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Abstract

We develop tail estimates for the number of edges in a Chung-Lu random graph with
regularly varying weight distribution. Our results show that the most likely way to
have an unusually large number of edges is through the presence of one or more hubs,
i.e. vertices with degree of order n.
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1 Introduction and main results

We analyze a sequence of random graphs introduced by [5, 13] which is constructed
as follows. Let n be the number of vertices and let Xi, i ≥ 1, be an i.i.d. sequence of
non-negative random variables with mean µ and a right tail which is regularly varying
with index α > 1:

P(X1 > x) = L(x)x−α, (1.1)

for x > 0, with L(yx)/L(x) → 1 for y > 0 as x → ∞. Xi can be interpreted as a weight
for vertex i, and we denote µ = E [Xi]. A vertex with a high weight tends to have more
edges: the probability pij that an edge is present between vertices i and j equals

pij = pnij(Xi, Xj) := min

{
XiXj

µn
, 1

}
. (1.2)

Given i.i.d. uniform [0, 1] random variables Uij , 1 ≤ i < j ≤ n, we define the total
number of edges En in the graph as

En :=

n∑
1≤i<j≤n

1(Uij ≤ min{XiXj/(µn), 1}), (1.3)

where 1 denotes the indicator function. The mean of En grows as µn/2. The specific
purpose of this study is to investigate the probability that En has significantly more
edges than usual, i.e.

P(En > (µ/2 + a)n)

for some fixed a > 0. Our broader aim is to contribute to a better understanding of large-
deviations properties of random graphs with power-law degrees. In the past decade
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Scale-free graphs with many edges

there has been increased activity in establishing large deviations for random graphs.
There now exist various large-deviations results for dense graphs and sparse graphs with
light-tailed degrees [6, 9, 10, 14, 23], which do not cover scale-free graphs. The typical
behavior of scale-free graphs is subject to intense research activity [17, 18], while their
large-deviations analysis is so far restricted to the Pagerank functional [12, 24] or the
cluster sizes for critical random graphs [20].

To describe our main results, we introduce additional notation. Denote the mean Mn

of En, conditional on the weights X1, . . . , Xn by

Mn :=
∑

1≤i<j≤n

min{XiXj/(µn), 1}, (1.4)

and set Sn = µnMn, i.e.
Sn :=

∑
1≤i<j≤n

min{XiXj , µn}. (1.5)

We now give a description of our main results. A key parameter is

k(a) := da/µe. (1.6)

Assuming that a/µ is not an integer, we show that the most likely way for Sn to reach a
value exceeding (µ2/2 + a)n is by k large (of order n) values of Xi, an event which has
probability of order nkP(X1 > n)k. In particular, if X1, . . . , Xk equal a1n, . . . , akn, the
remaining Xi, i > k have a typical value, and k � n is fixed, then, invoking the weak law
of large numbers yields

Sn =
∑

1≤i<j≤k

(µn) +
∑

1≤i≤k<j

min{ainXj , µn}+
∑

k<i<j≤n

min{XiXj , µn}

≈ o(n2) + n2
∑

1≤i≤k

E [min{aiXk+1, µ}] + (µn)2/2. (1.7)

Following the intuition from large deviations for heavy-tailed random variables (see
e.g. [26]) we need to choose k as the smallest number such that there exist constants
a1, . . . , ak to get

∑k
i=1E [min{aiX1, µ}] > a. This leads to the choice k = k(a). A transition

in the number of required hubs in a appears when k(a) is integer, which then also changes
the scaling of nkP(X1 > n)k. Precisely at this transition point, it is therefore difficult
to obtain precise statements, which is why we will work with the assumption that k(a)
is non-integer. A more technical discussion on this topic can be found at the end of
Section 3. To state our results formally, we define

C(a1, . . . , ak) :=

k∑
i=1

E[min{aiXk+1, µ}] (1.8)

and we let, for b > 0, Xb
i , i ≥ 1, be an i.i.d. sequence such that P(Xb

i > x) = (x/b)−α, x ≥ b.
Informally, the distribution of Xb

i is that of Xi conditioned on the event {Xi ≥ b},
when the slowly-varying function L(x) = 1. In our context, it emerges as the limit
of P(Xi/bn > x | Xi > bn) as n → ∞. Set η(a) as the smallest value η for which
(k(a)− 1)µ+ E [min{ηX1, µ}] ≥ a. Observe that η(a) > 0, and also η(a) <∞ if a/µ is not
an integer. Define the constant

K(a) := η(a)−k(a)αP
(
C
(
X
η(a)
1 , . . . , X

η(a)
k(a)

)
≥ a

)
. (1.9)

We first state our main result on Sn. With f(n) ∼ g(n) we denote that the ratio of f and
g converges to 1 as n→∞.
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Proposition 1.1. Assume that a/µ is not an integer. Then

P(Sn > (µ2/2 + a)n2) ∼ K(a)(nP(X1 > n))k(a). (1.10)

Sn only involves randomness from the vertex weights Xi, while En also involves
randomness from the uniform random variables in (1.3). Our main result, derived from
Proposition 1.1, shows that the tail of En behaves the same as the one of Mn:

Theorem 1.2. Suppose that a is not an integer. Then

P(En > (µ/2 + a)n) ∼ P(Mn > (µ/2 + a)n) = P(Sn > (µ2/2 + µa)n2). (1.11)

Therefore, P(En > (µ/2 + a)n) is regularly varying of index −dae(α− 1). In particular,

P(En > (µ/2 + a)n) ∼ K(µa)(nP(X1 > n))dae. (1.12)

The intuition behind this result is similar to the intuition given for Sn, combined with
the insight that the additional randomness generated by the uniform random variables
Uij is of lesser importance: the event that the number of edges exceeds (µ/2 + a)n is
caused by k = dae hubs, i.e. vertices with nodes of weight of order n. More in particular,
our proofs give the insight that the weights of the k hubs, normalized by n, converge
weakly to (X

η(µa)
1 , . . . , X

η(µa)
k ) conditioned upon C(Xη(µa)

1 , . . . , X
η(µa)
k ) ≥ µa as n→∞.

To prove Theorem 1.2, we use well-known concentration bounds for non-identically
distributed Bernoulli random variables to show that En and Mn are close, facilitated by
an estimate for the lower tail of Sn. It is difficult to get rid of the integrality condition
in Theorem 1.2, as this is where a transition occurs between the number of hubs that
are needed. We are able to derive a weaker result, namely a large-deviations principle.
Define I(x) = (α − 1)dxe if x ≥ 0 and ∞ otherwise. Although I is discontinuous on
its effective domain, it is lower semi-continuous, so that I is a rate function. Define
Ên = En/n− µ/2.

Corollary 1.3. Ên, n ≥ 1, satisfies a large-deviations principle with speed log n and rate
function I, i.e. for any Borel set A,

− inf
x∈Å

I(x) ≤ lim inf
n→∞

logP(Ên ∈ A)
log n

≤ lim sup
n→∞

logP(Ên ∈ A)
log n

≤ − inf
x∈A

I(x). (1.13)

Our results constitute another case where a rare event in the presence of heavy
tails is caused by multiple big jumps. Other heavy-tailed systems exhibiting rare events
with multiple big jumps are exit problems [4], fluid networks [11, 28], multi-server
queues [3, 15, 16], and reinsurance problems [1]. For sample-path large deviations of
heavy-tailed random walks, see [26].

In all our asymptotic results, the slowly varying function L(x) plays no essential role,
our techniques essentially allow us to treat the case of a general slowly varying function
without any significant additional effort. The probability of a hub of weight at least
εn is dominated by the power-law part of the distribution. However, L(x) is included
implicitly in our results, for example in P (X1 > n), but also in the definition of C in (1.8)
in Proposition 1.1.

The rest of this article is organized as follows. In Section 2 we gather some prelimi-
nary results from the literature needed for our proofs. The proof of Proposition 1.1 is
developed in Section 3. The proof of Theorem 1.2 is presented in Section 4. The proof of
Corollary 1.13 is given in Section 5, and we end with a short discussion of our results.

2 Preliminary results

The following lemma is a key estimate for sums of truncated heavy-tailed random
variables, which is a reformulation of Lemma 3 in [25].
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Lemma 2.1. For every δ > 0 and β <∞ there exists an ε > 0 such that

P

(
n∑
i=1

Xi > (µ+ δ)n,Xi ≤ εn, i = 1, . . . , n

)
= o(n−β). (2.1)

We proceed by stating a version of Chernoff’s bound for sums of independent Bernoulli
random variables. The statement is a variation of Theorem A.1.4 in [2].

Lemma 2.2. Let Bi, i ≥ 1 be a sequence of independent Bernoulli random variables with
pi = P(Bi = 1) = 1− P(Bi = 0). Set µn =

∑n
i=1 pi. For every b > 0 we have

P

(
n∑
i=1

Bi > (1 + b)µn

)
≤ e−µnIB(b), P

(
n∑
i=1

Bi < (1− b)µn

)
≤ e−µnIB(−b), (2.2)

with IB(b) = (1 + b) log(1 + b)− b.
We finally state an elementary tail bound for binomially distributed random variables.

Lemma 2.3. Suppose B(n, p) has a binomial distribution with parameters n and p. Then

P(B(n, p) ≥ m) ≤ (np)m. (2.3)

Proof. Set B(n, p) =
∑n
i=1Bi, note that P (B(n, p) ≥ m) = P

(
∃i1, . . . , im s.t. Bij = 1

)
and apply the union bound.

3 Proof of Proposition 1.1

Throughout this section, we fix a such that a/µ is not an integer and write k(a) =
k, η(a) = η. Define for ε > 0:

Nn,ε := |{i ≤ n : Xi > εn}|. (3.1)

The idea of the proof is to subsequently rule out the events Nn,ε < k and Nn,ε > k. After
that, we condition on Nn,ε = k to work out the remaining technical details. This will be
the focus of the next three lemmas which together form the proof of Proposition 1.1.

Lemma 3.1. There exists ε > 0 such that

P(Sn > (µ2/2 + a)n2;Nn,ε ≤ k − 1) = o
((
nP(X1 > n)

)k)
. (3.2)

Proof. We prove this lemma by suitably upper bounding Sn to invoke Lemma 2.1. Let
m ≤ k. Set for fixed ε > 0 the event

Am := {Xi > εn, i < m;Xi ≤ εn, i ≥ m}. (3.3)

Write

P(Sn > (µ2/2 + a)n2;Nn,ε = m− 1) =

(
n

m− 1

)
P(Sn > (µ2/2 + a)n2;Am). (3.4)

On the event Am,

Sn ≤ µn(m− 1)(m− 2)/2 +
∑

i,j≥m,i<j

min{XiXj , µn}+
∑

i<m,j≥m

min{XiXj , µn}

≤ 1
2µn(m− 1)2 + 1

2

(∑
i≥m

Xi

)2

+ (m− 1)n2µ.

ECP 28 (2023), paper 62.
Page 4/11

https://www.imstat.org/ecp

https://doi.org/10.1214/23-ECP567
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Scale-free graphs with many edges

Thus,

P

(
Sn >

(µ2

2
+ a
)
n2;Am

)
≤ P

(∑
i≥m

Xi >
√
µ2n2 + 2(a− (m− 1)µ)n2 − µn(m− 1)2;Am

)
. (3.5)

Recalling that k = da/µe, we obtain that a/µ > k−1 ≥ m−1, and therefore (a−(m−1)µ) >
0. Consequently, there exists a ζ > 0 such that for sufficiently large n,√

µ2n2 + 2(a− (m− 1)µ)n2 − µn(m− 1)2 > (µ+ ζ)n.

We can now bound (3.5) for n large, by

P(Sn > (µ2/2 + a)n2;Am) ≤ P

(∑
i≥m

Xi > (µ+ ζ)n;Am

)
= o
(
P(X1 > n)k

)
, (3.6)

for suitably small ε, where we have applied Lemma 2.1 in the last equality. Invoking (3.4)
and summing the estimates over m = 1, . . . , k gives the desired result.

Lemma 3.2. There exists ε > 0 such that

P(Sn > (µ2/2 + a)n2;Nn,ε ≥ k + 1) = o((nP(X1 > n))k). (3.7)

Proof. We observe that Nn,ε has a Binomial distribution with parameters n and P(X1 >

εn) and invoke Lemma 2.3:

P(Sn > (µ2/2 + a)n2;Nn,ε ≥ k + 1) ≤ P(Nn,ε ≥ k + 1) ≤ (nP(X1 > n))k+1,

which is o((nP(X1 > n))k) by (1.1).

We are left to consider P(Sn > (µ2/2 + a)n2;Nn,ε = k). Recall that η is the smallest
value such that (k − 1)µ+ E [min{ηX1, µ}] ≥ a.

Lemma 3.3.

lim
n→∞

P(Sn > (µ2/2 + a)n2;Nn,ε = k)

(nP(X1 > n))k
= η−kαP(C(Xη

1 , . . . , X
η
k ) ≥ a). (3.8)

Proof. Write

P(Sn > (µ2/2 + a)n2;Nn,ε = k) =

(
n

k

)
P(Sn > (µ2/2 + a)n2;Ak+1), (3.9)

with Ak+1 as in (3.3). To analyze P(Sn > (µ2/2 + a)n2;Ak+1), define the random variable
Sn(x1, . . . , xk) as Sn conditioned on Xi = xin, i = 1, . . . , k, but where Xi for i > k are
random and distributed as (1.1). More precisely,

Sn(x1, . . . , xk) :=
∑

1≤i<j≤k

min{xixjn2, µn}+
∑

1≤i≤k<j

min{xinXj , µn}

+
∑
k<i<j

min{XiXj , µn}. (3.10)

Recall that C(a1, . . . , ak) =
∑k
i=1E[min{aiXk+1, µ}]. From the weak law of large numbers,

it follows that Sn(x1, . . . , xk)/n
2 → 0 + C(x1, . . . , xk) + µ2/2. Consequently,

P(Sn(x1, . . . , xk) > (µ2/2 + a)n2;Ak+1)→

{
1, C(x1, . . . , xk) > a,

0, C(x1, . . . , xk) < a.
(3.11)
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Next, recall that Xε
i , i ≥ 1 are i.i.d. random variables with support on [ε,∞) such that

P(Xε
i > y) = (y/ε)−α. Write P(Sn > (µ2/2 + a)n2;Ak+1) as∫
(ε,∞)k

P(Sn(x1, . . . , xk) > (µ2/2 + a)n2;Xi < εn, i > k)d

k∏
i=1

P

(
Xi

n
≤ xi | Xi > εn

)
× P(X1 > εn)k. (3.12)

Since P(Xi/n ≤ xi | Xi > εn) converges to the continuous distribution P(Xε
i ≤ xi), we

can ignore the contribution to the integral of all (x1, . . . , xk) such that C(x1, . . . , xk) = a.
To see this, note that a→ E[min{aXk+1, µ}] is strictly increasing on [0, 1/u∗), with u∗ =
inf{u > 0 : P (Xk+1 > u) = 1}. If u∗ > 0, then the subset of Rk on which C(x1, . . . , xk) is
constant is contained in [1/u∗,∞)k. If xi ≥ 1/u∗ for each i, then C(x1, . . . , xk) = µk =

µda/µe > a, since a/µ is not an integer. Consequently, the set of (x1, . . . , xk) for which
C(x1, . . . , xk) = a has Lebesgue measure 0 in Rk. Thus, we can apply (3.11) to show that
the integral in the last display converges to P(C(Xε

1 , . . . , X
ε
k) ≥ a). This probability is

strictly positive, since a/µ is non-integer. To eliminate the auxiliary parameter ε, note
that C(x1, . . . , xk) < a as soon as there exists some i such that xi < η, as the other terms
contribute at most (k − 1)µ to the summation. Therefore, if ε < η,

P(C(Xε
1 , . . . , X

ε
k) ≥ a) = (η/ε)−kαP(C(Xη

1 , . . . , X
η
k ) ≥ a). (3.13)

Furthermore, by regular variation,

P(X1 > εn)k ∼ (η/ε)kαP(X1 > ηn)k. (3.14)

Putting everything together, we conclude that

P(Sn > (µ2/2 + a)n2;Ak+1) ∼ P(C(Xη
1 , . . . , X

η
k ) ≥ a)P(Xi > ηn)k. (3.15)

The lemma now follows from (3.9) and the fact that
(
n
k

)
∼ nk.

We close this section with some technical comments on the integrality condition
on a/µ. From the heuristics given so far, it is clear that it helps to distinguish be-
tween scenarios involving k(a) or k(a) + 1 jumps, and it guarantees that the pre-
factor P(C(Xη

1 , . . . , X
η
k ) ≥ a) is strictly positive. If a/µ is integer and u∗ = inf{u >

0 : P (Xk+1 > u) = 1} = 0, then P(C(Xη
1 , . . . , X

η
k ) ≥ a) = 0 and the true asymptotics will

change. We conjecture that either a/µ or a/µ + 1 hubs are needed. If u∗ > 0 and a/µ

is integer, then P(C(Xη
1 , . . . , X

η
k ) ≥ a) > 0. In that case we expect that the dominant

scenario is a/µ hubs, but the above proof method breaks down, and we need to under-
stand (at least) the second-order properties of Sn(x1, . . . , xk) as n → ∞. To develop a
complete understanding in each of the cases u∗ > 0 and u∗ = 0 requires methods which
are beyond the scope of this study. For example one may obtain a central limit theorem
for the number of edges by extending some of the results in [21] to take into account
truncation, as is done for sums of truncated i.i.d. heavy-tailed random variables in [8].
Also in the next section, the non-integrality assumption plays an important role.

4 Proof of Theorem 1.2

The proof of Theorem 1.2 is based on suitably bounding the difference between En
and its conditional mean Mn = Sn/µn, using the concentration bounds in Lemma 2.2.
For this procedure to work, we need an asymptotic estimate for the lower tail of Sn.
Since Xi, i ≥ 1, are non-negative random variables, this estimate is considerably easier
to obtain than the upper tail.
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Lemma 4.1. For each a > 0, there exists a δ > 0 such that

P(Sn ≤ (µ2/2− a)n2) = O(e−δn). (4.1)

Proof. Define XM
i = min{Xi,M}. Let M <∞ be large enough such that E[min{Xi,M}]2

≥ µ2 − a/2. Observe that, for sufficiently large n,

Sn =
∑

1≤i<j≤n

min{XiXj , µn} ≥
∑

1≤i<j≤n

XM
i XM

j ≥ 1
2

( n∑
i=1

XM
i

)2

− nM2. (4.2)

The estimate (4.1) now follows by an application of Chernoff’s bound to
∑n
i=1−XM

i .

Proof of Theorem 1.2. Conditional on X1, . . . , Xn, the variables Bij , i < j, indicating
whether there is an edge between node i and j, are independent. Therefore, observing
Mn = Sn/(nµ) = E[En | X1, . . . , Xn], we can apply Lemma 2.2 to obtain that, for b > 0,

P(|En −Mn| > bMn | X1, . . . , Xn) ≤ 2e−MnJ(b) (4.3)

almost surely, with J(b) = min{IB(b), IB(−b)}. Now, write for fixed ε > 0,

P(En > (µ/2 + a)n) = P(En > (µ/2 + a)n; |En −Mn| ≤ εMn)

+ P(En > (µ/2 + a)n; |En −Mn| > εMn). (4.4)

Invoking Lemma 4.1, the second term on the RHS of (4.4) is smaller than

P(|En −Mn| > εMn) ≤ P(|En −Mn| > εMn;Mn > ζn) + P(Mn ≤ ζn)

≤ 2e−ζnJ(b) +O(e−δn) (4.5)

for some δ > 0 depending on ζ > 0, the latter chosen suitably small. We conclude that
(making δ smaller than ζJ(b) if needed)

P(En > (µ/2 + a)n) = P(En > (µ/2 + a)n; |En −Mn| ≤ εMn) +O(e−δn)

≤ P(Mn > (µ/2 + a− ε)n) +O(e−δn). (4.6)

We use this identity to prove asymptotic lower and upper bounds which together complete
the proof of Theorem 1.2. Invoking (4.6) and Proposition 1.1 for Mn = Sn/(µn), we see
that

lim sup
n→∞

P(En > (µ/2 + a)n)

P(Mn > (µ/2 + a)n)
≤ lim sup

n→∞

P(Mn > (µ/2 + a− ε)n)
P(Mn > (µ/2 + a)n)

=
η(µ(a− ε))−k(µa)αP

(
C
(
X
η(µ(a−ε))
1 , . . . , X

η(µ(a−ε))
k(µa)

)
≥ µ(a− ε)

)
η(µa)−k(µa)αP

(
C
(
X
η(µa)
1 , . . . , X

η(µa)
k(µa)

)
≥ µa

) .

In the last equality we have used that k(µa) = k(µ(a − ε)), which holds because a is
non-integer. This property also implies that the last expression converges to 1 if ε ↓ 0,
providing the upper bound. The lower bound uses that

P(En > (µ/2 + a)n; |En −Mn| < εMn)

≥ P(Mn > (µ/2 + a+ ε)n)− P(|En −Mn| > εMn). (4.7)

The second term of the RHS is exponentially small in n, as shown in (4.5). Consequently,
invoking Proposition 1.1,

lim inf
n→∞

P(En > (µ/2 + a)n)

P(Mn > (µ/2 + a)n)
≥ lim inf

n→∞

P(Mn > (µ/2 + a+ ε)n)

P(Mn > (µ/2 + a)n)
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=
η(µ(a+ ε))−k(µa)αP

(
C
(
X
η(µ(a+ε))
1 , . . . , X

η(µ(a+ε))
k(µa)

)
≥ µ(a+ ε)

)
η(µa)−k(µa)αP

(
C
(
X
η(µa)
1 , . . . , X

η(µa)
k(µa)

)
≥ µa

) .

In the last equality we used that k(µa) = k(µ(a+ε)), which holds because a is non-integer,
implying that the last expression converges to 1 if ε ↓ 0, providing the lower bound.

5 Proof of Corollary 1.3

As a first step we show that the left tail of En is lighter than polynomial.

Lemma 5.1. For each a > 0, there exists a δ > 0 such that

P(En ≤ (µ/2− a)n) = O(e−δn). (5.1)

Proof. Without loss of generality, we can assume a < µ/2. Note that P(En ≤ (µ/2− a)n)
can be upper bounded by∫ ∞

µ/2−a/2
P(En ≤ (µ/2− a)n |Mn = ny)dP(Mn/n ≤ y) + P(Mn ≤ (µ/2− a/2)n). (5.2)

The second term is exponentially small in n due to Lemma 4.1. To analyze the first term,
note that En is a sum of Bernoulli variables with mean Mn. Thus, by conditioning on Mn,
we can we can apply Lemma 2.2 to obtain

P(En ≤ (µ/2− a)n |Mn = ny) = P

(
En ≤ ny

(
1− y − (µ/2− a)

y

)
|Mn = ny

)
≤ e−nyIB(−(1−(µ/2−a)/y)) ≤ e−n(µ/2−a/2)IB(−a/(µ−a)).

The second inequality follows by noting that IB is non-negative, strictly convex, and 0 at
0. Therefore, yIB(−(1− (µ/2− a)/y)) is increasing on [µ/2− a/2,∞), so that we obtain
the second inequality by replacing y with µ/2 + a/2. Consequently,∫ ∞

µ/2−a/2
P(En ≤ (µ/2− a)n |Mn = ny)dP(Mn/n ≤ y) ≤ e−n(µ/2−a/2)IB(−a/(µ−a)).

We have shown that both terms in (5.2) are exponentially small in n, completing the
proof.

Proof of Corollary 1.3. Consider first A closed. If 0 ∈ A, the upper bound is trivial. If
0 6∈ A we can write A = A− ∪A+, with a− = supA− < 0 and a+ = inf A+ > 0. Since A is
closed and 0 6∈ A, both a− and a+ are elements of A, and a− < 0 < a+. Next, note that

P(Ên ∈ A) ≤ P(Ên ≤ a−) + P(Ên ≥ a+).

Invoking Lemma 5.1, the first term is exponentially small in n. By Theorem 1.2, the
second term is regularly varying with exponent (α− 1)da+e if a+ is not an integer. If a+

is an integer, we can make a+ a bit smaller, while keeping da+e fixed, preserving the
upper bound for P(Ên ∈ A). This yields, using that logL(n)/ log n→ 0, and abbreviating
the n-independent constant in Theorem 1.2 with a = a+ by K,

lim sup
n→∞

logP(Ên ∈ A)
log n

≤ lim sup
n→∞

log[P(Ên ≤ a−) + P(Ên ≥ a+)]

log n

≤ lim sup
n→∞

log[K(nP(X1 > n))da+e]

log n
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= −(α− 1)da+e = − inf
x∈A

I(x). (5.3)

Assume now that A is open. If supA ≤ 0 the result is straightforward, so assume that
supA > 0. For every ε > 0, we can pick the following subset of A: take a such that
a ∈ A; and infx∈A I(x) ≥ I(a)− ε. Since A is open, we may modify the constant a slightly
such that a is non-integer. Next, take a sufficiently small constant b such that the ball
around a with radius b is in A, such that a− b/2 and a+ b/2 are both non-integer, and
da− b/2e = da+ b/2e = dae. Now, observe that

P(Ên ∈ A) ≥ P(Ên ∈ (a− b/2, a+ b/2))

= P(En > n(µ/2 + a− b/2))− P(En ≥ n(µ/2 + a+ b/2))

∼
(
K(µ(a− b/2))−K(µ(a+ b/2))

)
(nP (X1 > n))dae,

with K(·) as in (1.9). Using (3.13) we can write for a fixed δ ∈ (0, η(aµ)),

K(aµ) = δ−αdaeP
(
C(Xδ

1 , . . . , X
δ
dae)

)
≥ µa). (5.4)

Since dae is constant in a neighborhood of a, we see that K(aµ) is strictly decreasing in
a neighborhood of a. Consequently, K(µ(a− b/2))−K(µ(a+ b/2)) > 0 and we can apply
Theorem 1.2 to conclude that P(Ên ∈ (a− b/2, a+ b/2)) is regularly varying with index
I(a). Therefore, since logL(n)/ log n→ 0,

lim inf
n→∞

logP(Ên ∈ A)
log n

≥ lim inf
n→∞

log
((
K(µ(a− b/2))−K(µ(a+ b/2))

)(
nP (X1 > n)

)dae)
log n

= −I(a) ≥ − inf
x∈A

I(x) + ε. (5.5)

Letting ε ↓ 0 completes the proof.

6 Discussion

In this paper, we have studied the probability of a large number of edges in a heavy-
tailed random graph model. We show that the most likely way to obtain at least an more
edges than expected is by k(a) hubs with weight of order n.

While this paper focuses on the Chung-Lu version of the inhomogeneous random
graph (1.2), there is a wide class of connection probabilities pij with similar proper-
ties [19]. We therefore believe that our results can be extended to other connection
probabilities in this class. Some of these connection probabilities construct random
graphs that are similar to the erased configuration model, or the uniform random graph,
suggesting that large deviations of the number of edges behaves similarly in these
models.

In the random geometric graph on the other hand, large deviations of the number of
edges are caused by one large clique, due to the geometric nature of the model [10]. We
here show that power-law random graphs on the other hand, are more likely to contain a
large amount of edges due to the presence of hubs. It would therefore be interesting to
investigate large deviations of edge counts for models with both geometry and power-law
degrees, such as the hyperbolic random graph [22] or geometric inhomogeneous random
graphs [7].

While the number of edges is one of the simplest graph statistics, we believe that
there is a much wider class of graph statistics where the randomness of the i.i.d. weights
does not play a role in the large deviations properties, similarly to Theorem 1.2. Proving
this however will be more involved for more complex statistics however, as for properties
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that depend on more than one edge, dependencies between the presences of these edges
arise, due to their random weights. For relatively simple statistics, such as triangle
counts, this is possible through an exhaustive enumeration of different cases [27], but
a more comprehensive method for a wider class of statistics would be interesting to
investigate in further research.
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