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Abstract. In this paper, we propose a deep learning based numerical scheme for strongly coupled
forward backward stochastic differential equations (FBSDEs), stemming from stochastic control. It
is a modification of the deep BSDE method in which the initial value to the backward equation is
not a free parameter, and with a new loss function being the weighted sum of the cost of the control
problem, and a variance term which coincides with the mean squared error in the terminal condition.
We show by a numerical example that a direct extension of the classical deep BSDE method to
FBSDEs fails for a simple linear-quadratic control problem, and we motivate why the new method
works. Under regularity and boundedness assumptions on the exact controls of time continuous and
time discrete control problems, we provide an error analysis for our method. We show empirically
that the method converges for three different problems, one being the one that failed for a direct
extension of the deep BSDE method.
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1. Introduction. Forward backward stochastic differential equations (FBSDEs)
constitute an important family of models with many applications in a wide variety of
fields such as finance, physics, chemistry, and engineering. As the name suggests, an
FBSDE consists of two stochastic differential equations (SDEs), one forward SDE and
one backward SDE, commonly referred to as the forward equation and the backward
equation, respectively. The forward equation is a classical SDE with a given initial
value, while the backward equation has a given stochastic terminal value and the
initial value is part of the solution. In this paper, we are concerned with stochastic
control problems, which typically lead to coupled FBSDEs, meaning that the primary
stochastic variables in the backward SDE impact the forward SDE and vice versa.
Since closed form solutions to FBSDEs are rare, one often has to rely on numerical
approximations.

In this paper, we propose a method which falls into the rapidly growing category
of neural network based approximation schemes for FBSDEs and PDEs. Even though
there are a number of works in this direction, the methods stem from the pioneering
work [31] and are similar in spirit. In the present paper, nonconvergence of the method
from [31], originally proposed for noncoupled FBSDEs, is identified when applied to
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DEEP FBSDE METHOD A227

strongly coupled FBSDEs. We present a new family of methods and prove analytically
and numerically that it overcomes the convergence problem.

Prior to the recent surge in machine learning based algorithms, the task of approx-
imating FBSDEs was an active field of research for several decades. From a general
perspective, approximation schemes can be categorized into backward and forward
numerical methods, referring to the order in time in which the methods operate.

A backward numerical method usually relies on an initialization of the backward
equation at the known terminal value (or an approximation of the terminal value).
The solution is then approximated recursively, backward in time, by approximating
conditional expectations. There are several different methods to approximate these
conditional expectations such as tree based methods (see [57, 48]), Fourier based
methods (see, e.g., [55, 34, 56]), and least-squares Monte Carlo (LSMC) methods
(see, e.g., [13, 16, 22, 9, 18, 28]). A general property of backward methods is that
the terminal condition of the backward equation depends on the realization of the
forward equation. This is not a problem for decoupled FBSDEs, but for coupled
FBSDEs the method becomes implicit and iterative schemes which may not always
converge need to be employed. A second class of algorithms, which is more suitable
for coupled FBSDEs, is the class of forward methods such as PDE based methods
(see, e.g., [49, 26]) and Picard linearization schemes (see, e.g., [27, 37, 8]). For a
summary on forward and backward numerical methods for FBSDEs, we refer to [17].
A typical drawback for the methods mentioned above is that they suffer from the curse
of dimensionality (some methods such as LSMC and Picard schemes may overcome
this problem to some extent), meaning that the time complexity and the memory
requirements increase exponentially with the dimensions of the problem.

In addition to the classical methods described above, a new branch of algorithms
based on neural networks has appeared in recent years. In [31], the authors present a
method called the deep BSDE method , which relies on a neural network parametriza-
tion of the control process and the initial condition of the backward equation. Both
the forward and the backward equations are then treated as forward equations and
are approximated with the Euler--Maruyama scheme. To achieve an accurate approx-
imation, the parameters of the neural networks are optimized such that the terminal
condition on the backward equation is (approximately) satisfied in the mean squared
sense. The method has proven to be able to approximate a wide class of equations in
very high dimensions (at least 100). Since the original deep BSDE method publica-
tion, several papers with adjustments of the algorithm as in, e.g., [5, 7, 4, 24, 53, 40,
25, 41, 58, 33], and others with convergence analysis in, e.g., [32, 38, 10, 21, 29, 39,
42], have been published. In addition to being forward methods, these algorithms are
global in their approximation, meaning that the optimization of all involved neural
networks is carried out simultaneously. This implies that they are optimized subject
to one single objective function, also called loss function, as it is usually referred to in
the machine learning literature. There also exists a branch of neural network based
algorithms relying on local optimization techniques. Typically, these methods are of
backward type and of a similar nature as the LSMC algorithms, but instead of poly-
nomials as their basis functions, neural networks are used. As for the LSMC method,
these kinds of algorithms are not easily applied to coupled FBSDEs. Algorithms of
this type can be found in, e.g., [36, 35, 15] and with error analysis [23, 51]. For an
overview of machine learning algorithms for approximation of PDEs, we refer to [6].

As mentioned, we are interested in coupled FBSDEs and the focus is therefore
on global algorithms operating forward in time, with a structure similar to the deep
BSDE method. We demonstrate that the approach taken in, e.g., [1, 52, 47, 40,
20], where the deep BSDE method is applied to the FBSDEs associated with the
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A228 K. ANDERSSON, A. ANDERSSON, AND K. OOSTERLEE

stochastic control problem, is problematic. As we show in the present paper, even
though an accurate approximation of the control problem can be achieved, this does
not imply an approximation of the FBSDE in general. Moreover, it is observed
that the deep BSDE method does not converge for certain problems and the conver-
gence problem is prominent for the strongly coupled FBSDEs. Our proposed method
overcomes this problem by employing the equivalence between the stochastic control
problem and the FBSDE. To be more precise, we use the fact that the initial value of
the BSDE coincides with the value function of the control problem and hence can be
expressed as a minimization problem. Moreover, we use the adaptivity property of
the BSDE to conclude that a stochastic version of the value function is \scrF 0-measurable
and therefore has zero variance. These two properties are then combined in the loss
function to achieve a robust approximation scheme for coupled FBSDEs. The effec-
tiveness of our algorithm is demonstrated empirically on a collection of problems with
different characteristics. In addition, a theoretical error analysis is carried out, in
which we provide convergence rates for the initial and terminal conditions of the FB-
SDE under a mild assumption and strong convergence of the FBSDE under stronger
assumptions. Our main result is similar to the a posteriori error bound for the deep
BSDE method which was established for weakly coupled FBSDEs in [32] and later
extended to non-Lipschitz coefficients (but for less general diffusion coefficients) in
[42]. However, these results are unlikely to be valid for strongly coupled FBSDEs and
we find several examples in which the discrete terminal condition converges while the
FBSDE approximation does not.

This paper is structured as follows. In section 2, we present the stochastic control
problem and explain the reformulations to a PDE as well as an FBSDE. Moreover,
we introduce reformulations of the FBSDE to different variational problems which
are used for the algorithms in later sections. The section concludes by introducing
the time discrete counterparts of the reformulations as well as a discussion on when
and why the deep BSDE method fails to converge. In section 3, the fully imple-
mentable algorithms are presented together with details on the neural networks used.
Section 4 is devoted to error analysis of the proposed algorithm. Classical Euler--
Maruyama type discretization errors and errors stemming from differences between
time discrete and time continuous stochastic control are discussed. Finally, in section
5 numerical approximations are compared with their analytic counterparts when we
have such available.

2. The deep FBSDE method and an improved family of methods. This
section contains a formal introduction to our proposed method with motivation from
stochastic control and FBSDE theory. Section 2.1 introduces the stochastic control
problem, the related Hamilton--Jacobi--Bellman (HJB) equation, and the FBSDE.
Alternative formulations of the FBSDE are presented in section 2.2. In section 2.3, we
motivate by numerical examples why a direct extension of the deep BSDE method to
FBSDEs, as in [1, 52, 47], fails for many problems. Finally, in section 2.4, the proposed
robust deep FBSDE method is described. In this section, we present formally the
method for the sake of clarity, while in section 4, a more rigorous approach is taken.

2.1. Stochastic control and FBSDEs. Our starting point is a controlled SDE
and its associated cost functional

Xu
t = x0 +

\int t

0

\=b(s,Xu
s , us)ds+

\int t

0

\sigma (s,Xu
s )dWs,(2.1)
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DEEP FBSDE METHOD A229

Ju(t, x) =\BbbE 
\biggl[ \int T

t

\=f(s,Xu
s , us)ds+ g(Xu

T )
\bigm| \bigm| \bigm| Xu

t = x

\biggr] 
, t\in [0, T ].(2.2)

Here T \in (0,\infty ), d, k, \ell \in \BbbN , (Wt)t\in [0,T ] is a k-dimensional standard Brownian motion,
the coefficients \=b : [0, T ]\times \BbbR d\times \BbbR \ell \rightarrow \BbbR d, \sigma : [0, T ]\times \BbbR d\times \BbbR \ell \rightarrow \BbbR d\times k, \=f : [0, T ]\times \BbbR d\times \BbbR \ell \rightarrow 
\BbbR , and g : \BbbR d \rightarrow \BbbR satisfy some extra regularity conditions, and the control process
u= (ut)t\in [0,T ] belongs to a set \scrU of admissible controls, taking values in a set U \subset \BbbR \ell .
The aim is to find a control process u\ast \in \scrU that minimizes Ju(0, x0). Assuming the
cost to be bounded from below, the value function of the control problem is given by
V (t, x) = infu\in \scrU J

u(t, x). For the presentation, we assume uniqueness of the infimum.
Under appropriate conditions, the value function satisfies an HJB equation, which is
a nonlinear parabolic PDE given by

(2.3)

\Biggl\{ 
\partial V
\partial t (t, x) +

1
2Tr(\sigma \sigma 

\top D2
xV )(t, x) +\scrH (t, x,DxV (t, x)) = 0, (t, x)\in [0, T )\times \BbbR d,

V (t, x) = g(x), (t, x)\in \{ T\} \times \BbbR d.

Here Tr denotes the trace of a matrix and the Hamiltonian, \scrH , is given by

(2.4) \scrH (t, x, p) = inf
v\in U

\bigl[ 
\=b(t, x, v)\top p+ \=f(t, x, v)

\bigr] 
, (t, x)\in [0, T ]\times \BbbR d, p\in \BbbR d.

Under conditions that guarantee a sufficiently regular solution to (2.3), and the infi-
mum in the Hamiltonian to be attained at v\ast = v\ast (t, x, p), the optimal control is of the
feedback form, u\ast (t,Xt) = v\ast (t,Xt,DxV (t,Xt)), where we have written X :=Xu\ast 

for
the optimally controlled Xu. The feedback map v\ast is for many interesting problems
easy to derive. Again, under sufficient regularity, It\^o's formula applied to V (t,Xt)
yields

(2.5)

\Biggl\{ 
Xt = x0 +

\int t
0
b(s,Xs,Zs)ds+

\int t
0
\sigma (s,Xs)dWs,

Yt = g(XT ) +
\int T
t
f(s,Xs,Zs)ds - 

\int T
t
\langle Zs,dWs\rangle , t\in [0, T ],

where Yt = V (t,Xt), Zt = \sigma \top (t,Xt)DxV (t,Xt) and, for \theta \in \{ b, f\} , we have \theta (t,Xt,Zt) :=
\=\theta (t,Xt, v

\ast (t,Xt, (\sigma (t,Xt)\sigma 
\top (t,Xt))

 - 1\sigma (t,Xt)Zt)).
In the rest of this section, we assume the existence of a unique solution (X,Y,Z)

of (2.5) in appropriate spaces. Given Z or equivalently DxV , we thus have an opti-
mal control u\ast t = v\ast (t,Xt, (\sigma (t,Xt)\sigma 

\top (t,Xt))
 - 1\sigma (t,Xt)Zt). This would make efficient

numerical FBSDE schemes very useful for solving the control problem. In the other
direction, if we have an optimal control u\ast , then in general this does not give us Z,
unless p \mapsto \rightarrow v\ast (t, x, p) is invertible, and only in this case the control problem naturally
suggests numerical schemes for FBSDEs. Below, we introduce a family of numerical
schemes for FBSDEs that works regardless of invertibility of the feedback map, but
reduces to the control problem in the case of invertibility.

2.2. Alternative formulations of FBSDEs. The deep BSDE method pro-
posed in [31] relies on a reformulation of the FBSDE (2.5) into two forward SDEs, one
with a priori unknown initial value. It relies moreover on the Markov property of the
FBSDE, which guarantees that Zt = \zeta \ast (t,Xt), for some function \zeta \ast : [0, T ]\times \BbbR d\rightarrow \BbbR k,
that we refer to as a Markov map, and optimization is done with respect to such
functions and initial values y0. More precisely, the FBSDE (2.5) is reformulated into
the following variational problem:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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A230 K. ANDERSSON, A. ANDERSSON, AND K. OOSTERLEE\left\{           
minimize

y0,\zeta 
\BbbE | Y y0,\zeta T  - g(Xy0,\zeta 

T )| 2, where

Xy0,\zeta 
t = x0 +

\int t
0
b(s,Xy0,\zeta 

s ,Zy0,\zeta s )ds+
\int t
0
\sigma (s,Xy0,\zeta 

s )dWs,

Y y0,\zeta t = y0  - 
\int t
0
f(s,Xy0,\zeta 

s ,Zy0,\zeta s )ds+
\int t
0
\langle Zy0,\zeta s ,dWs\rangle ,

Zy0,\zeta t = \zeta (t,Xy0,\zeta 
t ), t\in [0, T ],

(2.6)

where y0 and \zeta are sought in appropriate spaces. From the theory outlined in section
2.1, under well-posedness and sufficient regularity of (2.5), it holds that Y0 = V (0, x0)
and \zeta \ast = \sigma \top DxV , and thus we have well-posedness of (2.6). While it seems natural
to propose a numerical algorithm based on a discrete version of (2.6), we demonstrate
below that such an optimization problem, even for many simple problems, does not
converge.

In order to introduce numerical schemes that do not suffer under the above prob-
lem, we use the following two properties of the initial value Y0 of (2.5):

(i) Y0 coincides with the control problem's value function (property from the
control problem);

(ii) Y0 is \scrF 0-measurable and therefore has zero variance (property from the FB-
SDE).

The two properties are both captured in the following variational problem:
(2.7)\left\{           

minimize
\zeta 

\Phi \lambda (\zeta ) =\BbbE [\scrY \zeta 0 ] + \lambda Var[\scrY \zeta 0 ], where

\scrY \zeta 0 = g(X\zeta 
T ) +

\int T
0
f(t,X\zeta 

t ,Z
\zeta 
t )dt - 

\int T
0
\langle Z\zeta t ,dWt\rangle ,

X\zeta 
t = x0 +

\int t
0
b(s,X\zeta 

s ,Z
\zeta 
s )ds+

\int t
0
\sigma (s,X\zeta 

s )dWs,

Y \zeta t =\BbbE [\scrY \zeta 0 ] - 
\int t
0
f(s,X\zeta 

s ,Z
\zeta 
s )ds+

\int t
0
\langle Z\zeta s ,dWs\rangle , Z\zeta t = \zeta (t,X\zeta 

t ), t\in [0, T ].

We refer to \scrY \zeta 0 as the stochastic cost and notice that \BbbE [\scrY \zeta 0 ] = Ju(\zeta )(0, x0), where
u(\zeta ) \in \scrU is the control generated by \zeta . Thus, the first term of the objective function
\Phi \lambda is the cost function of the control problem. In the case of p \mapsto \rightarrow v\ast (t, x, p) being
invertible, this term alone, i.e., for \lambda = 0, offers an equivalent formulation to (2.6).
In other cases, uniqueness of minimizers of \zeta \mapsto \rightarrow \BbbE [\scrY \zeta 0 ] cannot be guaranteed. But
among the minimizers, there is only one \zeta \ast with the property that the variance of
the stochastic cost \scrY \zeta 0 equals zero. The second term of \Phi \lambda is introduced to penalize
nonzero variance and the minimizer for \lambda > 0 is unique. Another important feature
of the formulation (2.7) is that Y \zeta 0 is determined by \zeta alone and (2.7) has thus one
degree of freedom less than (2.6). A final observation is that

Var[\scrY \zeta 0 ] =\BbbE 
\bigl[ \bigm| \bigm| \BbbE [\scrY \zeta 0 ] - \scrY \zeta 0

\bigm| \bigm| 2\bigr] 
=\BbbE 

\Biggl[ \bigm| \bigm| \bigm| \bigm| Y \zeta 0  - 
\int t

0

f(s,X\zeta 
s ,Z

\zeta 
s )ds+

\int t

0

Z\zeta sdWs  - g(X\zeta 
T )

\bigm| \bigm| \bigm| \bigm| 2
\Biggr] 
=\BbbE 

\bigl[ 
| Y \zeta T  - g(X\zeta 

T )| 
2
\bigr] 
.

(2.8)

This implies that the second term of \Phi is, up to the factor \lambda , the same as that of
(2.6), but with Y \zeta 0 not being a variable to optimize. Thus there are strong similarities
between (2.6) and (2.7), but in the time discrete setting the latter formulation is
shown to be advantageous in the sections below.

2.3. A direct extension of the deep BSDE method and why it fails.
In this section, we present the time discrete counterpart of (2.6). We assume an
equidistant time grid, 0 = t0 < t1 < \cdot \cdot \cdot < tN = T , with h = tn+1  - tn and denote the
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DEEP FBSDE METHOD A231

Brownian increment, \Delta Wn = Wn+1  - Wn. Throughout the paper, we parameterize
discretizations by h\in (0,1) and by this we mean all h\in (0,1)\cap \{ T/N :N \geq 1\} .

The time discrete version of (2.6) is given by

(2.9)

\left\{           
minimize

y0,\zeta 
\BbbE 
\Bigl[ \bigm| \bigm| Y h,y0,\zeta N  - g(Xh,y0,\zeta 

N )
\bigm| \bigm| 2\Bigr] , where

Xh,y0,\zeta 
n = x0 +

\sum n - 1
k=0 b

\bigl( 
tk,X

h,y0,\zeta 
k ,Zh,y0,\zeta k

\bigr) 
h+

\sum n - 1
k=0 \sigma (tk,X

h,y0,\zeta 
k )\Delta Wk,

Y h,y0,\zeta n = y0  - 
\sum n - 1
k=0 f

\bigl( 
tk,X

h,y0,\zeta 
k ,Zh,y0,\zeta k

\bigr) 
h+

\sum n - 1
k=0

\bigl\langle 
Zh,y0,\zeta k ,\Delta Wk

\bigr\rangle 
,

Zh,y0,\zeta k = \zeta k(X
h,y0,\zeta 
k ).

It is a direct extension of the deep BSDE method from [31]. In the literature, it was
first applied experimentally to FBSDEs in the masters thesis [1] and thereafter in
[52], both for inverted pendulums, and in [47] for an application to attitude control
of unmanned aerial vehicles. More examples of implementations of the deep FBSDE
method are found in [40, 20].

In [32], the authors consider FBSDEs with coefficients b, \sigma , and f that may take
the Y -component, but not the Z-component, as arguments. Under the relatively
strict assumption of weak coupling (also called the monotonicity condition; see, e.g.,
[2]), it is shown that for h small enough there is a constant C, independent of h,

such that supt\in [0,T ](\BbbE [| Xt - \^Xh,y0,\zeta 
t , | 2]+\BbbE [| Yt - \^Y h,y0,\zeta t | 2])+

\int T
0
\BbbE [| Zt - \^Zh,y0,\zeta t | 2]dt\leq 

C(h+\BbbE [| Y h,y0,\zeta N  - g(Xh,y0,\zeta 
N )| 2]), where for t\in [tk, tk+1), \^Xh,y0,\zeta 

t :=Xh,y0,\zeta 
k , \^Y h,y0,\zeta t :=

Y h,y0,\zeta k , and \^Zh,y0,\zeta t = \zeta k(X
h,y0,\zeta 
k ). Under some additional assumptions on the coef-

ficients b, f, \sigma , and g (additional smoothness and boundedness of the coefficients to
guarantee a bounded and smooth solution of the associated HJB equation), the results
in [32] can be extended to the framework of interest in this paper, i.e., coefficients
taking the Z-component as an argument. On the other hand, the weak coupling con-
dition is rarely satisfied for FBSDEs stemming from stochastic control problems, and
to the best of our knowledge, there is no known way to relax this condition.

To investigate convergence of (2.9) empirically, we first note that if we would
know Y0 a priori, then the variational problem (2.6) would be reduced to finding \zeta .
We also know that DxV

\top \sigma is the minimizer, which would make the objective function
identical to zero. In the discrete counterpart, we would expect that if (2.9) converges
to (2.6), then for sufficiently small h, the objective function would be close to zero if
optimizing only \zeta and setting y0 = Y0. Moreover, for a robust algorithm to emerge
from (2.9), it is important that y0 \not = Y0 results in a larger value of the optimal objective
function, at least when y0 and the true initial value, Y0, are ``far away"" from each
other. To formalize this, we introduce the mean squared error

(2.10) MSE(y0) := inf
\zeta 

\BbbE 
\Bigl[ \bigm| \bigm| Y h,y0,\zeta N  - g(Xh,y0,\zeta 

N )
\bigm| \bigm| 2\Bigr] .

The aim is to investigate whether or not MSE is minimized at, or close to, the true
initial condition Y0. Moreover, for each y0, we want to investigate the Markov map
\zeta y0 that minimizes \zeta \mapsto \rightarrow \BbbE [| Y h,y0,\zeta N  - g(Xh,y0,\zeta 

N )| 2]. The discrete costs, associated with

(y0, \zeta 
y0) and (y0, \zeta ), are given by Jh,y00 = Jh,y0,\zeta 

y0

0 and Jh,y0,\zeta 0 = \BbbE [\scrY h,y0,\zeta 0 ]. Here,
the discrete stochastic cost is given by

\scrY h,y0,\zeta 0 = g
\bigl( 
Xh,y0,\zeta 
N

\bigr) 
+

N - 1\sum 
k=0

f
\bigl( 
tk,X

h,y0,\zeta 
k ,Zh,y0,\zeta k

\bigr) 
h - 

N - 1\sum 
k=0

\bigl\langle 
Zh,y0,\zeta k ,\Delta Wk

\bigr\rangle 
.(2.11)

Using the stochastic cost, we have by a substitution that

(2.12) MSE(y0) = inf
\zeta 

\BbbE 
\bigl[ \bigm| \bigm| \scrY h,y0,\zeta 0  - y0

\bigm| \bigm| 2\bigr] .
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A232 K. ANDERSSON, A. ANDERSSON, AND K. OOSTERLEE

Fig. 1. Demonstration of the performance of the direct extension of the deep BSDE method to
FBSDEs corresponding to two LQ control problems. Left: A one-dimensional problem with N = 10
time steps. Right: A two-dimensional problem with N = 100 time steps.

Figure 1 shows y0 \mapsto \rightarrow MSE(y0) and y0 \mapsto \rightarrow Jh,y00 for two different linear-quadratic
(LQ) control problems, respectively, a one-dimensional and a two-dimensional prob-
lem. The left figure shows that there is a minimum of MSE at the correct Y0 and for
this problem the method converges. For the right figure, it is clear that there is no
minimum of MSE around Y0, or anywhere in the range. When y0 and \zeta are jointly
optimized, the method has no chance to converge for this problem.

Both problems considered in this section are of the form (5.1) with parameters as
in section 5.1.1 for the two-dimensional problem and A=B = C =Rx =Ru =G= 1
and \sigma = 0.5 for the one-dimensional problem.

We identify three distinct cases from Figure 1:
\bullet y0 \approx Y0. In this case, MSE is the mean squared error of the discretized FBSDE

and it is most reasonable that an approximation of (X,Y,Z) is obtained by
optimizing over \zeta .

\bullet y0 >Y0. Under this assumption, any \zeta attaining the infimum in (2.10) satisfies
Jh,y00 = y0. Thus minimizing (2.10) is the same as finding the \zeta that generates
discrete cost y0 and that at the same time minimizes the mean squared error
in the terminal condition. A \zeta with cost y0 > Y0 has the possibility to
generate a lower MSE(y0) <MSE(Y0), depending on y0 and the problem at
hand. This is possible only if the coupling of Z in b is strong enough, so that
g(XT ) can be efficiently controlled by Z. In the case with no coupling, i.e.,
for a BSDE, y0 >Y0 leads to an MSE of the magnitude y0 - Y0, and thus MSE
is increasing in this regime. This is the reason why noncoupled BSDEs, as
in [31], or weakly coupled FBSDEs, as in [32], can be approximated with the
deep BSDE method. The left plot of Figure 1 shows this favorable behavior,
while the right plot has a decreasing MSE and has no chance to converge. We
also see that the cost increases linearly for y0 >Y0 according to Jh,y00 = y0.

\bullet y0 < Y0. Since Y0 is (approximately) a lower bound of (y0, \zeta ) \mapsto \rightarrow Jh,y0,\zeta , it
holds that any \zeta attaining the infimum in \zeta \mapsto \rightarrow \BbbE [| Y h,y0,\zeta N  - g(Xh,y0,\zeta 

N )| 2] also
minimizes the cost functional \zeta \mapsto \rightarrow Jh,y0,\zeta 0 . But y0 does not enter \scrY h,y0,\zeta 0

explicitly. Therefore, the minimizer of \zeta \mapsto \rightarrow \BbbE [\scrY h,y0,\zeta 0 ] does not depend on y0.
Thus, fixing y0 <Y0 and optimizing \zeta approximates a solution to the control
problem but not to the FBSDE. This can clearly be seen in Figure 1 from the
cost being constant for y0 < Y0 in both plots. It is also clear that the MSE
increases for decreasing y0 <Y0.
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DEEP FBSDE METHOD A233

Fig. 2.Demonstration of the performance of the deep FBSDE method with fixed initial condition
for N = 100 time steps. The shaded areas represent the domain in which 90\% of all trajectories lie
(the area is bounded by the 5th and the 95th empirical percentile). Left to right: Sample means of the
approximate and the semianalytic (Riccati solutions) Y -process and the first and second components
of the Z-process (C1 and C2). Top to bottom: Initial conditions \^y0 = 0.0<Y0, \^y0 = 0.612 = Y0, and
\^y0 = 1.5>Y0.

To further visualize the three cases, Figure 2 shows the empirical means and 90\% cred-
ible regions (defined as the area between the 5th and the 95th empirical percentiles
at each time point) for the true and approximated Y - and Z-processes of the two-
dimensional LQ control problem discussed above. In the top row, we see that, in the
case y0 \approx Y0, the two components of the Z-process are very well approximated, but the
time discretization error of Y is visible. In the middle row, for y0 >Y0, we see what is
expected based on the discussion above. The Y -process satisfies the terminal value but
is otherwise fundamentally distinct from the true Y , and Z is different and oscillating
(it is specified to have cost y0). In the bottom row, the case y0 < Y0 is shown. Just
as explained above, the control problem is solved and therefore the Z-process is well
approximated. It should be noted, however, that this is only true since the map p \mapsto \rightarrow 
v\ast (t, x, p), for this specific problem, is invertible. Otherwise, one optimal \zeta , in a set of
many optimal Markov maps, is approximated. Thus, the control problem is approx-
imately solved; however, the Z-component of the FBSDE is unlikely to be accurate.
The Y -process is shifted by y0  - Y0 and the terminal value is naturally not satisfied.

2.4. A robust deep FBSDE method. Having observed the problems with
the direct extension of the deep BSDE method to FBSDEs, we here discretize the
alternative formulation (2.7) of the FBSDE to obtain an alternative family of deep
FBSDE methods. It reads
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A234 K. ANDERSSON, A. ANDERSSON, AND K. OOSTERLEE

\left\{               

minimize
\zeta 

\Phi \lambda ,h(\zeta ) =\BbbE [\scrY h,\zeta 0 ] + \lambda Var[\scrY h,\zeta 0 ], where

\scrY h,\zeta 0 := g(Xh,\zeta 
N ) +

\sum N - 1
k=0 f(tk,X

h,\zeta 
k ,Zh,\zeta k )h - 

\sum N - 1
k=0

\bigl\langle 
Zh,\zeta k ,\Delta Wk

\bigr\rangle 
,

Xh,\zeta 
n = x0 +

\sum n - 1
k=0 b(tk,X

h,\zeta 
k ,Zh,\zeta k )h+

\sum n - 1
k=0 \sigma (tk,X

h,\zeta 
k )\Delta Wk,

Y h,\zeta n =\BbbE [\scrY h,\zeta 0 ] - 
\sum n - 1
k=0 f(tk,X

h,\zeta 
k ,Zh,\zeta k )h+

\sum n - 1
k=0

\bigl\langle 
Zh,\zeta k ,\Delta Wk

\bigr\rangle 
, Zh,\zeta k = \zeta k(X

h,\zeta 
k ).

(2.13)

The main purpose of the current paper is the theoretical and numerical error analysis
of (2.13).

2.5. Related methods and comparison. In a comparison with the current
literature, we focus on methods for solving stochastic control problems, or the asso-
ciated FBSDE, by deep learning in a global way, in the sense that only one global
optimization problem is solved.

In the early paper [30], time discrete stochastic optimal control problems were
solved with deep learning. No explicit connections to FBSDEs, or even to stochastic
control in continuous time, were made. The feedback maps for the controls at all time
steps were optimized over a family of neural networks, to minimize the discrete cost
functional. This methodology is similar to our method when \lambda = 0. It only differs in
its approximation of the feedback map for u instead of the Markov map for Z. The
connection between our proposed method and the deep BSDE method, proposed in
[31], is the second term in the loss function of (2.13), corresponding to \lambda \rightarrow \infty . From
(2.8), it becomes clear that if the driver does not take Y as an input, then this term
coincides with the loss function used in the deep BSDE method.

The recent paper [58] is, to our knowledge, the first to introduce the variance pen-
alty term in (2.13) for an FBSDE obtained from the dynamic programming principle.
The authors of [59] also use the variance penalty term, but for general decoupled
FBSDEs, i.e., not in the context of stochastic control. In [58], the problem is ap-
proached differently in that they have one network for the Markov map for Z and one
for the feedback map for the control. In [58], the variance term in the loss function
is presented as a measurability loss. Their motivation is that if the BSDE is solved,
then the initial state of the Y -process is \scrF 0-measurable and hence the variance is
zero. However, one should bear in mind that this is true only for the continuous
BSDE. In the discretized version, the Y -process is not measurable and no arguments
for convergence of the discretization are presented in [58]. However, their numerical
results are convincing and an error analysis similar to the one presented in section 4
in the present paper could possibly be carried out also in their setting.

Another method which also makes use of the connection to stochastic control (of
Hamiltonian systems) was proposed in [41]. In that paper, the stochastic maximum
principle approach to stochastic control was used, which results in a different type
of FBSDEs, compared to the one obtained with the dynamic programming principle
that we consider in this paper. More precisely, it is the Y -process instead of the
Z-process which is connected to the control of the SDE. A similarity is that in both
papers the algorithms use a method similar to that in [30] to include the cost in the
objective function.

Summarizing, only the method in [58] is fully comparable to ours, as it is designed
to solve the same problem. It has the variance term but not the mean in its loss
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DEEP FBSDE METHOD A235

function. By introducing a loss function that includes both we are able to prove
convergence and obtain a robust method.

2.6. Decoupled FBSDE and why coupled FBSDEs are important. It is
sometimes claimed in the literature that since coupled FBSDEs can be transformed
into decoupled BSDE, it is sufficient to have schemes for the latter; see, e.g., [32].
Here, we explain this claim and why we, from a practical and application viewpoint,
do not agree. If \psi : [0, T ]\times \BbbR d \times \BbbR \ell \rightarrow \BbbR d is sufficiently regular, then it holds by the
It\^o formula for Y \psi t = V (t,X\psi 

t ) and Z
\psi 
t = \sigma \top (t,X\psi 

t )DxV (t,X\psi 
t ) that\left\{               

X\psi 
t = x0 +

\int t
0

\bigl( 
b(s,X\psi 

s ,Z
\psi 
s ) - \psi (s,X\psi 

s ,Z
\psi 
s )
\bigr) 
ds+

\int t
0
\sigma (s,X\psi 

s )dWs,

Y \psi t = g(X\psi 
T ) +

\int T
t

\bigl( 
f(s,X\psi 

s ,Z
\psi 
s )

 - 
\bigl\langle 
(\sigma (s,X\psi 

s )\sigma 
\top (s,X\psi 

s ))
 - 1\sigma (s,X\psi 

s )Zs,\psi (s,X
\psi 
s ,Z

\psi 
s )
\bigr\rangle \bigr) 
ds

 - 
\int T
t
\langle Z\psi s ,dWs\rangle , t\in [0, T ].

Thus taking \psi in such a way that b - \psi does not depend on Z decouples the FBSDE,
resulting in a BSDE, where the forward equation has no coupling with the backward
equation. From this observation, it might be tempting to approximate the optimal
Markov map \sigma \top (t, x)DxV (t, x) with the deep BSDE method. The problem with
this approach is that the deep BSDE method will learn \sigma \top (t, x)DxV (t, x) well only
around typical trajectories of X\psi , but not around those of X. While there is empirical
evidence that the deep BSDE method overcomes the curse of dimensionality, it does
not at all approximate the solution everywhere, but only around the typical solution
trajectories of the forward equation. Since X is controlled, it has a different dynamics
than X\psi and this may ruin the applicability of the deep BSDE method for control
problems, if the feedback map is desired. If only an approximation of the solution to
the HJB equation (the value) is sought, as in [31], then decoupling is feasible.

3. Fully implementable scheme and neural network regression. In this
section, we describe how the discrete variational problem (2.13) is approximated with
the help of neural network regression. In principle, other function approximators
could be used, but neural network regression is arguably one of the most suitable
choices due to the ability to approximate complicated high-dimensional functions.

3.1. Fully implementable algorithms. Without further specifications, (2.13)
assumes exact optimization over an unspecified set of functions \zeta and the exact
computation of expectations. To define a fully implementable scheme, the Markov
maps \zeta 0, . . . , \zeta N - 1 are approximated with neural networks \phi \theta 00 , . . . , \phi 

\theta N - 1

N - 1 with pa-
rameters \theta = (\theta 0, . . . , \theta N - 1) in some parameter space \Theta . We specify them in fur-
ther detail below. Moreover, expectations are approximated with batch Monte Carlo
simulation. Let Kepochs \geq 1,Kbatch \geq 1 be the number of epochs and the num-
ber of batches per epoch, respectively. Let further Mtrain,Mbatch \geq 1 be the size of
the training data set and batch, respectively. We assume that Mtrain/(2Mbatch) =
Kbatch \in \BbbN . Training data are Mtrain independent realizations of the Wiener in-
crements \Delta W0, . . . ,\Delta WN - 1 \sim \scrN (0, h) and the training data are reused in Kepoch

epochs. The training is initialized by random sampling of \theta 0 \in \Theta . For each up-
date step in an epoch of the training algorithm, we take 2Mbatch Wiener increments
\Delta W0(m), . . . ,\Delta WN - 1(m), m= 1,2, . . . ,2Mbatch from the training data set that were
not previously used during the epoch and update \theta by approximate optimization of
the following problem:
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\left\{                                           

minimize
\theta \in \Theta 

\scrL \lambda ,h(\theta )

= 1
M\mathrm{b}\mathrm{a}\mathrm{t}\mathrm{c}\mathrm{h}

\Biggl( \sum M\mathrm{b}\mathrm{a}\mathrm{t}\mathrm{c}\mathrm{h}

m=1 \scrY h,\theta 0 (m) + \lambda \cdot 
\sum 2M\mathrm{b}\mathrm{a}\mathrm{t}\mathrm{c}\mathrm{h}

m=M\mathrm{b}\mathrm{a}\mathrm{t}\mathrm{c}\mathrm{h}+1 | g(X
h,\theta 
N (m)) - Y h,\theta N (m)| 2

\Biggr) 
, where

\scrY h,\theta 0 (m) := g(Xh,\theta 
N (m)) +

\sum N - 1
k=0 f(tk,X

h,\theta 
k (m),Zh,\theta k (m))h

 - 
\sum N - 1
k=0

\bigl\langle 
Zh,\theta k (m),\Delta Wk(m)

\bigr\rangle 
,

Xh,\theta 
n (m) = x0 +

\sum n - 1
k=0 b(tk,X

h,\theta 
k (m),Zh,\theta k (m))h+

\sum n - 1
k=0 \sigma (tk,X

h,\theta 
k (m))\Delta Wk(m),

Y h,\theta n (m) = 1
M\mathrm{b}\mathrm{a}\mathrm{t}\mathrm{c}\mathrm{h}

\sum M\mathrm{b}\mathrm{a}\mathrm{t}\mathrm{c}\mathrm{h}

r=1 \scrY h,\theta 0 (r) - 
\sum n - 1
k=0 f(tk,X

h,\theta 
k (m),Zh,\theta k (m))h

+
\sum n - 1
k=0

\bigl\langle 
Zh,\theta k (m),\Delta Wk(m)

\bigr\rangle 
,

Zh,\theta k (m) = \phi \theta kk (Xh,\theta 
k (m)).

(3.1)

When all training data has been used, a new epoch starts. When the Kepochth epoch
is finished, the algorithm terminates. The neural network parameters at termination
are \theta \ast . It is an approximation of the parameters \theta \ast \ast that optimize (3.1) in the limit
Mbatch \rightarrow \infty . It should be noted that the expected value of the stochastic sum in
\scrY h,\theta 0 equals zero. Therefore, the algorithm would also work without it, but a practical
reason to keep it is that it decreases the variance of \scrY h,\theta 0 significantly, and this requires
fewer Monte Carlo samples to achieve the same accuracy.

3.2. Specification of the neural networks. Here, we introduce the neural
networks that we use in our implementations in section 5. The generality is kept to a
minimum and more general architectures are of course possible. For each \phi \theta kk : \BbbR d\rightarrow 
\BbbR \ell , a fully connected neural network with two hidden layers with 20 nodes in each
layer and a ReLU activation function R(x) = max(0, x) acting elementwise. More
precisely, the \phi \theta k is of the form

\phi \theta kk (x) =W 3
kR(W 2

kR(W 1
kx+ b1k) + b2k) + b3k,

with weight matricesW 1
k \in \BbbR 20\times d,W 2

k \in \BbbR 20\times 20,W 3
k \in \BbbR \ell \times 20, bias vectors b1k, b

2
k \in \BbbR \frakN ,

b3k \in \BbbR \ell , and \theta k = (W 1
k ,W

2
k ,W

3
k , b

1
k, b

2
k, b

3
k), where the matrices are assumed vectorized

before concatenation.

4. Convergence analysis. In this section, we primarily provide an error analy-
sis for (2.13), i.e., for the semidiscretization in time. In section 4.1, we introduce
notation and spaces, and in section 4.2, we present the setting and some further no-
tation. Two technical results on strong and weak convergence are stated and proved
in section 4.3. These two results are used in section 4.4 to prove the error in the
objective function, in the initial and terminal value of Y , and for the variance of the
stochastic cost. The results hold under an assumption on the regularity of the exact
continuous and discrete Markov maps. Convergence of the latter to the former is not
assumed. Section 4.5 contains strong convergence of the FBSDE under either the
stronger assumption of small time T or convergence of the discrete Markov maps.
A discussion about a full error analysis for the fully implementable scheme (3.1) is
presented in section 4.6.

4.1. Notation and spaces. For Euclidean spaces \BbbR k, k \geq 1, we denote by
\| \cdot \| the 2-norm without specifying the dimension. Let \scrS 2(\BbbR k) and \scrH 2(\BbbR k) be the
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DEEP FBSDE METHOD A237

spaces of all progressively measurable stochastic processes y, z : [0, T ]\times \Omega \rightarrow \BbbR k, for
which

\| y\| \scrS 2(\BbbR k) = sup
t\in [0,T ]

\Bigl( 
\BbbE 
\bigl[ 
\| yt\| 2

\bigr] \Bigr) 1
2

<\infty and \| z\| \scrH 2(\BbbR k) =

\Biggl( 
\BbbE 
\biggl[ \int T

0

\| zt\| 2dt
\biggr] \Biggr) 1

2

<\infty ,

respectively. For a discretization, 0 = t0 < t1 < \cdot \cdot \cdot < tN = T with tn+1  - tn = h,
for all n, the space \scrS h(\BbbR k) is the space of all \scrF h-adapted, square integrable and
discrete stochastic processes y : \{ 0,1, . . . ,N\} \times \Omega \rightarrow \BbbR d, where \scrF h

n = \sigma (\Delta Wm, m =
0, . . . , n - 1). For k1, k2, k3, k4 \geq 1, \ell 1, \ell 2, \ell 3 \geq 0, and regular Si \subseteq \BbbR ki , i= 1,2,3,4, by
C\ell 1,\ell 2,\ell 3b (S1 \times S2 \times S3;S4), we denote the space of all functions \phi : S1 \times S2 \times S3 \rightarrow S4,
whose derivatives up to orders \ell 1, \ell 2, \ell 3 exist and are continuous and bounded. We
equip it with the seminorms

| \phi | \gamma = sup
x\in S1\times S2\times S3

\| \partial \gamma \phi (x)\| , i\in \{ 1, . . . , \ell \} ,

where \gamma = \{ (i1, i2, i3) : ij \in \{ 0, , . . . , \ell j\} , j = 1,2,3\} are multi-indices and \partial \gamma =
\partial i11 \partial 

i2
2 \partial 

i3
3 with \partial ij denoting ith partial derivative in variable j. The set B(\ell 1, \ell 2, \ell 3)

denotes all multi-indices of length 3 that have exactly one nonzero index. We only
use multi-indices in B(\ell 1, \ell 2, \ell 3) and therefore do not impose restrictions on the cross
derivatives, as is otherwise common. For functions with fewer than three variables, we
reduce the number of indices accordingly, and in the seminorms we write | \phi | i1,i2,i3 =
| \phi | (i1,i2,i3). For \alpha \in (0,1], k1, k2, k3 \geq 1, \ell 1, \ell 2 \geq 0, and regular Si \subseteq \BbbR ki , i= 1,2,3, by

C\alpha ,\ell 1,\ell 2H,b ([0, T ]\times S1\times S2;S3), we denote the space of all functions \phi : [0, T ]\times S1\times S2 \rightarrow S3

that are \alpha -H\"older continuous in time and whose derivatives of order \ell 1, \ell 2 exist, are
continuous and bounded, and satisfy the property

| | | \phi | | | \alpha ,\ell 1,\ell 2 = sup
t\in [0,T ]

\| \phi (t,0,0)\| +
\sum 
\gamma \in B

sup
t\in [0,T ]

| \phi (t, \cdot , \cdot )| \gamma 

+ sup
(x1,x2)\in S1\times S2

sup
t1,t2\in [0,T ],t1 \not =t2

1(0,1](\alpha )\| \phi (t1, x1, x2) - \phi (t2, x1, x2)\| 
(1 + \| x1\| + \| x2\| )| t2  - t1| \alpha 

<\infty .

Again, when there is only one space variable, we reduce the number of indices. When
there is no risk of confusion, we write | \cdot | \alpha ,0,0 to denote the second term defining
the | | | \cdot | | | \alpha ,\ell 1,\ell 2 -norm and let | \cdot | 0,i,0 and | \cdot | 0,0,i coincide with the seminorms on

C\alpha ,\ell 1,\ell 2b ([0, T ]\times S1\times S2;S3) with the same notation. For \alpha = 0, we let C0,\ell 1,\ell 2
H,b ([0, T ]\times 

S1 \times S2;S3) =C0,\ell 1,\ell 2
b ([0, T ]\times S1 \times S2;S3).

For any function or process R defined on [0, T ], we denote by \v R the discrete time
function or process defined by \v Rn = Rtn , n = 0, . . . ,N . For any discrete function
or process Rh defined on 0, . . . ,N , we write \^Rh for the continuous time function or
process defined by the piecewise constant interpolation \^Rh,t = Rh,n for t \in [tn, tn+1)
and \^Rh,T =Rh,N .

4.2. Setting and spaces of Markov maps. Let (Wt)t\in [0,T ] be a k-dimensional
Brownian motion on a filtered probability space (\Omega ,\scrF , (\scrF t)t\in [0,T ],\BbbP ), and (\alpha ,\beta ) \in 
[0, 12 ]\times \{ 1\} or (\alpha ,\beta ) = (1,2). The coefficients b : [0, T ]\times \BbbR d\times \BbbR k \rightarrow \BbbR d, \sigma : [0, T ]\times \BbbR d\rightarrow 
\BbbR d\times k, f : [0, T ]\times \BbbR d\times \BbbR k \rightarrow \BbbR , and g : \BbbR d\rightarrow \BbbR satisfy b\in C\alpha ,\beta ,\beta H,b ([0, T ]\times \BbbR d\times \BbbR k;\BbbR d),
\sigma \in C\alpha ,\beta H,b([0, T ]\times \BbbR d;\BbbR d\times k), f \in C\alpha ,\beta ,\beta H,b ([0, T ]\times \BbbR d\times \BbbR k;\BbbR ), g \in C1

b(\BbbR d;\BbbR ). In the case
\alpha = 1, we assume that Dx\sigma = 0.

We next introduce families of Markov maps. Let \scrZ =\scrZ (b, \sigma , f, g) be the collection
of all measurable functions \zeta : [0, T ]\times \BbbR d\rightarrow \BbbR k with the property that the stochastic
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A238 K. ANDERSSON, A. ANDERSSON, AND K. OOSTERLEE

processes (X\zeta , Y \zeta ,Z\zeta )\zeta \in \scrZ \subset \scrS 2(\BbbR d)\times \scrS 2(\BbbR )\times \scrH 2(\BbbR d) satisfying for all t \in [0, T ], \BbbP -
almost surely (2.7), are well defined. We write \scrZ \alpha ,\beta =\scrZ \cap C\alpha ,\beta H,b([0, T ]\times \BbbR d;\BbbR k). For
the discrete equations, we introduce for every h\in (0,1) analogously \scrZ h =\scrZ h(b, \sigma , f, g)
to be the collection of all measurable functions \zeta : \{ 0, . . . ,Nh  - 1\} \times \BbbR d \rightarrow \BbbR k with
the property that (Xh,\zeta , Y h,\zeta ,Zh,\zeta )\zeta \in \scrZ h

\subset \scrS 2
h(\BbbR d) \times \scrS 2

h(\BbbR ) \times \scrS 2
h(\BbbR ) satisfying for

all n \in \{ 0, . . . ,Nh\} , \BbbP -almost surely (2.13) are well defined. We write \scrZ \beta 
h = \scrZ h \cap 

(C\beta b (\BbbR d;\BbbR k))N+1.
By introducing assumptions on the Markov maps, we eliminate the need for as-

suming smoothness, Lipschitz, polynomial growth, monotonicity, coercivity, or other
conditions on the coefficients, for the existence and uniqueness of solutions for (2.7)
and (2.13). For unfortunate choices of b, \sigma , f, g, the spaces \scrZ and \scrZ h might be empty
and results hold by default, but given regular b, \sigma , f, g, it is not hard, using available
solution theory, to find \zeta \in \scrZ and \zeta h \in \scrZ h. Still, the entire spaces might be hard to
represent but this is not of central importance. In Assumption 4.3 below, the regu-
larities of the optimal \zeta \ast and \zeta \ast h solving (2.7) and (2.13) are of importance, though.
Thus classical solution theory for SDE and FBSDE and regularity theory for optimal
Markov maps in discrete and continuous time are required for verifying our assump-
tions for concrete examples. The latter is not well developed; see the discussion prior
to Assumption 4.3 below. Thus part of our assumptions require further theoretical
development to be verified, but our results show what is required.

4.3. Auxiliary lemmata on strong and weak convergence for SDEs. In
the proof of our convergence results in subsection 4.4, we rely on the strong con-
vergence result, stated next. It contains both classical strong convergence of the
Euler--Maruyama scheme for H\"older continuous coefficients, including strong order
1 for additive noise, as well as a nonstandard type of strong convergence result for
processes that have drift coefficients that for each step size agree between the grid
points, but whose coefficients do not necessarily converge as the step size tends to
zero.

Lemma 4.1. Suppose the setting of subsection 4.2 holds. Let a \in C\alpha ,\beta H,b([0, T ] \times 
\BbbR d;\BbbR d) and ah : [0, T ] \times \BbbR d \rightarrow \BbbR d, h \in (0,1), be a family of functions that are
constant on each interval [tn, tn+1) and that satisfy ah([0, T ], \cdot ) \subset C\beta (\BbbR d;\BbbR d) and
suph\in (0,1) | | | ah| | | 0,\beta <\infty , let \scrX ,\scrX 1,h \in \scrS 2(\BbbR d), h\in (0,1) be the unique solutions to

d\scrX t = a(t,\scrX t)dt+ \sigma (t,\scrX t)dWt, t\in (0, T ]; \scrX 0 = x0,

d\scrX 1,h
t = ah(t,\scrX 1,h

t )dt+ \sigma (t,\scrX 1,h
t )dWt, t\in (0, T ]; \scrX 1,h

0 = x0, h\in (0,1),

and let \scrX 2,h,\scrX 3,h \in \scrS 2
h(\BbbR d), h\in (0,1), be the unique solutions to

\scrX 2,h
n+1 =\scrX 2,h

n + a(tn,\scrX 2,h
n )h+ \sigma (tn,\scrX 2,h

n )\Delta Wn, n\in \{ 0, . . . ,N  - 1\} ;
\scrX 2,h

0 = x0, h\in (0,1),

\scrX 3,h
n+1 =\scrX 3,h

n + ah(tn,\scrX 3,h
n )h+ \sigma (tn,\scrX 3,h

n )\Delta Wn, n\in \{ 0, . . . ,N  - 1\} ;
\scrX 3,h

0 = x0, h\in (0,1).

It holds that

sup
h\in (0,1)

\| \scrX 1,h\| \scrS 2(\BbbR d) + sup
h\in (0,1)

\| \^\scrX 2,h\| \scrS 2(\BbbR d) + sup
h\in (0,1)

\| \^\scrX 3,h\| \scrS 2(\BbbR d) <\infty ,(4.1)
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DEEP FBSDE METHOD A239

and there exists a constant C such that

lim
h\rightarrow 0

h - \alpha 
\Bigl( \bigm\| \bigm\| \scrX  - \^\scrX 2,h

\bigm\| \bigm\| 
\scrS 2(\BbbR d)

+
\bigm\| \bigm\| \scrX 1,h  - \^\scrX 3,h

\bigm\| \bigm\| 
\scrS 2(\BbbR d)

\Bigr) 
=

\Biggl\{ 
0 if \alpha = 0,

C otherwise.

Proof. Due to the assumption on ah, there exists a finite constant C such that

\| ah(t, x)\| \leq sup
h\in (0,1)

sup
t\in [0,T ]

\bigl( 
\| ah(t,0)\| + | ah(t, \cdot )| 1

\bigr) 
\| x\| \leq C\| x\| .

This is enough to show the first assertion, the stability estimate, using a Gronwall
argument. For the convergence, we rely on [46], which covers both the cases \alpha \in [0, 12 ]
and \alpha = 1. It is based on the fact that bistability and consistency of order \alpha , in
the sense of [46], imply convergence of order \alpha . We start with \scrX 1,h \rightarrow \scrX 3,h and the
convergence \scrX 2,h \rightarrow \scrX is immediate afterward. Since the drift coefficients of \scrX 1,h

and \scrX 3,h are both h-dependent and are not assumed to converge, what we want to
prove, i.e., limh\rightarrow 0 \| \scrX 1,h

t  - \^\scrX 3,h
t \| \scrS 2(\BbbR d) = 0, does not say anything about convergence

of \scrX 3,h and \scrX 1,h. In particular, \scrX 1,h1

t  - \^\scrX 3,h2

t is in general not small for h1 \not = h2.
Due to this special setting, we have to verify that the proofs of [46] are still valid.

We start with proving bistability. First, in [46, Lemma 4.1], it is proven that for
small enough h the numerical scheme is bijective. For our proof, it is important that
the upper bound for this property does not depend on h. From the proof, it is clear
that this bound depends on the reciprocal of suph\in (0,1) supt\in [0,T ] | ah(t, \cdot )| 1 and is there-
fore bounded away from zero by assumption. By following the proof of [46, Lemma
4.2] line by line, the bistability constants are bounded by suph\in (0,1) supt\in [0,T ] | ah(t, \cdot )| 1
and its reciprocal when Assumptions (S1) and (S2) in [46] hold. It remains to prove
(S1) and (S2) with uniform constants. First, (S1) is trivially satisfied with L= 0 for
any explicit scheme. By inspection of the proof of [46, Theorem 3.3], we see that,
for \alpha \in [0, 12 ], corresponding to the stochastic \theta -method with \theta = 0, (S2) is satisfied
for all h with L= 3T suph\in (0,1) supt\in [0,T ] | ah(t, \cdot )| 21+12d| \sigma | 21. For \alpha = 1, (S2) holds for
the same L as the schemes are the same. This concludes the proof of bistability.

Consistency for \alpha \in [0, 12 ] is obtained by observing that the proof in [46], referring
for details to [11], only relies on (4.1) and the 1

2 -H\"older continuity of ah between
the grid points, and this is clearly satisfied since ah is constant on [tn, tn+1). For
consistency in case \alpha = 1, we rely on the proof of consistency for the It\^o--Taylor
scheme of order one, i.e., the Milstein scheme, coinciding with our scheme under the
assumption of additive noise. It suffices to note that the analysis is conducted per
interval, and to check that f\alpha is globally Lipschitz continuous for \alpha \in \scrB (\scrA 1), in the
notation of [46]. For this to hold, it suffices that suph\in (0,1) supt\in [0,T ] | ah(t, \cdot )| 2 <\infty .

By assumption, this completes the proof for \scrX 1,h and \scrX 3,h. For \scrX 2,h and \scrX , the
convergence is included in [46], up to the order of consistency, which in our setting is
lower when \alpha \in [0, 12 ). It is straightforward to use \alpha -H\"older continuity for \alpha \in (0, 12 ),
exactly as in the case \alpha = 1

2 , and in this way get consistency of order \alpha . For \alpha = 0, one
uses dominated convergence instead to obtain the convergence without order. This is
valid under our assumptions.

Our next lemma is a weak convergence type result. With our assumption of low
regularity on the FBSDE coefficients, the weak rate does not exceed the strong rate
and therefore the proof relies on the strong convergence results of Lemma 4.1. If we
were to obtain the weak convergence order \alpha \in ( 12 ,1) for multiplicative noise, then
this would require a H\"older condition on the third derivative of b, \sigma , f, g and the case
\alpha = 1 requires four derivatives [45, 50]. We avoid this generality.
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Lemma 4.2. Suppose the setting of subsection 4.2 holds. For all functions \zeta \in 
\scrZ \alpha ,\beta , collection of functions \zeta h \in \scrZ \beta 

h , h \in (0,1), satisfying suph\in (0,1) | | | \^\zeta h| | | 0,\beta < \infty ,
and \lambda \geq 0, there exists a constant C such that

lim
h\rightarrow 0

h - \alpha 
\Bigl( 
| \Phi \lambda (\zeta ) - \Phi \lambda ,h(\v \zeta )| + | \Phi \lambda (\^\zeta h) - \Phi \lambda ,h(\zeta h)| 

\Bigr) 
=

\Biggl\{ 
0 if \alpha = 0,

C otherwise.

Proof. We start with the first term and observe that

| \Phi \lambda (\zeta ) - \Phi \lambda ,h(\v \zeta )| \leq 
\bigm| \bigm| \BbbE \bigl[ \scrY \zeta 0  - \scrY h,\v \zeta 0

\bigr] \bigm| \bigm| + \lambda 
\bigm| \bigm| Var\bigl( \scrY \zeta 0 \bigr)  - Var

\bigl( 
\scrY h,\v \zeta 0

\bigr) \bigm| \bigm| .(4.2)

For the proof of both terms of (4.2), we rely on convergence of (\BbbE 
\bigl[ 
(\scrY \zeta 0  - \scrY h,\v \zeta 0 )2

\bigr] 
)

1
2 ,

which we next prove, beginning with \alpha > 0. For t \in [tn, tn+1), denote \=t = tn. By
definition,

\scrY \zeta 0  - \scrY h,\v \zeta 0 = g(X\zeta 
T ) - g(Xh,\v \zeta 

T ) +

\int T

0

\bigl( 
f
\bigl( 
t,X\zeta 

t , \zeta (t,X
\zeta 
t )
\bigr) 
 - f
\bigl( 
\=t, \^Xh,\v \zeta 

t , \zeta (\=t, \^Xh,\v \zeta 
t )

\bigr) \bigr) 
dt

+

\int T

0

\bigl\langle 
\zeta (t,X\zeta 

t ) - \zeta (\=t, \^Xh,\v \zeta 
t ),dWt

\bigr\rangle 
= g(X\zeta 

T ) - g(Xh,\v \zeta 
T ) +

\int T

0

\bigl( 
f
\bigl( 
t,X\zeta 

t , \zeta (t,X
\zeta 
t )
\bigr) 
 - f
\bigl( 
t, \^Xh,\v \zeta 

t , \zeta (t, \^Xh,\v \zeta 
t )

\bigr) \bigr) 
dt

+

\int T

0

\bigl( 
f
\bigl( 
t, \^Xh,\v \zeta 

t , \zeta (t, \^Xh,\v \zeta 
t )

\bigr) 
 - f
\bigl( 
\=t, \^Xh,\v \zeta 

t , \zeta (\=t, \^Xh,\v \zeta 
t )

\bigr) \bigr) 
dt+

\int T

0

\bigl\langle 
\zeta (t,X\zeta 

t )

 - \zeta (t, \^Xh,\v \zeta 
t ),dWt

\bigr\rangle 
+

\int T

0

\bigl\langle 
\zeta (t,X\zeta 

t ) - \zeta (t, \^Xh,\v \zeta 
t ),dWt

\bigr\rangle 
+

\int T

0

\bigl\langle 
\zeta (t, \^Xh,\v \zeta 

t ) - \zeta (\=t, \^Xh,\v \zeta 
t ),dWt

\bigr\rangle 
.

From the It\^o isometry and the triangle inequality, we have\bigl( 
\BbbE 
\bigl[ 
(\scrY \zeta 0  - \scrY h,\v \zeta 0 )2

\bigr] \bigr) 1
2 \leq 

\bigl( 
\BbbE 
\bigl[ 
(g(X\zeta 

T ) - g(Xh,\v \zeta 
T ))2

\bigr] \bigr) 1
2

+

\int T

0

\bigl( 
\BbbE 
\bigl[ \bigl( 
f
\bigl( 
t,X\zeta 

t , \zeta (t,X
\zeta 
t )
\bigr) 
 - f
\bigl( 
t, \^Xh,\v \zeta 

t , \zeta (t, \^Xh,\v \zeta 
t )

\bigr) \bigr) 2\bigr] \bigr) 1
2 dt

+

\int T

0

\BbbE 
\bigl[ \bigl( 
f
\bigl( 
t, \^Xh,\v \zeta 

t , \zeta (t, \^Xh,\v \zeta 
t )

\bigr) 
 - f
\bigl( 
\=t, \^Xh,\v \zeta 

t , \zeta (\=t, \^Xh,\v \zeta 
t )

\bigr) \bigr) 2\bigr] \bigr) 1
2 dt

+
\Bigl( \int T

0

\BbbE 
\bigl[ \bigm\| \bigm\| \zeta (t,X\zeta 

t ) - \zeta (t, \^Xh,\v \zeta 
t )

\bigm\| \bigm\| 2\bigr] dt\Bigr) 1
2

+
\Bigl( \int T

0

\BbbE 
\bigl[ \bigm\| \bigm\| \zeta (t, \^Xh,\v \zeta 

t ) - \zeta (\=t, \^Xh,\v \zeta 
t )

\bigm\| \bigm\| 2\bigr] dt\Bigr) 1
2

= I1 + I2 + I3 + I4 + I5.

For I1, we use Lipschitz continuity of g and the Cauchy--Schwarz inequality
to get

I1 \leq | g| 1\BbbE 
\bigl[ 
\| X\zeta 

T  - Xh,\v \zeta 
T \| 

\bigr] 
\leq | g| 1

\bigl( 
\BbbE 
\bigl[ 
\| X\zeta 

T  - Xh,\v \zeta 
T \| 2

\bigr] \bigr) 1
2 \leq | g| 1

\bigm\| \bigm\| X\zeta  - \^Xh,\v \zeta 
\bigm\| \bigm\| 
\scrS 2(\BbbR d)

.(4.3)

The function \phi (t, x) = f(t, x, \zeta (t, x)) is uniformly Lipschitz continuous in x with Lip-
schitz constant C\phi = | f | 0,1,0 + | f | 0,0,1| \zeta | 0,1. This implies, together with the Cauchy--
Schwarz inequality,

I2 \leq C\phi 

\int T

0

\bigl( 
\BbbE 
\bigl[ 
\| X\zeta 

t  - \^Xh,\v \zeta 
t \| 2

\bigr] \bigr) 1
2 dt\leq C\phi T

\bigm\| \bigm\| X\zeta  - \^Xh,\v \zeta 
\bigm\| \bigm\| 
\scrS 2(\BbbR d)

.(4.4)
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DEEP FBSDE METHOD A241

Using the assumptions of b and \zeta , it is easily verified that \phi belongs to C\alpha ,\beta H,b([0, T ]\times 
\BbbR d;\BbbR d) and, therefore, by (4.3), (4.4), and Lemma 4.1, we have I1 + I2 \leq Ch\alpha . For
the term I3, we see that

I3 \leq 
\Bigl( 
| f | \alpha ,0,0 + | f | 0,0,1| \zeta | \alpha ,0

\Bigr) \Biggl( 
1 + sup

h\in (0,1)

\| \^Xh,\v \zeta \| \scrS 2(\BbbR d)

\Biggr) 
N - 1\sum 
n=0

\int tn+1

tn

(t - tn)
\alpha dt

=
| f | \alpha ,0,0 + | f | 0,0,1| \zeta | \alpha ,0

1 + \alpha 

\Biggl( 
1 + sup

h\in (0,1)

\| \^Xh,\v \zeta \| \scrS 2(\BbbR d)

\Biggr) 
Nh1+\alpha \leq Ch\alpha .

Similarly, for I4 and I5, we have

I4 \leq | \zeta | 0,1
\Bigl( \int T

0

\BbbE 
\bigl[ 
\| X\zeta 

t  - \^Xh,\v \zeta 
t \| 2

\bigr] 
dt
\Bigr) 1

2 \leq | \zeta | 0,1T
1
2 \| X\zeta  - \^Xh,\v \zeta \| \scrS 2(\BbbR d) \leq Ch\alpha 

and

I5 \leq | \zeta | \alpha ,0
\Bigl( 
1 + sup

h\in (0,1)

\| \^Xh,\v \zeta \| \scrS 2(\BbbR d)

\Bigr) \Biggl( N - 1\sum 
n=0

\int tn+1

tn

| t - tn| 2\alpha dt

\Biggr) 1
2

=
| \zeta | \alpha ,0
1 + 2\alpha 

\Bigl( 
1 + sup

h\in (0,1)

\| \^Xh,\v \zeta \| \scrS 2(\BbbR d)

\Bigr) \bigl( 
Nh1+2\alpha 

\bigr) 1
2 \leq Ch\alpha .

For \alpha = 0, the terms I1, I2, I4 need no special treatment. For I3, we notice that
the function \phi is only continuous in t and convergence without rate holds by the
dominated convergence theorem. This is verified by noting that

sup
t\in [0,T ]

\Bigl( 
\BbbE 
\Bigl[ \Bigl( 
f
\bigl( 
t, \^Xh,\v \zeta 

t , \zeta (t, \^Xh,\v \zeta 
t )

\bigr) 
 - f
\bigl( 
\=t, \^Xh,\v \zeta 

t , \zeta (\=t, \^Xh,\v \zeta 
t )

\bigr) \Bigr) 2\Bigr] \Bigr) 1
2

\leq 2 sup
t\in [0,T ]

\Bigl( 
\BbbE 
\Bigl[ \bigl( 
f
\bigl( 
t, \^Xh,\v \zeta 

t , \zeta (t, \^Xh,\v \zeta 
t )

\bigr) 2\Bigr] \Bigr) 1
2

\leq 2 sup
t\in [0,T ]

\Bigl( 
\BbbE 
\Bigl[ \bigl( 
f
\bigl( 
t, \^Xh,\v \zeta 

t , \zeta (t, \^Xh,\v \zeta 
t ) - f(t,0,0)

\bigr) 2\Bigr] \Bigr) 1
2

+ 2 sup
t\in [0,T ]

| f(t,0,0)| 

\leq 2 sup
t\in [0,T ]

\bigl( 
| f(t, \cdot , \cdot )| 1,0 + | f(t, \cdot , \cdot )| 0,1

\bigl( 
| \zeta (t, \cdot )| 1 + \| \zeta (t,0)\| 

\bigr) \bigr) 
sup

h\in (0,1)

\| \^Xh,\v \zeta \| \scrS 2(\BbbR d)

+ 2 sup
t\in [0,T ]

\bigm| \bigm| \BbbE \bigl[ f\bigl( t,0,0\bigr) \bigm| \bigm| .
Due to the assumptions, the right-hand side is finite. The term I5 admits a similar
treatment and we refrain from giving details. This proves that

lim
h\rightarrow 0

\bigl( 
\BbbE 
\bigl[ 
(\scrY \zeta 0  - \scrY h,\v \zeta 0 )2

\bigr] \bigr) 1
2 =

\Biggl\{ 
0 if \alpha = 0,

C otherwise.
(4.5)

For the first term in (4.2), this fact and
\bigm| \bigm| \BbbE \bigl[ \scrY \zeta 0  - \scrY h,\v \zeta 0

\bigr] \bigm| \bigm| \leq \bigl( \BbbE \bigl[ (\scrY \zeta 0  - \scrY h,\v \zeta 0 )2
\bigr] \bigr) 1

2 prove
the convergence.
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For the second term in (4.2), we use the conjugate rule, the Cauchy--Schwarz
inequality, and the triangle inequality to get\bigm| \bigm| Var(\scrY \gamma 0 ) - Var(\scrY h,\v \gamma 0 )

\bigm| \bigm| 
=
\bigm| \bigm| \bigm| \BbbE \Bigl[ \bigm| \bigm| \BbbE [\scrY \gamma 0 ] - \scrY \gamma 0

\bigm| \bigm| 2  - \bigm| \bigm| \BbbE \bigl[ \scrY h,\v \gamma 0

\bigr] 
 - \scrY h,\v \gamma 0

\bigm| \bigm| 2\Bigr] \bigm| \bigm| \bigm| 
=
\bigm| \bigm| \BbbE \bigl[ \bigl( \BbbE [\scrY \gamma 0  - \scrY h,\v \gamma 0

\bigr] 
+\scrY h,\v \gamma 0  - \scrY \gamma 0

\bigr) \bigl( 
\BbbE [\scrY \gamma 0 +\scrY h,\v \gamma 0

\bigr] 
 - \scrY h,\v \gamma 0  - \scrY \gamma 0

\bigr) \bigr] \bigm| \bigm| 
\leq 
\Bigl( 
\BbbE 
\Bigl[ \bigl( 
\BbbE [\scrY \gamma 0  - \scrY h,\v \gamma 0

\bigr] 
+\scrY h,\v \gamma 0  - \scrY \gamma 0

\bigr) 2\Bigr] \Bigr) 1
2
\Bigl( 
\BbbE 
\Bigl[ \bigl( 
\BbbE 
\bigl[ 
\scrY \gamma 0 +\scrY h,\v \gamma 0

\bigr] 
 - \scrY h,\v \gamma 0  - \scrY \gamma 0

\bigr) 2\Bigr] \Bigr) 1
2

\leq 
\Bigl( \bigm| \bigm| \BbbE [\scrY \gamma 0  - \scrY h,\v \gamma 0

\bigr] \bigm| \bigm| + \bigl( \BbbE \bigl[ \bigl( \scrY h,\v \gamma 0  - \scrY \gamma 0
\bigr) 2\bigr] \bigr) 1

2

\Bigr) \Bigl( \bigm| \bigm| \BbbE [\scrY \gamma 0 +\scrY h,\v \gamma 0

\bigr] \bigm| \bigm| 
+
\bigl( 
\BbbE 
\bigl[ \bigl( 
\scrY h,\v \gamma 0 +\scrY \gamma 0

\bigr) 2\bigr] \bigr) 1
2

\Bigr) 
\leq 4
\Bigl( \bigl( 

\BbbE 
\bigl[ \bigl( 
\scrY \zeta 0
\bigr) 2\bigr] \bigr) 1

2 + sup
h\in (0,1)

\bigl( 
\BbbE 
\bigl[ \bigl( 
\scrY h,\v \zeta 0

\bigr) 2\bigr] \bigr) 1
2

\Bigr) \bigl( 
\BbbE 
\bigl[ \bigl( 
\scrY h,\v \gamma 0  - \scrY \gamma 0

\bigr) 2\bigr] \bigr) 1
2 .

Together with (4.5), this completes the proof for the term | \Phi \lambda (\zeta ) - \Phi \lambda ,h(\v \zeta )| .
For the second term | \Phi \lambda (\^\zeta h)  - \Phi \lambda ,h(\zeta h)| , we define the functions ah : [0, T ] \times 

\BbbR d \rightarrow \BbbR d, h \in (0,1), by ah = \^ch, where ch : \{ 0, . . . ,N\} \times \BbbR d \rightarrow \BbbR d are given by
ch,n(x) = b(tn, x, \zeta h,n(x)). By the assumptions on b and \zeta h, we have that ah satisfy
the assumption of Lemma 4.1. This implies that limh\rightarrow 0 \| X\zeta h  - \^Xh,\zeta h\| \scrS 2(\BbbR d) = 0

and \| X\zeta h  - \^Xh,\zeta h\| \scrS 2(\BbbR d) \leq Ch\alpha for \alpha > 0. This, with the same calculations as for
I1, I2, I4, I5, and noting that the analogous for I3 is zero, completes the proof.

4.4. Time discretization error of the initial and terminal values. This
and the next section contain our main results. The results are based on an assumption
of regularity of the Markov maps \zeta \ast \in \scrZ and \zeta \ast \lambda ,h \in \scrZ h, h \in (0,1), \lambda \geq 0, of the
FBSDE and its discretizations, respectively. The regularity has to be verified for
specific problems and this, in particular for the discrete problem, is a nontrivial and
not well-studied problem; see [14, 54, 12]. For the continuous problem, it breaks
down into existence and uniqueness of a solution of the FBSDE and regularity of
the solution to the HJB equation. In this paper, we provide only the abstract error
analysis. Our assumption is stated next.

Assumption 4.3. There exists a unique minimizer \zeta \ast \in \scrZ of \zeta \mapsto \rightarrow \Phi 1(\zeta ); it belongs

to \scrZ \alpha ,\beta and satisfies Var(\scrY \zeta 
\ast 

0 ) = 0. Moreover, for all \lambda \geq 0, there exists a collection
of minimizers \zeta \ast \lambda ,h \in \scrZ h, h \in (0,1), of \zeta \mapsto \rightarrow \Phi \lambda ,h(\zeta ) that for each h belongs to \scrZ \beta 

h and

satisfies suph\in (0,1) | | | \^\zeta \ast \lambda ,h| | | 0,\beta <\infty .

Our first result concerns the convergence of the objective function. The proof
relies on a split of the error into two error terms, one containing only \zeta \ast and one
containing only \zeta \ast \lambda ,h. This way, we avoid getting an error bound containing the error
between the continuous and discrete Markov maps. The result is used throughout our
proofs, except in Proposition 4.9, where we have the error of the Markov map in the
bound.

Theorem 4.4. Suppose the setting of subsection 4.2, let Assumption 4.3 hold and
\lambda \geq 0. Then, | \Phi \ast  - \Phi \ast 

\lambda ,h| \rightarrow 0 as h\rightarrow 0, and if \alpha > 0, then there exists a constant C,
independent of h, such that

| \Phi \ast  - \Phi \ast 
\lambda ,h| \leq Ch\alpha .
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Proof. We start by noting that, since Var(\scrY \zeta 
\ast 

0 ) = 0, it holds that \zeta \ast is optimal
for all \Phi \lambda , \lambda \geq 0, and \Phi \ast = \Phi \ast 

\lambda := \Phi \lambda (\zeta 
\ast ). Because of optimality of \zeta \ast \in \scrZ and since

\^\zeta \ast h \in \scrZ , it holds that \Phi \ast =\Phi \ast 
\lambda \leq \Phi \lambda (\^\zeta 

\ast 
h). This implies

\Phi \ast \leq \Phi \lambda (\^\zeta 
\ast 
\lambda ,h) =\Phi \ast 

\lambda ,h +\Phi \lambda (\^\zeta 
\ast 
\lambda ,h) - \Phi \ast 

\lambda ,h \leq \Phi \ast 
\lambda ,h + | \Phi \lambda (\^\zeta \ast \lambda ,h) - \Phi \ast 

\lambda ,h| .

Similarly, from the optimality of \zeta \ast \lambda ,h \in \scrZ h and since \v \zeta \ast \in \scrZ h, it holds that \Phi \ast 
\lambda ,h \leq 

\Phi \lambda ,h(\v \zeta 
\ast ). We have

\Phi \ast 
\lambda ,h \leq \Phi \lambda ,h(\v \zeta 

\ast ) =\Phi \ast +\Phi \lambda ,h(\v \zeta 
\ast ) - \Phi \ast \leq \Phi \ast + | \Phi \lambda ,h(\v \zeta \ast ) - \Phi \ast | .

The two inequalities equivalently read \Phi \ast  - \Phi \ast 
\lambda ,h \leq | \Phi (\^\zeta \ast \lambda ,h) - \Phi \ast 

\lambda ,h| and \Phi \ast 
\lambda ,h  - \Phi \ast \leq 

| \Phi \lambda ,h(\v \zeta \ast ) - \Phi \ast | , and thus

| \Phi \ast  - \Phi \ast 
\lambda ,h| \leq max(| \Phi (\^\zeta \ast \lambda ,h) - \Phi \ast 

\lambda ,h| , | \Phi \lambda ,h(\v \zeta \ast ) - \Phi \ast | )\leq | \Phi (\^\zeta \ast \lambda ,h) - \Phi \ast 
\lambda ,h| +| \Phi \lambda ,h(\v \zeta \ast ) - \Phi \ast | .

The convergence is given by our assumption and Lemma 4.2. This completes the
proof.

A consequence of the convergence of the objective function is the convergence of
the two components of the objective, given that \lambda > 0. This is stated in our next
theorem.

Theorem 4.5. Suppose the setting of subsection 4.2, let Assumption 4.3 hold,

\lambda > 0, \scrY h,\lambda 0 := \scrY h,\zeta 
\ast 
h,\lambda 

0 , and Y h,\lambda 0 := \BbbE [\scrY h,\lambda 0 ]. Then, | Y0  - Y h,\lambda 0 | + Var(\scrY h,\lambda 0 ) \rightarrow 0 as
h\rightarrow 0, and if \alpha > 0, there exists a constant C, independent of h, such that\bigm| \bigm| Y0  - Y h,\lambda 0

\bigm| \bigm| +Var
\bigl( 
\scrY h,\lambda 0

\bigr) 
\leq Ch\alpha .

Proof. We start with the proof for the variance and use both the sequences
(\zeta \ast 0,h)h\in (0,1) and (\zeta \lambda ,h)h\in (0,1). The proof relies on a squeezing argument. Adding
and subtracting terms and using the triangle inequality yields

\lambda Var(\scrY h,\lambda 0 )\leq 
\bigm| \bigm| Y0  - Y h,\lambda 0  - \lambda Var

\bigl( 
\scrY h,\lambda 0

\bigr) \bigm| \bigm| + \bigm| \bigm| Y0  - Y h,00

\bigm| \bigm| + \bigm| \bigm| Y h,00  - Y h,\lambda 0

\bigm| \bigm| .(4.6)

From the assumption Var(\scrY 0) = 0, it holds that \Phi \ast = Y0 and Theorem 4.4 gives\bigm| \bigm| Y0  - Y h,\lambda 0  - \lambda Var
\bigl( 
\scrY h,\lambda 0

\bigr) \bigm| \bigm| + \bigm| \bigm| Y0  - Y h,00

\bigm| \bigm| = \bigm| \bigm| \Phi \ast  - \Phi \ast 
\lambda ,h

\bigm| \bigm| + \bigm| \bigm| \Phi \ast  - \Phi \ast 
0,h

\bigm| \bigm| \leq Ch\alpha .(4.7)

For the third term on the right-hand side of (4.6), we first notice that, since \zeta 0,h is

a minimizer of \zeta \mapsto \rightarrow Y h,00 , it holds that Y h,\lambda 0  - Y h,00 \geq 0. This fact, adding \lambda Var(\scrY h,\lambda 0 ),
adding and subtracting Y0, using the triangle inequality, and using (4.7), gives us\bigm| \bigm| Y h,00  - Y h,\lambda 0

\bigm| \bigm| = Y h,\lambda 0  - Y h,00 \leq Y h,\lambda 0 + \lambda Var
\bigl( 
\scrY h,\lambda 0

\bigr) 
 - Y0  - Y h,00 + Y0

\leq 
\bigm| \bigm| Y0  - Y h,\lambda 0  - \lambda Var

\bigl( 
\scrY h,\lambda 0

\bigr) \bigm| \bigm| + \bigm| \bigm| Y0  - Y h,\lambda 0

\bigm| \bigm| \leq Ch\alpha .
(4.8)

Now, (4.6)--(4.8) complete the proof for the variance. For the convergence of Y h,\lambda 0 ,
we conclude\bigm| \bigm| Y0  - Y h,\lambda 0

\bigm| \bigm| \leq \bigm| \bigm| Y0  - Y h,\lambda 0  - \lambda Var
\bigl( 
\scrY h,\lambda 0

\bigr) \bigm| \bigm| + \lambda Var
\bigl( 
\scrY h,\lambda 0

\bigr) 
\leq Ch\alpha .

From (2.8) and Theorem 4.5, we directly get convergence in the terminal value
and we can also conclude strong convergence of yh,\lambda 0 . This is stated in the following
two corollaries.
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Corollary 4.6. Suppose the setting of subsection 4.2, let Assumption 4.3 hold,
and \lambda > 0. Then, \BbbE [(g(Xh,\lambda 

N ) - Y h,\lambda N )2]\rightarrow 0 as h\rightarrow 0, and if \alpha > 0, then there exists
a constant C, independent of h, such that\Bigl( 

\BbbE 
\Bigl[ \bigl( 
g
\bigl( 
Xh,\lambda 
N

\bigr) 
 - Y h,\lambda N

\bigr) 2\Bigr] \Bigr) 1
2 \leq Ch

\alpha 
2 .

Corollary 4.7. Suppose the setting of subsection 4.2, let Assumption 4.3 hold,
and \lambda > 0. Then, (\BbbE [(\scrY 0  - \scrY h,\lambda 0 )2])

1
2 \rightarrow 0 as h\rightarrow 0, and if \alpha > 0, then there exists a

constant C, independent of h, such that\Bigl( 
\BbbE 
\Bigl[ \bigl( 
\scrY 0  - \scrY h,\lambda 0

\bigr) 2\Bigr] \Bigr) 1
2 \leq Ch

\alpha 
2 .

Proof. From Theorem 4.5 and the triangle inequality, it holds that\Bigl( 
\BbbE 
\Bigl[ \bigl( 
\scrY 0  - \scrY h,\lambda 0

\bigr) 2\Bigr] \Bigr) 1
2 \leq 

\Bigl( 
\BbbE 
\Bigl[ \bigl( 
Y0  - Y h,\lambda 0 +\scrY 0  - \scrY h,\lambda 0

\bigr) 2\Bigr] \Bigr) 1
2

+
\bigm| \bigm| Y0  - Y h,\lambda 0

\bigm| \bigm| 
=
\Bigl( 
Var
\bigl( 
\scrY h,\lambda 0

\bigr) \Bigr) 1
2

+
\bigm| \bigm| Y0  - Y h,\lambda 0

\bigm| \bigm| \leq Ch
\alpha 
2 .

This proves the corollary.

4.5. Time discretization error of the FBSDE. While the error analysis for
the initial and terminal values in the previous subsection required only Assumption
4.3, the strong error analysis of (X,Y,Z) requires more. In Theorem 4.8, we prove
strong convergence for small horizon T . This should be compared with the conver-
gence result in [32], which also has a very restrictive assumption on T . Compared to
[32], whose bound contains the error in the terminal value, we have no such term. In
Proposition 4.9, we prove the strong convergence without a restriction on T with the
cost of having a bound containing the error between the Markov maps \zeta \ast and \zeta \ast \lambda ,h.

Theorem 4.8. Suppose the setting of subsection 4.2, let Assumption 4.3 hold,
\alpha ,\lambda > 0, and

max

\Biggl( 
T

1
2 | f | 0,0,1,

5T (T | f | 0,1,0 + | g| 1)| b| 20,0,1 exp(5T (| b| 0,1,0T + | \sigma | 0,1))
1 - T

1
2 | f | 0,0,1

\Biggr) 
< 1.

Then, there exists a constant C, independent of h, such that\bigm\| \bigm\| X  - \^Xh,\lambda 
\bigm\| \bigm\| 
\scrS 2(\BbbR d)

+
\bigm\| \bigm\| Y  - \^Y h,\lambda 

\bigm\| \bigm\| 
\scrS 2(\BbbR d)

+
\bigm\| \bigm\| Z  - \^Zh,\lambda 

\bigm\| \bigm\| 
\scrH 2(\BbbR k)

\leq Ch
\alpha 
2 .

Proof. We start by noting that for t\in [0, T ], it holds that

Yt  - Y h,\lambda t = Y0  - Y h,\lambda 0  - 
\int t

0

\bigl( 
f(s,Xs,Zs) - f(\=s, \^Xh,\lambda 

s , \^Zh,\lambda s )
\bigr) 
ds+

\int t

0

\bigl( 
Zs  - \^Zh,\lambda s

\bigr) 
dWs.

(4.9)

By the It\^o isometry, substitution of (4.9) with t= T , and the triangle inequalities, we
have\bigm\| \bigm\| Z  - \^Zh,\lambda 

\bigm\| \bigm\| 
\scrH 2(\BbbR k)

=
\Bigl( 
\BbbE 
\Bigl[ \int T

0

\| Zt  - \^Zh,\lambda t \| 2dt
\Bigr] \Bigr) 1

2

=
\Bigl( 
\BbbE 
\Bigl[ \Bigl( \int T

0

(Zt  - \^Zh,\lambda t )dWt

\Bigr) 2\Bigr] \Bigr) 1
2

=

\Biggl( 
\BbbE 

\Biggl[ \Biggl( 
Y0  - Y h,\lambda 0 + g(XT ) - Y h,\lambda N  - 

\int T

0

\bigl( 
f(t,Xt,Zt) - f(\=t, \^Xh,\lambda 

t , \^Zh,\lambda t )
\bigr) 
dt

\Biggr) 2\Biggr] \Biggr) 1
2
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\leq 
\bigm| \bigm| Y0  - Y h,\lambda 0

\bigm| \bigm| + \bigl( \BbbE \bigl[ \bigl( g(XT ) - g(Xh,\lambda 
N )

\bigr) 2\bigr] \bigr) 1
2 +

\bigl( 
\BbbE 
\bigl[ \bigl( 
g(Xh,\lambda 

N ) - Y h,\lambda N

\bigr) 2\bigr] \bigr) 1
2

+

\left(  \BbbE 

\left[  \Biggl( \int T

0

\bigl( 
f(t,Xt,Zt) - f(\=t, \^Xh,\lambda 

t , \^Zh,\lambda t )
\bigr) 
dt

\Biggr) 2
\right]  \right)  1

2

.

The first three terms are by Theorem 4.5 and Corollary 4.6, bounded from below by
Ch

\alpha 
2 + | g| 1\| X  - \^Xh,\lambda \| \scrS 2(\BbbR d). By similar arguments as those for I2, I3 in the proof of

Lemma 4.2, it holds that

\Bigl( 
\BbbE 
\Bigl[ \Bigl( \int T

0

\bigl( 
f(t,Xt,Zt) - f(\=t, \^Xh,\lambda 

t , \^Zh,\lambda t )
\bigr) 
dt
\Bigr) 2\Bigr] \Bigr) 1

2

\leq T | f | \alpha ,0,0(1 + \alpha ) - 1h\alpha + T | f | 0,1,0\| X  - \^Xh,\lambda \| \scrS 2(\BbbR d) + T
1
2 | f | 0,0,1

\bigm\| \bigm\| \^Zh,\lambda  - Z
\bigm\| \bigm\| 
\scrH 2(\BbbR k)

.

(4.10)

By a kickback argument and by assumption, it holds that\bigm\| \bigm\| Z  - \^Zh,\lambda 
\bigm\| \bigm\| 
\scrH 2(\BbbR k)

\leq Ch\alpha +
T | f | 0,1,0 + | g| 1
1 - T

1
2 | f | 0,0,1

\| X  - \^Xh,\lambda \| \scrS 2(\BbbR d).(4.11)

We next approach the error \| X  - \^Xh,\lambda \| \scrS 2(\BbbR d). Let \Xi h,\lambda \in \scrS 2(\BbbR d), h \in (0,1), be
the family of stochastic processes that for all t\in [0, T ], \BbbP -a.s., satisfy

\Xi h,\lambda t = x0 +

\int t

0

b(\=s,\Xi h,\lambda s ,Zh,\lambda s )ds+

\int t

0

\sigma (\=s,\Xi h,\lambda s )dWs.

Using the triangle inequality, we get

\| X  - Xh,\lambda \| \scrS 2(\BbbR d) \leq \| X  - \Xi h,\lambda \| \scrS 2(\BbbR d) + \| \Xi h,\lambda  - \^Xh,\lambda \| \scrS 2(\BbbR d).

By the arguments used repeatedly in the proof of Lemma 4.1 and by assumptions, it
holds that

\BbbE 
\bigl[ 
\| Xt  - \Xi h,\lambda t \| 2

\bigr] 
\leq Ch\alpha + 5| b| 20,0,1T\| Z  - Zh,\lambda \| 2\scrH 2(\BbbR k) + 5

\bigl( 
| b| 0,1,0T + | \sigma | 0,1

\bigr) \int t

0

\BbbE 
\bigl[ 
\| Xs  - \Xi h,\lambda s \| 2

\bigr] 
ds.

From this, it follows by the Gronwall lemma that

\BbbE 
\bigl[ 
\| Xt  - \Xi h,\lambda t \| 2

\bigr] 
\leq exp

\Bigl( 
5T
\bigl( 
| b| 0,1,0T + | \sigma | 0,1

\bigr) \Bigr) \Bigl( 
Ch\alpha + 5| b| 20,0,1T\| Z  - Zh,\lambda \| 2\scrH 2(\BbbR k)

\Bigr) 
.

A use of Lemma 4.1 yields \| \Xi h,\lambda  - \^Xh,\lambda \| \scrS 2(\BbbR d) \leq Ch\alpha . We conclude that

\| X  - \^Xh,\lambda \| \scrS 2(\BbbR d) \leq Ch\alpha + 5T | b| 20,0,1 exp(5T (| b| 0,1,0T + | \sigma | 0,1))\| Z  - \^Zh,\lambda \| \scrH 2(\BbbR k).

(4.12)

Using (4.12) in (4.11) gives, after a kickback argument, the desired bound \| Z  - 
\^Zh,\lambda \| \scrH 2(\BbbR k) \leq Ch\alpha .

For \| Y  - \^Y h,\lambda \| \scrS 2(\BbbR d), we use (4.9) and the standard arguments to get\Bigl( 
\BbbE 
\bigl[ \bigm\| \bigm\| Yt  - Y h,\lambda t

\bigm\| \bigm\| 2\bigr] \Bigr) 1
2 \leq 

\bigm| \bigm| Y0  - Y h,\lambda 0

\bigm| \bigm| 
+

\Biggl( \int T

0

\BbbE 
\Bigl[ \bigm\| \bigm\| f(s,Xs,Zs) - f(\=s, \^Xh,\lambda 

s , \^Zh,\lambda s )
\bigm\| \bigm\| 2\Bigr] ds\Biggr) 1

2

+
\bigm\| \bigm\| Zs  - \^Zh,\lambda s

\bigm\| \bigm\| 
\scrH 2(\BbbR k)

.
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Applying Theorem 4.4, (4.10) and the obtained results for \| X  - \^Xh,\lambda \| \scrS 2(\BbbR d) and

\| Z  - \^Zh,\lambda \| \scrH 2(\BbbR k) complete the proof.

Proposition 4.9. Suppose the setting of subsection 4.2, let Assumption 4.3 hold,
and \alpha ,\lambda > 0. Then, there exists a constant C, independent of h, such that\bigm\| \bigm\| X  - \^Xh,\lambda 

\bigm\| \bigm\| 
\scrS 2(\BbbR d)

+
\bigm\| \bigm\| Y  - \^Y h,\lambda 

\bigm\| \bigm\| 
\scrS 2(\BbbR d)

+
\bigm\| \bigm\| Z  - \^Zh,\lambda 

\bigm\| \bigm\| 
\scrH 2(\BbbR k)

\leq C

\Biggl( 
h

\alpha 
2 + max

0,...,Nh

\Bigl( 
\BbbE 
\Bigl[ \bigm\| \bigm\| \zeta \ast (tn,X\lambda ,h

n ) - \^\zeta \ast h,\lambda (tn,X
\lambda ,h
n )

\bigm\| \bigm\| 2\Bigr] \Bigr) 1
2

\Biggr) 
.

Proof. This is proved similarly to Theorem 4.8 without the kickback argument
and instead of (4.10), using\Bigl( 

\BbbE 
\Bigl[ \Bigl( \int T

0

\bigl( 
f(t,Xt,Zt) - f(\=t, \^Xh

t , \^Z
h
t )
\bigr) 
dt
\Bigr) 2\Bigr] \Bigr) 1

2

\leq C
\Bigl( 
h

\alpha 
2 + \| X  - \^Xh,\lambda \| \scrS 2(\BbbR d) + max

0,...,Nh

\Bigl( 
\BbbE 
\Bigl[ \bigm\| \bigm\| \zeta \ast (tn,X\lambda ,h

n ) - \^\zeta \ast h,\lambda (tn,X
\lambda ,h
n )

\bigm\| \bigm\| 2\Bigr] \Bigr) 1
2
\Bigr) 
.

4.6. A discussion on the full error analysis of the robust deep FBSDE
method. In subsections 4.4 and 4.5, only the time discretization error is considered,
i.e., the error between (2.7) and (2.13). For a full error analysis, the error between
the fully implementable scheme (3.1) and (2.7) must be considered. Besides the
time discretization error, there are three other sources of error. The first is the
error induced by optimizing over the parameters of a neural network, instead of over
the vast set \scrZ h. By the universal approximation theorem [19], this error can be
made arbitrarily small, but this theorem gives no help with suggesting the network
architecture that can guarantee a maximal error of desired size. The second error is
the Monte Carlo error induced from approximating the expectation in Y0 by a sample
mean. This error allows for a simple error analysis and the Monte Carlo error is of the
order \scrO (M

 - 1/2
batch). The final error is the error induced from the inexact optimization

procedure of (3.1).

5. Numerical experiments. In this section, we evaluate our algorithm on three
different problems. The first two are of LQ type, for which we have access to a
semianalytic solution for comparison. The third example uses nonlinear terms in
both the drift and diffusion coefficients in the forward equation, and we no longer
have access to a reference solution. In the first example, there is a one-to-one map
between the feedback control and the Z-process, and we can set \lambda = 0 in the loss
function. In the second and third examples, this is not the case, and \lambda > 0 is necessary
for uniqueness of the minimizer to our discrete problem, and convergence to the
continuous FBSDE.

In the experimental convergence studies, we approximate \| \cdot \| \scrS (\BbbR q) and \| \cdot \| \scrH (\BbbR q)

with

\| A\| \scrS 2
h
= max
n\in \{ 0,1,...,N\} 

\biggl( 
1

M

M\sum 
m=1

\| An(m)\| 2
\biggr) 1

2

, \| A\| \scrH 2
h
=

1

N

N - 1\sum 
N=0

\biggl( 
1

M

M\sum 
m=1

\| An(m)\| 2
\biggr) 1

2

.

Here, A(m) = \{ A1(m),A2(m), \cdot ,AN (m)\} , m= 1,2, . . . ,M = 222, are independent and
identically distributed realizations of some adapted stochastic processes A on the grid.
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The norm \| \cdot \| L2(\Omega ;\BbbR q) is approximated with a sample mean denoted \| \cdot \| L2
h
. For the

convergence study, the experimental order of convergence (EOC) is used. It is defined

as EOC(hi) =
log (error(hi+1)) - log (error(hi))

log (hi+1) - log (hi)
. In all examples, we use the neural network

architecture in section 3.2. We use Mtrain = 222 training data points and batch size
Mbatch = 29 with Kepoch = 15 epochs. This gives Kbatch = 212 = 4096 updates per
epoch. For the optimization, the Adam optimizer [44] is used with learning rate 0.1
for the first three epochs, which, after that, is multiplied by a factor of e - 0.5 for each
new epoch. For our use, it was important to chooseMtrain large since in our empirical
convergence results we want to isolate the time discretization error. In practice, the
method generates acceptable solutions with significantly smaller Mtrain.

5.1. Linear-quadratic control problems. Among all stochastic control prob-
lems, the LQ control problem is the most studied and with the most structure; see,
e.g., [3]. For our purposes, it has a closed-form analytic solution with which we can
compare our numerical approximations.

Let k = d, x0 \in \BbbR d, A,\sigma ,\in \BbbR d\times d, Rx,G \in Sd+, Ru \in S\ell +, and B \in \BbbR d\times \ell be of full
rank and C \in \BbbR d. The state equation and cost functional of an LQ-Gaussian control
problem are given by\left\{   Xt = x0 +

\int t
0

\bigl( 
A(C  - Xs) +Bus

\bigr) 
ds+

\int t
0
\sigma dWs,

Ju(t, x) =\BbbE t,x
\Bigl[ \int T

t
(\langle RxXs,Xs\rangle + \langle Ruus, us\rangle )ds+ \langle GXT ,XT \rangle 

\Bigr] 
, t\in [0, T ].

With the minimizer v\ast of the corresponding Hamiltonian, infu\in U\{ \langle DxV,Bu\rangle +
\langle Ruu,u\rangle \} , we have the optimal feedback control u\ast t =  - 1

2R
 - 1
u B\top DxV (t,Xt). Here,

we recall that V is the solution to the associated HJB equation. Its solution is given
by V (t, x) = x\top P (t)x+ x\top Q(t) +R(t), where (P,Q,R) solves the system of ordinary
differential equations,\left\{             

\.P (t) - A\top P (t) - P (t)A - P (t)BR - 1
u B\top P (t) +R\top 

x Rx = 0d\times d,

\.Q(t) + 2P (t)AC  - A\top Q(t) - P (t)BR - 1
u B\top Q(t) = 0d,

\.R(t) + 2Tr
\bigl\{ 
\sigma \sigma \top P (t)

\bigr\} 
+Q(t)\top AC  - 1

4Q(t)\top BR - 1
u B\top Q(t) = 0, t\in [0, T ],

P (T ) =G; Q(T ) = 0d; R(T ) = 0.

The first equation is a matrix Riccati equation, and we refer to the whole system,
slightly inaccurately, as the Riccati equation. The gradient of V satisfies DxV (t, x) =
2P (t)x+Q(t). The related FBSDE reads

\left\{       
Xt = x0 +

\int t
0

\bigl[ 
A(C  - Xs) - 1

2BR
 - 1
u (B\top Zs +Q(t))

\bigr] 
ds+

\int t
0
\sigma dWs,

Yt = \langle GXT ,XT \rangle  - 
\int T
t

\bigl( 
\langle RxXs,Xs\rangle  - 1

4 \langle R
 - 1
u B\top Zs,B

\top Zs\rangle 
\bigr) 
ds

+
\int T
t
\langle Zs, \sigma dWs\rangle , t\in [0, T ].

(5.1)

The solution to (5.1) is then given by Yt = X\top 
t P (t)Xt + X\top 

t Q(t) + R(t) and Zt =
2P (t)Xt+Q(t). To obtain a benchmark solution for Y and Z in our experiments, the
Riccati equation is approximated with the explicit Euler method with 160\times 27 time
steps, and X with 160 time steps.
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5.1.1. Example with state and control of the same dimension. Our first
example concerns a two-dimensional LQ control problem with two-dimensional con-
trol. The matrices for the forward equation are given by

A=

\biggl( 
1 0
0 2

\biggr) 
, B =

\biggl( 
1 0.5

 - 0.5 1

\biggr) 
, C =

\biggl( 
0.1
0.2

\biggr) 
,

\sigma =

\biggl( 
0.05 0.25
0.05 0.25

\biggr) 
, x0 =

\biggl( 
0.1
0.1

\biggr) 
, T = 0.5,

and the penalty matrices for the control problem by

Rx =

\biggl( 
100 0
0 1

\biggr) 
, Ru =

\biggl( 
1 0
0 1

\biggr) 
, G=

\biggl( 
1 0
0 100

\biggr) 
.

In the top third of Table 1, we see the convergence rates from the experiment.
The regime of the LQ control problem, with, e.g., quadratic dependence in f , does
not satisfy the assumptions made in section 4 and a direct comparison cannot be
made. Still, we see, for instance, that Y h0 converges empirically with order 1 while
the error in the terminal condition reaches 0.69 and is likely to continue to decrease.
In Theorem 4.5 and Corollary 4.6, there is a difference of a factor two between these
two errors, which roughly seems to be in line with the rates obtained.

5.1.2. Examples with control in lower dimensions than the state. Our
second example concerns a six-dimensional problem with a two-dimensional control.
The matrices used for the state equation are

A=diag([1,2,3,1,2,3]), B =

\biggl( 
1 1 0.5 1 0 0
 - 1 1 1  - 1  - 1 1

\biggr) \top 

,

C =diag([ - 0.2, - 0.1,0,0,0.1,0.2]), \sigma =diag([0.05,0.25,0.05,0.25,0.05,0.25]),

x0 = (0.1,0.1,0.1,0.1,0.1,0.1)\top , T = 0.5.

The penalty matrices of the control problem are given by

Rx =diag([25,1,25,1,25,1]), Ru =diag([1,1]), G=diag([1,25,1,25,1,25]).

Before we discuss our results, recall that the optimal feedback control at time t is
given by u\ast t =  - 1

2R
 - 1
u B\top Zt. Since u\ast t takes on values in \BbbR \ell and R - 1

\alpha B\top is of rank
\ell < d at most, we can conclude that there exist infinitely many processes \zeta t such that
u\ast t = - 1

2R
 - 1
u B\top \zeta t. To obtain uniqueness of the control component, we set \lambda = 1> 0.

In Figure 3, the approximations are compared with semianalytic solutions in
empirical mean and credible interval and for a representative path realization of X,Y ,
and Z. Visually, the approximations capture (X,Y,Z) well. The convergence is shown
in the middle third of Table 1. The experimental orders decrease below the orders
of the previous example. To investigate whether this is the true convergence order,
or if other errors are dominating for small time steps, we have done some manual
hyperparameter optimization with different training data and batch sizes, learning
rates, and neural network architectures, without being able to improve the rates.

The third example aims to demonstrate our methods' ability to deal with high-
dimensional problems. Most high-dimensional PDE and BSDE problems in the lit-
erature are symmetric (solutions are permutation invariant), and in some cases the
solutions can be represented by a one-dimensional BSDE [43, Example 1]. From the
parameters below, it becomes evident that the 25-dimensional problem that we choose
is highly nonsymmetric and therefore very challenging (arguably more challenging
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Fig. 3. Average of solutions and a single solution path compared to their analytic counterparts
for the first LQ control problem from section 5.1.2, i.e., the problem with d = 6 and \ell = 2. The
shaded area represents an empirical credible interval for Y , defined as the area between the 5th and
the 95th percentile at each time point. We do not include credible intervals for X and Z in this
figure to facilitate visualization. For X and Z, we see one realization of each of the six components.

than a similar but 100-dimensional symmetric problem). Nonsymmetric problems
in the literature are [20, 40, 47, 52, 58], and the dimensions are 4, 5, 3, 4, and 2,
respectively. A symmetric problem in 100 dimensions is found in [40].

Despite the challenging nature of the problem and its relatively high dimension-
ality, we achieve acceptable results, which are displayed in the bottom third of Table
1. It should, however, be pointed out that the error source induced by the time dis-
cretization is no longer dominating. This means that we do not see a convergence
with the number of time steps for the approximation of the Z-process. All the other
discretization errors decrease with the step size, but it is clear that we have other
significant error sources. Figure 4 shows that visually the performance for 40 time
steps is acceptable, even though some of the components of the Z-process oscillate
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DEEP FBSDE METHOD A251

Fig. 4. Average of solutions and a single solution path compared to their analytic counterparts
for the second LQ control problem from section 5.1.2, i.e., the problem with d= 25 and \ell = 1. The
shaded area represents an empirical credible interval for Y , defined as the area between the 5th and
the 95th percentile at each time point. We do not include credible intervals for X and Z in this
figure to facilitate visualization. For X and Z, we see one realization of each of the 25 components.

close to the terminal time. The phenomena of accurate X- and Y -processes and less
accuracy in some of the components of the Z-process could, at least heuristically,
be explained by the mapping \BbbR 25 \ni Zt \mapsto \rightarrow ut \in \BbbR . It is reasonable to assume that
some of the components of the Z-process are more influential in the abovementioned
mapping, which is what we have seen empirically in our experiments. Moreover, we
have noticed that the components of the Z-process with the lowest magnitudes are
less accurately approximated (relatively), which by the form of the feedback control
also justifies the above reasoning.

We use the following parameters: T = 0.5, d= 25, l= 1, A=diag([1,2,3, . . . ,1,2,
3,1]), B = (1,1,0.5,1,0,0,1,1,0.5,1,0,0,1,1,0.5,1,0,0,1,1,0.5,1,0,0,1), C = ( - 0.2,
 - 0.1,0,0,0.1,0.2, - 0.2, - 0.1,0,0,0.1,0.2, - 0.2, - 0.1,0,0.,0.1,0.2, - 0.2, - 0.1,0,0,0.1,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/2

4/
24

 to
 1

92
.1

6.
19

1.
13

6 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



A252 K. ANDERSSON, A. ANDERSSON, AND K. OOSTERLEE

0.2, - 0.2), \sigma =diag([0.15,0.15,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.15,
0.15,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25]),Rx = diag([5,1,5,1,5,
1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5]), Ru = 1, G=diag([5,5,5,5,5,5,1,5,1,5,1,
5,5,5,5,5,5,5,1,5,1,5,1,5,1]).

5.2. Nonlinear quadratic control problems. Finally, we consider a control
problem with nonlinear coefficients in the state equation and quadratic coefficients in
the cost functional. It has stable and unstable equilibrium points at the odd and even
integers, respectively. The problem has been chosen to mimic the unstable problems
that are commonly considered in control, such as inverted pendulums.

Let x0 \in \BbbR d, A,\Sigma ,\in \BbbR d\times d, Rx,G \in Sd+, R\alpha \in S\ell +, and B \in \BbbR d\times \ell be of full rank
and C \in \BbbR d. The state equation and cost functional of a nonlinear quadratic control
problem are given by

(5.2)

\Biggl\{ 
Xt = x0 +

\int t
0

\bigl( 
A sin(\pi CXs) +Bus

\bigr) 
ds+

\int t
0
\Sigma (1d +XsX

\top 
s )dWs,

Ju(t, x) =\BbbE t,x
\Bigl[ \int T

t
(\langle RxXs,Xs\rangle + \langle Ruus, us\rangle )ds+ \langle GXT ,XT \rangle 

\Bigr] 
.

Due to the linear dependence of the control and the quadratic cost functional, the
optimal feedback control is again given by u\ast t = - 1

2R
 - 1
u B\top DxV (t,Xt). Similar to the

above, V is the solution to the associated HJB equation. By setting Yt = V (t,Xt)
and Zt =DxV (t,Xt), we obtain the FBSDE
(5.3)\Biggl\{ 
Xt = x0 +

\int t
0

\bigl[ 
A sin(\pi CXs) - 1

2BR
 - 1
u R - 1

u B\top Zs
\bigr] 
ds+

\int t
0
\Sigma (1d +XsX

\top 
s )dWs,

Yt = g(XT ) - 
\int T
t

\bigl( 
\langle RxXs,Xs\rangle  - 1

4 \langle R
 - 1
u B\top Zs,B

\top Zs\rangle 
\bigr) 
ds+

\int t
0
Z\top 
s \Sigma (1d +XsX

\top 
s )dWs.

Particularly, we consider a three-dimensional problem with control in two dimen-
sions, i.e., d= 3 and \ell = 2, and use the following matrices for the state:

A=diag([1,1,1]), B =

\biggl( 
1 0 1
0 1 1

\biggr) \top 

, C =diag([1,1,1]),

\Sigma =diag([0.1,0.1,0.1]), x0 = (0.1,0.1,0.1)\top , T = 0.25.

For the cost functional, we have the matrices

Rx =diag([5,1,1]), Ru =diag([1,1]), G=diag([1,5,1]).

Table 2 shows the experimental order of convergence of the terminal condition and
the initial value of the BSDE. The factor two between them is again consistent with
Theorem 4.5 and Corollary 4.6 even though the problem does not fall under the
assumptions of these results.

Table 2
Errors and experimental order of convergence for the nonlinear control problem in section 5.2.

A reference solution of Y0 = 0.2194 is computed with the same method on a fine grid with N = 160
time points.

\| Y h
N  - g(Xh

N )\| L2
h

| Y0  - Y h
0 | Y h

0

N Error EOC Error EOC Value

5 2.69e--2 0.59 9.80e--3 1.01 0.2297

10 1.79e--2 0.53 4.85e--3 1.03 0.2241

20 1.24e--2 0.50 2.38e--3 0.99 0.2219
40 8.76e--3 0.49 1.20e--3 0.98 0.2207

80 6.27e--3 6.07e--4 0.2200
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