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a b s t r a c t

In this paper we establish a necessary and sufficient stability condition for a stochastic
ring network. Such networks naturally appear in a variety of applications within
communication, computer, and road traffic systems. They typically involve multiple
customer types and some form of priority structure to decide which customer receives
service. These two system features tend to complicate the issue of identifying a stability
condition, but we demonstrate how the ring topology can be leveraged to solve the
problem.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

This paper deals with the analysis of a hybrid cellular automaton and queueing network model with a ring structure.
pecifically, customers (particles) are routed probabilistically between stations (cells) according to a network with a ring
opology, and customers within the ring have priority over exogenously arriving customers. Application domains of such
etworks include packet-switched optical ring networks [1–3], road traffic intersections in the form of roundabouts [4,5],
ultiprocessor systems with ring-based nanophotonic on-chip networks [6,7], and medium access control (MAC) protocols

or Local Area Networks (LANs) [8,9].
The model that we consider was proposed as a discrete-time Markov chain in [5]. The main contribution of this paper

s a necessary and sufficient condition for stability (i.e., positive recurrence) of the model. This proves the conjecture on
he stability region in [5]. Our main result also implies that the stability condition is sufficient for the slotted-ring model
tudied in [8] to be stable in a particular sense (see Section 6.1 for details). In [8], this result was only shown to hold under
he rather strong additional assumption that, among other things, sequences of certain characteristic inter-event times
f the system are asymptotically strongly stationary, and the ergodic rates at which these events occur are well-defined.
ur paper proves that this assumption is unnecessary, and is in fact implied by the stability condition.
Stability (or positive recurrence) of a Markov process is a fundamental condition for many theorems in Markov chain

heory that are commonly used to study stationary or asymptotic properties. The mathematical theory of stability is
ell-developed [10–12]. However, for queueing models that involve multiple customer classes and priorities, like the
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ne in this paper, determining conditions for stability remains a notoriously difficult task. In particular, many instances
ith such features exist where a subcritical system load (i.e., an arrival rate strictly below 1 of each station’s normalized
orkload) is not sufficient for stability [13–17]. Moreover, the model that we consider does not have a product-form
tationary distribution [5], which makes it impossible to determine a stability condition from the normalization of the
tationary measure. As it turns out, though, we can leverage the specific routing topology of a ring model to formally
stablish the stability condition.
An important consequence of the necessity and sufficiency of the stability condition is that this condition can be

nterpreted as the system capacity. Specifically, it implies that the set of arrival rates for which the model is stable is
onotone, meaning that the system does not lose its property of positive recurrence when arrival rates are decreased.
his monotonicity is not automatic for multiclass networks with priorities, see [18] for an example. In the context of
ommunication systems and road traffic, capacity is an important measure for the load that the system is able to process;
ee, e.g., [19,20] for similar recent work in this area.
We prove the stability condition for the model in [5] using a fluid model approach. More precisely, we establish a

oupling between the Markov chain associated with the model and the queue length process of a multiclass queueing
etwork, such that they follow the same sample paths up to a bijection. As a consequence, proving positive recurrence
f the Markov chain can be reduced to proving stability of the simpler fluid model associated with the multiclass
etwork [21,22]. We prove the stability of the fluid model with an approach based on [23], with some modifications
hat are required in our context. This approach exploits the relationship between the stability condition and the marginal
tationary rate at which segments of the ring are occupied when the model is stable.
As mentioned earlier, stochastic ring networks that involve queues are ubiquitous within communication and trans-

ortation systems. In these domains, priority service for traffic on the ring over exogenously arriving traffic is natural to
reate free flow on the ring, so as to avoid collisions and eliminate the need for buffering within the ring. Additionally,
he destination of a packet (or vehicle) typically depends on where it entered the ring, giving rise to multiple customer
ypes. The combination of these properties (a ring, a priority structure, and multiple customer types) motivates the specific
odel we consider in this paper.
In the context of communication networks, ring topologies are the cornerstone of various widely deployed archi-

ectures, and our model pertains to LANs with slotted-ring MAC protocols [8,9,24,25] as well as Wavelength-Division
ultiplexing (WDM) based Metropolitan Area Networks (MANs) with packet switching or optical burst switching, see [26,
ection 4.1] and [1–3,27]. Nowadays, ring-topology waveguides are a standard component in optical networks because
f their ability to transmit large amounts of data via light in a short amount of time [28–30]. While current networks
ostly rely on wavelength routing, optical burst switching and packet switching mechanisms offer finer granularity and
ore dynamic resource sharing, and thus allow for higher efficiency and bandwidth utilization, especially with bursty
nd unpredictable traffic patterns.
Ring structures are also encountered in traffic networks as a form of intersection design, known as a roundabout. On a

oundabout, vehicles traverse an intersection via a circulating ring to which several roads are attached that function as on-
nd off-ramps. Vehicles on the circulating ring have priority over vehicles in the attached legs, cf. [4,5]. These properties
ake them very similar, both in function and dynamics, to rings in communication systems, as described above. The

esults in this paper apply to a model that was originally proposed for single-lane roundabouts [5].
The outline of the paper is as follows. We start by introducing the model in Section 2. Section 3 provides a preliminary

nalysis, introduces the stability condition, and states our main theorem. In Section 4 we couple the model to a multiclass
ueueing network. We then proceed by proving stability of this multiclass queueing network in Section 5 using fluid limits.
inally, Section 6 discusses related models to which our results can be applied directly and possible extensions to other
odels, and Section 7 concludes.
Notation. Unless otherwise specified, all random variables and processes are defined on a common probability

pace (Ω,F,P ). We write Z+ for the non-negative integers, N for the natural numbers (i.e., N ≡ Z+ \ {0}), R for the real
numbers, and R+ for the set of non-negative reals. For any dimension d, | · | denotes the L1-norm on elements of Rd. If a
nd b are real numbers, then a ∧ b is the minimum and a ∨ b the maximum of a and b.

. Model description

As we mentioned in the introduction, the model we consider is a stochastic ring network that has a variety of
pplication domains, but was originally introduced as a model for a roundabout in [5]. In this section, to describe the
odel, we stay close to the original formulation as a roundabout model and use the related (road traffic) terminology.
or technical reasons, which we will explain in Section 6, we consider a version of the model that differs slightly from
he roundabout model in [5]. For the model we consider, we identify and prove a necessary and sufficient condition for
tability. This result also identifies the global stability regions for the model in [5] and the slotted-ring model in [8], as
e formally show in Section 6.
The roundabout model is a slotted ring consisting of L cells, with on-ramp queues in front of each cell. The cells and

ueues are indexed by i ∈ {1, . . . , L}, with cell 1 adjacent to cell L; using this cyclic structure, we allow ourselves to use
he index i + L to refer to cell/queue i. The presence of vehicles on the roundabout is modeled by the state of the cells.
ach cell can either be empty, or contain a vehicle that has entered the roundabout at some cell j. In the first case we say
2
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he state of cell i is 0 and in the second case we say that its state is j; we will also say that a cell is occupied by a vehicle
f type j when the state of the cell is j. The queues model vehicles waiting to enter the roundabout, and their state is a
umber in Z+.
The model has discrete-time dynamics. The main idea is that vehicles arrive via the queues to the roundabout, traverse

number of cells to an off-ramp, and depart the roundabout. At each time t ∈ Z+, if there are vehicles in queue i and
cell i is empty, one vehicle from the queue will enter the roundabout and occupy cell i+1 at time t+1. If cell i is occupied
by a vehicle of type j, then the vehicle will either depart from the system with probability qij ∈ [0, 1], or occupy cell i+ 1
at the next time step. We emphasize that the probability qij depends on j to reflect that the cell at which a vehicle leaves
the system may depend on where it entered. To model arriving vehicles, we impose that at every time step, a new vehicle
will arrive to queue i with probability pi ∈ [0, 1]. We assume that all decisions whether a vehicle arrives at a cell i and
whether a vehicle of type j will leave cell i (if present), are made independently of each other and of the current state
and history of the process (see Appendix A for an explicit construction of the process). Note that on-ramps and off-ramps
can be removed by setting arrival or departure probabilities equal to zero.

We now provide a more precise account of these dynamics by formulating update rules for the system (as is customary
for cellular automata). These rules are local in the sense that we only need to know the current joint states of queue i and
cell i, and can disregard the remainder of the system, to determine the new states of queue i and cell i+1 (in accordance
with the cellular automata paradigm). It turns out that we need to distinguish three cases:

Case 1: cell i and queue i are both empty. In this case, no vehicle can enter the roundabout from queue i and cell i + 1
will be empty the next time step. If a new vehicle arrives to queue i (which happens with probability pi), then queue i
will have length 1 at the next time step. Otherwise, it will have length zero.

Case 2: cell i is empty and queue i is not empty. Then, the vehicle at the front of queue i will enter the roundabout and
move on to cell i + 1 in the process. Thus, cell i + 1 will be in state i one unit of time later. Queue i either remains at its
current length (if a new vehicle arrives to queue i), or its length decreases by one.

Case 3: cell i is occupied by a type-j vehicle. In this case, queue i is blocked, hence its length will grow by one if a new
vehicle arrives, or will stay the same otherwise. The vehicle in cell i will either leave the system with probability qij, in
which case cell i + 1 will be empty one unit of time later, or the vehicle remains in the system, so that cell i + 1 will be
in state j at the next time step.

Having specified the precise dynamics of the model, we observe that if for type-j vehicles, qij = 0 for each i ∈ {1, . . . , L},
then such vehicles cannot leave the network. We therefore require that

∏L
ℓ=1(1− qℓj) < 1 for each j ∈ {1, . . . , L}, so that

any vehicle eventually leaves the network. Additionally, note that when pi = 1 for some i ∈ {1, . . . , L}, then queue i can
never decrease in length. Since our focus is on stability, we impose pi ∈ [0, 1) for all i ∈ {1, . . . , L}.

3. Stability condition and main result

The model under consideration is a discrete-time Markov chain, which we denote by X1(·) = {X1(t) : t ∈ Z+}. The
associated state space is S1

:= (Z+ × {0, . . . , L})L, the set of vectors in R2L that describe the state of each cell and queue.
We observe that X1(·) is irreducible on the set of states that can be reached from the empty state, since from any state,
with strictly positive probability, we can empty the system in a finite number of steps. Note that specific choices of the
pi and qij can make it impossible to reach all states in the state space. In addition, X1(·) is aperiodic as we can remain in
the empty state for an arbitrary (finite) number of time steps, with strictly positive probability.

Following [11,21,22], we say that X1(·) is stable when it is positive recurrent. In Section 3.1, we will derive an explicit
expression for the marginal stationary distribution of the states of the cells under the assumption of stability. This result
was already obtained in [5], but here we use a different method based on the system’s offered load. To be more precise,
we show that when the system is stable, the marginal stationary probability that cell i is in state j is equal to pj times
the expected number of times that a vehicle of type j will occupy cell i during the time it spends on the roundabout. This
connection leads us to formulate a necessary and sufficient condition for stability in Section 3.2, which is our main result.
Moreover, this connection plays an important role in our proof that the condition is sufficient in Section 5. We prove the
necessity of the condition for stability at the end of Section 3.2.

3.1. Marginal stationary distribution

In our formulation of the model given above, we update the system at each time step by checking for external arrivals,
and deciding for each vehicle on the roundabout whether or not it leaves. As a consequence of the dynamics, the time
spent on the roundabout by each vehicle that enters the roundabout at cell j is an independent copy of a generic random
variable Tj, the distribution of which is completely determined by the parameters qij. We use this fact in this subsection
to derive the marginal stationary distribution of the states of the cells when the system is stable, and again in Section 5
to prove our main result.
3
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To be precise, Tj is a random variable with distribution given by{
P(Tj = 0) = 0;
P(Tj = k) =

∏j+k−1
ℓ=j+1(1 − qℓj) qj+k,j for k ≥ 1,

(1)

where we adopt the convention that the empty product is equal to 1, and define qℓj for ℓ > L by setting qℓj := qij whenever
≡ i (mod L). Observe that the model dynamics determine the distribution of the Tj and that different distributions could
e considered as well. Such model extensions do not significantly impact our analysis and are discussed in Section 6.3.
Observe that the number of times a vehicle of type j that spends time Tj on the roundabout will occupy cell i before

eaving, is also a well-defined random variable. We denote it by Nij, and we set bij := ENij. In our model, bij is the expected
number of visits to cell i by a vehicle that moves onto the roundabout from the on-ramp at cell j. We next define, for
i ∈ {1, 2, . . . , L},

πij :=

{
bij pj if j ∈ {1, 2, . . . , L};
1 −

∑L
j=1 bij pj if j = 0.

(2)

The numbers πij have an important interpretation in case the model is stable:

Proposition 3.1 (Marginal Stationary Distribution). If the model is stable, then the marginal stationary probability that cell i
is in state j is the number πij defined by (2).

Proof. Suppose that the model is stable. Then the long-term rate at which type-j vehicles move onto the roundabout
must be equal to the rate at which such vehicles arrive, which is pj by the strong law of large numbers. Again by the
strong law of large numbers, it follows that the long-term fraction of time cell i is occupied by a type-j vehicle is pj bij. By
the ergodic theorem, this number is also the marginal stationary probability that cell i is in state j. □

As we show below, for our model the numbers bij can be expressed explicitly in terms of the parameters qij by the
following formula:

bij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∏i+L−1
ℓ=j+1(1 − qℓj)

1 −
∏L

ℓ=1(1 − qℓj)
if 1 ≤ i ≤ j ≤ L;∏i−1

ℓ=j+1(1 − qℓj)

1 −
∏L

ℓ=1(1 − qℓj)
if 1 ≤ j < i ≤ L.

(3)

For example, if L = 1 we have b11 = q−1
11 because the time a vehicle spends on the roundabout follows a geometric

distribution with parameter q11. For L = 2, formula (3) gives

b12 =
1

1 − (1 − q12)(1 − q22)
and b22 =

1 − q12
1 − (1 − q12)(1 − q22)

for vehicles of type 2. This is explained as follows. Note that a vehicle of type 2 first enters cell 1 when it moves onto the
roundabout. The vehicle’s return probability to cell 1 is (1 − q12)(1 − q22), hence the above expression for b12 is indeed
the expected number of visits to cell 1. The expected number of visits to cell 2 is then (1− q12) b12 because 1− q12 is the
robability the vehicle moves on to cell 2 when it occupies cell 1. We now prove (3) in the general case:

emma 3.2. For all i, j ∈ {1, . . . , L} we have that bij = ENij is given by (3) if Tj has the distribution specified by (1).

roof. Consider the case 1 ≤ j < i ≤ L. Note that the probability distribution of Nij can be expressed in terms of the
istribution of Tj as

P(Nij ≥ n + 1) = P(Tj ≥ i − j + nL), n ≥ 0.

rom (1) it follows by induction in k that

P(Tj ≥ k) =

j+k−1∏
ℓ=j+1

(1 − qℓj), k ≥ 1.

ombining these observations, we obtain

P(Nij ≥ n + 1) =

i−1∏
ℓ=j+1

(1 − qℓj)
( L∏

ℓ=1

(1 − qℓj)
)n

,

nd summing both sides over all n ≥ 0 yields formula (3) for b = EN . The proof in the case 1 ≤ i ≤ j ≤ L is similar. □
ij ij

4
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Fig. 1. The stability region (unshaded area) for L = 2, q11 = q12 = 0.75, q21 = q22 = 0.5.

emark 3.3. We saw in the proof of Proposition 3.1 that πij represents the long-term fraction of time cell i is occupied
y a type-j vehicle when the model is stable. But the quantity πij is also meaningful if the system is unstable, since it is
y definition only a measure of the load imposed on the system. The question of stability deals with whether or not all
he vehicles manage to get onto the roundabout. If the system is unstable, the πij still describe the load that is offered to
he system, but we cannot use ergodicity to conclude that πij is the fraction of time cell i will be occupied by a vehicle of
ype j. Our characterization of the πij in terms of ENij plays an important role in proving the main theorem (Theorem 3.4
elow).

.2. Condition for stability

Under the assumption that the system is stable, the Markov chain X1(·) has a stationary distribution π . In the previous
ection we have shown that the vector {πi0, πi1, . . . , πiL} given by (2) and (3) is then the marginal stationary distribution
f cell i, for i = 1, 2, . . . , L. In particular, πi0 is the stationary rate at which cell i is empty when the system is stable. Since
ehicles arrive at cell i at rate pi and can only enter onto the roundabout when the cell is empty, it seems reasonable to
elieve that the system cannot be stable if pi > πi0 for some cell i. Conversely, one would suspect that if pi < πi0 for all
ells i, the cells will be vacant often enough to prevent the queues from blowing up. It turns out that the latter condition
s in fact not only sufficient, but also necessary for the system to be stable:

heorem 3.4 (Main Result). A necessary and sufficient condition for the roundabout model to be stable (by which we mean
hat the Markov chain X1(·) is positive recurrent) is that

pi < πi0 = 1 −

L∑
j=1

bij pj for all i ∈ {1, 2, . . . , L}.

For example, in the case L = 1, the expected time a vehicle occupies the cell is b11 = q−1
11 , as we saw in Section 3.1.

t follows that the expected time that elapses after a vehicle enters the roundabout until the next vehicle can enter is
+ q−1

11 , because the cell has to be empty for at least one unit of time before it can be occupied again. Hence, for the
ystem to be stable, the arrival rate p1 must be smaller than 1/

(
1 + q−1

11

)
, which is precisely what the stability condition

f Theorem 3.4 says. Now consider the case L = 2. Suppose we fix the arrival rate p2. Then vehicles of type 2 already
lay a claim on cell 1 for a fraction b12 p2 of the time. During the remaining fraction of time, like in the case L = 1, the
maximum rate at which cell 1 can be empty if we also allow type-1 vehicles onto the roundabout is (1 + b11)−1. This
leads to the stability condition p1 < (1−b12 p2)(1+b11)−1, and an analogous condition for p2 can be derived by reversing
the roles of the type-1 and type-2 vehicles. The stability region consists of the pairs (p1, p2) that satisfy both inequalities
(see Fig. 1). In general, for any L, the stability condition is a system of linear inequalities for the arrival rates pi, and hence
the stability region is a convex polytope contained in [0, 1)L with the zero vector as one of its corners.

The hard part of the theorem is to prove that the stated condition is indeed sufficient for the stability of the system.
We close this section with a proof of the necessity of the stability condition; Sections 4 and 5 are devoted to proving
the sufficiency. One may also wonder about transience in case the stability condition does not hold; this is discussed in
Section 7.

Proposition 3.5. The condition that pi < πi0 for all i ∈ {1, 2, . . . , L} is a necessary condition for the stability of the roundabout
model.

Proof. We know that the Markov chain X1(·) is aperiodic and irreducible. Assume furthermore that the system is stable,
that is, that X1(·) is also positive recurrent. Then X1(·) has a stationary distribution π , and since the Markov chain is
irreducible, the state in which every cell and every queue is empty must have a strictly positive probability, which we
denote by π , under the stationary distribution.
∅

5
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Suppose that we start our Markov chain from the stationary distribution π . Let Ci(t) denote the state of cell i at time t ,
nd let Qi(t) be the length of queue i at time t . Write Ai(t) for the event that a new vehicle arrives at cell i at time t . Then
he queue length process satisfies

Qi(t + 1) = Qi(t) + 1{Qi(t)>0}
(
1Ai(t+1) − 1{Ci(t)=0}

)
+ 1{Qi(t)=0}1Ai(t+1)

= Qi(t) + 1Ai(t+1) − 1{Ci(t)=0} + 1{Qi(t)=Ci(t)=0},

from which it follows that

1
n
Qi(n) =

1
n
Qi(0) +

1
n

n−1∑
t=0

1Ai(t+1) −
1
n

n−1∑
t=0

1{Ci(t)=0} +
1
n

n−1∑
t=0

1{Qi(t)=Ci(t)=0}. (4)

We now want to take n → ∞ in (4). On the one hand, since we assumed the model is stable, it is clear that we must
ave that

lim inf
n→∞

1
n
Qi(n) = 0 a.s.

n the other hand, the first term on the right hand side in (4) clearly converges almost surely to 0 as n → ∞, whereas
he second term converges a.s. to pi by the strong law of large numbers, and the third term converges a.s. to −πi0 by the
ergodic theorem. As for the last term in (4), we observe that the event that the system is completely empty is a subset
of the event {Qi(t) = Ci(t) = 0}, so that by the ergodic theorem we can conclude that

lim inf
n→∞

1
n

n−1∑
t=0

1{Qi(t)=Ci(t)=0} ≥ π∅ > 0.

Combining these observations, it follows that almost surely,

0 = lim inf
n→∞

1
n
Qi(n) ≥ 0 + pi − πi0 + π∅ > pi − πi0.

Hence, pi must be strictly smaller than πi0 for every cell i if the roundabout model is stable. □

. Multiclass queueing network formulation

To prove sufficiency of the stability condition in Theorem 3.4, we formulate in this section a multiclass network
explained below) that has essentially the same dynamics as the roundabout model from Section 2. That is, for each choice
f parameters pi and qij, i, j ∈ {1, . . . , L}, for the roundabout model we define an analogous multiclass network, using the
ame parameters to define the appropriate exogenous arrival and routing processes in the network. We shall refer to a
hoice of these parameters as a parameter setting. The two model formulations can be coupled on a sample-path level,
ormalized in Lemma 4.1 below. This allows us in Section 5 to utilize the powerful fluid model framework for multiclass
ueueing networks to prove stability of the multiclass-network formulation of our model, hence proving it for the model
n the original formulation as well.

A multiclass queueing network, or simply multiclass network, is a network consisting of a finite collection of (single
erver) stations serving customers from a finite number of customer classes. Each customer class has its own queue at one
f the stations, with its own exogenous arrival process and service time distribution. After service completion, customers
re either routed to another queue (and associated customer class), or depart from the network. In addition, a multiclass
etwork can have other characteristics relating to specific model applications, such as customer class priorities in stations
nd blocking features.
Fix a parameter setting. To map the roundabout model to a multiclass network, we identify each cell i with a station i

n the multiclass network. Vehicles that arrive from outside to the on-ramp of cell i become customers of class (i, 0) in
he multiclass network, and vehicles of type j that occupy cell i become class (i, j) customers. Thus, there are L stations
nd L(L + 1) = L2 + L customer classes in the multiclass network. The set of customer classes is

K :=
{
(i, j) : i ∈ {1, . . . , L}, j ∈ {0, . . . , L}

}
,

nd station i serves the customers of all classes (i, j) with j ∈ {0, . . . , L}. We will now define the exogenous arrival
rocesses, service time distributions, routing policy, and priority structure that will make the multiclass network mimic
he dynamics of the roundabout model. As an aid to the reader, Fig. 2 illustrates the multiclass network and its routing
olicy.
First, to account for the external arrivals, the exogenous arrival process for class (i, 0) customers clearly must have

ndependent, geometrically distributed inter-arrival times with parameter pi. All other customer classes (i, j) with i, j ∈

1, . . . , L} have no exogenous arrivals; such customers can appear in the network only because they arrive as a class (j, 0)
ustomer and are subsequently routed in the network to become a class (i, j) customer. This corresponds in the roundabout
odel to a vehicle entering onto the roundabout at cell j, and then traversing a number of cells to reach cell i.
6



P.J. Storm, W. Kager, M. Mandjes et al. Performance Evaluation 162 (2023) 102355

n
s
a

h

c
t
r
n

c
n
b

Fig. 2. The multiclass queueing network. The shaded boxes are the stations and the queues are labeled with the corresponding vehicle type (using 0
for external arrivals). The arrows show how customers can be routed through the network from the L + 1 queues at each station.

To mimic this behavior correctly in the multiclass network, we impose that the service times are exactly one unit of
time for each class of customer. Furthermore, after completing service at station i, a class (i, 0) customer is routed to the
ext station and becomes a customer of class ((i mod L)+1, i). Likewise, a class (i, j) customer is either routed to the next
tation with probability 1 − qij, or leaves the network. This routing policy is captured by the routing matrix P . The rows
nd columns of this matrix are indexed by the set of customer classes K, and the entry Pij,kℓ defines the probability that

a class (i, j) customer is routed to become a class (k, ℓ) customer after service completion, and is therefore given by

Pij,kℓ =

⎧⎨⎩
1 if j = 0, k = (i mod L) + 1, ℓ = i;
1 − qij if j ̸= 0, k = (i mod L) + 1, ℓ = j;
0 otherwise.

(5)

Next, we need to account for the fact that in the roundabout model, any vehicle that occupies a cell blocks the
corresponding on-ramp and is guaranteed to move out of that cell after one unit of time. We therefore impose the
following priority structure on the multiclass network: for each i ∈ {1, . . . , L}, customers of classes (i, j) with j ∈ {1, . . . , L}
ave priority over class (i, 0) customers. This means that class (i, 0) customers only receive service at station i if the queues

associated with class (i, j) customers with j ̸= 0 are all empty.
Finally, we need to consider the restriction in the roundabout model that each cell can be occupied by at most one

vehicle at a time. For the multiclass network this means that we have to guarantee that, for each station i, the combined
number of customers of classes (i, j) with j ̸= 0 is at most 1 at all times. But we can achieve this by simply imposing
this condition on the initial state of the network: if at time 0, for each station i, the combined number of customers of
lasses (i, j) with j ∈ {1, . . . , L} is at most 1, then the same is automatically true for all times t ∈ Z+, because all service
imes are exactly 1, class (i, j) customers with j ̸= 0 have priority over class (i, 0) customers, and customers can only be
outed to one of the queues at station i by the previous station in the network. Henceforth, we only consider the multiclass
etwork under this condition on the initial state.
It is well known (see, e.g., [21, Section 2] or [22, Section 4.1]) that a multiclass network can be represented as a Markov

hain. In our case, due to the geometric inter-arrival times, deterministic service times and discrete-time nature of the
etwork, we can represent it as a discrete-time Markov chain with a discrete state space. We denote this Markov chain
y X2(·), and take as our state space S2

:= (Z+ × V)L, where V := {x ∈ {0, 1}L :
∑

k xk ≤ 1}. Thus, each state is a vector
in RL2+L that tells us, for every customer class, how many of those customers are present in the network. Because of the
way we constructed the multiclass network, there is a natural bijection between the two state spaces S1 and S2, and it is
possible to couple the two Markov chains X1(·) and X2(·) in such a way that they follow the same sample paths up to this
bijection. We formalize this claim in the following lemma, the proof of which is given for completeness in Appendix A:

Lemma 4.1. For any fixed parameter setting, there exists a coupling of X1(·) and X2(·) and a bijection f : S1
→ S2 such that

for every ω ∈ Ω , if f
(
X1(ω, 0)

)
= X2(ω, 0), then

f
(
X1(ω, t)

)
= X2(ω, t) for all t ∈ Z+.

Lemma 4.1 allows us to complete the proof of Theorem 3.4 by proving that the stability condition implies stability
of X2(·). For this we can rely on the theory of fluid limits and Foster–Lyapunov functions, cf. [19–22].

5. Proof of the main result

This section of the paper is dedicated to proving that X2(·) is stable if the stability condition in Theorem 3.4 is satisfied.

By Lemma 4.1 and Proposition 3.5, this completes the proof of Theorem 3.4. Nowadays there is a standardized approach

7
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or proving stability of multiclass queueing networks, which utilizes the powerful framework of fluid limits and stability
f the associated fluid model. For a complete exposition of this technique we refer to [22], which is based on work that
oes back to [16,21,31]. We begin our proof in Section 5.1 by writing down the set of queueing equations that describe
he dynamics of the multiclass network in terms of simple stochastic processes, for which we derive the associated fluid
odel in Section 5.2. We then complete the proof of stability in Section 5.3 by making use of the fluid model.

.1. The queueing equations

For i in {1, . . . , L}, let Ai0(·) := {Ai0(t) : t ∈ Z+} be the stochastic process that counts the cumulative number of
xogenous class (i, 0) arrivals up to time t . For i, j in {1, . . . , L} we set Aij(·) ≡ 0, reflecting that the customer class (i, j)
as no exogenous arrivals. Let Q x

ij (t) denote the length of the queue containing class (i, j) customers at time t ∈ Z+, where
denotes the initial state of the system. This defines the queue length processes Q x

ij (·) := {Q x
ij (t) : t ∈ Z+}. Note that they

an be combined into a vector-valued process that has the same law as the Markov chain X2(·) starting from the state x.
e set T x

ij (·) := {T x
ij (t) : t ∈ Z+}, where T x

ij (t) is the cumulative amount of service time that has been spent by station i on
lass (i, j) customers up to time t . As the service times of each customer class are precisely one unit of time, T x

ij (t) is also
qual to the total number of class (i, j) service completions up to time t .
Recall that K is the set of customer classes. For each class (i, j) we introduce the random vector φij(n) with components

ij
kℓ(n), (k, ℓ) ∈ K, where φ

ij
kℓ(n) = 1 if the nth class (i, j) customer served by station i is routed to the class (k, ℓ) queue,

nd φ
ij
kℓ(n) = 0 otherwise. Observe that φij(n) is an (L2 + L)-dimensional random vector with expectation (Pij)⊤, where Pij

s the row of the routing matrix P corresponding to the index (i, j). For each class (i, j) we thus have an i.i.d. sequence of
outing vectors {φij(n) : n ∈ N}. Define the cumulative routing process as Φ ij(·) := {Φ ij(n) : n ∈ Z+}, where Φ ij(0) := 0 and
ij(n) :=

∑n
k=1 φij(k) for n ≥ 1. With this definition, Φ

ij
kℓ(n) counts the number of class (i, j) customers that have been

outed to the queue of class (k, ℓ) customers after the first n service completions of class (i, j) customers.
For each class (i, j), the stochastic processes Aij(·) and Φkℓ

ij (·), T
x
kℓ(·) for all (k, ℓ) ∈ K completely determine the paths

f the queue length process Q x
ij (·). To be precise, for each time t we can calculate Q x

ij (t) by adding the exogenous arrivals
and the arrivals via routing to the initial queue length, and subtracting the departures. Thus we have for all t ∈ Z+

Q x
ij (t) = Q x

ij (0) + Aij(t) +

∑
(k,ℓ)∈K

Φkℓ
ij

(
T x
kℓ(t)

)
− T x

ij (t), (6)

Q x
ij (t) ≥ 0 and Q x

ij (t + 1) − Q x
ij (t) ∈ {−1, 0, 1}, (7)

T x
ij (t) is non-decreasing in t , T x

ij (t + 1) − T x
ij (t) ≤ 1, and T x

ij (0) = 0. (8)

The multiclass network has the work-conserving property, which means that a station will not idle whenever at least
one of its queues is non-empty. To express this property in a formula, for i ∈ {1, . . . , L} and t ∈ Z+, let Ixi (t) denote the
cumulative amount of time that station i has been idle up to time t , and write ∆Ixi (t) := Ixi (t + 1) − Ixi (t). Then

Ixi (t) := t −

L∑
j=0

T x
ij (t) is non-decreasing in t , (9)

∞∑
t=0

L∑
j=0

Q x
ij (t)∆Ixi (t) = 0 for all i ∈ {1, . . . , L}. (10)

Similarly to the way in which (10) captures the work-conserving property, we can also account for the priorities in the
system. Recall that we imposed that customers of classes (i, j) with j ̸= 0 have priority over class (i, 0) customers. If we
let Ixi0(t) := t −

∑L
j=1 T

x
ij (t) be the total service time available for class (i, 0) customers up to time t at station i, and write

∆Ixi0(t) := Ixi0(t + 1) − Ixi0(t), then the priority structure is captured by the priority equation
∞∑
t=0

L∑
j=1

Q x
ij (t)∆Ixi0(t) = 0 for all i ∈ {1, . . . , L}. (11)

For each sample path of the multiclass network, the associated processes Q x
ij (·) and T x

ij (·) have to satisfy Eqs. (6)–(11).
We refer to this set of equations as the queueing equations or the queue length process representation. The evolution of
the sample paths clearly depends on the parameter setting, i.e., these equations are parameterized by the collection of pi
and qij.

5.2. The fluid model

We are now ready to introduce the fluid model equations, or fluid model for short. They are continuous-time analogs of
the queueing equations that arise naturally by taking a scaling limit of solutions to the queueing equations. To introduce
8
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hese fluid model equations, it is convenient to first extend all the discrete-time processes introduced in Section 5.1 to
ontinuous time by linear interpolation. That is, we define Q x

ij (t) for non-integer values of t ∈ R+ by interpolating linearly
etween Q x

ij

(
⌊t⌋

)
and Q x

ij

(
⌊t⌋ + 1

)
, and we extend the other processes introduced in Section 5.1 to continuous time in

he same way.2 Furthermore, we switch to a vector notation by defining Q x(·) := {Q x(t) : t ∈ R+} as the vector-valued
rocess with components Q x

ij (·), (i, j) ∈ K. Likewise, we define T x(·) as the process with components T x
ij (·). All vectors are

olumn vectors, and (in)equalities between vectors have to be read component-wise.
To obtain the fluid model, we scale the queue length and service time processes by the norm of the initial state x. That

s, we introduce the scaled processes SQ x(·) and ST x(·) by setting

SQ x(t) :=
1

|x| ∨ 1
Q x(

|x|t
)

and ST x(t) :=
1

|x| ∨ 1
T x(

|x|t
)

or each t ∈ R+. We claim that for any sequence of initial states with norm tending to ∞, these scaled processes converge
at almost every sample point along a subsequence to limit processes Q̄ (·) and T̄ (·) which we refer to as a fluid limit.
oreover, this fluid limit has to satisfy fluid model analogs of the queueing equations (6)–(11). The first three of those
quations are

Q̄ (t) = Q̄ (0) + p t − (I − P⊤) T̄ (t), (12)

Q̄ (t) ≥ 0 and each component of Q̄ (·) is Lipschitz-1, (13)

T̄ (t) is non-decreasing in t , each component of T̄ (·) is Lipschitz-1, and T̄ (0) = 0, (14)

here I denotes the identity matrix of dimension L2 + L and p is the vector with components pij for (i, j) ∈ K defined by
i0 := pi and pij := 0 if j ̸= 0. Next we have the two equations

Ī(t) := e t − C T̄ (t) is non-decreasing in t, (15)∫
∞

0
Q̄i0(t) dĪi(t) = 0 for all i ∈ {1, . . . , L}, (16)

here e is the L-dimensional vector of ones and C is the incidence matrix linking each station to the customer classes
erved by that station; it has dimension L × (L2 + L) and entries defined for i ∈ {1, . . . , L} and (j, k) ∈ K by Ci,jk = 1 if
= i and Ci,jk = 0 otherwise. Finally,

Q̄ij(·) ≡ 0 for all i, j ∈ {1, . . . , L}. (17)

t may not be obvious that this last equation captures the priority structure in the fluid limit, but note that (17) together
ith (12) yields T̄ij(t) =

∑
(k,ℓ)∈K T̄kℓ(t) Pkℓ,ij for i, j ∈ {1, . . . , L}. This says that in the fluid limit, the stations must instantly

pend service time on customers who enter the ring to route them through the network, reflecting their priority.
We refer to Eqs. (12)–(17) as the fluid model equations or fluid model. Every pair of functions Q̄ (·), T̄ (·) that is a solution

o these equations is called a fluid model solution. Our claims about convergence to a fluid limit which is a fluid model
olution are made precise in the following theorem. A general version of this result has been proven in [21] for continuous-
ime multiclass networks. Because of the discrete-time nature of our processes, the proof of the theorem requires some
mall modifications, and is therefore given in Appendix B.

heorem 5.1. There exists a set of sample points Ω ′
⊂ Ω with P(Ω ′) = 1 such that for every sequence of initial states {x′

n}

ith |x′
n| → ∞, we can find for each ω ∈ Ω ′ a subsequence {x′′

n(ω)} and functions Q̄ (ω, ·), T̄ (ω, ·) so that everywhere on Ω ′

omitting ω from the notation),

sup
t∈[0,m]

⏐⏐SQ x′′n (t) − Q̄ (t)
⏐⏐ ∨

⏐⏐ST x′′n (t) − T̄ (t)
⏐⏐ → 0 as n → ∞ (18)

or all m ∈ N. Moreover, on Ω ′, the pair Q̄ (·), T̄ (·) is a fluid model solution with |Q̄ (0)| = 1.

5.3. Stability of the fluid model

In this section we complete the proof of Theorem 3.4, with an appeal to Lemma 4.1, by proving that the multiclass
network defined in Section 4 is stable under the stability condition of the theorem. The key is to prove stability of the
fluid model, which is defined as follows:

2 In continuous time, Q x
ij (t) can be interpreted as the fluid mass present in the class (i, j) queue at time t if we replace customers by unit masses

f fluid that flows in and out of the queues at unit rate, controlled by valves at the stations that open and close (according to the priority structure)
t integer times.
9
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efinition 5.2. We say that the fluid model (12)–(17) is stable if there exists a constant δ > 0 that depends only on p
nd P such that any fluid model solution Q̄ (·), T̄ (·) with |Q̄ (0)| = 1 satisfies Q̄ (t) = 0 for all t ≥ δ.

It is well-known that in general, stability of the fluid model is a sufficient condition for stability of X2(·). This result
as been proven for Markov chains with general state spaces under an additional condition, e.g., see [21, Theorem 4.2]
r [22, Theorem 4.16]. In the setting of a countable state space, a considerably shorter argument is given in [19]. For
ompleteness, we formulate this key result in the following proposition, a proof of which is included in Appendix B.

roposition 5.3. If the fluid model is stable, then the Markov chain X2(·) is positive recurrent.

So all that remains is to prove that, under the stability condition in Theorem 3.4, the fluid model is stable. A more
eneral version of this result is proven in [32, Section 6], but here we present a more transparent proof based on [23]. It
s shown in [23] that under deterministic assumptions on the external arrivals and routing in a ring network, any work-
onserving policy stabilizes the ring. These assumptions are satisfied in our case because in the fluid limit, the arrival and
outing processes become deterministic due to the strong law of large numbers (this is one of the key steps in the proof
f Theorem 5.1 in Appendix B).
In our proof that the fluid model is stable, we consider the residual amount of time stations will be busy, given the

mount of fluid mass that is present in the network. In essence, the goal of the proof is to show that this quantity, and
ence the total fluid mass, must become zero before a fixed deterministic time that is determined only by the parameter
etting. This means that we require a stronger result than the main theorem in [23], which (translated to our context)
tates only that the total fluid mass goes to zero in the limit t → ∞. Moreover, traffic in [23] leaves the ring as soon as it
eaches its destination, whereas fluid mass in our model can complete multiple full circles (albeit instantly) before being
emoved. This means that the quantities we consider, such as the residual work, are slightly different than the ones used
n [23], and we also need to adapt the argument to obtain the stronger result we require.

It is customary in the theory of multiclass queueing networks to consider the quantities

λ :=
(
I − P⊤

)−1p and ρ := Cλ.

he quantity λ is known as the solution of the traffic equations [22, Section 1.2], and λij can be interpreted as the effective
rrival rate to the queue of class (i, j) customers. By summing over j we obtain the effective arrival rate at station i, given
y ρi = (Cλ)i =

∑L
j=0 λij. In any multiclass network, ρi represents the amount of service time that arrives to the network

er unit time and is required from station i in the future. One can prove that the multiclass network cannot be stable
hen ρ < 1 fails to hold, using an argument similar to the one we used to prove Proposition 3.5. In many cases ρ < 1

s sufficient for stability, although this is not always true (see [22, Chapter 3] for counter-examples). The next lemma
stablishes that the condition for stability in Theorem 3.4 is equivalent to the condition that ρ < 1.

emma 5.4. For all i ∈ {1, . . . , L} we have ρi = pi + 1 − πi0 and hence

ρi < 1 if and only if πi0 > pi.

roof. Let i ∈ {1, . . . , L}. We will show that ρi = pi +
∑L

j=1 bij pj, where we recall from Section 3.1 that bij was defined in
he roundabout model as the expected number of visits to cell i by a type-j vehicle that enters the roundabout. We start
y observing that

ρ = C
(
I − P⊤

)−1p = C
(
I +

∞∑
m=1

(
P⊤

)m)
p.

ence, using the definition (5) of the routing matrix P and the fact that pi0 = pi and pij = 0 for j ̸= 0, we obtain

ρi =

L∑
j=0

pij +
L∑

j=0

∞∑
m=1

∑
(k,ℓ)∈K

(Pm)kℓ,ij pkℓ = pi +
L∑

j=1

∞∑
m=1

(Pm)j0,ij pj.

ere, (Pm)j0,ij is the probability that a class (j, 0) customer is routed to become a class (i, j) customer in m steps, which
s the same as the probability in the roundabout model that a vehicle that enters the roundabout at cell j visits cell i
fter having stayed on the roundabout for m− 1 time steps. Hence, we see that ρi is equal to pi +

∑L
j=1 bij pj, and we are

one. □

The proof that the fluid model is stable hinges on another crucial lemma concerning the residual amount of work for
ach station i at a given time. We claim that this quantity is described by the process R̄(·) :=

{
R̄(t) : t ∈ R+

}
defined

hrough

R̄(t) := C
(
I − P⊤

)−1Q̄ (t). (19)
10
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o see that this process describes the residual work in the system, note first of all the analogy with the definition of ρ

s C
(
I − P⊤

)−1p. Since we have both pij = 0 and, by (17), Q̄ij(t) = 0 for j ̸= 0, we can repeat the steps in the proof of
emma 5.4 with Q̄ (t) in place of p to see that

R̄i(t) = Q̄i0(t) +

L∑
j=1

bij Q̄j0(t). (20)

y definition, bij is the mean number of times a customer who arrives at station j in the multiclass network (i.e., a class (j, 0)
ustomer) intends to visit station i (as a class (i, j) customer) in the future. It follows that we can indeed interpret R̄i(t)
s the residual amount of work for station i that is present in the system at time t .
This quantity has an important property, which is the fluid equivalent of the statement that in the multiclass network,

when the queue of class (i, 0) customers is empty, all customers who are present in the system and will visit station i,
ust also visit the preceding station i−1. This crucially reflects the ring topology in our system, and enables us to control

the decay of the amount of fluid in the fluid model. We formulate this key result in the following lemma:

Lemma 5.5. If Q̄ (·), T̄ (·) is a fluid model solution, then for all i ∈ {1, . . . , L} and t ≥ 0,

Q̄i0(t) = 0 implies R̄i−1(t) ≥ R̄i(t),

where i − 1 has to be read as L when i = 1.

roof. Let t ≥ 0 be arbitrary and assume Q̄i0(t) = 0. Let k := L− (L+ 1− i mod L) denote the station preceding station i
n the network. Then, using (20), we have

R̄k(t) − R̄i(t) = Q̄k0(t) +

L∑
j=1

∞∑
m=1

(Pm)j0,kj Q̄j0(t) −

L∑
j=1

∞∑
m=1

(Pm)j0,ij Q̄j0(t)

= Q̄k0(t) −

L∑
j=1

Pj0,ij Q̄j0(t) +

L∑
j=1

∞∑
m=1

(
(Pm)j0,kj − (Pm+1)j0,ij

)
Q̄j0(t).

ince Pk0,ik = 1 and Pj0,ij = 0 for j ̸= k, the first two terms on the right cancel each other. Furthermore, since for m ≥ 1,
class (j, 0) customer who is routed to become a class (i, j) customer in m + 1 steps must first be routed to become a
lass (k, j) customer after m steps, each term under the sum over m is non-negative. Hence, R̄k(t) ≥ R̄i(t). □

We are now ready to state and prove the main result of this section, the stability of the fluid model under the
condition ρ < 1 from Lemma 5.4, which also completes the proof of Theorem 3.4.

Theorem 5.6. If ρi < 1 for each i ∈ {1, . . . , L}, then the fluid model (12)–(17) is stable.

roof. Assume maxi ρi < 1 and let the pair Q̄ (·), T̄ (·) be a solution of the fluid model equations with |Q̄ (0)| = 1. We first
show that for this solution, the residual work for any station i decreases at rate 1− ρi during time intervals in which the
class (i, 0) queue is continuously non-empty. To see this, note that combining (19) and (12) gives R̄(t) = R̄(0)+ρ t−C T̄ (t).
o by (15), we can express R̄i(t) in terms of the cumulative idle time process of station i as

R̄i(t) = R̄i(0) − (1 − ρi) t + Īi(t). (21)

ince by the work-conserving property (16) the cumulative idle time process of station i cannot increase while the
lass (i, 0) queue is non-empty, it follows that

R̄i(s) − R̄i(t) = (1 − ρi) (t − s) if Q̄i0(·) > 0 on (s, t ]. (22)

Now suppose that for some i0 ∈ {1, . . . , L}, t0 > 0 and ε > 0 we have Q̄i00(t0) = ε. Then by (20) we have R̄i0 (t0) ≥ ε,
nd using that |Q̄ (0)| = 1 we also obtain maxi R̄i(0) ≤ (1 + B), where B := maxij bij. We claim that (22) and Lemma 5.5
ogether imply

max
i

R̄i(0) ≥ R̄i0 (t0) + (1 − ρ̄) t0 = ε + (1 − ρ̄) t0, (23)

here ρ̄ := maxi ρi < 1. This yields t0 < δ := (1 + B)(1 − ρ̄)−1, which proves that the fluid model satisfies Definition 5.2
of stability with δ as specified.

It remains to prove (23). To this end, we define

¯
t1 := sup{s ∈ [0, t0] : s = 0 or Qi00(s) = 0},

11
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o that (t1, t0] is the interval of maximal length ending at time t0 during which the class (i0, 0) queue is continuously
on-empty. Then by (22) and the fact that R̄i0 (t0) ≥ ε,

R̄i0 (t1) ≥ ε + (1 − ρ̄) (t0 − t1).

If t1 = 0 this gives (23), and we are done. If t1 > 0 we proceed recursively, as we explain next.
Suppose that for some n ≥ 1, we have found an index in−1 and time tn such that

0 < tn < t0, Q̄in−10(tn) = 0, and R̄in−1 (tn) ≥ ε + (1 − ρ̄) (t0 − tn).

hen at least one queue must be non-empty at time tn. We define in as the index of the station nearest to, but before in−1
n the ring, such that Q̄in0(tn) > 0; to be precise, we set in := i, where i is the index such that Q̄i0(tn) > 0 for which
in + L− i) mod L is minimal. By Lemma 5.5 we then have R̄in (tn) ≥ R̄in−1 (tn). Analogously to how we defined t1, we now
et

tn+1 := sup{s ∈ [0, tn] : s = 0 or Q̄in0(s) = 0},

o that Q̄in0(·) > 0 on the time interval (tn+1, tn]. Using (22) we then obtain

R̄in (tn+1) ≥ R̄in (tn) + (1 − ρ̄) (tn − tn+1) ≥ ε + (1 − ρ̄) (t0 − tn+1),

nd we conclude that (23) follows by induction in n, provided that tm = 0 for some m ≥ 1.
To show this is indeed the case, note that we have R̄in (tn) ≥ ε if tn > 0. It then follows from (20) that Q̄i0(tn) ≥ τ

or some station i, where τ := ε/(1 + LB). But Q̄i0(·) is Lipschitz-1 by (13), so Q̄i0(s) must be strictly positive for all s in
0 ∨ (tn − τ ), tn]. This implies that it cannot possibly be the case that tn+k > 0 ∨ (tn − τ ) for k = 1, 2, . . . , L. Because this
s true for every n ≥ 1 such that tn > 0, tm must be 0 for some m ≥ 1. This completes the proof. □

. Related models

In the introduction we mentioned that our main result for the roundabout model, Theorem 3.4, also applies to the
lotted-ring model in [8], and proves a form of stability for that model under the stability condition. We explain this in
ore detail in the first part of this section. In the second part, we discuss how the model we introduced in Section 2
iffers from the roundabout model in [5], and provide a rigorous argument to show that this difference does not alter the
lobal stability region. In the last part, we present ways in which the routing can be modified without affecting the validity
f the proof of stability. In particular, we explain how our setting can also be used to cover formulations of multiclass
etworks with fixed routes.

.1. Slotted-ring model

The slotted-ring model studied in [8] is a model in continuous time. It consists of a slotted ring, containing c slots of
qual length, that rotates with a constant rotation time τ , and n stations located at fixed but arbitrary points on the ring.
ackets arrive from outside to a queue at each station i, and have a random destination station j chosen according to a fixed
istribution. When an empty slot arrives at a station, the station can transmit a packet to the slot. This packet is removed
rom the slot as soon as at it reaches its destination. Due to the nature of the slotted-ring model, the stochastic process
escribing the model is in general not Markovian and cannot have a stationary limit distribution. For this reason, another
orm of stability called τ -stability was considered in [8], which is defined as positive recurrence of the discrete-time
arkov chain obtained by observing the process at the times t τ , with t ∈ Z+.
A crucial claim in [8] is that only the relative order of the stations, but not their exact positions, is relevant for τ -

tability. This freedom allows us to map to slotted-ring model to our roundabout model, as follows. Take τ/c as the unit
f time, suppose that the times between arrivals of packets at station i are geometrically distributed with parameter pi,
nd assume there are no more stations than slots, i.e., n ≤ c. Place the stations on the ring so that for i = 1, 2, . . . , n− 1,
he distance between stations i and i+1 is exactly the length of a slot. For the roundabout model, take L = c and identify
ach slot with a cell. Let cells 1 through n have external arrival rates p1, . . . , pn, and if c > n, set pn+1, . . . , pc equal
o zero. Choose the parameters qij in the roundabout model so that the routing of packets in the slotted-ring model is
eproduced (this requires setting certain qij equal to 1). Then the slotted-ring model observed at times t τ is equivalent
o the roundabout model observed at times tL, t ∈ Z+. It follows that the slotted-ring model is τ -stable if and only if the
oundabout model is stable.

The only issue that remains is that arrivals in the slotted-ring model in [8] were originally assumed to follow Poisson
rocesses. This implies that there can be more than one arrival to each external queue in each unit of time, which we did
ot allow in the roundabout model. However, because of the strong law of large numbers, this does not fundamentally
hange the condition for stability. That is, suppose we allow the number of arrivals to queue i in one unit of time to
ollow a Poisson distribution with intensity λi. Then the corresponding arrival process still converges in the fluid limit
o the function t ↦→ pi t , where pi = λi. Therefore, as follows from the proof of Theorem 5.1, we obtain the same fluid
odel, and hence the same stability condition, as for geometrically distributed interarrival times. We conclude that in
12
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he case n ≤ c , Theorem 3.4 proves τ -stability of the slotted-ring model under the stability condition, without requiring
the additional assumption (Assumption 1) that was made in [8].

We now turn to the case n > c. This case is more difficult, but we can handle it as follows. In the slotted-ring model,
we still take τ/c as the unit of time, and we assume a Poisson arrival rate λi at station i. We place the stations on the ring
so that all distances between neighboring stations are equal. For the roundabout model, we take the number of cells L to
be the least common multiple of n and c. We define m := L/c and k := L/n, let J be the set of indices {m, 2 m, . . . , cm},
and let K be the set of indices {k, 2k, . . . , nk}. The idea is that the positions of the slots at time 0 correspond to the cells
with an index in J , and the locations of the stations correspond to the cells with indices in K . We therefore set the external
rrival rates to pi := λi/k/m for i ∈ K and pi := 0 for i /∈ K , and we assume the external queues at the cells with an index

not in K are empty at time 0 (and hence at all times).
The delicate part is to reproduce the correct routing from the slotted-ring model in the roundabout model. To achieve

this, we further assume that in the initial state each cell i that does not correspond to a slot (i.e., with i /∈ J) is occupied
y a vehicle of a type j not in K , and that these types of vehicle never leave the system (that is, they are simply forwarded
o the next cell at each time step). This has as a consequence that bij is infinite for j /∈ K , but this does not matter for
he analysis because pj = 0. With these restrictions in place, the parameters qij of the roundabout model are zero for
/∈ K , and we can choose the remaining parameters qij such that the routing is the same as in the slotted-ring model.
rucially, the slotted-ring model observed at times t τ is then again equivalent to the roundabout model observed at
imes tL (t ∈ Z+), so that τ -stability of the former model is equivalent to stability of the latter.

It is not difficult to see that with this setup, taking the fluid limit of the multiclass network associated with the
oundabout model leads to the same fluid model as before. However, there are two additional constraints. First, every
luid limit has the property that Q̄j0(·) ≡ 0 for j /∈ K . Second, because an exact fraction 1 − m−1 of the cells in the
oundabout model is continuously occupied by vehicles of types not in K , every fluid limit satisfies

∑
j/∈K T̄ij(t) = t − tm−1

or i = 1, 2, . . . , L and all times t . In the proof of stability of the fluid model, we should therefore only consider fluid
odel solutions that satisfy both constraints.
Let us investigate what this means for the proof of Theorem 5.6. For a meaningful analysis, in the residual work

rocesses we should now only take into account customers of the classes (j, 0) and (i, j) with j ∈ K . That is, the residual
ork process of station i in the multiclass network is now given by

R̄i(t) = Q̄i0(t) +

∑
j∈K

bij Q̄j0(t),

nd it follows from (12) and (15) that (21) is replaced by

R̄i(t) = R̄i(0) − (m−1
− ρi) t + Īi(t).

e conclude that the proof of Theorem 5.6 still goes through, but we now obtain stability of the fluid model under
he stability condition maxi ρi < m−1. But this is exactly the desired condition for τ -stability of the slotted-ring model,
ecause in terms of the λi it is equivalent to

λi/k < 1 −

∑
j∈K

bij λj/k for all i ∈ K .

.2. Roundabout model

We now explain our reasons for considering a slightly different model than the one in [5]. In the roundabout model
n [5], a vehicle that arrives to an empty queue and cell at time t ∈ Z+ enters the roundabout immediately, and is therefore
ot in the queue at time t or time t + 1. This poses a problem for the multiclass network formulation of the model: in
he multiclass network, a vehicle must have been in a queue for one unit of time in order to receive service.

Since our proof relies on coupling the roundabout model to a multiclass network, we have slightly modified the model
ere so that an arriving vehicle enters a queue first, and is allowed to enter the roundabout no sooner than one time
nit later. We emphasize that this model alteration does not affect the stability condition: Theorem 3.4 also applies to
he model in [5]. This follows from the fact that the two models can be coupled in such a way that their sample paths
tay close together at all times. The precise result is stated in the proposition below, the proof of which is presented in
ppendix A. We conclude that the Markov chain X1(·) is positive recurrent if and only if the Markov chain for the model
n [5] is positive recurrent.

roposition 6.1. Let X̃(·) := {X̃(t) : t ∈ Z+} denote the discrete-time Markov chain associated with the model in [5]. There
xists a coupling between X1(·) and X̃(·) in which at all times the states of all cells are the same for the two processes, while
he difference in queue length is at most 1 for each queue.
13
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.3. Models with other types of routing

We designed the multiclass network in Section 4 to mimic the routing of vehicles in the roundabout model. We will
efer to this type of routing as ‘probabilistic routing’. This type of routing enables us to identify customers classes by
ustomers’ location and type.
A frequently used alternative in queueing networks is to fix a set of (deterministic) routes that customers can take

hrough a network, and identify each customer class with one of these routes (see, e.g., [19]). These fixed routes are
enerally not included in the possible set of routes obtained from probabilistic routing, but our setting can be modified
o handle this alternative type of routing. This is possible because in our setting, a route is determined by the location of
he queue where the customer arrives together with the time the customer intends to spend in the network. That is, to
eplace probabilistic routing by fixed routes, we only need to change the distributions of the variables Tj we introduced in
ection 3. This of course leads to different formulas for the marginal stationary probabilities πij, but Lemma 3.2 remains
alid. To establish the pathwise coupling with a multiclass network, we need that only finitely many customer classes
re required to describe all routes. In that case, the statement of Theorem 3.4 and its proof go through, with a different
xpression for the πij, leading to a rigorous derivation of the global stability region.
Both formulations of the routing (and associated customer classes) have their advantages. On the one hand, fixed routes

llow for customer behavior that is impossible with probabilistic routing. For instance, using fixed routes, we can have
class of customers who arrive to queue 1 and always complete exactly two full circles before leaving the roundabout
t cell/station 2. This is not possible with probabilistic routing. On the other hand, with probabilistic routing, the time
hat customers can spend in the system is unbounded. With fixed (deterministic) routes, this time is necessarily bounded,
ince we can only handle a finite number of customer classes (i.e., routes of finite length) in the multiclass network.
A further model generalization is to combine probabilistic routing with fixed routes. That is, we could allow customers

rriving at a station j to first follow a fixed route through the network (chosen from a finite set), and then either
eave the network (with a certain probability), or continue according to probabilistic routing with parameters qij. Again,
his generalization only changes the distribution of the variable Tj, so our methods still apply. But because the model
ormulation in Section 2 already covers a broad range of applications in communication systems and transportation
etworks, we have chosen not to work with this more general setting.

. Concluding remarks

In this paper, we have considered a ring-topology stochastic network with queues, involving different customer classes
nd a policy with a priority structure. A careful consideration of its marginal stationary distribution led us to a condition
hich we have proven to be necessary and sufficient for stability. In our proof, we coupled the sample paths of our model
o those of a multiclass queueing network, enabling us to appeal to fluid model techniques to prove sufficiency of the
tability condition. The approach we used explicitly exploited the relationship between the condition for stability and the
ate at which different segments of the ring are occupied in case the model is stable and displays ergodic behavior.

Our proof of stability of the fluid model was based on [23], where it was shown that any work-conserving policy
tabilizes the considered system. This raises the question whether our stability result holds under any work-conserving
olicy as well. We believe the answer is affirmative. To be more precise, without the priority structure we imposed, a fluid
imit of our model in general may not satisfy Eq. (17). This means we obtain a fluid model given by (12)–(16), with Q̄i0(t)
n Eq. (16) replaced by

∑L
j=0 Q̄ij(t). Proving stability of this fluid model then requires a similar replacement in Lemma 5.5

nd the proof of Theorem 5.6, but we do believe that after making the appropriate modifications the proof will still go
hrough.

With our main theorem on the model’s stability region, we can precisely quantify the capacity of associated commu-
ication or transportation systems. In practice, however, scenarios can occur in which the system is not stable. This often
appens during certain periods such as rush hours in road traffic applications, or specific busy hours in communication
etworks. In that case, one is interested in determining for instance which queues will remain finite in length, and which
nes will grow indefinitely, and at what rate, during these periods.
To address this problem, suppose we have ρi > 1 for some station i. Then for any fluid model solution, R̄i(t) and hence

also |Q̄ (t)| increases at least linearly in t , by (21). Following Dai [33], this is enough to conclude that in the multiclass
network, with probability 1, limt→∞|Q̄ (t)| = ∞. (Technically, we should consider a different fluid limit here, but it has
the same fluid model except that |Q̄ (0)| = 0; see [33].) It follows that if ρ̄ := maxi ρi > 1, then our Markov chain is
transient. Since we know the Markov chain is positive recurrent when ρ̄ < 1, this only leaves the case ρ̄ = 1, which we
believe is inaccessible with the methods we use here.

The next question we address is what we can say about the individual queues in the transient regime. Assuming ergodic
behavior in the occupation of the cells, let π̃i0 be the stationary probability at which cell i is empty. Then the ergodic rate
at which type-j vehicles enter the ring should be the smaller of pj and π̃j0, depending on whether queue j does not or does
blow up, respectively. Following the arguments of Proposition 3.1 and Lemma 3.2, the marginal stationary probability that
cell i is occupied by a type-j vehicle will then be given by π̃ij = bij (π̃j0 ∧ pj). Since

∑L
j=0 π̃ij = 1 for every i, it follows that

he π̃i0 must satisfy

π̃i0 = 1 −

L∑
bij (π̃j0 ∧ pj), i = 1, . . . , L. (24)
j=1

14
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herefore, solving this system of equations identifies the possible candidates for the ergodic behavior of our model in the
ransient regime.

To elaborate, suppose that for a given vector p, (24) has a unique solution satisfying pi ̸= π̃i0 for all i (again, we expect
our methods cannot deal with boundary cases where pi = π̃i0 for some i). Let U and S be the sets of indices i for which
i > π̃i0 and pi < π̃i0, respectively. Note that by (2) and Lemma 3.2, the πi0 solve (24) if the system is stable, so that we
ust have U ̸= ∅ in the transient regime. We call the queues in U unstable and the ones in S stable. The intuition behind

his is that for i ∈ U , we expect queue i to grow (eventually) at the asymptotic rate pi − π̃i0. This means for our model
hat the unstable queues eventually always have a vehicle on offer to send onto the ring. Their precise length is therefore
rrelevant in the long run, so we may as well omit these queues from our state space and describe the situation with a
ew Markov chain that only keeps track of the states of the stable queues and all the cells; we refer to [34] for the theory
ehind such a setup. We then expect this new Markov chain to be stable because pi < π̃i0 for all i ∈ S, in analogy with
ur main Theorem 3.4.
We study the solution set of the system (24) and its implications for the ergodic behavior of the queues in the unstable

egime in a forthcoming paper [35].
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ppendix A. Equivalence of cellular automata and multiclass network formulation

This appendix is devoted to proving Lemma 4.1 and Proposition 6.1. We start with the former.

roof of Lemma 4.1. We have to provide a coupling between the Markov chains X1(·) and X2(·) and a bijection f : S1
→ S2

uch that, for every ω ∈ Ω , if f
(
X1(ω, 0)

)
= X2(ω, 0), then f

(
X1(ω, t)

)
= X2(ω, t) for every t ∈ Z+. The crux of the proof

s that we use the same collection of uniform random variables to construct the sample paths of both processes explicitly,
or given initial states X1(0) and X2(0). This establishes the coupling, after which we define the bijection f and verify that
he coupling has the desired property. Throughout the proof, we suppose that we work with an arbitrary, but fixed set
f parameters pi and qij, i, j ∈ {1, . . . , L}.
The first step is to construct the coupling of the two processes X1(·) and X2(·). For X1(·), we denote the states of cell i

nd queue i at time t by C1
i (t) and Q 1

i (t), respectively. Likewise, for X2(·) we denote the length of the queue for class (i, j)
ustomers at time t by Q 2

ij (t).
Next we introduce, for each t ∈ Z+, L2 + L random variables Uij(t), where (i, j) ∈ K. We assume the Uij(t) are all

ndependent and uniformly distributed on (0, 1). The idea is that, for i ∈ {1, . . . , L} and t ∈ Z+, the realization of the
andom variable Ui0(t) determines whether a vehicle arrives at queue i in the roundabout model, and also whether
class (i, 0) customer arrives in the multiclass network. Likewise, for i, j ∈ {1, . . . , L}, the realization of the random
ariable Uij(t) determines whether a type-j vehicle departs from cell i (if present), and simultaneously determines the
outing of a class (i, j) customer.

First, to construct the process X1(·), let the initial state X1(0) ∈ S1 be given. Then it suffices to state how the queues
nd cells have to be updated from one unit of time to the next to uniquely determine the sample paths of the process.
o let t ≥ 0. From cases 1–3 in Section 2, it is readily verified that the following equations update the states of cell i + 1
nd queue i correctly, where i + 1 has to be read as 1 in case i = L:

Q 1
i (t + 1) = Q 1

i (t) − 1
{Q 1

i (t)>0}1{C1
i (t)=0} + 1{Ui0(t+1)≤pi}, (25)

C1
i+1(t + 1) = i 1

{Q 1
i (t)>0}1{C1

i (t)=0} +
∑L

j=1 j 1{C1
i (t)=j}1{Uij(t)>qij}. (26)

ndeed, these equations determine the states of each cell and queue in the system, for each t ≥ 0, in terms of X1(0) and
he uniform random variables Uij(t).

Similarly, to construct X2(·), again let the initial state X2(0) ∈ S2 be given. Stating the one-step update rule is again
sufficient to determine the sample paths of X2(·). For t ≥ 0, from the definition of the multiclass network in Section 4,
we see that taking

Q 2
i0(t + 1) = Q 2

i0(t) − 1
{Q 2

i0(t)>0}1{
∑L

j=1 Q 2
ij (t)=0} + 1{Ui0(t+1)≤pi}, (27)

Q 2
i+1,j(t + 1) = δij 1{Q 2

i0(t)>0}1{
∑L

ℓ=1 Q 2
iℓ(t)=0} + Q 2

ij (t) 1{Uij(t)>qij} (28)
15
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oes the job. Here i, j ∈ {1, . . . , L} and δij is the Kronecker delta function, which is equal to one if i = j, and is zero
therwise. This establishes the coupling between X1(·) and X2(·).
The next step is to provide a bijection f : S1

→ S2 such that f
(
X1(ω, 0)

)
= X2(ω, 0) implies

f
(
X1(ω, t)

)
= X2(ω, t) for all t ∈ Z+. (29)

uch a bijection is given by the function f that maps a vector in S1 component-wise to S2 with component functions
fi :Z+ × {0, 1, . . . , L} → Z+ × V for i ∈ {1, . . . , L} given by

(Q 1
i , C1

i ) ↦→
(
Q 1
i , 1

{C1
i =1}, 1{C1

i =2}, . . . , 1{C1
i =L}

)
.

In words, for each i ∈ {1, . . . , L}, the function fi maps the states of queue and cell i from X1(·) to the states of all
queues at station i from X2(·). This function is a bijection since the function f −1

: S2
→ S1, with component functions

f −1
i :Z+ × V → Z+ × {0, 1, . . . , L} given by(

Q 2
i0,Q

2
i1, . . . ,Q

2
iL

)
↦→

(
Q 2
i0,

∑L
j=1 j Q

2
ij

)
,

is an inverse for f . It is now readily verified that f
(
X1(ω, t)

)
= X2(ω, t) is equivalent to

Q 1
i (ω, t) = Q 2

i0(ω, t) and 1
{C1

i (ω,t)=j} = Q 2
ij (ω, t) for all i, j ∈ {1, . . . , L}.

Therefore, it immediately follows from (25)–(28) that for every t ≥ 0, if f
(
X1(ω, t)

)
= X2(ω, t), then f

(
X1(ω, t + 1)

)
=

X2(ω, t+1). Hence, if we assume f
(
X1(ω, 0)

)
= X2(ω, 0), then by induction we obtain (29), and the proof is complete. □

Proof of Proposition 6.1. We begin by constructing the sample paths of X̃(·) in terms of the uniform random
variables Uij(t) from the previous proof of Lemma 4.1. To this end, let C̃i(t) and Q̃i(t) denote, respectively, the state of
cell i and length of queue i at time t ∈ Z+ in the Markov chain X̃(·). It is then readily verified that for all i ∈ {1, . . . , L},
the following rules update the states of the cells and queues correctly and determine the sample paths of X̃(·), given the
initial state X̃(0) (as before, i + 1 has to be read as 1 in case i = L):

Q̃i(t + 1) = Q̃i(t) − 1
{Q̃i(t)>0}1{C̃i(t)=0}1{Ui0(t)>pi} + 1

{C̃i(t)>0}1{Ui0(t)≤pi}, (30)

C̃i+1(t + 1) = i 1
{Q̃i(t)>0}1{C̃i(t)=0} + i 1

{Q̃i(t)=0}1{C̃i(t)=0}1{Ui0(t)≤pi} +
∑L

j=1 j 1{C̃i(t)=j}1{Uij(t)>qij}. (31)

As in the proof of Lemma 4.1, we have now coupled the dynamics of X1(·) and X̃(·) in terms of the variables Uij(t).
In addition, assuming the initial state X̃(0) of X̃(·) is given, we couple the initial states of the two processes by setting
Q 1
i (0) := Q̃i(0) + 1{Ui0(0)≤pi} and C1

i (0) := C̃i(0) for all i ∈ {1, . . . , L}. We claim that for all t ∈ Z+ and i ∈ {1, . . . , L},

Q 1
i (t) − Q̃i(t) = 1{Ui0(t)≤pi} and C1

i (t) − C̃i(t) = 0, (32)

from which the result follows. We prove this claim with induction. Clearly, (32) holds for t = 0 by the coupling, so assume
it holds for t ∈ Z+. Then, using the fact that (32) implies

1
{Q 1

i (t)>0} = 1
{Q̃i(t)>0} + 1

{Q̃i(t)=0}1{Ui0(t)≤pi},

it follows from (25)–(26) and (30)–(31) that (32) also holds at time t + 1. □

Appendix B. Fluid limits

In this appendix we prove Theorem 5.1 and Proposition 5.3. The proof of Theorem 5.1 requires two lemmas about
sequences of functions that converge uniformly on a compact domain.

Lemma B.1. If the function f :R+ → R+ is non-decreasing and for some a ∈ R+, the sequence {f (n)/n : n ∈ N} converges
to a as n → ∞, then supt∈[0,m]|f (nt)/n − at| → 0 for every m ∈ N.

Proof. Choose a sequence t1, t2, . . . in N that diverges to ∞ but so that tn/n → 0 as n → ∞, and write δn := tn/n. Since
f is non-decreasing, |f (nt)/n− at| is bounded for all t ∈ [0, δn] by (f (tn)/tn + a) δn. Moreover, since for all k ∈ N and all t
in the interval

[
k/n, (k + 1)/n

]
,

k
n

( f (k)
k

− a
)

−
a
n

≤
f (nt)
n

− at ≤
k + 1
n

( f (k + 1)
k + 1

− a
)

+
a
n
,

f (nt)/n−at| is bounded for all t ∈ [δn,m] by the maximum of m |f (k)/k−a|+a/n taken over all k ∈ {tn, tn +1, . . . ,mn}.
ence, the result follows from f (n)/n → a and δ → 0. □
n
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emma B.2. Let m ∈ N, and let {fn} and {gn} be sequences of Lipschitz-1 functions from R+ to R+ that converge uniformly
n the domain [0,m] to the Lipschitz-1 functions f and g, respectively, where g and all gn are non-decreasing and satisfy

g(0) = gn(0) = 0. Then

(a) supt∈[0,m]

⏐⏐fn(gn(t)) − f (g(t))
⏐⏐ → 0 as n → ∞;

(b)
∫ m
0 fn(t) dgn(t) →

∫ m
0 f (t) dg(t) as n → ∞.

Proof. Since g(0) = 0 and g is Lipschitz-1, t ∈ [0,m] implies g(t) ∈ [0,m]. So, using that fn is Lipschitz-1 as well, it
follows that

⏐⏐fn(gn(t)) − f (g(t))
⏐⏐ is bounded for all t ∈ [0,m] by⏐⏐fn(gn(t)) − fn(g(t))

⏐⏐ +
⏐⏐fn(g(t)) − f (g(t))

⏐⏐ ≤ |gn(t) − g(t)| + sup
t∈[0,m]

|fn(t) − f (t)|,

from which we obtain (a). To prove (b), fix ε > 0. For any simple function h : [0,m] → R+, we can write the difference
between the Lebesgue–Stieltjes integrals

∫ m
0 fn dgn and

∫ m
0 f dg as∫ m

0
(fn − f ) dgn +

∫ m

0
(f − h) dgn +

∫ m

0
(h − f ) dg +

∫ m

0
h dgn −

∫ m

0
h dg.

We can choose n sufficiently large and, because f is uniformly continuous on [0,m], a simple function h so that |fn − f | <

ε/m and |f − h| < ε/m uniformly on [0,m]. Since the functions gn and g are Lipschitz-1, it follows that each of the first
three integrals is bounded in absolute value by ε. As for the last two integrals,

∫ m
0 h dgn →

∫ m
0 h dg because h is simple. □

Proof of Theorem 5.1. We start with some observations. Recall that in Section 5.2 we extended the discrete-time
processes from Section 5.1 to continuous time by linear interpolation. Note that in discrete time, the processes Q x

ij (·)
and T x

ij (·) make steps of absolute size 0 or 1 only. It follows that their continuous-time extensions are Lipschitz-1, and
that the discrete-time queueing equation (6) in fact holds at all times t ∈ R+ for the continuous-time processes. But if
a function f from R+ to R+ is Lipschitz-1, then for any n ∈ N, so is the function fn defined by fn(t) := f (nt)/n, since
f (nt) − f (ns)|/n is bounded by |t − s| for all s, t ∈ R+. Hence, the scaled processes SQ x

ij (·) and ST x
ij (·) are also Lipschitz-1,

nd (6) implies

SQ x
ij (t) = SQ x

ij (0) +
1
|x|

Aij
(
|x|t

)
+

∑
(k,ℓ)∈K

1
|x|

Φkℓ
ij

(
|x| ST x

kℓ(t)
)
− ST x

ij (t) (33)

or all initial states x with |x| ≥ 1. Similarly, the scaled idle time process for station i, defined by SIxi (t) := t −
∑L

j=0 ST
x
ij (t),

s Lipschitz-1, and the work-conserving property (10) implies∫
∞

0
Q x
i0

(
⌊t⌋

)
dIxi (t) = 0 =

∫
∞

0
SQ x

i0

(
⌊|x|t⌋
|x|

)
dSIxi (t). (34)

Now let {x′
n} be a sequence of initial states with |x′

n| → ∞ as n → ∞. By the strong law of large numbers, we know
hat Aij(n)/n converges almost surely to pij and Φkℓ

ij (n)/n converges almost surely to Pkℓ,ij as n tends to ∞ through the
ntegers. So by Lemma B.1, there exists a set Ω ′

⊂ Ω of measure 1 such that, on this set Ω ′, for every m ∈ N and all
i, j), (k, ℓ) ∈ K,

sup
t∈[0,m]

⏐⏐⏐ 1
n
Aij(nt) − pijt

⏐⏐⏐ → 0 and sup
t∈[0,m]

⏐⏐⏐ 1
n
Φkℓ

ij (nt) − Pkℓ,ijt
⏐⏐⏐ → 0.

This shows in particular that on Ω ′, the second term on the right in (33) converges uniformly on any compact set [0,m]

along the sequence {x′
n} to the limit function pijt . Next, we want to show that the other terms converge uniformly on [0,m]

as well, along an appropriate subsequence.
As for the first term, since each of the vectors SQ x′n (0) lies in the compact set [0, 1]L

2
+L, there is a subsequence of {x′

n},
that we denote by {x∗

n}, along which they converge to some limit vector Q̄ (0). We may assume that |x∗
n| ≥ 1 for each n,

nd since |SQ x∗n (0)| = 1 for each n, it is clear that |Q̄ (0)| = 1 as well. Now pick any sample point ω ∈ Ω ′, and consider
he sequence of functions

{
ST x∗n (ω, ·)

}
. These functions have Lipschitz-1 components, so if we restrict their domain to

he interval [0,m], it follows from the Arzelà–Ascoli theorem [36, Theorem 7.3] that the sequence is relatively compact
n the space of continuous functions on [0,m] with the uniform norm. Hence, for every m ∈ N, the sequence {x∗

n} has a
subsequence {x∗

m,n(ω)} along which

sup
t∈[0,m]

⏐⏐ST x∗m,n(ω)(ω, t) − T̄ (ω, t)
⏐⏐ → 0 as n → ∞ (35)

for some limit function T̄ (ω, ·). It then follows from a standard diagonal argument that we can in fact find a subse-
quence {x′′(ω)} of {x∗

} such that (35), with x∗ (ω) replaced by x′′(ω), holds for all m ∈ N at the same time.
n n m,n n
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By (33) and Lemma B.2(a), this completes the proof of (18) and shows that on Ω ′, the fluid limit Q̄ (·), T̄ (·) satisfies (12).
oreover, we have seen that |Q̄ (0)| = 1. It remains to be shown that the fluid limit satisfies (13)–(17) on Ω ′. Since the
niform limit of a sequence of Lipschitz-1 functions is Lipschitz-1, (13) and (14) follow from (7) and (8), and (17) follows
irectly from the fact that Q x

ij (t) ≤ 1 for i, j ∈ {1, . . . , L} and all t ≥ 0. Clearly, (15) follows from (9). Finally, using the fact
hat our scaled processes are Lipschitz-1, we see that (34) implies

0 ≤

∫ m

0
SQ x′′n

i0 (t) dSIx
′′
n

i (t) =

∫ m

0

[
SQ x′′n

i0 (t) − SQ x′′n
i0

(
⌊|x′′

n|t⌋
|x′′

n|

)]
dSIx

′′
n

i (t) ≤
m

|x′′
n|

for all m ∈ N because the second integrand is uniformly bounded by |x′′
n|

−1. By Lemma B.2(b), taking n → ∞ gives∫ m
0 Q̄i0(t) dĪi(t) = 0 for all m ∈ N, which is equivalent to (16). □

Proof of Proposition 5.3. Suppose the fluid model (12)–(17) is stable. By Definition 5.2, there exists a constant integer
time t ≥ δ > 0 such that any fluid model solution Q̄ (·), T̄ (·) with |Q̄ (0)| = 1 satisfies Q̄ (t) = 0. Now choose a sequence
f initial states {xn} that contains each state in the state space of X2(·) exactly once, so that |xn| → ∞ as n → ∞.
onsider the queue length and service time processes Q xn (·), T xn (·). Let Ω ′ be the measure 1 set of sample points from
heorem 5.1, and let {x′

n} be an arbitrary subsequence of {xn}. Then by Theorem 5.1, we can find for each ω ∈ Ω ′ a further
ubsequence {x′′

n(ω)} of {x′
n} and a fluid model solution Q̄ (ω, ·), T̄ (ω, ·), so that on the set Ω ′⏐⏐SQ x′′n (t)

⏐⏐ =
⏐⏐SQ x′′n (t) − Q̄ (t)

⏐⏐ → 0 as n → ∞.

ince we can do this for every subsequence {x′
n}, it follows that |SQ xn (t)| must converge to 0 almost surely along the

riginal sequence {xn}. But the components of SQ xn (·) are Lipschitz-1 and |SQ xn (0)| = 1, so |SQ xn (t)| is bounded by
+ (L2 + L)t . Hence, by bounded convergence,

lim
n→∞

E
⏐⏐SQ xn (t)

⏐⏐ = lim
n→∞

1
|xn|

E
⏐⏐Q xn

(
|xn|t

)⏐⏐ = 0.

Now we recall that the queue length process Q xn (·) observed at discrete times has the same law as the Markov
chain X2(·) starting from the state xn. Therefore, we can conclude that there exists an N ∈ N such that for each n > N ,
e have that |xn| > |xN | and

Exn

⏐⏐X2(
|xn|t

)⏐⏐ ≤
1
2 |xn|.

o if we define the constants K := |xN |, γ := (2t)−1 and the stopping time τ :=
⏐⏐X2(0)

⏐⏐ t ∨ 1, and let f : S2
→ R+ be the

function given by f (x) := |x|, then the following holds:

(a) Ex
[
f
(
X2(τ )

)
− f (x)

]
≤ −γ Ex[τ ] when f (x) > K ;

(b) The set F := {x ∈ S2
: f (x) ≤ K } is finite and Ex

[
f
(
X2(1)

)]
< ∞ for all x ∈ F (because at most L customers can

arrive to the multiclass network in a single time step).

The statement in (a) is known as a Foster–Lyapunov condition, and together with (b), it implies positive recurrence of the
Markov chain X2(·) by Theorem 8.6 in [37]. □
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