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a b s t r a c t 

Many unsupervised anomaly detection algorithms rely on the concept of nearest neighbours to com- 

pute the anomaly scores. Such algorithms are popular because there are no assumptions about the data, 

making them a robust choice for unstructured datasets. However, the number ( k ) of nearest neighbours, 

which critically affects the model performance, cannot be tuned in an unsupervised setting. Hence, we 

propose the new and parameter-free Analytic Isolation and Distance-based Anomaly (AIDA) detection al- 

gorithm, that combines the metrics of distance with isolation. Based on AIDA, we also introduce the 

Tempered Isolation-based eXplanation (TIX) algorithm, which identifies the most relevant features char- 

acterizing an outlier, even in large multi-dimensional datasets, improving the overall explainability of 

the detection mechanism. Both AIDA and TIX are thoroughly tested and compared with state-of-the-art 

alternatives, proving to be useful additions to the existing set of tools in anomaly detection. 

© 2023 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Anomaly detection (AD) is a fundamental field of research in 

achine learning, due to its relevance for many real-life applica- 

ions, from network intrusion detection to fraud analysis, e.g., Dong 

t al. [1] , Xuan et al. [2] . Unsupervised AD techniques are usually 

referred in those scenarios where labelled outliers are not abun- 

ant, thus potentially limiting the forecasting capabilities of super- 

ised approaches. Among unsupervised methods, those based on 

ome notion of similarity, like distance- and density-based algo- 

ithms, are particularly popular for their interpretability and com- 

etitive performance (anomalies are points that are far away from 

normal” points [3] , or that live in areas of sparse local density 

4] ). The majority of these methods rely on the number ( k ) of near-

st neighbours (NN) to compute the distances or the local density 

round a given observation. While the number of NN can be op- 

imally chosen in a supervised setting with some form of model 

election, this is commonly not possible in the unsupervised case. 

onsidering that the performance of most of the distance- and 

ensity-based unsupervised methods heavily depends on k , the 

ack of a reliable choice for this parameter makes these techniques 

ard to use in applications. 
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As a possible solution, we introduce a novel distance-based AD 

lgorithm: the Analytic Isolation and Distance-based Anomaly (AIDA) 

etection method . Unlike well-known alternatives like Local Outlier 

actor (LOF) [4] and k -Nearest Neighbours (kNN) [3] , AIDA does not 

ely on the concept of neighbours to detect anomalies/outliers, but 

t rather focuses on the concept of isolation. 

A first outlier measure based on isolation was proposed in Liu 

t al. [5] , under the name of Isolation Forest (iForest). In that ar- 

icle, the authors coupled the isolation metric with a randomized 

xis-parallel subspace search. In this work, we directly use the iso- 

ation metric in a distance-based setting, offering an alternative to 

N in distance-based AD methods. This has a few advantages: 

1. The isolation metric is parameter-free, thus avoiding the com- 

mon problem of making an inaccurate parameter choice in an 

unsupervised setting. The lack of labelled targets complicates 

prescribing optimal parameter values, and even if sub-sampling 

techniques can somehow mitigate the issue (e.g., Aggarwal and 

Sathe [6] ), the choice is still data-dependent. 

2. AIDA is capable of detecting different types of outliers than, for 

example, iForest or other methods like LOF ( Section 2 ). This 

is particularly relevant for ensemble methods [7] , where the 

scores among different anomaly detection models are combined 

to increase the robustness of the final estimates. 

3. While, in the leading literature, the isolation score is obtained 

using a simulative approach, we show that the outlier score 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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function of AIDA admits an analytical closed-form expression, 

simplifying computations, and providing new insights into the 

isolation metric. The analytical formula can be used to find 

deeper connections between isolation and NN methods, or to 

analyze the theoretical properties of the iForest algorithm in 

simple scenarios. 

Another fundamental issue in AD is the ability to explain why 

 certain point is labelled as an outlier [8] . In applications, practi- 

ioners are often faced with large datasets with hundreds or even 

housands of features. An AD algorithm that only informs whether 

 point is an outlier or not is less informative than one that also 

eturns the most important features defining the outliers. This in- 

ormation can be used to focus on the outliers that seem most 

nteresting for a particular application, greatly reducing the time 

nalysts need to spend studying potentially anomalous points. We 

hus propose the Tempered Isolation-based eXplanation (TIX) algo- 

ithm, i.e., an explanation method that combines AIDA and the 

imulated Annealing (SA) algorithm (e.g., Aarts and van Laarhoven 

9] , Kirkpatrick et al. [10] ). 

TIX satisfies the four desirable properties for anomaly explana- 

ion [11] , namely: 1) it has quantifiable explanations, 2) it is not 

omputationally expensive, 3) it is visually interpretable, and 4) 

t is scalable. Moreover, it also takes into account the interactions 

mong features. Hence, it can explain outliers hidden in multidi- 

ensional subspaces [12] . 

The paper is organized as follows. In Section 2 , we introduce 

he AIDA algorithm as well as the analytical formulas for isola- 

ion. We also show with a simple example the type of outliers 

hat AIDA detects when compared to iForest and LOF. The TIX 

ethod is described in Section 3 . Numerical results concerning 

he performances of AIDA and TIX are given in Section 4 , while 

ection 5 concludes the paper. 

. Methodology 

We first introduce the AIDA algorithm for numerical features in 

ection 2.1 , with the analytical formulas for isolation in Section 2.2 . 

hen, we present a possible extension of AIDA to categorical fea- 

ures in Section 2.3 . Finally Section 2.4 illustrates the type of out- 

iers that AIDA detects with a simple example. 

.1. General setting 

Let X n be a dataset of size n and dimensionality d, such that 

 i ∈ R 

d , for i = 1 , . . . , n , and let l p (·, ·) be a weighted distance func-

ion defined as 

 p (X i , X j ) = 

( 

d ∑ 

l=1 

ω l | X i,l − X j,l | p 
) 1 /p 

, (1) 

here p ∈ R 

+ and ω l ∈ R 

+ for l = 1 , . . . , d are the weights given to

ach feature. 1 

In [13] it was proved that the distance measure defined in 

q. (1) loses contrast in very high dimensions, because of the curse 

f dimensionality. Therefore, we use an ensemble of random sub- 

amples and subspaces from X n to alleviate this problem (we refer 

o Keller et al. [12] , Aggarwal [14] , Lazarevic and Kumar [15] for

ubspace sampling alternatives). The use of random subsampling 

lso allows to bring the computational complexity from quadratic 

o linear in the number of samples [16] . 

Hence, let N, ψ min , ψ max ∈ N 

+ be the number of subsamples, 

he mininum subsampling size and the maximum subsampling 
1 We focus on L p norms only, but other notions of distance, e.g., cosine distances, 

an also be applied. 

t

g

2 
ize, respectively. Then, the AIDA algorithm works as follows: first, 

e create N random subsamples Y ψ j 
, for j = 1 , . . . , N, from X n 

ithout replacement with sizes ψ j ranging randomly between 

 min and ψ max . This is the training stage, which is simply storing 

he subsamples of the training set for future use. The average and 

orst case memory requirements are O(Ndψ m 

) and O(Ndψ max ) , 

espectively, where ψ m 

= (ψ min + ψ max ) / 2 . 

Next, for each point X i in the test set (for simplicity, we assume 

he test set is X n ) we compute its distance to every observation 

n a given subsample Y ψ j 
—for j = 1 , . . . , N—using Eq. (1) , and sort

hem in increasing order. We also include the zero point in the 

istances, which corresponds to the distance of X i to itself. Thus, 

he minimum distance is always zero, which we denote as the left- 

ringe point since it is the left-most point in the sorted distances. 

e call this projection the distance profile (DP) of a point X i with 

espect to a subsample Y ψ j 
, denoted DP (X i , Y ψ j 

) , for j = 1 , . . . , N. 

Once the distances have been sorted, we apply the iForest algo- 

ithm to this new dataset until the left-fringe point has been iso- 

ated. These steps give us an outlier score per subsample, and the 

nal score of X i is obtained by aggregating these results, usually 

ith the average or the maximum functions [6] . 

The idea of the AIDA algorithm is illustrated in Fig. 1 . The top

eft plot shows the complete dataset, which consists of 10 0 0 obser- 

ations with two features, while the top right plot shows a random 

ubsample of size 50, together with two test points marked with 

 red triangle (A) and a red circle (B). The lower plots present the 

Ps of point A (left) and point B (right), where the left-fringe point 

s marked with a red cross to emphasize that this is the point we 

ant to isolate. Clearly, the left-fringe point is easier to isolate in 

he DP of point A than in the DP of point B, hence point A will re-

eive a higher outlier score. This is expected by looking at Fig. 1 (a)

ince point A is in an area of much lower density. An outlier is, 

herefore, a point that is easy to isolate in the 1D projection given 

y its DP. 

.2. Analytical isolation 

If we follow the standard iForest methodology, once the DP has 

een computed, we would randomly split the data using simula- 

ions until the left-fringe point has been isolated. However, since 

he DP is a 1D projection of the full feature space, we can benefit 

rom analytical formulas to compute the isolation score, hence re- 

ucing the computational cost and the variance of the results. This 

s proved in the following proposition. 

roposition 1. Let Z n be a sorted vector of real numbers such that 

 i ∈ R , i = 1 , . . . , n , and Z i ≤ Z j , i ≤ j. Denote by h the number of

plits that it takes to isolate Z 1 , and by g(Z i , Z i +1 | Z n ) the probability

f a random split occurring on the interval [ Z i , Z i +1 ) given Z n . Assume

hat 2 

(Z i , Z i +1 | Z n ) = 

g(Z i , Z i +1 ) 

G (Z 1 , Z n ) 
, (2) 

ith G (Z 1 , Z i ) = 

∑ i −1 
j=1 g(Z j , Z j+1 ) , then the moment generating func-

ion (mgf) of h is given by 

 [ e uh | Z n ] = 

n −1 ∏ 

i =1 

e u g(Z i , Z i +1 ) + G (Z 1 , Z i ) 

G (Z 1 , Z i +1 ) 
. (3) 
2 In the original iForest algorithm, the split probabilities are directly proportional 

o the length of the interval, so that g(Z i , Z i +1 ) = Z i +1 − Z i . Here we consider a more 

eneral formulation [17] . 
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Fig. 1. Comparison between the DPs of an outlier (A) and an inlier (B). The inlier (B) is marked as a red circle on the top right figure, and the outlier (A) is marked with a 

red triangle. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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roof. Since h is bounded between 1 and n − 1 , it is clear that, for

ny function f : R → R , 

 [ f (h ) | Z n ] = 

n −1 ∑ 

i =1 

f (i ) P [ h = i | Z n ] . (4)

urthermore, due to the recursive nature of the random splits, 

 [ h = i | Z n ] = 

n −1 ∑ 

j= i 
g(Z j , Z j+1 | Z n ) P [ h = i − 1 | Z j ] , (5)

here Z j contains the first j elements of Z n . 

Plugging Eq. (5) into Eq. (4) and swapping the order of the sum- 

ations yields 

 [ f (h ) | Z n ] = f (1) g(Z 1 , Z 2 | Z n ) + 

n −1 ∑ 

j=2 

g(Z j , Z j+1 | Z n ) 
j ∑ 

i =2 

f (i ) P [ h = i − 1 | Z j ] , (6)

hich can be further simplified as 

 [ f (h ) | Z n ] = f (1) g(Z 1 , Z 2 | Z n ) + 

n −1 ∑ 

j=2 

g(Z j , Z j+1 | Z n ) E [ f (h + 1) | Z j ] . 

(7) 

q. (7) can then be written as a recursion, i.e., 

 [ f (h ) | Z n ] = 

g(Z n −1 , Z n ) 

G (Z 1 , Z n ) 
E [ f (h + 1) | Z n −1 ] + 

G (Z 1 , Z n −1 ) 

G (Z 1 , Z n ) 
E [ f (h ) | Z n −1 ] , 

(8) 

here the first term on the right-hand side of Eq. (8) corresponds 

o the last term of the summation appearing in Eq. (7) , and the

ormalization factor G (Z 1 , Z n −1 ) /G (Z 1 , Z n ) is necessary to move

rom probabilities conditioned on Z n to probabilities conditioned 

n Z n −1 . 

Finally, choosing f (h ) = e uh gives 

 [ e uh | Z n ] = 

e u g(Z n −1 , Z n ) + G (Z 1 , Z n −1 ) 

G (Z 1 , Z n ) 
E [ e uh | Z n −1 ] , (9) 

nd, by following the recursion, one obtains the desired result of 

q. (3) . �
3 
Given the mgf in Eq. (3) , it is easy to compute other quantities—

uch as the expectation and the variance of h —through its deriva- 

ives with respect to h . 

orollary 1. Let Z n , h and g(Z i , Z i +1 | Z n ) be defined as in Proposition

 . Then 

 [ h | Z n ] = 1 + 

n −1 ∑ 

i =2 

g(Z i , Z i +1 ) 

G (Z 1 , Z i +1 ) 
, (10) 

 [ h | Z n ] = 

n −1 ∑ 

i =2 

g(Z i , Z i +1 ) 

G (Z 1 , Z i +1 ) 

(
1 − g(Z i , Z i +1 ) 

G (Z 1 , Z i +1 ) 

)
. (11) 

roof. The result is immediate after a straightforward computation 

f the derivatives of log E [ e uh | Z n ] . �

While Proposition 1 provides a general framework for isola- 

ion in one dimension, from now on we set g(Z i , Z i +1 ) = (Z i +1 −
 i ) 

α as in Tokovarov and Karczmarek [17] . Applying this choice to 

qs. (10) and (11) yields the two scoring functions that we will 

onsider in this paper. 

 [ h | Z n ] = 1 + 

n −1 ∑ 

i =2 

(Z i +1 − Z i ) 
α∑ i 

j=1 (Z j+1 − Z j ) α
, (12) 

 [ h | Z n ] = 

n −1 ∑ 

i =2 

(Z i +1 − Z i ) 
α∑ i 

j=1 (Z j+1 − Z j ) α

( 

1 − (Z i +1 − Z i ) 
α∑ i 

j=1 (Z j+1 − Z j ) α

) 

. (13) 

With this formulation, the split probabilities used in iForest are 

 particular case of Eqs. (12) and (13) with α = 1 . The scoring func-

ions can thus be further simplified as 

 [ h | Z n ] = 1 + 

n −1 ∑ 

i =2 

Z i +1 − Z i 
Z i +1 − Z 1 

, (14) 

 [ h | Z n ] = 

n −1 ∑ 

i =2 

Z i +1 − Z i 
Z i +1 − Z 1 

(
1 − Z i +1 − Z i 

Z i +1 − Z 1 

)
. (15) 

The intuition behind using E [ h ] as a score function was already

xplained in the original iForest paper [5] : an outlier should be 

solated in just a few splits and, therefore, E [ h ] should be smaller
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or outliers than for inliers. The reason for using the variance as 

n alternative, as we propose here, is similar in nature. An inlier 

hould be surrounded by other inliers, and, therefore, it takes—on 

verage—many splits to isolate it. However, albeit less probable, an 

nlier can also be isolated in just a few splits, giving rise to a large

ange of variation for h . Hence, it is assumed that an inlier has a

igher V [ h ] than an outlier. In the extreme case where a point is

lways isolated in a single split, we have V [ h ] = 0 . 

In the context of the AIDA algorithm, Z n corresponds to the DP 

f a given point, so that Z 1 = 0 , and the other Z i ’s are the sorted

istances. For example, assuming no subsampling ( Y ψ j 
= X n ), the 

utlier score of a point X using Eq. (13) as the score function 

ould be 

core (X ) = −V [ h | DP (X, X n )] , (16) 

here the minus sign is added so that the score of outliers is 

igher than the score of inliers. 

Hence, the AIDA algorithm can be decomposed into two main 

teps. First, the DP of each point X i in X n is computed with respect 

o each subsample Y ψ j 
, for j = 1 , . . . , N. Then, an outlier score is

btained by applying either Eqs. (12) and (13) to the DPs and ag- 

regating the results among all subsamples. The average computa- 

ional complexity of this procedure is O(nNψ m 

(d + log (ψ m 

) + 1)) .

herefore, it is linear in both the number of features and the num- 

er of observations. Additionally, if d > log (ψ m 

) , the pair-wise dis- 

ances are the most expensive part of the algorithm. Otherwise, it 

s the sorting function that takes most of the computational time. 

he score function does not consume much time in comparison. 

emark. Eqs. (12) and (13) may diverge if there are consecutive 

ero values, therefore these cases must be treated separately. In 

ractice, the challenge are the points equal to Z 1 , since, for in- 

tance, in the case Z 1 � = Z 2 = Z 3 the denominator is still larger than

ero. Moreover, repeated values equal to Z 1 are, by definition, im- 

ossible to isolate, thus we recommend the maximum penaliza- 

ion to the outlier score for each repeated value. In particular, we 

uggest to add +1 and +0 . 25 to Eqs. (12) and (13) for each re-

eated value, respectively. The reason for choosing these values is 

hat they represent the maximum possible increments per obser- 

ation in Eqs. (12) and (13) . 

.3. Categorical data and subspace search 

The AIDA methodology can be coupled with subspace search 

ethods such as feature bagging, rotated bagging, and others 

6,15] . Doing so, partially diminishes the problem of loss of con- 

rast that distance-based methods face in high dimensions. The 

rawback is that we would then introduce further randomness into 

he algorithm, and many subspaces must be explored to obtain 

eaningful results. Nevertheless, subspace search methods have 

hown to produce satisfactory results when compared to a full 

pace search [12,15] . Additionally, if we couple each random sub- 

pace with a random subsample, the computational cost can be 

urther reduced, since the time complexity of the distance calcula- 

ion is linear in the number of features. 

Another important generalization is the inclusion of categori- 

al data, in particular nominal data. This is because there is no 

lear nor unambiguous relationship between the distinct values of 

 nominal feature, 3 and thus the concept of distance cannot be di- 

ectly applied. Hence, we consider instead the concept of similarity 

etween two different categories of a nominal feature, and then 

ransform this similarity into a distance metric. 
3 In categorical variables, especially when non-ordinal, the way in which cate- 

ories are defined has a substantial impact on their interpretability, and thus on 

easures meant to quantify similarity, dispersion, etc. [18] . 

w  

s

4 
In [19] , the following relationship between distance and simi- 

arity was considered: 

(X, Y ) = 

1 

1 + dist(X, Y ) 
, (17) 

o that points with similarity one have zero distance. 

Here, we consider an analogous relation, namely 

(X, Y ) = e −dist(X,Y ) . (18) 

Eqs. (17) and (18) coincide in the extremes of similarity one and 

ero, but the rate of convergence towards zero in terms of the dis- 

ance is much faster in Eq. (18) than in Eq. (17) . 

The next step is to choose a particular similarity function. Here 

e have chosen to work with a slight modification of the Goodall3 

imilarity function [19] , but several alternatives are possible [16] . 

Let X 

nom 

n be a dataset of size n consisting of d nom 

nominal fea- 

ures, such that X nom 

i 
∈ N 

d nom , for i = 1 , . . . , n . Moreover, let f k (x )

e the number of times that class x appears in the k th feature of

 

nom 

n . Then, the similarity between two points with classes x and y 

n a given nominal feature k is defined as 

 k (x, y ) = 

{
1 , x = y, 

1 − p 2 
k 
(y ) , x � = y, 

(19) 

here 

p 2 k (x ) = 

f k (x )( f k (x ) − 1) 

( n + 1) n 

. (20) 

Finally, combining Eqs. (18) and (19) we obtain the distance be- 

ween two samples consisting of d nom 

nominal features: 

ist nom (X 

nom 

i , X 

nom 

j ) = −
d nom ∑ 

l=1 

ω 

nom 

l log (S l (X 

nom 

i,l , X 

nom 

j,l )) . (21)

Notice that the denominator in Eq. (20) contains the term 

n + 1) , instead of the original (n − 1) in Boriah et al. [19] . This

s to avoid a similarity of exactly zero, which would cause the dis- 

ance to diverge and yield unstable results in the anomaly detec- 

ion algorithm. Thus, the distance defined in Eq. (21) is capped to 

 maximum of log ((n + 1) / 2) per feature. 

emark. Eq. (21) implies a different similarity aggregation than 

he one commonly used in the literature [19] . In particular, the to- 

al similarity is usually defined as the weighted average of the sim- 

larities per feature, while here we have defined it as the weighted 

roduct instead. The purpose of this change is to magnify the effect 

f features where the classes do not match. Consider an example 

here d nom 

is very large, and X nom 

i 
and X nom 

j 
match in every fea- 

ure except one, where X nom 

i 
has a unique class and could, there- 

ore, be labelled as an outlier. Using the average similarity would 

ield a total similarity close to one—or a distance close to zero—

ossibly resulting in the wrong classification of X nom 

i 
as an inlier. 

he weighted product helps solve this problem and detects nom- 

nal features where outliers are different from the majority of the 

ata. 

Having defined a distance measure for the nominal features, the 

eneral scenario with mixed-attribute data can be tackled in the 

ollowing manner: consider a dataset X n = { X 

num 

n , X 

nom 

n } consisting 

f n samples with d = d num 

+ d nom 

features, where the first d num 

re numerical 4 and the last d nom 

are nominal. Then the total dis- 

ance between two observations in X n is given by 

ist(X i , X j ) = l p (X 

num 

i , X 

num 

j ) + dist nom (X 

nom 

i , X 

nom 

j ) , (22)

here l p (·, ·) and dist nom (·, ·) are defined by Eqs. (1) and (21) , re-

pectively. The rest of the algorithm is the same as in the case with 
4 This includes categorical ordinal data. 
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Fig. 2. Comparison of the 60 most anomalous points detected by AIDA, iForest and 

LOF. For AIDA two different scores are used: expectation and variance. Inliers are 

marked with gray stars, detected outliers with green circles, and actual outliers 

with red crosses. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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nly numerical features. That is, we compute the DPs of each ob- 

ervation based on Eq. (22) and compute the outlier score using 

ither Eqs. (12) and (13) . 

Pseudocodes illustrating the training and test phases of the 

IDA method are presented in Algorithms 1 and 2 , respectively. 

otice that we have introduced a normalization step in line 12 of 

lgorithm 2 . This is particularly relevant when each subsample has 

ssigned a different feature subspace, since in that case the unnor- 

alized outlier scores may not be comparable. 

lgorithm 1 AIDA: training phase. 

1: Load X 

num 

n and X 

nom 

n . 

2: Set N, ψ min , ψ max . 

3: for j = 1 , ..., N do 

4: Set ψ j ∼ U(ψ min , ψ max ) . 

5: Set Y ψ j 
by drawing ψ j samples without replacement from 

X n . 

6: Compute and store the frequencies of each class of the nom- 

inal features using Equation (20). 

7: end for 

lgorithm 2 AIDA: testing phase. 

1: Load X 

num 

n and X 

nom 

n . 

2: Choose a score function from Equation (12) and (13). 

3: Set α, ω 

num and ω 

nom . 

4: for i = 1 , ..., n do 

5: for j = 1 , ..., N do 

6: Compute the distance of X i to each point in Y ψ j 
and to 

itself using Equations (1), (21). and (22) 

7: Sort the distances from minor to major. 

8: Compute the outlier score with the chosen outlier func- 

tion. 

9: end for 

0: end for 

11: for i = 1 , ..., N do 

2: Transform the outlier scores to Z-scores. 

3: end for 

14: Aggregate the scores obtained with each subsample. 

emark. The weights ω l in Eqs. (1) and (21) can be used to em-

hasize or diminish the contribution of specific features. Specifi- 

ally, a large ω l gives more importance to the lth feature in the 

istance metric, hence points that are anomalous in that feature 

ill be found more easily. This property is relevant when there 

s some prior knowledge about the features that cause the out- 

iers. These weights can also be interpreted as a generalization of 

everal subspace search methods [14] . For example, we can imple- 

ent the feature bagging [15] algorithm by setting ω l = 1 on the 

andomly chosen features, and ω l = 0 on the rest. In case of no

rior knowledge about the outliers, we recommend setting ω l = 1 , 

or l = 1 , . . . , d, if no subspace search methods are used. 

.4. Illustrative example 

Let us return to the dataset of Fig. 1 and compare the type of

utliers AIDA detects with those by iForest and LOF. Such compar- 

son is particularly relevant for ensemble models which are com- 

osed of different anomaly detection methods [15] . If the methods 

ontained in an ensemble identify the same type of outliers, the 

ias of the ensemble remains the same as that of its constituents. 

or example, if the outliers are hidden in multidimensional sub- 

paces [12] , iForest suffers from low performance due to the small 
5 
robability of (randomly) picking the right subspace that contains 

he outliers [20,21] . In the case of density methods such as LOF, 

he type of detected outliers depends on the number of near- 

st neighbours k [22] . Other approaches based on deep learning, 

uch as autoencoders [23,24] and one-class Deep Support Vector 

ata Description (Deep SVDD) [25] , specialize on detecting anoma- 

ies in highly structured data. For a thorough and recent study on 

nomaly detection algorithms and their outlier preferences, we re- 

er the reader to Han et al. [26] . 

For the distance-based methods, we use the Manhattan dis- 

ance with equal weights, so that p = 1 and ω l = 1 in Eq. (1) , for

 = 1 , . . . , d. As far as AIDA is concerned, we use it without sub-

ampling, so that there is no source of randomness, and the main 

ifference between AIDA and LOF is just the use of the isolation 

core, instead of the local density. We test the expectation and the 

ariance score functions of Eqs. (12) and (13) with two values of α
mainly α = 1 and α = 2 ), for a total of four AIDA configurations.

n terms of notation, we denote the AIDA algorithm with variance 

core function and α = 1 as AIDA (V1), and the other variations 

nalogously. We have chosen the number of neighbours in LOF to 

e k = 20 , which seems reasonable given the size of the dataset. 

egarding iForest, we set the number of trees to 10 0 0 and we do

ot use subsampling. 

The results can be seen in Fig. 2 , where we plot the 60 most

nomalous points detected by each method. It is of interest to ob- 

erve that each method identifies different parts of the dataset as 

utliers, apart from the most obvious ones. Concretely, both iFor- 

st and LOF assign outliers to the rims of the inlier clusters. Given 
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Fig. 3. Computational times of the AIDA algorithm as a function of the dimensionality d and the number of observations n . In the left plot (a) we fixed n = 10 0 0 , and, in 

the right plot (b), we set d = 50 . 
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hat the local densities of the inlier clusters are very similar, LOF 

utliers can be seen in both clusters, while iForest only detects 

nomalies in the larger cluster. 

In contrast, AIDA is able to find sparse areas inside the in- 

ier clusters. For α = 1 , the expectation and variance scores be- 

ave similarly, detecting outliers only in the large cluster. How- 

ver, the expectation score fails to detect a couple of the actual 

utliers, while the variance score detects all of them. Setting α = 2 

ives more importance to the small inlier cluster, and so both score 

unctions detect outliers in the spare areas of that cluster as well. 

n the other hand, the detection of the actual outliers has wors- 

ned, especially in the expectation score. Increasing α even further 

ppears to be detrimental in this example, as it magnifies the noise 

n the data. 

Nonetheless, these results hint that the variance function may 

e a better score function than the expectation, and that different 

alues of α may be used to detect various types of outliers. This 

ill be further explored in Section 4 . 

We also present in Fig. 3 the computational time (in seconds) 

pent by AIDA on the test phase, described in Algorithm 2 , on sev-

ral datasets of different dimensionality d and number of obser- 

ations n . In particular, we set N = 100 , ψ min = 50 , ψ max = 512 in

lgorithm 1 and use Eq. (13) as score function in Algorithm 2 . In

ig. 3 (a), the number of observations was set to n = 10 0 0 , and in

ig. 3 (b), we fixed d = 50 . From Fig. 3 (a), (b) we observe that the

omputational time increases linearly both with the number of fea- 

ures and the number of observations, due to the use of subsam- 

les. 

. Explainability 

In many practical contexts, the ability to explain why a certain 

bservation is labelled an outlier is as important as the anomaly 

etection process itself. Especially in datasets with hundreds, or 

ven thousands, of features, anomaly explanation can be a very 

omplex and time-consuming task. Furthermore, in settings where 

nly outliers generated by a specific mechanism are interesting 

e.g., frauds or illegal transactions in financial datasets), having a 

reliminary understanding of which features characterize an out- 

ier can serve as a filter to discard anomalies generated by other 

auses. 

It is, however, difficult to extract explanations from distance- 

ased methods, since they compress information from every fea- 

ure into the distance metric [27] . Exploring every possible sub- 

pace with the aim of finding subsets of features where the out- 

iers are more remarkable is, of course, also not a viable option 

ue to the curse of dimensionality. 

In this article, we propose an explanation method for distance- 

ased methods combining AIDA and the Simulated Annealing (SA) 

lgorithm, which is commonly used in many other settings, such 

s global optimization and clustering (see Kirkpatrick et al. [10] , 

i and Zheng [28] , Philipp et al. [29] ). Due to the partial inclu-
6 
ion of the annealing process in the explanation method, we call 

t the Tempered, Isolation-based eXplanation method (TIX), described 

n Section 3.1 . We compare the inclusion of the SA acceptance cri- 

erion with the standard “greedy” approach [30] in Section 3.2 , and 

ropose a possible refinement in Section 3.3 . In order to facilitate 

he interpretation of the results, we also propose the use of dis- 

ance profile plots (DPP) , which we define in Section 3.4 . 

.1. TIX algorithm 

An explanation method should be able to determine which fea- 

ures are most relevant to define outliers. In the context of the 

IDA algorithm, this means finding the minimal feature subspace 

n which an outlier is easiest to isolate. However, due to the curse 

f dimensionality, it is computationally unfeasible to explore all 

he existing feature subspaces. One possibility to deal with this as- 

ect is to use a so-called backward procedure in which, starting 

ith the full feature space, we remove one feature at a time, and 

heck whether the point of interest is easier to isolate in this re- 

uced feature subspace. If that is the case, the chosen feature is 

eemed irrelevant and removed from the explanation process. Re- 

eating this process until only the most relevant features are left 

s known as a “greedy” sequential search [30] . 

Naturally, an accurate explanation method should aim at mini- 

izing the number of important features, such that, if an outlier is 

qually easy to isolate in two different f eature subspaces, the sub- 

pace with the least number of features should be preferred. For 

his reason, we propose a penalization mechanism that is based on 

he acceptance criterion of SA [10] , so that explanations with only 

 few features receive a higher importance score than explanations 

ith a larger number of features. 

The procedure is as follows: given a potentially interesting out- 

ier X and a subsample Y ψ i 
, for i = 1 , . . . , N, we start by comput-

ng the score of X with respect to Y ψ i 
using the full feature sub- 

pace J = { 1 , . . . , d} , i.e., f J (X ) = score (X| Y ψ i 
, J ) . We randomly

elect an index j from J and compute f J − j 
(X ) = score (X| Y ψ i 

, J − j ) ,

here J − j indicates that feature j has been removed from J . If 

f J − j 
(X ) ≥ f J (X ) , we set J = J − j and repeat the process. 

On the other hand, if f J − j 
(X ) < f J (X ) we define the quantity 

p j = exp 

(
f J − j 

(X ) − f J (X ) 

f J (X ) · T 

)
, (23) 

here T > 0 , and draw a uniform random variable V ∼ U(0 , 1) . If

p j ≥ V , we remove feature j by setting J = J − j . Otherwise, noth- 

ng changes. This process is repeated until a maximum number of 

terations is reached, or until only one feature remains (|J | = 1) .

ach feature receives a score based on how many iterations of this 

rocess it has “survived”. We refer to the number of iterations as 

he path length . Relevant features should be more difficult to re- 

ove, and should therefore have a longer path length than irrel- 

vant features. It is recommended to run this algorithm a fixed 
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umber of times M in order to have a consistent estimate of the 

ath length for each feature. Algorithm 3 provides a pseudocode of 

he proposed TIX method. 

lgorithm 3 TIX: pseudocode. 

Load the potential outlier X . 

Choose a score function from Equations (12) or Equation (13). 

Set α, ω 

num and ω 

nom equal to 1. 

for k = 1 , ..., M do 

for i = 1 , ..., N do 

Set J = { 1 , ..., d} . 
Set f J (X ) = score (X| Y ψ i 

, J ) . 

Set l = 0 . 

Set T ∼ U(T min , T max ) . 

while ( l < L ) or ( |J | > 1 ) do 

Randomly select an index j from J . 

Set f J − j 
(X ) = score (X| Y ψ i 

, J − j ) . 

if f J − j 
(X ) ≥ f J (X ) then 

Set J = J − j . 

path_length ( j, i, k ) = l. 

else 

Compute p j using Equation (23). 

Set V ∼ U(0 , 1) . 

if p j > V then 

Set J = J − j . 

path_length ( j, i, k ) = l. 

end if 

end if 

Set l = l + 1 . 

end while 

if |J | > 1 then 

for each j ∈ J do 

path_length ( j, i, k ) = l. 

end for 

end if 

end for 

end for 

for j = 1 , ..., d do 

Aggregate the path lengths obtained over all subsamples and 

iterations. 

end for 

The contribution of the AIDA method in Algorithm 3 is found 

n the computation of the anomaly score, i.e., f J (X ) and f J − j 
(X ) .

herefore, it is also possible to combine the TIX algorithm with 

ifferent anomaly detection approaches, particularly with those us- 

ng some notion of distance. The inclusion of the acceptance crite- 

ia has been done with the intention of reducing the effect of the 

urse of dimensionality in explanation methods. As this work is 

evoted to the presentation of the AIDA algorithm, we do not an- 

lyze the explanation method with other anomaly detection tools. 

e just notice that, since TIX uses the absolute anomaly scores 

o reduce the computational burden, these scores should be com- 

arable among similar feature subspaces. That is indeed the case 

ith the AIDA algorithm, due to the form of the anomaly scores in 

qs. (12) and (13) . However, this characteristic is not common to 

ll anomaly detection methods. 

Since we are using a distance-based anomaly detection algo- 

ithm in Algorithm 3 , it is possible that outlier scores are higher 

n high-dimensional settings, even if there exists a small subset of 

eatures where the sample could be easily isolated. This is due to 

he curse of dimensionality, by which the distance to the nearest 

nd the furthest neighbours converges to the same value [13] . This 

s shown in Fig. 5 (a), where we provide the DPs of an outlier in
7

he HiCs dataset 20.1 (for more details: Section 4.1 ) using incre- 

ental feature spaces. Concretely, the top DP uses only the first 

eature, the second-top DP uses the first two features for the dis- 

ance calculation, and so on, until the bottom DP, which uses the 

ull feature space. From the results of Fig. 5 (a), it is clear that the

utlier is easily isolated when we consider the first three features, 

nd this is indeed how the outlier was generated [12] . 

Nonetheless, the same outlier is even easier to isolate when the 

ull feature space is considered. Therefore, if we do not include the 

cceptance criterion of SA using Eq. (23) , TIX would hardly remove 

ny features, and the explanations would not be informative. This 

s a problem similar to that of model selection in regression mod- 

ls, where the goal is to find a parsimonious linear predictor [31] , 

.e., the one with the desired explanatory power and the small- 

st number of features. In fact, adding more features in regression 

odels reduces the in-sample estimation error, but it also gener- 

tes overfitting, thus affecting generalization. Thus, in order to re- 

uce the number of features, the complexity of the model must be 

enalized, for instance, by using criteria like the Akaike Informa- 

ion Criterion (AIC) [32] . One of the main advantages of AIC and 

imilar metrics is that results do not need to be recalculated, mak- 

ng them computationally efficient. While the same concept of a 

xed penalization could be applied to anomaly explanation meth- 

ds, it is not clear how to define such penalization in practice. 

ence, a random penalization based on the acceptance criterion of 

A generates robust results in several diverse settings, avoiding the 

roblem of defining a parameter whose values are not clear, and 

ifficult to use in practice. 

In any case, TIX contains a parameter T , the analogue of the 

emperature in the original SA algorithm, which affects the expla- 

ation results. From Eq. (23) , it is clear that large values of T in-

rease the acceptance rate, and vice versa. Hence, it is desirable to 

nd a value of T that only maintains the most relevant features. 

or that purpose, we set � = ( f J − j 
(X ) − f J (X )) / f J (X ) and rede-

ne T in terms of the relative score difference �. In particular, 

iven a specific value for �, we look for the value of T such that

 

−�/T = 0 . 9 , which implies 

 = 

�

log ( 10 
9 

) 
. (24) 

q. (24) can be interpreted as the “temperature” such that the 

cceptance probability of a particular � is 0.9. This effectively 

hanges the problem from choosing T into choosing �, which we 

nd easier to interpret. 

The probability threshold of 0.9 is chosen to enhance inter- 

retability. With such a high probability of acceptance, � should 

e given small values in order to maintain relevant features. In par- 

icular, we suggest setting � = 0 . 01 , so that a relative score differ-

nce of 1% has a 90% chance of being accepted. Another alternative, 

hich alleviates the effects of a poor choice of �, is to randomly 

elect � in a given interval, as it is shown in Algorithm 3 for T . We

uggest � ∼ U(�min , �max ) , with �min = 0 . 01 and �max = 0 . 015 .

e will use this particular setting for all the experiments consid- 

red in Section 4 . 

Finally, the best and worst-case time complexity statements 

f the TIX algorithm for a single observation are approximately 

(MN( log (ψ m 

) + 2) ψ m 

d) and O(MN( log (ψ m 

) + 2) ψ m 

L ) , respec-

ively, for L > d. If T is too large, then features are always removed,

nd the condition |J | = 1 is met in d − 1 steps. In contrast, if T is

oo small, it will be unlikely to remove any features and the algo- 

ithm will not stop until the maximum number of iterations L is 

eached. Notice that it is not necessary to recompute all the dis- 

ances at every iteration. Since only one feature is removed at a 

ime, it is more efficient to compute the contribution of that fea- 

ure to the distance metric, and remove it from the distances com- 

uted in the previous iteration, which has an average time com- 
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Fig. 4. Plot of the Cross dataset in two-dimensional projections of irrelevant features (left) and relevant features (right). Inliers are marked with gray stars, and the outlier 

with a red triangle. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Distance profile plot of an outlier (left) and an inlier (right) in the HiCs dataset 20.1. 
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lexity of O(ψ m 

) . Thus, the main bottleneck of the algorithm is 

orting the distance values and computing the scores, which have 

ime complexities of O( log (ψ m 

) ψ m 

) and O(ψ m 

) , respectively. 

.2. “Greedy” approach vs. SA approach 

We analyze the benefits of the SA acceptance criterion, as de- 

ned in Eq. (23) , from a theoretical and practical perspective. We 

rove that, in the simple scenario of Eq. (14) , the greedy approach 

ails to remove irrelevant features, even when their contribution to 

he outlier score is infinitesimally small. We also compare the per- 

ormance of the TIX algorithm with and without the acceptance 

riterion with a simple synthetic example. 

The setting is as follows: assume that we have the DP of a po- 

ential outlier X ∗ with respect to a dataset X n of dimensionality d, 

.e., DP (X ∗, X n ) . For simplicity, we further assume that the outlier

core function is given by the opposite of Eq. (14) —so that anoma- 

ous points have higher scores than inliers—that there are no nom- 

nal features and that p = 1 in Eq. (1) , i.e., we use the Manhattan

istance. 

Applying the methodology developed in Section 2.1 , the out- 

ier score of X ∗ with respect to the full feature space J , denoted

f J (X ∗) , is calculated by using the sorted distances DP (X ∗, X n ) as

nput in Eq. (14) . Next, assume that the contribution of feature j

o the distance computation in Eq. (1) is such that l 1 (X ∗, X i |J ) =
 1 (X ∗, X i |J − j ) + �x , for i = 1 , . . . , n —where J − j represents the fea-

ure subspace J without feature j, as in Section 3.1 —and �x > 0 .

ince subtraction of a constant does not affect the ranks of the dis- 

ances, we also have that DP (X ∗, X n |J ) = DP (X ∗, X n |J − j ) + �x . In

his simple example, the difference between the outlier scores with 

nd without feature j is given by 

f J − j 
(X 

∗) − f J (X 

∗) = 

n −1 ∑ 

i =2 

(Z i +1 − Z i ) 

(
1 

Z i +1 − Z 1 
− 1 

Z i +1 − �x − Z 1 

)
,

(25) 

here Z i is the i th sorted distance in DP (X ∗, X n |J ) , and Z 1 is al-

ays zero ( l (X ∗, X ∗) = 0 ) in the context of the AIDA algorithm. 
1 

8 
Eq. (25) can be further simplified as 

f J − j 
(X 

∗) − f J (X 

∗) = −�x 

n −1 ∑ 

i =2 

Z i +1 − Z i 
(Z i +1 − Z 1 )(Z i +1 − �x − Z 1 ) 

. (26) 

ince �x > 0 , it is clear that Eq. (26) is always negative, regard-

ess of �x . Therefore, a greedy approach will never remove feature 

j, irrespective of how small �x is. On the other hand, the prob- 

bility of removing the same feature with the SA approach con- 

erges to one as �x → 0 , which can be easily verified by substi-

uting Eqs. (26) into Eq. (23) . 

emark. In datasets of very high dimensionality, the contribu- 

ion of each individual feature to Eq. (22) will be small com- 

ared to the remaining d − 1 features, which is another conse- 

uence of the curse of dimensionality. Hence, it is expected that 

 greedy approach will hardly remove any features in datasets 

here d is large, which is precisely when an explanation method 

ould be most important. In contrast, the SA approach employed 

y TIX is likely to remove any feature during the first iterations 

f Algorithm 3 (a value of �x close to zero implies a probabil- 

ty of acceptance close to 1 in Eq. (23) ), even those features that 

re actually relevant to the explanation process. Conversely, as the 

umber of features decreases during the last stages of the TIX algo- 

ithm, it becomes more difficult to remove relevant features, while 

rrelevant features are still easy to discard. This is also the reason 

hy it is recommended to run Algorithm 3 several times (M > 1) .

therwise, it is possible that the relevant features are removed 

rst, resulting in inaccurate results. 

We illustrate these aspects with a synthetic example, which we 

abel as the Cross dataset, due to the shape of Fig. 4 . Concretely, 

e generate a dataset of n = 10 0 0 observations with different di- 

ensionalities d, such that all the observations follow a uniform 

andom distribution in the first d − 2 features, and a single outlier 

s contained in the last two features (see Fig. 4 ). Thus, from the 

oint of view of the outlier, the number of irrelevant features is 

 − 2 , and we expect an accurate explanation method to return the 

ast two features as the most relevant ones. Notice that, given the 
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Table 1 

Size of the average minimal subspace returned by TIX with and 

without the acceptance criterion of Eq. (23) . 

d SA Greedy 

5 2 . 0 ±0 . 0 2 . 0 ±0 . 0 

10 2 . 0 ±0 . 0 3 . 2 ±0 . 4 

20 2 . 0 ±0 . 0 4 . 1 ±1 . 1 

30 2 . 0 ±0 . 0 13 . 7 ±2 . 4 

40 2 . 0 ±0 . 0 26 . 3 ±1 . 9 

50 2 . 0 ±0 . 0 45 . 1 ±2 . 3 

100 15 . 5 ±27 . 9 87 . 9 ±3 . 1 
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hape of Fig. 4 , the outlier cannot be detected by looking at each

f the last two features separately, hence the explanation results 

ill not be accurate unless both features receive a high importance 

core. 

We test the TIX algorithm on this dataset with and without the 

cceptance criterion (SA vs. greedy) for d = 5 , 10, 20, 30, 40, 50

nd 100. In the SA approach, we set T min = 0 . 01 and T max = 0 . 015 ,

s explained in Section 3.1 , with M = 10 in both approaches. We

lso set N = 100 , ψ min = 50 and ψ max = 512 in Algorithm 1 . The

erformance of the algorithms is measured in terms of the min- 

mal feature subspace that contains the relevant features. That is, 

ow many features need to be analyzed until the relevant features 

re found. For example, if the last two features receive the third 

nd fifth highest scores, we need to analyze five features until we 

nd the most relevant ones. The smaller the size of the minimal 

eature subspace, the more accurate the explanation results. In this 

articular example, a minimal feature subspace of size two implies 

 perfect score for the explanation method. 

The results are displayed in Table 1 , where we report the av- 

rage minimal feature subspace, with its corresponding standard 

eviation, over 10 different executions. 5 As expected from Eq. (26) , 

he performance of the greedy approach quickly decays as the di- 

ensionality increases. In contrast, the inclusion of the SA accep- 

ance criterion yields perfect results for d ≤ 50 , since the relevant 

eatures were always found in every execution of the algorithm. 

onetheless, if we further increase the dimensionality, even the re- 

ults obtained with the SA approach will start to deteriorate, as it 

s the case for d = 100 . 

In fact, the magnitude of the standard deviation in the SA ap- 

roach clearly indicates that the results are not stable, and a higher 

is required. Increasing M from 10 to 100 yields a minimal fea- 

ure subspace of 2 . 4 ±0 . 9 , which is close to a perfect score. How-

ver, a large M also makes the algorithm computationally expen- 

ive, thus in Section 3.3 we propose a refinement procedure that 

ields similar results at a reduced computational cost. 

.3. Refinement step 

The TIX algorithm described in Section 3.1 can be embedded 

6 

n a recursive procedure to further improve the explanation re- 

ults. Concretely, once the importance scores have been returned 

y TIX, instead of directly reporting these scores to the analyst, a 

urther refinement can be done by first selecting the top k fea- 

ures, and then reapplying the TIX algorithm using these relevant 

eatures only. This refinement step can be repeated for decreasing 

alues of k until a desired k min is reached. 

Algorithm 4 shows the pseudocode of the refinement step. The 

rucial part is how to determine the importance score of the re- 

oved features, since it is not trivial how to aggregate scores from 
5 This is not the same as the number of iterations M. 
6 In principle, this refinement step can be applied to any explanation method that 

eturns numeric scores or ranks per feature. 

i

t  

f

a

9 
ifferent iterations. One possibility is to use ranks as the final 

cores. In that case, the scores returned by the TIX algorithm can 

e used to determine the ranks of the removed features at each 

teration. Another possibility is to modify the scores so that they 

re compatible between iterations. In particular, we suggest to add 

 − k to the path lengths of each feature. The reasoning is the fol- 

owing: in order to go from d to k features in the TIX algorithm, 

 − k is the minimum path length that must be covered. Further- 

ore, Algorithm 4 reduces to Algorithm 3 if d/β < k min . Since β
ontrols the degree of the refinement process in Algorithm 4 , we 

efer to it as the refinement rate . 

lgorithm 4 Refinement step. 

1: Load the potential outlier X . 

2: Set J equal to the full feature space. 

3: Set k = d. 

4: Set β > 0 . 

5: while k ≥ k min do 

6: Compute the importance scores of the features in J with 

the TIX algorithm (Algorithm 4). 

7: Set k = max (	 k/β
 , k min ) . 

8: Set J equal to the k most relevant features. 

9: Compute the final score of the removed features. 

0: end while 

11: Compute the final score of the remaining features. 

In Section 4.1 , we will test the performance of Algorithm 4 for 

everal values of β . 

.4. Distance profile plot (DPP) 

Once the most important features have been returned by the 

xplanation method, it is still the task of the analyst to determine 

ow many features are actually relevant, or which combination 

f them best explains the outliers. For that purpose, visualization 

echniques such as 2D plots are especially popular due to their in- 

erpretability [11] . Nonetheless, sometimes the interactions among 

eatures require us to consider more than two features at the same 

ime. In that case, 2D plots are not able to capture the outlier be- 

aviour, giving the incorrect impression that the plotted features 

re not relevant. 

To summarize the outlier information in subspaces using any 

umber of features, we propose the Distance Profile Plot (DPP). 

n a DPP, several DPs are plotted together to find the most rele- 

ant outlier subspaces. Each DP corresponds to a specific number 

f features, that is to a specific subspace. For each subspace, the 

istances from the point of interest are represented using a box- 

lot, which allows for a quick grasp of their distribution. 

Since the distance of a point from itself is 0, every point of 

nterest will always be the first point on the left in the DP. The 

ore such a point can be isolated from the others, the more the 

hiskers of the boxplot will tend to shrink away from it, while the 

nterquartile range of the distances will tend to condense around 

he median distance. Conversely, a point that in a given subspace 

annot be easily isolated will be touched by the whiskers, and the 

nterquartile range will be larger. An example of DPP is presented 

n Fig. 5 , where we show the DPP of an outlier and of an inlier

n the HiCs dataset 20.1, which is described in Section 4.1 . In par-

icular, the outlier is known to be anomalous only in the feature 

ubspace containing the first three features [12] . 

The top DP in Fig. 5 corresponds to the distances computed us- 

ng only one of these three features, the second-top DP uses two of 

hese features, and so on. Thus, if we analyze the DPs in Fig. 5 (a)

rom top to bottom, we observe that the first and second features 

lone are not relevant to explain the outlier behaviour since the 
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7 In some articles, it is common to test each algorithm for several parameter con- 

figurations and report the best performance (e.g., Pang et al. [16] , Bandaragoda et al. 

[20] ). However, as noted in Aggarwal and Sathe [6] , in practice it is not possible to 

know in advance whether a specific choice will yield good results. Thus, we have 

chosen typical parameter choices for each model and fixed them for all tests. 
rst point on the left is touched by the whiskers of the boxplots. It 

s only when we reach the third DP in Fig. 5 (a) that the point gets

solated, as the left whisker moves away, indicating that the fea- 

ure subspace composed of the first three features could be rele- 

ant to explain the anomalous observation (and that is indeed how 

he outlier was generated). Conversely, the DPP plot of the inlier 

isplayed in Fig. 5 (b) shows that this point is not easy to isolate in

he same feature subspace. 

A consequence of the curse of dimensionality is that the DPs 

f the outlier and the inlier are very similar when the number of 

eatures becomes large. In fact, the first point on the left in the 

PP of Fig. 5 (b) gradually becomes easier to isolate as the number 

f features d increases, in line with the fact that the distance to the 

earest and the furthest neighbours converges to the same value 

or large d [13] . This is connected to the deterioration of the greedy 

pproach discussed in Section 3.2 . 

In contrast, we observe a sharp change in the DPP of Fig. 5 (a)

hen all the relevant features are included, instead of a gradual 

ncrement of the distance between the left-fringe and its nearest 

eighbours. Thus, sharp changes in the DPPs are associated with 

elevant features, while gradual distance increments are due to the 

urse of dimensionality and indicate irrelevant features. 

In addition, while in Fig. 5 we have added the features in the 

rder they appear in the dataset, in the context of explanation al- 

orithms, only the most relevant features should be used, so that 

he top DP corresponds to the most relevant feature, the second- 

op DP to the two most relevant features, and so on. 

. Numerical results 

We test the performance of the proposed AIDA algorithm us- 

ng artificial and empirical datasets, and compare it with six main 

tate-of-the-art anomaly detection methods: iForest [5] , isolation 

sing Nearest Neighbour Ensemble (iNNE) [20] , one-class Deep 

upport Vector Data Description (Deep SVDD) [25] , Learnable Uni- 

ed Neighbourhood-based Anomaly Ranking (LUNAR) [22] , LOF 

4] and average kNN (AvgKNN) [33] . iForest is an isolation-based 

ethod, while LOF and AvgKNN are distance-based methods. iNNE, 

ike AIDA, is a combination of both of these concepts. Deep SVDD 

s a one-class classification algorithm that focuses on the task of 

nomaly detection and works particularly well on structured data. 

UNAR unifies several distance-based algorithms under a graph 

eural network, which makes it less sensitive to the choice of the 

umber of nearest neighbours. Hence, we consider these models 

s benchmarks to test the AIDA algorithm. 

In all experiments, we consider two settings for α in 

qs. (12) and (13) : α = 1 and α ∼ U(0 . 5 , 1 . 5) . In the latter case,

ach subsample Y ψ j 
, for j = 1 , . . . , N, has associated a value of α

n the given interval. The reasoning is the same as the one given 

or � in Section 3.1 : randomizing α within a reasonable interval 

iminishes the risk of making a poor choice. We test both settings 

ith the proposed outlier scores of Eqs. (12) and (13) , for a total

f 4 different AIDA configurations. We use the letters E and V to 

ndicate the score function, and the indicators 1 and R to indicate 

hether we use α = 1 or a randomized alpha. For example, AIDA 

VR) in Table 2 refers to the AIDA algorithm using the variance as 

he score function with a randomized choice for α. 

Additionally, we set N = 100 , ψ min = 50 and ψ max = 512 . If the

ataset has dimensionality d > 5 , we use feature bagging as de- 

cribed in Lazarevic and Kumar [15] . Otherwise, we use the full 

eature space. The aggregation of the scores over different subsam- 

les is done using the Average of Maximum (AOM) function, with 

he number of subsamples per bucket equal q = 5 , as suggested in

ection 4.3 of [6] , for a total of 20 buckets. Regarding the distance

etric, we use the Manhattan distance with all weights ω equal 

o one for AIDA, LOF and AvgKNN. Moreover, we set the number 
10 
f neighbours to k = min (20 , 0 . 05 · n ) in LOF and AvgKNN. With

espect to iForest, we choose the number of trees equal to 100 

nd the subsampling size to 256. For iNNE, we set the number 

f trees to 100 and the number of samples to 8 [20] . For Deep

VDD and LUNAR, we use the default settings from the Python li- 

rary PyOD, as of version 1.0.7 [34] . Furthermore, since AIDA, iFor- 

st, iNNE, Deep SVDD and LUNAR are random algorithms, we re- 

ort the average AUC over 10 different runs, with their respective 

tandard deviations. 7 

For the TIX method, we always consider Eq. (13) with α = 1 

s the score function and use the full feature space, so that the 

ggregation of the path lengths over different subsamples is con- 

istent. Furthermore, the explanation method is also executed 10 

imes to have a robust estimator of the expected path lengths, with 

 = 50 · d in Algorithm 3 . 

Finally, distance-based methods are sensitive to the scale of 

he numerical values, and this can introduce a serious bias in the 

esults, towards features with the largest magnitude [35] . Hence, 

e normalize the empirical datasets (the artificial datasets are al- 

eady normalized) using Z-scores, so that each feature contributes 

qually to the distance metric. 

emark. The AIDA and TIX algorithms were implemented in C++ 

sing the g++ compiler (version 9.4.0) and they are available in 

he GitHub repository: https://github.com/LuisSouto/AIDA . Exper- 

ments were run using an Intel(R) Core(TM) i7-7700HQ CPU @ 

.80 GHz processor. 

.1. HiCs datasets 

For the artificial data, we consider the datasets from [12] , to 

hich we refer for a detailed description. We label these datasets 

s the HiCs datasets , since these examples were constructed to il- 

ustrate the performance of the HiCs algorithm. What makes the 

iCs datasets challenging is that the outliers are hidden in multi- 

imensional subspaces of dimension at least two, and up to five. 

ach outlier looks like an inlier in any other subspace, therefore 

he level of irrelevant features for a particular anomaly is very 

igh. We refer to the number of features that characterizes an out- 

ier as r, so that, if an outlier is defined by a feature subspace con-

isting of three features, then r = 3 . In the HiCs datasets, r can take

alues from 2 to 5. 

Another advantage of using these datasets is that we also know 

hich features are relevant for each outlier, providing a useful 

enchmark for the TIX algorithm. There are a total of 21 datasets, 

onsisting of 3 datasets of dimensionality 10, 20, 30, 40, 50, 75 and 

00, respectively, with a constant sample size of n = 10 0 0 . We give

ach dataset a label consisting of its dimensionality and its version 

umber. For example, the second dataset with d = 30 is labelled as 

iCs 30.2 . 

.1.1. Anomaly detection in the HiCs datasets 

The comparison between the different models is presented in 

able 2 , which clearly indicates the suitability of the AIDA algo- 

ithm in detecting multidimensional outlier subspaces. In particu- 

ar, the best performances—marked in bold numbers—are always 

btained using the variance score, with the best model using a 

andomized α. Moreover, Deep SVDD and LUNAR systematically re- 

urn the lowest AUC (Area Under the Curve, see, e.g., James et al. 

35] ), followed by iForest and iNNE, showing that they are not suit- 

ble for detecting outliers in multidimensional subspaces. As far 

https://github.com/LuisSouto/AIDA
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Table 2 

AUC obtained in the HiCs datasets with the different anomaly detection models. The variants of the AIDA algorithm are labelled according to the score function used—

Expectation (E) or Variance (V)—and the choice of α in Eqs. (12) and (13) ( α = 1 (1) or random choice (R)). 

AIDA (E1) AIDA (ER) AIDA (V1) AIDA (VR) iForest iNNE Deep SVDD LUNAR LOF AvgKNN 

Hics 10.1 1 . 0 0 0 ±0 . 001 1 . 0 0 0 ±0 . 0 0 0 1 . 0 0 0 ±0 . 0 0 0 1 . 0 0 0 ±0 . 0 0 0 0 . 951 ±0 . 007 0 . 901 ±0 . 014 0 . 882 ±0 . 032 0 . 951 ±0 . 064 0.993 0.998 

Hics 10.2 0 . 999 ±0 . 001 1 . 0 0 0 ±0 . 0 0 0 1 . 0 0 0 ±0 . 0 0 0 1 . 0 0 0 ±0 . 0 0 0 0 . 945 ±0 . 010 0 . 889 ±0 . 009 0 . 926 ±0 . 025 0 . 944 ±0 . 050 0.991 0.995 

Hics 10.3 0 . 995 ±0 . 002 0 . 996 ±0 . 003 0 . 998 ±0 . 001 0 . 998 ±0 . 001 0 . 859 ±0 . 010 0 . 820 ±0 . 017 0 . 842 ±0 . 054 0 . 876 ±0 . 038 0.975 0.975 

Hics 20.1 0 . 874 ±0 . 015 0 . 868 ±0 . 026 0 . 910 ±0 . 013 0 . 920 ±0 . 016 0 . 741 ±0 . 018 0 . 745 ±0 . 005 0 . 634 ±0 . 047 0 . 718 ±0 . 043 0.817 0.836 

Hics 20.2 0 . 929 ±0 . 011 0 . 928 ±0 . 023 0 . 953 ±0 . 008 0 . 959 ±0 . 006 0 . 777 ±0 . 019 0 . 736 ±0 . 011 0 . 674 ±0 . 093 0 . 762 ±0 . 024 0.863 0.843 

Hics 20.3 0 . 947 ±0 . 012 0 . 949 ±0 . 015 0 . 970 ±0 . 007 0 . 974 ±0 . 007 0 . 814 ±0 . 017 0 . 762 ±0 . 013 0 . 724 ±0 . 040 0 . 798 ±0 . 048 0.881 0.869 

Hics 30.1 0 . 828 ±0 . 029 0 . 825 ±0 . 024 0 . 879 ±0 . 016 0 . 891 ±0 . 015 0 . 722 ±0 . 015 0 . 693 ±0 . 008 0 . 541 ±0 . 049 0 . 669 ±0 . 016 0.731 0.739 

Hics 30.2 0 . 852 ±0 . 021 0 . 828 ±0 . 032 0 . 893 ±0 . 009 0 . 893 ±0 . 011 0 . 678 ±0 . 021 0 . 665 ±0 . 010 0 . 516 ±0 . 020 0 . 637 ±0 . 030 0.733 0.748 

Hics 30.3 0 . 860 ±0 . 016 0 . 871 ±0 . 011 0 . 911 ±0 . 015 0 . 923 ±0 . 014 0 . 709 ±0 . 013 0 . 685 ±0 . 009 0 . 539 ±0 . 044 0 . 689 ±0 . 023 0.769 0.763 

Hics 40.1 0 . 742 ±0 . 022 0 . 750 ±0 . 028 0 . 829 ±0 . 015 0 . 840 ±0 . 016 0 . 645 ±0 . 016 0 . 641 ±0 . 010 0 . 530 ±0 . 026 0 . 627 ±0 . 042 0.726 0.696 

Hics 40.2 0 . 768 ±0 . 023 0 . 750 ±0 . 026 0 . 837 ±0 . 014 0 . 846 ±0 . 009 0 . 608 ±0 . 011 0 . 587 ±0 . 013 0 . 503 ±0 . 046 0 . 553 ±0 . 033 0.685 0.650 

Hics 40.3 0 . 757 ±0 . 027 0 . 701 ±0 . 022 0 . 824 ±0 . 012 0 . 793 ±0 . 015 0 . 695 ±0 . 016 0 . 680 ±0 . 006 0 . 491 ±0 . 035 0 . 653 ±0 . 030 0.732 0.718 

Hics 50.1 0 . 724 ±0 . 025 0 . 723 ±0 . 026 0 . 802 ±0 . 009 0 . 810 ±0 . 021 0 . 611 ±0 . 021 0 . 601 ±0 . 007 0 . 493 ±0 . 034 0 . 586 ±0 . 033 0.679 0.649 

Hics 50.2 0 . 716 ±0 . 026 0 . 725 ±0 . 021 0 . 802 ±0 . 015 0 . 815 ±0 . 011 0 . 662 ±0 . 011 0 . 651 ±0 . 005 0 . 511 ±0 . 049 0 . 624 ±0 . 046 0.737 0.708 

Hics 50.3 0 . 718 ±0 . 020 0 . 716 ±0 . 021 0 . 778 ±0 . 011 0 . 794 ±0 . 017 0 . 630 ±0 . 016 0 . 626 ±0 . 008 0 . 490 ±0 . 035 0 . 599 ±0 . 029 0.670 0.664 

Hics 75.1 0 . 616 ±0 . 024 0 . 600 ±0 . 016 0 . 672 ±0 . 014 0 . 675 ±0 . 011 0 . 582 ±0 . 011 0 . 582 ±0 . 007 0 . 492 ±0 . 027 0 . 564 ±0 . 012 0.620 0.604 

Hics 75.2 0 . 633 ±0 . 017 0 . 634 ±0 . 022 0 . 694 ±0 . 015 0 . 705 ±0 . 015 0 . 586 ±0 . 008 0 . 578 ±0 . 005 0 . 514 ±0 . 030 0 . 557 ±0 . 021 0.631 0.600 

Hics 75.3 0 . 608 ±0 . 026 0 . 601 ±0 . 029 0 . 673 ±0 . 014 0 . 685 ±0 . 022 0 . 595 ±0 . 016 0 . 586 ±0 . 005 0 . 492 ±0 . 038 0 . 572 ±0 . 017 0.641 0.615 

Hics 100.1 0 . 604 ±0 . 022 0 . 603 ±0 . 019 0 . 649 ±0 . 015 0 . 663 ±0 . 015 0 . 578 ±0 . 016 0 . 578 ±0 . 004 0 . 511 ±0 . 036 0 . 562 ±0 . 010 0.622 0.599 

Hics 100.2 0 . 575 ±0 . 021 0 . 573 ±0 . 029 0 . 615 ±0 . 008 0 . 632 ±0 . 014 0 . 558 ±0 . 014 0 . 574 ±0 . 006 0 . 503 ±0 . 030 0 . 536 ±0 . 020 0.587 0.590 

Hics 100.3 0 . 612 ±0 . 015 0 . 606 ±0 . 018 0 . 663 ±0 . 014 0 . 676 ±0 . 008 0 . 573 ±0 . 017 0 . 574 ±0 . 005 0 . 504 ±0 . 036 0 . 559 ±0 . 036 0.613 0.598 
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s the iForest algorithm is concerned, this was expected due to 

roposition 2 in Appendix A . Regarding iNNE, since it is based on 

 similar concept, low performance was also expected to some ex- 

ent. Regarding Deep SVDD and LUNAR, these are deep learning 

lgorithms that aim to uncover relevant low-dimensional projec- 

ions of the data, or to learn artificially generated anomalies, re- 

pectively. In view of the fact that the normal points of the HiCs 

atasets do not conform to any clear pattern [12] , the low perfor- 

ance of these deep learning approaches was expected as well. 

On the other hand, no algorithm is able to provide highly sat- 

sfactory results for the most difficult cases, mainly those with 

5 and 100 features. We proved in Proposition 2 that iForest has 

 very low probability of finding the relevant feature subspaces 

hen the number of irrelevant features is large, thus this was an 

xpected result. For the distance-based methods (including AIDA), 

he curse of dimensionality “dilutes” the contribution of each fea- 

ure to the distance metric, resulting in a loss of discrimination 

etween outliers and inliers [13] . In those challenging cases, cou- 

ling the anomaly detection algorithm with an efficient subspace 

earch method seems to be a viable choice for achieving accurate 

esults [12] . Another alternative is to explore the effect of differ- 

nt distance metrics [13] , since some of them have been shown to 

roduce very diverse results [7] . 

.1.2. Anomaly explanation in the HiCs datasets 

We now present the explanation results of the TIX algorithm. 

ince we know beforehand which features define the outliers, we 

an measure the performance of TIX by the size of the minimal 

eature subspace that contains all the relevant features. For exam- 

le, if the outlier is characterized by a combination of three fea- 

ures, a minimal feature subspace of size three means that the 

lgorithm has successfully found the important features without 

dding any noise. If, on the other hand, the minimal subspace con- 

ains five features, two irrelevant features need to be checked be- 

ore finding the relevant subspace. 

In order to measure the impact of the refinement step, we 

est several values of the refinement rate β in Algorithm 4 un- 

er similar computational constraints. That is, since a smaller β
eads to more iterations in Algorithm 4 , we modify the number 

f iterations in Algorithm 3 so that each version takes approxi- 

ately the same amount of time. Otherwise, it could be argued 

hat Algorithm 4 leads to better results due to the extra compu- 
11 
ations. Specifically, we set k min = 10 and test β ∈ { 1 . 5 , 2 , 10 } , with

 = 20 for the case β = 10 , and adapting M to the other values of

with a grid search until the computational times are similar. 

The results can be seen in Table 3 , where r denotes the size 

f the outlier feature subspace, and entries with “–” indicate that 

he dataset does not contain outliers in feature subspaces of that 

imensionality. Each entry contains the average minimal subspace 

ver all the outliers characterized by a particular value of r so that 

n entry value equal to r indicates a perfect score. 

Looking at Table 3 , it is clear that TIX is able to find outlier sub-

paces of dimension r = 2 with no extra noise in all scenarios. The 

ase r = 3 is also perfectly recovered for any number of features 

 ≤ 50 , with minimal noise in higher dimensions if the refinement 

tep of Algorithm 4 is used. Outlier subspaces with r = 4 can be

ecovered with a few noisy features if d ≤ 50 , but on the other 

ases the amount of noise is considerably large. Finally, the case 

 = 5 seems particularly challenging, and the results are only sat- 

sfactory for d ≤ 30 . This is because, for each subspace considered 

n Algorithm 3 , TIX only computes the outlier score of the point 

f interest. Hence, it is possible that a combination of five irrele- 

ant features produces a better outlier score in absolute value, and 

 comparison with the scores of other observations is needed to 

iscern the actual outlier subspace. 

On the other hand, the refinement step overall yields better 

esults as we decrease β , even under similar computational con- 

traints. Therefore, we suggest decreasing the value of β instead of 

ncreasing M in Algorithm 3 . 

.2. Empirical data 

Finally, we test the AIDA and TIX algorithms on some empiri- 

al datasets commonly used in the field of anomaly detection. The 

atasets are described in Table 4 in terms of the number of obser- 

ations n , number of features d and percentage of outliers. In some 

f the datasets, some preprocessing was required to define the out- 

ier class. We refer to [5] for the definition of the outlier class 

n the Annthyroid, Arrhythmia, Breastw, ForestCover, Http, Iono- 

phere, Mammography, Pima, Satellite, Shuttle and Smtp datasets; 

nd to Aggarwal and Sathe [6] for the Glass, Musk and Satimage-2 

atasets. We refer to the same articles for information on how to 

btain the data. 
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Table 3 

Size of the average minimal subspace returned by TIX on several HiCs datasets and different outlier subspaces. 

β = 1 . 5 β = 2 β = 10 

r = 2 r = 3 r = 4 r = 5 r = 2 r = 3 r = 4 r = 5 r = 2 r = 3 r = 4 r = 5 

Hics 10.1 2 . 0 ±0 . 0 – 4 . 0 ±0 . 0 – 2 . 0 ±0 . 0 – 4 . 0 ±0 . 0 – 2 . 0 ±0 . 0 – 4 . 0 ±0 . 0 –

Hics 20.1 2 . 0 ±0 . 0 3 . 0 ±0 . 0 – 6 . 9 ±0 . 4 2 . 0 ±0 . 0 3 . 0 ±0 . 0 – 7 . 1 ±0 . 3 2 . 0 ±0 . 0 3 . 0 ±0 . 0 – 6 . 9 ±0 . 3 

Hics 30.1 2 . 0 ±0 . 0 3 . 0 ±0 . 0 4 . 5 ±0 . 3 11 . 4 ±0 . 9 2 . 0 ±0 . 0 3 . 0 ±0 . 0 4 . 8 ±0 . 4 11 . 7 ±1 . 3 2 . 0 ±0 . 0 3 . 0 ±0 . 0 6 . 0 ±0 . 4 12 . 3 ±1 . 6 

Hics 40.1 2 . 0 ±0 . 0 3 . 0 ±0 . 0 6 . 2 ±1 . 3 14 . 0 ±1 . 1 2 . 0 ±0 . 0 3 . 0 ±0 . 0 7 . 4 ±0 . 8 14 . 6 ±0 . 7 2 . 0 ±0 . 0 3 . 0 ±0 . 0 8 . 0 ±0 . 7 15 . 0 ±1 . 0 

Hics 50.1 2 . 0 ±0 . 0 3 . 0 ±0 . 0 8 . 5 ±0 . 8 17 . 6 ±1 . 6 2 . 0 ±0 . 0 3 . 0 ±0 . 0 11 . 5 ±1 . 3 20 . 5 ±1 . 7 2 . 0 ±0 . 0 3 . 1 ±0 . 2 14 . 3 ±1 . 3 20 . 9 ±0 . 7 

Hics 75.1 2 . 0 ±0 . 0 3 . 0 ±0 . 0 18 . 1 ±2 . 3 35 . 2 ±2 . 9 2 . 0 ±0 . 0 3 . 3 ±0 . 5 19 . 7 ±1 . 6 35 . 7 ±2 . 6 2 . 0 ±0 . 0 5 . 2 ±1 . 2 26 . 4 ±1 . 6 37 . 5 ±1 . 5 

Hics 100.1 2 . 0 ±0 . 0 7 . 6 ±2 . 6 41 . 0 ±4 . 4 54 . 1 ±3 . 6 2 . 0 ±0 . 0 8 . 6 ±2 . 5 41 . 1 ±4 . 1 54 . 8 ±2 . 0 2 . 0 ±0 . 0 15 . 2 ±1 . 6 43 . 8 ±3 . 5 54 . 1 ±3 . 5 

Table 4 

List of the empirical datasets we use in the analysis, together with some 

basic information about the number of observations, the dimensionality and 

the percentage of outliers. 

n d % outliers 

Annthyroid 6832 6 7 

Arrhythmia 452 274 15 

Breastw 683 9 35 

ForestCover 286,048 10 0.9 

Glass 214 9 4.2 

Http 567,497 3 0.4 

Ionosphere 351 32 36 

Mammography 11,183 6 2 

Musk 3062 166 3.2 

Pima 768 8 35 

Satellite 6435 36 32 

Satimage-2 5803 36 1.2 

Shuttle 49,097 9 7 

Smtp 95,156 3 0.03 
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For consistency, we consider the same algorithms and configu- 

ations as we did at the beginning of Section 4.1 . 

.2.1. Anomaly detection in the empirical datasets 

The results are displayed in Table 5 , where we present the per- 

ormance of each model in terms of the AUC. The best two scores 

re highlighted in bold numbers. Similarly to the results of Table 2 , 

he variance score function tends to perform better than the expec- 

ation score function, except in a few cases (4 / 14) . 

On the other hand, the randomized choice of α has a smaller 

mpact in Table 5 compared to Table 2 . There are two possible ex- 

lanations for these differences. One of them is that we are ran- 

omizing α in an interval with opposing effects: α > 1 enlarges 

he intervals in Eq. (13) , while α < 1 shrinks them. Hence the av-

rage corresponds to a low-risk/low-reward ensemble that dilutes 

hese effects. Using ensembles with only α < 1 or only α > 1 could 

e an alternative to explore the benefits of Eq. (13) over Eq. (15) in

hat case. 

The other possible explanation is that most of the detected out- 

iers in Table 5 are strong outliers, since slight variations in the 

alue of α do not have a large impact on the score of strong out- 

iers. This second explanation seems more plausible in this case, 

onsidering that the HiCs datasets do not have many strong out- 

iers. 

Moreover, from Table 5 it is clear that AIDA performs favourably 

ompared to other state-of-the-art methods. In particular, algo- 

ithms whose performance is highly dependent on the choice of 

ertain parameters (i.e., iNNE, LOF and AvgKNN) can perform very 

ell on some datasets but poorly on others. We observe a similar 

ariation in performance in the deep learning based approaches, 

.e., Deep SVDD and LUNAR. For Deep SVDD, this may be due to 

he fact that some of the datasets do not present a clear structure, 

o that it becomes challenging to find a low-dimensional projec- 

ion that represents the data well. As for LUNAR, a possible reason 
12 
or its performance, which is worse than those of LOF and AvgKNN, 

ay be the training stage. LUNAR strongly depends on the creation 

f artificial anomalies to train the neural network, which are gen- 

rated with the method of negative samples [22] . If these artificial 

nomalies are very different from the real ones, the model may fail 

o detect the anomalies [36] . 

In contrast, all variations of AIDA are quite stable, often yielding 

he best or second-best results (11/14) in terms of AUC. Moreover, 

or the datasets where AIDA does not give the highest AUC, the 

ifference is usually very small (around 0.01 AUC), with the only 

xception of the ForestCover data, where the iNNE algorithm is the 

est. This may be due to the local nature of the iNNE algorithm, 

hich computes the isolation scores relative to the neighbourhood 

f each observation [20] , thus better dealing with possible swamp- 

ng effects. This is also the reason why, we believe, iForest did not 

erform well with the ForestCover data. 

.2.2. Anomaly explanation in the empirical datasets 

Even though these are labelled datasets, and we know before- 

and which are the potential outliers, we do not know which fea- 

ures caused them. Hence, we cannot do the same comparison as 

e did in Section 4.1 . As an alternative, we choose the dataset 

ith the highest dimensionality in Table 4 —i.e., the Arrhythmia 

ataset—and analyze some of the most anomalous points classified 

y AIDA (VR), i.e., the AIDA model with variance score and random 

. Doing so will allow us to verify whether the labelled outliers 

re actually the only points that look different from the rest of the 

ataset, or if this does not hold for some of them. 

Specifically, a dataset should verify two conditions to qualify as 

 good benchmark for anomaly detection: the labelled points must 

e different in some way from the rest of the dataset, while un- 

abelled points should look “normal” (or not unusual) in any fea- 

ure subspace. Empirical datasets often show anomalies that are 

aused by a particular mechanism, so that outliers generated by 

ther causes end up being classified as inliers. However, anomaly 

etection methods do not make distinctions with respect to the 

ypes of outliers, but only consider whether a point is anomalous 

r not. Thus, empirical datasets may give the impression that a cer- 

ain algorithm is not performing well, because the dataset targets a 

articular type of outlier, while most algorithms do not. We illus- 

rate this problem using anomaly explanation and show that some 

oints are indeed anomalous even though they are not labelled as 

utliers. The setting for the TIX algorithm is M = 1 , k min = 10 and

= 1 . 5 (see Algorithms 3 and 4 ), and the results were repeated 10

imes for consistency. 

In Fig. 6 , we present the explanation results of the first and 

ourth most outlying points detected by AIDA (VR)—in fact, these 

oints were signalled as outliers by all methods considered in this 

aper. We have chosen these two points, because the first is an ac- 

ual outlier, while the second is the most anomalous observation, 

ccording to AIDA, that was labelled as an inlier in the original 

ataset. 
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Table 5 

AUC obtained in the empirical datasets with the different anomaly detection models. The variants of the AIDA algorithm are labelled according to the score 

function used—Expectation (E) or Variance (V)—and the choice of α in Eqs. (12) and (13) ( α = 1 (1) or random choice (R)). 

AIDA (E1) AIDA (ER) AIDA (V1) AIDA (VR) iForest iNNE Deep SVDD LUNAR LOF AvgKNN 

Annthyroid 0 . 823 ±0 . 011 0 . 817 ±0 . 013 0 . 809 ±0 . 009 0 . 814 ±0 . 008 0 . 809 ±0 . 012 0 . 699 ±0 . 010 0 . 746 ±0 . 022 0 . 727 ±0 . 012 0.744 0.807 

Arrhythmia 0 . 784 ±0 . 008 0 . 784 ±0 . 008 0 . 798 ±0 . 001 0 . 800 ±0 . 002 0 . 804 ±0 . 013 0 . 753 ±0 . 007 0 . 601 ±0 . 062 0 . 765 ±0 . 023 0.796 0.776 

Breastw 0 . 980 ±0 . 001 0 . 981 ±0 . 002 0 . 981 ±0 . 002 0 . 982 ±0 . 001 0 . 986 ±0 . 002 0 . 724 ±0 . 029 0 . 578 ±0 . 082 0 . 973 ±0 . 003 0.384 0 . 986 

ForestCover 0 . 857 ±0 . 015 0 . 854 ±0 . 012 0 . 861 ±0 . 016 0 . 865 ±0 . 011 0 . 876 ±0 . 019 0 . 955 ±0 . 009 0 . 625 ±0 . 145 0 . 741 ±0 . 085 0.536 0.790 

Glass 0 . 885 ±0 . 005 0 . 886 ±0 . 006 0 . 894 ±0 . 006 0 . 894 ±0 . 004 0 . 811 ±0 . 006 0 . 872 ±0 . 015 0 . 663 ±0 . 054 0 . 846 ±0 . 065 0.830 0 . 903 

Http 0 . 994 ±0 . 0 0 0 0 . 994 ±0 . 001 0 . 998 ±0 . 001 0 . 996 ±0 . 0 0 0 1 . 0 0 0 ±0 . 0 0 0 0 . 998 ±0 . 002 0 . 839 ±0 . 312 0 . 262 ±0 . 001 0.352 0.133 

Ionosphere 0 . 912 ±0 . 003 0 . 914 ±0 . 003 0 . 921 ±0 . 002 0 . 923 ±0 . 002 0 . 860 ±0 . 005 0 . 901 ±0 . 008 0 . 710 ±0 . 049 0 . 928 ±0 . 009 0.840 0 . 934 

Mammography 0 . 858 ±0 . 006 0 . 857 ±0 . 008 0 . 856 ±0 . 007 0 . 852 ±0 . 008 0 . 859 ±0 . 008 0 . 825 ±0 . 011 0 . 576 ±0 . 099 0 . 834 ±0 . 005 0.719 0.849 

Musk 0 . 978 ±0 . 013 0 . 994 ±0 . 005 1 . 0 0 0 ±0 . 0 0 0 1 . 0 0 0 ±0 . 0 0 0 0 . 999 ±0 . 001 1 . 0 0 0 ±0 . 0 0 0 0 . 640 ±0 . 226 0 . 300 ±0 . 123 0.453 0.826 

Pima 0 . 702 ±0 . 006 0 . 699 ±0 . 006 0 . 714 ±0 . 004 0 . 713 ±0 . 006 0 . 675 ±0 . 013 0 . 684 ±0 . 006 0 . 512 ±0 . 018 0 . 687 ±0 . 012 0.621 0 . 714 

Satellite 0 . 717 ±0 . 004 0 . 721 ±0 . 004 0 . 746 ±0 . 004 0 . 751 ±0 . 004 0 . 704 ±0 . 015 0 . 739 ±0 . 016 0 . 539 ±0 . 037 0 . 638 ±0 . 002 0.553 0.689 

Satimage-2 0 . 997 ±0 . 001 0 . 998 ±0 . 001 0 . 999 ±0 . 0 0 0 0 . 999 ±0 . 001 0 . 993 ±0 . 001 0 . 997 ±0 . 001 0 . 545 ±0 . 115 0 . 880 ±0 . 020 0.537 0.966 

Shuttle 0 . 967 ±0 . 004 0 . 968 ±0 . 006 0 . 983 ±0 . 001 0 . 985 ±0 . 001 0 . 994 ±0 . 001 0 . 985 ±0 . 004 0 . 512 ±0 . 057 0 . 619 ±0 . 005 0.539 0.687 

Smtp 0 . 904 ±0 . 001 0 . 907 ±0 . 002 0 . 899 ±0 . 002 0 . 898 ±0 . 002 0 . 879 ±0 . 008 0 . 909 ±0 . 009 0 . 903 ±0 . 020 0 . 816 ±0 . 043 0.441 0.906 

Fig. 6. Analysis of two observations of the Arrhythmia dataset classified as outliers by AIDA. The top row consists of the DPPs of an actual outlier (left) and a point originally 

classified as an inlier (right). The lower row contains 2D plots of the two most relevant features for each point, marked as green dots. Inliers are marked with gray starts 

and outliers with red crosses. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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The DPPs for each of the two points using the 10 most relevant 

eatures are shown in the top row of Fig. 6 , which immediately 

llustrates that these points are easily isolated with respect to their 

ost relevant features. This can be visualized in the lower row of 

ig. 6 , where we present 2D plots of the two most relevant features

or each observation. The features are numbered in the order they 

ppear in the original dataset (from 0 to 273), once the features 

ith missing values have been removed. 

It is remarkable that the shape of the 2D plots is very similar 

n both cases, with the points of interest lying on the opposite side 

f the majority of the dataset, contained in the origin (0,0) in both 

lots. Moreover, in the lower right plot of Fig. 6 we observe an- 

ther labelled outlier that is also easy to isolate from most of the 

nliers in that feature combination. 

Interestingly, there is another observation close to this labelled 

utlier that was classified as an inlier. We note that both points 

ere also reported as outliers by all the algorithms considered 

ere. Therefore, we conclude that, while this dataset contains la- 

elled outliers that are indeed anomalous, there exist also labelled 

nliers with similar outlying properties. 
i

13 
The consequence is that the performance reported by the 

nomaly detection algorithms could be low, not because they do 

ot detect anomalous points, but rather because they do not detect 

utliers of a particular kind. Explanation methods, such as the TIX 

lgorithm proposed here, can help determine whether anomalous 

oints are caused by the relevant mechanisms of a particular ap- 

lication by analyzing the most relevant features that explain each 

utlier. 

. Conclusions 

We have proposed two new algorithms, under the acronyms 

IDA (Analytic Isolation and Distance-based Anomaly) and TIX 

Tempered Isolation-based Explanation). 

AIDA has shown to have at least similar but often superior 

erformances when compared to competing state-of-the-art ap- 

roaches, especially in the case of multidimensional outlier hid- 

en subspaces. This is partially due to the definition of outlier em- 

loyed by AIDA, which inclines towards points that can be easily 

solated, regardless of whether those points belong to extreme or 
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nterior values, in contrast to the artificial regions created by iFor- 

st. We have also proved several results concerning isolation meth- 

ds, such as analytical formulas for the moment generating func- 

ion and the first two cumulants of the number of random splits, 

nd the convergence rate of the probability that the iForest algo- 

ithm [5] finds specific feature subspaces of a given dimensionality. 

Due to the curse of dimensionality, the performance of AIDA 

nd other distance-based methods decreases in high-dimensional 

paces, as it can be seen in Table 2 . This is an inherent prob-

em of using the distance metric to compute the anomaly scores, 

nd therefore very difficult to overcome with distance-based algo- 

ithms. However, there are some promising approaches combining 

hese methodologies with subspace search methods, such as [12] . 

hus, we suggest that a future line of research should focus on 

umerically efficient subspace search algorithms to decrease the 

urse of dimensionality. 

In discussing the TIX algorithm, we have shown that it pro- 

ides accurate explanations for outliers hiding in two- and three- 

imensional subspaces, even when the number of irrelevant fea- 

ures is extremely large. However, from the results in Table 3 , it is

lear that TIX fails to detect four- and five-dimensional outliers in 

atasets with more than 40 features. This is partially due to the 

urse of dimensionality since TIX uses the AIDA algorithm to com- 

ute the anomaly scores. Hence, it is possible that TIX could also 

enefit from efficient subspace search methods. Other alternatives 

ould be using different anomaly detection algorithms in combina- 

ion with TIX, instead of the proposed AIDA algorithm, to reduce 

he curse of dimensionality and improve the explanation results 

or high dimensional outliers. 

Moreover, the DPP (distance profile plot) has been proposed as 

 visualization tool, which, in combination with the traditional 2D 

lots, can immediately find subspaces where the outliers can be 

solated. This has been illustrated using empirical datasets with 

undreds of features, and it has been shown that the explana- 

ions can be useful to filter anomalous points generated by differ- 

nt mechanisms. 

Possible future lines of research should aim at alleviating the 

ffects of the curse of dimensionality, which greatly affects the per- 

ormance of distance-based methods. As already mentioned, the 

se of subspace search methods is a promising approach, but also 

imensionality reduction techniques are relevant. Additionally, in 

rder to successfully employ the proposed algorithms in some real 

pplications, such as fraud detection, an extension of the AIDA and 

IX algorithms to time series data would be an important step. 
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ppendix A. iForest and hidden subspaces 

We prove that, if the anomalies are hidden in multidimensional 

ubspaces of size r, the probability that an isolation tree finds such 

ubspace decays as O(d −r ) , where d is the number of features. 

herefore, iForest is not a suitable algorithm for detecting outliers 

idden in multidimensional subspaces. 

Let X n be a dataset of size n and dimensionality d containing 

n outlier X o in a unique feature subspace of dimensionality r. Fur- 

hermore, assume that X o cannot be distinguished from an inlier 

n any lower feature subspace of size smaller than r. For simplic- 
14 
ty, also assume that X o is a strong outlier in the hidden subspace, 

uch that, when this subspace is found, X o is easily detected as 

n outlier. The following proposition gives a recursion formula to 

ompute the probability of finding such subspace. 

roposition 2. Let d, r, h M 

∈ N 

+ , with r ≤ d, be the number of fea-

ures, size of the hidden subspace, and maximum depth of an isolation 

ree, respectively. Denote by p(r, h M 

) the probability that a subspace 

f size r is found by an isolation tree of length h M 

. Then, p(r, h M 

)

dmits the following recursion formula: 

p(r, h M 

) = 

r 

d 

h M ∑ 

i =1 

(
1 − r 

d 

)i −1 

p(r − 1 , h M 

− i ) , (A.1) 

p(1 , h M 

) = 1 −
(

1 − 1 

d 

)h M 

. (A.2) 

roof. Eq. (A.2) is simply the complementary of the probability of 

ot selecting a particular feature in h M 

steps. 

Eq. (A.1) follows from the fact that, if it takes i steps to ran-

omly select one of the features belonging to the hidden subspace, 

he problem can be reduced to finding the remaining r − 1 features 

n h M 

− i steps. 

The total probability is thus the summation over all these com- 

inations, where r 
d 
(1 − r 

d 
) i −1 is the probability that it takes i steps 

o select one of the relevant features. �

From the results of Proposition 2 , it is now easy to prove that 

p(r, h M 

) decays as O(d −r ) for large d. In particular, a simple Tay-

or expansion shows that p(1 , M) ≈ h M 

/d for large d. Plugging this 

esult into Eq. (A.1) gives the aforementioned convergence rate of 

p(r, h M 

) towards zero. 

emark. While a large value of h M 

would help in reducing the 

onvergence rate, this is not possible in datasets where the num- 

er of features is equal to or higher than the number of observa- 

ions, as the maximum depth of an isolation tree without pruning 

s n − 1 [5] . Furthermore, iForest extracts most of the outlier infor- 

ation during the first splits, therefore a large h M 

provides little 

dditional information to distinguish outliers from inliers. 
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