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Abstract

We construct local fermionic Hamiltonians with no low-energy trivial states (NLTS), providing a
fermionic counterpart to the NLTS theorem. Distinctly from the qubit case, we define trivial states
via finite-depth fermionic quantum circuits. We furthermore allow free access to Gaussian fermionic
operations, provided they involve at most O(n) ancillary fermions. The desired fermionic Hamiltonian
can be constructed using any qubit Hamiltonian which itself has the NLTS property via well-spread
distributions over bitstrings, such as the construction in [ABN22]. We define a fermionic analogue of
the class quantum PCP and discuss its relation with the qubit version.

1 Introduction

One of the main problems in quantum complexity is establishing the hardness of quantum computational
problems such as the estimation of the ground state energy of a many-body Hamiltonian. If high accuracy
is required, –scaling inversely polynomial with the problem size n–, this problem is known to be QMA-
complete [KSV02]. It has been an open question whether the estimation of the ground state energy density
of a Hamiltonian with constant error, would also be QMA-hard [AAV13]. Such a result would mirror the
classical PCP theorem, which states that there are classical SAT problems for which it is NP-complete to
decide whether all clauses can be satisfied or a constant fraction of the clauses can never be satisfied.

Motivated by this quantum PCP problem, it was conjectured in [FH13] that there exist local sparse qubit
Hamiltonians such that any state with sufficiently small energy density cannot be prepared by a constant-
depth circuit, hence suggesting that low-energy states have some nontrivial complexity. This “no low-energy
trivial state” (NLTS) conjecture was recently proven in [ABN22]. They demonstrate that a family of Hamil-
tonians based on recently established good quantum LDPC codes [LZ22] has the desired property. While
the low energy states of this family of Hamiltonians are non-trivial, their ground state can be efficiently
prepared by a Clifford circuit. This means that these Hamiltonians fall short of being genuinely ‘complex’.
Hence it is natural to extend the definition of “non-trivial” beyond constant-depth circuits to climb up the
complexity ladder, see [GG22, WFC23, CCNN23, AGK23] . In particular, [CCNN23] have shown that an
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adaptation of the construction in [ABN22] can be used to construct Hamiltonians without either stabilizer
low-energy states or constant-depth low-energy states.

Here we similarly extend the construction in [ABN22], but now in the direction of fermionic Hamil-
tonians. Fermionic Hamiltonians describe the majority of quantum systems of practical interest, namely
interacting electrons in materials and chemical compounds. These systems are among the prime targets
for quantum simulation using both classical and quantum computers. Fermionic quantum complexity is
interesting when it differs from qubit complexity and when qubit arguments are not directly applicable. In
addition, while most attention in the quantum complexity literature is devoted to qubit systems, fermions
have come more into focus in recent years, see e.g. [BG17, BGKT19, ODMZ22, HO22, HSHT22].

In the present manuscript, we answer the question posed in [HO22] in the affirmative: do there exist
fermionic Hamiltonians without low-energy trivial states? Our results directly build on [ABN22]. We give
natural notions of triviality through the class of fermionic Gaussian states, which are classically simulat-
able Besides our main result, the fermionic NLTS Theorem (Theorem 7), we analyze the definition of the
quantum PCP class from a fermionic perspective, presenting a fermionic version (Section 5). The paper is
otherwise organized as follows. In Section 2 we provide some useful definitions, in particular we give two
different natural notions of trivial fermionic circuits. In Section 3 we introduce the key tools from [ABN22]
and in Section 4 we prove our main Theorem. We end the paper with a Discussion (Section 7) on sparse
fermion-to-qubit mappings and what lies beyond.

2 Preliminaries and Definitions

A system of n fermionic modes can be described by 2n Majorana fermion operators ci (i ∈ [2n]) which
obey c2i = I, ∀i ̸= j cicj = −cicj , ci = c†i , Tr(ci) = 0. Any fermionic state on this system is given by a
Hermitian positive semidefinite ρ ≥ 0 with Tr(ρ) = 1 which can be expressed as an even polynomial in the
Majorana fermion operators.

We define Hermitian operators CK as ordered products of the operators ck:

CK = i|K|(|K|−1)/2ck1ck2 ..ck|K| , (1)

with K = (k1 < k2 < . . . < k|K|). The class of Gaussian fermionic states is a subclass of fermionic
states which are efficiently describable. Gaussian circuits preserve this class of states, and hence are
efficiently-classically simulatable. For more background on Gaussian states and Gaussian circuits, –also
called fermionic linear optics–, we refer the reader to e.g. [BK02, TD02, Bra05, HO22, HSHT22].

Consider preparing a fermionic state ρ on n modes using m ancillary modes (with Majorana operators
ck, k ∈ [2(n +m)]\[2n]). Starting from a pure initial Gaussian state σG, one may use a fermionic circuit
U which is generally decomposable into gates which use quartic or quadratic interactions between O(1)
fermionic operators [BK02], i.e.

ρ = Tr[2(n+m)]\[2n]

(
UσGU

†
)
. (2)

We now introduce two slightly different notions of nontrivial fermionic circuit ‘depth’. Our definition will
make use of the notion of Gaussian circuits, namely circuits consisting of unitaries of the form exp (−ω ck1ck2).
We note that any Gaussian unitary on n fermionic modes can be written as a Θ(n)-deep circuit [JSK+18]
of such unitaries. The definition is as follows:

Definition 1. We say that a fermionic circuit U has depth T , if it is given by

U =WTWT−1..W1, (3)
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with each Wt of the form

Wt =
∏

K : |K|∈{2,4}

exp
(
iω

(t)
K CK

)
(4)

where the product runs over non-overlapping setsK ⊂ [2n]. Furthermore we say that U is a depth T circuit
with free access to Gaussian operations, if it is given by

U = GTWTGT−1..W2G1W1, (5)

where Gt are arbitrary Gaussian circuits.

Note we take a fixed choice of operators cs in Eq. (4). Allowing the use of an arbitrary basis of fermionic
operators {ck} in each layer of Wt would have allowed more expressive unitaries U . However, we don’t
consider this model separately, since it is subsumed by free access to Gaussian operations in Eq. (5).

Here is another useful (standard) definition:

Definition 2 (Local sparse n-qubit (resp. n-fermion) Hamiltonian). H =
∑m

i=1Hi is a local sparse n-qubit
(resp. n-fermion) Hamiltonian when the maximum number of Pauli operators (resp. Majorana operators)
in each term Hi is O(1) (local) and the maximum number of terms involving any qubit (resp. Majorana
operator) is O(1). The smallest eigenvalue of H is denoted as λ(H).

Throughout this manuscript, we will be considering Hamiltonians which are sparse, local, positive-
semidefinite and have terms bounded by one in operator norm unless explicitly said otherwise.

3 NLTS Hamiltonians and well-spread distributions

It was proven in [ABN22] that there exist qubit Hamiltonians with the following NLTS property

Definition 3. A local sparse n-qubit Hamiltonian H ≥ 0 has the NLTS property with parameter ϵ, if any
family of n-qubit states ρn with energy Tr(ρnH) < ϵn requires a quantum circuit, which uses an arbitrary
number of ancilla qubits, of depth at least T = Ω(log n).

A way to obtain NLTS Hamiltonians passes through the notion of well-spread quantum states, which
are states that, when measured in a “trivial” basis, have certain statistical properties. We now define well-
spreadness both for qubits and fermions; the fermionic definition will play a key role in our result.

Definition 4. Consider an n-qubit POVM πR(s), defined as

πR(s) = R†
n∏

j=1

1 + (−1)sjZj

2
R, (6)

where s is the outcome bitstring s = (s1, ..sn) ∈ {0, 1}n and R is a tensor product of single qubit unitaries.
Given an n-qubit state ρ, define a probability distribution over s ∈ {0, 1}n,

pR,ρ(s) = Tr(πR(s)ρ). (7)

Definition 5. Consider a POVM with 2n Majorana fermion operators

πG(s) = G†
n∏

j=1

I+ (−1)sjc2j−1c2j
2

G, (8)

where G is a Gaussian unitary and s is the outcome bitstring. A state ρ on n fermionic modes yields a
probability distribution over s ∈ {0, 1}n

pG,ρ(s) = Tr(πG(s)ρ). (9)
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Definition 6. A qubit (resp. fermionic) state ρ is said to be (µ,L)-spread if exists a unitary R (respectively,
G) as defined above, and two sets of bitstrings S1 and S2 ⊂ {0, 1}n such that p(s) ≡ pR,ρ(s) (respectively,
pG,ρ(s)) obeys ∑

s∈S1

p(s) ≥ µ,
∑
s∈S2

p(s) ≥ µ, and min
s1,2∈S1,2

|s1 − s2| = L. (10)

with Hamming distance |.|. An n-qubit (n-fermion) Hamiltonian H is referred to as having well-spread
low-energy states, if there exists a constant ϵ such that any ρ with energy tr(ρH) < ϵn is (µ,L)-spread for
µ = Ω(1) and L = Ω(n).

Ref. [ABN22] gives a quantum LDPC (CSS) code construction of an n-qubit Hamiltonian H with well-
spread low-energy states. This property implies that H is NLTS (Fact 4 in [ABN22]).

4 Fermionic NLTS Hamiltonians

We show that qubit Hamiltonians with well-spread low energy states (by Definition 6) can be used to con-
struct fermionic local Hamiltonians without trivial low-energy states. Terminology related to the fermionic
circuits was introduced in Definition 1.

Theorem 7. For even n, consider an n-qubit H(q) with well-spread states below energy ϵn. Construct
a 3n/2-fermion Hamiltonian H with Majorana operators {cx,j , cy,j , cz,j}j∈[n], by replacing the Pauli
operators in H(q) using

Xj 7→ icy,jcz,j , Yj 7→ icx,jcz,j , Zj 7→ icx,jcy,j . (11)

The resulting Hamiltonian H has two fermionic NLTS properties. In particular, for an arbitrary 3n/2-
fermion state ρ such that Tr(ρH) < ϵn, the following holds

1. Using arbitrary Gaussian initialization and an arbitrary number of ancillas, any fermionic circuit
that prepares ρ has depth T = Ω(log(n))

2. Using a fermionic circuit with free access to Gaussian operations and at most m = O(n) ancillary
fermionic modes, any circuit that prepares ρ has depth T = Ω(log n).

Before proceeding to the proof, we would like to briefly discuss the above result. The restriction on the
access to ancillary modes given access to Gaussian operations, which we see in Theorem 7.2, may be of fun-
damental origin. On the one hand, ancillary non-Gaussian states in combination with Gaussian operations
allow the injection of non-Gaussian gates [Bra06]. On the other hand, this procedure also requires a capacity
for adaptive measurements, which is not included in our scenario. We leave as an open question whether the
particular upper bound m = O(n) is optimal, or if it can be improved using other proof techniques.

Our constructed HamiltonianH has the same spectrum asH(q), with an additional 2n/2-fold degeneracy.
As will be clear from the proof, the degeneracy does not affect the well-spreadness property. The key point
is that the mapping we use preserves the locality of H (unlike, say, a direct mapping of n qubits onto n
fermions via the inverse Jordan-Wigner transformation). We believe that a similar result can be achieved
with the local embedding of n qubits into 4n Majorana operators, as introduced by [Kit06], or a mapping
used in [LCV07].

Proof. The HamiltonianH constructed using Eqs. 11 can be understood as an image ofH(q)⊗I(f) under the
unitary “qubit assimilation” mapping (Lemma 15 in Appendix A). Here I(f) acts on auxiliary n/2 fermionic
modes.
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We now show that ρ is (Ω(1),Ω(n))-spread. Then we use this fact to lower-bound the circuit complexity
of ρ.

For the state ρ, construct ρ(qf) on n qubits and n/2 fermions by applying inverse qubit assimilation to
ρ (replacements listed in Eqs. 35). Next, trace out the n/2-fermion sector from ρ(qf) and thus obtain an
n-qubit state ρ(q). Observe

Tr(ρ(q)H(q)) = Tr(ρ(qf)H(q) ⊗ I(f)) = Tr(ρH) < ϵn. (12)

By definition of H(q), this implies that ρ(q) is (Ω(1),Ω(n))-spread. By Definition 6, there exists a product
of single-qubit rotations R, a POVM {πR(s)}s∈{0,1}n , and two sets of bitstrings S1,2 ⊂ {0, 1}n such that
pR(s) = Tr(ρ(q)πR(s)) obeys∑

s∈S1,2

pR(s) = Ω(1), min
s1,2∈S1,2

|s1 − s2| = Ω(n). (13)

Considering a generalR rotating Zj toXj sin θj cosϕj+sin θj sinϕjYj+cos θjZj for each qubit, we write
it as

R =
n∏

j=1

exp

(
iθj
2
(sinϕjXj − cosϕjYj)

)
. (14)

By qubit assimilation (Lemma 15), Xj , Yj , and Zj are mapped respectively onto icj,zcj,y, icj,xcj,z, and
icj,xcj,y for j ∈ [n]. Therefore R is mapped onto

G =
∏
j

exp

(
θj
2
(−cj,zcj,y sinϕj + cj,xcj,z cosϕj)

)
. (15)

Relabeling cj,y → c2j−1, cj,x → c2j and cj,z → c2n+j , define a POVM

πG(s̃) = G†

3n/2∏
j=1

I+ (−1)s̃j ic2j−1c2j
2

G, (16)

where s̃ ∈ {0, 1}3n/2. We adopted the notation πG(s̃) from Definition 5, since the unitary G is Gaussian.
We see that qubit assimilation maps πR(s) onto:

G†

 n∏
j=1

I+ (−1)sj ic2j−1c2j
2

G =
∑

s̃j=±1,
j∈(n+1,..3n/2)

G†

3n/2∏
j=1

I+ (−1)s̃j ic2j−1c2j
2

G
∣∣
s̃j=sj , j∈[n]

=
∑

s̃j=±1,
j∈(n+1,..3n/2)

πG(s̃)
∣∣
s̃j=sj , j∈[n]

. (17)

Note that in Eq. (17) bits sj for j ∈ (1, . . . , n) came from the pre-image πR(s), while sj for j ∈ (n +
1, . . . , 3n/2) are the newly introduced dummy variables. Applying the constructed POVM πG(s), we find
that the 3n/2-fermion state ρ is (Ω(1),Ω(n)) by Definition 6. Indeed, using S1,2 from Eq. (13) we can di-
rectly construct two sets of bitstrings S̃1,2 ≡ {(s1, ..sn, s′1, ..s′n/2) | s ∈ S1,2, s

′ ∈ {0, 1}n/2} ⊂ {0, 1}3n/2,
such that pG(s) = Tr(ρπG(s)) obeys

∑
s̃∈S̃1,2

pG(s̃) =
∑

s∈S1,2

pR(s) = Ω(1), min
s̃1,2∈S̃1,2

|s̃1 − s̃2| = min
s1,2∈S1,2

|s1 − s2| = Ω(n). (18)
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Consider constructing ρ with a depth-T fermion circuit with free access to Gaussian operations, using
m = O(n) ancillary modes. To prove that T = Ω(log n) depth is required, we employ (Ω(1),Ω(n))-
spreadness of ρ and Lemma 8 stated below. This directly yields T = Ω(log n).

Finally, consider producing ρ in a depth T fermionic circuit U (see Eqs. (2, 3)), starting from an arbitrary
Gaussian initialization σG. Since the output state ρ is obtained as a marginal of UσGU † on Majorana opera-
tors [3n], we are not concerned with the action of U on the entire system of Majorana operators [3n+ 2m].
Without changing ρ, U can be replaced with U ′: its backward light cone stemming from [3n]. This back-
ward light cone will be supported on at most 3n · 4T Majoranas, because each gate in Wt (Eq. (4)) involves
at most three Majoranas in addition to each one from the light cone at layer t + 1. Naively, an arbitrary
number 2m of ancillary Majoranas can still be non-trivially involved in the initialization state σG. However,
one can replace this state with its marginal ρG on 3n · 4T Majoranas supporting U ′, without changing ρ. In
turn, being a mixed Gaussian state on 3n · 4T Majoranas, ρG can be purified back onto O(n · 4T ) fermions.
Therefore, any 3n/2-fermionic state prepared using a depth-T fermionic circuit, arbitrary Gaussian initial-
ization, and arbitrary m ancillary fermionic modes, can be prepared in the same setting with 3n/2 + m
reduced to O(n · 4T ). Employing a next Lemma 8 and (Ω(1),Ω(n))-spreadness of ρ once again, we obtain
T = Ω(log n), finalizing the proof of the Theorem.

Lemma 8. Consider a (µ,L)-spread l-fermion state ρ. Any fermionic circuit using m ancillary fermionic
modes and free access to Gaussian operations that produces ρ must be of depth at least

T =
1

2
log3

(
L2

1600(l +m) log(1/µ)

)
. (19)

Proof. The following parallels the proof of Fact 4 from [ABN22]. The key additional observation is that
Gaussian circuits, however deep, do not change the locality of fermionic operators. Consider preparing ρ as

ρ = Tr[2(m+l)]\[2l]

(
UσGU

†
)
, (20)

with a fermionic circuit U and the pure Gaussian starting state

σG =
1

2l+m

l+m∏
k=1

(I+ ic2j−1c2j). (21)

Consider the operator Q = 1
(l+m)

∑l+m
j=1

1
2(I− ic2j−1c2j). The spectrum of Q is (0, 1/(l +m), 2/(l +

m), .., 1), with the non-degenerate ground state ρG. The Hamiltonian UQU † has the same spectrum as Q
and has UσGU † as the ground state; we now prove that this Hamiltonian is also 23T -local, where T is the
depth of U . Indeed, (i) any Gaussian circuit Gt in U (cf. Eq. (5)) does not change the locality of a fermionic
operator CK′ in UQU †, while (ii) every layer Wt of a non-Gaussian circuit can increase the weight of CK′

at most by a factor 3. To show point (i), consider the two options for a transformation of any Majorana
monomial CK′ with an elementary Gaussian operation:

e−iwk1,k2
ck1ck2CK′eiwk1,k2

ck1ck2 =

{
CK′(cos(2wk1,k2) + i sin(2wk1,k2) ck1ck2) if {CK′ , ck1ck2} = 0,

CK′ if [CK′ , ck1ck2 ] = 0.

(22)

In the first option, k1 or k2 must belong to K ′ and therefore CK′ck1ck2 has the same weight as CK′ . The
second option trivially conserves locality. To show point (ii), consider the transformation similar to Eq. (22),
using an elementary gate exp (iwK CK) with |K| = 4; this transformation can only add weight 2 to CK′ ,
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and only if {CK′ , CK} = 0. Since Wt only contains non-overlapping generators CK , there will be at most
|K ′| generators such that {CK′ , CK} = 0. Therefore, a transformation of CK′ with Wt will produce opera-
tors with a weight of at most |K ′|+ |K ′| · 2 = 3|K ′|.

We now use a matrix polynomial approximation P (UQU †) to the ground state of degree f (concretely,
the polynomial construction in [KLS96, BCDZ99, AAG22]) such that

∥ |ψ ⟩⟨ψ | − P (UQU †)∥∞ ≤ exp

(
− f2

100(l +m)

)
. (23)

As UQU † is 2 ·3T -local, P (UQU †) is 2f3T -local. Fixing f = L
4·3T , we obtain P (UQU †) that is L/2-local.

The right-hand-side of Eq. (23) then becomes exp(− L2

1600(l+m)·32T ).

Next, from ρ being (Ω(1),Ω(n))-spread there exists a GaussianG and S1, S2 ⊂ {0, 1}l with mins1,2∈S1,2 |s1−
s2| ≥ L such that

∥
∑

s1,2∈S1,2

πG(s1) |ψ ⟩⟨ψ |πG(s2)∥∞ ≥ µ. (24)

On the other hand, from the L/2-locality of P (UQU †) it follows that

∥
∑

s1,2∈S1,2

πG(s1)P (UQU
†)πG(s2)∥∞ = 0, (25)

since πG(s1) C πG(s2) = 0 for any |s1 − s2| ≤ L and L/2-local C. The latter condition is true since
the Gaussian transformation G conserves the locality of operator C, and because this condition manifestly
holds for the case G = I. Collecting Eqs. (23)-(25), we arrive at:

exp

(
− L2

1600(l +m) · 32T

)
≥ µ, (26)

which amounts to the claimed lower bound on T .

5 Qubit PCP versus Fermionic PCP

The quantum PCP complexity class (QPCP) was defined in e.g. [AALV09]. The quantum PCP conjecture
[AAV13] asks whether QPCP[q = 0(1)] is equal to QMA, where q = O(1) is the number of qubits of the
proof which are checked. Here we introduce a new class FermPCP[q = O(1)] which accesses q fermionic
modes of a (fermionic) proof and argue that this class could be larger than QPCP[q = O(1)] due to the
limitations of fermion-to-qubit mappings.

In the definitions below we do not make explicit reference to the number of random bits of the verifier:
it is sufficient if this is at most poly(log n) when the number of qubits (or fermionic modes) that the verifier
accesses is q = O(1) or q = O(log n) which is what we will use in this section. In addition, we allow the
verifier to simulate randomness in the quantum circuit by having (poly(n)) ancillary qubits. We start by
reproducing the definition of QPCP:

Definition 9 (QPCP). A promise problem L = Lyes∪Lno ∈ QPCP[q] if there exists a quantum polynomial
verifier and a polynomial p(.) with the following properties. The verifier receives as input a classical string
x and a p(x)-qubit density matrix ρ. The verifier randomly picks q qubits out of p(x) according to some
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scheme using her random bits, and then runs a polynomial-sized quantum circuit V (x, ρ), which can use
poly(n) ancillary qubits, and the circuit V accesses only the chosen q qubits as inputs. The accept/reject
output of V is obtained by a measurement in the Z-basis of one of the ancilla qubits. Then L ∈ QPCP[q]
when,

• If x ∈ L, ∃ρ such that Prob(V (x, ρ) accepts) ≥ 2/3.

• If x ̸∈ L, ∀ρ, Prob(V (x, ρ) accepts) ≤ 1/3.

Here is the definition of the analogous fermionic class:

Definition 10 (FermPCP). A promise problem L = Lyes ∪ Lno ∈ FermPCP[q] if there exists a quantum
polynomial fermionic verifier and a polynomial p(.) with the following properties. The verifier receives as
input a classical string x and a p(x)-fermionic state ρf . The verifier randomly picks q fermionic modes (i.e.,
2q operators) out of p(x) according to some scheme using her random bits, and then runs a polynomial-
sized quantum circuit V (x, ρf ), possibly using poly(n) ancillary qubits, and the circuit V accesses only
the chosen q fermionic modes as inputs. The accept/reject output of V is obtained by a measurement in the
Z-basis of one of the ancilla qubits. Then L ∈ QPCP[q], when

• If x ∈ Lyes, ∃ρf such that Prob(V (x, ρf ) accepts) ≥ 2/3.

• If x ∈ Lno, ∀ρf , Prob(V (x, ρf ) accepts) ≤ 1/3.

We note that the fermionic verifier and its access to a fermionic proof could be mapped to a qubit verifier
and its proof by a standard fermion-to-qubit mapping such as the Jordan-Wigner transformation, but such
a mapping clearly does not preserve the limited access structure of QPCP. Before we prove two statements
about the relations between these classes, let us review what problem is complete for these classes and define
the local Hamiltonian density problem:

Definition 11 ((Fermionic) Local Hamiltonian Density Problem (LHD)). Let H = 1
m

∑m
i=1Hi be a local

n-qubit (resp. n-fermion) Hamiltonian with Hi ≥ 0, ||Hi|| = O(1). Either λ(H) ≤ a or λ(H) ≥ b, for
constants a > 0, b > 0 and a constant ϵ = b−a > 0. The qubit (resp. fermionic) local Hamiltonian density
(LHD) problem is to decide which is the case.

It is known that LHD ∈ QPCP[q = O(1)] by the proof of [KSV02] and identical arguments can be
made to show that fermionic LHD ∈ FermPCP[q = O(1)]. The idea is that the expectation value of
any (fermionic) Hamiltonian term Hi can be estimated using qubit ancillas. Here, one considers a spectral
decomposition of Hi =

∑
j wj,iσj,i with 1 ≥ ωj,i ≥ 0, and one defines a unitary which uses an additional

ancilla qubit in the state |0⟩ and maps

σj,i ⊗ |0⟩ ⟨0 | → σj,i ⊗
(√
wj,i |0⟩+

√
1− wj,i |1⟩

) (√
wj,i ⟨0 |+

√
1− wj,i ⟨1 |

)
, (27)

(see [KSV02]). The desired expectation can be estimated by estimating the probability of obtaining the
outcome ‘1’ when the qubit is measured.

The opposite, namely that qubit LHD is hard (and thus complete) for QPCP[O(1)], has been informally
proven in [AAV13]. For completeness, we prove it here and we extend it to a fermionic version:

Proposition 12. The qubit LHD problem is QPCP[O(1)]-hard by a polynomial-time quantum reduction.
Similarly, the fermionic LHD problem is FermPCP[O(1)]-hard by a polynomial-time quantum reduction.
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Proof. We show that any QPCP[O(1)] proof system can be mapped onto a LHD problem. The verifier
uses O(log n) bits to draw from some probability distribution pi and each i corresponds to picking a certain
subset of q qubits and the number of such sets is m = poly(n). Let the acceptance qubit be labelled ancilla
qubit number 1. The probability for acceptance paccept =

∑
i pip

i
accept with piaccept = 1

2(1 + Tr(Oiρ))
where Oi is a traceless q-qubit observable acting only non-trivially on the chosen q qubits of ρ. Then we
construct H as H = 1

m

∑
iHi with Hi = 1

2pi(I − Oi), obeying ||Hi|| ≤ 1 and Hi ≥ 0. Hence, if
x ∈ Lyes, there exists a ρ such that λ(H) ≤ 1

3 . When x ∈ Lno, we have ∀ρ, λ(H) ≥ 2
3 . To construct

Oi, one needs to run the verifier’s quantum circuit where we replace the q = O(1) input qubits by all
possible eigenstates of the Pauli operators on q qubits and apply process tomography on the superoperator
Si(ρ) = Tranc. but 1Viρ ⊗ |00 . . . 0⟩ ⟨00 . . . 0 |V †

i , where |00 . . . 0⟩ is the initial state of all ancillary qubits
and Vi is the circuit V using the Pauli qubit operators in the chosen subset i. Using process tomography
one constructs the q to q + 1-qubit TPCP map Si()

1, and thus S†
i () (with negligible error 1/poly(n)), and

applies it to Z1 to construct Oi, i.e. Oi = S†
i (Z1).

In the fermionic case, all goes through similarly. Let ancilla qubit 1 be the acceptance qubit. The verifier
measures Z1 = ±1 or piaccept =

1
2(1+Tr(Z1Viρ⊗ |00 . . .⟩ ⟨00 . . . 0 |V †

i )) =
1
2(1+Tr(Z1Si(ρ)) =

1
2(1+

Tr(Oiρ)). Here Vi only uses those fermionic modes in the chosen subset i and the state |00 . . . 0⟩ of all ancil-
lary qubits. To construct Si which maps q fermion modes to q fermions and 1 ancilla qubit, we can construct
its corresponding Choi-Jamiolkowski state [Bra05]. Let ci[1], . . . ci[2q] be the chosen set i of Majorana oper-
ators and take an additional set of reference operators cr,1, . . . cr,2q, then ρChoi = Si(

1
22q

Π2q
j=1(I+ici[j]cr,j)).

From ρChoi, a set of O(1) Kraus operators Ak,i, –which can be expressed as even polynomials in the Majo-
rana operators ci[1], . . . ci[2q] and single ancilla qubit Paulis–, can be obtained [Bra05], and hence Oi can be
constructed and thus H can be constructed via a quantum reduction.

We note that the qubit LHD problem is not clearly hard for the class FermPCP[O(1)]. In the following
Lemmas we establish some relations between QPCP and FermPCP:

Lemma 13. QPCP[O(1)] ⊆ FermPCP[O(1)].

Proof. Let L ∈ QPCP, and so we seek to construct a fermionic proof system for L. First, if p(x) is odd,
add an extra qubit in |0⟩ to the proof so that p(x) is even. In addition, wlog we assume that q, the number
of access qubits is even. We use the unitary qubit-assimilation mapping M of Lemma 15 in Appendix A
to map the k = p(x)-qubit state ρ onto a state ρf on 3k Majorana operators (3k/2 fermionic modes), that
is, if we expand the witness state ρ in terms of Pauli Xj , Zj and we replace those by Eqs. (28), (29). Simi-
larly, each occurrence of Xj or Zj where j is one of the chosen input qubits in the circuit of the verifier is
replaced using Eqs. (28), (29). The ancillary qubits remain as is. From the qubit proof, the verifier selects q
qubits, and this thus corresponds to selecting 3q Majorana operators (3q/2 = O(1) fermionic modes). Thus
we can map the qubit proof for x ∈ Lyes directly onto a fermionic proof and the acceptance probability is
the same. Note that the additional fermionic Hilbert space in Lemma 15 is simply not used in this conversion.

When x ∈ Lno, the verifier proceeds identically using the mapping M, but the prover may provide an
arbitrary fermionic state ρf of 3k/2 fermionic modes as input, not obeying the mapping M. So we need to
argue that this state can always be mapped to some qubit state ρq, such that if the fermionic verifier is fooled
in accepting by this state, then so will the qubit verifier with input ρq, which was excluded by definition. The
state ρf will be an even polynomial in the operators cy,j , cz,j and cx,j . Using the c̃j operators in Eq. (30),
these operators can be mapped to qubit Pauli operators Xj , Zj and c̃j , hence obtaining a state ρqf . Then
we take ρ̃q = Trf (ρqf ), the partial trace over the fermionic system to get a n-qubit state ρq (effectively this

1Note that it is q to q + 1 since one ancilla qubit is fixed as |0 ⟩ on input but is needed/used as acceptance output qubit.
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means omitting any term which involves the operators c̃j). Note that since the fermionic verifier uses M
the fermionic gates and final measurement of the fermionic verifier never use the operators c̃j and hence
tracing out has no effect on the action of the verifier and the selection of 3q/2 fermionic modes corresponds
precisely to the selection qubits of q qubits in ρq. Thus if ρf would lead the fermionic verifier V to accept
with probability > 1/3, then the qubit verifier would accept with probability > 1/3 on the state ρq, in
contradiction with the qubit proof system.

Lemma 14. FermPCP[O(1)] ⊆ QPCP[O(log n)].

Proof. Let L ∈ FermPCP, and so we seek to construct a qubit proof system for L. Using the Bravyi-Kitaev
transformation [BK02], we map the k = p(n)-fermionic mode state ρf onto a k-qubit state and the chosen
2q Majorana operators cj are replaced by products of O(log(p(n))) single-qubit Pauli operators, hence
requiring access to O(log n) qubits. Thus we can map the fermionic qubit proof for x ∈ Lyes directly onto
a qubit proof, albeit with logarithmic access. When x ∈ Lno, the prover may provide an arbitrary k-qubit
state ρq as input, not necessarily obeying the Bravyi-Kitaev transformation, while the verifier applies the
circuit obtained through the mapping. Applying the inverse of the Bravyi-Kitaev transformation to the state
ρq leads to fermionic state ρf of k fermionic modes. If the qubit verifier accepted on ρq with probability
> 1/3, then applying the inverse would have lead to the fermionic verifier accepting with probability> 1/3,
which was excluded.

Note that the qubit (resp. fermionic) LHD problem which is complete for QPCP[O(1)] (respectively
FermPCP[(O(1)]) is not necessarily sparse. Previous results (Theorem 13 in [BH13]) give a polynomial-
time classical algorithm for the dense qubit case, so that problem certainly cannot be QMA-hard. It
is an open question whether the dense fermionic LHD problem can be QMA-hard. Finally, whether
FermPCP[O(1)] = QPCP[(O(1)] is an open question, which relates to (1) whether the sparse fermionic
LHD problem is FermPCP[O(1)]-hard (note that Proposition 12 merely shows that the general fermionic
LHD problem is hard), and (2) the existence of fermion-to-qubit mappings for sparse fermionic interactions
which do not introduce non-local constraints. The latter topic is discussed in Section 7.
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7 Discussion

In this paper we constructed fermionic NLTS Hamiltonians from qubit Hamiltonians with well-spread low-
energy states. An interesting open question is to consider the reverse construction. It is known that one
cannot map all O(1)-local Majorana operators to qubit operators of weight less than Ω(log(n)) (see e.g. the
argument in [HSHT22]), i.e. the Bravyi-Kitaev construction used in Lemma 14 has the optimal scaling in
n. It must be noted though, that for sparse fermionic Hamiltonians there exists the Bravyi-Kitaev superfast
encoding [BK02], which unitarily maps local fermionic Hamiltonians terms onto O(1)-local qubit interac-
tions. However this mapping is only valid in a subspace specified by a set of non-local stabilizer generators.
When mapping a fermionic NLTS Hamiltonian to a qubit NLTS Hamiltonian, these generators would have to
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be included in the qubit Hamiltonian. In general these generators are notO(1)-local, nor would the resulting
Hamiltonian necessarily be sparse. Adapting the BK superfast encoding to avoid these two properties is the
topic of active research in quantum simulation (see [CSBM+23] and references therein). In Appendix B we
describe a construction that achieves both of these objectives, i.e. it encodes a sparse local fermionic Hamil-
tonian into a sparse local qubit Hamiltonian, through an adaptation of the BK superfast encoding. However
it requires Θ(n2) qubits to encode n fermionic modes, making it useless when constructing NLTS Hamil-
tonians. This leaves open the problem of finding a way to encode an n-mode sparse O(1)-local fermionic
Hamiltonian into an O(n)-qubit sparse O(1)-local qubit Hamiltonian. Given our repeated failures at finding
such a construction we believe there might be some fundamental obstruction. If FermPCP[O(1)] is strictly
larger than QPCP[O(1)], pursuing a fermionic PCP theorem might be a fruitful endeavor. Finally, we note
that PCP versions of QCMA [WFC23] are equivalent when formulated in terms of qubits or fermions.

This paper does not make progress towards understanding the quantum PCP conjecture, but shows that
one can construct fermionic Hamiltonians with no trivial low energy states. Extending such a result be-
yond Majorana fermion stabilizer Hamiltonians would be of some interest. On the more practical side, a
natural next step would be to give more realistic families of fermionic Hamiltonians without low-energy
trivial states. Developing numerical tools in order to diagnose the fermionic NLTS property in realistic
Hamiltonians is another direction of practical interest.

A Qubit assimilation mapping

We detail the mapping used in Theorem 7. See Ref. [BGKT19] for an earlier use of this mapping.

Lemma 15. For even n, consider the Hilbert space H(q−f) of n qubits (with Paulis Xj , Yj and Zj for
j ∈ [n]) and n/2 fermions (operators c̃j for j ∈ [n])), and the Hilbert space H(f) of 3n/2 fermions
(cx,j , cy,j , cz,j for j ∈ [n]). There is a unitary map from H(qf) to H(f), defined by its action on the
generating operators

Xj 7→ icy,jcz,j , (28)

Zj 7→ icx,jcy,j , (29)

c̃j 7→ icx,jcy,jcz,j . (30)

Proof. Consider the bases of Hermitian operators in H(f) and H(qf),

P(f)(s = {sα,j , α ∈ {x, y, z}}) = i
|s|(|s|−1)

2

∏
j

c
sx,j
x,j c

sy,j
y,j c

sz,j
z,j , (31)

P(qf)(sx = {sxj }, sz = {szj}, sc = {scj}) = is
x·sz+ |sc|(|sc|−1)

2

∏
j

X
sxj
j Z

szj
j c̃

scj
j . (32)

Both H(q−f) and H(f) are isomorphic to the 3n/2-qubit Hilbert space (denote it as H(q)) via the Jordan-
Wigner transformation. Under this isomorphism, the Pauli basis of Hermitian operators in H(q) is equivalent
to the Hermitian bases in Eqs. (31)-(32). Sets {cx,j , cy,j , cz,j} and {Xj , Zj , c̃j} are two alternative sets of
generators of the Pauli group, i.e., independent Pauli strings in H(q). The mapping (denote it as M) between
these generators defines the mapping on the whole Pauli group,

M

∏
j

X
sxj
j Z

szj
j c̃

scj
j

 =
∏
j

M
(
X

sxj
j

)
M

(
Z

szj
j

)
M

(
c̃
scj
j

)
. (33)
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Observe that for two elements PA and PB of the Pauli group defined in terms of {Xj , Zj , c̃j} as in Eq. (32),
the map M has the property

M (PA)M (PB) = M (PAPB) . (34)

This property follows from Eq. (33) and the fact that M(Xj), M(Zj) and M(c̃j) mutually commute or
anticommute in the same way as Xj , Zj and c̃j (among themselves and across different j). The property in
Eq. (34) implies that the unitary map claimed in the Lemma exists, defined as a Clifford transformation on
H(q) [CRSS97].

Since the map of Lemma 15 is unitary, it admits an inverse from H(f) to H(qf), which acts on the
fermionic operators as

cx,j 7→ Xj c̃j , cy,j 7→ −Yj c̃j , cz,j 7→ Zj c̃j . (35)

A curious observation (which we do not use in this work) is that the mapping of H(f) onto H(qf) using
Eqs. (35) can be repeated until all fermions are replaced with qubits. This repetition procedure can be done
in a variety of ways, each giving a full fermion-to-qubit mapping. In the worst case, the scaling features
of the resulting mapping resemble those of Bravyi-Kitaev transformation [BK02]. In practical applications,
one may pick a variation of the procedure which leads to the best locality for the resulting qubit Hamiltonian.

B Sparse and local superfast encoding

The Bravyi-Kitaev superfast encoding is a method for mapping sparse and local fermionic Hamiltonians to
sparse and local qubit Hamiltonians (up to the enforcement of certain stabilizer constraints). Here we give
a version of this encoding which makes sure these stabilizer constraints are themselves local and sparse.
Briefly, the BK encoding proceeds as follows. Given an n-fermion Hamiltonian H we construct a graph G
with n vertices (one for each fermionic mode) and place an edge if a term in the Hamiltonian involves both
modes. More precisely, one can define vertex and edge operators as

Vi = c2i−1c2i i ∈ V (G) = [n], (36)

Ei,j = c2ic2j (i, j) ∈ E(G). (37)

The Hamiltonian H can then be recovered as an element of the “graph algebra” generated by the above
operators. We can represent this graph algebra on qubits by placing a qubit on each edge of the graph and
defining a map B taking the E and V operators to Pauli operators which are local with respect to the graph
G (see e.g. [SBMW19] for an explicit description). However the graph algebra comes with the non-trivial
constraint that the product of the edge operators Ei,j along any cycle of G is equal to the identity, as is clear
from Eq. (37). For B to be a proper algebra homomorphism we must thus restrict its image to the subspace
where this is true also for the operators B(Ei,j). It turns out these constraints all commute and thus form a
stabilizer group generated by the products along a cycle basis of G.

The interesting question is whether these stabilizer generators can be made sparse and local. This cor-
responds to choosing a cycle basis for the graph G that contains only cycles of constant length, and where
each edge only participates in a constant number of basis cycles. It is clear that there are graphs of bounded
degree for which no such basis exists. Consider for instance the family of n-vertex bounded-degree ex-
pander graphs given in [Mar82], which have girth Ω(log(n)), and hence have no cycles of constant length.
Moreover the total length of any basis must then be Ω(n log(n)) which, from a pigeonhole argument, means
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(a) (b)

Figure 1: (a): Illustration of the stacking process described in the proof of Lemma 16 with a graph on five
vertices. The blue edges are the new edges added in between copies of the graph. (b): Illustration of the
sewing process in the proof of Lemma 16. A single large cycle is shown inside a graph, as well as its sewn
up version. The blue edges are again added in the process.

that there is at least one edge that is present in Ω(log(n)) basis cycles.

Here we give a construction that solves both of these problems, by constructing from the graph G a
larger graph Ĝ that has a cycle basis of short cycles that use every edge only a constant number of times,
and has G as an induced subgraph. Note that this means that the graph algebra of G is a subalgebra of the
graph algebra of Ĝ (by considering a subset of the generators), and hence this provides a valid mapping of
the original fermionic Hamiltonian to a qubit Hamiltonian. The downside of this construction is that the
graph Ĝ is of size Θ(n2), which makes it difficult to use it for NLTS-style arguments where the scale of the
system (n vs n2) is important. However the construction might be of use in quantum simulation, and as a
starting point for more sophisticated constructions with better parameters.

Lemma 16. Consider a bounded-degree connected graph G on n vertices. There exists a (polynomial time
construable) connected graph Ĝ on O(n2) vertices with G as an induced subgraph that has a cycle basis
consisting of cycles of length at most 4 which uses no edge in Ĝ more than 4 times.

Proof. We will explicitly construct Ĝ. First, compute a minimum length cycle basis C for G (for instance
through Horton’s algorithm, which takes O(n4) time). Since G has bounded degree and is connected, the
cycle basis has E(Ĝ) − V (Ĝ) + 1 = O(n) elements. Order the cycles in C in some arbitrary way. We
now construct the graph Ĝ as follows. For each element of C we make a copy of the graph G. We take
these graph copies and “stack” them on top of each other, connecting each vertex in a graph copy to the
corresponding vertex in the copies directly above and below (see Fig. 1(a) for an illustration). This creates
E(G)(|C| − 1) “vertical” cycles of length 4. It is easy to see that the vertical cycles form an independent
set, since every cycle contains an edge that is not used by any other vertical cycle. Furthermore, the set of
cycles C is still an independent set in Ĝ. Furthermore, the union of these two sets is also independent. This
union is in fact a basis for Ĝ, which one can see (by direct calculation) that the dimension of the cycle space
of Ĝ (i.e., E(Ĝ) − V (Ĝ) + 1) precisely matches the number of vertical cycles plus the dimension of the
cycle space of G.

Continuing our construction, consider for each cycle in the set C the associated copy of G. In this copy,
“sew” up the cycle by adding edges across the cycle, in the manner illustrated in Fig. 1(b). For each cycle c
in C this creates a number of cycles of length 3 or 4. Note that we add ⌈|c|/2⌉ edges to Ĝ. Since the total
cycle length of a minimum length cycle basis is O(n log(n)) [KLM+09, Theorem 4.4], we end up adding
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at most O(n log(n)) edges. This completes the construction of Ĝ. Note also that the degree of Ĝ is at most
three higher than the degree of G.

We now propose the following basis for the cycle space of the graph Ĝ. We take all vertical cycles, and
all the short cycles created by the sewing procedure for each cycle in C. And by our earlier argument the
union of the vertical cycles and the cycle basis of G was a basis for Ĝ before the sewing procedure. Since
the sewing procedure adds an independent cycle for each edge it adds, the resulting set is a basis for Ĝ.

Clearly every cycle in this set is of length no longer than 4. Moreover, every edge is used at most a
bounded number of times by each basis cycle. For the vertical edges it is clear that their number of uses is
bounded by the degree of G (as they only participate in “vertical” cycles), and the edges in each copy of the
graph participate only in the 3 and 4 cycles making up the sewed cycle for that copy, as well as at most two
vertical cycles. Hence the number of uses of each edge in the basis is also bounded.
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