : ℓw,s is negative} is the set of the indices of negative

literals in Cw. Also set r = (mn+m)1/p.
Define the equation unitary Ue : |a〉 |b〉 |0〉 → |a〉 |b〉 |δ|a|,|b|〉 for each a, b ∈ [d], and the location

indicator unitary as for each x1, . . . , xn ∈ {0, 1},

Uloc : |x1〉 |x2〉 . . . |xn〉 |0〉 →
{
|x1〉 |x2〉 . . . |xn〉 |s〉 , if only xs = 1 and all others are 0,

|x1〉 |x2〉 . . . |xn〉 |0〉 , otherwise,

which can both be implemented via poly(n) elementary gates up to negligible error. Also, we define
the sign literal indicator unitary as follows: for each w ∈ [m], j ∈ [n],

Usℓ : |w〉 |j〉 |0〉 →





|w〉 |j〉 |s〉 , if xj is the sth literal of clause Cw,

|w〉 |j〉 |−s〉 , if ¬xj is the sth literal of clause Cw,

|w〉 |j〉 |0〉 , otherwise,

which can also be implemented by using poly(m,n) applications of OΦ and poly(m,n) many ele-
mentary gates.

We are now ready to show how to implement OB and Ot. For input |h〉 |j〉 |0〉 |0〉 |0〉 |0〉, let
|h〉 = |h1〉 |h2〉 where h2 is the last n bits of h and h1 is the remaining prefix. Then we first apply
Ue to the first, third, and fifth registers to have |h1〉 |h2〉 |j〉 |0〉 |δh1,0〉 |0〉 |0〉. After that, apply Usℓ

to the first, third, and sixth registers, and apply OV to the second, third, and seventh registers we
get

|h1〉 |h2〉 |j〉 |0〉 |δh1,0〉 |s〉 |Vjs〉 ;
note that Vjs = (vs)j . Finally, adding another ancilla register, we can store the value Vjs · δh1,0 +
2m1/p(1− δh1,0)δh−m·2k ,j in the last register. Uncomputing fourth to seventh registers, we have

|h1〉 |h2〉 |j〉 |Vjs · δh1,0 + 2m1/p(1− δh1,0)δh−m·2k,j〉 = |h〉 |j〉 |(vs)j · δh1,0 + 2m1/p(1− δh1,0)δh−m·2k ,j〉 ,

and (vs)j · δh1,0 +2m1/p(1− δh1,0)δh−m·2k ,j is exactly the coefficient of Bj(h). One can see we only

use poly(n,m) queries to OV , O
†
V , OΦ, O

†
Φ and elementary gates. We can also construct Ot using

a similar strategy, which can also be done using at most poly(n,m) queries to OV , O
†
V , OΦ, O

†
Φ,

Ou, O
†
u, and elementary gates.

To see the correctness, consider y ∈ Z
n. If y /∈ {0, 1}n, then

‖By − t‖pp ≥ ‖2m1/pIny −m1/p1n‖pp ≥ m(n+ 2).
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On the other hand, if y ∈ {0, 1}n, then for each Bw

‖Bwy − t‖pp = ‖
∑

s∈Pw

yind(ℓw,s) · vs −
∑

s∈Nw

yind(ℓw,s) · vs − (u−
∑

s∈Nw

yind(ℓw,s) · vs)‖pp

= ‖
∑

s∈Pw

yind(ℓw,s) · vs +
∑

s∈Nw

(1− yind(ℓw,s)) · vs − u‖pp

= ‖
∑

s∈Sw(y)

vs − u‖pp,

where ind(ℓw,s) is the index of the variable underlying ℓw,s, Pw = {s ∈ [k] : ℓw,s is positive} is the
set of the indices of positive literals in Cw, and Sw(y) = {s ∈ Pw : yind(ℓw,s) = 1} ∪ {s ∈ Nw :

yind(ℓw,s) = 0} is the indices of literals in Cw satisfied by y. Because (V,u) is a (p, k)-isolating
parallelepiped, if |Sw(y)| 6= 0, then ‖ ∑

s∈Sw(y)

vs − u‖pp = 1, and it will be greater than 1 otherwise.

Also, |Sw(y)| 6= 0 if and only if Cw is satisfied. Therefore, we have that for every satisfying
assignment y,

‖By − t‖pp =
m∑

k=1

‖Bky − t‖pp +mn = m+mn,

and for all other unsatisfying assignments y′, ‖By′ − t‖pp > m+mn. As a result, every satisfying
assignment of ψ = C1 ∧ C2 ∧ · · · ∧ Cm is the lattice points of lattice L(B) with distance r =
(mn+m)1/p to the target vector t, which implies the answer of counting-SAT with input ψ is equal
to VCPp(B, t, r).

The theorem above shows how we can connect the counting k-SAT problem to the vector
counting problem given access to a (p, k)-isolating parallelepiped. However, it is not always the
case that we can compute such an isolating parallelepiped efficiently. Nevertheless, Aggarwal, Ben-
nett, Golovnev, and Stephens-Davidowitz [BGS17, ABGS21] also showed the existence of isolating
parallelepiped for some p, k and provided an efficient algorithm for computing them.

Theorem 4.6 ([ABGS21]). For k ∈ Z+ and computable p = p(n) ∈ [1,∞) if p satisfies either

(1) p /∈ 2Z or (2) p ≥ k, there exists a (p, k)-isolating parallelepiped V ∈ R
2k×k, u ∈ R

2kand it is
computable in time poly(2k).

Therefore, by choosing k = Θ(log n) and combining Corollary 2.24 and Theorems 4.5 and 4.6,
we can directly show a 2n QSETH lower bound for VCPp for all non-even p. Also, a similar idea
works for the q-count and approximate counting of CNF-SAT: for any CNF-SAT formula ψ, using
Algorithm 1 and Lemma 2.22, we can output a number of k-CNF formula ψ1 . . . , ψN such that
|sol(ψ)| =∑i∈[N ] |sol(ψi)|. Once we have an algorithm that solves γ#-k-SAT (#q-k-SAT), we can
use it to compute γ-#k-SAT(ψi) (#q-k-SAT(ψi)) for all i ∈ [N ], and then by adding the outputs
together, we can therefore get a valid solution to γ-#CNFSAT (#qCNFSAT) with input ψ. By a
similar argument of the proof of Corollary 2.24, we know N is bounded by 2o(n). Combining the
above arguments with Theorem 4.5, we have following corollaries.

Corollary 4.7. Let p ∈ [1,∞) \2Z. There is no bounded error quantum time algorithm that solves
VCPp in O(2sn) time for a constant s < 1 unless #QSETH conjecture is false.

Corollary 4.8. Let γ ∈ [ 1
2n ,

1
2), ĥ ∈ [2n], and p ∈ [1,∞) \ 2Z. There is no bounded error quantum

time algorithm that solves γ-VCPp,
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1. in O

((
1
γ

√
2n−ĥ
ĥ

)s
)

time, for any constant s < 1, whenever γĥ > 1, and

2. in O(2sn) time, for any constant s < 1, whenever γĥ ≤ 1

unless γ-#QSETH conjecture is false.

Corollary 4.9. Let p ∈ [1,∞) \2Z. There is no bounded error quantum time algorithm that solves
⊕VCPp in O(2sn) time for a constant s < 1 unless ⊕QSETH conjecture is false.

Corollary 4.10. Let p ∈ [1,∞)\2Z and q ∈ [2n]\{1, 2}. There is no bounded error quantum time
algorithm that solves #qVCPp in O(2sn) time for a constant s < 1 unless #qQSETH conjecture is
false.

The following theorem also shows how to connect the approximate vector counting problem
to the closest vector problem. The connection was already built up in Theorem 3.5 of [Ste16],
while we can easily give a quadratic saving for the number of calls to CVPp oracle by using some
basic quantum tricks if quantum queries are allowed. We include the proof in Appendix B for
completeness.

Theorem 4.11. Let f(n) ≥ 20 be an efficiently computable function and p ∈ [1,∞). One can solve
f(n)−1-VCPp using O(f2) quantum queries to CVPp.

Note that the QSETH lower bound for f−1-VCPp depends on f . Therefore if one can show a
reduction from f−1-VCPp to CVPp using f c for some constant c < 1, then it will end up with a
better QSETH lower bound for CVPp.

5 Hardness of Counting/Parity of OV, Hitting Set, and Set-Cover

In this section, we will discuss the consequences of Corollary 2.24 and Theorem 2.21 on some well-
motivated problems: Orthogonal Vectors, Hitting Set and Set Cover. Following are the definitions
of Hitting Set and its variants.

Definition 5.1 (Hitting Set). For any integers n,m > 0, the Hitting Set problem is defined as
follows: The input is a collection Σ = (S1, · · · , Sm), where Si ⊂ V and integer t > 0, the goal is to
output a subset S′ ⊂ V such that |S′| ≤ t and ∀i ∈ [m], |S′ ∩ Si| > 0.

Definition 5.2 (Variants of Hitting Set). For any integers n,m > 0 and γ ∈
[

1
2n ,

1
2

)
, the input is

a collection Σ = (S1, · · · , Sm), where Si ⊂ V and integer t > 0.

1. In Count Hitting Set problem, the goal is to output |S′ ⊂ V :
∣∣S′| ≤ t,∀i ∈ [m], |S′ ∩ Si| > 0

∣∣.

2. In Parity Hitting Set problem, the goal is to output |S′ ⊂ V :
∣∣S′| ≤ t,∀i ∈ [m], |S′ ∩ Si| > 0

∣∣
mod 2.

3. In Majority Hitting Set, the goal is to output 1 if |S′ ⊂ V :
∣∣S′| ≤ t,∀i ∈ [m], |S′ ∩ Si| > 0

∣∣ >
2n−1, otherwise output 0.

4. In γ approximation of count Hitting Set, the goal is to output an integer d such that (1−γ)d′ <
d < (1 + γ)d′ where d′ = |S′ ⊂ V :

∣∣S′| ≤ t,∀i ∈ [m], |S′ ∩ Si| > 0
∣∣.
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In [CDL+16], Cygan et al. showed a Parsimonious reduction between CNF-SAT and Hitting
Set. By Parsimonious reduction, we mean a transformation from a problem to another problem
that preserves the number of solutions.

Theorem 5.3 (Theorem 3.4 in [CDL+16]). For any sufficiently large integer n > 0 and constant
ε > 0, there exists a polynomial time Parsimonious reduction from CNF-SAT on n variables to
Hitting Set on n(1 + ε) size universal set.

We get the following corollary.

Corollary 5.4. For any sufficiently large integer n > 0, constant δ > 0 and γ ∈
[

1
2n ,

1
2

)
, there is

no bounded error quantum algorithm

1. in 2
n
2
(1−δ) time for Hitting Set unless basic-QSETH (Corollary 2.1) is false.

2. in 2n(1−δ) time for Count Hitting Set unless #QSETH(Theorem 2.6) is false.

3. in 2n(1−δ) time for Parity Hitting Set unless ⊕QSETH(Corollary 2.7) is false.

4. in 2n(1−δ) time for Majority Hitting Set unless Majority-QSETH(Corollary 2.8) is false.

5. in

(
1
γ

√
2n−h

h

)1−δ

time for γ approximation of count Hitting Set unless γ-#QSETH (as in

Theorem 2.21) is false. Here h denote the number of hitting sets to the input instance.

We use our results form Section 2 to show fine-grained hardness of problems in complexity class
P. More specifically, we study Orthogonal Vectors problem and its variants defined as follows.

Definition 5.5 (Orthogonal Vectors (OV)). For any integers d, n > 0, the Orthogonal Vectors
(OV) problem is defined as follows: The input is two lists A and B, each consists of n vectors from
{0, 1}d. The goal is to find vectors a ∈ A, b ∈ B for which 〈a, b〉 = 0.

Definition 5.6 (Variants of OV). For any integers d, n > 0 and γ ∈
[

1
n2 ,

1
2

)
, the input is two lists

A and B, each consists of n vectors from {0, 1}d.
1. In Count OV problem, the goal is to output |(a, b) : a ∈ A, b ∈ B, 〈a, b〉 = 0| i.e. number of

pairs (a,b) for which a ∈ A, b ∈ B and 〈a, b〉 = 0.

2. In Parity OV problem, the goal is to output |(a, b) : a ∈ A, b ∈ B, 〈a, b〉 = 0| mod 2.

3. In Majority OV, the goal is to output 1 if |(a, b) : a ∈ A, b ∈ B, 〈a, b〉 = 0| > n2/2, otherwise
output 0.

4. In γ approximation of count OV, the goal is to output an integer d such that (1− γ)d′ < d <
(1 + γ)d′ where d′ = |(a, b) : a ∈ A, b ∈ B, 〈a, b〉 = 0|.

Orthogonal Vectors (OV) is an important computational problem that lies in complexity class
P. It turns out to be one of the central problem to show fine-grained hardness of problems in
P [Vas15, ABDN18]. Williams showed a reduction from a reduction from CNF-SAT to OV [Wil05].
We observe that Williams’s reductions is Parsimonious. Therefore we also get fine-grained hardness
of counting versions of OV. In [BPS21], authors showed O(n)-hardness for OV under basic QSETH
assumption.
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Corollary 5.7. For any sufficiently large integer n > 0, γ ∈
[

1
n2 ,

1
2

)
and any constant δ > 0, there

is no bounded error quantum algorithm

1. in n2−δ time for Count OV unless #QSETH (Theorem 2.6) is false.

2. in n2−δ time for Parity OV unless ⊕QSETH (Corollary 2.7) is false.

3. in n2−δ time for Majority OV unless Majority-QSETH (Corollary 2.8) is false.

4. in

(
1
γ

√
n2−h
h

)1−δ

time for γ approximation of count OV unless γ-#QSETH (Theorem 2.21)

conjecture is false. Here h denote the number of hitting sets to the input instance.

We also show fine-grained hardness of parity Set-Cover defined as follows.

Definition 5.8 (parity Set-Cover). For any integers n,m > 0, the parity Set-Cover problem is
defined as follows: The input is a collection Σ = (S1, · · · , Sm), where Si ⊂ V and integer t > 0, the
goal is to output

∣∣{F ⊂ Σ :
⋃

S∈F S = V, |F| ≤ t}
∣∣ mod 2.

In [CDL+16], Cygan et al. showed an efficient reduction from parity Hitting Set to parity Set
Cover. We get the following corollary:

Corollary 5.9. For any sufficiently large integer n > 0 and t > 0, parity Set-Cover on a universal
set of size n is 2n hard unless ⊕QSETH (Corollary 2.7) is false.

It’s a big open to get an efficient fine-grained reduction from Hitting Set or CNF-SAT to Set-
Cover. Note that Hitting Set and Set Cover are dual problems of each other but this reduction
does not say anything interesting about the fine-grained hardness of Set-Cover.

6 Discussions and open questions

We believe that this paper opens up the possibility of concluding quantum time lower bounds for
many other problems, both for other variants of CNFSAT and also for problems that are not
immediately related to CNFSAT. While this is a natural broad future direction to explore, we also
mention the following few directions for future work which are more contextual to this paper.

• One of the motivations to use AC0
2-QSETH in this paper is so that we can ‘tie’ certain

conjectures, that would have otherwise been standalone conjectures, to one main conjecture.
But in the process, we conjecture compression obliviousness of several properties. It would be
nice if we could also have an ‘umbrella’ conjecture that allows one to establish compression
obliviousness of several properties. For e.g., it would be nice if we could show that compression
obliviousness of a natural property like count or parity implies compression obliviousness
of say ∆-add-count.

• It will be interesting to see if it is possible to use the QSETH framework (or the AC0
2-QSETH

conjecture) to give a single exponential lower bound for CVP in Euclidean norm (CVP2).
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A Quantum upper bounds for strong simulation

In order to solve the ∆′ additive error strong simulation problem we will be using the amplitude
estimation algorithm given by [BHMT02] as a subroutine.

Theorem A.1 (Implicit in Theorem 12 by [BHMT02]). Given a natural number M and access to
an (n+ 1)-qubit unitary U satisfying

U |0n〉 |0〉 = √a · eiθ1 |φ1〉 |1〉+
√
1− a · eiθ2 |φ0〉 |0〉 ,

32



where |φ0〉 and |φ1〉 are arbitrary n-qubit states, θ1, θ2 ∈ [0, 2π] and 0 < a < 1, there exists a
quantum algorithm that uses O(M) applications of U and U † and Õ(M) elementary gates, and
outputs a state |Λ〉 such that after measuring that state, with probability ≥ 9/10, the first register
λ of the outcome satisfies

|√a− λ| ≤ 100π

M
.

Theorem A.2. Let n ∈ N. There is a O(poly(n) 1
∆′ ) time quantum algorithm for solving the ∆′

additive error strong simulation of Definition 3.4.

Proof. Let C and x denote the input, a quantum circuit on n input variables of size poly(n) and
x ∈ {0, 1}n be basis state, respectively. The task is to estimate the value of | 〈x|C |0n〉 | with
∆′ ∈ [ 1

2n+1 , 1) additive error approximation.
Let |ψ〉 = C |0n〉 = ∑i∈{0,1}n αi |i〉 and ∀i, αi ∈ C. Let U ′ denote the unitary U ′ : |i〉 |x〉 |b〉 →

|i〉 |x〉 |b⊕ (i = x)〉 for some i, x ∈ {0, 1}n and b ∈ {0, 1}. It is easy to verify that combining C and
U ′ we can construct a unitary U on 2n+ 1 qubits such that

U |02n〉 |0〉 = αx |x〉 |x〉 |1〉+
∑

i 6=x

αi |i〉 |x〉 |0〉 ,

and |αx| = | 〈x|C |0n〉 |. Using the amplitude estimation algorithm from Theorem A.1 we can now
estimate | 〈x|C |0n〉 | to an additive error of ∆′ in O(poly(n) 1

∆′ ) time.

B Proof of Theorem 4.11

To prove Theorem 4.11, we first introduce the following theorem.

Theorem B.1 ([Ste16], modified Theorem 3.2). Let B be a basis of a lattice L(B) and Q be a prime
number. Consider the sparsification process: input any two vectors z, c ∈ Z

n
Q, the sparsification

process Spar(B, Q,z, c) outputs a basis BQ,z of the sublattice Lz ⊂ L = {u ∈ L : 〈z,B−1u〉 = 0
mod Q} and wz,c = Bc. Then for every t ∈ R

n, x ∈ L with N = |(L−t)∩ ‖x− t‖ ·Bn
p | ≤ Q, and

CV Pp oracle, we have

1

Q
− N

Q2
− N

Qn−1
≤ Pr

z,c∈Zn
Q

[CV Pp(t+wz,c,Lz) = x+wz,c] ≤
1

Q
+

1

Qn
,

and in particular,

N

Q
− N2

Q2
− N2

Qn−1
≤ Pr

z,c∈Zn
Q

[min
u∈Lz

‖(t+wz,c − u‖p) ≤ ‖x− t‖p] ≤
N

Q
+

N

Qn
.

Define USpar : |B, Q,z, c〉 |0〉 |0〉 → |B, Q,z, c〉 |BQ,z〉 |wz,c〉, where BQ,z,wz,c are the output of
Spar(B, Q,z, c). Since given CVPp oracle and a basisB, the sparsification process can be efficiently
done according to the construction, we can also implement the unitary USpar efficiently. Then we
are ready to show the proof of Theorem 4.11.

Before we enter the proof of Theorem 4.11, we would like to introduce the promised version of
lattice vector counting problem as follows:
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Definition B.2 (Gap-VCP). For all γ ≥ 0 and 1 ≤ p ≤ ∞, the problem γ-approximate gap Vector
Counting Problem γ-Gap-VCPp is a promise problem defined as follows: The input is a lattice a
basis B ∈ R

d×n of lattice L(B), target vector t ∈ R
d, radius r ∈ R+, and N ≥ 1. It is a No instance

if |(L−t) ∩ r · Bd
p | ≤ N and a Yes instance if N > (1 + γ) · |(L−t) ∩ r · Bd

p |.

One can easily see if we can solve γ-Gap-VCPp, then by using poly(n) calls of it we can solve
γ-VCPp. As a result, it suffices to show how to reduce γ-Gap-VCPp to CVPp in the following proof.

Proof of Theorem 4.11. Choose a prime Q = Θ(fN) and let OCV P be the quantum CVPp oracle.
First we prepare the superposition state 1

Qn/2

∑
z,c∈Zn

Q

|B, Q,z, c〉 |0〉 |t〉 |0〉 |0〉, apply USpar on the first

six registers, and apply OCV Pp on the fifth, sixth, seventh registers, and then apply subtraction
unitary Usub : |a〉 |b〉 |0〉 → |a〉 |b〉 |‖a− b‖p〉 on the last three registers, we get

1

Qn/2

∑

z,c∈Zn
Q

|B, Q,z, c〉 |BQ,z〉 |t+wz,c〉 |CV Pp(BQ,z, t +wz,c)〉 |‖t +wz,c − CV Pp(BQ,z, t+wz,c))‖p〉 .

Let rz,c = ‖t+wz,c − CV Pp(BQ,z, t +wz,c))‖p and umcompute the first seven registers, we get

1

Qn/2

∑

z,c∈Zn
Q

|rz,c〉 ,

add another ancilla |0〉 at the end of the above state, and then apply r-threshold gate

Ur : |R〉 |0〉 →
{
|R〉 |1〉 if R ≤ r
|R〉 |0〉 otherwise,

on it, we get

1

Qn/2

( ∑

rz,c≤r

|rz,c〉 |1〉+
∑

rz,c,>r

|rz,c〉 |0〉
)
=
√
a |φ1〉 |1〉+

√
1− a |φ0〉 |0〉 ,

where a = |{(z, c) : rz,c ≤ r}|/Qn = Pr
z,c,∈Zn

Q

[rz,c ≤ r]. Note that by Theorem B.1, if | L∩(rBn
p +

t)| ≤ N , then

Pr
z,c,∈Zn

Q

[rz,c ≤ r] ≤
N

Q
+

N

Qn
,

and if | L∩(rBn
p + t)| ≥ γN , then

Pr
z,c,∈Zn

Q

[rz,c ≤ r] ≥
γN

Q
− γ2N2

Q2
− γ2N2

Qn−1
.

Observing that γN
Q −

γ2N2

Q2 − γ2N2

Qn−1 − (NQ + N
Qn ) = Θ(f−1(n)N/Q), we know that to distinguish

the above two cases, it suffices to learn a = Pr
z,c,∈Zn

Q

[rz,c ≤ r] with additive error Θ(f−1(n)N/Q).

Therefore, by using Theorem A.1, we can solve γ-Gap-VCPp with γ = f−1(n) using O(fQ/N)
queries to OCV Pp . Because Q = Θ(fN), we finish the proof.
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