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Abstract

In this work, we prove new bounds on the additive gap between the value of a random integer program maxcTx, Ax ≤
b, x ∈ {0,1}n with m constraints and that of its linear programming relaxation for a wide range of distributions on (A,b,c).
Our investigation is motivated by the work of Dey, Dubey, and Molinaro (SODA ’21), who gave a framework for relating
the size of Branch-and-Bound (B&B) trees to additive integrality gaps.

Dyer and Frieze (MOR ’89) and Borst et al. (Mathematical Programming ’22), respectively, showed that for certain
random packing and Gaussian IPs, where the entries of A,c are independently distributed according to either the uniform
distribution on [0,1] or the Gaussian distribution N (0,1), the integrality gap is bounded by Om(log2 n/n) with probability
at least 1− 1/n− e−Ωm(1). In this paper, we generalize these results to the cases where the entries of A are uniformly
distributed on an integer interval (e.g., entries in {−1,0,1}), and where the columns of A are distributed according to an
isotropic logconcave distribution. Second, we substantially improve the success probability to 1− 1/poly(n), compared
to constant probability in prior works (depending on m). Leveraging the connection to Branch-and-Bound, our gap results
imply that for these IPs B&B trees have size npoly(m) with high probability (i.e., polynomial for fixed m), which significantly
extends the class of IPs for which B&B is known to be polynomial.

Our main technical contribution and the key to achieving the above results is a new linear discrepancy theorem for
random matrices. Our theorem gives general conditions under which a target vector is equal to or very close to a {0,1}
combination of the columns of a random matrix A. Compared to prior results, our theorem handles a much wider range
of distributions on A, both continuous and discrete, and achieves success probability exponentially close to 1, as opposed
to the constant probability shown in earlier results. Our proof uses a Fourier analytic approach, building on the work of
Hoberg and Rothvoss (SODA ’19) and Franks and Saks (RSA ’20) who studied the discrepancy of random set systems and
matrices respectively.

1 Introduction
Consider an integer program (IP) in n variables and a fixed number m of constraints of the form:

valIP(A,b,c) := max
x

cTx

s.t. Ax ≤ b, x ∈ {0,1}n.(Primal IP)

An important factor controlling our ability to solve IPs is the tightness of the linear programming (LP) relaxation. A natural
way to measure tightness is the size of the gap

IPGAP(A,b,c) := valLP(A,b,c)−valIP(A,b,c),

where valLP(A,b,c) relaxes x ∈ {0,1}n to x ∈ [0,1]n.
In practice, automated methods for tightening LP relaxations such as presolving and cutting planes are crucial to the

performance of modern IP solvers [1, 2]. Presolving refers to simple inference rules applied to constraints in sequence,
which among other things are used to find implied variable fixings, tighten variable bounds and strengthen the coefficients
of inequalities [3]. Cutting planes refers to additional valid linear inequalities for the IP, which are often generated from
the optimal simplex tableau [4]. The effectiveness of cutting planes is very often measured in terms of the fraction of the
integrality gap they close, which helps justify the integrality gap as a key metric in practice [5, 6, 7].
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1.1 Complexity of Branch-and-Bound Recently, Dey, Dubey, and Molinaro [8] provided theoretical evidence for the
importance of the gap in IP solving, in the context of solving random packing IPs via Branch-and-Bound (B&B). We state
a generalization of their result, from [9], to the case of random logconcave IPs:

THEOREM 1.1. ([8, 9]) Let n ≥ Ω(m), b ∈ Rm, and
(

c
A

)
∈ R(m+1)×n be a matrix whose columns are independent

logconcave random vectors with identity covariance. Then, for G ≥ 0, with probability at least 1−PrA,c[IPGAP(A,b,c)≥
G]− 1/poly(n), the best bound first Branch-and-Bound algorithm applied to (Primal IP) produces a tree of size at most
nO(m)e2

√
2nG.

We recall that B&B proceeds by building a binary search tree whose leaves represent a partition of the solution space.
Each node of the tree is associated with a subinstance, corresponding to a partial fixing of the variables to 0 or 1, and is
labelled with the optimal solution to the LP relaxation consistent with this fixing. The tree is initialized with a single node
corresponding to the empty fixing which is labelled with the optimal solution to valLP(A,b,c). B&B keeps track of the best
integer solution found in the tree, picked from the nodes whose LP solutions are integral (or possibly found via heuristics),
and removes from consideration all leaf nodes whose LP values are at most the value of this best found solution (a procedure
known as node pruning). At every iteration, B&B chooses an unpruned leaf node in the current tree to process using a node
selection rule. To process the node, B&B examines the optimal LP solution x at the node and chooses a fractional coordinate
xi ∈ (0,1) using a branching rule. B&B then creates two children, each one corresponding to fixing xi to 0 or 1, computes
the corresponding LP solutions and checks whether these nodes can be pruned. Once there are no more nodes left to process,
the best found integer solution is the optimal solution to the IP. For more background on B&B, the interested reader may
consult the following standard textbooks [10, 11].

As B&B is still the backbone of all modern IP solvers such as CPLEX, Gurobi, SCIP and Mosek, it is natural to try and
understand under which circumstances the complexity of B&B can be meaningfully upper bounded. Theorem 1.1 above
gives probabilistic upper bounds on the size of B&B trees for random logconcave IPs in terms of the integrality gap, where
the branching rule can be arbitrary as long as ’best bound first’ node selection rule is used. Best bound first corresponds to
always processing leaf nodes with the largest LP value first. This rule ensures that we never process a node whose value is
worse than that of the optimal IP solution, which is crucial for relating the size of the tree to the integrality gap.

While Theorem 1.1 is relatively general, it is of course only meaningful for distributions over which strong upper bounds
on the integrality gap are known. Note that the class of logconcave distributions is very rich and includes, among others,
the uniform distribution on any convex body, and unbounded distributions such the Gaussian and Laplace distributions. In
terms of applications, due to the nO(m) term in the complexity estimate, they are mainly restricted to the case where the
number of constraints m is constant, which includes fundamental problems such as knapsack. We discuss these applications
together with our contributions in the next section.

1.2 Integrality Gap Bounds and Their Applications For models directly captured by Theorem 1.1, strong integrality
have been proven for random packing [12, 13, 14] and Gaussian IPs [9], where the entries of (A,c) are either
independent uniform [0,1] or N (0,1). For random packing IPs, when b ∈ (n/4,n/2)m, Dyer and Frieze [12] proved that
IPGAP(A,b,c)≤ 2O(m) log2(n)/n with probability at least 1−1/poly(n)−2−poly(m). For Gaussian IPs, when ∥b−∥2 ≤ n/10
(b− is the negative part of b), Borst et al [9] proved that IPGAP(A,b,c) ≤ poly(m) log2(n)/n with probability at least
1 − 1/poly(n)− 2−poly(m). For these models, Theorem 1.1 implies that B&B is polynomial for fixed m with good
probability. More precisely, letting G = Om(log2 n/n) be the gap for these models, the complexity of B&B grows as
e
√

nmG = eOm(logn) = nOm(1).
We remark that the works [13, 12] also introduced a specialized algorithm for solving random packing IPs, with the

same complexity1. At a high level, this algorithm simply examines all possible ways to round the optimal LP solution
without violating the target gap bound. It is worthwhile to note that [8] (implicitly) bounds the complexity of B&B by
showing that its work never exceed the work of the algorithm in [13, 12].

The above results yield some of the very few cases where meaningful estimates are known on the size of B&B trees
(additional examples will be discussed in the related works section). Motivated by the scarcity of results on B&B, the main
focus of this work is to extend the range of distributions over (A,b,c) for which strong gap upper bounds hold.

Our first result is a substantial generalization of the Gaussian gap bound of Borst et al [9]. The result applies to a wide
range of constraint matrices whose columns are independent mean-zero random vectors, which we refer to as Centered IPs.

1[13] examined the case m = 1 while [12] handled general m.
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THEOREM 1.2. (GAP BOUND FOR CENTERED IPS) For m ≥ 1, n ≥ poly(m), b ∈ Rm with ∥b−∥2 ≤ O(n), if c has
i.i.d. N (0,1) entries and the columns of A are independent isotropic, logconcave random vectors whose support is
contained in a ball of radius O(

√
logn+

√
m), then

Pr
(
IPGAP(A,b,c)≥ poly(m)(logn)2

n

)
≤ n−poly(m).

Furthermore, the same result holds if the entries of A are distributed independently and uniformly in {0,±1, . . . ,±k} and
b ∈ Zm with ∥b−∥2 ≤ O(kn), for any 1 ≤ k ≤ n.

We recall that a random vector X ∈ Rm is isotropic if E[X ] = 0 (mean zero) and E[(X −E[X ])(X −E[X ])T] = Im (identity
covariance). Since one can apply an affine transformation to any full dimensional random variable to make it isotropic, this
condition may be regarded as a useful normalization. When A has iid N (0,1) entries, we remark that the columns of A
have norm bounded by O(

√
m+

√
logn) with probability 1−1/poly(n) by standard tail bounds. Thus, the above theorem

yields a strict generalization of [9].
Our second result is a discrete variant of the random packing IP gap bound of [12].

THEOREM 1.3. (DISCRETE PACKING IPS) For m ≥ 1, k ≥ 3, β ∈ (0,1/4), n ≥ poly(m,k)exp(Ω(1/β )), b ∈
((knβ ,kn(1/2−β ))∩Z)m, if c has i.i.d. exponential entries and the entries of A are independent and uniform in {1, . . . ,k},
then

Pr
(
IPGAP(A,b,c)≥ exp(O(1/β ))poly(m)(logn)2

n

)
≤ n−poly(m).

Compared to [12] we require exponentially distributed objective coefficients, i.e., with density e−x, x ≥ 0, instead of uniform
[0,1]. The additional smoothness of the distribution makes the arguments much cleaner while preserving the qualitative
nature of the results. We remark that extending the above gap bound to the setting of non-negative logconcave random
vectors is also possible, though we we do not pursue this here.

As a consequence of these gap bounds, we derive the following generalized complexity bounds for B&B.

COROLLARY 1.1. With probability 1−1/poly(n), the best-bound first Branch-and-Bound algorithm applied to (Primal IP)
produces a tree of size at most npoly(m) in the Centered IP model of Theorem 1.2 and of size nexp(O(1/β ))poly(m) in the Discrete
Packing IP model from Theorem 1.3.

In the discrete case, we note that the above result does not follow directly from Theorem 1.1, since it requires the constraint
matrix to have a logconcave distribution (a suitable adaptation of the proof still applies however, see Section 4).

The above results extend our understanding of gap bounds in two significant ways. Firstly, they show that strong gap
bounds are obtainable when the entries of the constraint matrix take only small integer values. This is well motivated by the
fact that the constraints for practical IPs are often combinatorial and thus are expressed using small integer coefficients.
Secondly, in the case of centered IPs, we show that non-trivial correlations between the variables in a column of the
constraint (induced by logconcavity) can be handled. Thus, we establish a limited form of universality for these gap bounds.

We would like to stress that neither of these extensions is a priori obvious. To highlight the subtleties in the discrete
setting, we note that even for m = 1, the gap bound does not hold when the right hand side b is non-integral. As
a simple example, it is easy to see that for n odd, the integrality gap of the knapsack program max∑

n
i=1 xi subject to

∑
n
i=1 xi ≤ n/2, x ∈ {0,1}n is 1/2. It is not hard to check that a constant gap is preserved with overwhelming probability

even if the profit vector c is exponentially distributed and weights a1, . . . ,an are drawn uniformly from {1, . . . ,k}, for k fixed.
To circumvent the above issue, a crucial step in our proof in the discrete setting is to show that we can round the optimal

LP solution x∗ to an integer solution x′ that is tight on the same set of constraints. That is, (Ax∗)i = bi ⇒ (Ax′)i = bi,∀i ∈ [m]
(which is only possible if b is integral). Indeed, one of our main technical contributions, described in the next section, is to
give general conditions under which such exact roundings are possible, using Fourier analytic techniques from discrepancy
theory. We remark that Dyer and Frieze [15] believed that a discrete extension of their gap bounds should be possible
provided the range of the discrete distribution (i.e., k above) grows with n, which we confirm here without this assumption2.

2We note that our gap bounds seemingly require that n be somewhat larger than the range k. This is an artificial restriction. For (very) large k, one must
treat the discrete distribution as if it were continuous, which requires a slight adaptation of the proofs.
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Beyond generalizing previous work, our results also improve the probabilistic guarantees. Compared to prior works, our
gap bounds hold with high probability 1−1/poly(n) instead of 1−1/poly(n)−2−poly(m) (which is constant for fixed m).
Achieving a high probability bound via prior estimates increases the gap by a O(logn) factor, which makes the corresponding
B&B complexity quasi-polynomial instead of polynomial.

Is it natural to ask whether there are natural limitations to extending these gap bounds to much wider classes of IPs. For
logconcave random IPs, one may observe that any worst-case instance can be encoded as the mean E[(A,b,c)] of the random
instance. In this way, one can view the distribution (A,b,c) as a smoothed version of worst-case IP instance E[(A,b,c)].
By appropriately scaling up the means, or equivalently scaling down the variance of the entries of (A,b,c), the the instance
(A,b,c) converges to the worst-case instance E[(A,b,c)]. It is not hard to check that for many hard combinatorial problems
such as SET COVER or MAX 3-SAT, adding small random perturbations (of appropriate sign) to the instance data does not
change the optimal solution, and thus we cannot expect strong integrality gap results in these settings.

We note that smoothed analysis of integer programming has indeed been studied by various works [16, 17]. In
particular, Röglin and Vöcking [17] showed that under mild conditions, the class of IPs that are easy to solve on average
over suitable random perturbations of the instance data (i.e., that can be solved in polynomial time with high probability
over the perturbations) correspond exactly to the class of IPs solvable in pseudopolynomial time.

Gap Bounds in Related Settings. Strong gap bounds have also been proven for random instances of combinatorial
optimization problems, though this has not translated into good upper bounds on the size of B&B trees. Dyer and Frieze [15],
proved an Om(log2 n/n) gap bound for random instances of a generalized assignment problem on a bipartite graph with m
vertices on the small side and n vertices on the big side. They further gave an nOm(1) algorithm to solve this problem with
high probability. Frieze and Sorkin [18] showed that the cycle cover relaxation for the asymmetric TSP has an expected
O(log2 n/n) additive integrality gap, where the edge weights are chosen uniformly from [0,1] for a complete digraph on n
vertices and gave an 2Õ(

√
n) algorithm which solves these instances with high probability. Recently, Frieze [19] showed that

any B&B tree using the cycle cover relaxation to prune nodes3 will have expected size Ω(2nα

), for some 0 < α < 1/20. It is
an interesting open question to understand if B&B can recover the same running times as the specialized algorithms above
for these problems.

1.3 Techniques We now explain the high level strategy behind the obtaining integrality gap bounds of [12, 9]. We will
then extract a natural discrepancy theoretic problem which will be the key to our generalizations.

Proving Gap Bounds. Given integer program indexed by (A,b,c), we recall that the goal is to bound the gap between
the value of the integer program and its linear programming relaxation. The strategy to bound the integrality gap is to
suitably round an optimal basic primal solution x∗ ∈ [0,1]n (for possibly a slightly perturbed right-hand side b) to a nearly
optimal solution x′′ ∈ {0,1}n to the IP. The rounding procedure will make use of the dual optimal solution u∗ ∈ Rm

+ (see
Section 3.1 for the dual program).

To round x∗, we first round down its fractional components to 0 to get x′ (there are at most m such components). From
here, one selects a small subset of variables T ⊆ {i : x∗i = 0}, |T |= Om(logn), with tiny reduced costs (which are “cheap” to
flip to 1), namely |ci −u∗Tai|= Om(logn/n), for i ∈ T . The subset T is carefully chosen such that x′′ := x′+1T ∈ {0,1}n,
obtained by flipping the variables in T from 0 to 1, is the desired feasible and nearly optimal IP solution. For feasibility,
we need that A(x′+ 1T ) ≤ b. For near-optimality, we additionally need x′+ 1T to be nearly (or even exactly) tight on the
constraints that x∗ is tight on. That is, we need that (Ax∗)i = bi ⇒ (A(x′ + 1T ))i ≈ bi, ∀i ∈ [m]. Simplifying slightly, a
sufficient condition is A1T ≈ A(x∗− x′), thus we may think of T as a “slack repairing” set.

A crucial property, in both the packing and Gaussian setting, is that x∗ has at least Ω(n) zero entries and that the
corresponding columns of A are independent subject to having negative reduced cost (see Lemma 3.2 and Lemma 3.3).
Furthermore, there are at least Ωm(logn) columns with suitably small reduced costs, and so there is large set of columns
from which to select T .

To generalize the above strategy to other distributions, the crucial difficulty is understanding under what conditions the
“slack repairing” set T above exists.

The Discrepancy Problem. Stated abstractly, the existence of T can be phrased as a natural discrepancy theoretic
problem. Let t ∈ Rm be a target vector (e.g., the difference of slack vectors) and let A ∈ Rm×n̄ be a “nice” random matrix
with independent columns. When can we ensure with high probability that t is equal to or very close to a {0,1} combination
of the columns of A?

3The cycle cover relaxation is, in fact, integral, but its solutions are not feasible (i.e., they may be a union of many disjoint directed cycles). B&B must
therefore branch on variables that are integral in the current relaxation.
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A general answer to this question was given in [9, Lemma 1], improving upon [12, Lemma 3.4]. However, it enforced
very strict conditions on the entries of A. Specifically, the entries of A needed to be independent, mean zero with unit
variance, absolutely continuous random variables of bounded density which “converge quickly enough” to a Gaussian when
averaged. Furthermore, for the targets t in the “range” of A, the probability of successfully hitting t was only Θ(1).

As our main technical contribution, which yields the key ingredient for extending the IP gap bounds, we give a much
more general and powerful discrepancy theorem. We state it below, restricted to special cases relevant for our applications
(see Theorem 2.1 for the general result).

THEOREM 1.4. (LINEAR DISCREPANCY THEOREM FOR RANDOM MATRICES) Let A = (a1, . . . ,an̄) ∈ Rm×n̄, n̄ ≥
poly(m), be a random matrix with independent columns with same mean µ ∈ Rm. Let p ∈ (0,1) satisfy poly(m) log n̄

n̄ ≤
p ≤ 1

poly(m) . Then, the following holds:

• Discrete case: suppose that the entries Ai j are i.i.d. uniform on an integer interval {l, l + 1, . . . , l + k} for l,k ∈ Z,
n̄ ≥ k ≥ max{2, |l|}. Then, with probability at least 1− e−Ω(pn̄), for every t ∈ Zm satisfying

∥t − pn̄µ∥2 ≤ O(
k
√

pn̄
m logm

)

there exists x ∈ {0,1}n̄ with ∥x∥1 = Θ(pn̄) such that Ax = t.

• Continuous case: suppose that a1, . . . ,an̄ are logconcave with identity covariance and that ∥µ∥ ≤ poly(m). Then,
with probability at least 1− e−Ω(pn̄), for every t ∈ Rm satisfying,

∥t − pn̄µ∥2 ≤ O(

√
pn̄

m logm
),

there exists x ∈ {0,1}n̄, with ∥x∥1 = Θ(pn̄) such that ∥t −Ax∥2 ≤ e−Ω(pn̄/m).

When applying the above to find the slack repairing set T , n̄ will roughly be O(poly(m) logn) and p = 1/poly(m). The
corresponding success probability will now be 1−n−poly(m) as opposed to Θ(1), which is what allows us to much better tail
bounds for the integrality gap.

Gap bounds via Discrepancy. Given the discrepancy theorem, the proof of the gap bounds mirrors the proofs in [12,
9] as described in the last section, though with non-trivial technical adaptations as well as some simplifications.

As in prior work, the relevant properties of the optimal primal x∗ and dual solution u∗ must be established in these
generalized settings (see Lemma 3.3 and Lemma 3.10). In particular, one must show that the norm of u∗ is suitably bounded,
and that there are sufficiently many columns of A with small reduced costs indexed by the zeros of x∗. These properties
can be derived using standard tools for concentration and anti-concentration of logconcave and uniform discrete random
variables.

Providing “nice enough” columns for our discrepancy theorem can however be challenging. For centered IP where A
has independent logconcave columns, conditioning on the size of the reduced costs can significantly perturb the mean of
each column (possibly in different directions when the columns are not i.i.d.). We overcome this problem using sophisticated
forms of rejection sampling, which allows to “virtually recenter” each logconcave column (see Lemma 3.8). Interestingly,
the rejection sampling procedure does not even preserve logconcavity, however the properties required for our more general
discrepancy theorem persist (see Theorem 2.1).

In terms of simplifications, compared to earlier proofs we no longer require repeated trials on disjoint subsets of columns
of A to find a suitable slack repairing set T . In particular, due to our new discrepancy theorem, using all the small reduced
cost columns together both exponentially decreases the probability of failure and increases the size of the targets one can
hit. Furthermore, since the discrepancy theorem directly applies to columns with non-zero means, one can avoid ad-hoc
reductions to the mean-zero case as in the proof of [12] for the packing case.

Relations to Discrepancy Theory. We first explain the connection to linear discrepancy. As defined by Lovász,
Spencer, Vesztergombi [20], the linear discrepancy of a matrix A ∈ Rm×n is lindisc(A) := maxλ∈[0,1]n minx∈{0,1}n ∥A(x−
λ )∥∞. That is, it is the maximum “rounding error” one must incur to round a [0,1] combination of the columns to
a {0,1} combination (the specific choice of ℓ∞ vs ℓ2 norm is not important in our context). The discrepancy disc(A)
of A is linear discrepancy restricted to λ = 1n/2 (the all 1/2 vector). It is more common to expressed discrepancy by
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minx∈{−1,1}n ∥Ax∥∞ = 2disc(A), in which case x ∈ {−1,1}n is interpreted as a 2-coloring of the columns of A. While linear
discrepancy is always larger than discrepancy, [20] showed the maximum discrepancy of any subset of the columns of A,
known as hereditary discrepancy, upper bounds lindisc(A) up to a factor of 2.

Bounds on the discrepancy of various matrix classes, often induced by the incidence matrix of set system, have found
many applications in computational geometry and complexity (see [21, 22]). Over the last decade or so, efficient algorithms
for producing low-discrepancy colorings have been developed [23, 24, 25, 26, 27] and have found many applications in the
context of approximation algorithms [28, 29, 30, 31].

With the above perspective, Theorem 1.4 can be interpreted as bounding the linear discrepancy of the random matrix A
for combinations λ ∈ [0,1] which are very close to p1n, where p ∈ (0,1) is as above. As the columns of A are independent
with mean µ , one can expect that A(p1n)≈ pnµ . Perhaps slightly less clear is that every t ∈Rm, which is close to pnµ , will
in fact be exactly expressible as t = Aλ , where λ ≈ p1n with high probability (this requires an analysis of the singular values
of A). Theorem 1.4 now shows that λ can be replaced by x ∈ {0,1}n with ∥x∥1 = Θ(pn) incurring either no error in the
discrete case (assuming t ∈ Zn) or exponentially small error in the continuous case, thereby bounding the linear discrepancy
of the combination λ . At least in the continuous case, we note that one can in fact adapt the proof of Theorem 1.4 to directly
bound the linear discrepancy of any “reasonable” combination λ (i.e., without the detour through the mean µ). This would
be somewhat less useful for the integrality gap application we consider here, since it would be give significantly less precise
guarantees on the targets we can expect to hit. Interestingly, while the application pursued here is algorithmic, i.e, bounding
the complexity of B&B, we are not aware of any efficient algorithm to compute the rounding x guaranteed by Theorem 1.4.

Crucial to the linear discrepancy bounds we achieve in Theorem 1.4, i.e., either exponential small or zero, is that the
matrix A has many more columns that the dimension m. In particular, reducing to bounds on hereditary discrepancy become
useless in this setting. The study of discrepancy in the “over complete” setting has been become very active somewhat more
recently, with works focusing on the discrepancy of large random matrices and set systems [32, 33, 34, 35, 36, 37, 38].
Many of these works were motivated by the Beck-Fiala conjecture, which posits that discrepancy of any {0,1} matrix A
in which every column has at most t ones is bounded by O(

√
t) (here A can be interpreted as the incidence matrix of a set

system). Variants of this conjecture for random set systems and matrices where established in [32, 34, 35, 36, 37, 39, 38],
where in the case n ≫ m, it was shown that discrepancy quickly drops to 1 [35, 36, 37, 39] or even exponentially close to
zero [32, 36] depending on whether the columns of the matrix A are discretely or continuously distributed.

Discrepancy via Fourier Analysis. To prove our linear discrepancy theorem, we rely on a Fourier analytic approach,
which is completely different from the second-moment counting based proofs in [12, 9]. The high level approach was
pioneered by Kuperberg, Peled and Lovett [40], who applied Fourier analytic techniques to show the existence of rigid
combinatorial objects, such as orthogonal arrays, Steiner systems and regular hypergraphs. At a technical level, for a
matrix A ∈ {0,1}m×n, they were interested in understanding the minimum p ∈ (0,1] such that pA1n = Ax, where x ∈ {0,1}n

∥x∥1 = pn. They examined this question for highly symmetric deterministic matrices coming from the above applications.
The Fourier analytic approach was later applied by Hoberg and Rothvoss [35] and independently by Frank and Saks [36]
to show very strong upper bounds on the discrepancy minx∈{−1,1}n ∥Ax∥∞ of a random matrix A when n ≫ m, where the
columns of A were drawn iid from various distributions.

From a comparative perspective, our Theorem 1.4 sits in between the work of [40] and [35, 36]. We work with random
matrices A as in [35, 36], though the question we attack is more in the spirit of [40]. We note that unlike [40], it is not
sufficient for us to show that the existence a rounding x ∈ {0,1}n such that A(x− p1n) is small or zero. For our applications,
we require this to be true with Ap1n replaced by pnµ = E[Ap1n]. We further require the existence of x to hold for any target
t close enough to pnµ . This last requirement however generally comes for “free” with Fourier analytic techniques (the
moment you can hit pnµ you can hit everything close to it as well). A more significant difficultly is that the concentration of
Ap1n around its mean pnµ is rather weak. That is, the probability that Ap1n is close to its mean scales relative to the ambient
dimension m (which is constant) instead of n. This makes achieving the 1− e−Ω(pn) success probability more challenging.

We now explain the high-level approach. Let A ∈ Rm×n be our random matrix with columns having mean µ ∈ Rm and
covariance matrix σ2Im, and let p ∈ (0,1) be our parameter. The strategy is to directly analyze the probability mass function
of the random variable Y = AX , where X1, . . . ,Xn are i.i.d. Bernoulli’s with probability p. [40] also use this distribution,
whereas [35, 36] choose X1, . . . ,Xn to be uniform {−1,1} random variables. Restricting attention to the discrete case,
where Y ∈ Zn, we show that Pr[Y = t]≫ 0 for t ∈ Zn, when ∥npµ − t∥= Om(σ

√
pn), where Om(σ

2 pn) roughly measures
the “available variance” of AX in all directions. Obtaining a bound for Pr[Y = t] is done by applying the Fourier inversion
formula, showing that the Fourier coefficients are close to those of a Gaussian and integrating (see Section 2 for an overview).

For θ ∈ [−1/2,1/2]m, the corresponding of Fourier coefficient AX is expressed by EX [e2πi⟨θ ,AX⟩]. Similar to [35, 36],
we control the magnitude of these coefficients using the anti-concentration properties of the columns of A. Specifically, for
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our choice of column distributions, we need to show the the probability that ⟨θ ,Ai⟩, i ∈ [n], is “close” to an integer decays
predictably as a function of σ∥θ∥. We note that the exact expression for the Fourier coefficients indeed differs depending
on whether the entries of X are Rademacher or Bernoulli distributed, where the former is more prone to parity issues (e.g.,
if A ∈ {0,1}m×n and x ∈ {−1,1}n, the parity of Ax is fixed). Such parity issues do not arise in our setting. As mentioned
above, we face a different difficulty, which is being able to pinpoint the exact targets whose probabilities we can accurate
estimate due to the poor concentration of EX [AX ] = A(p1n) around EX ,A[AX ] = npµ .

To deal with this issue, we first carefully subsample a set S ⊆ [n] of columns from A, whose sum is close to the mean,
and then generate Y from these subsampled columns. To construct S, we iterate through the columns one by one, adding
Ai to S if ⟨∑ j∈S(A j − µ),Ai − µ⟩ ≤ 0 and ∥Ai − µ∥ ≤ 2E[∥Ai − µ∥2

2]
1/2. This subsampling deterministically ensures that

∥∑i∈S(Ai−µ)∥2 ≤ 2
√

∑i∈SE[∥Ai −µ∥2
2], suitably biasing the sum towards the mean. For the distributions we work with, it

is easy to show that |S|= Ω(n) with probability 1− e−Ω(n), so we always have a constant fraction of the columns left over.
Note that this subsampling crucially uses our flexibility to drop columns of A, a distinguishing feature of {0,1} combinations
versus {−1,1} combinations. This subsampling process, however, causes non-trivial dependencies among the columns of
A. That is, the submatrix we use to generate Y no longer has independent columns. Fortunately, we show that even with
the conditioning induced by subsampling, the columns still retain enough of their anti-concentration properties to allow the
Fourier analytic estimates to go through.

Related Work. Another success story in analysis of LP based B&B comes from fixed parameter tractability (FPT).
In this context, it was shown that important combinatorial problems such as vertex cover [41] and multiway cut [41] are
FPT when parameterized by the integrality gap of the natural LP relaxation. Since then, multiple general frameworks
for capturing such problems have been developed [42, 43]. These results crucially rely on the use of half-integral and
persistent LP relaxations, which are known only for very structured problems. The results presented here thus mainly
provide complementary evidence for the effectiveness of B&B in the unstructured setting.

While variable based B&B is most commonly used in practice, there is a theoretical line of work examining the
effectiveness of branching schemes for solving random integer programs based on general integer disjunctions. These
schemes rely on sophisticated lattice basis reduction methods [44] and follow the template of Lenstra’s celebrated
polynomial time algorithm for integer programming in fixed dimension [45]. In particular, Furst and Kannan [46] showed
that certain random subset-sum instances can be solved in polynomial time via basis reduction, and Pataki, Tural and
Wong [47] extended these results to certain IPs with multiple constraints. Apart from the different type of branching,
compared to the present work, the IPs analyzed in these models are either infeasible or have a unique feasible solution with
high probability.

Organization The preliminaries and necessary background to our results can be found in appendix A. Section 2
contains the proof of the discrepancy result, Theorem 1.4, and the bounds on the integrality gap, given in Theorems 1.2
and 1.3, are proven in Section 3. Section 4 is devoted to the proof of Corollary 1.1. Finally, in Section 5 we prove several
anti-concentration results required by our method.

2 Discrepancy
In this section we describe our main discrepancy results. Let A ∈ Rn×m be a random matrix with independent columns.
Throughout the section we assume that the columns of A have the same mean, denoted as µ . We also make the assumption
that all columns of A have the same period, as defined in (A.1), and denote it by period(A). We will deal with two different
cases: either period(A) = {0}, which means that the columns of A are absolutely continuous, or period(A) = Zm, in which
case the columns of A are supported in the lattice Zm.

Notation and assumptions: Before stating the result, let us introduce some definitions. We first describe the
distributions captured by our result; distributions with a non-negligible mass on every half-space passing through their
mean.

DEFINITION 1. (APPROXIMATELY SYMMETRIC DISTRIBUTIONS) A probability distribution D on Rm, with mean µ , is
called approximately symmetric if, for any ν ∈ Rm,

Pr
X∼D

(⟨X ,ν⟩ ≥ ⟨µ,ν⟩)≥ 1
4e2 .

REMARK 1. The constant 1
4e2 in the definition is somewhat arbitrary and could be relaxed to any smaller constant. It is

immediately clear that any distribution which is symmetric around its mean is also approximately symmetric. Moreover,
Grünbaum’s inequality in Lemma A.6 shows that logconcave measures are approximately symmetric.
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Suppose that the columns of A are approximately symmetric. The main idea will be to choose S ⊆ [n] randomly with
Pr[i ∈ S] = p for p ≤ 1

poly(m) , independently for all i ∈ [n]. We then show that, with high probability over A and positive
probability over S, A1S is close to a target vector t. Thus, let us define the random vector D := A1S.

To understand the distribution of D we will consider its Fourier transform, denoted D̂(θ) := E[exp(2πi⟨D,θ⟩)]. Note,
that under the assumptions above, we have period(A) = period(D), and so we shall use V to denote the fundamental domain
of D, as in (A.2).

The next definition quantifies an appropriate notion of anti-concentration properties for the columns of A.

DEFINITION 2. (ANTI-CONCENTRATION) Let σ ≥ 0 and κ ∈ (0,1). We say the measure D is (σ ,κ)-anti-concentrated if
Cov(D)⪯ σ2Im, and for any ν ∈ Rm and any θ ∈V ,

Pr
X∼D

[
d(θTX ,Z)≥ κ min(1,∥θ∥∞σ) | ⟨ν ,X⟩ ≤ ⟨ν ,µ⟩

]
≥ κ,(anti-concentration)

where d(θTX ,Z) := inf
z∈Z

|θTX − z|. When σ is clear from the context, we will sometimes omit the dependence on σ from the

definition.

Without further details, the definition might seem opaque. Below we explain the rationale for considering this notion of
anti-concentration and demonstrate some examples of distributions that satisfy Definition 2. For now, it shall suffice to say
that the (anti-concentration) property appears naturally when trying to establish bounds on Fourier transforms.

In the following assumption, which we shall enforce throughout the section, we detail the possible dependencies
between the different parameters. These dependencies, in turn, dictate the possible regimes in which our results hold.

ASSUMPTION 1. We say that the random matrix A ∈ Rn×m satisfies our assumptions if its columns are independent with a
common period and a common mean µ ∈ Rm, are approximately symmetric, and (σ ,κ)-anti-concentrated, with constants
σ ,κ > 0. Further, let p ∈ [0,1] and assume that the following technical condition is met:

(2.1)

(
10m

(
1+ ∥µ∥

σ

))20

κ16n
≤ p ≤ κ8

1015m6 .

Main discrepancy results: With the above notation, the main result of this section is:

THEOREM 2.1. Let p ∈ [0,1] and suppose that A satisfies our assumptions, as in Assumption 1. Then, when period(A) =
Rm, with probability 1− e−Ω(κ pn) we have:

For all t ∈ Rm such that

∥t − pnµ∥ ≤ σκ
3
2

104 ln
(

103m
κ3

(
1+ ∥µ∥2

σ2

) 1
m
)√

pn
m

,

there is a set S of size |S| ∈ [ 1
16 pn, 3

16 pn] such that

∥A1S − t∥ ≤ exp
(
−κ3 pn

80m

)
σn3.

Theorem 2.1, as stated, only deals with distributions which are absolutely continuous with respect to the Lebesgue
measure. However, the argument also applies to measures with singularities. In particular, the result also holds for
distributions supported on the lattice Zm, the case which is most relevant to our work. Moreover, in the lattice case, if
one finds a subset S ⊂ [n], such that A1S is very close to some target vector t ∈ Rm, then, since A1S belongs to the lattice as
well, one can actually deduce A1S = t. We prove this statement as a part of the proof of Theorem 2.1.

THEOREM 2.2. Suppose that period(A) =Zm. Then, under the same conditions of Theorem 2.1 together with exp
(

κ3 pn
80m

)
≥

2σ2n2, with probability 1− e−Ω(κ pn), there is a set S of size |S| ∈ [ 1
16 pn, 3

16 pn] such that A1S = t, provided that t ∈ Zm.

Remark that since, by (2.1), κ3 pn ≥ poly(m), the condition exp
(

κ3 pn
80m

)
≥ 2σ2n2 almost does not restrict generality.
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Road map for the proof: Recall Fourier’s inversion formula, Theorem A.1. In light of the formula, it will be enough
to show that the integral in Theorem A.1 is positive for appropriate t, for most choices of A. In this case we will get that
Pr [D = t] > 0, which implies the existence of an appropriate subset of columns. At a very high level, we will show that
most of the mass lies next to the origin and that the integrand has an exponential decay far from the origin. The following
sequence of steps will achieve this:

1. Our first step will be to subsample the columns of A. This will result in appropriate concentration bounds that improve
as n increases, irregardless of the value of m (Lemma 2.2).

2. We then show that with high probability arg(D̂(θ)) ∈ [− 1
8 π, 1

8 π] for all θ with ∥θ∥ = O( poly(m)
σ
√

n ). This will allow to

establish that the real part of D̂(θ)exp(−2πi⟨θ , t⟩) is large when ∥t − pnµ∥∥θ∥ is small (Lemma 2.4).

3. Next, we show that
∫

∥θ∥≤r
|D̂(θ)|dθ is large for some r = O( poly(m)

σ
√

n ). In combination with Lemma 2.4, we shall

conclude that
∫

∥θ∥≤r
D̂(θ)exp(−2πi⟨θ , t⟩)dθ is large (Lemma 2.6).

4. Finally, we will show that for ∥θ∥ ≥ r, |D̂(θ)| is rapidly decreasing. So the integral over these θ can only have a
small negative contribution (Lemma 2.7).

The first bottleneck is Step 1, which will change the distribution and effective size of the random matrix A. Below we
show that approximately symmetric distributions maintain many desirable properties after our subsampling procedure. The
second bottleneck is Step 4. To establish a rapid enough decay of the Fourier spectrum, we require that the columns of A
satisfy the (anti-concentration) property from Definition 2.

To gain a bit of intuition about Definition 2, recall that we are working in the Fourier domain. If X is a column of A, it is
natural to require that ⟨θ ,X⟩ be bounded away from integer points. Otherwise, ⟨θ ,D⟩ could be close to an integer point with
high probability, making |D̂(θ)| large. An extra component in the definition says that the anti-concentration continues to
hold after conditioning on an arbitrary half-space, passing through the mean. As will become apparent, this is a consequence
of the subsampling scheme from Step 1.

Let us just note that the (anti-concentration) property is not vacuous. In fact Theorem 1.4 is a direct consequence of the
following lemma (see the proof in Section 5) and Theorems 2.1 and 2.2 (note that by Remark 1 both cases are approximately
symmetric).

LEMMA 2.1. Suppose that for X = (X1, . . . ,Xm)∼ D , one of the following holds,

1. X is logconcave and isotropic.

2. Xi are i.i.d. uniformly on an integer interval {a,a+1, . . . ,a+ k}, with k > 1.

Then, D satisfies (anti-concentration) with constant κ > 1
50 .

One may wonder about the necessity of the condition k > 1 in Case 2 of Lemma 2.1. A moment of reflection reveals that, if
X is uniform on {0,1}, then X is not anti-concentrated, for any κ > 0, and thus our framework does not directly apply to this
case. However, by taking account of the possible bad cases, our analysis can be refined to also handle such distributions.
We do not pursue this direction here.

Step 1 - subsampling: We will generate a sub-matrix of A by selecting a subset of the columns. This will ensure that
the norm of the columns is bounded, as well as that the norm of their sum is small. Suppose that the columns of A satisfy
(anti-concentration) with κ,σ > 0, for i = 1, . . . ,n we define random variables Yi ∈ {0,1}:

Pr[Yk+1 = 1|A1,Y1, . . .Ak,Yk] =


1 if ⟨∑k

j=1 Yj (A j −µ) ,Ak+1 −µ⟩< 0 and ∥Ak+1 −µ∥ ≤ 10σ
√m

κ

1
2 if ⟨∑k

j=1 Yj (A j −µ) ,Ak+1 −µ⟩= 0 and ∥Ak+1 −µ∥ ≤ 10σ
√m

κ

0 else

We then select all columns of A for which Yi = 1. For now, let A′
i have the law of column Ai, conditional on being selected,

and denote the selected set SA = {i ∈ [n]|Yi = 1}.

LEMMA 2.2. Suppose that the columns of A satisfy (anti-concentration) with κ,σ > 0 and that it is an approximately
symmetric distribution, in the sense of Definition 1. Then, if n ≫ m2

κ
:
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1.

∥A′
i −µ∥ ≤ 10σ

√
m
κ
.(norm concentration)

2. With probability 1− e−Ω(n), |SA| ≥ n
200 ,

∑
i∈SA

(Ai −µ)(Ai −µ)T ≼ 2nσ
2Im, and(matrix concentration)

∥∥∥∥∥∑
i∈SA

Ai −µ

∥∥∥∥∥
2

≤ 2nmσ
2.(concentration)

3. Pr
(
d(θTA′

i,Z)≥ κ min(1,∥θ∥∞σ) |A1Y1, ...,Ai−1Yi−1
)
≥ κ

2 , for every θ ∈V , and i ∈ [n′].

Proof. [Proof ] The first claim is immediate since we have conditioned the columns on the event {∥Ai − µ∥ ≤ 10σ
√m

κ
}.

For (matrix concentration), let Zi
law
= Ai|

(
∥Ai −µ∥ ≤ 10σ

√m
κ

)
and note,

∑
i∈SA

(Ai −µ)(Ai −µ)T =
n

∑
i=1

Yi(Zi −µ)(Zi −µ)T ≤
n

∑
i=1

(Zi −µ)(Zi −µ)T.

As the random vectors {Zi − µ}n
i=1 are mutually independent and (Zi − µ)(Zi − µ)T ⪯ 10σ

√m
κ

Im almost surely,
(matrix concentration) follows from the matrix Bernstein inequality [48, Theorem 1.6.2].

For (concentration), since ⟨∑i−1
j=1 Yj(A j −µ),Ai −µ⟩ ≤ 0,∥∥∥∥∥∑

i∈SA

Ai −µ

∥∥∥∥∥
2

≤ ∑
1∈SA

∥Ai −µ∥2 = Tr

(
n

∑
i∈SA

(Ai −µ)(Ai −µ)T

)
≤ 2nTr

(
σ

2Im
)
,

where the last inequality is monotonicity of the trace. Also, recalling that Cov(Ai)⪯ σ2Id , the fact that with high probability
|SA| ≥ n

8 follows from Azuma’s inequality. Indeed, for fixed i ∈ [n], by Chebyshev’s inequality,

Pr
(
∥Ai −µ∥> 10σ

√
m
κ

)
≤

κ E
[
∥Ai −µ∥2

]
100σ2m

=
κ Tr(Cov(Ai))

100σ2m
≤ κ

100
.

Since Ai has an approximately symmetric law, then, since Ai is independent from {Yj,A j}i−1
j=1, by definition,

Pr

(
⟨

i−1

∑
j=1

Yj(A j −µ),Ai −µ⟩ ≤ 0

)
≥ 1

4e2 .

Taken together, the above displays imply

Pr(Yi = 1|A1, . . . ,Ai−1)≥
1

100
.

Applying Azuma’s inequality, as in (A.4), we get

Pr
(
|SA| ≥

n
200

)
= 1− e−Ω(n).

Finally, we address the (anti-concentration) property. For fixed i ∈ [n′], let us define ν = ∑
i−1
j=1 A jYj. So,

Pr
(
d(θTA′

i,Z)≥ κ min(1,∥θ∥∞σ) |A1Y1, ...,Ai−1Yi−1
)

= Pr
(

d(θTAi,Z)≥ κ min(1,∥θ∥∞σ) |⟨ν ,Ai −µ⟩ ≤ 0 and ∥Ai −µ∥ ≤ 10σ

√
m
κ

)
≥ Pr

(
d(θTAi,Z)≥ κ min(1,∥θ∥∞σ) |⟨ν ,Ai −µ⟩ ≤ 0

)
− κ

100
≥ κ

2
.

Here, the last inequality follows from Definition 2, while the first inequality is a union bound on the anti-concentration event
and {∥Ai −µ∥ ≤ 10σ

√m
κ
}.
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In light of the lemma, in the sequel, all computations will be made conditioned on the high-probability event defined
by Lemma 2.2, and we will only consider the selected columns. Thus, with a slight abuse of notation, from now on, the
random variables D, D̂, Ai, etc., will only be considered with respect to the selected columns. In particular, we will write n
for |SA|.

Step II - bounding the argument: We will now show that for small θ , the argument of D̂(θ) is close to 2πnp⟨θ ,µ⟩.

Before proceeding, we introduce an auxiliary parameter β =

√
103m2

κ3 ln
(

103m
κ3

(
1+ ∥µ∥2

σ2

) 1
m
)

, parametrizing the region in

which we control D̂(θ). We record here some facts which will be useful later on:

LEMMA 2.3. Assume that Assumption 1 is satisfied. If β =

√
103m2

κ3 ln
(

103m
κ3

(
1+ ∥µ∥2

σ2

) 1
m
)

, then for large enough n,

1√
24π2

≤ β ≤ 1
80
√

pm(m
κ

) 3
2

β
3 ≤

√
pn

50000(
1+

∥µ∥
σ

)3

β
3 ≤

√
pn

50000

Proof. [Proof ] The lower bound in the first inequality is trivial. The upper bound follows from the upper bound in (2.1),
p ≤ κ8

1015m6
1

ln
(

10
(

1+ ∥µ∥2

σ2

)) , because

β =

√√√√103m2

κ3

(
ln
(

100m
κ3

)
+ ln

(
10
(

1+
∥µ∥2

σ2

) 1
m
))

≤

√√√√103m2

κ3

(
3
(

100m
κ3

) 1
3
+ ln

(
10
(

1+
∥µ∥2

σ2

) 1
m
))

≤

√√√√105m2.5

κ4 ln

(
10
(

1+
∥µ∥2

σ2

) 1
m
)

≤ 1
80

√
pm

.

The first inequality uses ln(x) = 3ln(x
1
3 )≤ 3x

1
3 and the second x+ y ≤ xy, valid when x,y ≥ 1.

For the first inequality concerning β 3, we use the above bound, which implies β 3 ≤ 109 m
15
2

κ6 . We thus compute,(m
κ

) 3
2

β
3 ≤ 109 m9

κ8

(
1+

∥µ∥
σ

)2

≤
√

pn
50000

where the second inequality follows, again, from (2.1). Using a similar argument we also get,(
1+

∥µ∥
σ

)5

β
3 ≤ 109 m8

κ6

(
1+

∥µ∥
σ

)2

≤
√

pn
50000

which completes the proof.

The main observation in this step, is that, when we fix the columns {A j}n
j=1, a Taylor approximation implies the bound,∣∣∣∣∣ n

∑
j=1

arg(ES[exp(1i∈S2πiA j)])−2πnp⟨θ ,µ⟩

∣∣∣∣∣≤ 2π p

∣∣∣∣∣ n

∑
j=1

⟨θ ,A j⟩−n⟨θ ,µ⟩

∣∣∣∣∣+50p
n

∑
j=1

∣∣⟨θ ,A j⟩
∣∣3 .

The term on the LHS controls arg(D̂(θ)) and the two terms on the RHS can be bounded with (concentration) and
(norm concentration) respectively. We then prove:
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LEMMA 2.4. With probability 1− e−Ω(n) over A, for ∥θ∥ ≤ β

σ
√

pn ,

|arg(D̂(θ))−2πnp⟨θ ,µ⟩| ≤ 4πβ
√

pm+
5000((m/κ)

3
2 +∥µ∥3/σ3)β 3
√

pn
.

Proof. [Proof ] Let f (x) = arg(p · exp(2πi · x)+ (1− p)) and observe that f (x) = arctan
(

psin(2πx)
pcos(2πx)+(1−p)

)
. A calculation

shows f (0) = 0, f ′(0) = 2π p and f ′′(0) = 0. Hence, we set g(x) = f (x)− 2π px and, with a second-order Taylor
approximation of f (x) around x = 0, we see that for every x ≥ 0 there is some x′ ∈ [0,x] such that

g(x) =
d3 f
dx3 (x

′)x′3.

Another calculation shows that, as long as p ≤ 0.1, we have d3 f
dx3 (x′)≤ 50p and hence |g(x)| ≤ 50|x|3 p. Now, note,

arg(E[exp(1 j∈S2πix)]) = arg(p · exp(2πi · x)+(1− p)) = f (x).

Now,

∣∣arg(D̂(θ))−2πnp⟨θ ,µ⟩
∣∣= ∣∣∣∣∣arg(

n

∏
j=1

E[exp(1 j∈S2πi⟨θ ,A j⟩)])−2πnp⟨θ ,µ⟩

∣∣∣∣∣
=

∣∣∣∣∣ n

∑
j=1

arg(exp(1 j∈S2πi⟨θ ,A j⟩))−2πnp⟨θ ,µ⟩

∣∣∣∣∣
=

∣∣∣∣∣ n

∑
j=1

f (⟨θ ,A j⟩)−2πnp⟨θ ,µ⟩

∣∣∣∣∣ ,
where we understand | · | as referring to distance on the circle. The Taylor approximation given above shows that, when
∥θ∥ ≤ β

σ
√

pn , we can bound this distance (where now the bound will be expressed as a distance between real numbers),∣∣∣∣∣ n

∑
j=1

f (⟨θ ,A j⟩)−2πnp⟨θ ,µ⟩

∣∣∣∣∣≤ 2π p

∣∣∣∣∣ n

∑
j=1

⟨θ ,A j⟩−n⟨θ ,µ⟩

∣∣∣∣∣+50p
n

∑
j=1

∣∣⟨θ ,A j⟩
∣∣3

≤ 2π p

∣∣∣∣∣
〈

θ ,
n

∑
j=1

(A j −µ)

〉∣∣∣∣∣+50p∥θ∥3
n

∑
j=1

∥A j∥3
2

≤ 2π p∥θ∥

∥∥∥∥∥ n

∑
j=1

(A j −µ)

∥∥∥∥∥+50p∥θ∥3n
(

10σ
√

m/κ +∥µ∥
)3

≤ 4π pβ

√
mσ2

σ2 p
+

50(10σ
√

m/κ +∥µ∥)3β 3

σ3√np

= 4πβ
√

pm+
50
(

10
√

m/κ + ∥µ∥
σ

)3
β 3

√
pn

,

where the third inequality follows from (norm concentration) and the penultimate inequality being a consequence of
(concentration).

The following corollary is now immediate.

COROLLARY 2.1. With probability 1− e−Ω(n), for all ∥θ∥ ≤ β

σ
√

pn ,

|arg(D̂(θ))−2πnp⟨θ ,µ⟩| ≤ 1
8

π.
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Proof. Lemma 2.3 implies β
√

pm ≤ 1
80 , β 3

(
∥µ∥
σ

)3
≤

√
pn

50000 and, β 3(m/κ)
3
2 ≤

√
pn

50000 . Thus,

4πβ
√

pm+
50
(

10
√

m/κ + ∥µ∥
σ

)3
β 3

√
pn

≤ 1
8

π,

and the Corollary follows from Lemma 2.4.

Step III - bounding the integral from below, near the origin: Next, we prove that the modulus of D̂ is bounded, near
the origin.

LEMMA 2.5. The following holds,∫
∥θ∥≤ β

σ
√

pn

|D̂(θ)|dθ ≥
(

1
200π3nmp

)m
2 1

σm−1 (σ2 +∥µ∥2)
1
2
.

Proof. [Proof ] We have:

|D̂(θ)|=
n

∏
j=1

|E[exp(2πi⟨θ ,A j⟩)]|=
n

∏
j=1

|(1− p) ·1+ pexp(2πi⟨θ ,A j⟩)|

=
n

∏
j=1

√
(1− p+ pcos(2π⟨θ ,A j⟩))2 + p2 sin(2π⟨θ ,A j⟩)2

≥
n

∏
j=1

(1− p+ pcos(2π⟨θ ,A j⟩))≥ exp(−6π
2 p

n

∑
i=1

⟨θ ,Ai⟩2).

Here the last inequality follows, as long as p ≤ 0.01, from the elementary inequalities,

cos(x)≥ 1− x2

ln(1− x)≥−3
2

x when |x| ≤ 1
2
.

Indeed, it’s enough to consider ⟨θ ,A j⟩ ∈ [−1,1], for which,

ln(1− p+ pcos(2π⟨θ ,A j⟩))≥ ln
(
1− p4π

2⟨θ ,A j⟩2)≥−6π
2 p⟨θ ,A j⟩2.

Hence, by applying the (matrix concentration) property to the obtained bound, we get,

|D̂(θ)| ≥ exp

(
−12π

2 p

(
n⟨θ ,µ⟩2 +

n

∑
i=1

⟨θ ,Ai −µ⟩2

))
≥ exp

(
−24π

2np
(
⟨θ ,µ⟩2 +σ

2
θθ

T
))

≥ exp
(
−24π

2
θ
(
µ
T

µ +σ
2Im
)

θ
Tnp

)
.

Let Y ∼ N
(

0, 1
48π2np (µ

Tµ +σ2Im)
−1
)

, then,∫
∥θ∥≤ β

σ
√

pn

|D̂(θ)|dθ ≥
∫
∥θ∥≤ β

σ
√

pn

exp
(
−24π

2
θ
(
µ
T

µ +σ
2Im
)

θ
Tnp

)
dθ

=
1√

det(96π3np(µTµ +σ2Im))
Pr
(
∥Y∥ ≤ β

σ
√

pn

)
=

1

(96π3np)
m
2 (∥µ∥2 +σ2)

1
2 σm−1

Pr
(
∥Y∥ ≤ β

σ
√

pn

)
.(2.2)

By Chebyshev’s inequality,

Pr
(
∥Y∥ ≥ β

σ
√

pn

)
≤ σ2 pn

β 2 Tr
(

1
48π2np

(µT
µ +σ

2Im)
−1
)
≤ m

48π2β 2 ≤ 1
2
,
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where in the last inequality, we have used β ≥
√

103m2

κ3 ≥
√

2 m
48π2 . The proof concludes by plugging this estimate into (2.2).

To handle the integral in Theorem A.1, we note that when ∥t− pnµ∥ is small enough, as dictated by Theorem 2.1, Corollary
2.1 implies,

|arg(D̂(θ)exp(2πi⟨θ , t⟩))| ≤ |arg(D̂(θ))−2πnp⟨θ ,µ⟩|+ |arg(exp(2πi⟨θ , t − pnµ⟩))| ≤ 1
4

π,

whenever ∥θ∥ ≤ β

σ
√

pn (recall β =

√
103m2

κ3 ln
(

103m
κ3

(
1+ ∥µ∥2

σ2

) 1
m
)

). For a complex number z, we have ℜ(z) =

cos(arg(z))|z|. Thus, from Lemma 2.5, we deduce the following result.

LEMMA 2.6. Let t ∈ Rm such that

∥t − pnµ∥ ≤ σκ
3
2

104 ln
(

103m
κ3

(
1+ ∥µ∥2

σ2

) 1
m
)√

pn
m

.

Then, for ∥θ∥ ≤ β

σ
√

pn ,

ℜ
[
D̂(θ)exp(−2πi⟨θ , t⟩)

]
≥ 0,

and

ℜ

 ∫
∥θ∥≤ β

σ
√

pn

D̂(θ)exp(−2πi⟨θ , t⟩)dθ

≥ cos
(

π

4

)( 1
200π3nmp

)m
2 1

σm−1 (σ2 +∥µ∥2)
1
2
.

Step IV - exponential decay of the Fourier spectrum: To show that the Fourier spectrum decays rapidly, we employ
an ε-net argument over a very large box. The main difficulty is that ⟨θ ,D⟩ can be close to an integer, irregardless of the
value ∥θ∥. Our anti-concentration assumption allows us to avoid this. Specifically, Item 3 in Lemma 2.2 implies that for any
given θ in a dense enough net, we can expect many columns to satisfy that ⟨θ ,Ai⟩ is far from any integer point. Formally,
we prove:

LEMMA 2.7. Assume that Assumption 1 is satisfied. Then, with probability 1− e−Ω(κn), we have

|D̂(θ)| ≤ exp
(
− 1

80
κ

3n(1− p)pπ
2 min

(
1,∥θ∥2

∞σ
2)) ,

for θ ∈ Ṽ , where V is the fundamental domain, as in (A.2), and

Ṽ :=
[
−e

κ3 pn
80m

1
4σn2 ,e

κ3 pn
80m

1
4σn2

]m

∩V.

Proof. [Proof ] We begin with a technical calculation which will help control the size of the net. Observe that (2.1) implies

160m ≤
√

κn =⇒
√

m
κ

≤ 1
2

√
κn

80m
=⇒≤

√
m
κ

≤ 1
2

e
κn

80m ,

and similarly,
∥µ∥
σ

≤ 1
2

e
κn

80m .

Now, let N be an ε-net of Ṽ for ε = 1
2n2
(

σ
√

m/κ+∥µ∥
) . Standard arguments show that one can take |N| ≤(√m

κ
+ ∥µ∥

σ

)m
e

κ
80 n ≤ e

κ
40 n, when n is large enough. Here we have used the bound,

√m
κ
+ ∥µ∥

σ
≤ e

κn
80m , established above.
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For θ ∈ N, define
ϕ(θ) =

κ

4
min(1,∥θ∥∞σ) and E(θ) = { j : d(⟨θ ,A j⟩,Z)≥ ϕ(θ)}.

If we fix θ and set Xi := 1i∈E(θ) then |E(θ)| =
n
∑

i=1
Xi. The statement of Item 3 in Lemma 2.2 is E [Xi|X1, . . . ,Xi−1] ≥ κ

2 .

Applying Azuma’s inequality (A.4), we get:

Pr
[
|E(θ)| ≤ κ

4
n
]
≤ exp

(
−κ

8
n
)
.

In this case, by the union bound,

P
(
∃θ ∈ N : |E(θ)| ≤ κ

4
n
)
≤ e−

κ

16 n.

If j ∈ E(θ), since ϕ(θ)≤ 1
4 , we have:

|ES[exp(1 j∈S ·2πi⟨θ ,A j⟩)]|=
√
(1− p+ pcos(2π⟨θ ,A j⟩))2 + p2 sin(2π⟨θ ,A j⟩)2

=
√

1+2p2 −2p+2(1− p)pcos(2π⟨θ ,A j⟩)

≤
√

1+2p2 −2p+2(1− p)pcos(2πϕ(θ))

≤
√

1−2(1− p)p(2πϕ(θ))2/5

≤ 1− (1− p)p(2πϕ(θ))2/5

≤ 1− 4
5
(1− p)pπ

2 κ2

16
min

(
1,∥θ∥2

∞σ
2) .

Observe that
∣∣ES[exp(1 j∈S2πix)]

∣∣ =√(1− p+ pcos(2πx))2 + p2 sin(2πx)2 is 4π p-Lipschitz in x, as long as p ≤ 1
4 . Take

an arbitrary θ ∈ Ṽ and let θ ′ be the closest point in N. Recall that max
i

∥Ai∥≤ 10σ
√m

κ
+∥µ∥, which follows from eq. (norm

concentration). So, by our choice of ε and with the Cauchy-Schwartz inequality,

|⟨θ −θ
′,A j⟩| ≤

1
2n2 .

Thus:

|D̂(θ)|=
n

∏
j=1

∣∣ES[exp(1 j∈S2πi⟨θ ,A j⟩)]
∣∣

≤ ∏
j∈E(θ ′)

(∣∣ES[exp(1 j∈S2πi⟨θ ′,A j⟩)]
∣∣+4π p|⟨θ −θ

′,A j⟩|
)

≤ ∏
j∈E(θ ′)

(
1− 4

5
(1− p)pπ

2 κ2

16
min

(
1,∥θ

′∥2
∞σ

2)+4π p|⟨θ −θ
′,A j⟩|

)

≤ exp

(
−4

5
(1− p)pπ

2 κ2

16
|E(θ ′)|min

(
1,∥θ

′∥2
∞σ

2)+4π p
n

∑
j=1

|⟨θ −θ
′,A j⟩|

)

≤ e
2π
n exp

(
−1

5
κ3

16
n(1− p)pπ

2 min
(
1,∥θ

′∥2
∞σ

2))
≤ e

2π
n exp

(
−1

5
κ3

16
n(1− p)pπ

2 min
(
1,(1− ε)2∥θ∥2

∞σ
2))

≤ exp
(
− 1

80
κ

3n(1− p)pπ
2 min

(
1,∥θ∥2

∞σ
2)) ,

where the last inequality holds, since by (2.1), κ3 pn ≥ 1020.
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By properly integrating the inequality, we have thus obtained:

LEMMA 2.8. With probability 1− e−Ω(κn), the following inequality holds:

∫
B

|D̂(θ)|dθ ≤ 2

 1

105 pmnσ2
(

1+ ∥µ∥2

σ2

) 1
m


m
2

,

where

B =V ∩
{
∥θ∥∞ < e

κ3 pn
80m

1
4σn2

}
∩
{
∥θ∥ ≥ β

σ
√

pn

}
.

Proof. [Proof ] From Lemma 2.7, when p < 0.1, and σ∥θ∥∞ ≤ σ∥θ∥ ≤
√

m, we have

|D(θ)| ≤ exp
(
−κ3 pnσ2∥θ∥2

10m

)
.

Now, if Y ∼ N (0, Im) and n ≥ 100m6:∫
√

m≥∥θ∥≥ β

σ
√

pn

|D(θ)|dθ ≤
∫

∥θ∥≥ β

σ
√

pn

exp
(
−κ3 pnσ2∥θ∥2

10m

)
dθ

≤
(

5m
κ3 pnσ2

)m
2
P

(
∥Y∥ ≥ β

σ
√

pn

√
κ3 pnσ2

5m

)

=

(
5m

κ3 pnσ2

)m
2
P
(
∥Y∥2 ≥ β

2 κ3

5m

)

=

(
5m

κ3 pnσ2

)m
2
P

∥Y∥2 ≥ 200m ln

103m
κ3

(
1+

∥µ∥2

σ2

) 1
m

 .

The last equality holds since β =

√
103m2

κ3 ln
(

103m
κ3

(
1+ ∥µ∥2

σ2

) 1
m
)

. By Lemma A.2,

P

∥Y∥2 ≥ 200m ln

103m
κ3

(
1+

∥µ∥2

σ2

) 1
m

≤ exp

−50m ln

103m
κ3

(
1+

∥µ∥2

σ2

) 1
m


≤
(

κ3

106m

)m
2 1(

1+ ∥µ∥2

σ2

) 1
2
.

Hence, ∫
√

m≥∥θ∥≥ β

σ
√

n

|D(θ)|dθ ≤
(

1
105 pmnσ2

)m
2 1(

1+ ∥µ∥2

σ2

) 1
2
.

Furthermore, for all θ ∈

[
− e

κ3 pn
80m

4σn2 ,
e

κ3 pn
80m

4σn2

]m

with ∥θ∥∞σ ≥ 1, Lemma 2.7 also implies,

|D(θ)| ≤ exp
(
−κ3 pn

40m

)
.
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So: ∫
e

κ3 pn
80m

4σn2 ≥∥θ∥∞≥ 1
4

|D(θ)|dθ ≤ 1
σmn2m exp

(
κ3 pn
80m

)m

· exp
(
−κ3 pn

40

)
=

1
σmn2m exp

(
−κ3 pn

80

)
.

Summing the previous two inequalities yields

∫
B

|D̂(θ)|dθ ≤

 1

105 pmnσ2
(

1+ ∥µ∥2

σ2

) 1
m


m
2

+

(
1

σ2n4

)m
2

exp
(
−κ3 pn

80

)
.

The proof concludes by recalling the assumption from (2.1), which implies a lower bound on κ3 pn, and hence affords the
bound,  1

105 pmnσ2
(

1+ ∥µ∥2

σ2

) 1
m


m
2

+

(
1

σ2n4

)m
2

exp
(
−κ3 pn

80

)

≤ 2

 1

105 pmnσ2
(

1+ ∥µ∥2

σ2

) 1
m


m
2

.

Proving Theorem 2.1 and 2.2: If the support of D is contained in Zm, then Lemma 2.6 and Lemma 2.8 are enough to
prove Theorem 2.2.

Proof. [Proof of Theorem 2.2] Let B be defined as in Lemma 2.8 and note that since 2σn2 ≤ e
κ3 pn
80m ,[

−1
2
,

1
2

]m

=V ⊂
{
∥θ∥∞ < e

κ3 pn
80m

1
4σn2

}
.

Thus,

B =

[
−1

2
,

1
2

]m

∩
{
∥θ∥ ≥ β

σ
√

pn

}
.

By Lemma 2.8,

∫
B

|D̂(θ)|dθ ≤ 0.2

 1

200π3nmpσ2
(

1+ ∥µ∥2

σ2

) 1
m


m
2

.(2.3)

Moreover, by Lemma 2.6,

ℜ

[∫
∥θ∥≤ β

σ
√

pn

D̂(θ)exp(−2πi⟨θ , t⟩)dθ

]
≥ cos

(
π

4

)( 1
200π3nmp

)m
2 1

σm−1 (σ2 +∥µ∥2)
1
2

= cos
(

π

4

) 1

200π3nmpσ2
(

1+ ∥µ∥2

σ2

) 1
m


m
2

.(2.4)
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So,

Pr[D = t] = ℜ

[∫
θ∈[− 1

2 ,
1
2 ]

m
D̂(θ)exp(−2πi⟨θ , t⟩)dθ

]
≥ ℜ

[∫
∥θ∥≤ β

σ
√

pn

D̂(θ)exp(−2πi⟨θ , t⟩)dθ

]
−
∫

B
|D̂(θ)|dθ

≥ 1
2

 1

200π3nmpσ2
(

1+ ∥µ∥2

σ2

) 1
m


m
2

.

Finally, using the multiplicative Chernoff bound we can see that:

Pr[|S| /∈ [0.5pn,1.5pn]] = Pr
[
||S|−E[|S|]| ≥ 1

2
E[|S|]]

]
≤ 2exp(−pn/12).

By (2.1), pn ≥
(

10m
(

1+ ∥µ∥
σ

))20
. So, we have Pr[D = t] > 2exp(−pn/12), which implies the existence of a suitable S

with |S| ∈ [0.5pn,1.5pn] and A1S = t.

The proof of the continuous case requires an extra step to control the Fourier transform outside the domain of Lemma 2.8.
To deal with continuous distributions, we define R ∼ N (0,γIm) for γ to be determined later and H = D+R. If fH is the
density of H, we will show that, for appropriate t, fH(t) is positive, from which it will follow that with high probability
there exists a suitable set S such that ∥A1S − t∥ is small.

Proof. [Proof of Theorem 2.1] As in the proof of Theorem 2.2, let B be defined as in Lemma 2.8. Since the columns of A
are now absolutely continuous we have V = Rm, and so,

B =

{
∥θ∥∞ < e

κ3 pn
80m

1
4σn2

}
∩
{
∥θ∥ ≥ β

σ
√

pn

}
.

Another difference from the discrete case is that now, by the multiplication-convolution theorem (Theorem A.2), we have

Ĥ(θ) = D̂(θ) · R̂(θ) = e−
∥θ∥2γ

2 D̂(θ). So, if θ0 := exp
(

κ3 pn
80m

)
1

σn2 , the estimates in (2.3) and (2.4) imply,

ℜ

 ∫
[−θ0,θ0]m

Ĥ(θ)exp(−2πi⟨θ , t⟩)dθ


≥ e

− β2γ

σ2 pn

(
ℜ

[∫
∥θ∥≤ β

σ
√

pn

D̂(θ)exp(−2πi⟨θ , t⟩)dθ

]
−
∫

B
|D̂(θ)|dθ

)

≥ 1
4

 1

200π3nmpσ2
(

1+ ∥µ∥2

σ2

) 1
m


m
2

,

where the last inequality holds as long as γ < σ2 pn
β 2 . Since we wish to invoke Theorem A.1, we need to bound∫

Rm
Ĥ(θ)exp(−2πi⟨θ , t⟩)dθ from below. In light of the above computation, it will be enough to choose γ such that,

(2.5)
∫

∥θ∥∞≥θ0

|Ĥ(θ)|dθ ≤ 1
8

 1

200π3nmpσ2
(

1+ ∥µ∥2

σ2

) 1
m


m
2

.
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Towards finding an appropriate γ , let Y stand for the standard Gaussian in Rm, and compute,∫
∥θ∥∞≥θ0

|Ĥ(θ)|dθ ≤
∫

∥θ∥≥θ0

e
−γ∥θ∥2

2 dθ

=

(
2π

γ

)m
2

Pr
(
∥Y∥2 ≥ γθ

2
0
)

≤
(

2π

γ

)m
2

e−
γθ2

0
3 ,

where the last inequality is Lemma A.2. Let us choose now

γ = exp
(
−κ

3 pn
40m

)
σ

2n5 =
n

θ 2
0
,

for which (2.5) holds. Also, γ < nσ2

β 2 as required earlier and γθ 2
0 ≥ 7m, as required by Lemma A.2. If fH(t) is the density of

H at t, Theorem A.1 along with (2.5) give,

fH(t) = ℜ

∫
Rm

Ĥ(θ)exp(−2πi⟨θ , t⟩)dθ


≥ ℜ

 ∫
∥θ∥∞≤θ0

Ĥ(θ)exp(−2πi⟨θ , t⟩)dθ

− ∫
∥θ∥∞>θ0

|Ĥ(θ)|dθ

≥ 1
8

 1

200π3nmpσ2
(

1+ ∥µ∥2

σ2

) 1
m


m
2

> 0.

Now, recall that H = D+R, where R ∼ N (0,γIm). By (2.1), n >
(

10m
(

1+ ∥µ∥
σ

))20
. Hence, by applying Lemma A.2

again,

Pr(∥R∥ ≥
√

γn)≤ e−
n
3 ≤ 1

2
fH(t).

We conclude that with probability 1 − e−Ω(κn) over A, there exists some T ⊂ [n] and some v ∈ Rm, with ∥v∥ ≤
exp
(
−κ3 pn

80m

)
σn2, such that

A1T − v = t,

Or, in other words, ∥A1T − t∥ = ∥v∥ ≤ exp
(
−κ3 pn

80m

)
σn3. Finally, we finish, as in the proof of the discrete case, with the

multiplicative Chernoff bound:

Pr[|S| /∈ [0.5pn,1.5pn]] = Pr
[
||S|−E[|S|]| ≥ 1

2
E[|S|]]

]
≤ 2exp(−pn/12).

Again, since
((

1+ ∥µ∥
σ

)
10m

)20
≤ pn, we have,

Pr
[
∥D− t∥< exp

(
−κ3 pn

80m

)
σn2

]
> 2exp(−pn/12),

which implies, by a union bound, the existence of a suitable T with |T | ∈ [0.5pn,1.5pn] and

∥A1T − t∥ ≤ exp
(
−κ3 pn

80m

)
σn3.
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3 Integrality Gap Bounds
3.1 Linear Programs and their Duals We begin with the basic linear programs relevant to this work. We will examine
the integrality gap with respect to primal LP defined as follows:

valLP(A,b,c) := max
x

valc(x) = cTx

s.t. Ax ≤ b,x ∈ [0,1]n,(Primal LP)

This LP has the corresponding dual linear program, which we can express in the following convenient form:

val∗LP(A,b,c) := min
u

val∗b(u) = bTu+
∥∥∥(c−ATu

)+∥∥∥
1

s.t. u ≥ 0.(Dual LP)

By strong duality, assuming (Primal LP) is bounded and feasible, we have that valLP(A,b,c) = val∗LP(A,b,c).
For any primal solution x and dual solution u to the above pair of programs, we will make heavy use of the standard

formula for the primal-dual gap:

val∗b(u)−valc(x) = bTu+
∥∥∥(c−ATu

)+∥∥∥
1
− cTx

= (b−Ax)Tu+
(
⟨x,(ATu− c)+⟩+ ⟨1n − x,(c−ATu)+⟩

)
.(Gap Formula)

In the sequel, we will let x∗ denote the optimal solution to Primal LP and u∗ denote the optimal solution to Dual LP.
For all the LP distributions we work with, the objective c is continuously distributed (either Gaussian or exponentially
distributed), from which it can be verified that conditioned on the feasibility of Primal LP (which depends only on A and b)
both x∗ and u∗ are uniquely defined almost surely. Moreover, if i ∈ [n], we shall use A.,i to refer to the ith column of A and
extend this definition to other matrices as well.

Once the optimal solution is found for Primal LP, one can round its fractional coordinates to an integral vector. While
the rounded vector may not be a feasible solution, we shall use the fact that, as long as the A.,i are sufficiently bounded, it
cannot be very far from a feasible solution.

LEMMA 3.1. ([9, LEMMA 7]) There exists x′ ∈ {0,1}n, such that,

∥A(x∗− x′)∥ ≤
√

m ·max
i∈[n]

∥A.,i∥.

For the optimal solution x∗, define,

(3.6) N0 := {i ∈ [n]|x∗i = 0},and N1 := {i ∈ [n]|x∗i = 1}.

Let W be the matrix with columns W·,i =
[
ci A·,i

]T. The distribution of the columns of W with indices in N0 plays an
important role in the proofs of Theorems 1.2 and 1.3. The following lemma essentially says that conditioning on the set N0
and on the values of the non-0-columns preserves the mutual independence of the 0-columns. The conditional distribution
of the the 0-columns is also identified. The reader is referred to [9, Lemma 5] for the proof.

LEMMA 3.2. Let N ⊂ [n]. Conditional on N0 = N and on the values of sub-matrix W·,[n]\N , x∗ and u∗ are almost surely
well defined. Moreover, if i ∈ N, then W·,i is independent from W·,N\{i} and the conditional law W·,i | i ∈ N is the same as
W·,i | u∗TA·,i − ci > 0.

3.2 The Gap Bound for Centered IPs In this subsection we will prove Theorem 1.2. In the setting of Theorem 1.2, the
objective c ∈ Rm has independent standard Gaussian entries, and the m× n constraint matrix A has independent columns
which are distributed as either one of the following two possibilities:

• (LI) Isotropic logconcave distributions with support bounded by O(
√

logn+
√

m).

• (DSU) Vectors with independent entries, uniform on a discrete symmetric interval of size k ≥ 3.
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To simplify the notation in the discrete case, we divide the constraint matrix A and the right hand side b by k (which
clearly does not restrict generality). Thus, in the discrete case (DSU), we will assume that entries of A are uniformly
distributed in {0,±1/k, . . . ,±1} and that the right hand side b ∈ Zm/k satisfies ∥b−∥2 ≤ O(n). In this way, the discrete case
is usefully viewed as a discrete approximation of the continuous setting where the entries of A are uniformly distributed in
[−1,1] (note that the covariance matrix of each column here is Im/3, and thus essentially isotropic).

With the above setup, our goal is to show that IPGAP(A,b,c) = O( poly(m)(logn)2

n ) with probability 1−n−poly(m).

3.2.1 Properties of the Optimal Solutions To obtain the gap bound, we will need to show |N0| = Ω(n) and that u∗, the
optimal dual solution, has small norm. This is given by the following lemma, which is a technical adaptation of [9, Lemma
8].

LEMMA 3.3. For A ∈ Rm×n, n ≥ 105m, distributed as (LI) or (DSU), c ∼ N (0, Im), ∥b−∥ ≤ n
12

√
2

with probability at least

1− e−Ω(n), we have ∥u∗∥ ≤ 32 and |N0| ≥ n
105 .

To prove this, we need two key lemmas. The first lemma will provide a good approximation for the value of any dual
solution.

LEMMA 3.4. Let WT := (c,AT) where c ∼ N (0, In) and A ∈ Rm×n is distributed as (LI) or (DSU). Then, for n = Ω(m),
we have that

Pr
[
∃v ∈ Sm : ∥(vTW )+∥1 /∈

[
n

12
,

3n
4

]]
≤ e−Ω(n).

Proof. [Proof ] Fix v ∈ Sm. We wish to understand Pr
[
∥(vTW )+∥1 /∈ [ n

8 ,
5n
8 ]
]
. Let i ∈ [n], we first claim

(3.7)
1
6
≤ E

[
(vTW )+i

]
≤ 1

2
.

To see the right inequality, by Proposition A.1, E
[
(vTW )+i

]
= 1

2 E
[
|vTW |+i

]
. Now observe that every entry has variance at

most 1, so with Jensen’s inequality

E
[
(vTW )+i

]
=

1
2
E
[
|vTW |+i

]
≤ 1

2

√
Var(|vTW |+i )≤

1
2
.

For the left inequality, if the columns of W are isotropic log-concave (recall that the standard Gaussian is also log-
concave) Lemma A.8 to get,

1
6
≤ 1

2
√

e
≤ 1

2
E
[
|vTW |+i

]
= E

[
(vTW )+i

]
.

If the columns of W are discrete, by Proposition A.2 every entry satisfies, Var(Wi j) ≥ 1
3 . Hence, Var

(
(vTW )i

)
≥ 1

3 .
Moreover, Proposition A.2 also implies, E[W 4

ji]≤ 3E[W 2
ji]

2. So, by Khinchine’s inequality in Lemma A.11,

1
6
≤
√

Var((vTW )i)

2
√

3
≤ 1

2
E
[
|vTW |+i

]
= E

[
(vTW )+i

]
.

Now, having established (3.7), we can bound Pr
[
∥(vTW )+∥1 /∈ [ n

8 ,
5n
8 ]
]
. In the log-concave case, Lemma A.10 immediately

gives,

Pr
[
∥(vTW )+∥1 /∈ [

n
8
,

5n
8
]

]
≤ e−Ω(n).

In the discrete case, by Lemma A.3, every entry of W is 1-sub-Gaussian, and Lemma A.4 shows that (vTW )+i −E
[
(vTW )+i

]
-is

√
2-sub-Gaussian. After summing the coordinates we get that ∥(vTW )+∥1 −E

[
∥(vTW )+∥1

]
-is

√
2n-sub-Gaussian.

Applying (A.6), we can thus conclude a corresponding probability bound, as in the previous display.

We now turn to consider the entire sphere. Fix ε to be a small constant and let Nε ⊂ Sm−1 be an ε-net. It is standard to
show that one may take |Nε | ≤

( 3
ε

)m
. Hence, by applying a union bound,

Pr
(
∃v ∈ Nε : ∥(vTW )+∥1 /∈

[
n
8
,

5n
8

])
≤
(

3
ε

)m

e−Ω(n) ≤ e−Ω(n),
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where the last inequality holds when n = Ω(m).
Let us denote by E the event considered above and for u ∈ Sm−1 let ũ ∈ Nε , with ∥u− ũ∥2 ≤ ε . Under E, we have,

max
u∈Sm−1

∥(uTW )+∥1 ≤ min
v∈Nε

∥(vTW )+∥1 +∥((u− ũ)TW )+∥1

≤ 5
8

n+ ε max
u∈Sm−1

∥(uTW )+∥1,

which is equivalent to,

max
u∈Sm−1

∥(uTW )+∥1 ≤
5

8(1− ε)
n.

On the other hand,

min
u∈Sm−1

∥(uTW )+∥1 ≥ min
v∈Nε

∥(vTW )+∥1 −∥((u− ũ)TW )−∥1

≥ n
8
− ε max

u∈Sm−1
∥(uTW )+∥1

≥ n
8
− ε

5
8(1− ε)

n.

Choose now ε = 5
212 to conclude,

n
12

≤ min
u∈Sm−1

∥(uTW )+∥1 ≤ max
u∈Sm−1

∥(uTW )+∥1 ≤
3n
4
.

The second lemma will imply that any LP solution with large support must have small objective value.

LEMMA 3.5. Let c ∼ N (0, In). Then, for every α ∈ [0,2
√

log(2)],

Pr
[

max
x∈{0,1}n, ∥x∥1≥βn

cTx ≥ αn
]
≤ e

−α2n
2 ,

where β ∈ [1/2,1] is such that H(β )≤ α2

4 , where H(p) =−p log p− (1− p) log(1− p), p ∈ [0,1], is base e entropy.

Proof. [Proof ] For any x ∈ {0,1}n, cTx ∼ N (0,∥x∥2
2) and thus, by (A.6),

Pr
(
cTx ≥ αn

)
≤ e

− α2n2

2∥x∥2
2 ≤ e−

α2n
2 .

We now apply a union bound,

Pr
(

max
x∈{0,1}n, ∥x∥1≥βn

cTx ≥ αn
)
≤ |{x ∈ {0,1}n, ∥x∥1 ≥ βn}|e−

α2n
2 ≤ eH(β )ne−

α2n
2 ≤ e−

α2n
4 .

We now have the ingredients to prove the main lemma.

Proof. [Proof of Lemma 3.3] For the proof, we will consider the extended matrix WT := (c,AT). We begin by showing that,
for the optimal solution, cTx∗ is large. Let u ≥ 0 be any dual solution. Then, under the complement of the event defined in
Lemma 3.4 for W , using (Dual LP),

val∗b(u) = bTu+∥(c−ATu)+∥1 ≥−∥b−∥∥u∥+∥((1,−u)TW )+∥1

≥−∥b−∥∥u∥+
√

1+∥u∥2 n
12

≥ n
12

(
−∥u∥√

2
+
√

1+∥u∥2

)
≥ n

12
√

2
.(3.8)
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The second inequality is the lower bound in Lemma 3.4 and the last inequality follows since the function
√

1+ t2 − t√
2

is

minimized at t = 1. A lower bound on cTx∗ follows by noting,

cTx∗ = valc(x∗) = val∗b(u∗).

We now prove that ∥u∗∥ cannot be too large. Again, under the complement of the event in Lemma 3.4, but using the
upper bound this time,

3n
4

≥ ∥((1,0)TW )+∥1 = ∥c+∥1 = val∗b(0)≥ val∗b(u∗)

≥ n
12

(
−∥u∗∥√

2
+
√

1+∥u∗∥2

)
≥ n

12

(
1− 1√

2

)
∥u∗∥,

where in the third inequality we have applied (3.8) to v∗. Thus, rearranging we get ∥u∗∥2 ≤ 9
√

2√
2−1

≤ 32. Finally, we show
that the optimal solution has many 0 coordinates. Since x∗ has at most m fractional coordinates,

|{i ∈ [n] | x∗i = 0}| ≥ n−m−|{i ∈ [n] | x∗i = 1}| .

Since, by assumption, n ≥ 105m, to finish the proof it will suffice to show |{i ∈ [n] | x∗i = 1}| ≤
(

1− 2
105

)
n. Define x̄ by,

x̄i :=


x∗i if x∗i ∈ {0,1}
1 if x∗i /∈ {0,1} and ci ≥ 0
0 if x∗i /∈ {0,1} and ci < 0

.

Letting α = 1
12

√
2

and β = 1− 2
105 , a calculation reveals that H(β )≤ 1

4α2 . By (3.8), we have

cTx̄ ≥ cTx∗ ≥ αn,

and by conditioning on the complement of the event in Lemma 3.5 with β and α as above,

βn ≥ |{i ∈ [n] | x̄i = 1}| ≥ |{i ∈ [n] | x∗i = 1}| .

The proof concludes by applying the union bound to the events in Lemmas 3.5 and 3.4.

3.2.2 Conditional Distribution of 0-columns of IP Let B be a random variable with the same distribution as the columns
of A. By Lemma 2.1, B satisfies (anti-concentration) with constant κ ≤ 1. Define C :=

√
150∥u∗∥√

κ
. We first show that the

anti-concentration property is unaffected if we condition B on a strip of width 2C.

LEMMA 3.6. Let B′ have the law of B, conditioned on |u∗TB| ≤C. Then,

1. Pr[|u∗TB| ≤C]≥ 1− κ

150 .

2. We have 1
10 Im ≼ Cov(B′)≼ 2Im.

3. If B is (DSU), then B′ is symmetric and anti-concentrated with parameter κ/2.

4. If B is (LI), B′ is logconcave.

Proof. [Proof ] Let E = {a ∈ Rm : |u∗Ta| ≤ C}. From Chebyshev’s inequality, and since distributions we consider satisfy
Cov(B)⪯ Im,

Pr(B ∈ E)≥ 1−
E
[
(u∗TB)2

]
C2 ≥ 1− ∥u∗∥2

C2 ≥ 1− κ

150
,

which is the first claim.
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If w ∈ Rm, then

E
[
|wTB′|2

]
=

E
[
|wTB|21E

]
Pr(B ∈ E)

≤ 2E
[
|wTB′|2

]
≤ 2∥w∥2.

In the (DSU) case, to lower bound Cov(B′), we note that by Proposition A.2, E[W 4
ji] ≤ 3E[W 2

ji]
2. As a conse-

quence, Lemma A.11 implies
√
E[|wTB|4] ≤

√
3E[|wTB|2]. By the Cauchy-Schwarz inequality, E[|wTB · 1B/∈E |2] ≤√

E[|wTB|4] ·E[14
B/∈E ]≤

√
3Pr[B /∈ E]E[|wTB|2]≤

√
κ

50∥w∥2. By Proposition A.2 we have E[|wTB|2]≥ 1
3∥w∥2. So:

E[|wTB′|2] = E[|wTB|2]−E[|wTB|2 ·1B/∈E ]

Pr[B ∈ E]
≥

1
3∥w∥2 −

√
κ

50∥w∥2·

1− κ

50
≥ 1

10
∥w∥2,

proving the second claim for the (DSU) case.
In the (LI) case, ⟨w,B⟩ is logconcave. By Lemma A.5, f⟨B,v⟩ ≤ 1√

Var⟨B,v⟩
= 1. So, f⟨v,B′⟩ ≤ 1

1−1/150 f⟨B,v⟩ =
150
149 . Now,

Lemma A.1 implies that Var(⟨B′′,v⟩)≥ 1
13 .

Now, if B is (DSU), it is symmetric, and because conditioning on a symmetric set preserves symmetry, so is B′.
Consequently, in this case, E[B′] = 0. Now set σ ′ :=

√
∥Cov(B′)∥op ≤

√
2. For the third claim, let I(θ) = {a ∈ Rm :

d(θTa,Z)≥ κ

2 min(1,σ ′∥θ∥∞)}. Choose an arbitrary ν ∈ Rn. By the symmetry of B′ we have:

Pr
[
B′ ∈ I(θ) | ⟨B,ν⟩ ≤ 0

]
=

Pr [B ∈ I(θ)∩E | ⟨B,ν⟩ ≤ 0]
Pr[B ∈ E | ⟨B,ν⟩ ≤ 0]

≥ Pr [B ∈ I(θ) | ⟨B,ν⟩ ≤ 0]−2Pr [B /∈ E]≥ κ

2
.

The last inequality follows from (anti-concentration),

Pr [B ∈ I(θ) | ⟨B,ν⟩ ≤ 0]≥ Pr
[
d(θTB,Z)≥ κ

2
min

(
1,σ ′∥θ∥∞

)
| ⟨B,ν⟩ ≤ 0

]
≥ κ.

This shows anti-concentration when B is (DSU).
If B is (LI), then so is B′ because it is a restriction to a convex set, proving the last claim.

In the proof of Theorem 1.2, we work with the columns of A that have negative reduced cost. We show that we can
convert their distribution into the distribution of B′, by using rejection sampling.

LEMMA 3.7. Let B = A·,i and let B′,c′ have Law(B′,c′i) = Law(B,ci | u∗TB− ci ≥ 0). When δ ≤C, there exist a rejection
sampling procedure ψ such that:

• Law(B′|ψ(B′,c′i) = accept) = Law(B | |u∗TA·,i| ≤C).

• Pr[ψ(B′,c′i) = accept]≥ δ exp
(
− 104

κ

)
.

Proof. [Proof ]
Let c′′ and B′′ be independent random variables with c′′ ∼ Unif(0,δ ) and let Law(B′′) = Law(B | |u∗TB| ≤ C). Now

we will apply Lemma A.12 to transform (B′,c′) into (B′′,c′′) using rejection sampling. Observe that for any B̄ ∈ Rm with
u∗TB̄− c̄ ∈ [0,δ ]:

f(B′′,c′′)(B̄, c̄)
f(B′,c′i)

(B̄, c̄)
=

fB(B̄)/Pr[|u∗TB| ≤C]/δ

fB(B̄) fci(c̄)/Pr[u∗TB− c ≥ 0]
=

Pr[u∗TB− c ≥ 0]
δ fci(c̄)Pr[|u∗TB| ≤C]

≤
1− κ

150

δ exp(− 1
2 (C+δ )2)/

√
2π

≤ 3exp(2C2)

δ
.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited1715

D
ow

nl
oa

de
d 

01
/1

8/
24

 to
 1

92
.1

6.
19

1.
13

6 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



For the last inequality we assumed that δ ≤ C. By Lemma A.12 we, using rejection sampling we can turn (B′,c′) into

(B′′,c′′) with success probability δ

3exp( 1
2 (C+δ )2)

. Since C =
√

2∥u∗∥√
κ

, by Lemma 3.3 , the success probability is at least

δ

3exp(2C2)
≤ δ exp

(
− 104

κ

)
.

When the columns of A are continuously distributed, we have to be more careful, because the distribution that we obtain
from rejection sampling is not necessarily symmetric. As a result, B will not necessarily be mean-zero. We apply another
step of rejection sampling to handle this case.

LEMMA 3.8. Let B′ denote the random variable B | |u∗TB| ≤C. If B′ is logconcave, then there exists a rejection sampling
procedure ψ , such that Pr[ψ(B′) = accept] = Ω(1), and such that the random variable B′′ with Law(B′′) = Law(B′|ψ(B′) =
accept) satisfies:

1. E[B′′] = 0.

2. Cov(B′′)≽ 1
768 Im.

3. The law of B′′ is an admissible distribution, in the sense of Definition 1.

4. B′′ satisfies (anti-concentration) with an Ω(1) constant.

Proof. [Proof ] Let µ ′ := E[B′]. By Hölder’s inequality, we have any unit vector v ∈ Rm,

E
[
⟨B′,v⟩

]
=

E[⟨B,v⟩ ·1|u∗TB|≤C]

Pr[|u∗TB| ≤C]
=−

E[⟨B,v⟩ ·1|u∗TB|>C]

Pr[|u∗TB| ≤C]
≤
√
E[⟨B,v⟩2]

√
Pr[|⟨B,u∗⟩|>C]

Pr[|u∗TB| ≤C]

≤

√
1

150

1−1/150
≤ 1

12

where the second equality follows since B is isotropic and from

E[⟨B,v⟩ ·1|u∗TB|≤C]+E[⟨B,v⟩ ·1|u∗TB|>C] = E[⟨B,v⟩] = 0.

Recall C ≥
√

150∥u∗∥. Hence, the concentration bound in [49, Lemma 5.7], coupled with the fact that B is isotropic, gives,

√
E[⟨B,v⟩2]

√
Pr[|⟨B,u∗⟩|>C]

Pr[|u∗TB| ≤C]
≤

√
Pr
[
|⟨B, u∗

∥u∗∥ ⟩|>
√

150
]

Pr[|u∗TB| ≤C]
≤ 2e−5 ≤ 1

12
.

So,

∥µ
′∥= sup

v∈Rm,∥v∥=1
E
[
⟨B′,b⟩

]
≤ 1

12
.

Define a convex subset of Rm by

M :=
{
E[ f (B′)B′]

1/4
: f ∈ L∞(Rm,R), 0 ≤ f (x)≤ 1 for every x ∈ Rm and E[ f (B′)] =

1
4

}
,

and consider an arbitrary halfspace H that contains −µ ′. By Lemma A.6 we have,

Pr[B′ ∈ H]≥ Pr[B ∈ H]−Pr[|u∗TB|>C]≥ 1
e
− 1

12
− 1

150
=

1
4
.

Therefore, there exists S ⊆ H with Pr[B′ ∈ S] = 1
4 . Then, E[1S(B′)] = 1

4 and, E[B′ | B′ ∈ S] = E[ 1S(B′)B′

1/4 ] ∈ M, which implies
that M∩H ̸= /0. Because this holds for any H with −µ ′ ∈ H, by the convexity of M we have −µ ′ ∈ M. Indeed, suppose not,
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then there is a hyperplane passing at −µ ′ which separates it from M, which cannot happen. We conclude that there exists
f : Rm → R, with ∥ f∥∞ ≤ 1 and E[ f (B′)] = 1

4 , such that E[ f (B′)B′]
1/4 =−µ ′. Let g(x) = f (x)+4

5 .
Let B′′ be a random variable with fB′′(x) ∝ g(x) fB′(x). Note that fB′′(x)/ fB′(x) = g(x)/EB′ [g(B′)]≤ 1/EB′ [g(B′)]≤ 2.

Now, by Lemma A.12 there exists a rejection sampling procedure ψ with Pr[ψ(B′) = accept] = 1
2 and Law(B′ | ψ(B′) =

accept) = B′′. Now we will show that B′′ satisfies the required properties.
Firstly, we have E[B′′] = E[g(B′)B′]

E[g(B′)] = E[ f (B′)B′]+4E[B′]
5E[g(B′)] = −4µ ′+4µ ′

5E[g(B′)] = 0, proving the first stated property. Secondly,

for every halfspace H containing the origin, by the Grünbaum inequality, Pr[B ∈ H] ≥ 1
e . So Pr[B′ ∈ H] ≥ Pr[B ∈

H]−Pr[|u∗TB| > C] ≥ 1
e −

1
150 ≥ 1

4 . Because fB′′ ≥ g · fB′ ≥ 4
5 fB′ , we have Pr[B′′ ∈ H] ≥ 4

5 ·Pr[B′ ∈ H] ≥ 1
5 ≥ 1

4e2 . This
proves that B′′ has an admissible distribution.

For all unit vectors v ∈ Rm we have:

f⟨v,B′′⟩(x)≤
f⟨v,B′⟩(x)

Pr[ψ(B′) = accept]
≤ 2 f⟨v,B′⟩(x).

This implies Var(⟨v,B′′⟩) ≼ 2Var(⟨v,B′⟩) ≼ 2Im. Because Cov(B′) ≥ 1
10 Im and the fact that ⟨B′,v⟩ is logconcave, by

Lemma A.5, f⟨B′,v⟩ ≤ 1√
Var⟨B′,v⟩

≤ 4. Hence, f⟨v,B′′⟩ ≤ 2 · f⟨v,B′⟩ ≤ 768. Now, Lemma A.1 implies that Var(⟨B′′,v⟩) ≥ 1
768 .

Hence 1
768 Im ≼ Cov(B′)≼ 2Im. Now by Lemma 5.2 anti-concentration holds with a constant parameter.

3.2.3 Proof of Theorem 1.2

Proof. [Proof of Theorem 1.2] Consider the optimal solutions x∗ and u∗ to respectively (Primal LP) and (Dual LP). We
condition on the event |N0| ≥ n/105 and ∥u∗∥2 ≤ 32, where N0 := {i ∈ [n] : x∗i = 0}. By Lemma 3.3, this event occurs with
probability at least 1− e−Ω(n). Subject to this, we further condition on the exact values of x∗, u∗. We will show that for
every such conditioning, the integrality is gap is small with high probability over the randomness of AN0 .

Set δ := poly(m) logn
n , where the polynomial factor is the same one as dictated by Theorem 2.1. We now show that we

can construct a large subset Z ⊆ N0, such that the reduced costs of the variables indexed by Z are small and the columns
A·,i, i ∈ Z, are independent and satisfy the necessary conditions in order to apply Theorem 2.1 to round x∗ to a near optimal
solution. By Lemma 3.2, first note that (ci,A,̇i), i ∈ N0 are independent and distributed according to u∗TA·,i − ci > 0.

By Lemma 3.7, using rejection sampling we can sample a set Z ⊆ N0, such that Law(A·,i|i ∈ Z) = Law(A·,i | |u∗TA·,i| ≤
C), Pr[i ∈ Z|i ∈ N0] = Ω(δ ) and such that u∗TA·,i − ci ∈ [0,δ ] for all i ∈ Z. If columns of A have a discrete symmetric
distribution (DSU), then E[A·,i|i ∈ Z] = 0. Moreover, by Lemma 3.6, the distribution of the columns in Z is admissible
(since it is symmetric), as per Definition 1, and satisfies the (anti-concentration) property with parameter κ = Ω(1). In the
logconcave case, (LI), we apply a second round of rejection sampling to Z, as described in Lemma 3.8, which achieves that
the law of A·,i, i ∈ Z is mean-zero, admissible, and anti-concentrated with parameter κ = Ω(1). Furthermore, this second
step of rejection sampling only decreases the probability that i ∈ Z by at most a constant factor.

In both cases, we see that E[Z] ≥ Ω(δ |N0|) = Ω(poly(m) logn). Thus, by the Chernoff bound (A.3), |Z| ≥
Ω(poly(m) logn) with probability at 1− n−poly(m). We now condition on the exact set Z ⊆ N0 subject to this size lower
bound. Note that A·,i, i ∈ Z, are independent admissible, anti-concentrated with parameter κ = Ω(1) and mean-zero random
vectors.

Set p = ε·κ4

1000m5 , where ε > 0 is chosen small enough to have κ3 exp
(

κ3

3·802 pm3

)
≥ 50000m2. We consider the

rounded vector x′, from Lemma 3.1, and define the target, t := A(x∗ − x′)− n4 exp(−pκ3|Z|/m)1m in (LI) setting and
t := ⌊kA(x∗− x′)⌋/k in the (DSU) setting. We will now apply Theorem 2.1 to obtain a set T ⊆ Z such that ∥∑i∈T Ai − t∥2 ≤
n4 exp(−κ3 p|Z|/m) in the (LI) setting or ∑i∈T Ai = t in the (DSU) setting. This will help us both fix the slack introduced
by the rounding as well as enforce that the resulting solution to be feasible.

We now invoke Lemma 3.1, which coupled with |Z|p=Ω(poly(m) log(n)) and the fact max
i∈[n]

∥A·,i∥=O(
√

log(n)+
√

m),

shows that, as long as the degree of the polynomial in δ is large enough,

∥t∥ ≤ ∥A(x∗− x′)∥+m(n4 exp(−κ
3 p|Z|/m)+1)

≤ O(
√

m logn+m) = o(
√

p|Z|m).

Thus, for large n, Theorem 2.1 applies to the matrix A·,Z and t in the (LI) setting and the matrix kA·,Z ,kt in the
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(DSU) setting. Thus, with probability 1− e−Ω(p|Z|) = 1− n−poly(m) there exists a set T ⊆ Z such that |T | ≤ 3
2 p|Z|, and

∥∑i∈T Ai − t∥ ≤ 32n4 exp(−κ3 p|Z|/80m) in the (LI) setting and ∑i∈T Ai = t in the (DSU) setting.
Now we let x′′ = x′+1T . We now show that

(3.9) Ax′′ ≤ b and u∗T(b−Ax′′)≤ 1/poly(n).

Firstly, in the (DSU) setting, we have

Ax′′ = Ax′+ ⌊k(Ax∗−Ax′)⌋/k ≤ Ax∗ ≤ b,

so x′′ is a feasible integer solution. Take j ∈ [m] such that u∗j > 0. By complementary slackness we have that (Ax∗) j = b j ∈
Z/k. Since A ∈ Zm×n/k and x′ ∈ Zn, we have that Ax′ ∈ Zm/k. In particular,

(Ax′′) j = (Ax′) j + ⌊k(Ax∗−Ax′) j⌋/k = (Ax′) j + ⌊k(b j −Ax′) j⌋/k = (Ax′) j + k(b j −Ax′) j/k = b j.

We conclude that u∗T(b−Ax′′) = 0 as needed.
In the (LI) setting, we first note that

∥Ax′′− (Ax∗−n4 exp(−κ
3 p|Z|/m)1m)∥= ∥∑

i∈T
Ai − t∥ ≤ n4 exp(−κ

3 p|Z|/m).

So, we must have Ax′′ ≤ Ax∗ ≤ b, and hence x′′ is a feasible. Furthermore, by complementary slackness

u∗T(b−Ax′′) = u∗T(Ax∗−Ax′′)≤ ∥u∗∥∥Ax∗−Ax′′∥ ≤ 32(∥Ax∗− t∥+∥t −Ax′′∥)
≤ 32(m+1)n4 exp(−κ

3 p|Z|/m)≤ 1/poly(n).

To conclude, we use x′′ to bound the integrality gap with the (Gap Formula) applied to x′′ and u∗:

IPGAP(A,b,c) = u∗T(b−Ax′′)+

(
n

∑
i=1

x′′i (A
Tu∗− c)+i +(1− x′′i )(c−ATu∗)+i

)
= u∗T(b−Ax′′)+ ∑

i∈T
(ATu∗− c)i (by complementary slackness)

≤ 1/poly(n)+ |T | ·δ (by (3.9) and T ⊆ Z)

≤ O
(

poly(m) log(n)2

n

)
.

3.3 The Gap Bound for Packing IPs In this section we will prove Theorem 1.3. Here, the objective c ∈ Rm has
independent entries that are exponentially distributed with parameter λ = 1. The m×n constraint matrix A has independent
columns which are distributed with (DU) independent entries which are uniform on the interval {1, . . . ,k}, k ≥ 3.

As in the centered case, we divide the constraint matrix A and the right hand side b by k. So, we will assume that the
entries of A are uniformly distributed in { 1

k , . . . ,1} and that the right hand side b lies in ((nβ ,n(1/2−β ))∩ Z
k )

m. This way,
we can see this setting as a discrete approximation of the continuous setting where the entries of A are uniformly distributed
in [0,1], like in [12].

We want to show IPGAP(A,b,c) ≤ exp(O(1/β ))poly(m)(logn)2

n with probability at least 1− n−poly(m). We will do this by
first solving a slightly modified version of the LP-relaxation. We choose a b′ < b. Now we let x∗ be the minimizer of
(Primal LP), where b is replaced by b′ and let u∗ be the optimal solution to the corresponding (Dual LP). We round down
the solution, setting x′i := ⌊x∗i ⌋. Note that ∥A(x∗− x′)∥ ≤ ∑i:x∗i ∈(0,1) ∥A·,i∥ ≤ m

√
m.

Similar to the proof of Theorem 1.2, our proof proceeds by flipping x′i to 1 for a subset of indices for which x∗i = 0. By
duality, these are columns with A·,i −ci ≥ 0. To be able to apply Theorem 1.4, we convert the conditional distribution of the
columns of A back into their original distribution using rejection sampling:

LEMMA 3.9. Let B = A·,i and let B′,c′ have Law(B′,c′i) = Law(B,ci | u∗TB− ci ≥ 0). When δ ≤ 1, here exists a rejection
sampling procedure ψ such that:
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• Pr[ψ(B′,c′i) = accept]≥ 1
11 δ exp(−∥u∗∥1).

• Law(B′ | ψ(B′,c′i) = accept) = unif(({ 1
k , . . . ,1}∩ [ 1

3m ,1])
m).

• u∗TB′− c′i ∈ [0,δ ] whenever ψ(B′,c′i) = accept.

Proof. [Proof ] Let c′′ and B′′ be independent random variables with c′′ ∼ Unif(0,δ ) and let B′′ ∼ Unif(({ 1
k , . . . ,1} ∩

[ 1
3m ,1])

m). Note that fB′′(x) ≤ fB(x)/(1− 1
m )

m. Now we will apply Lemma A.12 to transform (B′,c′) into (B′′,c′′) using
rejection sampling. Observe that for any B̄ ∈ Rm, c̄ ∈ R with u∗TB− c ∈ [0,δ ]:

f(B′′,c′′)(B̄, c̄)
f(B′,c′)(B̄, c̄)

=
fB′′(B̄)/δ

fB(B̄) fc(c̄)/Prc[u∗TB− c̄ ≥ 0]
≤

fB(B̄)/(1− 1
m )

m/δ

fB(B̄) fc(c̄)
≤ 4

δ fc(c̄)

≤ 4
δ exp(−u∗TB−δ )

≤ 11
δ exp(−∥u∗∥1)

.

The stated result now follows directly by applying Lemma A.12 on (B′,c′i) to get a rejection sampling procedure that satisfies
Law((B′,c′i) | ψ(B′,c′i) = accept) = Law(B′′,c′′).

In the previous lemma, both the acceptance probability and the maximal size of δ depend on ∥u∗∥1. To prevent this from
affecting the proof, we will show that with high probability Ω(β 4)≤ ∥u∗∥1 ≤ O( 1

β
). Because our proof of Theorem 1.3 will

rely on flipping the columns for which x∗i = 0, we will also show that with high probability the number of these columns is
at least proportional to n.

LEMMA 3.10. Consider the packing setting, with β ∈ (0,1/4) and b′ ∈ ((nβ/2,n(1/2−β ))∩ 1
kZ)

m. Then, with probability
at least 1− e−Ω(β 2n), we have Ω(β 4)≤ ∥u∗∥1 ≤ O( 1

β
) and |N0| ≥ Ω(β 4n).

Proof. [Proof ] Note that the distribution of the ci’s is exponential and therefore logconcave with E[ci] = 1. By Lemma A.9
we now see that with probability 1− e−Ω(n), we have 3n ≥ ∑

n
i=1 ci and consequently,

3n ≥
n

∑
i=1

ci = cT1n ≥ valLP(x∗) = val∗(u∗)≥
m

∑
i=1

b′iu
∗
i ≥

n ·β
2

∥u∗∥1.

Hence, we have ∥u∗∥1 ≤ 6
β

, with high probability.

For the second claim, let H : (0, 1
2 ] → (0,− log( 1

2 )] be defined with H(x) = −x logx − (1 − x) log(1 − x). Set

α := min( 1
2 β ,H−1( 1

8 β 2)). As H(x)≤ 2
√

x, we have H−1(x)≥ x2

4 and hence α ≥ 1
256 β 4. Let x ∈ {0,1}n and suppose that

K := |{i : xi = 1}| ≥ (1−α)n. By first using b1 ≤ ( 1
2 −β )n, and E[(Ax)1] =

K
2 , and then applying Hoeffding’s inequality

we see,

Pr
[
(Ax)1 ≤ b′1

]
≤ Pr

[
(Ax)1 ≤

1−β

2
n
]
= Pr

[
(Ax)1 −

1−α

2
n ≤−β −α

2
n
]

≤ Pr
[
(Ax)1 −

K
2
≤−β −α

2
n
]
= Pr

[
(Ax)1 −E[(Ax)1]≤−β −α

2
n
]

≤ exp
(
−(β −α)2n

)
≤ exp

(
−1

4
β

2n
)

.

Let S = {x ∈ {0,1}n : |{i : xi = 1}| ≥ (1−α)n}. Note that by Lemma A.13, |S| ≤ ∑
⌊αn⌋
i=0

(n
i

)
≤ exp(H(α)n). Taking the

union bound over all x ∈ S, we see that

Pr[∃x ∈ S : (Ax)′1 ≤ b′1]≤ |S|exp(−1
4

β
2n)≤ exp(H(α)n− 1

4
β

2n)≤ exp(−1
8

β
2n).

So, with probability at least 1 − e−Ω(β 2n) all feasible values x ∈ {0,1}n have |{i : xi = 0}| ≥ αn and in particular
|N0| ≥ αn ≥ 1

256 β 4n.
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At the same time, observe that when i ∈ N0, we must have ci − u∗TA·,i ≤ 0, so in particular ∥u∗∥1 ≥ ci. We have
Pr[ci ≤ log( 1

1−α/2 )]≤ 1−exp(− log( 1
1−α/2 )) =

1
2 α . By the Chernoff bound (A.3) this implies that with probability at least

1− exp(−Ω(n)) we have |{i ∈ [n] : ci ≤ log( 1
1−α/2 )}| ≤

3
4 αn. If this event holds and at the same time we have |N0| ≥ αn,

then this implies ∥u∗∥1 ≥ log( 1
1−α/2 ) because otherwise N0 ⊆ {i ∈ [n] : ci ≤ log( 1

1−α/2 )}, contradicting the bounds on their

size. So, we can conclude that with high probability we have ∥u∗∥1 ≥ log( 1
1−α/2 )≥− log(1−2−8β 4)≥ 2−8β 4.

Proof. [Proof of Theorem 1.3]

Let r = ⌈ 106m12 log(n)
s2 ⌉, where s is a constant that we will choose later. Let µ =

k+⌈ k
3m ⌉

2k = E[U ], where U ∼
Uniform({ 1

k , . . . ,1}∩ [ 1
3m ,1]). Now we define

(3.10) γ =
r

1000m5 µ and b′ = b− γ1.

Let x∗ and u∗ be the optimal solutions of (Primal LP) and (Dual LP) where b is replaced by b′. We will assume that
β 4

C1
≤ ∥u∗∥1 ≤ C1

β
and |N0| ≥ C2 ·β 4 · n, for some constants C1,C2. By Lemma 3.10 this happens probability 1− e−Ω(β 2n).

Subject to this, we condition on the exact values of x∗, u∗.
Let δ := 11exp(C1/β )r

C2β 4n . Note that by our assumption that n ≥ poly(m)exp(Ω(1/β )), we may assume that δ ≤

β 4/(C1m)≤ ∥u∗∥1
3m . Thus, by Lemma 3.9 we can sample a set Z ⊆ N0 such that for Law(A·,i|i ∈ Z) = Uniform(({ 1

k , . . . ,1}∩
[ 1

3m ,1])
m) and that Pr[i ∈ Z|i ∈ N0] =

1
11 δ exp(−∥u∗∥1). Noting that E[|Z|] = 2r, by Chernoff’s inequality (A.3), with

probability at least 1− n−poly(m), we have |Z| ≥ r. Now we restrict Z to its first s elements, to get |Z| = r. Observe that
E[A·,i|i ∈ Z] = µ1.

We consider the target vector t ∈ Rm, defined by:

ti :=

{
bi − (Ax′)i : u∗i > 0
⌊γ⌋ : otherwise

,

which satisfies (b−Ax′−t)Tu∗ = 0. Our next step will be to apply Theorem 1.4 on kA·,Z ∈Zm×r and kt ∈Zm with parameter
p = γ

µr =
1

1000m5 , to get a set T ⊆ Z such that ∑i∈T Ai = t. Note that we have chosen γ and r to have p4 = ω(m3

r ).
To verify that t is indeed covered by Theorem 1.4, we first note that by Lemma 3.2 the columns kA·,i for i ∈ Z are

independent with entries uniformly distributed in {⌈k/m⌉, . . . ,k}. We now show that t is sufficiently close to the mean
|Z|pµ:

∥t −|Z|pµ|∥= ∥t − γ1∥=
√

∑
j:u∗j>0

(b j − (Ax′) j)2 + |{ j : u∗j = 0}|(γ −⌊γ⌋)2

≤
√

∑
j:u∗j>0

(A(x∗− x′) j)2 + |{ j : u∗j = 0}| ≤
√

∑
j:u∗j>0

∥x∗− x′∥2
1 + |{ j : u∗j = 0}|

≤ m1.5 ≤ s
1000m5

√
rm = sp

√
|Z|m ≤ s

√
p|Z|m.

Now choose the constant s such that the previous inequality implies the condition from Theorem 1.4. As a result, with
probability 1− exp(−p|Z|)≥ 1−n−poly(m) there exists a set T ⊆ Z, such that ∑i∈T Ai = t.

Let x′′ = x′+1T . Noting that x′ was obtained from x∗, for i with u∗i = 0 we have

(Ax′′)i = (Ax′)i + ti ≤ b′i + γ = bi.

For, i with u∗i > 0 we have:
(Ax′′)i = (Ax′)i + ti = bi,

which means that x′′ is a feasible solution to the integer program.
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Using (Gap Formula) for x′′ and u∗, we now get:

IPGAP(A,b,c) = valLP(A,b,c)−valIP(A,b,c)≤ val∗b(u
∗)−valc(x′′)

= bTu∗+
n

∑
i=1

(c−ATu∗)+i − cTx′′

= (b−Ax′′)Tu∗+

(
n

∑
i=1

x′′i (A
Tu∗− c)+i +(1− x′′i )(c−ATu∗)+i

)
= (b−Ax′− t)Tu∗+ ∑

i∈T
(ATu∗− c)i (by complementary slackness)

= ∑
i∈T

(ATu∗− c)i ( since (b−Ax′− t)Tu∗ = 0)

≤ δ |T | ≤ (exp(C1/β )poly(m) logn)2

n
. (by Lemma 3.9)

4 The Size of the Branch-and-Bound Tree
In this section, we prove Corollary 1.1 in the discrete setting. This will follow by adapting the proof of Theorem 1.1 from [9].

The first ingredient is the key theorem from [50, Theorem 3], which relates the Branch-and-Bound tree size to the size
of a certain knapsack.

THEOREM 4.1. Let A ∈ Rm×n, b ∈ Rm, c ∈ Rn. Then, the best bound first Branch-and-Bound algorithm applied to Primal
IP with data A,b,c produces a tree of size

(4.11) 2n · |{x ∈ {0,1}n :
n

∑
i=1

xi|(ATu∗− c)i| ≤ IPGAP(A,b,c)}|+1,

where u∗ is an optimal solution to (Dual LP).

Given the above, we must show how to upper bound the size of the knapsack in (4.11) in the setting of Corollary 1.1.
Namely, when the entries of c ∈ Rn are either standard Gaussian or exponential and the entries of A are discrete.

For this purpose, we will require the following bound on the size on random knapsack polytopes.

LEMMA 4.1. ([9, LEMMA 11]) Let ω1, . . . ,ωn ∈R be independent continuous random variables with maximum density at
most 1. Then, for any G ≥ 0, we have

E[|{x ∈ {0,1}n :
n

∑
i=1

xi|ωi| ≤ G}|]≤ e2
√

2nG.

To get a bound on (4.11), we will use the above lemma for G being an upper bound on IPGAP(A,b,c), using a union
bound over all dual solutions of suitably bounded norm. In particular, we will require an upper bound on the norm of u∗. We
note that the proof of Theorem 1.1 in [9] did not require a bound on the norm of the dual solution. In the logconcave setting,
one could get around needing such a bound by using the anti-concentration properties of the columns of the objective
extended constraint matrix WT := (c,AT). In the present setting, we will only be able to rely on the anti-concentration
properties of the objective c.

In both the centered and packing case, the coefficients of c ∈ Rn are independent and have maximum density at most
1. In particular, for any u ∈ Rm, the entries of (ATu− c) are also independent and have maximum density 1. By applying
an appropriate union bound (e.g., see the proof of [9, Lemma 16]), one can derive the following bound over a family of
knapsacks:

LEMMA 4.2. Let c ∈ Rn have independent coordinates with maximum density at most 1 and let A ∈ [−1,1]m×n have
independent entries. Then, for any n ≥ m,R ≥ 2,G ≥ 1/n, we have that

Pr[ max
∥u∥2≤R

|{x ∈ {0,1}n :
n

∑
i=1

xi|(ATu− c)i| ≤ G}| ≥ (nR)Θ(m)e2
√

2nG]≤ n−Ω(m).
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Proof. Let K(u,G) := {x ∈ {0,1}n : ∑
n
i=1 xi|(AT u− c)i| ≤ G}. For i ∈ [n], let Ni be an ε-net of {u ∈ Rm : ∥u∥2 ≤ R} for

ε = 1
n3 . Note that we can choose N with |N|= O(Rmn3m).

Lemma 4.1 implies that for any u ∈ N′, E[|K(u,G)|]≤ e2
√

2nG. So, by the Markov bound, we see:

Pr[|K(u,G)| ≥ nm|N|e2
√

2nG]≤ 1
nm|N|

.

Taking the union bound over all u′ ∈ N, we see:

Pr[∃u′ ∈ N : |K(u,G)| ≥ nm|N|e2
√

2nG]≤ |N| 1
nm|N|

= n−m

Now suppose that the event is true. Then for each u with ∥u∥ ≤ R there will be a u′ ∈ N with ∥u−u′∥ ≤ ε . This implies that
for all x ∈ K(u,G) we have:

n

∑
i=1

xi|(ATu′− c)i| ≤
n

∑
i=1

(
xi|(ATu− c)i|+ xi|(AT(u′−u))i|

)
≤

n

∑
i=1

xi|(ATu− c)i|+∥AT(u′−u)∥1

≤
n

∑
i=1

xi|(ATu− c)i|+
√

mnε ≤ G+
1
n
.

So:

Pr[∃u′ ∈ N : |K(u,G+
1
n
)| ≥ nm|N|e2

√
2nG]≤ n−m.

Setting G′ := G− 1
n , we see:

Pr[∃u′ ∈ N : |K(u,G′)| ≥ nm|N|e2
√

2nG′+2]≤ n−m.

This proves the lemma because nm|N|e2
√

2nG′+2 ≤ (nR)Θ(m)e2
√

2nG′ .

We now have all the required ingredients to prove the bound on Branch-and-Bound trees in the discrete case.

Proof. [Proof of Corollary 1.1] As in section 3, in both the discrete centered and packing case, we divide the constraint
matrix A by k. Thus, the entries of A are either uniform in {0,±1/k,±2/k, . . . ,1} in the centered case or in {1/k,2/k, . . . ,1}
in the packing case, and hence all contained in [−1,1].

Let K = {x ∈ {0,1}n : ∑
n
i=1 xi|(ATu∗− c)i| ≤ IPGAP(A,b,c)}. By Theorem 4.1, to bound the size of the Branch-and-

Bound tree, it suffices to prove a high probability upper bound on |K|.
In the centered case, by Theorem 1.2 we have that IPGAP(A,b,c) is at most G := poly(m)(logn)2/n with probability

1−n−poly(m), by Lemma 3.3 that ∥u∗∥ ≤ R := 32 with probability 1−e−Ω(n). Applying Lemma 4.2 with G,R together with
the union bound, we conclude that |K| ≤ npoly(m) with probability 1−n−Ω(m), as needed.

In the packing case, by Theorem 1.3 the integrality gap IPGAP(A,b,c) is upper bound by G :=
exp(O(1/β ))poly(m)(logn)2/n with probability 1− n−poly(m), and by Lemma 3.10 we have that ∥u∗∥2 ≤ ∥u∗∥1 ≤ R :=
O(1/β ) with probability 1− e−Ω(n). Applying Lemma 4.2 with G,R together with the union bound, we conclude that
|K| ≤ nexp(O(1/β ))poly(m) with probability 1−n−Ω(m), as needed.

5 Anti-Concentration Results
Throughout this section we use the notation,

d(x,Z) := min
z∈Z

|x− z|.

Our goal in this section is to prove that Definition 2 is valid for a large family of distributions and prove Lemma 2.1.
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Distributions with bounded densities: We begin with the following simple 1-dimensional lemma.

LEMMA 5.1. Let X be a random variable with E [X ] = µ and Var(X) = σ2. Suppose that X has a density ρ , which satisfies,

ρ(x)≤ C
σ
,

for some C > 0. Then, for every ε > 0, then for δ = ε2

12C ,

Pr(d(X ,Z)≥ δ min(1,σ))≥ 1− ε.

Proof. By Chebyshev’s inequality Pr
(
|X −µ| ≥ 2

ε
σ
)
≤ ε2

4 . Define σ ′ = min(1,σ) and note that if Z+ [−δσ ′,δσ ′] :=⋂
z∈Z

[z−δσ ′,z+δσ ′], then, for any δ > 0,

Pr
(

X ∈
[

µ − 2
ε

σ ,µ +
2
ε

σ

]⋂(
Z+

[
−δσ

′,δσ
′]))≤ ∑

z∈Z,|z−µ|< 2
ε

σ

z+δσ ′∫
z−δσ ′

ρ(x)dx.

If σ ≥ 1, since ρ(x)≤ C
σ

,

∑
z∈Z,|z−µ|< 2

ε
σ

z+δ∫
z−δ

ρ(x)dx ≤ 6
ε

σ ·2δ · C
σ
.

We now choose δ = ε2

12C , so the right hand side becomes smaller than ε

2 , and

Pr(d(X ,Z)≥ δ min(1,σ))

≥ Pr
(
|X −µ|< ε

2
σ

)
−Pr

(
X ∈ [µ −δ ,µ +δ ]

⋂
(Z+[−δ ,δ ])

)
≥ 1− ε2

4
− ε

2
> 1− ε.

If σ < 1, then σ ′ = σ and

∑
z∈Z,|z−µ|< 2

ε
σ

z+δσ∫
z−δσ

ρ(x)dx ≤ 6
ε
·2δσ · C

σ
.

We then arrive at the same conclusion.

We now prove our anti-concentration result measures with an appropriate density bound.

LEMMA 5.2. Let X be a random vector in Rm with Σ := Cov(X). For θ ∈Rm let ρθ stand for the density of ⟨X ,θ⟩. Assume
that there is a constant C > 1, satisfying the following three conditions:

• For every θ ∈ Rm, x ∈ R, ρθ (x)≤ C√
Var(⟨X ,θ⟩)

.

• For every ν ∈ Rm, Pr(⟨ν ,X⟩ ≤ ⟨ν ,µ⟩)≥ 1
C .

• ∥Σ∥op∥Σ−1∥op ≤C.

Then, for any θ ,ν ∈ Rm,

Pr
[

d(θTX ,Z)≥ 1
48C3 min(1,∥θ∥∞σ) | ⟨ν ,X⟩ ≤ ⟨ν ,µ⟩

]
≥ 1

2C
,

where σ := ∥Σ∥op. In other words, X satisfies (anti-concentration) with σ and κ = 1
48C3 .

Before proving the result, we just note that by Lemmas A.6 and A.5, Lemma 5.2 applies to isotropic logconcave distributions
and hence proves the first half of Lemma 2.1.
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Proof. Let us denote η2 := Var(θTX) and observe

∥θ∥2

∥Σ−1∥op
≤ η

2 ≤ ∥θ∥2∥Σ∥op.

With this in mind, we will actually show the seemingly stronger result,

Pr
[
d(θTX ,Z)≥ κ

C
min(1,σ) | ⟨ν ,X⟩ ≤ ⟨ν ,µ⟩

]
≥ κ

C
.

However, since the class of measures considered by the lemma is preserved under rotations this is an actual equivalent
statement.

By assumption, η

σ∥θ∥ ≥
1√
C

, and if we choose ε = 1
2C in Lemma 5.1, then

Pr
[

d(θTX ,Z)≥ δ√
C

min(1,∥θ∥σ)

]
≥ 1− 1

2C
,

where δ = 1
48C3 To complete the proof, by assumption ν ,

Pr(⟨ν ,X⟩ ≤ ⟨ν ,µ⟩)≥ 1
C
.

Thus, with a union bound

Pr
[

d(θTX ,Z)≥ δ√
C

min(1,∥θ∥∞σ) | ⟨ν ,X⟩ ≤ ⟨ν ,µ⟩
]

=
Pr
[
d(θTX ,Z)≥ δ√

C
min(1,∥θ∥∞σ) and ⟨ν ,X⟩ ≤ ⟨ν ,µ⟩

]
Pr(⟨ν ,X⟩ ≤ ⟨ν ,µ⟩)

≥ Pr
[

d(θTX ,Z)≥ δ√
C

min(1,∥θ∥∞σ)

]
+Pr(⟨ν ,X⟩ ≤ ⟨ν ,µ⟩)−1

≥
(

1
2C

+1− 1
C

)
+

1
C
−1 ≥ 1

2C
.

Discrete distributions: We now prove anti-concentration results for discrete distributions supported on Zm. Our result
pertains to random variables which are uniform on intervals of length at least 3.

LEMMA 5.3. Let X = (X1, . . . ,Xm) be a random vector in Rm, such that {Xi}m
i=1 are i.i.d. uniformly on {a,a+1, . . . ,a+k},

for some a,k ∈ N, with k > 1. Set µ = E[X1] and σ =
√

Var(X1). Then, for every θ ∈ [− 1
2 ,

1
2 ]

m, and every ν ∈ Rm,

Pr
(

d(θTX ,Z)≥ 1
10

min(∥θ∥∞σ ,1) | ⟨ν ,X⟩ ≤ ⟨ν ,µ1⟩
)
≥ 1

40
.

In other words, X satisfies (anti-concentration) with σ and κ = 1
40 .

Proof. Observe that, as X is symmetric around its mean,

Pr
(

d(θTX ,Z)≥ 1
10

min(∥θ∥∞σ ,1) | ⟨ν ,X⟩ ≤ ⟨ν ,µ1⟩
)

=
Pr
(
d(θTX ,Z)≥ 1

10 min(∥θ∥∞σ ,1) and ⟨ν ,X⟩ ≤ ⟨ν ,µ1⟩
)

Pr(⟨ν ,X⟩ ≤ ⟨ν ,µ1⟩)

≥ Pr
(

d(θTX ,Z)≥ 1
10

min(∥θ∥∞σ ,1) and ⟨ν ,X⟩ ≤ ⟨ν ,µ1⟩
)
,
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With no loss of generality, let us assume |θm|= ∥θ∥∞ and consider the event,

E =

{
m−1

∑
i=1

νiXi ≤ µ

m−1

∑
i=1

νi and νmXm ≤ µνm

}
.

Clearly, E ⊂ {⟨ν ,X⟩ ≤ ⟨ν ,µ1⟩}, and by symmetry and independence, Pr(E)≥ 1
4 . With the previous display,

Pr
(

d(θTX ,Z)≥ 1
10

min(∥θ∥∞σ ,1) | ⟨ν ,X⟩ ≤ ⟨ν ,µ⟩
)

≥ Pr
(

d(θTX ,Z)≥ 1
10

min(∥θ∥∞σ ,1) , X ∈ E
)

=
1
4

Pr
(

d(θTX ,Z)≥ 1
10

min(∥θ∥∞σ ,1) | X ∈ E
)
.

Now, denote r :=
m−1
∑

i=1
θiXi, and rewrite,

d(θTX ,Z) = d(θmXm,(Z− r)).

We observe that under the conditioning on E, depending on sign(νm), θmXm is either uniform on {θma,θm(a+1) . . .θm⌊µ⌋},
or on {θm⌈µ⌉ . . .θm(a+ k)}. We are then interested in the size of the set

F = {θm · x : d(θmx,(Z− r))≥ 1
10

min(θmσ ,1) and x ∈ support(Xm|E)}.

Since |θm| ≤ 1
2 , σ =

√
k2+2k

12 and |Support(Xm|E)| ≥ ⌈ k+1
2 ⌉, it is not hard to see that, as long as k ≥ 2,

(5.12)
|F |

|Support(Xm|E)|
≥ 1

10
.

This can be done by inspecting the trajectory aθm +{0,θm,2θm, ...,⌈ k+1
2 ⌉θm} mod 1 and noting that at most a 9

10 fraction
of the set {0,θm,2θm, ...,⌈ k+1

2 ⌉θm} mod 1 can occupy any interval of length 1
5 min(θmσ ,1).

Indeed, let I be such an interval. If σm > 1
5 min(θmσ ,1), then it cannot be the case that for some j, both jθm,( j+1)θm ∈

I+Z. On the other hand, if θm ≤ 1
5 min(θmσ ,1), then if, for some j, jθm ∈ I, necessarily, ( j+min(σ

5 ,
1

5θm
)θm /∈ I and (5.12)

follows since min(σ

5 ,
1

5θm
)≤ 4

5 k. Thus, by invoking the law of total probability on all possible values of r,

Pr
(

d(θTX ,Z)≥ 1
10

min(θmσ ,1) | X ∈ E
)
≥ |F |

|Support(Xm|E)|
≥ 1

10
.
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A Preliminaries
We begin this section by introducing some notation, to be used throughout the paper. If (x1, . . . ,xm) ∈ Rm and p ≥ 1, the
p-norm is defined by,

∥x∥p :=

(
m

∑
i=1

|xi|p
) 1

p

.

When p = 2, i.e. the Euclidean norm, we will sometimes omit the subscript, so ∥x∥ = ∥x∥2. We interpret p = ∞ in the
limiting sense,

∥x∥∞ := max
1≤i≤n

|xi|.

We denote the positive part of x as, x+ := (max(x1,0), . . . ,max(xm,0)) and the negative part x− :=
(max(−x1,0), . . . ,max(−xm,0)). In this way, x = x+ − x−. The all-ones vector is denoted 1m := (1, . . . ,1). We will
sometimes omit the subscript, when the dimension is clear from the context. If S is a subset of indices, we will write 1S for
a vector such that (1S))i = 1 if i ∈ S and 0 otherwise. If a and b are quantities that depend on the problem’s parameters we
will write a = O(b) (resp. a = Ω(b)) to mean a ≤ Cb, (resp. a ≥ CB) for some numerical constant C > 0. We also write
a ≪ b or a = o(b) (resp. a ≫ b or a = ω(b)) to mean lim

a→∞

a
b = 0 (resp. lim

a→∞

b
a = 0 ). The identity matrix in Rm is denoted

by Im.

A.1 Fourier analysis Our main tool for proving the discrepancy result is Fourier analysis and we review here the
necessary details. Fix X ∼ D , a random vector in Rm. The Fourier transform of X (sometimes also called the characteristic
function) is the complex-valued function defined by X̂(θ) := E[exp(2πi⟨X ,θ⟩)].

To understand the natural domain for θ , we first define the (dual) period of D . For this, choose an arbitrary
a ∈ support(D) and denote,

(A.1) period(D) := {v ∈ Rm : ⟨v,w−a⟩ ∈ Z, ∀w ∈ support(D)}.

The definition of period(D) does not depend on the choice of a. It is readily seen that when D is absolutely continuous with
respect to the Lebesgue measure period(D) = {0}, while period(D) = Zm, when support(D) ⊂ Zm. These are the cases
on which we focus. Using the period, we define the fundamental domain of D , in Fourier space (where we suppress the
dependence on D),

(A.2) V := {θ ∈ Rm : ∥θ∥ ≤ inf
0̸=w∈period(D)

∥θ −w∥}.

Observe that if D is absolutely continuous with respect to the Lebesgue measure, then V =Rm and when support(D)⊂ Zm,
V = [− 1

2 ,
1
2 ]

m.
The connection between X and its Fourier transform comes from the Fourier inversion formula [51, Theorem 1.20]:
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THEOREM A.1. (FOURIER INVERSION FORMULA) Suppose that either D is absolutely continuous, or support(D)⊂ Zm.
Then, for t ∈ support(D):

Pr[X = t] =
∫

θ∈V
X̂(θ)exp(−2πi⟨θ , t⟩)dθ

If X is absolutely continuous, we interpret Pr[X = t] as the density of X at t.

Another desirable property of the Fourier transform is that it is particularly amenable to convolutions (this is clear from the
exponential representation but see [51, Theorem 3.18]).

THEOREM A.2. (MULTIPLICATION-CONVOLUTION THEOREM) Let X and Y be two independent random vectors. Then,

̂(X +Y )(θ) = X̂(θ)Ŷ (θ).

A.2 Probability Distributions Let X ∈ Rm be a random vector distributed according to a probability measure ν on Rm.
We will use fX to refer to the probability density function of X . We define the mean Mean(ν) := E[X ] ∈Rm and covariance
matrix by Cov(ν) := Cov(X) := E[XXT]−E[X ]E[X ]T ⪰ 0. If X ∈ R is a real random variable, we use the notation Var[X ]
to write the variance instead of Cov(X). We say that X , or its law ν , is isotropic if and E[X ] = 0 and Cov(X) = Im.

PROPOSITION A.1. Let X ∈ Rn satisfy E[X ] = 0. Then E[X+] = E[|X |]/2.

Proof. Note that 0 = E[X ] = E[X+−X−]⇒ E[X+] = E[X−]. Thus, E[|X |] = E[X+]+E[X−] = 2E[X+], as needed.

Let X1, . . . ,Xn be independent {0,1} random variables with µ = E[∑n
i=1 Xi]. Then, the Chernoff bound gives [52,

Corollary 1.10],

Pr[
n

∑
i=1

Xi ≤ µ(1− ε)]≤ e−
ε2µ

2 ,ε ∈ [0,1].(A.3)

Pr[
n

∑
i=1

Xi ≥ µ(1+ ε)]≤ e−
ε2µ

3 ,ε ∈ [0,1].

A more refined version is given by Azuma’s inequality which allows the random variables to admit some mild dependencies.
Let X1, . . . ,Xn be {0,1} random variables with µ = ∑

n
i=1E[Xi|X1, . . . ,Xi−1]. Then,

Pr[
n

∑
i=1

Xi ≥ (1+ ε)µ]≤ e−
ε2µ2

2n ,ε ∈ [0,1].(A.4)

To see this bound, apply [52, Theorem 1.10.30] to the martingale Si :=
i

∑
j=1

X j −E[X j|X1, . . . ,X j−1].

LEMMA A.1. If the density function fX of X is bounded from above by M, then:

Var(X)≥ 1
12M2 .

Proof. If we want to minimize Var(X) =
∫

∞

−∞
t2 fX (t)dt under the conditions fX ≤ M and E[X ] = 0, then the the unique

minimizer is fx = M ·1[− 1
2M , 1

2M ]. We then see,

Var(X) =
∫ 1

2M

− 1
2M

t2 ·Mdt =
[

1
3

M · t3
] 1

2M

1
−2M

=
1

12M2
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A.3 Gaussian and Sub-Gaussian Random Variables If µ ∈ Rm and Σ ≻ 0 is an m×m positive-definite matrix, we
denote by N (µ,Σ), the law of the Gaussian with mean µ and covariance Σ. The probability density function of N (µ,Σ)

is given by 1√
2π

m det(Σ)1/2 e−
1
2 (x−µ)TΣ−1(x−µ), ∀x ∈ Rn.

The following is a basic concentration fact for the norm of the standard Gaussian (see [53, Lemma 1], for example).

LEMMA A.2. Let G ∼ N (0, Im) and let x ≥ 7m. Then,

Pr
(
∥G∥2 ≥ x

)
≤ e−

x
3 .

A random variable Y ∈ R is σ -sub-Gaussian if for all λ ∈ R, we have

(A.5) E[eλY ]≤ eσ2λ 2/2.

A standard normal random variable X ∼ N (0,1) is 1-sub-Gaussian. If variables Y1, . . . ,Yk ∈ R are independent and

respectively σi-sub-Gaussian, i ∈ [k], then ∑
k
i=1 Yi is

√
∑

k
i=1 σ2

i -sub-Gaussian.
For a σ -sub-Gaussian random variable Y ∈ R we have the following standard tail bound [54, Proposition 2.5.2]:

(A.6) max{Pr[Y ≤−σs],Pr[Y ≥ σs]} ≤ e−
s2
2 ,s ≥ 0.

The following standard lemma shows that bounded random variables are sub-Gaussian.

LEMMA A.3. Let X ∈ [−1,1] be a mean-zero random variable. Then X is 1-sub-Gaussian.

Proof. Let ϕ(x) := eλx for λ ∈ R. By convexity of ϕ , note that for x ∈ [−1,1], ϕ(x)≤ 1−x
2 ϕ(−1)+ 1+x

2 ϕ(1). Therefore,

E[ϕ(X)]≤ E[
1−X

2
ϕ(−1)+

1+X
2

ϕ(1)] =
1
2
(ϕ(−1)+ϕ(1)) =

1
2
(e−λ + eλ )

=
∞

∑
i=0

λ 2i

(2i)!
≤

∞

∑
i=0

(λ 2/2)i

i!
= eλ 2/2, as needed.

We also need the following fact about truncated sub-Gaussian random variables, which is a slight generalization of [9,
Lemma 7]:

LEMMA A.4. Let X ∈ R be 1-sub-Gaussian. Then E[X+]≤ 1/2 and X+−E[X+] is
√

2-sub-Gaussian.

Proof. Since X is 1-sub-Gaussian, note that E[X ] = 0 and that E[X2] ≤ 1. Therefore, by Proposition A.1, we have
µ := E[X+] = E[|X |]/2 ≤ E[X2]1/2/2 ≤ 1/2 by Hölder.

√
2-sub-Gaussianity of X+ − µ now follows verbatim from the

proof of [9, Lemma 5] using that µ2 ≤ 1/3 and replacing Gaussian by sub-Gaussian.

A.3.1 Logconcave Measures If a measure ν has a density that is a logconcave function, we call ν logconcave.
Logconcave distributions have many useful analytical properties. In particular, the marginals of logconcave random vectors
are also logconcave.

THEOREM A.3. ([55]) Let X ∈ Rd be a logconcave random vector. Then, for any surjective linear transformation
T : Rd → Rk, T X is a logconcave random vector.

The following gives a (essentially tight) bound on the maximum density of any one dimensional logconcave R in terms
of the variance.

LEMMA A.5. ([49, LEMMA 5.5]) Let X ∈ R be a logconcave variable. Then its density function is upper bounded by
1√

Var[X ]
.

The above has an important consequence. If X ∈ Rn is logconcave and isotropic, then for any vector v ∈ Rn \{0}, the
random variable vTX has maximum density at most 1/

√
Var[vTX ] = 1/∥v∥2, where we have used vTX is logconcave.

By a result of Grünbaum, the mean of logconcave measure is also an approximate median. In particular, any halfspace
containing the mean has measure at least 1/e. We will use the following generalization of this result.
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LEMMA A.6. ([56]) Let X ∈ Rn be a logconcave measure with mean E[X ] = µ . Then for any θ ∈ Sn−1 and t ∈ R,
Pr[θTX ≥ θTµ − t]≥ 1/e−|t|.

We shall require the fact that logconcave random variables satisfy the following comparison inequality.

LEMMA A.7. ([57]) Let X ∈ R+ logconcave with E[X ] = µ and let Z have density e−x (exponential distribution), x ≥ 0.
Then, for any convex function ϕ : R+ → R, E[ϕ(X)]≤ E[ϕ(µZ)]. In particular,

1. E[X2]≤ 2µ2.

2. E[eλX ]≤ 1
1−λ µ

, λ < 1/µ .

LEMMA A.8. For X ∈ R mean-zero and logconcave, we have E[X2]≤ eE[|X |]2.

Proof. Let Xl := −X | X ≤ 0, pl = Pr[X ≤ 0] and Xr := Xr | X ≥ 0, pr = Pr[X ≥ 0]. Note that Xl ,Xr are both non-negative
logconcave random variables and that pl , pr ≥ 1/e by Lemma A.6. By Proposition A.1, pl E[Xl ] = E[X−] = E[|X |]/2 =
E[X+] = pr E[Xr]. We now see that

E[X2] = pl E[X2
l ]+ pr E[X2

r ] ≤︸︷︷︸
Lemma A.7

2(pl E[Xl ]
2 + pr E[Xr]

2) = E[|X |](E[Xl ]+E[Xr])≤ eE[|X |]2.

We will also require the following concentration inequality for sums of non-negative logconcave random variables.

LEMMA A.9. Let X1, . . . ,Xn ∈ R+ be independent non-negative logconcave random variables with mean µ . Then, the
following holds:

1. Pr[∑n
i=1 Xi ≥ (1+ ε)µn]≤ e−n(ε−ln(1+ε)) ≤ e

−n( ε2

2(1+ε)2
)
, ε > 0.

2. Pr[∑n
i=1 Xi ≤ (1− ε)µn]≤ e−n(− ln(1−ε)+ε) = e−n(∑∞

j=2 ε j/ j), ε ∈ [0,1].

Proof. By homogeneity, we assume wlog that µ = 1.
Proof of 1. Let λ := ε

1+ε
. Then,

Pr[
n

∑
i=1

Xi ≥ (1+ ε)n] ≤︸︷︷︸
Markov

E[eλ ∑
n
i=1 Xi ]e−λ (1+ε)n ≤︸︷︷︸

Lemma A.7

(
1

1−λ
)ne−λ (1+ε)n = e−n(ε−ln(1+ε)).

Proof of 2. Let λ := ε

1−ε
. Then,

Pr[
n

∑
i=1

Xi ≤ (1− ε)n] ≤︸︷︷︸
Markov

E[e−λ ∑
n
i=1 Xi ]eλ (1−ε)n ≤︸︷︷︸

Lemma A.7

(
1

1+λ
)ne−λ (1+ε)n = e−n(− ln(1−ε)−ε).

Finally, we will require concentration of truncated sums.

LEMMA A.10. Let X1, . . . ,Xn ∈R be i.i.d. mean zero logconcave random variables with E[X+
1 ] = α . Then, for ε ∈ [0,1/2],

we have that

1. Pr[∑n
i=1 X+

i ≥ (1+ ε)2nα]≤ e−
nε2
3e + e−

nε2
2e(1+ε) .

2. Pr[∑n
i=1 X+

i ≤ (1− ε)2nα]≤ e−
nε2
2e + e−

n(1−ε)ε2
2e .
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Proof. Define X ′
1, . . . ,X

′
n ∈ R+ to be i.i.d. copies of X1 | X1 ≥ 0 and let p = Pr[X1 ≥ 0], where 1 − 1/e ≥ p ≥ 1/e

(Lemma A.6). Let C = ∑
n
i=1 1[Xi ≥ 0], which a binomial distribution with parameters n and p. Since X1, . . . ,Xn are i.i.d.,

∑
n
i=1 X+

i has the same law as ∑
C
i=1 X ′

i . Therefore, by (A.3) and Lemma A.9, we have that

Pr[
C

∑
i=1

X ′
i ≥ (1+ ε)2nα]≤ Pr[C ≥ ⌈(1+ ε)pn⌉]+Pr[

⌊(1+ε)pn⌋

∑
i=1

X ′
i ≥ (1+ ε)2nα]

≤ e−
npε2

3 + e
− (1+ε)npε2

2(1+ε)2 ≤ e−
nε2
3e + e−

nε2
e(1+ε) ,

and

Pr[
C

∑
i=1

X ′
i ≤ (1− ε)2nα]≤ Pr[C ≤ ⌊(1− ε)pn⌋]+Pr[

⌈(1−ε)pn⌉

∑
i=1

X ′
i ≤ (1− ε)2nα]

≤ e−
npε2

2 + e−
np(1−ε)ε2

2 ≤ e−
nε2
2e + e−

n(1−ε)ε2
2e .

A.4 Khinchine Inequality

LEMMA A.11. Let X1, . . . ,Xn ∈ R be independent mean zero random variables satisfying E[X4
i ]≤ 3E[X2

i ]
2 < ∞, ∀i. Then,

for any scalars a1, . . . ,an ∈ R, we have that
√

1
3 E[|∑i aiXi|4]≤ E[|∑i aiXi|2]≤ 3E[|∑i aiXi|]2.

Proof. Letting Z := |∑i aiXi| ≥ 0, we wish to show
√
E[Z4]≤E[Z2]≤ 3E[Z]2. We first show that E[Z4]≤ 3E[Z2]2, proving

the first part of our claim:

E[Z4] = ∑
i, j,k,l

aia jakal E[XiX jXkXl ] = ∑
i

a4
i E[X4

i ]+∑
i̸= j

3a2
i a2

j E[X2
i ]E[X2

j ]

= ∑
i

a4
i (E[X4

i ]−3E[X2
i ]

2︸ ︷︷ ︸
≤0

)+∑
i, j

3a2
i a2

j E[X2
i ]E[X2

j ]≤ 3(∑
i

a2
i E[X2

i ])
2 = 3E[Z2]2.

As a consequence, we have

E[Z2] = E[Z2/3(Z4)1/3] ≤︸︷︷︸
Hölder

E[Z]2/3E[Z4]1/3 ≤︸︷︷︸
E[Z4]≤3E[Z2]2

31/3E[Z]2/3E[Z2]2/3,

which, after rearranging, gives E[|∑i aiXi|2]≤ 3E[|∑i aiXi|]2.

A.4.1 Discrete Random Variables Here we list some of the moments of (DSU) for reference.

PROPOSITION A.2. (DISCRETE SYMMETRIC MOMENTS) For k ≥ 1, let U be uniformly distributed on {0,±1/k, . . . ,±1}.

Then, E[U2] = k+1
3k ≥ 1/3, E[U4] = (k+1)(3k2+3k−1)

15k3 and E[U4]/E[U2]2 = 9(3k2+3k−1)
15(k+1)k ≤ 2.

A.5 Rejection sampling In the proofs of Theorems 1.2 and 1.3 we make use of a tool called rejection sampling. This
tool allows us to change the distribution of a random variable X ∼ D . It works by ‘accepting’ an evaluation of the variable
with a probability that depends on its value. Let us formally define a rejection sampling procedure first.

DEFINITION 3. A rejection sampling procedure on a random variable X is a randomized algorithm ψ that, given a
realization of X, outputs either reject or accept.

Now the variable X conditioned on ψ(X) = accept, will be distributed according to a probability D ′. We can choose the
distribution D ′ by appropriately setting Pr[ψ(X) = accept|X ]. This is formalized in the following lemma.

LEMMA A.12. Let X ,Y be a random variable on some set S, with probability density functions fX and fY , and
Support(Y ) ⊆ Support(X). Suppose that fY (s)

fX (s)
≤ K for all s ∈ S. Then there exists a rejection sampling procedure ψ

with Law(X |ψ(X) = accept) = Law(Y ) and Pr[ψ(X) = accept] = 1
K .
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Proof. Define ψ such that:

Pr[ψ(X) = accept|X = x] =

{
fY (x)

K fX (x)
x ∈ Support(X)

0 else
.

This probability is well defined as fY (x)
K fX (x)

≤ K
K = 1 for all x ∈ Support(X). Now Pr[ψ(X) = accept] =∫

x∈Support(X)
fY (x)

K fX (x)
fX (x)dx = 1

K . Call the variable X conditioned (ψ(X) = accept), Z. Now:

fZ(z) =
fY (x)

K fX (x)
fX (x)

Pr[ψ(X) = accept]
=

fY (x)
K ·1/K

= fY (x).

This proves the statement.

A.6 Combinatorics Theorems 1.2 and 1.3 rely on some properties of the optimal dual solution, that hold with high
probability. We prove these by taking the union bound over all vectors in {0,1}n that contain at most αn zeroes. By
applying the following lemma, we are able to upper bound the number of these vectors by exp(H(α)n) where H is the
entropy function defined as H(x) =−x log(x)− (1− x) log(1− x).

LEMMA A.13. ([58, THEOREM 3.1]) For all α ≤ 1
2 and all n,

⌊αn⌋

∑
i=0

(
n
i

)
≤ exp(H(α)n).
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