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Recently, in [3], we studied well-founded games, a natural extension of finite extensive games with
perfect information in which all plays are finite. We extend here, to this class of games, two results
concerned with iterated elimination of weakly dominated strategies, originally established for finite
extensive games.

The first one states that every finite extensive game with perfect information and injective payoff
functions can be reduced by a specific iterated elimination of weakly dominated strategies to a trivial
game containing the unique subgame perfect equilibrium. Our extension of this result to well-founded
games admits transfinite iterated elimination of strategies. It applies to an infinite version of the
centipede game. It also generalizes the original result to a class of finite games that may have several
subgame perfect equilibria.

The second one states that finite zero-sum games with n outcomes can be solved by the maximal
iterated elimination of weakly dominated strategies in n− 1 steps. We generalize this result to a
natural class of well-founded strictly competitive games.

1 Introduction

This paper is concerned with the iterated elimination of weakly dominated strategies (IEWDS) in the
context of natural class of infinite extensive games with perfect information. While simple examples show
that the deletion of weakly dominated strategies may result in removal of a unique Nash equilibrium,
IEWDS has some merit if it results in solving a game. It is for instance used to show that the so-called
“beauty contest” game has exactly one Nash equilibrium (see, e.g., [7, Chapter 5]). Other games can be
solved this way, see, e.g., [11, pages 63, 110-114].

This procedure was also studied in the realm of finite extensive games with perfect information. In
[8] the correspondence between the outcomes given by the iterated elimination of weakly dominated
strategies and backward induction was investigated in the context of binary voting agendas with sequential
voting. More recently, this procedure was studied in [16] in the context of supermodular games.

For arbitrary games two important results were established. The first one states, see [11], that in
such games with injective payoff functions (such games are sometimes called generic) a specific iterated
elimination of weakly dominated strategies (that mimics the backward induction) yields a trivial game
which contains the unique subgame perfect equilibrium. It was noticed in [4] that this result holds for a
slightly more general class of games without relevant ties.1

1All mentioned concepts are explained in Sections 2, 4, and 5. We did not find any precise proofs in the literature. The proof
is briefly sketched in [11, pages 108-109] and summarized in [4, pages 48-49] as follows: “if backward induction deletes action
a at node x, delete all the strategies reaching x and choosing a”. We provided in [2] a detailed proof of the stronger result of [4]
in which we clarified how the backward induction algorithm needs to be modified to achieve the desired outcome.
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The second result, due to [6], is concerned with finite extensive zero-sum games. It states that such
games can be reduced to a trivial game by the ‘maximal’ iterated elimination of weakly dominated
strategies in n−1 steps, where n is the number of outcomes.2

In [3] we studied a natural extension of finite extensive games with perfect information in which one
assumes that all plays are finite. We called these games well-founded games.3 The subject of this paper is
to extend the above two results to well-founded games. In both cases some non-trivial difficulties arise.
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Figure 1: An extensive game G and the corresponding strategic game Γ(G)

L R
AC (0,0) (2,0)
AD (0,0) (2,0)
BC (2,0) (2,0)
BD (0,0) (0,0)

Example 1 Consider the extensive game G and the corresponding strategic game Γ(G) given in Figures
1. G has three subgame perfect equilibria which are all payoff equivalent: {(AC,R),(BC,L),(BC,R)}.
We can observe that in Γ(G) no sequence of iterated elimination of weakly dominated strategies results in
a trivial game that contains all the subgame perfect equilibria in G. To see this, first note that the strategies
L and R of player 2 are never weakly dominated irrespective of the elimination done with respect to the
strategies of player 1. Also, note that the strategy BD of player 1 is strictly dominated by BC in Γ(G).
Thus the only possibility of reducing Γ(G) to a trivial game is to eliminate all strategies of player 1 except
BC. But this results in the elimination of (AC,R) which is a subgame perfect equilibrium in G. 2

This might suggest that one should limit oneself to extensive games with a unique subgame perfect
equilibrium. Unfortunately, this restriction does not work either as shown in Example 2. Additional
complication arises when the game has no subgame perfect equilibrium as shown in 3.
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Figure 2: A game G with a unique SPE
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Figure 3: A game G with no SPE

Example 2 Consider a ‘trimmed version’ of the ultimatum game from [3] given in Figure 2, in which for
each x ∈ [0,100] the root has a direct descendant x. This game has a unique subgame perfect equilibrium,
namely (100,L). Consider an iterated elimination of weakly dominated strategies. For each strategy
of player 1 the strategies L and R of player 2 yield the same payoff. So these two strategies are never

2An alternative proof given in [17] shows that the result holds for the larger class of strictly competitive games. In [2] we
clarified that the original proof also holds for this class of games.

3In the economic literature such games are sometimes called ‘games with finite horizon’.
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eliminated. Further, strategy 100 of player 1 is never eliminated either, since for any strategy x < 100 we
have p1(x,L) = x < 100 = p1(100,L) and p1(x,R) = x > 0 = p1(100,R). So the joint strategies (100,L)
and (100,R) are never eliminated and they are not payoff equivalent. (In fact, each iterated elimination of
weakly dominated strategies yields the game with the sets of strategies {100} and {L,R}.) 2

Example 3 Consider the well-founded game G given in Figure 3. Clearly G has no subgame perfect
equilibrium. Further, strategies A and B of player 1 yield the same outcome for him, so cannot be
eliminated by any iterated elimination of weakly dominated strategies. Thus any result of such an
elimination contains at least two outcomes, (0,0) and (0,1). So G cannot be reduced to a trivial game. 2

To address these issues, we introduce the concept of an SPE-invariant well-founded game. These
are games in which subgame perfect equilibria exist and moreover in each subgame such equilibria are
payoff equivalent. Then we show that the first result can be extended to such games. In view of the above
examples it looks like the strongest possible generalization of the original result. In particular, it applies to
an infinite version of the well-known centipede game of [15].

This result calls for a careful extension of the iterated elimination of weakly dominated strategies to
infinite games: its stages have to be indexed by ordinals and one has to take into account that the outcome
can be the empty game.

When limited to finite games, our theorem extends the original result. In particular it applies to the
class of extensive games that satisfy the transference of decisionmaker indifference (TDI) condition due
to [10], a class that includes strictly competitive games. We also show that the well-founded games with
finitely many outcomes that satisfy the TDI condition are SPE-invariant. Also when extending the second
result, about strictly competitive games, to well-founded games one has to be careful. The original proof
crucially relies on the fact that finite extensive zero-sum games have a value. Fortunately, as we showed
in [3], well-founded games with finitely many outcomes have a subgame perfect equilibrium, so a fortiori
a Nash equilibrium, which suffices to justify the relevant argument (Lemma 21 in Section 5).

By carefully checking of the crucial steps of the original proof we extend the original result to a class
of well-founded strictly competitive games that includes almost constant games, in which for all but
finitely many leaves the outcome is the same. It remains an open problem whether this result holds for all
strictly competitive games with finitely many outcomes.

IEWDS is one of the early approaches applied to analyze strategies and extensive games. It does
not take into account epistemic reasoning of players in the presence of assumptions such as common
knowledge of rationality. The vast literature on this subject, starting with [5] and [12], led to identification
of several more informative ways of analyzing finite extensive games with imperfect information. We
just mention here two representative references. In [4] Pearce’s notion of extensive form rationalizability
(EFR) was studied and it was shown that for extensive games without relevant ties it coincides with the
IEWDS. A more general notion of common belief in future rationality was studied in [13] that led to
identification of a new iterative elimination procedure called backward dominance.

In our paper IEWDS is defined as a transfinite elimination procedure. A number of papers, starting
with [9], analyzed when such a transfinite elimination of strategies cannot be reduced to an iteration over
ω steps. In our framework it is a simple consequence of the fact that the ranks of the admitted game trees
can be arbitrary ordinals. In particular, an infinite version of the centipede game considered in Example
12 requires more than ω elimination rounds.
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2 Preliminaries

2.1 Strategic games

A strategic game H = (H1, . . .,Hn, p1, . . ., pn) consists of a set of players {1, . . .,n}, where n ≥ 1, and for
each player i, a set Hi of strategies along with a payoff function pi : H1 ×·· ·×Hn →R.

We call each element of H1 ×·· ·×Hn a joint strategy of players 1, . . .,n, denote the ith element of
s ∈ H1 ×·· ·×Hn by si, and abbreviate the sequence (s j) j ̸=i to s−i. We write (s′i,s−i) to denote the joint
strategy in which player’s i strategy is s′i and each other player’s j strategy is s j. Occasionally we write
(si,s−i) instead of s. Finally, we abbreviate the Cartesian product × j ̸=iH j to H−i.

Given a joint strategy s, we denote the sequence (p1(s), . . ., pn(s)) by p(s) and call it an outcome of
the game. We say that H has k outcomes if |{p(s) | s ∈ H1 ×·· ·×Hn}|= k and call a game trivial if it
has one outcome. If one of the sets Hi is empty, we call the game empty and non-empty otherwise. Unless
explicitly stated, all used strategic games are assumed to be non-empty. We say that two joint strategies s
and t are payoff equivalent if p(s) = p(t).

We call a joint strategy s a Nash equilibrium if ∀i ∈ {1, . . . ,n}∀s′i ∈ Hi : pi(si,s−i)≥ pi(s′i,s−i). When
the number of players and their payoff functions are known we can identify the game H with the set of
strategies in it.

By a subgame of a strategic game H we mean a game obtained from H by removing some strategies.
Given a set J of subgames of a strategic game H we define

⋂
J as the subgame of H in which for each

player i his set of strategies is
⋂

J∈J Ji. Also, given two subgames H ′ and H ′′ of a strategic game H we
write H ′⊆H ′′ if for each player i, H ′

i ⊆H ′′
i .

Consider two strategies si and s′i of player i in a strategic game H. We say that si weakly dominates
s′i (or equivalently, that s′i is weakly dominated by si) in H if ∀s−i ∈ H−i : pi(si,s−i) ≥ pi(s′i,s−i) and
∃s−i ∈ H−i : pi(si,s−i)> pi(s′i,s−i).

In what follows, given a strategic game we consider, possibly transfinite, sequences of sets of strategies.
They are written as (ρα ,α < γ), where α ranges over all ordinals smaller than some ordinal γ . Given two
such sequences ρ := (ρα ,α < γ) and ρ ′ := (ρ ′

α ′ ,α ′ < γ ′), we denote by (ρ,ρ ′) their concatenation (which
is indexed by γ + γ ′), by ρβ the subsequence (ρα ,α < β ) of ρ , and for α < β by ρβ−α the subsequence
such that (ρα ,ρβ−α) = ρβ . Further, we write H →ρ H ′ to denote the fact that the game H ′ is the outcome
of the iterated elimination from the non-empty game H of the sets of strategies that form ρ . In each step
all eliminated strategies are weakly dominated in the current game. As a result H ′ may be empty. The
relation →ρ is defined as follows.

If ρ = (ρ0), that is, if γ = 1, then H →ρ H ′ holds if each strategy in the set ρ0 is weakly dominated in
H and H ′ is the outcome of removing from H all strategies from ρ0. If γ is a successor ordinal > 1, say
γ = δ +1, and H →ρ ′

H ′, H ′ →(ρδ ) H ′′, where H ′ is non-empty, and ρ ′ := (ρα ,α < δ ), then H →ρ H ′′.
Finally, if γ is a limit ordinal and for all β < γ , H →ρβ

Hβ , then H →ρ
⋂

β<γ Hβ . In general, the strategic
game H from which we eliminate strategies will be a subgame of a game Γ(G), where G is an extensive
game (to be defined shortly). It will be then convenient to allow in ρ strategies from Γ(G). In the definition
of H →ρ H ′ we then disregard the strategies from ρ that are not from H. In the proofs below we rely on
the following observations about the →ρ relation, the proofs of which we omit.
Note 4

(i) Suppose H →ρ H ′ and H ′ →ρ ′
H ′′, where H ′ is non-empty. Then H →(ρ,ρ ′) H ′′.

(ii) Suppose H →ρ H ′, where ρ = (ρα ,α < γ) and γ is a limit ordinal. Suppose further that for a
sequence of ordinals (αδ )δ<ε converging to γ we have H →ρ

α
δ Hαδ for all δ < ε . Then H ′ =⋂

δ<ε Hαδ .
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2.2 Well-founded games

We recall from [3] the definition of a well-founded game. A tree is an acyclic directed connected
graph, written as (V,E), where V is a non-empty set of nodes and E is a possibly empty set of edges.
An extensive game with perfect information (T, turn, p1, . . ., pn) consists of a set of players {1, . . .,n},
where n ≥ 1 along with the following. A game tree, which is a tree T := (V,E) with a turn function
turn : V \Z →{1, . . .,n}, where Z is the set of leaves of T . For each player i a payoff function pi : Z →R,
for each player i. The function turn determines at each non-leaf node which player should move. The
edges of T represent possible moves in the considered game, while for a node v ∈ V \Z the set of its
children C(v) := {w | (v,w) ∈ E} represents possible actions of player turn(v) at v.

We say that an extensive game with perfect information is finite, infinite, or well-founded if, respec-
tively, its game tree is finite, infinite, or well-founded. Recall that a tree is called well-founded if it has no
infinite paths. From now on by an extensive game we mean a well-founded extensive game with perfect
information.

For a node u in T we denote the subtree of T rooted at u by T u. In the proofs we shall often rely on
the concept of a rank of a well-founded tree T , defined inductively as follows, where v is the root of T :

rank(T ) :=

{
0 if T has one node
sup{rank(T u)+1 | u ∈C(v)} otherwise,

where sup(X) denotes the least ordinal larger than all ordinals in the set X .
For an extensive game G := (T, turn, p1, . . ., pn) let Vi := {v ∈V \Z | turn(v) = i}. So Vi is the set of

nodes at which player i moves. A strategy for player i is a function si : Vi →V , such that (v,si(v)) ∈ E for
all v ∈Vi. We denote the set of strategies of player i by Si. Let S = S1 ×·· ·×Sn. As in the case of the
strategic games we use the ‘−i’ notation, when referring to sequences of strategies or sets of strategies.

Each joint strategy s = (s1, . . .,sn) determines a rooted path play(s) := (v1, . . .,vm) in T defined
inductively as follows. v1 is the root of T and if vk ̸∈ Z, then vk+1 := si(vk), where turn(vk) = i. So when
the game tree consists of just one node, v, we have play(s) = v. Informally, given a joint strategy s, we
can view play(s) as the resulting play of the game. For each joint strategy s the rooted path play(s) is
finite since the game tree is assumed to be well-founded. Denote by leaf (s) the last element of play(s).
To simplify the notation we just write everywhere pi(s) instead of pi(leaf (s)).

With each extensive game G := (T, turn, p1, . . ., pn) we associate a strategic game Γ(G) defined as
follows. Γ(G) := (S1, . . .,Sn, p1, . . ., pn), where each Si is the set of strategies of player i in G. In the
degenerate situation when the game tree consists of just one node, each strategy is the empty function,
denoted by /0, and there is only one joint strategy, namely the n-tuple ( /0, . . ., /0) of these functions. In
that case we just stipulate that pi( /0, . . ., /0) = 0 for all players i. All notions introduced in the context
of strategic games can now be reused in the context of an extensive game G simply by referring to the
corresponding strategic form Γ(G). In particular, the notion of a Nash equilibrium is well-defined.

The subgame of an extensive game G := (T, turn, p1, . . ., pn), rooted at the node w and denoted by Gw,
is defined as follows. The set of players is {1, . . .,n}, the game tree is T w. The turn and payoff functions
are the restrictions of the corresponding functions of G to the nodes of T w. We call Gw a direct subgame
of G if w is a child of the root v.

Note that some players may ‘drop out’ in Gw, in the sense that at no node of T w it is their turn to move.
Still, to keep the notation simple, it is convenient to admit in Gw all original players in G.

Each strategy si of player i in G uniquely determines his strategy sw
i in Gw. Given a joint strategy

s = (s1, . . .,sn) of G we denote by sw the joint strategy (sw
1 , . . .,s

w
n ) in Gw. Further, we denote by Sw

i the set
of strategies of player i in the subgame Gw and by Sw the set of joint strategies in this subgame.
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Finally, a joint strategy s of G is called a subgame perfect equilibrium in G if for each node w of T ,
the joint strategy sw of Gw is a Nash equilibrium in the subgame Gw. We denote by SPE(G) the set of
subgame perfect equilibria in G. Finally, we say that a game is SPE-invariant if it has a subgame perfect
equilibrium and in each subgame of it all subgame perfect equilibria are payoff equivalent.

We shall often use the following result.

Theorem 5 ([3]) Every extensive game with finitely many outcomes has a subgame perfect equilibrium.

3 Preliminary lemmas

In this section we present a sequence of lemmas needed to prove our first main result. In the proofs we
often switch between a game and its direct subgames.

Consider an extensive game G := (T, turn, p1, . . ., pn) with the root v and a child w of v. For each
player j to each of his strategy t j in a direct subgame Gw there corresponds a natural set [t j] of his strategies
in the game G defined by [t j] := {s j | t j = sw

j and s j(v) = w if j = turn(v)}. So for a player j, [t j] is the
set of his strategies in G the restriction of which to Gw is t j, with the additional proviso that if j = turn(v),
then each strategy in [t j] selects w at the root v. We call [t j] the lifting of t j to the game G. The following
lemma clarifies the relevance of lifting.

Lemma 6 Consider a direct subgame Gw of G. Suppose that the strategy t j is weakly dominated in Gw.
Then each strategy in [t j] is weakly dominated in G.

Proof. Suppose that t j is weakly dominated in Gw by some strategy u j. Take a strategy v j in [t j]. We
show that v j is weakly dominated in G by the strategy w j in [u j] that coincides with v j on all the nodes
that do not belong to Gw. So w j is obtained from v j by replacing in it vw

j , i.e., t j, by u j. Below s− j denotes
a sequence of strategies in G of the opponents of player j.

Case 1. j = turn(v).
By the choice of u j for all s− j p j(t j,sw

− j) ≤ p j(u j,sw
− j) and for some s− j p j(t j,sw

− j) < p j(u j,sw
− j).

Further, by the definition of [·] we have v j(v) = w, so for all s− j we have p j(v j,s− j) = p j(t j,sw
− j) and

p j(u j,sw
− j) = p j(w j,s− j), so the claim follows.

Case 2. j ̸= turn(v).
Let i = turn(v). Take some s− j. If si(v) = w, then p j(v j,s− j) = p j(t j,sw

− j) and p j(w j,s− j) =
p j(u j,sw

− j). Thus p j(v j,s− j) ≤ p j(w j,s− j) by the choice of u j and w j. Further, if si(v) ̸= w, then
p j(v j,s− j) = p j(w j,s− j) by the choice of w j.

Choose an arbitrary s− j such that si(v) = w and p j(t j,sw
− j) < p j(u j,sw

− j). By the choice of si we
have p j(v j,s− j) = p j(t j,sw

− j) and p j(w j,s− j) = p j(u j,sw
− j), so p j(v j,s− j)< p j(w j,s− j). Thus the claim

follows. □
We now extend the notation [·] to sets of strategies and sequences of sets strategies. First, given a set

of strategies A in a direct subgame Gw of G we define [A] :=
⋃

s j∈A[s j]. Next, given a sequence ρ of sets
of strategies of players, each set taken from a direct subgame of G, we denote by [ρ] the corresponding
sequence of sets of strategies of players in G obtained by replacing each element A in ρ by [A].

Given a set A of strategies of players in a direct subgame Gw we define the corresponding set of
strategies in the game G by putting ⟨A⟩= {s j | sw

j ∈ A}. Thus for a set A of strategies in a direct subgame
Gw, the set ⟨A⟩ differs from [A] in that we do include in the former set strategies s j for which s j(v) ̸= w.
Given a set A of strategies of player j in the subgame Gw, we call ⟨A⟩ an extension of A to the game G.
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Further, given a subgame H of Γ(Gw), we define ⟨H⟩ as the subgame of Γ(G) in which for each player j
we have ⟨H⟩ j = ⟨H j⟩.

In what follows we need a substantially strengthened version of Lemma 6 that relies on the following
concept. Given an extensive game G with a root v, we say that a non-empty subgame J of Γ(G) does not
depend on a direct subgame Gw if for any strategy s j from J any modification of it on the non-leaf nodes
of Gw or on v if turn(v) = j is also in J. Note that in particular Γ(G) does not depend on any of its direct
subgame and that for any non-empty subgame H of a direct subgame Gw of G the subgame ⟨H⟩ does not
depend on any other direct subgame of G.

Lemma 7 Consider a direct subgame Gw of G, subgames H and H ′ of Γ(Gw) and a set A of strategies in H.
Suppose that H →A H ′ and that the subgame J of Γ(G) does not depend on Gw. Then J∩⟨H⟩→[A] J∩⟨H ′⟩.

Proof. Take a strategy v j in [A]. For some strategy t j from A that is weakly dominated in H by some
strategy u j we have v j ∈ [t j]∩ J j. Select a strategy w j in [u j] that coincides with v j on the nodes that do
not belong to Gw. So w j is a modification of v j on the non-leaf nodes of Gw and consequently, by the
assumption about J, it is in J j. Further, w j is in ⟨H⟩, since u j is from H.

We claim that v j is weakly dominated in J∩⟨H⟩ by w j. Below s− j denotes a sequence of strategies of
the opponents of player j in the original game G.

Case 1. j = turn(v).
By the choice of u j for all s− j such that sw

− j ∈ H− j p j(t j,sw
− j)≤ p j(u j,sw

− j) and for some s− j such that
sw
− j ∈ H− j p j(t j,sw

− j)< p j(u j,sw
− j). By the definition of ‘does not depend on’ and the fact that j = turn(v)

we can also assume that the latter s− j is from J− j by stipulating that s− j = t− j for an arbitrary joint
strategy t from J.

Further, by the definition of [·] we have v j(v) = w, so for all s− j such that sw
− j ∈ H− j we have

p j(v j,s− j) = p j(t j,sw
− j) and p j(u j,sw

− j) = p j(w j,s− j). Hence for all s− j p j(v j,s− j) ≤ p j(w j,s− j) and
for some s− j such that s− j ∈ J− j and sw

− j ∈H− j (i.e., for some s− j ∈ (J∩⟨H⟩)− j) p j(v j,s− j)< p j(w j,s− j).
This establishes the claim.

Case 2. j ̸= turn(v).
Let i = turn(v). Take some s− j. If si(v) = w, then p j(v j,s− j) = p j(t j,sw

− j) and p j(w j,s− j) =
p j(u j,sw

− j). Thus p j(v j,s− j) ≤ p j(w j,s− j) by the choice of u j and w j. Further, if si(v) ̸= w, then
p j(v j,s− j) = p j(w j,s− j) by the choice of w j. So for all s− j we have p j(v j,s− j)≤ p j(w j,s− j).

Choose an arbitrary s− j such that si(v) = w, sw
− j ∈ H− j, and p j(t j,sw

− j)< p j(u j,sw
− j). Additionally,

we can claim that s− j ∈ J− j by stipulating that s− j = t− j for an arbitrary joint strategy t from J. Then
s− j ∈ (J∩⟨H⟩)− j.

By the choice of si we have p j(v j,s− j) = p j(t j,sw
− j) and p j(w j,s− j) = p j(u j,sw

− j), so p j(v j,s− j)<
p j(w j,s− j). This establishes the claim for this case. □

We continue with some lemmas concerned with the relation →ρ .

Lemma 8 Consider a direct subgame Gw of G. Suppose that for some sequence ρ of sets of strategies of
players in Gw and a subgame H of Γ(Gw), Γ(Gw)→ρ H. Suppose further that the subgame J of Γ(G)
does not depend on Gw. Then J →[ρ] J∩⟨H⟩.

Proof. We proceed by transfinite induction on the length γ of ρ = (ρα ,α < γ).

Case 1. γ = 1.
By Lemma 7 J∩⟨Γ(Gw)⟩ →[ρ0] J∩⟨H⟩, so the claim holds since ⟨Γ(Gw)⟩= Γ(G) and J∩Γ(G) = J.
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Case 2. γ is a successor ordinal > 1.
Suppose γ = δ + 1. Then ρ = (ρ ′,ρδ ), where ρ ′ := (ρα ,α < δ ). By definition for some H ′ we

have Γ(Gw) →ρ ′
H ′ and H ′ →ρδ H. By the induction hypothesis J →[ρ ′] J ∩ ⟨H ′⟩ and by Lemma 7

J∩⟨H ′⟩ →[ρδ ] J∩⟨H⟩, so the claim follows by Note 4(i), since [ρ] = ([ρ ′], [ρδ ]).

Case 3. γ is a limit ordinal.
By definition for some games Hβ , where β < γ , we have Γ(Gw)→ρβ

Hβ and H =
⋂

β<γ Hβ , where—

recall—ρβ = (ρα ,α < β ). By the induction hypothesis for all β < γ , we have J →[ρβ ] J∩⟨Hβ ⟩. So by
definition J →[ρ] J∩⟨H⟩, since J∩⟨H⟩=

⋂
β<γ⟨J∩Hβ ⟩ as ⟨H⟩=

⋂
β<γ⟨Hβ ⟩. □

Lemma 9 Consider an extensive game G with the root v. Suppose that (wα ,α < γ) is a sequence of
children of v and that for all α < γ , ρα is a sequence of sets of strategies in the direct subgame Gwα .
Suppose further that for each α < γ Γ(Gwα )→ρα Hwα , where each game Hwα is non-empty. Let ρ be the
concatenation of the sequences (ρα ,α < γ). Then Γ(G)→[ρ] ⋂

α<γ⟨Hwα ⟩.

By assumption each Hwα is a non-empty subgame of Γ(Gwα ), so each ⟨Hwα ⟩ is a non-empty subgame
of Γ(G), and consequently

⋂
α<γ⟨Hwα ⟩ is also a non-empty subgame of Γ(G).

Informally, suppose that for each direct subgame Gwα of G we can reduce the corresponding strategic
game Γ(Gwα ) to a non-empty game Hwα . Then the strategic game Γ(G) can be reduced to a strategic
game the strategies of which are obtained by intersecting for each player the extensions of his strategy
sets in all games Hwα . To establish this lemma we do not assume that (wα ,α < γ) contains all children of
v, which makes it possible to proceed by induction.

Proof. We proceed by transfinite induction on the length γ of ρ .

Case 1. γ = 1. Follows from Lemma 8 with J = Γ(G).

Case 2. γ is a successor ordinal > 1.
Suppose γ = δ +1. By the induction hypothesis Γ(G)→[ρδ ] ⋂

α<δ ⟨Hwα ⟩, where ρδ is the concatena-
tion of the sequences (ρα ,α < δ ). We also have by assumption Γ(Gwδ )→ρδ Hwδ .

Note that the subgame
⋂

α<δ ⟨Hwα ⟩ of Γ(G) does not depend on Gwδ , so by Lemma 8 we have that⋂
α<δ ⟨Hwα ⟩ →[ρδ ]

⋂
α<δ ⟨Hwα ⟩∩ ⟨Hwδ ⟩. By Note 4(i) the claim follows.

Case 3. γ is a limit ordinal.
By the induction hypothesis for all β < γ Γ(G)→[ρβ ] ⋂

α<β ⟨Hwα ⟩, where ρβ is the concatenation
of the sequences (ρα ,α < β ). Then by Note 4(ii) and by definition Γ(G)→[ρ] ⋂

β<γ

⋂
α<β ⟨Hwα ⟩. But⋂

β<γ

⋂
α<β ⟨Hwα ⟩=

⋂
α<γ⟨Hwα ⟩, so the claim follows. □

The next lemma shows that when each subgame Hwα of Γ(Gwα ) is trivial, under some natural
assumptions the subgame

⋂
α<γ⟨Hwα ⟩ of Γ(G) can then be reduced in one step to a trivial game.

Lemma 10 Consider an extensive game G with the root v. Suppose that

(a) G has a subgame perfect equilibrium and all subgame perfect equilibria of G are payoff equivalent,

(b) for all w ∈C(v), SPE(Gw)⊆Hw, where Hw is a trivial subgame of Γ(Gw).

Then for some set of strategies A we have
⋂

w∈C(v)⟨Hw⟩→A H ′, where H ′ a trivial game and SPE(G)⊆H ′.
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Proof. Let H :=
⋂

w∈C(v)⟨Hw⟩. Note that H is a non-empty subgame of Γ(G).
Denote the unique outcome in the game Hw by valw, i.e., for all joint strategies s in Hw we have

p(s) = valw. Then the possible outcomes in H are valw, where w ∈C(v). More precisely, suppose that
i = turn(v). Then if s is a joint strategy in H, then p(s) = valw, where si(v) = w.

Take two strategies t ′i and t ′′i of player i in H with t ′i(v) = w1 and t ′′i (v) = w2 such that valw1
i < valw2

i .
This means that for any joint strategies s−i from H−i we have pi(t ′i ,s−i < pi(t ′′i ,s−i, so t ′i is weakly
dominated in H by t ′′i (actually, even strictly dominated).

By assumption (a) G has a subgame perfect equilibrium, so by Corollary 7 of [3] max{valw
i |w∈C(v)}

exists. Denote it by vali and let W := {w ∈ C(v) | valw
i = vali}. So W is the set of children w of v for

which the corresponding value valw
i is maximal. Finally, let A be the set of strategies ti of player i in H

such that ti(v) ̸∈W .
By the above observation about t ′i and t ′′i all strategies in A are weakly dominated in H. By removing

them from H we get a game H ′ with the unique payoff vali for player i. To prove that H ′ is trivial consider
two joint strategies s and t in H ′. Suppose that si(v) = w1 and ti(v) = w2. Then w1,w2 ∈W , sw1 ∈ Hw1 ,
tw2 ∈ Hw2 , p(s) = p(sw1), and p(t) = p(tw2).

By Theorem 8 of [3] subgame perfect equilibria u′ and u′′ in G exist such that u′i(v) = w1, (u′)w1 is
a subgame perfect equilibrium in Gw1 , u′′i (v) = w2, and (u′′)w2 is a subgame perfect equilibrium in Gw2 .
Then p(u′) = p((u′)w1) and p(u′′) = p((u′′)w2), so p((u′)w1) = p((u′′)w2) by assumption (a). Further, by
assumption (b) both (u′)w1 ∈ Hw1 and (u′′)w2 ∈ Hw2 , so since both subgames are trivial, p(sw1) = p((u′)w1)
and p(tw2) = p((u′)w2). Consequently p(s) = p(t), which proves that H ′ is trivial.

To prove that SPE(G)⊆H ′ consider a subgame perfect equilibrium s in G. Take some u ∈C(v). By
assumption (b), su ∈ Hu, so pi(su) = valu

i and, by the definition of ⟨·⟩, s ∈ H. Suppose that si(v) = w. By
Corollary 7 of [3] valw

i = vali, i.e., si(v) ∈W . This means that si ̸∈ A and thus s ∈ H ′. □

4 SPE-invariant games

We can now prove the desired result.

Theorem 11 Consider an SPE-invariant extensive game G. There exists a sequence ρ of strategies of
players in G and a subgame H of Γ(G) such that Γ(G)→ρ H, H is trivial and SPE(G)⊆ H.

Proof. We proceed by induction on the rank of the game tree of G. For game trees of rank 0 all
strategies are empty functions, so Γ(G) is a trivial game with the unique joint strategy ( /0, . . ., /0) and
SPE(G) = {( /0, . . ., /0)}, so the claim holds. Suppose that the rank of the game tree of G is α > 0 and
assume that claim holds for all extensive games with the game trees of rank smaller than α .

Let v be the root of G. Each direct subgame of G is SPE-invariant, so by the induction hypothesis for
all w ∈C(v) there exists a sequence ρw of strategies of players in Gw and a subgame Hw of Γ(Gw) such
that Γ(Gw)→ρw

Hw, Hw is trivial and SPE(Gw)⊆Hw. The claim now follows by Lemmas 9 and 10. □

The following example illustrates the use of this theorem. An extensive game is called generic if each
payoff function is an injective.

Example 12 Recall that the centipede game, introduced in [15] (see also [11, pages 106-108]), is a
two-players extensive game played for an even number of periods. We define it inductively as follows.
The game with 2 periods is depicted in Figure 4. Here and below the argument of each non-leaf is the
player whose turn is to move, and the leaves are followed by players’ payoffs. The moves are denoted by
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v(1)

S1 : (1,0)

S

C1(2)

S2 : (0,2)

S

C2 : (2,1)

C

C

Figure 4: Centipede game with 2 periods

C2t(1)

S2t+1 : (x+1,y)

S

C2t+1(2)

S2t+2 : (x,y+3)

S

C2t+2 : (x+2,y+2)

C

C

Figure 5: From t to t +2 periods

the letters C and S. The game with 2t +2 periods is obtained from the game with 2t periods by replacing
the leaf C2t by the tree depicted in Figure 5.

By the the result of [11, pages 108-109]) each centipede game can be reduced by an iterated elimination
of weakly dominated strategies to a trivial game which contains the unique subgame perfect equilibrium,
with the outcome (1,0). We now show that the same holds for an infinite version of the centipede game
G in which player 2 begins the game by selecting an even number 2t > 0. Subsequently, the centipede
version with 2t periods is played.

Note that G is SPE-invariant. Indeed, G has infinitely many subgame perfect equilibria (one for each
first move of player 2), but each of them yields the outcome (1,0). Moreover, each subgame of G is either
a centipede game with 2t periods for some t > 0, or a subgame of such a game. So each subgame of G is
a finite generic game and thus has a unique subgame perfect equilibrium.

By Theorem 11 we can reduce G by an infinite iterated elimination of weakly dominated strategies
to a trivial game which contains all its subgame perfect equilibria. Note that the strategy elimination
sequence constructed in the proof of this theorem consists of for more than ω steps. 2

For finite extensive games, Theorem 11 extends the original result reported in [11, pages 108-109].
Namely, the authors prove the corresponding result for finite extensive games that are generic. In such
games a unique subgame perfect equilibrium exists, while we only claim that the game is SPE-invariant.

To clarify the relevance of this relaxation let us mention two classes of well-founded extensive games
that are SPE-invariant and that were studied for finite extensive games. Following [4] we say that an
extensive game (T, turn, p1, . . ., pn) is without relevant ties if for all non-leaf nodes u in T the payoff
function pi, where turn(u) = i, is injective on the leaves of T u. This is a more general property than being
generic. The relevant property for finite extensive games is that a game without relevant ties has a unique
subgame perfect equilibrium, see [2] for a straightforward proof. In the case of well-founded games a
direct modification of this proof, that we omit, shows that every extensive game without relevant ties
has at most one subgame perfect equilibrium. Further, if a game is without relevant ties, then so is every
subgame of it, so we conclude that well-founded games without relevant ties are SPE-invariant.

Next, following [10] we say that an extensive game (T, turn, p1, . . ., pn) satisfies the transference of
decisionmaker indifference (TDI) condition if:

∀i ∈ {1, . . . ,n}∀ri, ti ∈ Si ∀s−i ∈ S−i

[pi(leaf (ri,s−i)) = pi(leaf (ti,s−i))→ p(leaf (ri,s−i)) = p(leaf (ti,s−i))].

where Si is the set of strategies of player i. Informally, this condition states that whenever for some player
i, two of his strategies ri and ti are indifferent w.r.t. some joint strategy s−i of the other players then this
indifference extends to all players.

Strategic games that satisfy the TDI condition are of interest because of the main result of [10] which
states that in finite games that satisfy this condition iterated elimination of weakly dominated strategies is
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order independent.4 The authors also give examples of natural games that satisfy this condition. Also
strictly competitive games studied in the next section satisfy this condition.

The following result extends an implicit result of [10] to well-founded games.

Theorem 13 Consider an extensive game G. Suppose that G has finitely many outcomes and G satisfies
the TDI condition. Then G is SPE-invariant.

Proof. We reduce the game G to a finite game H as follows. First, consider the set of all leaves of the
game tree T of G that are the ends of the plays corresponding with a subgame perfect equilibrium. Next,
for each outcome associated with a subgame perfect equilibrium retain in this set just one leaf with this
outcome. By assumption the resulting set L is finite.

Next, order the leaves arbitrarily. Following this ordering remove all leaves with an outcome already
associated with an earlier leaf, but ensuring that the leaves from L are retained. Let M be the resulting set
of leaves. Finally, remove all nodes of T from which no leaf in M can be reached.

The resulting tree corresponds to a finite extensive game H in which all the outcomes possible in G
are present. Further, all the leaves of H are also leaves of G, so H satisfies the TDI condition since G
does. So by Theorem 12 of [2] (that is implicit in [10]) all subgame perfect equilibria of H are payoff
equivalent.

Further, by Theorem 5 G has a subgame perfect equilibrium. Consider two subgame perfect equilibria
s and t in G with the outcomes p(s) and p(t). By construction two subgame perfect equilibria s′ and t ′ in
H exist such that p(s) = p(s′) and p(t) = p(t ′). We conclude that all subgame perfect equilibria of G are
payoff equivalent.

To complete the proof it suffice to note that if an extensive game G satisfies the TDI condition, then
so does every subgame of it. Indeed, consider a subgame Gw of G. Let i = turn(w) and take rw

i , t
w
i ∈ Sw

i
and sw

−i ∈ Sw
−i. Extend these strategies to the strategies ri, ti and s−i in the game G in such a way that w

lies both on play(ri,s−i) and on play(ti,s−i). Then p(rw
i ,s

w
−i) = p(ri,s−i) and p(tw

i ,s
w
−i) = p(ti,s−i), so

the claim follows. □

Corollary 14 The claim of Theorem 11 holds for extensive games with finitely many outcomes that satisfy
the TDI condition.

Conjecture Every extensive game that satisfies the TDI-condition is SPE-invariant.

If the conjecture is true, Theorem 11 holds for all extensive games that satisfy the TDI condition. An
example of a game with infinitely many outcomes that satisfies the TDI condition is the infinite version of
the centipede game from Example 12.

5 Strictly competitive extensive games

In some games, for instance, the infinite version of the centipede game from Example 12, infinite rounds
of elimination of weakly dominated strategies are needed to solve the game. In this section, we focus
on maximal elimination of weakly dominated strategies and identify a subclass of extensive games for
which we can provide a finite bound on the number of elimination steps required to solve the game. The
outcome is our second main result which is a generalization of the following result due to [6] to a class of
well-founded games.

4Alternative proofs of this result were given in [1] and [17].
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Theorem Every finite extensive zero-sum game with n outcomes can be reduced to a trivial game by the
maximal iterated elimination of weakly dominated strategies in n−1 steps.

We first present some auxiliary results. Their proofs follow our detailed exposition in [2] of the proofs
in [6] generalized to strictly competitive games, now appropriately modified to infinite games.

5.1 Preliminary results

We denote by H1 the subgame of H obtained by the elimination of all strategies that are weakly dominated
in H, and put H0 := H and Hk+1 := (Hk)1, where k ≥ 1. Abbreviate the phrase ‘iterated elimination of
weakly dominated strategies’ to IEWDS. If for some k, Hk is a trivial game we say that H can be solved
by the IEWDS.

In infinite strategic games with finitely many outcomes it is possible that all strategies of a player are
weakly dominated as shown in the Example 15. Then by definition, H1 is an empty game. We define a
class of games, called WD-admissible games in which this does not happen.

Example 15 Consider the following infinite zero-sum strategic game with two outcomes:

A B C D . . .
A 0,0 0,0 0,0 0,0 . . .
B 0,0 1,−1 0,0 0,0 . . .
C 0,0 1,−1 1,−1 0,0 . . .
D 0,0 1,−1 1,−1 1,−1 . . .
. . . . . . . . . . . . . . . . . .

This game has a Nash equilibrium, namely (A,A), but each strategy of the row player is weakly
dominated. So after one round of elimination the empty game is reached. 2

Consider a strategic game H. We say that a strategy is undominated if no strategy weakly dominates
it. Next, we say that H is WD-admissible if for all subgames H ′ of it the following holds: each strategy
is undominated or is weakly dominated by an undominated strategy. Intuitively, a strategic game H is
WD-admissible if in every subgame H ′ of it, for every strategy si in H ′ the relation ‘is weakly dominated’
in H ′ has a maximal element above si. The crucial property of WD-admissible games is formalised in the
following lemma whose proof follows directly by induction.

Lemma 16 Let H := (H1, . . .,Hn, p1, . . ., pn) be a WD-admissible strategic game and for k ≥ 1, let
Hk := (Hk

1 , . . .,H
k
n , p1, . . ., pn). Then ∀i ∈ {1, . . .,n} ∀si ∈ Hi ∃ti ∈ Hk

i ∀s−i ∈ Hk
−i : pi(ti,s−i)≥ pi(si,s−i).

A two player strategic game H = (H1,H2, p1, p2) is called strictly competitive if ∀i ∈ {1,2} ∀s,s′ ∈ S :
pi(s)≥ pi(s′) iff p−i(s)≤ p−i(s′). For i ∈ {1,2} we define maxmini(H) := maxsi∈Hi mins−i∈H−i pi(si,s−i).
We allow −∞ and ∞ as minima and maxima, so maxmini(H) always exists. When maxmini(H) is finite
we call any strategy s∗i such that mins−i∈H−i pi(s∗i ,s−i) = maxmini(H) a security strategy for player i in H.

We shall reuse the following auxiliary results from [2].

Note 17 Let H = (H1,H2, p1, p2) be a strictly competitive strategic game. Then

∀i ∈ {1,2} ∀s,s′ ∈ S : pi(s) = pi(s′) iff p−i(s) = p−i(s′).

This simply means that every strictly competitive strategic game satisfies the TDI condition.

Lemma 18 Consider a strictly competitive strategic game H with a Nash equilibrium s. Suppose that for
some i ∈ {1,2}, ti weakly dominates si. Then (ti,s−i) is also a Nash equilibrium.
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Lemma 19 Consider a strictly competitive strategic game H with two outcomes that has a Nash equilib-
rium. Then H1 is a trivial game.

The following result is standard (for the used formulation see, e.g., [14, Theorem 5.11, page 235]).

Theorem 20 Consider a strictly competitive strategic game H.

(i) All Nash equilibria of H yield the same payoff for player i, namely maxmini(H).

(ii) All Nash equilibria of H are of the form (s∗1,s
∗
2) where each s∗i is a security strategy for player i.

By modifying the proof of Corollary 5 from [2] appropriately, we have the following.

Lemma 21 Consider a WD-admissible strictly competitive strategic game H that has a Nash equilibrium.
Then H1 has a Nash equilibrium, as well, and for all i ∈ {1,2}, maxmini(H) = maxmini(H1).

5.2 A bound on IEWDS

We now move on to a discussion of extensive games. We say that an extensive game G is WD-admissible
(respectively, strictly competitive) if Γ(G) is WD-admissible (respectively, strictly competitive). We write
Γk(G) instead of (Γ(G))k, Γi(G) instead of (Γ(G))i, and Γk

i (G) instead of (Γk(G))i. So Γ0(G) = Γ(G).
Further, for a strictly competitive game H = (H1,H2, p1, p2) with finitely many outcomes for each player i
we define the following three sets: pmax

i (H) := maxs∈S pi(s), wini(H) := {si ∈ Hi | ∀s−i ∈ H−i pi(si,s−i) =
pmax

i (H)} and lose−i(H) = {s−i ∈ H−i | ∃si ∈ Hi pi(si,s−i) = pmax
i (H)}. By the assumption about H,

pmax
i (H) is finite.

We can then prove the following generalization of the crucial Lemma 1 and Theorem 1 from [6],
where the proofs are analogous to that of Lemma 18 and Theorem 19 in [2].

Lemma 22 Let G be a WD-admissible strictly competitive extensive game with finitely many outcomes.
For all i ∈ {1,2} and for all k ≥ 0, if wini(Γ

k(G)) = /0 then lose−i(Γ
k(G))∩Γ

k+2
−i (G) = /0.

Lemma 22 implies that if for all i ∈ {1,2}, wini(Γ
k(G)) = /0 then two further rounds of eliminations

of weakly dominated strategies remove from Γk(G) at least two outcomes.
This allows us to establish the following result. The proof is almost the same as the one given in [2,

Theorem 19] for the finite extensive games. We reproduce it here for the convenience of the reader.

Theorem 23 Let G be a WD-admissible strictly competitive extensive game with at most m outcomes.
Then Γm−1(G) is a trivial game.

Proof. We prove a stronger claim, namely that for all m ≥ 1 and k ≥ 0 if Γk(G) has at most m outcomes,
then Γk+m−1(G) is a trivial game.

We proceed by induction on m. For m = 1 the claim is trivial. For m = 2 we first note that by
Theorem 5 and Lemma 21 each game Γk(G) has a Nash equilibrium. So the claim follows by Lemma 19.
For m > 2 two cases arise.

Case 1. For some i ∈ {1,2}, wini(Γ
k(G)) ̸= /0.

For player i every strategy si ∈ wini(Γ
k(G)) weakly dominates all strategies s′i /∈ wini(Γ

k(G)) and
no strategy in wini(Γ

k(G)) is weakly dominated. So the set of strategies of player i in Γk+1(G) equals
wini(Γ

k(G)) and consequently pmax
i (Γk(G)) is his unique payoff in this game. By Note 17 Γk+1(G), and

hence also Γk+m−1(G), is a trivial game.

Case 2. For all i ∈ {1,2}, wini(Γ
k(G)) = /0.



K. R. Apt & S. Simon 29

Take joint strategies s and t such that p1(s) = pmax
1 (Γk(G)) and p2(t) = pmax

2 (Γk(G)). By Note 17 the
outcomes (p1(s), p2(s)) and (p1(t), p2(t)) are different since m > 1.

We have s2 ∈ lose2(Γ
k(G)) and t1 ∈ lose1(Γ

k(G)). Hence by Lemma 22 for no joint strategy s′ in
Γk+2(G) we have p1(s′) = pmax

1 (Γk(G)) or p2(s′) = pmax
2 (Γk(G)).

So Γ(Gk+2) has at most m−2 outcomes. By the induction hypothesis Γ(Gk+m−1) is a trivial game. □

We now show that Theorem 23 holds for a large class of natural games. Call an extensive game almost
constant if for all but finitely many leaves the outcome is the same. Note that every almost constant game
has finitely many outcomes, but the converse does not hold. Indeed, it suffices to take a game with two
outcomes, each associated with infinitely many leaves. The following general result holds.

Theorem 24 Every almost constant extensive game is WD-admissible.

Proof. We begin with two unrelated observations. Call a function p : A → B almost constant if for some
b we have p(a) = b for all but finitely many a ∈ A.

Observation 1. Consider two sequences of some elements (v0,v1, . . .) and (w0,w1, . . .) such that v j ̸= vk,
v j ̸= wk, and w j ̸= wk for all j ≥ 0 and k > j, and a function p : {v0,v1, . . .}∪{w0,w1, . . .}→ B such that
p(v j) ̸= p(w j) for all j ≥ 0. Then p is not almost constant.
Indeed, otherwise for some k ≥ 0 the function p : {vk,vk+1, . . .}∪{wk,wk+1, . . .}→ B would be constant.

Observation 2. Take an extensive game. For some player i, consider two joint strategies (si,s−i) and
(s′i,s

′
−i). If leaf (si,s−i) = leaf (s′i,s

′
−i) then leaf (si,s−i) = leaf (s′i,s−i).

Indeed, consider any node w in play(si,s−i) such that turn(w) = i. Then by assumption si(w) = s′i(w).
This implies that play(si,s−i) = play(s′i,s−i), which yields the claim.

Now consider an almost constant extensive game G. Take an arbitrary subgame H of Γ(G). Suppose
by contradiction that for some player i there exists an infinite sequence of strategies s0

i ,s
1
i ,s

2
i , . . . such that

for all j ≥ 0, s j+1
i weakly dominates s j

i in H. By definition of weak dominance, for all j ≥ 0 there exists
s j
−i ∈ H−i such that pi(s

j
i ,s

j
−i) < pi(s

j+1
i ,s j

−i). Let for j ≥ 0, v j = leaf (s j
i ,s

j
−i) and w j = leaf (s j+1

i ,s j
−i).

By the above inequalities pi(v j) ̸= pi(w j) for all j ≥ 0.
We now argue that v j ̸= vk, v j ̸= wk, and w j ̸= wk for all j ≥ 0 and k > j. First, note that by the

transitivity of the ‘weakly dominates’ relation we have the following.

• pi(s
j
i ,s

j
−i)< pi(s

j+1
i ,s j

−i)≤ pi(sk
i ,s

j
−i),

• pi(s
j
i ,s

j
−i)< pi(s

j+1
i ,s j

−i)≤ pi(sk+1
i ,s j

−i),

• pi(s
j+1
i ,sk

−i)≤ pi(sk
i ,s

k
−i)< pi(sk+1

i ,sk
−i).

This implies in turn, leaf (s j
i ,s

j
−i) ̸= leaf (sk

i ,s
j
−i), leaf (s j

i ,s
j
−i) ̸= leaf (sk+1

i ,s j
−i), and leaf (s j+1

i ,sk
−i) ̸=

leaf (sk+1
i ,sk

−i). So by Observation 2 we have the following.

• v j = leaf (s j
i ,s

j
−i) ̸= leaf (sk

i ,s
k
−i) = vk,

• v j = leaf (s j
i ,s

j
−i) ̸= leaf (sk+1

i ,sk
−i) = wk,

• w j = leaf (s j+1
i ,s j

−i) ̸= leaf (sk+1
i ,sk

−i) = wk.

By Observation 1, pi is not almost constant, which contradicts the assumption that G is almost constant.
By the transitivity of the ‘weakly dominates’ relation we conclude that G is WD-admissible. □

Corollary 25 Let G be an almost constant strictly competitive extensive game with at most m outcomes.
Then Γm−1(G) is a trivial game.
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