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1. Introduction

This thesis is concerned with scaling problems, which have been of much interest in
recent years. It is a class of computational problems with a plethora of connections
to different areas of mathematics, physics and computer science. Although many
structural aspects of these problems are understood by now, we only know how to
solve them efficiently in special cases.

To demonstrate the breadth of this subject, we mention some applications:
approximating the permanent [LSW00], non-commutative rational identity test-
ing [GGOW16], Brascamp-Lieb inequalities [GGOW18], Horn’s problem on spectra
of sums of Hermitian matrices [Fral8], the Paulsen problem [KLLR18; HM21b],
strengthening the Sylvester—Gallai theorem [BDWY12; DSW14; DGOS18], lower
bounds on unbounded-error communication complexity [For01], approximat-
ing optimal transport plans in machine learning [Cut13], maximum-likelihood
estimation in statistics [AKRS21b; AKRS21a; DM21; DMW22;, FORW21], the
quantum marginal problem [Kly02; Kly04; Kly06; BGO+18; BFG+18], asymptotic
non-vanishing of Kronecker coefficients in representation theory [IMW17; BEG+18],
and geometric invariant theory [KN79; NM84; MFK94]. We refer to [BFG+19] for a
more complete overview and the history of scaling problems. Related orbit problems
also have strong connections to Mulmuley and Sohoni’s geometric complexity
theory approach to Valiant’s VP versus VNP [Val79; MS08; BLMW11; Mull7; IP17;
BIP19; DIP20], and various notions of tensor rank and the complexity of matrix
multiplication [Str86; Str87; Str88; Str91; Lan17; CVZ21; BIL+21; Der22].

The primorial example of a scaling problem is that of matrix scaling, after
which this class of problems is named (with the problem itself going back to
Kruithof [Kru37] in 1937, and the terminology dating back to at least 1968 [MO68]).
Its statement is deceptively simple: given a matrix with non-negative real entries,
rescale its rows and columns by positive numbers, such that the resulting matrix
has all row and column sums 1, i.e., the rescaled matrix is doubly stochastic.
A non-commutative version of this problem called operator scaling was introduced by
Gurvits [Gur(04] in the context of Edmonds’ problem. Here, one is asked to “rescale”
a completely positive map such that it becomes unital and trace-preserving; this
can be viewed as a “quantum generalization” of double stochasticity. This can
be further generalized to the tensor scaling problem, where one has to convert a
pure multipartite quantum state to a quantum state whose one-body marginals are
proportional to the identity matrix, using only a restricted set of operations. Such
a generalization arises naturally in the context of understanding the entanglement
of quantum states [Kly02; Kly04; BGO+18; BFG+18]. We discuss matrix and tensor
scaling in more detail in Section 1.1.

As elucidated in a long sequence of works and explained in Section 1.2, these
problems and many others can be solved by solving a norm minimization problem:
given a linear action of a “nice” group on a suitably normed vector space, and

This chapter is partially adapted from [BLNW20; AGL+21; AMN+23; HNW23].



1. Introduction

a vector therein, the goal is to find a vector of minimal norm in its orbit (or the
closure thereof). The celebrated Kempf-Ness theorem [KN79] states that such a
minimum norm vector is exactly the solution to the scaling problem! This is an
important result in the area of geometric invariant theory, which can also be used
to understand the structure of scaling problems. For instance, whether a scaling
problem admits a solution at all is governed by certain invariant polynomials [MFK94;
KN?79]. This connection is useful in the context of analyzing the performance of
algorithms for scaling.

When the group is commutative, such as in the case of matrix scaling, norm
minimization problems reduce to (unconstrained) geometric programs, a well-known
generalization of linear programming. After a suitable change of coordinates, such
programs are convex, and can be solved efficiently using techniques from convex
optimization [NR99; SV14; CMTV17; ALOW17; BLNW20].

In operator scaling and tensor scaling, which capture many of the previously
mentioned problems, the group is non-commutative; hence this class of problems
has also been called non-commutative (group) optimization problems. There is again a
relevant notion of convexity: the norm minimization problem is a geodesically convex
optimization problem on a homogeneous space of non-positive curvature. Currently,
the best algorithms exploit this geodesic convexity and geodesic generalizations
of convex programming techniques to give algorithms with provable guarantees.
However, efficient algorithms are known only in special cases, which have recently
been understood to satisfy a certain total unimodularity property [BFG+19].

This thesis contributes to this area in various ways:

Interior-point methods for scaling. We give new algorithms for non-commutative
scaling problems with complexity guarantees that match the prior state of the
art. To this end, we extend the well-known (self-concordance based) interior-point
method (IPM) framework to the setting of Riemannian manifolds. This approach
is particularly motivated by the fact that — as we also show — IPMs give efficient
algorithms for commutative scaling problems. Moreover, the IPM framework does
not obviously suffer from the same obstructions as previous methods, which we
discuss in more detail in Section 1.3. It also yields the first high-precision algorithms
for other natural geometric problems such as computing geometric medians and
minimum-enclosing balls on symmetric spaces of non-positive curvature.

Quantum algorithms for scaling. For the important (commutative) problems
of matrix scaling and balancing, we show that one can leverage the power of
quantum computation to outperform the (already very efficient) state-of-the-art
classical algorithms. In certain parameter regimes, this yields algorithms which
can solve the matrix scaling problem in time sublinear in the size of the input
matrix, when one is given quantum query access to the matrix; classically, this is
impossible, as one has to at least read the input to the problem! We also show
that in certain regimes our quantum algorithms are optimal, and in other regimes
no quantum speedup over the classical methods is possible. Along the way, we
provide improvements over the long-standing state of the art for basic quantum
subroutines, such as searching for all marked elements in a list, and computing
the sum of a list of numbers.
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Scaling for tensor networks. We also identify a new application in the context
of tensor networks for quantum many-body physics. We use the theory to define
a canonical form for uniform projected entangled pair states, circumventing
previously known undecidability results. Computing the canonical form amounts
to solving a norm minimization problem, or equivalently a scaling problem, and we
give algorithms with rigorous complexity guarantees for doing so. We also show,
by characterizing the invariant polynomials, that the canonical form is determined
by evaluating the tensor network contractions on networks of bounded size.

Organization. The rest of this introduction is organized as follows. In Section 1.1
we discuss matrix and tensor scaling in more detail. In Section 1.2 we informally
define the general scaling problem, give an overview of its structural properties,
and hint at the connection to geometric invariant theory. Next, in Section 1.3
we discuss the current state-of-the-art for algorithms for scaling problems, and
obstructions to providing efficient algorithms for the general setting. Finally,
in Section 1.4 we give a more precise overview of the contributions in this thesis.

1.1. Examples of scaling problems and applications

Matrix scaling. Let A € RU;™ be a matrix with non-negative entries. Then the
matrix scaling problem is to rescale the rows and columns of A so that its row and
column sums are approximately given by 1 and 1, respectively. That is, we wish to
find positive diagonal matrices X, Y € R™™ such that XAY is approximately doubly
stochastic. Observe that the set of pairs (X, Y) with X, Y positive diagonal matrices
forms a group under matrix multiplication. This group acts on A € RJ{™ by left-
and right-multiplying, and we must find a matrix with certain row and column
sums in the orbit A; hence we have a group, a representation and a vector in it.

This problem is very well-studied and has a wide range of applications. It was
introduced by Kruithof for Dutch telephone traffic computation [Kru37], and has
also been used in other areas of economics [Sto64]. In mathematics, it has been
used as a common tool in practical linear algebra computations [LG04; Bral0;
PC11; OCPB16], but also in statistics [Sin64], optimization [RS89], optimal trans-
port [Cut13], and for strengthening the Sylvester-Gallai theorem [BDWY11]. Matrix
scaling can be solved in polynomial time [KK96; NR99], and deciding scalability
can even be done in strongly polynomial time [LSWO00]. More recent works even
provide near-linear time algorithms under reasonable assumptions [ALOW17;
CMTV17; CKL+22; BCK+23]. We refer to [Ide16] for a survey of matrix scaling, its
applications and some history.

A common approach to solving matrix scaling problems is Sinkhorn’s algorithm,
which is a simple iterative procedure, which alternates between scaling the rows
sums and the column sums to the desired marginals:

(i) Initialize X,Y = I, to the identity matrix.

(ii) Update X; by X; « 1/(2;;1 XiAyj Yj) forie [n].
(iii) Update Yj by Yj 1/(2{;1 XiAinj) forj € [n].
(iv) Go back to step (ii).
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The update rule in (ii) is such that at the end of this step, XAY has row sums equal
to 1, and similarly, XAY has column sums equal to 1 at the end of (iii). Surprisingly,
this algorithm converges to an actual solution whenever one exists. This can be
(morally) justified by the following argument: let 1 € R™ be the all-ones vector,
and consider the function f: R™ x R™ — R given by

mn
f(x1,---, X, Y1,---,Yn) = Z Ayje* Y —(x,1) — (y,1). (1.1.1)
i,j=1

Then f is a convex function, so its critical points are automatically minimizers.
One can check that the gradient grad f(x,y) of f at (x,y) is zero if and only
if diag(e*)A diag(eY) is doubly stochastic. In other words, f acts as a convex potential
function for the matrix scaling problem. Furthermore, Sinkhorn’s algorithm can be
seen as performing block coordinate descent with respect to the variables x1,...,xn
and yi,...,yn. The convexity of f then suggests that this algorithm should
converge whenever an (approximate) scaling of A exists. This function can also be
used to give quantitative bounds on the convergence speed. The state-of-the-art
algorithms for solving the matrix scaling problem (as well as the very similar matrix
balancing problem) are based on minimizing f or closely related functions [CMTV17;
ALOW17; CKL+22].

It turns out that it is also easy to characterize when a matrix A is scalable [RS89],
and this is governed by its support: A is (exactly) scalable if and only if the
tuple (1/n,1/n) is in (the relative interior of) the convex hull of the vectors (ey, e;) €
R™ x R™ such that A; > 0. In fact, this convex hull is exactly the set of achievable
row and column sums (after normalizing). Therefore, determining whether A is
scalable is a convex polytope membership problem, and may be solved using linear
programming techniques. This condition also has a combinatorial interpretation:
if A is viewed as a weighted bipartite adjacency matrix, then A is scalable if and
only if the corresponding graph contains a bipartite perfect matching.

Tensor scaling and quantum marginals. Given density matrices py, ..., px, each
describing the quantum state of one party, does there exist a k-party pure quantum
state with marginals equal to the py? This problem is called the one-body quantum
marginal problem, and is a special case of the tensor scaling problem, which is
as follows. For simplicity, we take k = 3 parties of the same dimension n > 2.
Let|)) € V := C"®@C"®C" beapurestate, andletg = (g1, g2, g3) € G := SL(n, C)>.
Consider the (unnormalized) pure state [g) = (g1 ® g2 ® g3) [b), let pg =
[Wg) (Wgl /(Wglbg) be the associated density matrix, and let pg; = Trjc[pg]
denote its reduced density matrix on the j-th subsystem for j € [3] (obtained
by taking the partial trace over the other two subsystems). Then what are the
possible achievable triples of reduced density matrices (pg,1, Pg,2, Pg,3), @s g ranges
over SL(n, C)3?

This question has an operational interpretation: the states [\p4) are precisely
those that can be made from [\) using stochastic local operations and classical
communication (SLOCC). The “local operations” part here refers to the fact that
we are only allowed to act with tensor products g1 ® g» ® g3. The “stochasticity
and classical communication” part amounts to allowing local measurements with
post-selection on joint outcomes, such that the overall protocol succeeds with
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some non-zero probability. This naturally yields local operations in GL(n, C);
however, since we do not care about the overall normalization, we are free to work
with SL(n, C) instead.

We explain how to relate this problem to a norm minimization problem, for
the special case of whether (I/n,I/n,I/n) is achievable. Consider the following
minimization of the (for convenience squared) {?>-norm over all rescalings of |\):

: 2
oon ok o971 © 92 63) [W)ll2: (1.1.2)
Then the (logarithmic) gradient of the objective at g = (g1, g2, g3) is given by
(pg1—I/m,pg2—1/n,pg3—1/1). As minimizers of Eq. (1.1.2) are critical points of
the objective, i.e., points where the gradient vanishes, these correspond to quantum
states with maximally mixed marginals. The quantum marginal problem amounts
to characterizing the set of possible gradients for generic [\p). It turns out that the set
of sorted eigenvalues of the achievable gradients is a convex polytope [Kly(04; BGO+18;
BFG+18]! This is a special case of a much more general phenomenon [NM84; G584;
Kir84a; Bri88]. Therefore the existence of a pure state with given local spectra is
governed by a finite number of linear inequalities on the eigenvalues. We explain this
in more detail in Section 1.2. However, we remark here that these inequalities are
not computationally useful, since it is difficult to enumerate them [Kly04; VW17], and
hence determining whether a joint spectrum can arise requires other approaches.

We can reduce the domain of optimization to M = SPD(n) x SPD(n) x SPD(n),
where SPD(n) denotes the complex positive-definite matrices of unit determinant:
since Pj := g;g)- is an arbitrary matrix in SPD(n), Eq. (1.1.2) is equivalent to:

inf  (P[(P1® P2 @ P3)[) (1.1.3)
P1,P2,P3€SPD(n)

Unfortunately, the domain is non-convex as a subset of the Euclidean space of
triples of Hermitian matrices, and in any case the objective would not be a convex
function of the variables if relaxed to PD(n), so it is not clear that one could use
standard techniques such as semidefinite programming to solve this problem.
Moreover, the naive exponential reparameterization P; = e't with Hermitian H;
does not yield a convex problem in the H; either, because the matrix exponential is
not operator convex [Bhal3, Prob. V.5.1].

However, a key observation is that the objective becomes convex when SPD(n)
and hence M is given a natural non-Euclidean geometry, namely the so-called
affine-invariant metric, which also appears as the Fisher-Rao metric for Gaussian
covariance matrices in statistics (see Section 7.3 for a precise definition). Then the
straight lines of Euclidean space get replaced by the geodesics of the new metric,
which take the form P;(t) = \/P_] ett \/P_] for traceless Hermitian matrices H; and
clearly remain in SPD(n). It is easy to verify that the objective in Eq. (1.1.3) is convex
along such geodesics (in fact, log-convex). This is the “correct” non-commutative
generalization of the fact that f(x,y) in Eq. (1.1.1) is convex, but would not be
without the change of coordinates e*t = Xj, e¥i =Yj.

The tensor scaling problem is not currently known to be solvable in polynomial
time in all parameters, although partial results are known [BFG+18], which we
elaborate on later. There is complexity-theoretic evidence that polynomial-time
algorithms might exist, as the one-body quantum marginal problem (i.e., tensor
scaling for generic 1)) is in NP N coNP [BCMW17].
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1.2. Scaling, polytopes and invariants

We now explain on a high level the connection between the previous examples,
and define the general scaling and norm minimization problems. In each of the
examples, there is some initial data: a matrix in the case of matrix scaling, and
a multipartite quantum state in the case of tensor scaling. They are transformed
according to a certain set of allowed operations, which in each case forms a group:
pairs (X, Y) of positive diagonal matrices in the case of matrix scaling, and triples
of invertible matrices in SL(n, C) in the case of tensor scaling. The goal is to reach
a certain scaling or “marginal condition”: having certain row and column sums, or
the quantum state having maximally mixed reduced one-body density matrices.

These fit together in a general framework as follows [BFG+19]: we are given
a group G, a representation m: G — GL(V) of G, and some vector v € V \ {0}.
We write g - v = m(g)v for the result of acting with g on a vector v € V. The
group G is assumed to be a connected complex reductive algebraic group, given to us
as a subgroup G € GL(n, C) satisfying explicit polynomial equations. Examples
of such G are GL(n, C) itself, the group SL(n, C) consisting of determinant-one
matrices, the special orthogonal group SO(n, C), the symplectic group Sp(2n, C),
and products of these groups. Particularly important is the group of diagonal
matrices (C*)™ = GL(1, C)™, and all relevant commutative G are in fact isomorphic
to this group. In more detail, we assume that G is closed under adjoints (g € G
implies g* =g' € G), that the action 7t is reqular (given by polynomials) and that V
is a complex Hilbert space such that the subgroup K = G N U(n) of G acts on V by
unitary matrices.

The objective for the norm minimization problem is then the Kempf-Ness func-
tion F,: G — R, defined by

Fu(g) =logllg-vl, F, = inf Fu(g). (1.2.1)
Note that g - v is never the zero vector, so the above is well-defined. The in-
fimum infgeg|lg - vl = efv is sometimes called the capacity cap(v) of v [Gur04;

BGO+18; BEG+19]. Then we define:

Problem 1.2.1 (Norm minimization). Let v € V' \ {0} and & > 0. Then the norm
minimization problem for v is to find gs € G such that F,(gs) < F, + 9, or to assert
that ¥, is unbounded from below.

Clearly, if the Kempf-Ness function has a minimizer, then there must be some
point where its gradient vanishes. This gradient lives in the Lie algebra Lie(G) C
C™™ of G; informally, this is the set of infinitesimal directions at I € G. We
write Lie(K) € Lie(G) for the Lie algebra of K defined similarly, and iLie(K) =
{iX : X € Lie(K)} C Lie(G). In the case of K = U(n), Lie(K) is given by the
skew-Hermitian matrices, so iLie(K) consists of the Hermitian matrices.

The scaling problem then arises naturally as the problem of minimizing the
norm of the gradient, and formally defined as follows. Define the moment map
u: V'\ {0} — iLie(K) by letting p(v) € Lie(G) be the unique matrix satisfying

Tr[u(v)H] = d¢=o log|let™ - v]|

for all H € Lie(G). In other words, u(v) is the gradient of F,: G — R at the
identity I € G. Then p(v) naturally takes values in iLie(K): K acts unitarily on V,
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hence preserves the norm, so the only way to change F, is to move in directions
orthogonal to Lie(K), and its orthogonal complement is exactly iLie(K).

Problem 1.2.2 (Scaling). Let v € V' \ {0} and e > 0. Then the scaling problem for v is to
find g. € G such that ||u(ge - v)||lus < €, or to assert that no such g, exists.

To see that the matrix scaling problem is indeed a special case of the above
requires a (small) effort; in particular, there is some disconnect between the fact
that we work over the complex numbers here, and over non-negative real numbers
for matrix scaling. Let G = ST(n) x ST(n) be the group of pairs of diagonal n x n
matrices with entries in C* and determinant 1, and let G act on V = C™™ via

X1 Y7
(X,Y)-B =XBY = B ,
Xn Yn

i.e., by rescaling the rows and columns by X and Y respectively. Endowing V with
the Hilbert-Schmidt inner product, we see that

1 mn
Fg(X,Y) = log||XBY||gs = > log Z IXiBy;Y;[?
ij=1

and the moment map at B, i.e., the gradient of Fg at (X, Y) = (I,I) is given by

> 15=1/Bij *(diag(e;), diag(e;))

2
IBlls

The correction —(I/n, I/n) appears because the X and Y are constrained to have
determinant 1, hence infinitesimal changes in X and Y are restricted to matrices
with trace 0. Observe now that the moment map pu((X,Y) - B) is zero if and only
if the matrix A with entries Aij = |X;|?|Bi;|?|Y;|* has row and column sums 1/n.
Furthermore, whether this condition holds depends only on the absolute values of
the entries of B, X, and Y, explaining why the matrix scaling problem only involves
non-negative numbers.

We motivated the scaling problem above by asserting that if the norm mini-
mization problem has an exact minimizer, then the gradient of the Kempf-Ness
function must vanish somewhere, and so the scaling problem is solvable for ¢ = 0.
In fact, the scaling problem can be solved for all ¢ > 0 if and only if the norm
minimization problem is solvable for all 6 > 0, i.e., the Kempf-Ness function is
bounded from below [KN79]:

grady y_; Fe(X,Y) = —(I/n, I/n).

Theorem 1.2.3 (Kempf-Ness). The Kempf—Ness function F, is bounded from below if
and only if 0 € W(G - v). Furthermore, its minimum is attained if and only if 0 € W(G - v).

The second part of the theorem is a consequence of the geodesic convexity of F,,.
We briefly explain this. Since the action of K = GNU(n) preserves the inner product
and hence the norm on V, the Kempf-Ness function is also naturally defined on
the quotient space K\G consisting of the right-cosets of K. This space is a simply
connected symmetric space, and can be endowed with a natural Riemannian metric
such that it has non-positive curvature. The geodesics (straight lines) with respect to
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this metric are curves of the form t — Ke'tg, where H € iLie(K) and g € G. Then
the crucial point is that F,, is convex along these geodesics:

3%F,(Kettg) > 0.

Any two points on K\ G are connected by a (unique) geodesic as well. Together with
the convexity, this makes it easy to see that the critical points of F,, are automatically
global minimizers.

To understand why the theorem holds beyond the case where F, has an exact
minimizer, i.e., where one only assumes that F, is bounded from below, requires
more input from geometric invariant theory (GIT). The following is a central definition
in GIT:

Definition 1.2.4 (Stability and null cone). We say thatv € V is semistable if 0 ¢ G - v,
where G - v C V is the closure of the G-orbit of v. Equivalently, F,, is bounded from
below.

If v is not semistable, then v is called unstable. The set N = {v € V : v unstable}
is called the null-cone of the representation.

The null-cone can be seen as the set of “bad vectors” in the context of form-
ing quotients of projective varieties, as we shall explain in Section 2.3.4. With
this definition and the Kempf-Ness theorem in hand, the decision variant of
the norm-minimization and scaling problems is the following question: for a
given v € V, is v semistable? In the rest of this section we explain why one can
hope to algorithmically solve this problem at all.

Moment polytopes. It turns out that characterizing when 0 € (G - v) has a rather
combinatorial nature. When G is commutative, i.e., isomorphic to (C*)™, then
the representation V is characterized by a finite set of integer vectors QO C Z™
called the weights of the representation. Every vector v can be decomposed as a
sumv = ) .oVw such that z = (z4,...,zn) € G acts on v, by multiplication

with z¥ = z,"" - .-z The closure of the image of the moment map w(G - v) is
then characterized as follows: it is the convex hull of those w € Q for which v, # 0.
In particular it is a convex polytope, usually referred to as the moment polytope. In
the case of matrix scaling, this is the set of (asymptotically) achievable pairs (r, c)
of row and column sums [RS89].

In the non-commutative setting, a similar result holds. Then the closure of
the intersection A(v) = w(G - v) N C* with a positive Weyl chamber C* is again a
convex polytope [NM84; GS84; Bri87], called the moment polytope of v. For the
tensor scaling problem, intersecting with the positive Weyl chamber amounts
to computing the ordered spectrum of each of the one-body reduced density
matrices, so the moment polytope consists of possible joint spectra (and their
limits) achievable by SLOCC operations on a starting state v = [{) [Kly02; Kly04].

A quantitative Kempf-Ness theorem. Animportant property is now that, because
there are only finitely many weights, there are only finitely many possible A(v) for
a given representation V! As a consequence, either 0 € A(v) and v is semistable, or
the distance between 0 and A(v) is lower bounded by a constant that depends only
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on the representation m: G — GL(V). A slight relaxation of this distance is known
as the weight margin y(rt) > 0. Note that if ||u(g - v)|| < y(7), then this g € G can be
viewed as a certificate that v is semistable!

The weight margin plays an important role in the analysis of the algorithms for
norm-minimization and scaling problems, and makes an appearance in diameter
bounds on approximate minimizers. It also appears in a quantitative version of the
Kempf-Ness theorem: vectors which are approximately scaled also have nearly
minimal norm [BFG+19], with the conversion between these two errors depending
on y(7).

One important situation in which y(7) is only inverse-polynomially small (as
compared to inverse-exponentially) is when the matrix whose rows are given by
the weights w € Q) of the representation is totally unimodular. This combinatorial
criterion guarantees that the facets of A(v) are not “too complicated”. As a
consequence, either 0 is not in the moment polytope, or it is “far away” from it.
This happens in various situations of interest, such as matrix scaling and balancing
and operator scaling (and more generally for quiver representations), but notably
not for tensor scaling.

There is also another direction for the quantitative Kempf-Ness theorem: vectors
with close to minimal norm are approximately scaled. The parameter which
appears in this conversion is the weight norm N(7t). This is the largest norm the
image of the moment map can take, i.e., sup,,c\/\ (o |[t(v)||ezs. Its name comes from
the fact that this is also the largest norm of a weight of the representation V. One can
show that the Kempf-Ness function is Lipschitz with N(7t) as Lipschitz constant,
and the weight norm is also useful for bounding its higher-order derivatives (in
particular the function is smoothly convex as we shall see later). Moreover, N() is
generally small for representations of interest (polynomially bounded in the input
size, and sometimes even constant).

Scaling problems and invariant theory. Feasibility of the scaling problem is also
intricately related to invariant theory, and this plays a key role in the runtime
analysis of the algorithms. A classical result due to Mumford [MFK94] gives
an equivalent criterion for v being in the null-cone. Let C[V] denote the ring of
polynomials on V, and let C[V]€ denote the invariant polynomials on V, i.e., the set
of those p € C[V] such that p(g-w) = p(w) forallw € Vand g € G. It is clear that
if v is in the null-cone, then p(0) = p(v) for all p € C[V]C; after all, polynomials
are continuous, and 0 € G - v. More generally, if v, w € V are two vectors, then one
can ask whether G - v and G - w have a non-empty intersection; if this is the case,
then p(v) = p(w) for all p € C[V]C. Remarkably, this is also a sufficient condition:

Theorem 1.2.5 (Mumford). Let v,yw € V. Then G-vN G-w # 0 if and only
if p(v) = p(w) for all p € C[V]©.

One of the important properties of the ring of invariants is that it is also finitely
generated as an algebra:

Theorem 1.2.6 (Hilbert). There exist finitely many p1,...,pr € C[V]C such that
every p € C[V]C is a polynomial in the p;.

This suggests that determining whether v is in the null-cone is a decidable
problem. Indeed, one can compute generators pj, ..., pr as above [DK15], then test
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whether p;(v) = p;(0) forallj = 1, ..., . However, this approach is computationally
infeasible: there can be too many generators, their degree may be high, or there may
be complexity-theoretic obstructions to evaluating them efficiently [GIM+20]. We
discuss this in more detail in Section 2.6. Nevertheless the above criterion is useful
for analyzing algorithms for the norm-minimization and scaling problems. One
way in which the above enters is that if one can show that there exists a generating
set of polynomials py, ..., pr with bounded integral coefficients (in some basis)
and a suitable bound on their degrees, then this yields a priori estimates on the
values of F,; see [BFG+19, Sec. 7] for the general approach and Proposition 3.4.2
for an example.

1.3. Algorithms and obstructions to efficiency

We now turn to algorithms for solving scaling problems, highlighting the different
approaches that have been taken so far in the literature. We also discuss certain
geometric obstructions to giving efficient algorithms for general scaling problems.

Alternating minimization. In the case of matrix scaling, we saw that the simple
iterative Sinkhorn’s algorithm is capable of finding solutions. This holds more
generally for the operator scaling and tensor scaling problems (discussed above).
The fundamental structure that is used here is that the domain is a product space,
and that optimizing over one factor is easy. Such algorithms are more generally
known as alternating minimization or coordinate descent algorithms, and can be
analyzed for many examples, such as matrix scaling, operator scaling and tensor
scaling [LSW00; Gur04; GGOW20; BGO+18; BFG+18]. Unfortunately, not every
scaling problem admits such a structure.

Gradient descent. As the general optimization problem is (geodesically) convex,
one may hope to apply standard convex optimization techniques. One such
standard technique is gradient descent. It turns out that one can analyze gradient
descent algorithms in our setting, and this yields efficient algorithms in some
parameters [BFG+19, Thm. 4.2]:

Theorem 1.3.1 (Gradient descent). Given semistablev € V \ {0} and ¢ > 0, there exists
an algorithm that solves the scaling problem in

O(N(7r)2

(R =)

iterations. Every iteration consists of computing the gradient of the Kempf—Ness function
and basic linear algebraic operations.

This follows rather straightforwardly from F, being smoothly geodesically convex
with smoothness parameter O(N(7)?); this quantity is an upper bound on the
second derivative of F, along a unit speed geodesic. The parameter N(7) is
usually small (polynomial in the input size) and the same holds for the potential
gap F,(I) - F;,. However, the dependence on the achieved precision ¢ > 01is typically
unsatisfactory: it is polynomial in 1/¢ rather than log(1/¢) (even in the Euclidean

10
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setting). This is not enough for certain applications, such as deciding whether 0
is in the moment polytope A(v) in polynomial time: after all, here one needs to
pick ¢ of size roughly the weight margin y(7r), which can be inverse exponential in
the input size [AV97; FR21]. Moreover, the Kempf-Ness function is usually not
strongly convex, so one should not expect to get a poly log(1/¢)-convergence rate
from simple gradient descent algorithms.

Box-constrained Newton methods. More recently, box-constrained Newton methods
have made an appearance in the literature [CMTV17; ALOW17; AGL+18; BFG+19;
CKV20]. This is a method for minimizing a certain class of convex functions where
every iteration is essentially a Newton step, but constrained to a subdomain (box or
ball) of essentially fixed size. The number of required iterations for approximately
minimizing the objective is polynomial in a diameter bound R on an (approximate)
solution, log £ and a parameter known as the robustness parameter of the objective.
Robustness of the objective guarantees that the local quadratic approximation
obtained from a second-order Taylor expansion is relatively accurate; the size of
the robustness parameter determines the diameter of the region in which such an
approximation holds.

The Kempf-Ness function can be shown to be robust [BFG+19], with robustness
parameter controlled by the weight norm N(7r) of the representation. This was used
in the non-commutative setting to give polynomial time algorithms for operator
scaling and the related orbit closure intersection problem [AGL+18], improving
upon the results of [GGOW16].!

A general non-commutative version of this second-order method is given
in [BFG+19, Prop. 5.5, Thm. 5.7], and its guarantees are as follows:

Theorem 1.3.2 (Box-constrained Newton method). Given semistable v € V \ {0}
and & > 0, there exists an algorithm that solves the norm minimization problem
in 6(R poly(N(m), C,1og(1/9))) iterations. An iteration consists of computing an explicit
gradient and Hessian, solving a Euclidean convex quadratic optimization problem, and
basic linear algebraic operations. Here, R is a bound on the distance to an d-approximate
minimizer, C = F,,(I) — F, is the potential gap, and O(-) hides polylogarithmic terms in R.

To make use of this guarantee, one has to bound the quantities R and C. The
quantity C is usually bounded by making use of the structure of the invariant
polynomials on the representation (although in the commutative case, more
concrete bounds can be obtained, see Chapter 5). The best general bounds on R are
linear in terms of the inverse weight margin 1/v(m), which is exponentially large
in general [BFG+19, Prop. 5.6].

In fact, the box-constrained Newton methods are known to be fundamentally
incapable of providing polynomial-time algorithms for general scaling problems.
The reason is that the distance to an approximate minimizer is in general exponential
in the input size [FR21] (even in the commutative setting), and every iteration of a
box-constrained Newton method is only capable of traversing an (almost) constant
distance. Therefore one cannot always achieve optimality within a polynomial
number of iterations.

'We note that in the setting of operator scaling, solving the OCI problem, the null-cone problem
and determining the non-commutative rank can be done efficiently through other approaches
as well, see [GGOW16; IQS17; 1QS18; DM20a; HH21; FSG23].

11
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In the commutative setting, the issue of large diameter bounds can be overcome.
For example, one can appeal to the ellipsoid method to show that unconstrained ge-
ometric programs are solvable in polynomial time [NR99]. In the non-commutative
setting no analog of the ellipsoid method is available, however, so one is forced to
look for other methods.

Geometric obstructions. A significant obstruction to providing efficient algo-
rithms is that the geometry of the domains makes it fundamentally more difficult
to solve optimization problems. This is caused by the fact that they have non-
positive curvature, whereas Euclidean space has zero curvature. As an example, the
natural metric on the space SU(2)\SL(2, C) turns it into (3-dimensional) hyperbolic
space, which has constant negative curvature; see Fig. 1.1 for an illustration of
the Poincaré disk model of 2-dimensional hyperbolic space. Rusciano [Rus19]
gave a (non-constructive) cutting-plane method in non-positive curvature, with a
logarithmic dependence on the volume of the domain. Unfortunately, the volume
of balls in manifolds of non-positive curvature can grow exponentially with the
radius (even in constant dimension); in particular, this is the case for symmetric
spaces of non-positive curvature, see e.g. [GN99]. This immediately suggests that a
generalization of cutting-plane and/or ellipsoid methods to non-positive curvature
should not suffice for solving scaling problems, assuming their runtime will, as
in the Euclidean setting, depend logarithmically on the volume of a bounding
ball, which would still be exponential here. In fact, it remains open whether
there exists a first-order algorithm for minimizing Lipschitz geodesically convex
functions, with polynomial dependence on the dimension, a diameter bound and
a logarithmic dependence on the precision [CMB23] (in light of the exponential
volume scaling of balls, this would be similar to the ellipsoid method in Euclidean
space).

The exponential volume scaling can also be used to prove lower bounds in a
black-box setting: there exist (natural) optimization problems for which, if one can
only make queries to a function- and gradient oracle, any algorithm that finds an
approximate minimizer must make a number of queries that is linear in the distance
to the approximate minimizer [HM21a; CB22; CB23]. This again suggests that
efficient algorithms for geodesic convex optimization in non-positive curvature
in general, and for non-commutative optimization problems in particular, must
make use of additional structure beyond diameter bounds, as the distance to an
approximate minimizer is in general exponential in the input size [FR21].

1.4. Summary of results

This thesis is naturally divided into three parts, and here we discuss them in the
order in which they appear.

Part I: Scaling problems and applications. We start by setting the mathematical
stage in Chapter 2, with basic background on geometric invariant theory (with
additional introductory material on algebraic geometry and algebraic groups), a
proof of the Kempf-Ness theorem, properties of the moment map and moment
polytopes, and a formal definition of the norm minimization and scaling problems.

12
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Y,

Figure 1.1.: A picture of the Poincaré disk model of hyperbolic space. The distance
between two points z,w € D = {z € C : |z] < 1} is given by d(z, w) =
arcosh(1 + 2|z — w|?/((1 = |z|*)(1 = [w|?))). The horizontal and vertical
axes and red arcs are geodesics, given by circular arcs meeting the
boundary orthogonally. The blue curve indicates the boundary of a
ball of radius 2 about the point (0, %)

Next, in Chapter 3, we identify a novel application of geometric invariant theory
and algorithms for scaling problems in the context of quantum many-body physics.
We use it to define a minimal canonical form for tensor networks defining projected
entangled-pair states (PEPS). These are a higher-dimensional generalization of the
well-known matrix product states, a class of computationally useful ground-state
Ansitze for local Hamiltonians. This shows that previous undecidability results
for testing properties of PEPS can be circumvented.

On a technical level, given a tensor T € (CP1*P1 g ... ® CPm*Pm)d one can
define a quantum state |Tr) on any contraction graph T', and these states are what
are known as the PEPS. The resulting quantum state |Tr) is invariant under the
simultaneous conjugation action of GL(D1) X - - - X GL(D,) on T. To understand the
physical properties of these quantum states |Tr), it is desirable to have canonical
representatives of the orbit (closure) of T. We define such a canonical form Tp;n,
called the minimal canonical form: it is a minimum norm vector in the orbit closure
(or equivalently, the solution to a scaling problem), and has excellent structural
properties as a result of the general theory as explained in Section 1.2, in particular
the theorems of Mumford and Kempf-Ness. Computing the minimal canonical
form can be done with any of the algorithms for norm minimization, albeit not
efficiently in all parameters, because the weight margin of the representation is
inverse exponentially small in the bond dimensions Dy, ..., Dy, (unless m = 1).

Moreover, we show that two tensors T, S have a common minimal canonical
form if and only if on any contraction graph ', |Tr) = |Sr). This is achieved by

13
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observing that the coefficients of such states form a generating set for the invariant
polynomials on the underlying representation, and can be seen as a generalization
of well-known results from classical invariant theory [Pro76; Raz74; For86] on the
invariant polynomials of simultaneous matrix conjugation for GL(D). We also
bound the size of the graphs I" for which one has to check this condition, by relying
on more modern tools from constructive invariant theory [Der(00].

Part ll: Interior-point methods for scaling. This part is concerned with the devel-
opment of new classical algorithms for scaling problems. As mentioned previously,
in the commutative case there are various approaches to obtaining efficient algo-
rithms for commutative scaling problems, even when the approximate solution can
be far away from the starting point. Chapters 4 and 5 are concerned with one such
approach, namely to use the framework of (Euclidean) interior-point methods (IPMs)
for unconstrained geometric programming problems. These form an essential part
of the modern optimization toolbox, as they give polynomial iteration-complexity
guarantees in great generality and in some cases state-of-the-art methods (such
as for linear programming), and are also extremely performant in practice. We
provide a gentle introduction to the theory of IPMs in Chapter 4.

Next in Chapter 5, we apply the IPM framework in the context of unconstrained
geometric programming. We show that one can formulate IPMs whose complexity
can be analyzed in terms of condition numbers that are defined in terms of the
geometry of the moment polytope. For rational inputs, these condition numbers
are bounded in terms of the input size, leading to polynomial iteration complexity
bounds for unconstrained geometric programming and hence also for scaling
problems:

Theorem 1.4.1 (IPM for commutative norm minimization). Let G = (C*)™ and
let t: G — GL(V) be a reqular representation, given explicitly in terms of its weights QO C
Z™. Given semistable v € V and & > 0, there exists an interior-point method which
outputs gs € G such that F,,(gs) < F,+06 within O(poly(log(1/d), input size)) iterations.
An iteration consists of computing an explicit gradient and Hessian, and basic linear
algebraic operations.

To go from commutative to non-commutative scaling problems, we next gener-
alize the Euclidean interior-point method framework to the setting of Riemannian
manifolds. An overview of the key ingredients and applications of this gener-
alization is given in Chapter 7. For convenience, preliminaries on Riemannian
geometry and geodesic convexity are collected in Chapter 6. In summary, the main
achievements are as follows:

In Chapter 8, the Euclidean framework as discussed in Chapter 5 is extended to
the Riemannian setting. We define an appropriate notion of self-concordance in
the Riemannian setting. Essentially the same guarantees as in the Euclidean setting
are obtained; of particular note are the quadratic convergence rate of Newton’s
method for self-concordant functions, and path-following methods for objectives
on domains admitting a self-concordant barrier. More precisely, we prove the
following:

Theorem 1.4.2 (Path-following method). Let D € M be an open, bounded, and convex
domain in a complete Riemannian manifold M, and let f,F: D — R be smooth convex

14
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functions, such that F is a self-concordant barrier with barrier parameter © > 0 and f has
a closed convex extension. Let « > 0 be such that Fy := tf + F is o-self-concordant for
allt > 0. Let p € D be sufficiently close to the analytic center of F, and let ¢ > 0. Then,

using
o\ (O+aldfpll;
ol

Newton iterations, one can find a point p, € D such that

f(pe) — inf f(q) < e.
qeD

Of course, the above is not useful without explicit examples of self-concordant
functions. In Chapter 9 we show that every symmetric space of non-positive
curvature admits self-concordant functions, namely the squared distance to a
point:

Theorem 1.4.3. Let M be a symmetric space of non-positive curvature. Then for
every po € M, the function f: M — R given by f(p) = d(p,po)? is o-self-concordant for
some « > 0 that depends only on M.

We use this to construct a self-concordant barrier for the manifold analogue of
second-order cones (or rather a bounded version thereof).

In Chapter 10 we show that the IPM framework captures scaling problems as
well as other natural geometric problems on non-positively curved symmetric
spaces. In particular, we obtain algorithms for non-commutative scaling problems
whose guarantees match the state-of-the-art as in Theorem 1.3.2:

Theorem 1.4.4 (IPM for norm minimization). Let G be a connected reductive linear
algebraic group and m: G — GL(V) a reqular representation. Given semistablev € V\ {0}
and & > 0, there exists an interior-point method that solves the norm minimization problem
in O(R poly(N(7), C,1og(1/5))) iterations. An iteration consists of computing an explicit
gradient and Hessian, and basic linear algebraic operations. Here, R is a bound on the
distance to a d-approximate minimizer, C = F,,(I) — F, is the potential gap, and O(-) hides
polylogarithmic terms in R.

Showing that scaling problems are captured by the framework involves proving
new estimates on the derivatives of the Kempf-Ness function, generalizing the
robustness bounds that were essential to the box-constrained Newton methods dis-
cussed earlier. Moreover, computing geometric medians and minimum-enclosing
balls can be solved to high precision using the IPM framework, whereas previous
methods were only capable of efficiently providing low-precision solutions.

Part lll: Quantum algorithms and lower bounds for scaling. In this part of the
thesis, we explore the potential of quantum computers to provide faster algorithms
for scaling problems than the classical state-of-the-art. We focus on improvements
to basic quantum subroutines and the well-studied matrix scaling and balancing
problems. In Chapter 11 we provide a short introduction to quantum computing,
recall some basic quantum subroutines that we invoke later, and recall techniques
for proving (query) lower bounds for quantum algorithms.
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Chapter 12 is then concerned with two basic problems. The first is: given
quantum query access to a bit string x € {0,1}™, find all i € [n] such that x; = 1.
This is a generalization of the unstructured database search problem, where one
has to find a single index i such that x; = 1. The search problem famously
admits a quantum algorithm known as Grover’s algorithm [Gro96] solving it with
probability > 2/3 in time O(y/n), whereas any classical algorithm must make Q(n)
queries to x to solve the problem with constant probability. Our contribution here
is the following;:

Theorem 1.4.5. Let x € {0,1}™ have Hamming weight k = |x|. Then there exists a
quantum algorithm which, with probability > 2 /3, finds all k marked indices using O(Vnk)
queries and O(VnXk) other basic operations, while using only a small quantum memory.

The query complexity above is optimal, as can be deduced from lower bounds
for threshold functions [BBC+01]. Previous algorithms either used a factor log(k)
more queries, or a factor k more basic operations. For simplicity, the above is
stated for solving the problem with constant success probability, but we note that
one can achieve a high success probability with a better complexity than obtained
from a standard boosting procedure.

The second problem is: given ¢ > 0 and quantum query access to a vector v €
[0,1]™, compute a (1+¢)-multiplicative approximation of the sum ) _i-, vi. Previous
approaches solved this problem in O(y/n/¢) queries and a similar number of other
operations [Gro97; Gro98; BHMTO02]. We improve this as follows:

Theorem 1.4.6. Let v € [0,1]™ and € > 0. Then there exists a quantum algorithm
which finds, with probability > 2/3, a (1 + €)-multiplicative approximation of -, vi,

using O(\/n/e) queries and O(+\/n/e) other basic operations.

Again, the above is only stated for constant success probability, but improvements
are possible for higher success probability.

Next, we turn to quantum algorithms for matrix scaling and balancing, and the
limitations of using quantum computers for these problems. In Chapter 13 we give
a more comprehensive overview of the literature on these problems and state the
main results of Chapters 14 to 17 more precisely. These results are summarized
in Fig. 1.2. In this chapter we also define our input model, set our notation for
the following chapters, and build several relevant quantum subroutines for later
use. This includes quantum subroutines for computing logarithms of sums of
exponentials, and testing whether a matrix is approximately scaled. For these
subroutines, we rely on the improved summation technique from Chapter 12.

In Chapter 14 we discuss quantum implementations of Sinkhorn’s algorithm
for matrix scaling, including a version with random updates; the latter analysis
extends naturally to Osborne’s algorithm for matrix balancing. For matrix scaling,
this achieves the following:

Theorem 1.4.7. Given an n X n matrix A with non-negative entries and probability
distributions r,c € R, if A can be (asymptotically) (v, c)-scaled, then scaling matrices X
and Y such that ||[r(XAY) — v||1 + |[|c(XAY) — c|l1 < € can be found using O(nl3/¢3)
quantum queries to the entries of A, and a similar number of other operations. When A

is entrywise-positive, this bound can be improved to O(n'5/¢2) quantum queries and a
similar number of other operations.
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eV

n—2 n~1 €0

Figure 1.2.: A schematic representation of the complexity and limitations of quan-
tum algorithms for matrix scaling of entrywise-positive matrices. The
horizontal axis gives the precision ¢ as a function of n (with ¢y being
a certain constant), whereas the vertical axis gives the exponent p in
a complexity of order nP for the problem of e-'-scaling. The blue
line represents the classical state-of-the-art complexity O(n2), the red
line represents the quantum box-constrained Newton method with
complexity O(n'/¢) (Theorem 1.4.8). The area shaded in red indicates
the possible complexities a quantum algorithm for matrix scaling could
have in the respective e-regime, whereas the area shaded in grey is
ruled out by Theorem 1.4.9. The green line corresponds to the lower
bound Q(n!?/+/¢) for the problem of computing e-¢'-approximations
of the vector of row sums of a normalized matrix (Theorem 17.7.1).

For comparison, the classical Sinkhorn algorithm would take time O(n2/e?),
or O (n?/e¢) in the entrywise-positive case. A similar statement holds for matrix
balancing.

Chapter 15 describes our second-order quantum algorithms for scaling and bal-
ancing. These are based on the box-constrained Newton methods due to [CMTV17]
and recent work on quantum algorithms for graph sparsification [AW22]. We
prove the following:

Theorem 1.4.8. Given an n X n matrix A with non-negative entries and probability

distributions r,c € RZ,, if A can be (asymptotically) (v, c)-scaled, then scaling matrices X

and Y such that ||r(XAY) — ||y + [|c(XAY) — c||1 < & can be found using O(R->n13/¢)
quantum queries to the entries of A, and a similar number of other operations. Here, R is a
bound on the distance to an O(e?)-approximate minimizer.

For matrices A which are entrywise-positive, R = O(1) and hence the complexity
is O(n'°/¢).

The classical equivalent of this algorithm would find an e-{!-scaling in time O(n?)
for entrywise-positive matrices. A similar result holds for matrix balancing,
although there one only obtains ¢-£2-balancings (as opposed to e-¢!) for technical
reasons.
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1. Introduction

Lastly, in Chapters 16 and 17, we prove quantum query lower bounds in the
constant-¢ and small-¢ regimes, respectively. These are summarized as follows:

Theorem 1.4.9. There exists a constant €y > 0 such that so-ﬁl-scaling a matrix A to
uniform marginals requires Q(n'>) queries to A. Moreover, for an explicit ¢ = 1/poly(n),

e-l'-scaling A to uniform marginals requires Q(n?) queries to A.

The lower bound bound in the constant-precision regime is based on a reduction
to a variant of multiple search problems. The lower bound in the high-precision
regime is based on a reduction to certain counting problems, and heavily relies
on properties of the convex potential from Eq. (1.1.1), along with a concentration
argument. The Q(n?) lower bound implies that essentially every entry of A must
be queried, and no general improvement over the classical state of the art is
possible in this regime, since for entrywise-positive matrices classical algorithms
can find e-{!-scalings in time O(n?). We also prove a Q(n'?/+/e)-lower bound for
finding e-¢!-approximations of the vector of row sums of matrix in Theorem 17.7.1.
This is morally also a lower bound for scaling: all algorithms (to the best of our
knowledge) explicitly compute (an approximation of) the row and column sums
of the matrix, and an e-{*-approximation of the row and column sums is exactly
enough to test whether a matrix is e-¢!-scaled.
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2. Setting the stage

In this chapter, we set the mathematical stage for the scaling problems as discussed
in Chapter 1. First in Section 2.1 we set some basic notation. Next, Section 2.2
collects some preliminary material on algebraic varieties and algebraic groups.
Section 2.3 then turns to the topic of geometric invariant theory, where we discuss
Mumford’s theorem (Theorem 2.3.7), properties of the ring of invariant polynomials,
the Hilbert-Mumford theorem (Theorem 2.3.16), and the notion of stability and
its relation to quotients of projective varieties. This is followed by a proof of the
Kempf-Ness theorem in Section 2.4 and a detailed discussion of the moment map
in Section 2.5. Lastly, we formally define the computational problems (scaling
and norm minimization) in detail in Section 2.6, as well as a quantitative relation
between these.

2.1. Notation and conventions

Before we get to the main content of this chapter, we fix some terminology and
notation. For n > 1, we write [n] for the set {1,...,n}. For 1 < p < oo, we
write ||-||p for the p-norm on R™ or C™. The standard inner product on R™ or
C™ is defined by (u,v) = u*v = } -, Wivi. In particular, our inner products are
complex-linear in the second argument, to be consistent with physicists” Dirac
notation.

The space of m X n matrices over a field F is denoted by F™ ™, or as Matmxn (F)
when additional superscripts are necessary. We write Tr[A] = Y i, Ay; for the trace
of amatrix A € F™™. For IF € {R, C}, the Hilbert-Schmidt inner product on F'™*™
is defined by (A, B) = Tr[A"B], where A” is the conjugate transpose of A. The
induced norm is denoted by ||A||ns = v/(A, A). We also write Herm(n) € C™"
for the Hermitian (i.e., self-adjoint) matrices. The operator norm of A € F™ ™ is
defined by ||A || = SUP||u||2:1||AU||2-

The group of invertible n X n matrices over a field F is denoted by GL(n, ),
and SL(n, F) consists of those g € GL(n, F) with det(g) = 1, where det is the
determinant. The special case GL(1,F) is denoted by F* = I\ {0}. We also
write U(n) = {g € GL(n, C) : g* = g~!} for the unitary matrices over C.

2.2. Preliminaries on algebra, geometry and groups

In this section we collect preliminaries on affine and algebraic varieties, and linear
algebraic groups. The reader is encouraged to consult this section only as necessary.

This chapter is partially adapted from [AMN+23].
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2. Setting the stage

2.2.1. Affine varieties

For m > 1, we let C[xy,...,xm] denote the ring of polynomials in m vari-
ables xi,...,xm with coefficients in C. For given polynomials p1,...,pr €
Clx1,...,xm], the (embedded) affine variety V(p1,...,p+) S C™ defined by the p;
is their common zero set,! i.e.,

V(plr-'-/pT) = {(Xll"'lxm) € (Dm : pj(xlz---zxm) = OI \V/J € [T]}

For anideal | € C[xy,...,Xxm], we may similarly define V(]) as the common zero
set of all polynomials f € J.
Affine varieties in C™ have the following properties:

(i) €™ = V(0) is an affine variety, and so is 0 = V(C[x4, ..., Xm]).
(ii) If Xq,..., Xy are affine varieties, then so is X; U --- U Xj.

(iii) If {Xi}ier is a (possibly infinite) collection of affine varieties, then ();¢; Xj is
an affine variety.

These three properties imply that if we declare the affine varieties to be the closed
subsets of C™, then this forms a topology, known as the Zariski topology. Any
polynomial p € C[x,...,xm] viewed as a function C™ — C is then a continuous
map (with respect to the Zariski topologies on C™ and C; we recall that continuity
means preimages of open sets are open, or equivalently preimages of closed sets
are closed). Notably, by the fundamental theorem of algebra and the fact that C[x]
is a principal ideal domain, the closed subsets of C are C itself and the finite
subsets.?

Since we may view p € C[xy,...,xm] as functions C™ — C, one may consider
the restriction p|x to an affine variety X € C™; this is automatically a continuous
function X — C with respect to the subspace topology. The restriction map is an
algebra3 homomorphism C[xy,...,xm] — {X — C continuous}, and its kernel
(i.e., the polynomials which restrict to the zero function) is called the vanishing
ideal 1(X) of X. By the first isomorphism theorem, the quotient C[xy, ..., xm]/I(X)
is isomorphic the image of the restriction map, which forms a subalgebra of {X —
C continuous}.We shall refer to this subalgebra as the coordinate ring or ring of
regular functions of X, and denote it by C[X].

More generally, if (X, R) is a pair where X is a topological space, and R is a
subalgebra of the algebra of continuous functions X — C, then we call this pair
an affine variety if there exists some m > 0 and a homeomorphism f: X — Z
with Z € C™ Zariski-closed, such that the map f*: C[Z] — Rgivenby f'(p) =pof
is an isomorphism of algebras. Again, we refer to the algebra R as the coordinate
ring or ring of regular functions of X.

It may happen that this set is empty, but only if the ideal in C[x1, ..., xm] generated by the p; is
all of C[x1,...,%Xm].

2As a word of caution, a continuous function need not be a polynomial: every bijection C — C is
continuous with respect to the Zariski topology. In fact, there are 2!/*! many such bijections and
only |C| many polynomials (since polynomials have finitely many non-zero coefficients).

3An algebra over C is a vector space over C endowed with a C-bilinear multiplication map. We
assume that all algebras are associative, unital, and commutate unless stated otherwise.
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2.2. Preliminaries on algebra, geometry and groups

Although not obvious from the above definition, it turns out that X is uniquely
determined (as a topological space) by the algebra R. The algebras R which can
arise as coordinate rings of affine varieties can also be characterized as follows:

o It is finitely generated, in the sense that there exist q1,..., qr € R such that
every element g € R can be written as a polynomial expression in the q; (and
the constant function 1).

e lts nilradical, consisting of those p € R such that p™ = 0 for some n > 0, is the
zero ideal {0} C R.

To see that these hold for coordinate rings of affine varieties, it suffices to check
for R of the form C[Z] with Z € C™ Zariski-closed, where these properties are
obvious: x1|z,...,Xm|z generate the algebra, and if p™ is a polynomial which
vanishes on Z, then so is p. That all these algebras arise as coordinate rings of
affine varieties follows from Hilbert’s Nullstellensatz.

Theorem 2.2.1 (Hilbert’s Nullstellensatz, [Wal17, Thm. 1.3]). Let ] € C[x1,...,Xm]
be an ideal. If ] is a proper ideal, then the vanishing locus V(J) = {(x1,...,Xm) €
C™ : p(x1,...,xm) = 0,p € J} of | is non-empty. Furthermore, the set 1I(V(])) of
polynomialsp € C[x1, ..., xm ] vanishing on V(J) is the radical \JT = {p € C[x1,...xm] :
p™ €] forsomen > 1} of J.

This can be used to show that every R which has trivial nilradical and is
finitely generated with generators qi,...,qm arises as the coordinate ring of
an affine variety. The algebra homomorphism ¢: C[xy,...,xm] — R, given
by x; + qj is surjective. By the first isomorphism theorem, R is isomorphic
to C[x1,...,xm]/ker(p). As R has trivial nilradical, ker(¢) must be a radical ideal,
in the sense that if p™ € ker(¢) for some n > 1, then p € ker(¢). Therefore the
Nullstellensatz gives I(V(ker(¢))) = vker(p) = ker(¢), and R = C[Z] where Z =
V(ker(¢)).

As important as the affine varieties themselves, if not more, are maps between
them. For two affine varieties (X, R) and (Y, S), we say that a continuous map f: X —
Y is a reqular map or morphism of affine varieties if f*S C R (recall that R and S are
assumed to be subalgebras of the ring of continuous C-valued functions on X, Y,
and f*S = {pof:peS}).

Given two affine varieties (X, R) and (Y, S), we define their product to be the
affine variety whose underlying set is X X Y, and whose coordinate ringis R® S,
viewed as a subalgebra of the C-valued functions on X X Y. Note that R® S is
finitely generated because R and S are. However, we endow X X Y with the Zariski
topology, rather than the product topology. This topology is defined such that if
we choose embeddings X € C™ and Y C C™ as Zariski-closed subsets, then the
topology on X X Y is the subspace topology on X X Y with respect to the Zariski
topology on C™ x C™ = Cn+™,

2.2.2. Algebraic varieties

While we shall forego a precise definition, it is convenient to enlarge the category of
spaces to that of algebraic varieties. The idea is that although the category of affine
varieties is well-behaved, it does not allow us to do all the geometry we might
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2. Setting the stage

wish to. For instance, the projective space P™, whose points are lines through
the origin in C™*1, is a classical object of interest in algebraic geometry, but it is
not an affine variety. One way to remedy this is as follows. Instead of studying a
topological space X with an algebra of functions R that are globally defined on X,
the idea is to specify for every open subset U C X a “coordinate ring” Ox(U),
which is again a subalgebra of continuous functions U — C. We impose certain
compatibility conditions on Ox (it must be a sheaf), the pair (X, Ox) is called a ringed
space, and Oy is called the sheaf of regular functions or the structure sheaf.* An
algebraic pre-variety is then a ringed space which is covered by a collection of open
subsets {U;}ic1 € X such that (Ui, Ox(U;)) is an affine variety. An algebraic variety
is then a separated algebraic pre-variety, which means that the diagonal Ax € X x X
is closed (with respect to the Zariski topology on X x X). A regular map or morphism
between algebraic varieties X and Y is then a function f: X — Y such thatif UC Y
is open and p € Oy(U) is a regular function on U, then f*(p) = p o f is a regular
function on f~1(U), i.e., p o f € Ox(f~1(U)).

For an affine variety X, the sheaf of regular functions is determined as follows.
Every open set U C X is the union of basic open sets D, = X\ V(p) € X
where p € C[X] (recall that V(p) is the vanishing set of p). The regular functions
on U are then those f: U — C such that for every x € U, there exists p € C[X]
such that x € D € U and f|p, is the restriction of some C[X][p~1], ie., f(y) =
Z}ZO q;(y)p(y) forally € Dy, and some qp, ..., qk € C[X].

As an example, consider X = C? with coordinates x1,x and U = X \ {x1x2 = 0}.
Then the regular functions on U are those f: U — C are those in C[x1, x2, (x1%2)71;
for instance, f(x1,x2) = (X1 + x2)/(x1x2). On the other hand, the regular functions
on X \ {0} are just restrictions of regular functions on X: it would have to be
simultaneously in C[x1, X2, xgl] and C[xq, x2, xl"l], ie., in C[x1,x2] = C[X].°

The canonical example of an algebraic variety that is not affine is projective
space P™. As a set, it is given by P™ = (C™*! \ {0})/~ where x ~ y if and only if
there exists A € C* = C\ {0} such thaty = Ax. A typical element of P™ is denoted
by [xo : ... : xm], the equivalence class of x = (x,...,xm) € C™!\ {0}. For a
collection S € C[xy, ..., xm] of homogeneous polynomials, the set of [xg : ... : Xm]
such that p(xo,...,xm) = 0 for all p € S is well-defined. The Zariski topology
on P™ is then defined by declaring such common zero sets to be the closed subsets.

The most important open subsets of P™ are those given by the inequality x; # 0,
where 1 € {0,...,m}. On this open subset, the regular functions are those of
the form [xg : ... : x| q(:—?,...,z—:,...,’;—’?) where q € Clzy,...,zm] is a
polynomial, and the hat indicates omission of that argument.

Lastly, we recall that a topological space X is irreducible if, whenever X = Xp U X1
for closed subsets Xp, X1 € X, one has X = Xy or X = X;. For an affine variety X,
irreducibility is equivalent to the coordinate ring C[X] being an integral domain,

The tuple (X, Ox) is in fact a locally ringed space, which means that the stalk at each point is a local
ring, i.e., has a unique maximal ideal. The stalk at a point consists of “functions defined on
an infinitesimal neighbourhood” of the point, and the maximal ideal is given by the functions
vanishing at the point.

°This phenomenon occurs more generally in complex analysis: if U € C™ is a Euclidean open set
and A C U is an analytic set of codimension > 2, then any holomorphic function f on U \ A
extends uniquely to a holomorphic function on U [GH7S, p. 7, p. 396].
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i.e., having no non-zero zero divisors.® The Krull dimension of topological space X is
defined as the maximal length d of a chain @ # Xy C --- C Xgq € X of distinct closed
irreducible subspaces; if no such subspaces exist, then the Krull dimension is
defined to be —co. The Krull dimension of C™ endowed with the Zariski topology
is n. Note that the Krull dimension does not always capture the “usual” notion of
dimension, since e.g. the only closed non-empty irreducible subsets of C™ with
the standard topology are singletons, and hence has dimension 0.

2.2.3. Linear algebraic groups and their representations

Important examples of algebraic varieties for us are the linear algebraic groups.
An algebraic group is simply an algebraic variety G with a group structure that
is compatible with the variety structure: a multiplication map G X G — G, an
inversion map G — G and an identity element e € G, which satisfy the group
laws, and such that multiplication and inversion are regular maps.”

The canonical example of an algebraic group is GL(n, C), consisting of all n X n
invertible matrices with entries in C. This is an affine variety, even though it is
not Zariski-closed in C™*™. Observe that A € C™™ is in GL(n, C) if and only
if det(A) # 0. To encode this as the vanishing set of a polynomial, we add an extra
variable t and view GL(n, C) as the set of those (ai1, ai2,...,ann,t) € €™+ such
that det(A)t — 1 = 0, where A = (aij){szl. The multiplication on GL(n, C) is of
course given by matrix multiplication, which is a regular map since entries of the
resulting matrix are polynomials in the two matrices; the inversion is also regular
because A~! = det(A) ! adj(A) where adj(A) is the adjugate matrix, whose entries
are given by (signed) minors of A, hence also polynomials in the a;.

A linear algebraic group is a subgroup G C GL(n, C) which is Zariski-closed
in GL(n, C), i.e., there are polynomials py,...,pr in the matrix entries of g
and det(g)™! such that G = {g € GL(n,C) : pj(g) = 0, j € [r]}. Examples of
interest are the special linear group SL(n, C), consisting of those A with det(A) =1,
the orthogonal and special orthogonal groups O(n, C) and SO(n, C), the sym-
plectic group, but also the group of invertible upper triangular matrices. The
group C* = C \ {0} = GL(1,C) and products thereof are particularly simple®
examples as well. We shall refer to (C*)9 as an algebraic torus of dimension d
(and extend this language to G which are isomorphic to (C*)4). A notable
non-example of linear algebraic groups is the unitary group U(n): its defining
equations are gg* = I, = g*g, which involves complex conjugation, and hence is
not a polynomial in the entries of g.”

®More generally irreducibility corresponds to the nilradical being a prime ideal, but since our
coordinate rings have trivial nilradical, this corresponds to the zero ideal being prime, i.e., C[X]
being an integral domain.

"Note that X X X is again endowed with the Zariski topology.

8Unfortunately, this group is not simple in the sense of Lie groups, because that definition excludes
abelian groups.

9More generally, if G € GL(n, C) is a linear algebraic group, then G is either finite or unbounded
(in the Euclidean sense). To see this, observe that G is affine, hence has finitely many irreducible
components by the Lasker—Noether theorem. On each irreducible component, a regular function
is either unbounded or constant: their image is irreducible and the irreducible subsets of C are
the singletons and C itself. In particular every coordinate map G — C, g = gj;j is unbounded
or constant, and if all of them are constant then G has finitely many elements.
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As is a common theme in mathematics, we attempt to reduce complicated
questions to linear algebra problems. Recall that a representation is a group
homomorphism 7t: G — GL(V), where V is a finite-dimensional vector space
over C. Such a representation is regular if the matrix entries of 7t(g) with respect to
any basis of V are polynomial functions of the matrix entries of g and of det(g)™
(i.e., the components are regular functions on G). We call a representation 7t
irreducible if every G-invariant subspace W C V satisfies W = {0} or W = V.10
Furthermore, a representation 7t is completely reducible if there exist irreducible
subrepresentations Vi, ..., V, € Vsuchthat V=V; @ --- & V,. To make the theory
(more) tractable, we further restrict the class of groups that we are interested in:

Definition 2.2.2 (Linearly reductive group). Let G € GL(n, C) be a linear algebraic
group. Then G is called linearly reductive if for every regular representation t: G —
GL(V) and G-invariant subspace V; C V, there exists a G-invariant subspace V, € V
such thatV =V; & V,.

By induction on the dimension of V, one can show that every regular represen-
tation of a linearly reductive group is completely reducible. When one studies
representations of finite groups, or more generally compact Lie groups, every
representation satisfies the above propetry, as there one can introduce an invariant
inner product by an averaging procedure. However, for algebraic groups, the
notion is non-trivial: for general G it may happen that although a representa-
tion V is not irreducible, there do not exist G-invariant subspaces V1, V, € V such
that V = V; & V2 (and hence V is not completely reducible); we give the canonical
example below.!!

Example 2.2.3. Consider the linear algebraic group

G={|} ?|.zec! ccL@ ),
01

which is isomorphic to €. Then G acts by left-multiplicationon V = C2. If0 ¢ W C

V is a non-zero G-invariant proper subspace, then dim(W) = 1 and W = span(w)

for some 0 # w € W. The G-invariance then implies that w must be a common

eigenvector of every g € G; but (1) ﬂ has only e; € C? as an eigenvector,

hence W = span(eq). This is therefore the unique non-zero G-invariant proper
subspace, and as a consequence there does not exist a G-invariant W’ C V such
that V=Weaoe W.

However, some respite is offered by the following theorem, which gives a fairly
explicit characterization of the linearly reductive groups:

Theorem 2.2.4 ((Wall7, Lem. 3.5, Thm. 3.13]). Let G € GL(n, C) be a linear algebraic
group. Assume that G is symmetric, that is, for every g € G, its adjoint g* is also in G.
Then G is linearly reductive.

19An irreducible T must be eaten in one biG bite.

1n a sense, the example described is also the only obstruction to being linearly reductive (in
characteristic 0). An equivalent definition of reductivity is that every smooth connected
unipotent normal subgroup of G is trivial, where a unipotent group is one that is isomorphic to
a subgroup of the upper triangular matrices with ones on the diagonal.

26



2.2. Preliminaries on algebra, geometry and groups

Moreover, if G is linearly reductive, then there exists some g € GL(n, C) such that gGg™
is symmetric.

The first part of this theorem is most important to us, and its proof relies on
the interplay between the Zariski and Euclidean topology on GL(n,C). This
requires some terminology from differential geometry. We recall that a Lie group is
a topological group which is also a smooth manifold, such that the inversion and
multiplication maps are smooth.

If G € GL(n, ©) is a linear algebraic group, then G is Zariski-closed in GL(n, C).
This implies that it is also closed subset with respect to the Euclidean topology
on GL(n,C). Furthermore, with this topology, it admits a smooth atlas such
that G is a Lie group, a result due to von Neumann [Neu29] and E. Cartan [Car52,
Sec. ILIII] (when the outer group is an abstract Lie group):

Theorem 2.2.5 (Closed subgroup theorem, [GW09, Prop. 1.3.12]). Let H € GL(n, C)
be a closed subgroup with respect to the Euclidean topology. Then H is a Lie group.

This also leads to examples of Lie groups which are not algebraic. The most
important for us is the unitary group U(n), which consists of those g € GL(n, C)
such that gg* = I, = g*g. This group is compact with respect to the Euclidean
topology. Even though it is not linear algebraic, there is still a strong connection to
linear algebraic groups:

Theorem 2.2.6. Let G € GL(n, C) be a symmetric linear algebraic group. Then K =
G NU(n) is a maximal compact subgroup of G with respect to the Euclidean topology.
Furthermore, the Zariski-closure of K in GL(n, C) is G.

To relate this to the reductivity of G, we require one last ingredient:

Theorem 2.2.7. Let K € GL(n, C) be a Lie group, compact with respect to the Euclidean
topology. Then there exists a unique left Haar measure on K, i.e., a left-K-invariant Borel
probability measure on K.

Corollary 2.2.8. Let K € GL(n, ©) be a Lie group, compact with respect to the Euclidean
topology. Let t: K — GL(V) be a continuous representation of K. Then there exists an
inner product (:,-) (complex linear in the second arqument) on V such that 7(K) € U(V).
Furthermore, if Vo C V is a K-invariant subspace, then there exists a K-invariant
subspace Vi €V such that V = Vo @ V1.

Proof. Take an arbitrary inner product (-,-)" on V, then define
(v,w) = J k-v,k-w) dk,
K

where integration is performed with respect to the left Haar-measure on K. For
any K-invariant subspace Vo C V, the orthogonal complement V; := V3 with
respect to (-, -) is then K-invariant and satisfies V = V; @ V;. O

Corollary 2.2.9. Let G € GL(n, C) be a symmetric linear algebraic group. Let t: G —
GL(V) be a regular representation of G, and let Vo C V be a G-invariant subspace. Then
there exists a G-invariant subspace V1 such that V = Vo @ V1. In particular, G is linearly
reductive.
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Proof. The subspace Vj is also K-invariant, so there exists a decomposition V = V@
V1 where V; is K-invariant. The claim is that V is also G-invariant. LetTTp: V — V)
be the projection. Then for v € Vi, the set {g € G : Tlp(g - v) = 0} is defined by a
polynomial system of equations (since Ty is just a linear map), and contains K;
but K is Zariski-dense in G, so it must be all of G. Therefore TTy(g - v) = 0 and
hence g-v e Vj forall g € G. O

Definition 2.2.10. For a Lie group G € GL(n, C), we define its Lie algebra by
Lie(G) = {X e C™™ : X € G for all t € R}.

For an abstract Lie group G, Lie(G) can be defined as the tangent space at the
identity element e € G, i.e., Lie(G) = T¢G. This can be endowed with a Lie bracket
in a natural way, see [Leel3, Ch. 8].

Definition 2.2.11 (Simple and semisimple). A Lie algebra is called simple if it is has
no non-trivial proper ideals. It is called semisimple if it is a direct sum of simple
Lie algebras. A connected linear algebraic group G € GL(n, €) is called semisimple
if Lie(G) is semisimple.

Definition 2.2.12 (Tori). Let T be a Lie group. Then T is called a compact torus if T is
compact, connected, and commutative. For a Lie group K, if a subgroup Tx € Kis
maximal with respect to being a compact torus, then we call Tx a maximal compact
torus in K.

If T is a commutative linear algebraic group, then T is called an algebraic torus.
If G € GL(n, €) is a linear algebraic group and T C G is a Zariski-closed subgroup
which is maximal with respect to being an algebraic torus, then we call T a maximal
algebraic torus in G.

It can be shown that every compact torus Tx is isomorpic as a Lie group
to U(1)4m&(Tk) where U(1) = S! = {z € C : |z| = 1} is the circle or unitary
group on C!. Similarly, every algebraic torus T is isomorphic as a linear algebraic
group to (C*)4me(M), Furthermore, maximal (compact or algebraic) tori have the
following properties: they exist, any two of them are conjugate by an element of
the containing group, and the Zariski closure of any compact torus in a linear
algebraic group G is an algebraic torus [Wall7, Thm. 2.21].

A crucial fact is the following, which gives a characterization of the irreducible
representations of tori:

Theorem 2.2.13. Let T be an algebraic torus, Tx C T a maximal compact torus,
and @: T — GL(V) a reqular representation. Then there exists a unique finite
set QO = Q(¢) c Lie(T)" and a decomposition V = ®yeaqVw into non-empty sub-
spaces V,, such that for all X € Lie(T) and v =) ,co Ve,

@(exp(X))v = Z e Xy,
we
Here, Lie(T)" is the space of C-linear maps Lie(T) — C, and exp: Lie(T) — T is the
exponential map.

Moreover, if V is endowed with an inner product such that ¢(Tx) € U(V), then the
decomposition V = @yeq V. is orthogonal.
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Definition 2.2.14 (Weights of a representation). The set (O appearing in Theo-
rem 2.2.13 are referred to as the weights of the representation, and the decomposi-
tion V = ®wen Vw as the weight decomposition.

More generally, for a connected linear algebraic group G € GL(n, C), a choice of
maximal algebraic torus T C G, and a regular representation : G — GL(V), we
refer to Q(m) = Q(mn|t) C Lie(T)* as the weights of 7.

It is often convenient to think of Q) not as a subset of Lie(T)* but as a subset
of Lie(T). Assume T € GL(n, C) is symmetric, so that Tx = T N U(n). One obtains
an identification Lie(T) = Lie(T)" via the Hilbert-Schmidt inner product (-, -)
on Lie(T) € C™™. Explicitly, if f € Lie(T)*, we identify it with f € Lie(T) such that

(f,X) = Tr[(f)*X] = £(X).

for all X € Lie(T); recall that our inner products are complex-linear in the second
argument by convention.

Under this identification, a weight w becomes an element of iLie(Tk): indeed,
if X € Lie(Tx) and vy, € Vi, \ {0}, then forall t € R,

@(exp(tX))v, = et @y,

Therefore if w(X) had a non-zero real part, assumed positive without loss of
generality, taking the limit as t — oo would cause @(exp(tX))vy to diverge.
However @(exp(tX))vw € ©(Tk)vw and the latter is a compact set because Tk is
compact. As a consequence, w(X) € iR for X € Lie(Tx) € iHerm(n), and hence
Tr[(@)*X] € iR implies that @ must be Hermitian and in iLie(Tx) € Herm(n).

Suppose now that T = (C*)™ € GL(n, C) is the standard algebraic n-torus
and @: T — GL(V) is a representation with weights Q c iLie(Tk). Then the
exponential map Lie(T) = C™ — Tisgivenbyexp(xy,...,xn) = (e*1,...,e*"). This
is surjective, and so for z = (z1,...,zn) € T, there exists (x1,...,xn) € Lie(T) = C
such that z; = e*t, and hence

P2V = Glexp()ve = e*Mvg,.

The right-hand side needs to be independent of the choice of x with exp(x) = z,
and in particular for z = (1,...,1), the set of all such x is given by 2miZ™. As
a consequence, w(x) € 2miZ whenever x € 2miZ™, and so w = @ € ilLie(Tk) is
naturally in Z™ (as seen by evaluating w(27tie;) with e;j the standard basis vectors).

For given weights () C Z™, one can explicitly realize a representation V with
weights Q as follows. Let V C Cluy,.. .,un,ul_l, ... ,u;l] be the set of Laurent
polynomials which are linear combinations of monomials of the form u® with w €

Q. Then V = C2 inherits the inner product from the latter, and admits a T-action
by

(z1,...,zn) - u® =z%u®,

which clearly has weights given by Q.
Next, we turn to decompositions of linear algebraic groups. We have the
following theorem [Wall7, Thm. 2.22]:

Theorem 2.2.15 (Cartan decomposition). Let G € GL(n, C) be a symmetric linear
algebraic group and K = G N U(n). Then for any maximal compact torus Tx C K, its
Zariski closure T satisfies G = KTK.
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2. Setting the stage

In the special case of G = GL(n, C) and K = U(n), this captures the existence of
the singular value decomposition. The only difference is that in the singular value
decomposition, the element t € T is only allowed to take positive real values,
whereas above they are allowed to be any (non-zero) complex numbers. From
this, one can easily deduce the existence of a decomposition as in the following
theorem:

Theorem 2.2.16 (Polar decomposition). Let G € GL(n, C) be a symmetric linear
algebraic group and K = G N U(n). Then Lie(G) = Lie(K) @ iLie(K), and the map K X
iLie(K) — G given by (k, X) > ke* is a diffeomorphism.

This is stated in [Wall7, Thm. 2.16] with the weaker assertion that the map is
a homeomorphism. The fact that this map is a diffeomorphism (i.e., a smooth
bijection with a smooth inverse) is more difficult to prove; we refer to [BH13,
Thm. 11.10.58].

2.3. Geometry, orbits, and invariants

Geometric invariant theory (GIT) is a field of mathematics that studies orbits of
group actions from a perspective that combines geometry and algebra. Inspired by
the much earlier work on invariant theory by Hilbert [Hil93], Mumford [MFK94]
studied two intimately related questions. The first question is as follows: given
an action of a (nice) algebraic group G on an algebraic variety X, how does
one construct a quotient space X/G as an algebraic object? Although the set of
orbits {G - x : x € X} can be endowed with the quotient topology, this is often
ill-behaved, and it is not clear how to endow it with a suitable algebraic structure.
The second question is how to construct suitable moduli spaces of certain algebraic
objects (e.g. polarized smooth algebraic curves of a given genus) up to equivalence
as algebraic varieties.

We give a gentle introduction to GIT and review some central results (albeit
restricting ourselves to a relatively simple setting). These results motivate the
algorithmic questions which are of primary interest to us later on. Because of
this focus, we also only shortly return to the question of how to construct the
previously mentioned quotients (and do not comment on moduli spaces at all).

Throughout this section, we often refer to the textbook on GIT by Wallach [Wal17]
and we follow his concrete approach; for a more abstract account see the seminal
monograph [MFK94]. We shall work exclusively over C as a base field.

2.3.1. Mumford’s theorem

Let G bealinearly reductive group, let Xbe an algebraic variety, and let o: GXX — X
be an action of G such that o is a regular map. We shall refer to such an algebraic
variety as a G-variety. The idea of a quotient space is that it should be a space
whose points are identified with the orbits of the action: if x € X, its orbit is given
by G -x = {o(g,x) : g € G} € X. While one could formally define the quotient
space as just the set of such orbits, it is natural to want to have more structure; in
this case, we would like it to be an algebraic variety as well.

We distinguish two different notions of a quotient space. Let proj,: G X X — X
denote the projection onto the second coordinate.
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Definition 2.3.1 (Categorical quotient). A space'? Y with a morphism q: X — Y is
called a categorical quotient of X by G if:

(i) q oo = qoproj,, ie., qis G-invariant,

(ii) for any space Z and morphism f: X — Z such that f o 0 = f o projy, there
exists a unique morphism f: Y — Z such that f = f o q.

A more refined notion of quotient space is as follows:

Definition 2.3.2 (Geometric quotient). A space Y together with a morphism q: X —
Y is called a geometric quotient of X by G if:

(i) q o0 =qoproj,

(ii) qisa quotient map in the topological sense, i.e., g is surjective and U C Y'is
open if and only if g~!(U) is open,

(iii) for every y €Y, q~(y) is a single G-orbit, and

(iv) for U C Y open, f: U — Cis a regular function on U if and only if fo qisa
regular function on q~!(U).

The first important observation to make is that if X is any G-varietyand f: X — Z
is a regular map such that f o o = f o projy, then f is constant on orbit closures G - x.'3
Therefore, if any orbit G - x C X is not closed, one has no hope of obtaining a
geometric quotient.

Example2.3.3. Let X = C™*!\{0}. Then Xisan algebraic variety: itis covered by the
affine open sets U; = {(xo,...,Xm) € C™1 . x; #£0}. The regular functions on U;
are those of the form (xg, ..., xm) — q(z—?, ., %, el ’;—“:) where q € Clzy,...,zm]
is a polynomial. Let C* act on X by

A (X0, Xm) = (AX0, -+ o, AXm).

Then m-dimensional projective space P™ is the geometric quotient of X by this
action of C*.

Example 2.3.4. Let CX act on C? by A-(x1,%2) = (Ax1, A"1x2). Then the closed orbits
are of the form C* - (x1, x3) with x1x, # 0, and the orbit {0}. The other orbits are
those of the form C* - (x,x2) with exactly one of x; and x, non-zero, and 0 is
in their orbit closure. The existence of non-closed orbits implies that there is no

. . 2 X . . . .
geometric quotient of C~ by C*. However, the categorical quotient is given by C,
with the quotient map C? — C given by (x1,x2) — x1%2.

12The vague terminology is on purpose. In general, one may need to further enlarge the category
of objects for quotients to exist, to e.g. schemes. Moduli spaces in particular may not even exist
as schemes, instead falling into the bigger category of algebraic spaces or stacks [Art71; Knu71],
see e.g. [Ols16] for a modern introduction.

13We take the closure with respect to the Zariski topology here, but note that in the affine or
projective setting over C, the Zariski-closure of G - x agrees with the closure with respect to the
Euclidean topology.
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2. Setting the stage

Example 2.3.5 (Adjoint action). Let G = GL(n, C), let X = C™™, and let g € G act
onx € Xby g-x:= gxg™!. Recall that every x € X can be put into Jordan canonical
form: there exists g € GL(n, C), k1, ..., km 2 0s.t. > " ki =nandAy,...,An € C
(not necessarily distinct) such that

g-x= @{21]7\1,ki/

where J; x is the k X k matrix given by

A 1 0 ... O]
oA 1T ... 0
Jax = oo, .
00 ... A 1
00 ... 0 A

Observe that by acting with diagonal matrices, one can make the off-diagonal
entries have arbitrary sizes — in particular, one can send them all to zero. For
example, if a,b € Z, then

1 A1 ol A ze 0
2@ 0 A1 z @ =0 A zoP|,
ZP010 0 A 2P 0 0 A

Taking the limit z — co when b > a > 0 shows that JA1 ® JA1 ® Ja1isin G - Ja 3.
Similarly, J,1 @ Ja2 is also in the orbit closure (using a = b > 0).

From the above discussion, it is clear that the image of x under any G-invariant
morphism X — Z can depend only on the generalized eigenvalues of x. The closed
orbits correspond exactly to those x € X which have a full eigenbasis, i.e., ki = 1
foralli e [m].

The adjoint action discussed above is particularly nice, because we can exactly
determine all the orbits (using the Jordan canonical form). However, one cannot
hope to achieve this for general representations. One particularly important setting
for which this is still sometimes doable to some extent (but not always) is that
of quiver representations. We refer to [Rei08] for an overview of this theory in the
context of geometric invariant theory.

In this subsection, we establish a fundamental result on orbit closures in the
affine setting due to Mumford. Before we state it, we make a definition:

Definition 2.3.6. Let X be an affine G-variety. A (G-)invariant polynomial is a
polynomial p € C[X] such that, for every g € G and x € X, p(g - x) = p(x).
The invariant ring, denoted by C[X]€, is the algebra consisting of all G-invariant
polynomials.

Theorem 2.3.7 (Mumford). Let X be an affine G-variety, and let x,x" € X. Then G - x

contains a unique closed orbit. Furthermore, G - x N G - X’ # 0 (and in particular contain
the same unique closed orbit) if and only if p(x) = p(x’) for all invariant polynomials
p € C[X]C.

It is clear thatif y € G -x N G - ¥/, then p(x) = p(y) = p(x’) for every p € C[X]C,
since p is a continuous G-invariant function and hence constant on orbit closures.
The other direction is the interesting one. We start with a fundamental result:
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2.3. Geometry, orbits, and invariants

Proposition 2.3.8 ([Wall7, Lem. 3.1]). Every orbit closure G - x contains a closed orbit.

We explain the idea, and for simplicity assume G is connected. Letz € G -x
be such that dim(G - z) is minimal. We then claim that G - z is closed, and
argue by contradiction. Because G is connected, it is irreducible, hence G - z
is irreducible and so is its closure Y := G - z. Any proper closed subset Y C Y
satisfies dim(Y’) < dim(Y): if Yo C --- C Y4 is any chain of distinct closed
irreducible subspaces of Y/, then Yo C --- C Y4 C Y is a chain of distinct closed
irreducible subspaces of Y (the Y; are closed in Y because Y’ is). Now G - z is
automatically Zariski-open in G - z, as a consequence of Chevalley’s theorem on
constructible sets, see [Wall7, Lem. 3.1]. Thereforeif Y # G-z, thenY =Y\ (G- z)
is closed and non-empty. Then any y € Y’ satisfies dim(G - y) < dim(Y”) (here we
use that for arbitrary Z C Y/, one has dim(Z) < dim(Y”)). Since dim(Y’) is strictly
smaller than dim(Y) = dim(G - z), we see that the latter is not minimal.

Next, we recall that any given a variety, any two disjoint affine subvarieties can
be separated by regular function:

Lemma 2.3.9 ([Wall7, Thm. 3.12]). Let X be an affine variety and let Y, Z C X be disjoint
affine subvarieties. Then there exists p € C[X] such that p|y = 0and p|z = 1.

Proof. Let ] C C[X] denote the ideal of polynomials vanishing on Y. Then L = J|z
is an ideal in C[Z].1* Because YN Z = 0, for every z € Z there must exist p € L
such that p(z) # 0, as otherwise we would have z € Y. Therefore we must
have L = C[Z] by the Nullstellensatz (Theorem 2.2.1), as any proper ideal in C[Z]
would have non-empty common zero set. In particular, there exists some p € ]
such that p|z =1 € C[Z]. O

The goal now is to upgrade Lemma 2.3.9 to a setting where all objects are G-
invariant, in the following sense: we replace X, Y, Z by affine varieties upon which G
acts, and we replace arbitrary polynomial functions on X by invariant polynomials
on X. The linear reductivity of G provides us with the following ingredient:'

Proposition 2.3.10. Let G be a linearly reductive group. Then for every affine G-variety X,
there exists an operator Rx: C[X] — C[X]€ called the Reynolds operator, with the
following properties:

(i) Rx(1) =1.
(ii) Ifp € C[X]and q € C[X]C, then Rx(qp) = qRx(p).

(iii) If Y C Xis a G-invariant Zariski-closed subset, then for every p € C[X], Ry(ply) =
Rx(p)ly-

We sketch the proof. The idea is to think of C[X] as a regular representation
of G, under the action (g - p)(x) := p(g™" - x). Then C[X]€ is the maximal subspace
on which G acts trivially, i.e., the maximal trivial subrepresentation, and so it

14We use here that the varieties are affine: the ring homomorphism C[X] — C[Z] given by
restriction is surjective (by definition), hence the image of the C[X]-ideal ] € C[X] under this
ring homomorphism is also a C[Z]-ideal in C[Z].

15We restrict the statement to coordinate rings C[X] for convenience, but such an operator also
exists for general “dual actions”, see [MFK94, Sec. 1.1].
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would be enough to construct a projection onto this subspace. One complication
is that C[X] is usually infinite-dimensional, so it is not obvious that there is a
well-defined (or canonical) complementary subspace, and hence no obvious way to
construct a projection Rx : C[X] — C[X]€. However, one has the following useful
ingredients:

(i) If V € CI[X] is a finite-dimensional subspace, then there exists a finite-
dimensional G-invariant subspace V’ C C[X] containing V.

(ii) Every finite-dimensional regular representation V of G splits as a direct
sum V = V& & W, where V€ consists of those v € V such that g-v=vfor
every g € G, and W is the sum of all irreducible non-trivial subspaces of V
[Wall7, Lem. 3.6].

Then one can define the Reynolds operator Rx as follows. For p € C[X], let V C
C[X] be a finite-dimensional invariant subspace containing p. Then let Rx(p) be
the image of p under the projection V = V¢ & W — V&, Verifying that Rx is a
linear operator with the desired properties is left as an exercise to the reader.

The above description of Rx is rather abstract. For GL(n, C) or SL(n, C), more
explicit descriptions exist via Cayley’s ()-process; see for instance [Stu08; DK15].
This explicit description is also useful for analyzing algorithms for scaling problems,
see [BFG+19].

From Lemma 2.3.9 and the existence of the Reynolds operator Rx as in Proposi-
tion 2.3.10, one deduces the following separation theorem:

Theorem 2.3.11 (Mumford, [MFK94, Cor. 1.2]). Let G be a linearly reductive group,
let X be an affine G-variety and let Y, Z C X be G-invariant disjoint affine subvarieties.
Then there exists p € C[X]C such that p|y = 0and p|z = 1.

Together with Proposition 2.3.8, this proves Theorem 2.3.7: if G-y C G - x
and G-y’ € G - x’ are closed orbits, then p(x) = p(y) and p(x’) = p(y’) for every p €
C[X]C. Therefore if p(x) = p(x’) for every p € C[X]€, we have p(y) = p(y’),s0 G-y
and G -y’ cannot be separated by a G-invariant regular function; by Theorem 2.3.11,
G-y and G -y’ cannot be disjoint, and in fact must be equal (since two group orbits
intersect if and only if they are equal). Therefore G-y C G-xNG-x'.

2.3.2. The invariant ring

We next discuss a classical fact about invariant rings due to Hilbert [Hil93].

Theorem 2.3.12 (Finite generation). Let X be an affine G-variety. Then the invariant
ring C[X]C is a finitely generated algebra.

This can be proven using the existence of Reynolds operators, see [Wal17, Thm. 3.11].
In short, because C[X] is Noetherian, the ideal ] € C[X] generated by C[X]€ admits
finitely many generators in C[X]€. The Reynolds operators can then be used to
show that these also generate C[X]€ as an algebra.

Since C[X]€ is a subalgebra of C[X], it also has trivial nilradical. Therefore, the
above theorem shows that C[X]€ is the coordinate ring of an affine variety! In
fact, the affine variety defined by it is a categorical quotient of V by G [MFK9%4,
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Thm. 1.1], thus proving that affine G-varieties have affine categorical quotients. This
quotient is a geometric quotient if and only if every orbit G - x is closed [MFK9%4,
Amp. 1.3, Def. 0.8] (which is clearly a necessary condition, by the discussion
below Definition 2.3.2).

We give some examples of invariant rings:

Example 2.3.13 (Torus action). Let X = C¥, let wy, ..., wx € Z™ and let G = (C*)"
act on X via
(z1,...,zn) - (X1, ..., xK) = (2975 }11, 2% = zgwj)l o -zﬁf”j)“.

Note that the action of G is linear on X, hence is a representation. The vec-
tors wi,..., wy are exactly the weights associated with the representation (see
Definition 2.2.14).

The invariant ring C[X]® consists of those p € C[X] which are linear com-
binations of monomials x® = x® ---x%, a € ZX,, such that Y ¥, ajw; = 0.

1 k7 >0
Therefore a generating set of invariants can be obtained from a Hilbert basis for

theset A = {a € Z‘;O : Z]le ajw; = 0}, i.e., a (necessarily unique) minimal set
of al,..., a, such that every a € A is a non-negative integer combination of the al.
Writing down such a Hilbert basis is computationally hard in general, see [Stu08,
Sec. 1.4] for more details and Chapter 3 for an explicit example.

Example 2.3.14 (Matrix scaling). Let G = ST(n) x ST(n) where ST(n) € GL(n, C)
denotes the group of n X n diagonal matrices with unit determinant. We let G act
onV = C™" by

(X,Y)- A =XAY.
The Lie algebra Lie(G) is given by pairs (U, V) with U, V € C™*™ diagonal matrices
with Tr[U] = Tr[V] = 0, and the exponential map exp: Lie(G) — G is given
by (U, V) - (eY, eV) (interpreted as matrix exponentiation, but this agrees with

exponentiating the diagonal entries of U). Note that G is an algebraic torus of
dimension 2(n — 1). Because

n
(eY,eV) A =e"AeY = Z eu“+VﬁAi)~ eie).T,
ij=1

the weights of the representation are given by the forms wi; € Lie(T)" defined by
Wij (u, V) =U;; + ij.
Identifying Lie(T)* = Lie(T) yields

r_1 1_1,
wij = (eie; — oy €j¢ — H)’

note that the —% appears because Lie(T) consists of pairs of traceless matrices.
Now assume that p € C[V]is an invariant polynomial; then as in Example 2.3.13,
p is a sum of invariant monomials in the entries of A, i.e., expressions of the form

k
nAiejz

=1
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for pairs (i1,j1), ..., (ix, jx) € [n]?. A monomial is invariant under the action if and
only if H]g:l Xi,Yi, is constant over all (X, Y) € G; but that implies that this product
is a power of det(X) det(Y), i.e., every i € [n] and j € [n] appears the same number
of times among the iy, ..., 1k and ji, ..., jk respectively. As aresult, a generating set
for the invariants of the action is given by the matching monomials A > [];_; A¢o(e),
where o € S;, is a permutation.

We note here that the sum of the squared absolute values of this generating set
is the permanent of the matrix with (i, j)-th entry given by |A;;|?, which made an
appearance as a progress measure for analyzing Sinkhorn’s algorithm for matrix
scaling in [LSW00]. From Mumford’s theorem (Theorem 2.3.7) one deduces that
this permanent is positive if and only if 0 € G - A, which is true if and only if the
support of A contains a bipartite perfect matching.

Example 2.3.15 (Adjoint action). Let X = C™™ and let G = GL(n, C) act on X
by g-x := gxg~!. Then for every k > 0, the polynomial x + Tr[x*] is a G-
invariant polynomial by cyclicity of the trace. In fact, essentially all of the invariant
polynomials are of this form: C[X]€ is generated (as an algebra) by these maps.
This is due to Weyl [Wey46], see [Pro76] for a more accesible proof using Schur-
Weyl duality. We shall study this example and generalizations of it in more detail
in Chapter 3.

One can use the Cayley—Hamilton theorem to bound the number of generators
needed: the characteristic polynomial det(AI — A) is of the form po(A) + --- +
A"pn(A) for some invariant polynomials po, ..., pn € C[x11,X12,...,Xnn] (since
the characteristic polynomial is invariant under conjugation). These polynomials
are exactly the elementary symmetric polynomials in the (generalized) eigenvalues
of A:if A,..., A are the eigenvalues, then

Pi(A) = ei(Ar,..., An)

where e; is the i-th elementary symmetric polynomial in n variables. Now observe
that the traces Tr[A*] are power sums of the eigenvalues, since Tr[AX] = AX +---+AK.
It is well-known that both the elementary symmetric polynomials e; for 1 <i<n,
and the power sum polynomials of degree 1 < i < n, form a generating set for the
ring of symmetric polynomials in n variables, as can be deduced from e.g. [Sag13,
Thm. 4.3.7]. Moreover, for k > n,

Ak — Ak—nAn — Ak—n(_pO(A) L pn—l(A)An_l)

by the Cayley-Hamilton theorem, and hence Tr[A*] can be expressed as a polyno-
mial in Tr[A'] for j < k by induction.

The fact that the invariants here are all given by symmetric polynomials in the
eigenvalues is a phenomenon that occurs more generally. Let G be a connected
semisimple algebraic Lie group, Lie(G) its Lie algebra endowed with the adjoint
action of G, T a maximal algebraic torus in G, Lie(T) the corresponding Cartan
subalgebra, and W = N(T)/T the Weyl group where N(T) is the normalizer of T
in G, Then Chevalley’s restriction theorem (see e.g. [Wall7, Thm. 3.62]) states that the
natural algebra morphism C[Lie(G)]¢ — C[Lie(T)]" induced by restriction is an
isomorphism. For G = SL(n, C), Lie(G) consists of the traceless n X n matrices,
T are the diagonal n X n matrices with determinant 1 and Lie(T) the traceless
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diagonal n X n matrices, and W = §,, acts on Lie(T) by permuting the diagonal
elements. Therefore C[Lie(T)]" consists of the symmetric polynomials in the
diagonal entries.

2.3.3. The Hilbert—-Mumford theorem

In the proof of Proposition 2.3.8, we saw that the (unique) closed orbit G - w in
an orbit closure G - v is characterized as the unique orbit (closure) of minimal
dimensionin G - v. Let G,, = {g € G : g - w = w} be the stabilizer of w. Then G,,
is also a linear algebraic group (the equation g - w = w defines a Zariski-closed
usbset of G) and hence has a well-defined dimension; by orbit-stabilizer reasoning,
one expects that dim(G) = dim(G - w) + dim(G,,). Therefore if the dimension
of G - w is minimal, dim(G,, ) is maximal, and in particular larger than dim(G,)). It
turns out that this can in fact be “witnessed” by a 1-parameter subgroup of G, in
the following sense:

Theorem 2.3.16 (Extended Hilbert-Mumford criterion). Let t: G — GL(V) be a
reqular representation, letv € Vandlet G-w C G - v be the unique closed orbit. Then there
exists an algebraic group homomorphism @: C* — G such that lim, 0 ¢(z) -v € G - w.
Furthermore, if G is chosen to be a symmetric subgroup of GL(n, C), then ¢ can be chosen
such that ¢(z) = @(z)".

The theorem in the case where w = 0 (i.e., 0 € G - v) is what is usually known as
the Hilbert-Mumford criterion, and is due to Hilbert [Hil93, p. V.18] in the case
of G = GL(n, €), and Mumford for general G [MFK94, Thm. 2.1]. This general form
also appears implicitly in the proof [MFK94, p. 53], explicitly in Kempf [Kem78,
Thm. 1.4], and was also proven by Richardson [Bir71, Thm. 4.2] using different
methods. Birkes [Bir71] showed that a version of the criterion also holds over R.
For an accessible proof we refer to [Wall7, Thm. 3.24]

The above result serves as an incredible computational criterion, for the following

reason: suppose one wants to characterize all v € V such that 0 € G - v; we refer
to such v as being G-unstable (we explain why this notion is interesting in the
next subsection). To achieve this, first fix a maximal algebraic torus T C G. Then
it is often feasible to explicitly determine those w € V with 0 € T-w. Now
let v € V be such that 0 € G-v. Then the Hilbert-Mumford criterion yields
some @: C* — G with lim,_,0 ¢(z) - v = 0. Since any two maximal algebraic tori
are conjugate [Wall7, Thm. 2.21], there exists some g € G such that gp(z)g™' € T
for all z € C*%; but this implies that g - v is T-unstable! Therefore the union of
the G-orbits of T-unstable vectors is exactly the set of G-unstable vectors, and
one can hope to give a “basis-invariant” characterization of G-unstable vectors by
appropriately rephrasing T-instability. We give some examples in Section 2.3.4.
To see how the theorem connects to discussion at the start of this subsection,
assume that G - v is not closed, and that dim(G,) = 0. If W := lim,—¢ @(2) - v,
then ¢(C*) C G,,s. Therefore dim(G,,») > 1 > 0 = dim(G,,). Since w’ = g - w for
some g € G, Gy = gG,,g~! is isomorphic to G,y, and hence dim(G,,) > 1.16

16Tt is unclear how to generalize this argument to dim(G,) > 1; even though ¢(C*) is not in G,,,
it could still be the case that G (), = ¢(z)Gyv@(z)™! “converges” to a subgroup of G, and
hence ¢(C*) would not be an actual witness to the growth in dimension. However, when ¢(C*)
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2.3.4. Stability and quotients of projective varieties

It is very often natural to consider projective varieties X C P™ rather than affine
varieties, as they are better behaved in many ways; for instance, they are complete,
which is the algebraic analog of compactness. Taking quotients in this context is a
more delicate procedure, however. One of the reasons is that unlike for the affine
setting, any globally defined regular function is constant, so C[X] = C and we
have no useful direct analog of C[X]°.

Let us be somewhat more precise. Consider a regular representation 7: G —
GL(V) of a symmetric linear algebraic group G € GL(n, C). Then this descends to
an action of G on P(V). Let X C P(V) be a G-invariant closed subset of P(V). Then
we can attempt to construct a quotient of X as follows. The set X’ C V defined by

X ={veV:[v]e Xorv=0}

is an affine variety in V: if py, ..., pr € C[V] are homogeneous polynomials whose
common zero set on P(V) is X, then X’ is their common zero set in V. It is easy
to verify that X’ is also G-invariant. Then we define the GIT quotient X//G as the
projectivization Proj R of the graded ring R = @450C[X']$, where C[X']§ is the
set of G-invariant homogeneous polynomials of degree d. The points of Proj R are
given by homogeneous ideals in R which maximal with respect to the property
of not containing the irrelevant ideal ®4>0C[X']§, see [Har77] for details. This
corresponds to the fact that a projective space P(V) is formed by first removing the
origin, and then identifying points on the same line. Note also that C[X’ ]0G = C[X]o
consists of the constant functions on X’, hence is isomorphic to C. It can be turned
into an algebraic variety in a similar manner as for projective space P(V), which is
the projectivization Proj C[V].

In the G-invariant setting, we must therefore first remove the points equivalent
to zero, under the relation given by v ~ w if and only if G-vN G -w # 0. This
motivates (part of) the following terminology:

Definition 2.3.17 (Stability). Let m: G — GL(V) be a regular representation. A
vector v € V' \ {0} is called!”

(i) unstableif 0 € G -v,
(ii) semistableif 0 ¢ G -v,
(iii) polystable if G -v is closed, and
(iv) stable if v is polystable and the stabilizer G, of v is finite.

The semistable locus X*°, the polystable locus XP*® and the stable locus X* C X consist
of those x = [v] € X such that v is semistable, polystable or stable, respectively. The
set of v € V with v unstable or 0 is referred to as the null-cone of the action on V.

is in the normalizer of G,, this is the case; in particular, this interpretation is valid when G is
commutative (i.e. G = T). Furthermore, many actions encountered in the wild are such that
generic points have finite stabilizer.

7In [MFK94], properly stable is used for what we call stable, and stable is used for v such that there
is an open neighbourhood U € X*®% of [v] containing only polystable points.
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The usefulness of unstable versus semistable is clear from the previous discussion.
To appreciate the value of a vector being stable, observe that by the extended
Hilbert-Mumford criterion (Theorem 2.3.16), if v,w € V' \ {0} are vectors such
thatv € G-w\ (G -w) and G - v is closed, the stabilizer G,, of v contains a 1-
parameter subgroup of G (see Section 2.3.3). Therefore G, will not be finite.
From the perspective of taking quotients, this means that the orbit of a vector
which is stable is guaranteed not to be identified with any other orbit. Moreover,
the polystable orbits are in one-to-one correspondence with the points in the
set-theoretic quotient X**/G by Theorem 2.3.7.

Generally, the GIT quotient q: X — X//G = X®%/G is a categorical quotient. If
there exist stable points in the sense of Mumford [MFK94, Def. 1.7], then there is
a non-empty open subset U C X*%/G such q~!(U) consists of all Mumford-stable
points, and q| q-1(yy: 7' (U) — U is a geometric quotient [MFK94, Thm. 1.10]. The
set q~1(U) contains all stable points.

We note here that [MFK94] constructs this quotient in a more general setting:
rather than assuming X to be projective, one can take an arbitrary scheme, together
with an invertible sheaf L on X such that G also linearly acts on L in a way that
lifts the action on X. This data is referred to as a G-linearization. When X C P(V)
is projective and the action of G comes from a linear action on V, such a G-
linearization of the action can be obtained as follows: invertible sheaves are the
algebraic analogue of line bundles, and over P(V) one has a tautological bundle
T — P(V) whose fiber over [v] € P(V) is given by C - v C V (the corresponding
invertible sheaf is often denoted by O(—1)). The global sections of the dual L of
the tautological line bundle (corresponding to O(1)) are linear functions on V,
i.e., C[V]i. More generally, global sections of L®¢ are homogeneous degree d
polynomials. One can define the various notions of stability relative to a G-
linearization L by using G-invariant sections of [®4d see [MFK94, Def. 1.7]; that
this generalizes Definition 2.3.17 then follows from Theorem 2.3.7.

Example 2.3.18 (Adjoint action). Let G = SL(n, C) acton V = {x € C™" : Tr[x] =
0} by g-x = gxg™}, and let X = P(V). Then any matrix in G - x has the same
eigenvalues as x, and so if x is unstable, its eigenvalues must all be zero, i.e., x is
nilpotent. Clearly any nilpotent x is also unstable: first put x into Jordan canonical
form, then one can push the off-diagonal elements to zero as in Example 2.3.5. In
other words, the unstable vectors are exactly the nilpotent matrices. The polystable
vectors are those with all Jordan blocks of size one, i.e., having a full eigenbasis.
There are no stable vectors: if x has a full eigenbasis, then any matrix g € SL(n, C)
which is diagonal in this basis commutes with x, so g - x = gxg~' = x. In particular,
the stabilizer G« contains an algebraic torus of dimension n — 1, so is not finite
unless n = 1. It is however true that matrices x with n distinct eigenvalues are not
inG-x \(G-x) for any x’, as can be deduced from the Jordan canonical form and
the Hilbert-Mumford criterion Theorem 2.3.16, see Example 2.3.5.

The set of x with n distinct eigenvalues form the non-vanishing set of the dis-
criminant of the characteristic polynomial of x, which is G-invariant (because the
characteristic polynomial is). This set is also exactly the set of stable vectors in the
sense of Mumford.

Example 2.3.19 (Binary forms). We consider the classical example of binary forms
of degree d [MFK9%4, Sec. 4.1]. Let V = C[x,y]a = Sym?((C?)*) denote the space
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of homogeneous degree d polynomials in two variables x,y. Then G = SL(2, C)
acts on V by (g - p)(x,y) = p(g71(x,y)), where g7! - (x,y) is defined by matrix
multiplication on C2. Let T = {diag(z,z™!) : z € C*} be the maximal algebraic
torus in G. Note that every 1-parameter subgroup of G is conjugate to a subgroup
of T, so by the Hilbert-Mumford criterion (Theorem 2.3.16), the set of unstable
vectors p € V is exactly given by the G-orbits of the T-unstable vectors.

We now determine the p € V which are T-unstable. Suppose p(x,y) =
Zidzo aixtyd~t for a; € C. Then p is T-unstable if and only if either a; = 0
foralli < d/2or a; =0foralli> d/2. To see this, suppose that for all x,y € C,

d

: o1 _ 1 o d=2i i d-i _

lim (diag(z™", 2) m&y)—ggéémz xty4Tt=0.
Then a;iz4™2 — Qasz — Oforalli=0,...,d,and in particular a; = 0 whenever d -
2i < 0. Similarly, the above limit being zero as z — oo would imply a; = 0
whenever d — 21 > 0.

To characterize their G-orbits, we observe the following: every p € V \ {0}

admits a (not necessarily unique) factorization

d
p(xy) = [ [(byx+cjy)

j=0

as a product of linear forms, for some coefficients bj, ¢; € C. It is enough to prove
this by induction on d, and the statement is trivial for d = 1. For higher d, observe
that for A € C,

10 . i d-i
(lx 1] 'p)(X/y):p(XIU_}\X):ZaiX (U_}\X) ’

i=0

whose coefficient of x¢ is some polynomial in A. By the fundamental theorem of
algebra, there exists some Ag € C for which p(x,y — Agx) has vanishing coefficient
for x4 (except in the case where the coefficient is constant as a function of A, but
then p is a multiple of x4), and hence factorizes as p(x,y — Aox) = yq(x,y) for
some q € C[x,ylq-1. But then p(x,y) = (y + Aox)q(x,y + Apx) is a factorization
of p.

From this factorization, one can deduce that p is G-unstable if and only if some
linear factor appears strictly more than d/2 in the factorization, where two linear
factors are considered equivalent if and only if differ by a scalar multiple. The
semistable points are those where every linear factor occurs at most d/2 times, and
the polystable points are those where this inequality is strict.

The GIT quotient P(V)//G can be interpreted as the “moduli space of d points
on P17, as every linear factor specifies a unique point in P!. The existence of the
factorization can also be deduced abstractly by observing that the map (P!)¢ —
P4 = P(V) given by multiplying the relevant linear forms is smooth, has irreducible
image and has derivative of rank d at a generic point, so the image must be all
of P4. This map is also SL(2, C)-equivariant, and we have used this above to give
a “constructive” proof of the existence of such a factorization.
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2.4. The Kempf—Ness theorem

2.4. The Kempf-Ness theorem

We now return to the problem of classifying orbit closures. Let G be a connected
symmetric linear algebraic group, m: G — GL(V) a regular representation, K a
maximal compact subgroup of G, and assume V is endowed with a K-invariant inner
product. We shall denote the induced norm on V by ||-||. Recall that Theorem 2.3.7
shows that two orbit closures intersect if and only if they contain the same
closed orbit; in a sense, the closed orbit classifies the orbit closure. However,
it is still desirable to understand whether one can give an essentially canonical
representative within the closed orbit. The Kempf-Ness theorem [KN79] achieves
this. For convenience, we use the following terminology, which is not entirely
standard but is natural:'®

Definition 2.4.1 (Minimum norm vectors). For v € V, we say that vmin is a minimum
norm vector for v if
Vmin € argmin{||w|| : w € G -v}.

That is, Vimin 1S @ minimum norm vector for v if viin € G-v and ||Vmin|| =
min, = llwll =infgecllg - vl|.

Clearly, any vector v € V has a minimum norm vector vmin: the set {w €

G-v: ||w| < [Iv]l} is compact (closed and bounded) with respect to the Euclidean
topology, and ||-|| is a continuous function thereon, so achieves its minimum. The
minimum norm vectors are in general not unique, since if viin is @ minimum norm
vector then so is k - viin for any k € K (recall that K preserves the inner product,
hence also the norm). Crucially, this is the only source of non-uniqueness, as we
shall see shortly.

It is also convenient to make the following definition:

Definition 2.4.2. Let v € V' \ {0}. Then the Kempf-Ness function F,: G — R
associated with v is given by

Fu(g) = log|lg - vI|.

Note that taking the logarithm is well-defined since G acts by invertible linear
transformations, hence g - v is never zero. Observe that if vi,in is @ minimum norm
vector for v, then vpin = 0 and F,, is unbounded from below, or F,(g) > log|[Vmin||
forall g € G.

We now focus on the properties of the minimum norm vector itself. It is clear
that if w is a vector of minimal norm in an orbit closure, then it is in particular a
vector of minimal norm in its own G-orbit, hence the derivatives of the norm (or
norm squared) must vanish in any direction along the orbit. These directions are
given by the Lie algebra Lie(G) of G, which is the complex vector space consisting
of all matrices X € C™™ such that e'* € G for all t € R (see Definition 2.2.10).
Then t — e'X - w is a smooth curve in the orbit of w. Accordingly, if w is a vector
of minimum norm in its orbit, then ||e*X - w||?> must have a minimum at t = 0 and
the derivative at t = 0 will vanish. This motivates the following definition:

Definition 2.4.3. A vector w € V is called critical if d—o||e®X - w||*> = 0 for every X €
Lie(G), or equivalently if w # 0, di=Fn(e*X) = 0 for every X € Lie(G).

18For instance, [NM84] uses the term “minimal vector”.
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Since K acts unitarily, the norm will always be preserved if we move in directions
that keep us in the K-orbit; these are given by the Lie algebra Lie(K) of K. As K =
G N U(n) € GL(n,C), Lie(K) consists of those X € Lie(G) such that X is skew-
Hermitian. Furthermore, Lie(G) splits as a direct sum Lie(G) = Lie(K) @ iLie(K)
(as a vector space, but not as a Lie algebra). One can show that Definition 2.4.3 is
equivalent to demanding that d¢—o||e*X - w||?> = 0 for all X € iLie(K); the latter are
precisely the Hermitian matrices in Lie(G).

Criticality is the natural first-order condition for a vector to have minimum
norm in its orbit (“at a minimum, all derivatives vanish”). Remarkably, this is also
sufficient! This was shown by Kempf and Ness [KN79], which further characterizes
the existence of minimum norm vectors. The precise statement is as follows, see
also [Wall17, Thm. 3.26]:

Theorem 2.4.4 (Kempf-Ness). Let v € V. Then:

(i) v is critical if and only if ||g - v|| > ||v|| for every g € G (i.e., v has minimum norm
in its orbit).

(it) If v is critical and w € G - v is such that ||v|| = ||w]|, then w € K - v.
(iii) If G - v is closed then there exists a critical element v € G - v.
(iv) Ifv is critical then G - v is closed.

In particular, v is a minimum norm vector for itself (i.e., has minimum norm in G - v) if
and only if it has minimum norm in its orbit (meaning ||g - v|| > ||v|| for all g € G), which
is the case if and only if v critical.

Thus, minimum norm vectors (or critical vectors) are unique up to the K-action,
and their G-orbits are closed, hence provide essentially canonical representatives
of orbit closures.

We now comment on the proof of Theorem 2.4.4 as given in [KN79]. Part (iii)
follows from non-negativity and continuity of the norm-function with respect to
the Euclidean topology on V: the function is bounded from below on G -v, assumed
to be closed (Zariski-closed implies Euclidean-closed), hence has a minimizer.
Parts (i) and (ii) are less trivial. Let us assume that v # 0. Then consider the
Kempf-Ness function F,,: G — R defined by F,(g) = log||g - v|| (Definition 2.4.2).
Then F, is K-invariant, in the sense that F,,(kg) = F,(g) for every k € Kand g € G.
Therefore F,, may also be viewed as a function on the gquotient K\G. Parts (i)
and (ii) then assert that F, has a unique critical point, which is simultaneously its
minimizer. The key reason is that, when K\G is endowed with an appropriate
geometry, the function F,, is (strictly) convex along geodesics. We shall now use the
concrete meaning of this statement for the proof (in fact only for efv, which is
weaker), and defer a detailed discussion of geodesic convexity of the Kempf-Ness
function to Proposition 2.6.6 and Chapters 6 and 10.

We first prove a short proposition.

Proposition 2.4.5. Let () C Z™ be a finite set and let q, > 0 for w € Q. Define a
function a: R™ — R by

a(x) = Z queX (w0,

Then:
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2.4. The Kempf—Ness theorem

(i) 0 is a critical point of a if and only if a(x) > a(0) for all x € R™.

(ii) If O is a critical point of a and a(x) = a(0) for some x € R™, then (w,x) = 0 for
all w € Q such that q > 0.

Proof. (i) This follows directly from the fact that a is a convex function on R™.
(ii) Consider the function b(t) = a(tx) for t € R. By convexity, b(t) < ta(0) +
(1 -1t)a(x) = a(0) for t € [0,1]. Since 0 is critical for a, we also have b(t) > b(x) for
all t € [0,1]. Therefore b and its derivative b’ are constant on [0, 1]. This implies
that b”(0) =43, qw{(w,x)? = 0, hence either q,, = 0 or (w,x) = 0. O

Proof of Theorem 2.4.4. (i). The non-trivial direction is to show that if v is critical,
then [|g - v|| > ||v]| for every g € G. Fix g € G. By the Cartan decomposition (Theo-
rem 2.2.15), there exist k,h € K and t € T such that g = kth. Then g = (kh)(h~'th)
is such that kh € K and h™'th € h™!Th, which is a maximal algebraic torus in G and
symmetric (since h € K implies h™! = h*). Choose an adjoint-preserving isomor-
phism (C*)™ = T; this yields an adjoint-preserving isomorphism (C*)™ = h™!Th
as well since h € K. By Theorem 2.2.13, there exists a finite set () C Z™ such
that V=P .o Vw orthogonally decomposes into weight spaces.

Now observe that if h™'th = (z1,...,zn) under the isomorphism and v =
Y wen Vw, we have

lg - vII* = (KW th)) - vl = [[(hth) - vIP = 3 [2PC vl

we

where [z]2® = (]z1[>)®1 - (|zn|?)®". It is now convenient to make a change of
coordinates: let x; = log|z;|. Then

2 2 2
lg-vIP = Y vy
we

Observe that this function is convex in x. Since v is critical, we have d4—g|le3X -
v||?> = 0 for every X € Lie(G), so in particular for X € Lie(h™'Th). We now
invoke Proposition 2.4.5 to obtain that ||[(h~!th) - v||? > ||v||?. Ttem (ii) now also
follows: if ||g - v|| = ||v||, then in the weight decomposition for h~!Th we see that
for every w € Q, either q, = 0 or (w, x) = 0. This implies that (h"'th) - v = v, and
sog-v=kh-(h"'th)-v=kh-veK-v.

We prove part (iv) by contraposition. Suppose that G -vis not closed. Then by the
Hilbert-Mumford criterion (Theorem 2.3.16) there exists a point w € G-v\(G-v)
and a symmetric one-parameter subgroup ¢: C* — G such thatlim,_,g @(z)v = w.
Again by the weight decomposition, there exist integers O C 7 and coefficients q,

such that
lo@ WP = 3 que™.
we

Since lim,_,g @(z)v = w, we must have
lim [|p(e*)v]|* < oo;
X—>—00

hence for every w € Q, either q,, = 0 or w > 0. Furthermore, since wisnotin G -v,
there is some w > 0 with q4 > 0, and in particular we have ||@(e*)v|| < |[v||
for x < 0. This shows that v is not critical. O
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2.5. The moment map

We saw in the Kempf-Ness theorem (Theorem 2.4.4) that critical vectors have
minimal norm among all vectors in their orbit closure, and every orbit closure
contains such vectors. Criticality was defined in terms of the derivative of the
Kempf-Ness (log-norm) function on the group. This derivative turns out to be
interesting in its own right. Let G € GL(n, C) be a connected symmetric linear
algebraic group, K = G N U(n) a maximal compact subgroup, and : G — GL(V)
a regular representation such that V is a Hilbert space and n(K) € U(V).

Definition 2.5.1 (Moment map). Forv € V'\ {0},letF,: G = R, g > log||g - v|| be
its Kempf-Ness function. The moment map!? u: V '\ {0} — iLie(K) is given by

u(v) = grad ;_; Fv(g) = grad_; logllg - v|l.

The gradient is taken with respect to the Hilbert-Schmidt inner product on Lie(G) C
C™™, i.e., it is uniquely determined by

(1(v), X) = Tr[u(v)"X] = d¢=o loglle™ - v|| = de=oFu(e'™), X € Lie(G).

Some comments on this definition are in order. Although not immediately
obvious, the moment map as defined above is actually a moment map in the
symplectic sense for the action of K on the projectivization P(V) of V [NM84],
where the projectivization of V is endowed with (a scalar multiple of) the Fubini-
Study form. The moment map is also K-equivariant with respect to the adjoint
action on iLie(K), in the sense that u(k - v) = ku(v)k™! for k € K. Its codomain is
also slightly non-standard: usually, p(v) would be an element of the dual Lie(K)".
However, the above concrete definition naturally takes values in iLie(K), since K
acts unitarily on V and hence the derivative in those directions is zero. As a
consequence, 1(v) € iLie(K) € Herm(n) and hence p(v)* = p(v).

When G =T = (C*)™ is an algebraic torus, the codomain of the moment map
is iLie(Tx) = R™. The image w(T - v) is then the set of all possible gradients
of the Kempf-Ness function F, on the quotient space Tx\T = R"™, where the
isomorphism is given by (x1,...,xn) < (e*,...,e*"). Under this isomorphism,

F, is of the form %log(zweglvw|2e2<w"‘>), where the QO c Z" is the set of

weights appearing in the weight decomposition V = @,coVw, andv =) .o Vs
see Definition 2.2.14.
A straightforward computation yields the following proposition:

Proposition 2.5.2. Let 7t: (C*)™ — GL(V) be an action on V with (U(1)™) € U(V)
and weights QO C Z™. Then for v € V \ {0} of the formv = Y co Vo,

ZwteVlew
[[v][?

uv) =

Therefore, w(v) is in the convex hull of the support suppv C Q, i.e., the w € Q) for
which v, # 0. From elementary convex analysis [Roc70, Thm. 26.5] it also follows

9The name moment map as introduced in English by Marsden and Weinstein [MW74] is technically
a mistranslation of the French “application moment”, a term introduced in [Sou67]. Although the
correct choice would be to call it a momentum map, we do not break this tradition.
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that the image (T - v) of an orbit is an open convex set in iLie(Tx) = R™. In fact, its
image is entire relative interior of conv(supp v), hence its closure (with respect to
the Euclidean topology) is conv(supp v). We give a self-contained proof of this fact
in Chapter 5. More generally, for Hamiltonian torus actions on connected compact
symplectic manifolds, the image of the moment map is a convex set [Ati82; GS82;
Kir84a].

For non-commutative G, a variation of the convexity statement is also true [Kos73;
NM84; GS84; Bri87], even outside the Kahler setting [Kir84a]. A precise statement
requires somewhat more terminology. One can choose a closed cone iLie(Tk)+ €
iLie(K) called a positive Weyl chamber. Then for every H € iLie(K), the adjoint
orbit {kHk™! : k € K} intersects iLie(Tk)+ in a unique point [Hel79, Ch. VII,
Prop. 2.2, Thm. 2.22]. For K = U(n), this amounts to the statement that a Hermitian
matrix is unitarily diagonalizable, such that the diagonal elements are ordered in
a decreasing manner. We define this to be spec. (H).

Definition 2.5.3 (Moment polytope). Letv € V'\ {0}. Then the moment polytope A(v)
of v is defined as

A(v) = spec. (1(G - v)) = (G - v) N iLie(Tk)+,

where the closure is taken with respect to the Euclidean topology on iLie(Tk)+ C
iLie(Tx). The moment polytope of V is defined by A = U, v\ (0}A(V), or equiva-

lently A = spec_ (V' \ {0})).
The nomenclature is justified by the following theorem [NM84; GS84; Bri87]:

Theorem 2.5.4. Let v € V' \ {0}. Then A(v) is a convex polytope.

The convexity holds in fact not just for orbit (closures) but for arbitrary irreducible
closed G-subvarieties of P(V).

Using the moment map and the various notions of stability (Definition 2.3.17),
the Kempf-Ness theorem (Theorem 2.4.4) can be reformulated as follows:

Theorem 2.5.5. Letv € V \ {0}. Then:
(i) w(v) = 0 if and only if g - vl > Ivll for every g € G.
(ii) If u(v) =0, then u'(0)N G -v=K-v.
(iii) If v is polystable then 0 € w(G - v).
(iv) If W(v) = 0 then v is polystable.
Furthermore, v is semistable if and only if 0 € A(v).

We note here that the above rephrasing has the following interesting consequence.
Consider the map fi: P(V) — iLie(K) given by fi([v]) = wu(v) (note that pis invariant
under rescaling v). Assume also that 0 € iLie(K) is a regular value of fi, and that K
acts freely and properly on M. = {i"1(0). Then the symplectic quotient [MW74; Mey?73]
ii"1(0)/Kis a symplectic manifold whose points are in one-to-one correspondence
with the GIT quotient P(V)*%//G, and this fact is of great importance. We refer
to [Kir98] for a modern survey.

Next, we give an example of a non-commutative moment map:
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Example 2.5.6 (Adjoint action). Let G = GL(n, C) act on V = C™*™ via conjugation.
We endow V with the Hilbert-Schmidt norm. Then for v € V'\ {0} the Kempf-
Ness function is given by F,(g) = log|/gvg~!||us. Given a Hermitian matrix H €
iLie(U(n)), we have

19¢—o Tr[e tHyre2tHyetH
d=oFy(e'M) = loglleHve tH||pg = - —=° [ ]
2 VI

_ Tr[H(wW* —v'V)]

2
VIS

Since the moment map 1(v) is characterized by Tr[(v)H] = d=oF,(e'"), we obtain

Therefore v is critical if and only if v is unitarily diagonalizable, and v is polystable
if and only if it becomes unitarily diagonalizable after some (non-unitary) change of
basis, thus if and only if v is similar to a diagonal matrix, as we saw in Example 2.3.18.

Example 2.5.7 (Bipartite quantum states). Let G = GL(n, C) X GL(n, C) acton V =
C"®C" by g-v = (g1®g2)v. Thenfor H = (H;, Hy) € iLie(K) = Herm(n)®Herm(n)
a tuple of Hermitian matrices, we have

dt=o log|lexp(tH) - v|| = d¢=o log]|(e'™ @ e'M2)v)|
B 1

[IvI|?

= Tr[Hip1] + Tr[Hzp2] = ((H1, H2), (p1, p2)) ,

((v,(H; ® I)v) + (v, (I ® Hp)v))

Q’\f'i‘;l and p; = Trp[p], p2 = Tr1[p] are its partial traces. Therefore the

moment map is given by

where p =

u(v) = (p1, p2)-

Now the eigenvalues of the first component are exactly given by the Schmidt
coefficients of v (its singular values when viewed as an operator C™ — C"),
and the same holds for the second component. Clearly, the number of non-zero
coefficients cannot increase by acting with G, but the Schmidt coefficients can
be changed arbitrarily (by acting with diagonal matrices in the Schmidt basis).

Therefore (G - v) consists of (01, 02) € Herm(n) X Herm(n) with o1, 02 positive
semidefinite, having the same eigenvalues, Tr[o1] = Tr[oz] = 1, and rank(o7) <
rank(p1). Note that all these constraints can be viewed as linear inequalities on
the ordered spectra of p1, p2, hence the achievable ordered spectra form a convex
polytope.

The moment polytope also admits a purely representation-theoretic description.
If C[V]q denotes the ring of homogeneous polynomials of degree on d, then C[V]q
is also a representation of G, under (g - p)(v) = p(g~! - v). The irreducible
representations Vi of G are determined by their highest weights A € Lie(Tk )+, which
is a dominant integral element of Lie(T)*. In the case of GL(n, C), the irreducible
representations are labelled by integer sequences A; > ... > An. If V) denotes

the irreducible representation labelled by a dominant integral vector A, then the
following was shown by Mumford [NM84] and Brion [Bri87]:
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Theorem 2.5.8. The moment polytope A satisfies

A
A= { 3 Vi, is a subrepresentation of (D[V]d}.

A similar description exists for the moment polytope of an irreducible closed G-
subvariety of P(V), where C[V]q is replaced by the homogeneous functions
of degree d on the cone over X. This representation-theoretic characterization
yields the connection between the quantum marginal problem and the asymptotic
non-vanishing of Kronecker coefficients, see e.g. [Kly04].

2.6. The computational problems

We now put a more computational spin on the theory developed in the previous
sections. Let G € GL(n, C) be a connected symmetric linear algebraic group,
and m: G — GL(V) a regular representation such that V is endowed with a K-
invariant inner product (-, -), and induced norm ||-||. Suppose we are given explicit
descriptions of G as a subgroup of GL(n, C) described by finitely many polynomials
equations, the representation 7 described by its matrix coefficients with respect to
some basis of V, and the vectors v,Vv' € V in the same basis. How does one decide
algorithmically whether v and v/ must necessarily be the same in the quotient V//G,
that is, whether G - v G - v/ # 0? We shall refer to this as the orbit closure intersection
(OCI) problem.

Problem 2.6.1 (Orbit closure intersection). Given a linearly reductive group G C
GL(n, ©), a reqular representation : G — GL(V), and vectors v,v' € V, determine

whether G-vN G-V # 0.

Mumford’s theorem (Theorem 2.3.7) together with Hilbert’s finiteness theorem
(Theorem 2.3.12) suggest that this is a decidable problem. In fact, there exist
algorithms that, given equations for G and the entries of the representation 7t
expressed in some basis of V, compute generators p1,...,pr € C[V]S [DK15].
Accordingly, determining whether two vectors v, Vv’ are equivalent in the sense of
GIT (i.e., G-vN G -V # 0) can in principle be decided by an algorithm — simply
check whether p;(v) = p;(V') for all j € [r]. However, this is impractical, since
known algorithms for computing generators are inefficient (run in exponential time
or worse) and in many situations one will have to deal with generators that have
exponentially large degree (we will in fact see an explicit example in Section 3.3)
or are hard to evaluate in the sense of computational complexity [GIM+20].
Furthermore, it is not clear how such an algebraic approach could go beyond the
decision problem to compute, e.g., an element in the orbit closure intersection,
or a sequence of group elements that drives one there. We note here that in the
commutative setting one also has these obstructions, but here one can still use an
invariant-theoretic approach to solve the OCI problem [BDM+21]; for OCI in the
setting of operator scaling one can also give polynomial-time algorithms based on
invariants [DM20a].

We have now seen in the Kempf-Ness theorem (Theorem 2.4.4) that mini-
mum norm vectors provide essentially canonical representatives of orbit closures.
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Therefore, an alternative approach as follows: to decide whether v and V' have
intersecting orbit closures, first compute minimum norm vectors Vi, and v;n v and
then determine whether there exists a k € K such that vipin = k- v/ . . Of course,
this is easier said than done, although it has been done in the setting of operator
scaling [AGL+18]. One should in general not be expect to be able to compute
the minimum norm vectors vmin exactly; for example, they may have irrational
entries,?Y so rational-number arithmetic can only produce approximate results. It
is also not obvious how to certify that a vector has approximately minimal norm in
its orbit closure. Moreover, it may be computationally difficult to decide whether
two vectors are in the same K-orbit; this problem is known to be at least as hard as
graph isomorphism [CGQ+23], but efficiently solvable in special cases [AGL+18;
BDM+21; DKMV23].

In light of the notion of (in)stability (Section 2.3.4), one particularly interesting
case of the OCI problem is when V' = 0, i.e., determining whether v is in the null
cone.

Problem 2.6.2 (Null cone). Given a regular representation m: G — GL(V) of a connected
linearly reductive group G € GL(n, C), and v € V'\ {0}, determine whether 0 € G - v.

We now observe that by the Kempf-Ness theorem, v € V is in the null cone if
and only if viin = 0, which holds if and only if infgeg||g - v|| = 0. Therefore, the
null cone problem can be viewed as characterizing the optimal value of the norm
minimization problem:

Problem 2.6.3 (Norm minimization). Given a regular representation : G — GL(V)
of a connected linearly reductive group G € GL(n, C), v € V'\ {0} and & > 0, output
either g € G such that log||g - v|| < log||Vmin|| + 6, or assert that v is in the null cone of V.

Rephrased in terms of the Kempf-Ness function F,(g) = log||g - V||, the norm
minimization problem asks to find an 6-approximate minimizer of F,, or to assert
that F, is unbounded from below. Note that taking the logarithm of the norm
is natural given the scale invariance of the problem: if v, is @ minimum norm
vector for v, then Avpis is @ minimum norm vector for Av.

There is another natural error measure: recall from Theorem 2.4.4 that v is
a minimum norm vector if and only if v is critical, i.e., p(v) = 0 where p(v) =
grad g=1 Fy(g) is the moment map and F, is the Kempf-Ness function. Therefore
the norm of the moment map is also a natural error measure, as this measures the
distance from zero; we use here the norm induced by the Hilbert-Schmidt norm
on Lie(G) € C™*™,

Problem 2.6.4 (Scaling). Given a reqular representation m: G — GL(V) of a connected
linearly reductive algebraic group G € GL(n,C), v € V \ {0} and ¢ > 0, output
either g € G such that ||u(g - v)|| < €, or assert that v is in the null cone of V.

The norm-minimization and scaling problems are equivalent for 6 = ¢ = 0
as shown by the Kempf-Ness theorem. Although not obvious, it turns out
a quantitative relationship also holds [BFG+19]. To state this, we define the
following two parameters:

20A simple example is given by C* acting on €C? via z - (v1,Vv2) = (zv1,z"'vp). The U(1)-orbit of
minimum norm vectors of v = (1,2) is given by U(1) - (V2, V2).
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Definition 2.6.5 (Weight margin and weight norm). The weight margin y(r) of the
representation 7t is defined as

v(m1) = min{d(0,convTl) : T C Q(m), 0 ¢ conv I}.

Here, conv I refers to the convex hull of ' € Lie(T)*. The weight norm N(m) is
defined by
N(7) = max{||w]| : w € Q(m)}.

The distance d(-,-) and ||-|| are defined in terms of the Hilbert-Schmidt inner
product after identifying Lie(T)* = Lie(T) € C™*™.

While these parameters are somewhat abstract, we give a short justification for
their appearance. Let v € V'\ {0}, and restrict to the case where G = T = (C*)™ is
commutative. Recall from Proposition 2.5.2 that if one considers the weights Q(7r)
as a subset of iLie(Tk) (Definition 2.2.14) and v = }_,c () Vw, then one has

1
n(v) = W Z Vo lPw.

we

We observe now that the support suppv, i.e., the set of w such that vy, # 0, does
not change when one acts with G = T. This implies that if v € V' \ {0} is such
that the convex hull of its support does not contain 0, then |[u(g - v)|| > y(m)
for all g € G. Note that this also implies that vhin = 0: one can use a (rational)
separating hyperplane between 0 and conv(supp v) to find a direction Y € iLie(K)
such that e'Y - v — 0 as t — oo. This is exactly the Hilbert-Mumford criterion
(Theorem 2.3.16) in the unstable case for commutative groups.

In the non-commutative case, for T € G a maximal algebraic torus, the moment
map pt with respect to T is the projection of ng onto iLie(Tk), and so ||ug (V)|| >
luT(v)||. By the Hilbert-Mumford criterion, if a vector v is G-unstable, then it
is T-unstable with respect to some T. Hence ||[ug(v)|| = ||ut(v)|| = v(7). Therefore
also in the non-commutative case it is true that ||pug(v)|| < y(m) implies that v is
semistable.

The appearance of the weight norm N(7) is simpler to explain: it is an upper
bound on the norm of the moment map p(v). But u(g - v) is the gradient of the
Kempf-Ness function F,, at g € G, and hence F,, is N(7r)-Lipschitz (thought of as a
function on K\ G). More generally N(7t) appears when bounding the higher-order
derivatives of F,, [BFG+19, Prop. 3.13]:

Proposition 2.6.6 (Smoothness). Letv € V\{0}. Then for every g € G and H € iLie(K),
0 < 37_ Fu(e™g) < 2N(m)?|H|I7.

Proof. Without loss of generality one may take g = I, since Fy(etHg) = Fg.,(et).
Recall that we write (:,-) for the inner product on V. Let IT = dmy: Lie(G) —
Lie(GL(V)) be the induced representation on the Lie algebras. Then

0uFu(e™) = 20, log (et v, (e )y)

_ (m(etHy, TI(H) (et )v)
- |7e(etH)v]|?
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and

(MHWv, TTI(H)v) @, TI(H)v)?

o2_ Fu(et) =2

IvIl? [Ivil*
- 2(<n(H)w,n(H)w> ~(w, rr(H)w>2) 2.6.1)
= 2(w, (TI(H) = (w, TI(H)w) I)*w) . (2.6.2)

wherew = v/||v||. Now ITmaps iLie(K) to iLie(U(V)) € Herm(V) and hence TT(H) -
(w, TI(H)w) I is a Hermitian operator, hence its square is a positive-semidefinite
operator. In particular, Eq. (2.6.2) gives aizon(etH) > 0. Moreover, using Eq. (2.6.1)
we can upper bound the second derivative by

2MH)wI* < 2[ITTH)13, < 2N |[H|IZg

where |||/ is the operator norm. For the last inequality, we appeal to [BFG+19,
Prop. 3.11], which states that the weight norm N(m) is equal to max{||TT(H)||e : H €
iLie(K), ||H|las = 1}. This fact can be proven by explicitly considering a maximal
torus whose Lie algebra contains H. m|

We are now in a position to state a quantitative relationship between the norm
of the moment map and the approximation ratio |[vmin||/||v|| forv € V '\ {0}:

Theorem 2.6.7 (Non-commutative duality, [BFG+19, Thm. 1.17]). Forv € V \ {0}
with minimum norm vector Vmin (Definition 2.4.1), we have

IO _ vl _ | )P
Y S P 4N(m)?”

The upper bound can be deduced from a geodesic gradient descent argument
for F, (Proposition 6.5.3), using the 2N (71)?-smoothness proved in Proposition 2.6.6.
The lower bound is more delicate to prove, and we do not comment further on it.

One can generalize the scaling problem as follows: rather than just ask whether 0
isin the moment polytope, one can also ask if a specific (rational) point p € iLie(Tk)+
is in the moment polytope A(v) of a given vector v € V' \ {0}. We do not state this
problem formally here and refer instead to [BFG+19]. However, we note that this
is still related to a (geodesic) convex optimization problem. In the commutative
case, one can simply modify the Kempf-Ness by simply adding a linear function
(after a change of coordinates), see Chapter 5 for details. In the non-commutative
case, the corresponding norm minimization problem is on a different (possibly
much larger) representation, as can be seen by a shifting trick [NM84; Bri87].

As an extension of the scaling problem, one can also ask the following question:
suppose that v € V'\ {0} is unstable. Then still A(v) is a convex polytope, so there
exists a closest point to 0, i.e., the projection of 0 onto A(v). Can one find this point
efficiently? As was observed in [NM84; Kir84b], following the gradient flow of the
function P(V) — R given by [v] - || u(v)||2HS from a starting point [vg] is in a sense
equivalent to following the gradient flow of the Kempf-Ness function F,,,. This
gradient flow always stays in the G-orbit of [vg] € P(V), and actually converges to
a minimizer on its projective orbit closure. This result has been proposed as an
algorithmic tool for testing moment polytope membership in [WDGC13; Wal14],
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but giving rigorous guarantees for algorithmically following this gradient flow in
the unstable case remains an open problem. However, we do note that it has proven
useful for the purpose of giving diameter bounds on approximate minimizers for
the norm minimization and scaling problems, see for instance [KLLR18] (where it
was used to solve the Paulsen problem), [AGL+18; KLR19] and [BFG+19, Prop. 5.6].
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3. The minimal canonical form of a
tensor network

In this chapter we identify a novel application of geometric invariant theory as
discussed in Chapter 2 in the context of tensor networks in quantum many-body
physics. The chapter is organized as follows. We provide a detailed introduction
below in Section 3.1. In Section 3.2, we show how to apply geometric invariant
theory to construct the minimal canonical form for matrix product states. Our
main results are proved in Section 3.3, where we introduce the minimal canonical
form for PEPS and establish its properties. In Section 3.4 we provide explicit
algorithms for computing the minimal canonical form. We end with a brief outlook
in Section 3.5, suggesting applications for the minimal canonical form and avenues
for future research.

3.1. Introduction

Tensor networks are a fruitful area of interconnection between quantum information
theory and quantum many-body physics. On the one hand, tensor network states
are rich enough to approximate with high accuracy most states which are relevant
in condensed matter physics, such as Gibbs states and ground states. On the other
hand, tensor networks are sufficiently simple that they enable one to manipulate
complex quantum states, both numerically and theoretically. For the purpose of
numerics, one can design variational optimization algorithms to simulate strongly
interacting quantum systems. On the other side of the spectrum, tensor networks
have been a powerful theoretical method to obtain simple characterizations of
complex global phenomena like topological order.

Roughly speaking a tensor network is defined by a set of tensors with two types
of indices: virtual ones, whose dimension is called the bond dimension, and physical
ones, associated to the different subsystems of a quantum many-body system.
These tensors generate a state (called a tensor network state) in the physical Hilbert
spaces of the system by contracting the virtual indices on a given graph, typically
a lattice associated to the interaction pattern of a Hamiltonian. The graphical
notation for tensor network contractions is briefly reviewed in Fig. 3.1a.

The success of tensor network states as a numerical variational family dates
back to the pioneering paper [Whi92], where the Density Matrix Renormalization
Group (DMRGQG) algorithm was proposed as a way to approximate ground states of
one-dimensional systems. Nowadays, this algorithm is seen as a way to minimize
energy over the manifold of Matrix Product States (MPS), the first and most well-
known family of tensor networks. From the perspective of quantum information
theory, one may also see MPS as pairs of maximally entangled states to which

This chapter is adapted from [AMN+23].
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locally a projection operator is applied. This allowed the generalization of the
construction to more complex scenarios, including higher dimensions [VPC04;
VCO04]. There, the associated objects are called Projected Entangled Pair States
(PEPS), precisely due to the perspective of applying projectors to a configuration
of maximally entangles states. By now, there can be no doubt that this is one of
the most important and powerful paradigms in numerical simulation of quantum
systems [JCF+21; RBC21; SDC+22; ZCC+17], a recent highlight being the classical
simulation [PZ22] of the Google quantum supremacy experiment [AAB+19].

On the theoretical side tensor networks allow one to give local characterizations,
in terms of their defining tensors, of global properties of interest, such as symmetries
or topological order. The pioneering work [FNW92], independently from the
DMRG proposal [Whi92], started this line of research. One of the first milestones
was the cohomology-based classification of one-dimensional symmetry-protected
topological (SPT) phases [CGW11; PBTO12; SPC11]. Today, this is an active area of
investigation, see for instance the recent review [CPSV21] for details on the current
state of the art. For instance, tensor networks are used for the characterization of
topological order and topological phase transitions in higher spatial dimensions.
Other important theoretical results concern rigorous approximation bounds,
showing rigorously that classes of physically relevant states such as ground states
and Gibbs states can be approximated accurately by PEPS.

Recently, due to their nice numerical and analytical properties, tensor networks
have started to permeate other areas. Prominent examples are quantum gravity
[HNQ+16; PYHP15] and machine learning [SS16; CPZ+17], as well as (hybrid)
classical simulation of quantum circuits [PHOW20; NLD+22].

An important feature both in theory and practice is the gauge symmetry of a
tensor network. By inserting matrices on the virtual bonds of a tensor in such way
that they cancel when the network is contracted, one modifies the local tensors
while leaving the many-body state unchanged, see Fig. 3.2a. In this context one
desires: (1) a fundamental theorem that guarantees the gauge symmetry is the
only freedom in tensors to give rise to the same states, and (2) a canonical form,
which fixes this gauge degree of freedom in a natural way. Sometimes, both come
together: some fundamental theorems only apply to tensors in a canonical form.

To make this more concrete, we consider PEPS in one spatial dimension, i.e.,
MPS. One key reason which make MPS easier to work with than, e.g., 2D PEPS, is
that there are canonical forms with good theoretical properties and an associated
fundamental theorem. This has played a crucial role in the development of the
theory since its inception [FNW92], see [CPSV21] for a review. We focus on the
uniform (or translation-invariant) case, where one places the same 3-tensor T on
each site and contracts with periodic boundary conditions, resulting in a many-
body quantum state |T,,) for any system size n. One may view T as a tripartite
quantum state on one physical and two virtual Hilbert spaces, the latter of bond
dimension D. It is always possible (after blocking sites together and setting
irrelevant off-diagonals to zero) to choose a gauge such that the reduced state on
one of the two virtual Hilbert space is maximally mixed.! The result is called a left
or right canonical form and it is unique up to unitary gauge symmetries. It has the

! As we will see in Definition 3.2.5, strictly speaking this is only true independently in each of the
diagonal blocks which remain in the canonical form. There is a proportionality constant that
can be different in each one of those blocks.
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contractions. If the tensors are inter- m lattice by placing T at the sites and
preted as matrices, arrows indicate contracting with periodic boundary
the direction of multiplication. The conditions.

examples include matrix multiplica-
tion, the trace of a product of matrices,
and in the bottom row, a matrix prod-
uct state.

Figure 3.1.

following virtues:

(A) It satisfies a fundamental theorem: two tensors T and T’ give rise to the
same states on any number of sites, meaning |T,) = |T;,) for all n, if and only
if they have a common canonical form.

(B) It allows lifting symmetries: if T is in canonical form, any global symmetry
U®m|T,) = |Tn) for all n can be implemented by a unitary gauge symmetry
on T. This is key to classifying phases of matter and when studying entan-
glement spectra/Hamiltonians, to upgrade virtual to physical degrees of
freedom.

(C) It provides a way to truncate, which is key for efficient accurate numerics:
given a tensor T with bond dimension D, it allows finding a tensor T’ of bond
dimension D’ < D such that |T},) = |T,,) for all n.

Clearly, it would be of great use to extend the theory of canonical forms to tensor
networks in two or more spatial dimensions! However, it is known that there are
significant obstructions. For example [SMG+20; Sch20]:

(4) The following problem is undecidable: Given a PEPS tensor T, decide if the
associated states | T, m) vanish on periodic lattices of any size n X m.

This suggests there should not exist any useful (computable) canonical form
generalizing (A), since by comparing the canonical forms of T and the zero tensor
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(a) Gauge invariance: For g = (g1,92) € density matrices of the tensor as a

GL(D1)xXGL(D>), if one defines the tensor quantum state are equal up to trans-

S = g - T as in the figure, the correspond- position (corresponding to reversing

ing states | T, m) and Sy, m) are equal. the arrows in diagrammatic notation).
Figure 3.2.

one could otherwise decide whether |T,, ) = 0 for all n and m. Indeed, before
our work, no canonical form was known for PEPS tensor networks in two or more
dimensions that applied to general tensors and rigorously satisfied properties such
as the above.

On the other hand, a fundamental theorem is known if one restricts, e.g.,
to the class of normal tensors [MGP+18]. Moreover, heuristic approaches for
canonical forms [Evel8; KKOS12; LCB14b; PMV15; PBT+15] and the truncation
problem (C) are successfully used in practice to trade off efficient computation and
approximation accuracy [RTP+20].

3.1.1. Summary of results: a canonical form in any dimension and
a fundamental theorem

In this work we introduce a new canonical form for general PEPS in arbitrary spatial
dimension. It rigorously satisfies a number of desirable properties — particularly
a fundamental theorem. The obstruction (4) is overcome by the following twist:
roughly speaking, the canonical form captures when two tensors give rise to the
same quantum states not just on the torus, but on any surface! This is achieved by
pioneering the application of geometric invariant theory, an area of mathematics
that studies symmetries, to tensor network theory and drawing on recent research
in non-commutative group optimization.?

We now define the new canonical form and highlight its main properties

2Geometric invariant theory has already been used in quantum information in other contexts,
such as in the study of multipartite entanglement [Kly02; VDDO03; GW10; BRV18], or in the
quantum marginal problem [Kly04; DH05; CM06; Kly06; WDGC13; Wal14], but not in the area
of tensor networks to the best of our knowledge.
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and the new fundamental theorem. Here we only discuss uniform PEPS in
m spatial dimensions. These are defined by a single tensor T, with 2m + 1
legs, one associated to the physical Hilbert space, and two legs each for the
spatial directions k € {1, ..., m}, associated with virtual Hilbert spaces of bond
dimension Dy. The gauge group G = GL(D1) X - - - X GL(D,) acts on the virtual
legs of the tensor as illustrated in Fig. 3.2a. We say Tmin is @ minimal canonical
form of T if it “infimizes” the {2>-norm among all gauge equivalent tensors:

Trmin = argmin {||S|| .SeG -T} . 3.1.1)

In the language of Section 2.4, Tin is @ minimum norm vector. Two important
remarks are in order: First, we consider the closure G - T of the gauge group orbit
of T, so that the minimum is attained. Thus there need not be a single gauge
transformation g € G such that g - T = Tin, but rather a sequence g(k) € G such
that g(k) - T — Thin (the same is true for the usual canonical forms of MPS when
one has to set off-diagonal blocks to zero). This is, however, natural, since the
uniform PEPS determined by a tensor depend continuously on the tensor, hence
remain unchanged even when taking limits. Second, while any tensor clearly has
a minimal canonical form, uniqueness up to unitaries is a priori unclear. This is
addressed by our first result, which justifies calling Tmin a ‘canonical form”.

Result 1 (Canonical form). Any tensor has a minimal canonical form. It is unique up to
unitary gauge symmetry. Moreover, two tensors T, T" have a common minimal canonical

formifandonly if G-T N G-T # 0.

The condition G-T N G- T’ # 0 is the natural definition of gauge equivalence,
since then T, T determine the same PEPS as explained above. Result 1, which we
formally state as Theorem 3.2.9 for MPS and Theorem 3.3.7 for PEPS, states that
this is captured by the minimal canonical form. It also guarantees the analogue of
property (B) for normal tensors, stated as Corollary 3.3.9.

We can characterize the minimal canonical form in terms of the reduced states
of the virtual bonds. To this end, interpret T as a quantum state and denote by py
and py» the reduced states of the two virtual bonds in the k-th direction. Then we
have the following characterization, illustrated in Fig. 3.2b.

Result 2 (Characterization). A tensor is in minimal canonical form if and only if
pr1=pp,forl <k <m.

Interestingly, this shows our minimal canonical form does not coincide with the
usual ones for MPS (m = 1); it also differs from previously proposed heuristics in
higher dimensions. We prove Result 2 in Theorem 3.2.10 for MPS and Theorem 3.3.8
for PEPS.

This begs the question whether it can be computed effectively, even for MPS.
Our next result answers this in the affirmative.

Result 3 (Computation). There is an algorithm which computes a minimal canonical
form of a tensor T up to given (>-error & > 0. For fixed bond dimensions, it runs in time
polynomial in log & and in the bitsize of T.
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We prove this in Corollary 3.4.12. The algorithm depends exponentially on the
bond dimensions (for m > 1). We also give an algorithm whose runtime depends
only polynomially on the bond dimension, but also on 1, where ¢ measures the
accuracy to which the condition in Result 2 is fulfilled (see Corollary 3.4.3). In
Section 3.4 we discuss these and another natural way of quantifying approximation
error; we relate them in Section 3.4.2.

Finally, we discuss our fundamental theorem. We start with the following
observation (for simplicity in 2D): If two tensors are gauge equivalent, they not
only determine the same state | T, m) on any n X m lattice, but also if we contract
according to an arbitrary graph such that only left and right virtual legs, and only
top and bottom virtual legs are connected. We say I"is a contraction graph and write
|Tr) for the corresponding uniform PEPS, see Fig. 3.3. Intuitively, this means we
consider tensor networks on surfaces of arbitrary topology rather than only on the
torus. Clearly, these notions generalize to any spatial dimension. We find that this
precisely captures gauge equivalence, in any spatial dimension! Indeed, we have
the following result which we formalize and prove as Theorem 3.3.11:

Result 4 (Fundamental theorem). Two tensors T, T" are gauge equivalent (meaning
G-TNG-T # 0)ifand only if [Tr) = |T[.) for all contraction graphs T". It suffices to
consider to graphs on eO(mD?) yertices,

We further show e(MDP) vertices are necessary when m > 2, while for m = 1
we find two MPS tensors to be gauge equivalent iff [T,,) = |T},) for 1 < n < O(D),
which is essentially tight [DM20a]. While we stress that our fundamental theorem
is of independent interest, as it precisely characterizes when two tensors are gauge
equivalent, we note that gauge equivalence is the same as having a common
canonical form (by Result 1). Accordingly, our theorem proves a version of
property (A) for PEPS in any spatial dimension, and as we show in Corollary 3.3.14,
this also implies global symmetries of the states | Tr) can be lifted to unitary gauge
symmetries, as in property (B). Strikingly, it shows that deciding whether two
tensors generate the same uniform PEPS |Tr) on arbitrary contraction graphs
is decidable — in stark contrast to the problem when we restrict to uniform
PEPS [T, m) on periodic rectangular lattices. The undecidability of the latter
is proved by relating it to the problem of deciding if a given set of tiles tiles a
torus [SMG+20]. Our result implies that this problem becomes decidable if one
allows for some arbitrary “surface” (contraction graph).

Given the practical and theoretical importance of canonical forms and funda-
mental theorems, we hope our results offer a useful new tool for the study and
application of tensor networks. From a theory perspective, our results may be
helpful in studying virtual symmetries of tensor networks, which are crucial
in understanding topological order. From a practical perspective, it would be
interesting to investigate if our canonical form can improve the numerical stability
of variational optimization algorithms and other numerical methods [VHCV16],
as it could be expected by the known close connection between gauge fixing and
stability [LCB14a; PMV15]. Our results also imply that one can sample uniformly
from all PEPS tensors in minimal canonical form in the same orbit. This has
applications beyond quantum information, e.g., it allows to extend the technique
of [PHM+22] for enhancing privacy in machine learning from MPS to PEPS. Finally,
we note that our approach generalizes naturally to other tensor network types and
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g™ . T /N A g _

G-TNG-S#0 |Tr) = |Sr) forall T

Figure 3.3.: Fundamental theorem: Two tensors S and T are gauge equivalent, mean-
ingG-T NG - S # 0 or that limn— e g(“) T = limy 00 K™ S for certain
g™, h™ € G (equivalently, the two tensors have a common minimal
canonical form), if and only if they contract to the same state on all
contraction graphs.

gauge groups; it would be exciting to explore this in followup work. We discuss
all these points further in Section 3.5.

3.1.2. Overview of methods: geometric invariant theory and
geodesic convex optimization

On a high level, our approach is to start with the desired gauge symmetry and
explore its natural consequences (rather than with a specific class of networks, such
as PEPS on a torus). In our case this means starting with the action of the gauge
group G = GL(Dq) X - - - X GL(D,) on the vector space of PEPS tensors of a certain
format, as above. To prove Results 1 and 2, we rely on the results of geometric
invariant theory as developed in Chapter 2, in particular Mumford’s theorem
(Theorem 2.3.7) and the Kempf-Ness theorem (Theorem 2.4.4). To prove Result 3,
we instantiate the general framework of [BFG+19] (but give some improvements)
and we relate the approximation guarantees provided by that framework to £2-error
(which is nontrivial).

So far, we have focused on geometry, but we now move to invariants to connect
to tensor networks and sketch the proof of our fundamental theorem (Result 4).
Mumford’s theorem (Theorem 2.3.7) implies that two tensors T, T’ are gauge
equivalent (meaning G-T N G- T’ # 0) if and only if P(T) = P(T’) for any G-
invariant polynomial P. Now, for any contraction graph I, the tensor network
state |Tr) is unchanged by gauge symmetries, and therefore its coefficients are
G-invariant polynomials in T. We use constructive invariant theory to prove
that, conversely, any G-invariant polynomial can be obtained from coefficients of tensor
network states. A theorem by Derksen [Der00] allows bounding the size of I', which
concludes the proof.

3.1.3. Notation

The baseline for the notation is as in Section 2.1. We write y = argmin{f(x) : x € X}
to denote that y € X and f(y) = min{f(x) : x € X}, in general this will not uniquely
determine y. In this chapter we write Mat,, v for the complex vector space of
complex n X 1’ matrices, as opposed to C™™', To be consistent with physicists’
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3. The minimal canonical form of a tensor network

(o cb
R
M |C?

Figure 3.4.: Matrix product state: M = (M(i))id=1 € Matl__ gives rise to a state M)
for any system size n.

notation, we write (-)' instead of (-)* for the adjoint (in this chapter only). We denote
identity matrices by I and use subscripts to denote context when this increases
clarity. We write GL(n) for GL(n, C) and SL(n) = SL(n, C). We will use boldface
for m-tuples of matrices, e.g., X = (Xy,...,Xsn), but never for the d-tuples that
make up uniform MPS or PEPS tensors. Finally, we denote by C[V] the algebra of
polynomial functions on a vector space V.

3.2. Matrix product states

In this section, we discuss the setting of matrix product states (MPS). While MPS
are very well-understood theoretically, it is instructive to revisit this setting from
our new perspective and contrast our minimal canonical form to the known ones,
which also enjoy excellent theoretical properties.

We start by defining uniform (or translation-invariant) MPS and briefly reviewing
existing canonical forms in Section 3.2.1. We then introduce the minimal canonical
form in Section 3.2.2. Finally, in Section 3.2.3 we also discuss the case of non-uniform
MPS with open boundary conditions.

3.2.1. Gauge freedom and canonical forms for uniform MPS

We denote by Matd . the vector space of d-tuples of D x D-matrices.

Definition 3.2.1 (Uniform MPS). For any matrix tuple M = (l\/l(i))id:1 € Mat%xD
and system size n € N, we define the uniform (or translation-invariant) matrix
product state (MPS) as the (not necessarily) quantum state |[M,,) € (C4)®™ whose

coefficients are given by
(1, .., inMp) = TEMG oM (v, i € [d)). (3.2.1)
We refer to d as the physical dimension and D as the bond dimension.

We will interchangeably refer to M as a matrix tuple or as an MPS tensor. Indeed,
it is often useful to think of M itself as a 3-tensor, or as an (unnormalized) quantum
state [M) € H; ® Hy ® Hpnys on the tensor product of a physical Hilbert space
Hphys = C4 and two virtual Hilbert spaces 1 = ) = CP, where H; is the
‘left” virtual Hilbert space and Hj is the ‘right” virtual Hilbert space, see Fig. 3.4.
Formally:

(a,b,i]M) = (a]MD|b).
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3.2. Matrix product states

9 oo M
M [

—O—(P—Gg - Low@qowc}c}qo) (g - M)
g g! gty

Figure 3.5.: MPS gauge invariance: Tensors related by a gauge transformation give
rise to the same MPS.

We may then compute the reduced density matrices of p = |M)(M| on either of
the two virtual Hilbert spaces:

d d
p1=) MOIMYD) and pp=) (MY)TMO. (3.2.2)

i=1 i=1

An important property of MPS is that the states [My,) are left invariant (for any
n) if we conjugate each matrix M(¥) in the tuple by the same invertible matrix.
Formally:

Definition 3.2.2 (Gauge action). We define the gauge action of g € GL(D) on
M = (M(i))fl:1 by

g-M:=(gMVg )

i=1-

If we think of M as a quantum state [M) in H; ® Hy ® Hppys, the gauge action can
be written as

g-IM):=lg-M)=(g®g '@ |M).

Lemma 3.2.3 (Gauge symmetry). For every M € Matd_ -, g € GL(D), andn € N,
we have

M) =1(g-M)n).

This is shown in Fig. 3.5.

It is then a natural question to ask whether this is the only freedom in the tensor
M to define the same state |M,,) for all n. The answer is no, as is well-known and
illustrated by the following example:

Example 3.2.4. Let

MO — [(1) (1)] and M = [O 1] .

and

~0 |1 0 ~1 (00
M —lo Ol and M —[ l
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3. The minimal canonical form of a tensor network

Then both tensors define the same MPS, for any system size n € N, namely the
GHZ states

M) = [Mn) = [0)°™ + 1)®™.
However, there isno g € GL(D) so thatg- M = M.

The underlying problem is that when the matrices M(Y) in a tuple are all in
upper triangular form (with respect to some basis), the off-diagonal terms are
totally irrelevant for the final state |[M,,). The standard way to deal with this is to
remove such off-diagonal terms in a structured manner. Let us briefly sketch the
procedure, but refer to [CPSV21] and [SPWC10] for details and nomenclature.

One starts lookm% for a minimal common invariant subspace of all M(Y) and
change M(® by PMVP + QM®Q, with P being the orthogonal projector onto such
a subspace and Q = I — P. It is not difficult to see that the new tensor defines the
same original MPS. Now one proceeds similarly with QMM Q until one reaches a
block diagonal form. The minimality of the subspaces guarantees that, in each of
the diagonal blocks b, the corresponding tensor, say My, fulfills the property that
the associated completely positive (CP) map &y given by Xp +— > ; I\/lg)XlL_,(l\/lS))Jr
is irreducible. Normalizing so that the spectral radius of the map is 1, this implies
that the eigenvalues of modulus 1 are all non degenerate and they are exactly the
g-th roots of unity with a q dividing the size Dy, of the matrices MS). One can
then distinguish two cases: q = 1, in which case the map &y, is primitive, or q > 1,
in which case one can “block” or group together g sites; then the resulting tensor
nH H,® H?ﬁys consists of block diagonal matrices whose associated CP maps
are also primitive.

To make a long story short, starting with a matrix tuple M, after projecting
and blocking following the above procedure, one obtains a new matrix tuple M
such that each M(l) is block diagonal, 7\7[(1) = Mg), and the CP maps &y are
all primitive. It is now possible to act with a gauge g € GL(D), which can also
be taken to be block-diagonal, g = @9y, so that one obtains in each block b of
M = g- M the canonical condition. That is, there exist constants ¢, € R, such that

Z(M Mb =cplp,  (Vb), (3.2.3)

meaning that, after normalization, the maps &y, : Xp — ) ; M(l)Xb(M ) are
trace preserving completely positive (TPCP) maps, i.e., quantum channels. One
could analogously have taken the dual condition

a .
S YR = cplp, (WD), (324)
i=1
meaning the &, are completely positive unital (CPU) maps.
For generic matrix tuples M, the channel X — Y ; MOX(MW)! is already
primitive. In this case, M is called normal and one can obtain a left or right

canonical form M by acting with a suitable gauge group element: M = g - M for
some g € GL(D).
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3.2. Matrix product states

Definition 3.2.5 (Left and right canonical form). A matrix tuple (MPS tensor) is
said to be in left canonical form if it is block diagonal, with each diagonal block a
normal tensor fulfilling Eq. (3.2.3). The right canonical form is defined analogously
by imposing the dual condition in Eq. (3.2.4).

The above procedure guarantees that, after discarding off-diagonal blocks and
at the price of blocking, one can bring any MPS tensor into left or right canonical
form. For instance, in Example 3.2.4 the tensor M is block diagonal, its blocks are
1-dimensional and hence trivially primitive, and moreover p; = p, = Ip. Thus M is
both in left and right canonical form. For tensors in canonical form, (unitary) gauge
symmetry is the only freedom for two tensors to generate the same MPS:

Theorem 3.2.6 (Fundamental theorem of MPS, [CPSV17; CPSV21]). Let M, N be
both in left (or right) canonical form and |My) = |Ny) for all n € N. Then there exists a
unitary u € U(D) such that uw- M = N.

The name “fundamental theorem” stems from its numerous applications, and we
refer for instance to [CPSV21] or [HV17] for an accounting of several of these.

3.2.2. The minimal canonical form for uniform MPS

We now define a new canonical form for uniform MPS. Its appeal is that it will
naturally generalize to tensors with an arbitrary gauge symmetry and in particular
to PEPS in higher dimensions, and that it can be analyzed using the powerful tools
from geometric invariant theory.

Our starting point is the following simple but powerful observation: For a given
matrix tuple M € Matg , we should not only consider gauge transformations
M = g - M for some g € GL(D), but also limits of such. Indeed, suppose we
have a sequence of gauge group elements gx € GL(D) such that gy - M converges
to some M. Then, since the MPS |M,,) are continuous functions of the matrix
tuple M, we still have

M) = lim (g M)) = [My) (Ve N),
In other words, all matrix tuples in the orbit closure GL(D) - M determine the same
MPS. This naturally leads to the following definition:

Definition 3.2.7 (Gauge equivalence). Let M, N € Mat{ , be two matrix tuples.
We say that M and N are gauge equivalent if and only if GL(D) - M N GL(D) - N # 0.

This is the natural notion of gauge equivalence for MPS tensors, since if M and
N are gauge equivalent in the sense just defined then

IMn) = [Nn) (Vn € N).

Indeed, it is the smallest equivalence relation generated by gauge transformations
and taking limits. In particular, to define a canonical form we should naturally
look at orbit closures, not just at orbits. How could we single out special elements
in the orbit closure? The Kempf-Ness theorem (see Section 2.4) motivates the
following definition:
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3. The minimal canonical form of a tensor network

Definition 3.2.8 (Minimal canonical form of MPS). We say M, € Mat%xD is

a minimal canonical form for a matrix tuple (MPS tensor) M € Mat%xD if it is an
element of minimal norm in the orbit closure of the latter:

Mmin = argmin {||[M’|| : M" € GL(D) - M},

where we use the Euclidean norm of M (or |M)), that is,

d 1/2
M| = V(MM = (Z Tr [(M“))*M@]) - (Tr

i=1

d

1/2
Z(M(i))*M(i)]) )

i=1

We say M € Matd _ is in minimal canonical form if it is a minimal canonical form
for itself.

Note that any MPS tensor has a minimal canonical form — in contrast to the usual
left or right canonical form of Definition 3.2.5, no explicit projecting and blocking
is required.

Clearly, the minimal canonical form is a special case of the general notion
of a minimum norm vector (Definition 2.4.1) for the action of G = GL(D) on
V =Matd__ (Definition 3.2.2). We can now use the general theory of geometric
invariant theory to understand the basic properties of this canonical form and we
will see the usefulness of the general results of Sections 2.3 and 2.4. First of all,
while the minimal canonical form is not uniquely defined, it is uniquely defined
up to unitary gauge transformations (the action of K = U(D)), and it precisely
characterizes gauge equivalence (Definition 3.2.7):

Theorem 3.2.9 (Minimal canonical form). Let M, N € Mat%xD. Then the following
are equivalent:

(i) M and N have a common minimal canonical form.

(ii) If Mimin, Nmin are minimal canonical forms of M, N then U(D)-Mmin = U(D)-Nmin.
That is, minimal canonical forms of M and N are related by unitary gauge symmetries.

(iii) M and N are gauge equivalent, i.e., GL(D) - M N GL(D) - N # 0.
Proof. This is an immediate consequence of Theorems 2.3.7 and 2.4.4. |

The characterization of minimum norm vectors as critical vectors (Theorem 2.4.4)
allows us to give an easy characterization for a matrix tiple to be in minimal canon-
ical form. To see this, we compute the condition for a matrix tuple M € Matd_
to be critical (Definition 2.4.3), i.e., we evaluate the moment map (Definition 2.5.1):

For X € Herm(D) = iLie(K), we have

d
dicolle™ - M|I? = 30 Z Tr [(etXM(i)e—tX)+etXM(i)e—tX]

i=1
d
= 30 Z Tr [(M(i))'l'eZtXM(i)e—ZtX]
i=1
d
=2Tr |X (Z MOMOYF - (M“))*M(l))] . (3.2.5)
i=1

Thus we arrive at the following (illustrated in Fig. 3.6):
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3.2. Matrix product states

Do @t D

Figure 3.6.: MPS canonical forms: From left to right, the conditions for respectively
right, left and minimal canonical forms for MPS.

Theorem 3.2.10 (Characterization). Let M € Mat%xD. Then M is in minimal
canonical form if and only if ||g - M|| > ||[M|| for all g € GL(D). This is the case if and

only if

d d
> MOMD)T =3 (MB)TMD. (3.2.6)

Equivalently, the reduced density matrices of p = |M)(M| on the virtual bonds are the
same up to a transpose:

P1=1p,. (3.2.7)

Proof. Note that M is critical if and only if the derivative in Eq. (3.2.5) vanishes for
all X € Herm(D). Thus both statements follow from Theorem 2.4.4. O

Given a tensor M it is perhaps at first glance surprising that there always exist
gauge transformations g € GL(D) such that limy_,« gx - M satisfies the condition
in Egs. (3.2.6) and (3.2.7) — yet as we just saw this follows readily from geometric
invariant theory. We also note that Theorem 3.2.10 also shows that the minimal
canonical form for MPS will in general not coincide with the usual left or right
canonical form (Definition 3.2.5); there appears to be no obvious way to convert
one into the other. In Section 3.4 we give a simple iterative algorithm that computes
the minimal canonical form to arbitrary precision.

To get more intuition about the definition and the relevance of the orbit closure,
we revisit Example 3.2.4.

Example 3.2.11. In Example 3.2.4 we saw that the following matrix tuples M, M €
Mat?, , both define the GHZ states:

11 01 ~ (0) 10 ~ (1) 00
0) — 1 — _ _
N AV ] R A G

Theorem 3.2.10 shows that M is already in minimal canonical form, while M is not.
Indeed, while p; = ()2T = I, for p = [M) (M|, the reduced states of p = [M) (M|
satisfy

— MO MOV 4 Ay = |31
or = MOM - MOy = 7],

11
o] = (MOY MO 4 (D) M) = [1 1.
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3. The minimal canonical form of a tensor network

Moreover, in this example it is easy to see that there does not exist a g € GL(2) such
that g - M is in minimal canonical form. However, if we let

¢ O
Je= 0 1
then we may verify that

(0)_1_8011 8_10_18
9€M98‘[01H00 0 1/-[0o0

1 .-1_|e o]0 1| [et o] _[0 e
9€M98‘[01H01 0 1-[01

so as we let ¢ — 0 we see that g, - M — M, which as just discussed is in minimal
canonical form.

Example 3.2.12. An amusing special case is d = 1, so we have a single matrix
M € Matpxp. The minimal canonical form is given by the diagonal matrix with
the same eigenvalues as M (repeated according to their algebraic multiplicity).
Indeed, there are matrices g such that g, - M = g:Mg;! is in Jordan normal form,
but with ¢ instead of 1 as the offdiagonal entries. Letting ¢ — 0 we obtain the
desired diagonal matrix.

From Examples 3.2.11 and 3.2.12 it is clear that, by virtue of considering the
orbit closure, the minimal canonical form automatically sets off-diagonal blocks
to zero, which is an additional step which needs to be manually taken in the
usual approach to canonical forms for MPS (see Section 3.2.1). There, as already
commented in Section 3.2.1, it may also be necessary to block together multiple
sites. The geometric invariant theory approach makes these steps redundant.’

We will now prove a fundamental theorem for MPS where this will become
explicit. Before stating the result, we state the ingredient that will be used to
prove it. In invariant theory, the action of the gauge group on MPS tensors
(Definition 3.2.2) is known as the simultaneous conjugation action of GL(D) on matrix
tuples in Matd_ . There, it is known that the ring of invariant polynomials is
generated precisely by the coefficients (3.2.1) of the corresponding matrix product
states for system size 1 < n < D?, as stated in the following theorem:

Theorem 3.2.13 (Procesi-Razmyslov-Formanek [Pro76; Raz74; For86; DP17]). The
invariant ring for the simultaneous conjugation action, i.e., C[Mat |SMD) s generated
by the invariant polynomials Py, where

Pi(M) = (i1, in|Mn) = TrMW - M),
foralli=(i,...,in) € [d]™ and n € N. Moreover, it suffices to restrict tom € [D?].

Thus, geometric invariant theory implies that gauge equivalence of the tensors
(which by Theorem 3.2.9 is captured by the minimal canonical form) is precisely
equivalent to equality of the corresponding matrix product states! We summarize
this in the following fundamental theorem for MPS (note that it works in full
generality, without the need to block sites or remove off-diagonal terms):

3As a side remark, there is actually no need to block in the usual canonical form for MPS. This is a
consequence of Theorem 16 in [DCSP17], together with the overlooked observation that the
matrix Z appearing there can be absorbed in another gauge transformation.
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3.2. Matrix product states

Theorem 3.2.14 (Fundamental theorem for MPS). Let M, N € Mat% «p- Then the
following are equivalent:

(i) M and N are gauge equivalent, i.e., GL(D) - M N GL(D) - N # 0.
(ii) |Mn) = |Ny) foralln € N.
(iii) [Mn) = |Np)forn=1,...,D2
Proof. This follows from Theorems 2.3.7 and 3.2.13. O

Remark 3.2.15. It is also known that the invariant ring is not generated when restricting
ton < D?/8 [For86]. However, while a system of generators of the invariant ring always
suffices to separate orbit closures, this is in fact not necessary. Theorem 1.14 in [DM20a]
shows that the third condition in Theorem 3.2.14 can be improved almost quadratically to:

3. IMp) = [Ny forn=1,...,4Dlog, D + 12D — 4,

and it has been conjectured that n = O(D) suffices [Shi19]. Example 3.2.17 shows that
this is essentially tight.

Example 3.2.16. In Example 3.2.4 we saw two matrix tuples M, M € MatgX2

that defined the GHZ states, for all system sizes. By our fundamental theorem,
Theorem 3.2.14, this implies that they are gauge equivalent, meaning that

GL(D)- M NGL(D) - M # 0.

Now, in Example 3.2.11 we saw that M is already in minimal canonical form. By

the Kempf-Ness theorem (Theorem 2.4.4) this means that the orbit of M is already
closed. It follows that

M e GL(D) - M,
which is in exact agreement with what we saw in Example 3.2.11.

Example 3.2.17. We also revisit Example 3.2.12, the case of a single matrix. For
M, N € Matpxp, the equality of quantum states means that Tr M™ = Tr N™ for alln,
which is the case if and only if M, N have the same characteristic polynomial and
hence the same eigenvalues with the same algebraic multiplicities — in agreement
with the discussion in Example 3.2.12. Thus we see that in this special case it
suffices to have equality for alln =1, ..., D. This is also necessary, since, e.g., for
M a D x D-permutation matrix representing a D-cycle we have Tr M™ = 0 for
1<n<D.

Together, Theorems 3.2.9 and 3.2.14 show that if M, N are two matrix tuples in
minimal canonical form that give rise to the same quantum states, then M and N
are related by a unitary gauge symmetry. As a consequence, we can lift unitary
symmetries to the virtual level. Again, we do not need to make any assumptions
about the tensor M.

Corollary 3.2.18 (Lifting symmetries). Suppose that M, N € Mat  are in minimal
canonical form and w € U(d) is a unitary such that u®™ [My) = [Ny) for alln € N.
Then there exists a unitary U € U(D) such that (I1® I®@u) M) = (U® U I) [N).
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3. The minimal canonical form of a tensor network

In other words, the action of u on the physical degrees of M is implemented by
the gauge action of U on N.

Proof. Let M’ € Mat,

Dxp Pe the matrix tuple defined by

M) = (1@ 1@w)|M).

Then M’ is also in minimal canonical form, since u is unitary and hence we have
llg - M|| = [|g- M’|| for all g € GL(D). Moreover, by construction it holds that

IM7) = u®™ M) = [Nn)

for all n € N. Thus Theorem 3.2.14 shows that M” and N are gauge equivalent,
and it follows from Theorem 3.2.9 that there exists a unitary gauge transformation
U € GL(D) such that U - N = M. O

We note that U need not be unique; for instance, M itself may have a stabilizer,
i.e., there may exist U € U(D) such that U- M = M. Indeed, this is exactly the
case in which the MPS given by M has a global on-site symmetry, for which
Corollary 3.2.18 reproduces, for the minimal canonical form, the known local
characterization of symmetries on MPS [CPSV21] usually obtained via the left or
right canonical form and Theorem 3.2.6.

Such characterization is the key step in the classification of symmetry protected
topological phases done in [CGW11; PBTO12; SPC11]. The connection is as follows.
If a system is invariant under the action of an onsite (global) symmetry group ug,
one gets u‘g’“ |Wn) = |¥n) for its ground state |V;,) (global phases do not play a
relevant role here). Since |¥,,) is known to be very well approximated by MPS
one may want to solve equation ug’“ IMy,) = |[My,) for the MPS generated by some
tensor M. By Corollary 3.2.18, this is characterized by the existence of U4 € U(D)
such that (I® I ® ug) |M) = (Ug ® Ug ® I) [M). It is not difficult to see that Ug
must be a projective representation of the symmetry group. The classification of
SPT phases is given then by all non-equivalent projective representations, which is
precisely described by the second cohomology group of the group cohomology
of the symmetry group. The general validity of this approach has been recently
established by the groundbreaking results of Ogata [Oga20].

The idea that the relevant topological content of a system lies in its boundary
has also given rise to the study of a bulk-boundary correspondence, usually
known in this context as “entanglement spectra” or “entanglement Hamiltonian”
[CPSV11], in which one upgrades the boundary to a physical system and looks
for a dictionary between bulk and boundary properties. This is precisely the
reason that tensor networks have become rather popular in the context of AdS-CFT
holography in quantum gravity. For this program it is rather crucial that the
boundary representations of the physical on-site symmetries are indeed given
themselves by unitary representations, which is precisely what Corollary 3.2.18
guarantees for the MPS case.

Remark 3.2.19. As commented in Section 3.2.1, a MPS state can also be interpreted
as a CP map on the virtual Hilbert spaces, where M € Mat%xD is interpreted such

that the MY are Kraus operators of a CP map &, usually called the transfer operator.
Equivalently, the reduced state p1o of the quantum state p = |M) (M| on both virtual
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3.2. Matrix product states

Hilbert spaces is the Choi operator of &. As explained above Definition 3.2.5, the left
and right canonical form conditions are equivalent to & either being completely positive
trace-preserving (CPTP) or unital (CPU). This perspective is particularly useful when
dealing with contractions of large or infinite uniform MPS (the thermodynamic limit).

What is the interpretation of the minimal canonical form in this perspective? It is not
hard to see that a mixed quantum state p1, with conjugate marginals (i.e., p1 = p2T ) that are
full-rank contains exactly the same data as a CPTP map ® along with a full-rank invariant
density operator Q (i.e., ®(Q) = Q). The isomorphism p1z +— (®, Q) is defined by
defining @ = @1, as the CPTP map with Choi operator le/Zplzpil/z and Q = pp = pir.
If the marginals do not have full rank we can restrict to its support. By duality, this is
in turn is the same as a CP unital map ¢ along with a faithful invariant state w in the
algebraic sense: We have an isomorphism (®, Q) > (¢, w), defined by taking ¢ = ©F
and w(X) = Tr QX. At this point we do not see a natural interpretation of these conditions
for MPS contractions in the thermodynamic limit.

3.2.3. Canonical forms for MPS with open boundary conditions

We will now consider open boundary conditions. We use the invariant theory
framework to define canonical forms, which in this case are closely related to
well-known canonical forms. Then it is natural to fix the system size n, and to
consider the non-uniform setting. Let

-1

_ d
V= MatDkXDkH
k

3

I
(e}

where Dg = D, = 1. As usual, d is the physical dimension and the Dy are the
bond dimensions (which may vary per bond). Let M = (M,, ..., Mu-1) €V, then
the associated MPS state |M) (note that now we have a fixed system size) is defined

by
(o...in1/M) = Méio>M§i1) . Mi:l)_

Welet G = GL(D1) X - - - X GL(Dn-1) act on V by gauge transformations. To define
this action, let g = (g1,...,gn-1) € Gand M = (My,...,My_1) € V. Then the
action is given by

g-M=((1,91)-Mo,(91,92) - M1, ...,(gn-2,9n-1) - Mn—2,(gn-1,1) - M _1).
where for M; = (1\4?))].‘1:1

(91, gi+1) - My := (QiM(i])Qi_il)jd:l-

It is clear that the resulting MPS state is invariant under the action of G. For every
‘bond cut’k € {1,...,n -1}, we let

Wk = MatdeDk @MatDkxdn—k
and we define a G-action on Wy by

g - (Wieft, Wright) = (Wleftgilr ngright)-
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3. The minimal canonical form of a tensor network

Then we have a map tx: V — Wi, which maps the vector of MPS tensors M to a
pair of ‘half-chain contractions” (My jeft, Mk,right)

o Bt Migtere = MEOMEY L MY, Mugrign ke ina) = MY MO,
This map is clearly G-equivariant. We can patch the maps 1 together to obtain a
G-equivariant polynomial map

n-1

Vo W:= @Wk.
k=1

We can think of My jeft and My right as the states where we have contracted all the
bonds except the k-th. In this perspective the reduced density matrices on the left
and right copies of CP« are given by

Ok left = Z(M(lk Dyt M(IO))'I'M(W) M(lk 1) _ Mk lefth oft

— (ix) (1n ) (tn-1)yt (Lt _
pk,right - Z lek T ' (M ' ) (lek ) M rlghth [right

We claim that norm minimization in the image of 1 leads to a canonical form where
Ok left = pk right” which we call the minimal canonical form for non-uniform MPS:

Definition 3.2.20. Let M € V. Then Muyy, is a minimal canonical form for M if
U(Mpin) is an element of minimal norm with respect to the orbit closure G - M, i.e.,

Mmin = argmin {|[(M)|| : M" € GL(D) - M}.

The norm we are considering here is again the Euclidean one. Note also that
g - k(M) only depends on gx. Therefore, we may also write gy - (x(M). In
minimizing ||g - (M)|| we may minimize each ||gx - tx(M)|| separately. By the
same general theory as applied in Section 3.2.2 we deduce that the canonical form
exists and is unique up to conjugation by unitary elements in G. Moreover, as
in Theorem 3.2.10 we may set an appropriate derivative equal to zero to find a
condition for when M is in minimal canonical form.

Letting gi(t) = e*** for Xy € Herm(Dy) we see that

gx(t) - u(M)]|?
= Tr[(gk(t)‘l)”\/lf< et Mk Jeft Gk (D)™ + gi(DOMicright M, o 9(D)'

_ =2t X 1 2tX
—Tr[ MY My et + MigrigheM .

k left k rlght

and hence, denoting by g(t) = (g1(t), ..., gn-1(t)) we have

n-1

d=ollUg(t) - M)II* = 3e=0 ) _llgrc(t) - (M2
k=1
n-1

_ t
=2 Z Tr [Xk (Mk rlghth right Mk,lefthfleft) ] :
k=1
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3.2. Matrix product states

Setting this equal to zero is equivalent to py jeft = pk ght for all k.

We may explicitly perform the minimization; it is closely related to Vidal’s
canonical form [Vid03]. We can perform a singular value decomposition

My left = V1Z1Uy

where V| € Matgx,p, is anisometry, L1 € Matp, xp, is diagonal with nonnegative
entries and U; € Matp, xp, is unitary. Next, we perform a singular value
decomposition on X1U; My right SO

21U My right = Ua22 V2

where V, € Matp ,gn-« is an isometry, £, € Matp,xp, is diagonal with nonnega-
tive entries and U, € Matp, xp, is unitary. Let IT; be the projection onto ker(X;)
and let £; = X; + TT;. Then let

~—1 ~
g = VI, W

and we let Mk,]eft = My lertg ™+ and I\N/lklright = gMy right- Then we may verify that
the associated reduced density matrices are

~ + ~
Pk left = Mk,lefth,left

~ ~—1 ~—1 ~
= 5 UL WM, o MictereUT 2 U5

= VEUWE WU, VIV Uy WS  Upy £

and
T o ~t
P right = Mk/righth,right
S =—1
5 351U My righe M, nghtulzl U\ 2,

5 U UL T U Ul S, Ut Uny E5
=1,

Therefore, defining gy in this fashion for each k gives g - M in minimal canonical
form. In this case it is not necessary to go to the closure to obtain the canonical
form.
This canonical form coincides with the one of Vidal [Vid03], usually written in
the form . _ .
Y OARA - AT g, ) (328)

i19...in-1

if one identifies Mgk) with VA I“](:") VAx+1. The reason is that, by the properties
of Vidal’s canonical form [Vid03; Sch11], such choice fulfills the algebraic charac-

terization of the minimal canonical form given by py jefs = pk oht for all k. Since

the positive diagonal matrices Ay correspond to the Schmidt Coeff1c1ents of the
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3. The minimal canonical form of a tensor network

bipartition of the system in the cut [0 : k — 1], [k — 1], the minimal canonical form
can be understood in this case as an even distribution of those weights. This
particular distribution of weights has also appeared extensively in the standard
MPS literature [OVO08].

There are also left and right canonical forms [Sch11]. These fit in the same
framework, which we will now show for the left canonical form (with the right
canonical form being completely analogous). Let V be as before, but now we
consider the action of G = SL(D1) X - - - X SL(Dn-1). We let Wy, = Mat k., (Which
is only the left half chain) and we let 1, : V — W) be given by My = 11(M)

(o et | Mie = MgPM M)

(so this is what previously was My jet). The group action is given by the My
ngil. We similarly define

n-1

Vo W:= @Wk.
k=1

Computing the gradient as before, but now restricting to traceless X (as we are
optimizing over SL(Dy)) we find that at the minimum of the norm ||g - (M)|| the
reduced density matrix py jefe must be proportional to the identity for all k. Again,
we can explicitly realize the minimum, without going to the closure. To this end
we perform a singular value decomposition My = VZU. Let IT be the projection
onto ker(Z) and let £ = X +TT. Then taking gx = det(£U)"1/PxZU € SL(Dy) yields
a uniform reduced density matrix py jeft.

3.3. Projected entangled pair states

In this section we start by defining projected entangled pair states (PEPS), in
particular uniform PEPS. In Section 3.3.2 we introduce the minimal canonical form
for PEPS. We will see that by closely analogous arguments to the MPS case we
may establish its basic properties. In Section 3.3.4 we relate to two-dimensional
tilings and explain how our results are compatible with earlier no-go results for the
existence of canonical forms for PEPS. In Section 3.3.5 we study in more detail the
role of the orbit closure and show that in many cases of interest the orbit is closed.

3.3.1. Definition of uniform PEPS

We will now define a generalization of MPS, known as Projected Entangled Pair
States (PEPS). We start by defining a rather general version, and then specialize to
cases of interest. As input we require a graph I' = (V, E) and dimensions (De¢)cct
(the bond dimensions) and (d, )vev (the physical dimensions). Let E(v) denote the
set of edges incident to v € V. Then we let T, := C% and for each e € E(v) we
let Hy ¢ := CPe. The PEPS will now be constructed from a collection of tensors
(TI]), ey where

el (X) Hye |oH,.
ecE(v)
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3.3. Projected entangled pair states

The resulting PEPS is a state on (X), ., Hy and is constructed by ‘contracting along
the edges’. If e = (v, w) is an edge incident to v and w, then the contraction map
de 1 Hy e ® Hyye — C along e is defined by

[1j) > 04

and extending by linearity. We may apply these maps along each of the edges in E
and this yields a state |Tr) on (X), .\, Hy.

A clean way of writing this contraction operation (and also explaining the
nomenclature projected entangled pair states) is by the identity

De-1
= & (Z(ﬁ|)®lv ).

e=(v,w)eE \ i=0 veV

where Iy is the identity operator on X), ., Hy.

We will now specialize to the case of uniform PEPS. In this case we place the same
tensor at each vertex. It is natural to contract the tensors placed on periodic grids
in m spatial dimensions, but we will see that other graphs are also relevant. We
denote the physical dimension by d and the associated physical Hilbert space by
Hphys = C4, and there are m relevant bond dimensions in the different directions,
which we will denote by Dy for k € [m]. For each direction k € [m] we have two
Hilbert spaces Hy 1 = CPx and Hy, = CPx. Similar to the MPS case, we may
interpret the PEPS tensor T either as a tensor

m
IT) € ® Hy,1 ® Hy2 | ® Hphys (3.3.1)
k=1
or as a matrix tuple
m
T=TM, T € ® Matp,xp; (3.3.2)
j=1

and we will generally identify this space of matrix tuples as Mat%1...Dm><D1...Dm'

Typically, one constructs corresponding quantum states by placing copies of the
tensor on a grid and contracting along the bond dimensions, see Fig. 3.7.

Definition 3.3.1 (Uniform PEPS on a grid). For any matrix tuple T = (T(i))fl:1 €
Ma’c%lmDmelmDm and system sizes ny,..., Ny € N, we define the uniform (or
translation-invariant) projected entangled pair state (PEPS) as the (not necessarily)
quantum state |Tn,, n,.) € (C9)®", where n = ny...ny, and which is given by
contracting n copies of Tonannj X - - - X ny,, periodic grid.

We would like to allow a broader class of uniform PEPS, where one may use
in principle any possible contraction graph. In such a contraction graph we only
demand that the directions are matched up, in the sense that we always contract
Hy 1 with Hy . A natural way to express such contractions is as follows. Suppose
that we have n vertices, with at each vertex a copy of T, and we are given a
contraction graph. We will define permutations 7y € S;, for each direction k € [m].
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3. The minimal canonical form of a tensor network

[ Tr,m) |Tre)

Figure 3.7.: Projected entangled pair states: Given a tensor T, here in two spatial
dimensions, we may contract on a ny X n; grid to obtain | Ty, n,) or
using arbitrary permutations 7 = (711, 72) to get | Tr).

Suppose that in direction k «, 3 € [n] are such that the Hilbert space Hy > of the
a-th copy of T is contracted with the Hilbert space Hy ; of the (3-th copy of T, then
we let e map « to 3. Each contraction map (and ordering of the vertices) then
uniquely determines permutations 7x € Sy,. As permutations 7w = (71q,...,7Tm)
completely determine the contraction of the n copies of T to a quantum state on

Hl‘f’}:‘y = (C4)®™ we denote this state by |T,). For k € [m] let R, be the operator

on (CPx)®n permuting the n tensor factors.

Definition 3.3.2 (Uniform PEPS on arbitrary contraction graphs). For any matrix
tuple T = (T(i))gz1 € Mat%lmD «D;..D,.s System size n and for 7t = (711,...,7Tm) €
ST we define the associated u?ﬁform p;(l)jected entangled pair state (PEPS) as the (not
necessarily) quantum state | Tr) € (C4)®™ which has coefficients defined by

(1, in|To) = Tr[(Rm ®..9R )TW®...® Tﬁn)] i=(iy,...,1in) € [d]™

We may use the coefficients of the contracted state |T,) to define functions
Pri € @[Mat%l...Dmel...Dm] as
PT(,i(T) = <i'1/ e /iT\.|T7T> . (333)

For m = 1 we get back the usual notion of MPS. Note that in this case, if we
assume the contraction graph to be connected, there is a unique way to contract
the tensors, corresponding to any full cycle in S,. Indeed, for T € Mat,  and
m=(12...n) € S;; we see that |T) = |T,) as defined in Eq. (3.2.1).

We also note that we recover the notion of uniform PEPS on a grid by choosing
appropriate permutations. For instance, for m = 2, and a grid of size n; X n, this
would correspond to using the permutations

7T =(1 2...T11)(TL1+1T11+2...2TL1)...((T12—1)T11+1 (nz—l)n1+2...n2n1)
7'[22(1 n1+1...(n2—1)n1+1)(2n1 +2...(T12—1)T11+2)(T11 2T11...T12T11).

This yields (upon appropriately identifying the copies of Hypys) an equivalence

|Tn1,n2> = |T(711,7r2)>-
As in the MPS case, we have a ‘gauge group’ acting on the tensor. We can now
act with a different group element along each direction k € [m].
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3.3. Projected entangled pair states

Definition 3.3.3 (Gauge action). We define the gauge action of g € G = GL(D1) X

-+ X GL(Dyy,), where g = (g1,...,gm),on T € Mat%l_”DmelmDm as

. d
g-T= ((91®...®gm)T(‘)(gl‘1®...®g;%)

If we think of T as a quantum state |T) in (X);-; Hk,1 ® Hx2) ® Hphys, the gauge
action can be written as

g-|T) = ((@ gk ® giT) ® I) ).
k=1

As in the MPS case, it is easy to see that this action keeps the associated PEPS
invariant. By continuity, this is also true after taking limits, giving rise to the
following lemma.

Lemma 3.3.4. For every T € Matl, , o 1, G =GLD1)x--XGL(Dw), if
T € G- T, then for all w € ST

Tre) = [T7) -
and in particular
Pn,i(T) = Pn,i(Tl)'

In other words, the coefficient functions P ; are polynomials in the invariant ring

C[Mat%l...Dmel...Dm]G' We have a corresponding notion of gauge equivalence.

Definition 3.3.5 (Gauge equivalence). Let S, T € Ma’t%l.__DmelwDm be two matrix
tuples. Let G = GL(D1) X - - - X GL(D+,). We say that S and T are gauge equivalent if
andonlyif G-SNG-T #0.

3.3.2. Minimal canonical form

We consider uniform PEPS in m spatial dimensions with bond dimensions
Dji,..., D and physical dimension d. We denote the gauge group by G =
GL(D1) X - -+ X GL(Dyn). We denote by K = U(Dq) X - -+ X U(Dy) C G the unitary
subgroup. We can now follow exactly the same approach as in the MPS case to
define the minimal canonical form, and the same general results from geometric
invariant theory allow us to prove its basic properties.

Definition 3.3.6 (Minimal canonical form PEPS). We say Tin € Matl(il)l...Dmel...Dm

is a minimal canonical form of T € Mat4 if it is an element of minimal

Dq..DnXD1q...Dm
norm in the orbit closure G - T, i.e.,

Tmin = argmin {||S]| : S € G- T}.

Wesay T € Maty  .p, p, Isin canonical form if it is a minimal canonical form

for itself, i.e. an element of minimal normin G - T.
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3. The minimal canonical form of a tensor network

The norm considered in the definition is, as in the MPS case, the Euclidean norm
of T (or |T)):

d 1/2
ITI = V(T|T) = (Z Tr[(T(i))+T(i)]) .
i=1
The minimal canonical form is not uniquely defined, but it is unique up to the
action by the unitary group K = U(D1) X --- X U(D,):

Theorem 3.3.7 (Minimal canonical form). Let S, T € Mat%l...Dmel...Dm’ Then the
following are equivalent:

(i) Sand T have a common minimal canonical form.
(ii) If Smin and Tmin are minimal canonical forms for S and T, then K - Spmin = K - Tin.

(iii) S and T are gauge equivalent, i.e., G-SNG-T # 0.
Proof. This is an immediate consequence of Theorems 2.3.7 and 2.4.4. O

Recall that if T € Ma’c%l“_DmelmDm is a PEPS tensor, we saw in Eq. (3.3.1)
that we may consider it as a quantum state |T). For each ‘direction’ k € [m] we
have two virtual Hilbert spaces Hy 1 and Hy > of dimension Dy and there is the
physical Hilbert space Hppys of dimension d. We denote by py ; the reduced state
of p = |T)(T| on Hy ;.

The characterization of minimum norm vectors as critical norm vectors in
Theorem 2.4.4 can be used to give a condition for a tensor to be in minimal
canonical form. To find this condition we perform a computation similar to the
MPS case. We identify iLie(K) with Herm(D1) X - - - X Herm(D ) and compute for
X =(Xq,...,Xmm) € Herm(D1) X - - - x Herm(Dy,)

d=oll(e™, ..., eXm) - T2

d
=0i=0 Tr| ) (e ®...@ ) TW(e? X1 @ .. @2 Xm)(TO)!
[ i=1
m d - N (3.3.4)
=2) Tr|lp, ®...8X®...01Ip, | > THTO) - (TO)TW
k=1 | i=1
m -
=23 Te[Xe (P - ofo) |
k=1
Theorem 3.3.8 (Characterization). Let T € Mat4 . Then T is in minimal

D1..DmXD1..Dim
canonical form if and only if ||g - T|| > ||T|| for all g € G. This is the case if and only if the

reduced density matrices of p = |T)(T| on the virtual bonds are the same in each direction,
up to a transpose:

PK1 = pl,z (Vk € [m]) (3.3.5)

Proof. By Theorem 2.4.4, T is in minimal canonical form if and only if it is critical,
which means that the derivative in Eq. (3.3.4) should vanish for all X. This is
equivalent to py 1 = pl , forall k € [m]. O
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3.3. Projected entangled pair states

% H%

Figure 3.8.: Minimal canonical form PEPS: Graphical version of the conditions
P11 = P, and po1 = p, , from Theorem 3.3.8.

These conditions are illustrated in Fig. 3.8 for m = 2. Without the framework
of invariant theory, it is not clear that one can indeed transform any tensor by
gauge transformations to satisfy the conditions in Theorem 3.3.8. This is an
important difference with earlier proposals for canonical forms for PEPS. For
instance, [PMV15] proposes a canonical form based on a similar (but different)
condition. However, in that case, it is not clear that such a canonical form indeed
exists for any tensor.

Both Theorem 3.3.7 and Theorem 3.3.8, giving the “uniqueness” of the canonical
form and its algebraic characterization respectively, only require situations in which
one is already interested in analyzing tensors related by gauge transformations.
Reducing to such a situation is the goal of the Fundamental Theorems. For MPS
we already saw such fundamental theorems, in particular Theorem 3.2.14, which
apply to general MPS.

For PEPS the situation is more complicated, but for important special cases,
fundamental theorems are known. In particular, fundamental theorems are known
for the family of normal tensors [CPSV17], proven for the uniform 2D case in
[PSG+10], and extended to the general case in [MGP+18].

To define normal tensors, we first recall the notion of an injective PEPS tensor. A

tensor T € Mat,  .p, p, isinjective if it is injective as a map from the virtual

tensor. Let us explain what we mean by ‘blocking’. Given T € Mat%1...Dme1...Dm

we can contractn = nj ...n,, copies of T on a rectangular lattice of size nq X- - - Xn,
sites to obtain a new tensor T with physical dimension d™ and bond dimensions
D>, D D™ The tensor T is normal if there exists some
blocking such that the resulting tensor T is injective.

Hence in the normal case, which is a generic condition, Theorem 3.3.7 and
Theorem 3.3.8 together with the Fundamental Theorem of [PSG+10] already
apply to show the following statement (for simplicity we only write down the
two-dimensional case):

Corollary 3.3.9. Two normal tensors T and S in Mat%lmelD2 define the same state

in all Ny X ny grids, i.e. |Tnn,) = |Snyn,) for all ny,ny € N, if and only if their
corresponding minimal canonical forms Smin and Tmin are related by local unitary gauges:
Smin = W+ Trin for a suitable unitary U € U(D1) x U(D2).

Moreover, we will see below in Proposition 3.3.20 that the orbit of a normal
tensor is always closed. However, this is not the end of the story. There are other
(non-normal) tensors which define the same state in all n; X n, grids, but are
nevertheless not related by a gauge transformation. An explicit example appears
in [MGSC18], in the context of 2D SPT phases. We provide the example here:
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3. The minimal canonical form of a tensor network

Example 3.3.10. The idea of the example is simple but ingenious. Take pairs of
MPS normal tensors A and B so that |A4) = |By) but |A;) # |Bj) forallj > 4.4 The
explicit examples of [MGSC18] have physical dimension 2 and are given by the

matrices:
ay _ 10 @) _ 24 -10
AT = [0 2] ;o A= l17 =317

where B1) = A and B@ = -A®).

Now, in each vertex of a two dimensional grid, place four qubits and, by joining
each one of those qubits with the closest one in each of the nearest neighbor sites,
fill in the lattice with a set of non-overlapping plaquettes . The states we are
interested are [M ) = ®pe50 |A4),, and [Mp) = ®p67) [B4),- It is now obvious
how to define the associated PEPS tensors M 4 and My for the vertices. Just take,
with the appropriate identification of indices, Ma = A®* Mg = B®* (recall that
each vertex contains four qubits and therefore the physical dimension is 16). It is
shown in [MGSC18] that tensors M 4, M are not in the same GL4 X GL4 orbit. One
can indeed show that the closure of their orbits do not intersect. One possibility is
just to realize that, because of the symmetry of the tensors M Ao and Mg, they are
already in minimal canonical form, and therefore their orbits are already closed.
The other possibility is to compare M o and Mg in different contraction graphs I'.
It is easy to find some I" for which the length of some of the plaquettes are larger
than 4 and then the fact that |A;) # [B;) for j > 4 implies that the associated states
IMa r)and [Mg r) are different, which in turn implies that the orbits of M o and
Mg cannot intersect.

3.3.3. Fundamental theorem and invariant theory of uniform PEPS

This example makes clear that we have to change perspective to derive a Funda-
mental Theorem which is an analog to the MPS one (Theorem 3.2.14). Instead of
starting with the condition [Sn, n,) = [Tn,n,) for all ny, ny, and asking how the
tensors S and T are related, we start with the condition that S and T are gauge
equivalent, and we ask how we can characterize this based on the corresponding
tensor network states. It turns out that we need to compare the states not just on
grids, but on arbitrary contraction graphs. That is, the appropriate conditions is
|S7) = |Tx) for tuples of permutations 7.

Additionally, for MPS we found that it suffices to consider systems of size at most
D2 (Theorem 3.2.14) or even O(D) (Remark 3.2.15). For m > 2 we prove a similar
bound, but now we need a system size exponential in D (and we show below, in
Proposition 3.3.15, that this exponential dependence cannot be avoided). Formally,
we have the following weak version of a Fundamental Theorem, illustrated in
Fig. 3.3.

Theorem 3.3.11 (Fundamental Theorem for PEPS). Let S, T € Mat%l...Dmel...Dm'
Then the following are equivalent:

(i) The G-orbit closures of S and T intersect, i.e., G-SNG-T # 0.

41t is only proven in [MGSC18] that |As) # |Bs), but since it is also shown that both A and
B become injective when blocking two sites, known bounds for the fundamental theorem
[MGP+18] imply already that if [A;) = |B;) for any j > 6, then A and B would be gauge-related
and then |As) = |Bs).
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.....

.....

max{D1,...,D.} and c is a constant.

To prove this result, we start with the following lemma (which is a basic result
in invariant theory [KP96, §4.6]), which allows us to reduce the study of invariant
polynomials C[Mat ]€ to the study of multilinear invariant polynomials.
While the result is a basic one, it is a key component in proving a number of first
fundamental theorems in invariant theory, see [KP96] for more details.

Lemma 3.3.12. For any subgroup G C GL(D), any polynomial P in the ring of invariant
polynomials C[Mat3 16 can be written as a linear combination of multihomogeneous
invariant polynomials Py, of some multidegree n = (ny,...,nq), each of which can be
written as

PoMO, MOy =MD, ... MO oM@ M)y, (3.3.6)

nq times ngq times

where Q is a multilinear G-invariant polynomial in . = Y_ & 0y matrix variables.

Proof. Let P = P(MW,...,MY) € C[Matd ,]C. First we show that we may

assume that P is multihomogeneous, i.e., homogeneous of some degree n; in each
matrix variable M(Y. Indeed, we can write

PMY, . MWy = Y pyMB, L M),

n=(n1/"-/nd)

where P, is homogeneous of degree n; in the matrix variable MY Since the space
of homogeneous polynomials of multidegree n is invariant under GL(D), and
spaces of different multidegree are linearly independent, each P;, is G-invariant.
Thus we may without loss of generality assume that P = P,,. Next, we reduce
to multilinear invariants of some possibly larger number of matrices, as follows.
Consider P(MID) ... 4 M) MdD) 4. 4 Mm(dma)) o polynomial in formal
matrix variables M) for i € [d] and j € [ni], and write
PMID 4o M) M@ L mdma))

= Z Ph(M(Ll)/ ey M(d’nd))’
h=(hi1,.hang)

where Py, is homogeneous of degree h; ; in each matrix variable M(*). Now note
thatforall t11,...,tan,,

Pt MY oty MO MUY gty M)

— Z thPh(M(l’l), .., M(dlna))l (3.3.7)
h=(h11, hang)

so if we take M) = MO for all i € [d] and j € [n;] we have

Pt AMD 4ty o MDDt M@ 1ty M)
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= > MY, MDD M),
h=(hi1,...han,)

nq times ng times
On the other hand, by multihomogeneity,

Pt MDD oty 0 MOt M@ g, M)
(b4 )™ (g 4o+ ) PM®, L M)

Z (h nig N ) .. (h Tldh )thP(M(l), . M(d))
h=(hy1,...hany) L1 e Ty 11 --+ Nng

Comparing coefficients and specializing to h = (1, ..., 1), we find that

1
- @ 1 (d) (d)
d!PL..-,l(M s, MY MY M),

PMWD, ..., M) =
Y nyl-oon

nq times ng times

.....

.....

G-invariant. O

We now return to our setting, where G = GL(D1) X - - - X GL(D,), and use this
lemma to prove.
S s

Proposition 3.3.13. The ring of invariant polynomials @[Mat%l...Dmel...Dm]

generated by functions Pri as in Eq. (3.3.3) for n < exp(cmD?log(mD)) where
D = max{Dq,..., D} and ¢ > 0 is a universal constant.

Proof. Let P = P(TH, ..., TW) e C[Maty, 1, . 5 ]S. By Lemma 3.3.12 with
D = D; ... Dy we may reduce to the case where P = Py, for some n = (ny,...,ng),
and we can write

PTD, . ., T =RTVg..0eTVeT?g...0 T?®...0 TV g..., TY),
—_————
nq times n, times ngq times

where (-, -) is the trace inner product and where
G
Re (End((DD1 ®...® @Dm)®“)
The total degree is given by n = 3~ &, n;. Now note that

(End(cIJD1 ®...® @Dm)®“)G

~ End((CP1)®™)“HPY @ ... @ End((CPm)®m)CHPm)
= C[Rp, 1 €Sn]®...® C[Ry,, : T € Sn]
= C[Ry, ®...Q Ry, 1 7T1,...,Ttm € S

where we denote by R, the operator acting on (CP*)®™ permuting the n copies
of CPx according to mx. Thus, R is a linear combination of elements of the
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3.3. Projected entangled pair states

form Rx = Ry, ® ... ® Ry, for m = (7y,...,7m). We conclude that the ring of
invariant polynomials @[Mat%lmDmelmDm]G is generated as a vector space by the
polynomial functions P as in Eq. (3.3.3) for t € S and n € N. In particular,
the invariant polynomials of degree at most r are spanned by the P i for w e S
andie[d]" forn <.

We now use general results in invariant theory to bound the degree necessary
to generate the invariant ring as an algebra. For convenience, we write V :=
Matp,...n0,,xD,--D,,, SO We are interested in degree bounds for the action of G =
GL(D1) X -+ X GL(Dy,) on V4 = Mat%lmDmelmDm. We first appeal to a classical
theorem by Weyl [Wey46, I1.5 Thm. 2.5.A] which states that if d > dim(V), a
generating set of invariants for V¢ can be obtained by acting with GL(d) on a
generating set for C[V4mMMV)]G s C[V4]C (cf. [KP96, §7.1]). In particular, any
degree bound for d = dim(V) also applies to d > dim(V). Accordingly, we may
assume without loss of generality that d < dim(V). Next, we observe that since
we act by simultaneous conjugation, the invariants for the action of G are the same
as for G’ := SL(D1) X - - - X SL(Dm ), so we can restrict to the latter. By results of
Derksen [Der00] the ring of invariants is generated by invariant polynomials of
degree at most

r< gdim(vd)(Ht‘C“f’“(G’>Adim(G'))2 (3.3.8)

where t, H, A are integers computed as follows. We think of G’ as being embedded
in &, Matp, xp, = CY, witht = Y %, Di. Then G’ is defined as the common
zero set of the polynomials det(gi) — 1 for k € [m]. The integer H is the maximal
degree of these polynomials, i.e., H = maxy D. If one fixes an arbitrary basis
of V4, the matrix entries of the representation of G’ are polynomial functions of
the coordinates of C* (that is, the entries of the gi). The integer A is the maximal
degree of these polynomials. To compute it, note that (g1,...,gm) € G’ acts on
a matrix tuple T = (T(i))gl=1 € V4 by simultaneous conjugation by g1 ® - - - ® gm.
Thus, we left multiply each matrix T® with g1 ® - - - ® g, the entries of which are
polynomials of degree m in the entries of the gy, and we right multiply each T
with

6;' ®:+-® g = adj(g1) ® -+~ ® adj(gm), (33.9)

where adj(gi) is the adjugate matrix of gi (here we used that gx € SL(Dy),
so that we did not have to divide by the determinant when computing the
inverse); since the entries of the adjugate matrix are given by cofactors of gi
and hence have degree Dy — 1, the entries of (3.3.9) are polynomials of degree
Y e1(Dk — 1). Therefore, each matrix entry of the representation of G’ is a
polynomial of degree A =m+ ) 1 ,(Dyx—-1)=> -, Dy.

Evaluating Eq. (3.3.8) with dim(V%) = d ], Di, d < dim(V), dim(G’) =
> 1ei(D2 - 1), H=maxg Dy, t = Y L, D2 and A = ) -, Dy shows that we can
bound the required degree by

y L (D2-1))\2

3 m m m
2 2
n < 3 (d l_[ Dy (m]?x Dk) Z Dy < exp(cmD~ log(mD))
k=1 k=1
for some universal constant ¢ > 0. O
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3. The minimal canonical form of a tensor network

Proof of Theorem 3.3.11. 1t is clear that (i) = (ii) = (iii). The fact that (iii) = (i) is a
consequence of Proposition 3.3.13 and Theorem 2.3.7. |

Corollary 3.3.14 (Lifting symmetries). Suppose that S, T € Mat%lmDmelmDm are
in minimal canonical form and w € U(Q) is a unitary such that u®™ |Sz) = |Tx) for all
e ST and n € N. Then there exist unitaries Uy € U(Dy) such that (1 u)|S) =

(Ryy Uk @ Ui) @ DT).

Proof. Let S’ € Mat,

Dxp Pe the matrix tuple defined by

1S) := (1@ w)|S).

Then §’ is also in minimal canonical form, since u is unitary and hence we have
llg - S|| = [|g - S’|| for all g € G. Moreover, by construction it holds that

[S7) = u®" [Sx) = [T)

for all T € ST and n € N. Thus Theorem 3.3.11 shows that S” and T are gauge
equivalent, and it follows from Theorem 3.3.7 that there exist unitary gauge
transformations Uy € U(Dy) such that (I® u)|S) = ((®km:1 UWoU)®D|T). O

The degree bounds in Proposition 3.3.13 are a direct consequence of deep and
completely general results in invariant theory. These bounds are in general not
necessarily sharp. As an example, the degree bounds obtained in this way for the
MPS case are still exponential, while we know from Theorem 3.2.13 that in this
special case we have a degree bound of D2. Moreover, we know from Remark 3.2.15
that in this case invariants of degree O(D) already suffice to determine whether
two MPS tensors are gauge equivalent.

However, this is quite special for one spatial dimension. For PEPS with spatial
dimension m > 2, we now show that one in general needs to consider invariants
of degree exponential in the bond dimension in order to decide whether two PEPS
tensors are gauge equivalent (even if one is the zero tensor). For convenience we
take m =2, D1 = D, =D, and d =1 (that is, the tensor networks defined by the
PEPS tensors are scalars).

Proposition 3.3.15 (Degree lower bound). There exists a function npin(D) = e2(P)

and, for every D, a tensor T € Matp2yp2 with the following properties:

(i) For any invariant polynomial P € C[Matpayp2 |SHPIXGHD)

Mmin(D), we have P(T) = P(0).

of degree less than

(ii) There exists an invariant polynomial P of degree Nmin(D) such that P(T) # P(0). In
particular, we have 0 € G - T, meaning that T is not gauge equivalent to the zero
tensor.

In particular, the ring of invariant polynomials @[Mat%szz]GL(D)XGL(D) forany d > 1
is not generated by the polynomials of degree 1 < Nmin(D).

Proof. The last statement of the proposition is an immediate consequence of the
described properties of T. Indeed, if the ring of invariants were generated by
invariant polynomials of degree smaller than nyin(D), then P(T) = P(0) for all such
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3.3. Projected entangled pair states

polynomials P would imply that P(T) = P(0) for all invariant polynomials P —but
we know that P(T) # P(0) for at least one invariant polynomial of degree nmin(D).

We will explicitly construct a tensor T € Matp2yp2. For d = 1 and for € ST
and 1= (1,...,1) we abbreviate P,r; = P,;. Since the P for 7t € S} for n < r are
homogeneous and span the degree T polynomials in C[Matp2,p2 |SHP*CUD) it
suffices to show that P (T) = 0 for 7 € S} for n < Ny, while there exists some
7t € SX? for 1 = Nmin such that P(T) # 0. We will take ny, = 2P +2P-1 -2,

To explain the construction and the argument we start with a construction where
we allow the physical dimension d to grow with D, and we construct a tensor
Se Matlszz;ll32 with certain properties. Then, we will use a trick to reduce the

physical dimension. Let {| )')}].Dza1 denote the standard basis of CP. We choose the
tensor S as follows:

sH =10y (1] @0y (1], S® =)0l @10y G|, S@V=10)G+1|®})(+1]

forj=1,...,D —1 and where the index j should be read modulo D (so |D) = |0)).
We will now argue that one the one hand, for all i = (iy,...,in) € [2D - 1]™ and
n < 2P +2P~1 — 2 we have P.;i(S) = 0 for all 7, while on the other hand for
n =2P + 2P~ _ 2 there is some wand i = (i, ..., 1) with P i(S) # 0.

We start by showing that if i = (i1,...,in) withn < 2D 4+ 2D-1 _ 2 then we
have P i(S) = 0. To conveniently reason about contractions in the tensor network
picture we will name the four virtual legs of the tensors as follows:

|left) (right| ® |down) (up|

and call the two directions "horizontal” and “vertical’. In the tensor network picture,
we observe that for each even i = 2j one can only contract the upper leg of S
along the vertical direction with a copy of S@*1 in order for the result to be
nonzero. That is, if we have ix = i even, then 7, must map k to l where iy =1+ 1.
Similarly, for i = 2j + 1 < 2D — 1 odd we need to contract the right leg of $*1)
with the left leg of a copy of S®*?) in the horizontal direction and its upper leg
with a copy of S?*3) in the vertical direction. Together these conditions imply that
if n; denotes the number of copies of SV one requires in order for the contraction
to be nonzero, we have ni;» > niyy1 +ny fori < 2D — 1 odd and niy1 > ny for
i < 2D even. By similar reasoning, for even i = 2j, the left leg of a copy of S
needs to be contracted in the horizontal direction with a copy of S~V and for
odd i =2j +1 > 1, the down leg of a copy of $I*1 needs to be contracted in the
vertical direction with a copy of S@) or S®~1. This implies that if n; # 0 for i > 2
we also need either ni_; or nj_, to be nonzero and in particular n; > 1.

Solving the recursion with ny > 1 gives nai41 > 2tand ny; > 241 fori =
1,...,D — 1. We then have

On the.other hand, it is easy to see that if we take n; copies of SO withn; =1,
Ny = 271 and nyisq = 2 we can indeed contract to something nonzero.
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3. The minimal canonical form of a tensor network

Now, to prove the proposition, we adapt the previous construction to d = 1. We
construct T € Matpayp2 as

2D-1
T=T0=3% s
i=1

Consider some arbitrary 7t € ST". We may expand T = Y_; S%) for each copy of T
to find

Pr(T)= > Pril(S).
i€[d]

By construction of S, each P, i(S) is either zero or one, proving that P.(T) # 0 if
and only if there is some i = (i1, ...,in) such that P, i(S) # 0.

By our previous arguments for S this implies that for all n < 2P +2P~1 -2 and
7t € ST we have P(T) = 0, but that for n = 2P +2P~1 -2 we can find some 7t € ST
such that P(T) # 0. O

Remark 3.3.16. The arqument of Proposition 3.3.15 can be extended to m > 2. We define
a generalization of S € Matgfn?(gz: !

set

as follows: fori=1,...,D-1andj=1,..., m-1

sM = (joy (1™, smA=LH+) = (Joy (0)*UD ® |1) (0] ® (|0) (i|)® ™.
and
S+l — 10y G+ 1)V @ |1) G4+ 1.

Note that as before we interpret the basis states modulo D, i.e., |D) = |0). Then again
define T € Matpmypm by

m(D-1)+1
T=T7D = Z s
i=1
Essentially the same argqument yields
D-1 m-1
Mmin = 1 + Z 2Hm-1) Z 2) = exp(Q(mD))
i=1 j=0

so the degree lower bound also scales exponentially in m.

We note here that proving degree lower bounds is not often an easy task, and
in literature often has to employ rather involved and indirect techniques to get
exponential lower bounds even in very familiar cases, see e.g., [DM20b; DM22].
The technique we use above is far more straightforward and explicit even though
the setting we study here is somewhat similar to some of the cases handled in the
aforementioned papers.
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3.3. Projected entangled pair states

3.3.4. Two-dimensional tensor networks, tilings and topology

Consider the following question: given a PEPS tensor T in two spatial dimensions,
determine whether there exist nj, ny such that the associated state |T,, n,) on a
rectangular periodic lattice of size n1 X n; is nonzero. This problem is undecidable,
see [SMG+20]. The proof of the undecidability given in [SMG+20] is by reducing
to the problem of the existence of a periodic tiling given some set of tiles. Given a
set of square tiles where each edge of the tile is associated to one of D boundary
colors, the question is whether there exists a tiling (meaning that the boundary
colors of adjacent tiles match) which is periodic. Equivalently, this gives a tiling of
the two-dimensional torus. It is known that the existence of such tilings, given a
set of tiles, is undecidable in general [GK72], and in [SMG+20] it was shown how
to embed this problem into a PEPS tensor T of bond dimensions D1 = D, = D
such that the associated state |Tn, n,) on a ny X ny periodic rectangular lattice is
nonzero if and only if there exists a n; X n, periodic tiling. The construction of
such a tensor T is as follows. Let d be the number of tiles, label the tiles with an
index i € [d], and similarly label the colors with an index j € [D]. Then if the tile i
has colors j1, j2, j3, ja on respectively the left, right, upper and lower sides, define
TO = i1) Go| ® [j3) (jal. Ttis not very hard to see that under this construction the
resulting PEPS state | Ty, n,) is nonzero if and only if there exists a n; X n, periodic
tiling. In fact, the argument in [SMG+20] is for PEPS tensors with boundary
conditions, but the undecidability of the existence of periodic tilings [GK72] yields
the same result for PEPS with periodic boundary conditions.

Interestingly, Proposition 3.3.13 shows that if one relaxes the problem to asking
whether a PEPS tensor yields the zero state on any contraction graph, the problem
is decidable, as we only have to check all graphs of size at most exp(O(D? log D)).
Alternatively, the PEPS tensor yields the zero state on any contraction graph if and
only if its minimal canonical form is the zero tensor. In the language of invariant
theory, the PEPS tensor yields the zero state on any contraction graph if and only
if it is in the null cone.

Example 3.3.17. The following is the smallest set of tiles that only gives aperiodic
tilings, meaning that if we take any rectangle with periodic boundary conditions,
the associated PEPS equals zero [JR21].

On the other hand it is easy to construct a geometry for which the associated PEPS
is nonzero:
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3. The minimal canonical form of a tensor network

In general, Proposition 3.3.13 together with the reduction in [SMG+20] shows that
given a set of tiles with D colors, then there exists a ‘generalized tiling’ (i.e. an
arbitrary way to glue together the edges of the tiles) on some closed (possibly
non-orientable) surface if and only if such a generalized tiling exists using at most
exp(O(D?log D) tiles. The problem of deciding, given a set of tiles, whether there
exists some generalized tiling is thus a decidable problem. The construction in
Proposition 3.3.15 in fact used a PEPS corresponding to a tiling problem, showing
that there are indeed situations where the smallest possible generalized tilings are
of size at least exp(Q(D)).

As argued in [SMG+20] their undecidability result excludes the possibility of
a computable canonical form for two-dimensional PEPS which is such that two
tensors T, S yield the same state on all periodic lattices (50 |Tn;n,) = |Sn;n,)
for all ny,ny) if and only if they have the same canonical form. On the other
hand, we saw in Corollary 3.3.9 that any two normal tensors which yield the same
state on a periodic lattice are related by a local gauge transformation. However,
even if generic tensors are normal, in two spatial dimensions many interesting
tensors describing physical systems are not normal, in particular those associated
to topological order, either conventional or symmetry-protected [CPSV21]. One
way to interpret our Fundamental Theorem (Theorem 3.3.11) is that for some
tensors it does not suffice to place them on periodic lattices and that the state they
describe has a type of topological order which is only revealed by placing the
states on a (possibly non-orientable) two-dimensional manifold other than a torus.
This is an idea which is worth exploring in the future, and it is reminiscent of the
well-known fact that different topological sectors can be detected by imposing
different boundary conditions [CPSV21].

3.3.5. When does one need the orbit closure?

In general, finding the minimal canonical form requires one to go to the closure of
the orbit of the action by the gauge group. In other words, if T € Mat%1...Dme1...Dm
is a PEPS tensor in m spatial dimensions, then there may not exist a minimal
canonical form Tyn of the form (g1, ..., gm) - T, but only one that can be written
as a limit of such tensors: Tmin = limj_w(,(ggJ ), el g(ﬁl)) - T. In other words, such
a T is not polystable in the language of Section 2.3.4. When is taking limits really
necessary? In this section we will discuss conditions under which one does not
need to go to the closure and give an example where it is required. We consider
PEPS tensors in m spatial dimensions, and fix bond dimensions Dy, ..., Dy, and
physical dimension d. We denote by G = GL(D1) X - - - X GL(D ).

We will now argue that given a tensor S € Mat%lmDmelmDm in minimal
canonical form, if there exists a T which has S as a canonical form and which
requires taking an orbit closure, then the tensor S must have a continuous symmetry.
We formalize the notion of a continuous symmetry by a multiplicative one-parameter
subgroup of G, which is a homomorphism of Lie groups ¢: C* — G. Given such a
homomorphism we will write g(z) for ¢(z) and we will say that g(z) is nontrivial
if g(z) is not proportional to the identity for all z € C*.

The result we are aiming for is a consequence of the Hilbert-Mumford criterion

in geometric invariant theory. If T € MatDl...Dmel...Dm is any tensor, and Tnin is an
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associated minimal canonical form, then G- Tnin is a closed orbit (by the Kempf-Ness
Theorem, see Theorem 2.4.4). The Hilbert—-Mumford criterion (Theorem 2.3.16)
then implies that there exists a one-parameter subgroup g(z) € G such that

limg(z)-T=S
z—0
where S € G - Thin-

Proposition 3.3.18 (Non-closed implies symmetry). Suppose S € Ma’c%l__.DmelmDm
is such that G - S is closed (in particular this is valid if S is in minimal canonical form).
Suppose that there exists T such that S € G - T but S ¢ G - T, then there exists a nontrivial
one-parameter subgroup g(z) C G,z € C* such that g(z) - S = S for all z € C*.

Proof. By the Hilbert-Mumford criterion there exists g € G and a one-parameter
subgroup h(z) € G such that

limh(z) - T=g-S.
z—0

This one-parameter subgroup must be nontrivial since S ¢ G - T. Let g(z) =
g 'h(z)g. Then

9(z)-S =g 'h(z)g-S = lim g~ 'h(z)h(w) T
= Vlvigio g 'h(zw) - T
=g (g-9)=5
confirming that g(z) is a symmetry for S. O

Example 3.3.19. Returning to the GHZ state in Example 3.2.4, we note that it
indeed has a one-parameter subgroup symmetry, for instance for

M@:[égl

it holds that g(z) - M = M.

An important class of examples of PEPS tensors which lead to closed orbits are
injective and normal tensors, already defined in Section 3.3.2. For those tensors
(in particular for normal MPS) one does not need to take closures to construct
the minimal canonical form. In fact we show that if there is any normal tensor in

G- T, then G - T is closed (and in particular contains a minimal canonical form
for T). A similar result has been shown for the case of MPS in [MGSC18] and has
applications in the classification of two-dimensional SPT phases. This is a nice
example where the geometric invariant theory framework allows for a particularly
simple and conceptually elegant proof.

Proposition 3.3.20 (Canonical form normal PEPS). Suppose T € Mat%lmDmel"_D

m

is such that its orbit closure G - T contains a normal tensor. Then G- T=G-T.
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Proof. By Proposition 3.3.18 it suffices to show that if T is normal, then G- T is closed
and there is no nontrivial one-parameter subgroup g(z) such that g(z)- T =T for
all z e C*.

LetThbethen=nyX- - X1y blocking of T such that Tis injective. So, if we let
D; = D} e T and d=dm,

. i
TeMaty 5 5.5

Let S be any tensor in G - T and let S be the ny X - - - X ny,, blocking of S. Since
S € G - T there must be a sequence gV) = (g(J) cee, g%)) € G for j € N such that

lim g® . T=5.

)—)OO
Since g - T is invariant under rescaling the gy by a constant, we may assume
that ||g(])||oo =1 for all k and j. If we let g()) (g(J))@“1“'“1-1“”1"'“m and gV =
@ ,9533) then

lim & .7 =38.

)—)OO

Now, interpret T as an element of (CDD ® CDD)a where D = D;...Dy, sO

T = (FV)d V¢ ¢P g CP.

i=1’/

Then the fact that T is injective implies that there exists a tensor M e (CP @ CP)d
which is an inverse to T in the sense that

a .
Z -r M(l))Jr _ I~
i=1

is the identity map. Let N be the contraction of g9 - T with M:

o

=3 (600 @0) 1) @)
i=1

(writing Q(j) = gjgj ) .® 9532 in a slight abuse of notation). Then, v must be a

converging sequence (smce gY - T is s0). On the other hand, since M is the inverse
toT,

Y = §0) g (gi))T.

The fact that this sequence converges implies that [|(§9) T |le = [[(§9)7!]|w is
bounded and hence there is some constant C such that for all k € [m]and j € N
we may bound ||(g(])) !l < C. However, this implies that g9 is contained in a
compact subset of G and therefore has a converging subsequence, which in turn
implies that

S=1limg" . TeG- T

)/
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So, we conclude that G - T is closed. Secondly, suppose that there exists a nontrivial
one-parameter subgroup g(z) such that g(z) - T = T for all z € C*. Using the same
notation as before, this implies that there exists a one-parameter subgroup §(z)
such that §(z) - T = T. However, applying the inverse M, this implies

§(2)®§(x)" =1
which implies that g(z) must be proportional to the identity for all z € C*. m|

Beyond normal PEPS states there are also other states of interest where Proposi-
tion 3.3.18 implies that one never needs to go to the closure to obtain the minimal
canonical form.

Example 3.3.21. In two spatial dimensions an important example of a PEPS state
which is not normal is the toric code. This is a state usually defined on a qubit
lattice. To write it as a PEPS state one may group together four physical sites into
a single site of four qubits. The toric code PEPS tensor is then given, as a map
from the bond legs to the physical legs, by T = 11®4 + 174 Alternatively, for
i,k e {0,1}

Tk — [i) G| ® |1y (k| ifi+j+k+liseven,
~ o ifi+j+k+ Lis odd.

This tensor is in minimal canonical form, since all virtual marginals are maximally
mixed. We will now verify that this tensor has a finite symmetry group, and hence
(as opposed to the GHZ state) there are no tensors for which T is in their orbit
closure while not in the orbit itself. Suppose that g - T =T for g = (g1, g2) with
gk € GL(2) for k = 1,2. This is equivalent to

91997 ®g2®g;" [1) 1) k) 1) = [1) ) [k} 1)

foralli+j+k+1=0 mod 2. We can choose i and j arbitrary, so g1 must be
diagonal. By the same reasoning, g, must be diagonal as well. If we let

gio O
0 gia

1

then we find g1,ig2,x = 91,921 foralli+j+k+1=0 mod 2. By choosing i # j and
k # litis easy to see that this implies that after scaling by a global constant (which
is irrelevant) gi; € +1 so we cannot have a nontrivial one-parameter subgroup
symmetry.

Example 3.3.22. The previous example can be generalized to arbitrary quantum
double models for abelian groups G. For an arbitrary finite group G we may
construct a PEPS tensor (also known as a G-isometric PEPS tensor) as follows. The
Hilbert space along each of the bond legs consists of the group algebra C[G] with
basis {|g)}4eg, so the bond dimension is D = |G|. The group G acts by the regular
representation on C[G] as g |h) = |gh). The physical Hilbert space is given by
C[G]®%. Then the PEPS tensor is given, as a map from the bond Hilbert spaces to
the physical Hilbert space as

1 _ _
T=—§ g®gJg®ge®g
Gl =
ge
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The toric code tensor is a special case of this construction for G = Z,. Essentially
the same argument as for the toric code shows that (up to a global constant) the
symmetries of this tensor form a discrete set if the group G is abelian and hence
C[G] decomposes into one-dimensional irreducible representations. Therefore,

GL(D) x GL(D) - T = GL(D) x GL(D) - T.

Example 3.3.23. To give a nontrivial example where we do have a continuous
symmetry, and we have non-closed orbits, we use a construction inspired by
[DCS18], which investigates PEPS with continuous virtual symmetries. Consider
a 2-dimensional PEPS tensor T with physical and bond dimensions all equal to
two, given by

TO= % i)y §leh) (il
i,je{0,1}
TW="3 )§leX]i)§lX

1je{0,1}

In the standard basis we may write this out as

1000 0000
o_[0010 m_l0110
™=lo100 and T 011 0|

0001 0000

See [DCS18] for a graphical notation, expressing contractions as loop diagrams.
All the virtual marginals of T are maximally mixed, so T is in minimal canonical
form. It is now easy to see that g(z) = (h(z), h(z)) is a one-parameter subgroup
symmetry for

h(z) = l(l) gl .

Indeed, since h(z) |i) (j| h(z)~! = 217 |i) (j| and h(z)X i) {(j| Xh(z)~! = Z7IX|i) (j| X

h@eh@)TO (R oh@™) = Y 27 Gle 7 )il =T
i,j€{0,1}

(@ @ hE) T (2 oh@ ™) = 3 27 (1o X (ix=T0.
i,je{0,1}

Let us construct an explicit example where we need the closure to reach the
minimal canonical form. Let N = |1) (0| ® |1) (0| and let

SO=17O4N and SO =TO 4N,

In the standard basis

1000 0000
o_[0010 m_l0110
SU=101 0 0 and S 011 0|

1001 1000
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3.4. Algorithms for computing minimal canonical forms

Now, since h(z) [1) (0| h(z)~! = z|1) (0| and T is invariant under g(z),
(h2) @ h(2) SO () @ h(z) ) = T + 2N
so

limg(z)-S=T.
z—0

On the other hand, since 1 = rank(T®) # rank(S®)) = 2 we see that S is not in the
orbit of T.

3.4. Algorithms for computing minimal canonical forms

In this section we address the question of how to compute minimal canonical
forms algorithmically. We will discuss two algorithms (and sketch potential
applications in Section 3.5). The first one is eminently practical and stated explicitly
in Algorithm 3.1. The second one has a better runtime dependence in theory, but
is less practical. We follow and apply the general framework of [BEG+19] but give
some tighter bounds in our setting.

Before discussing our results and presenting our algorithm in more detail, we
discuss what it means to compute a minimal canonical form. In general, minimal
canonical forms cannot be represented exactly in finite precision, so one is naturally
led to look for approximations. Then there are at least three natural choices of
what it might mean to approximately compute a minimal canonical form of a given
PEPS tensor T:

* (2-error in the space of tensors: Given § > 0, find a tensor S € G - T that is 5-close
in £2-norm to a minimal canonical form Ty, of T. It is natural consider
relative error (but see Remark 3.4.13):

”S - Tmin”
2 minf <. (3.4.1)
ISII

e (%-error in the first-order characterization: Given ¢ > 0, find a tensor S € G- T
such that

1 bk IR
Tro ZHkal - Gk,zu <e where o=][S)(5|. (3.4.2)
k=1
e error in the norm of the tensor: Given ¢ > 0, find a tensor S € G - T whose norm

is almost minimal:

| Tenin |
>1-¢. (3.4.3)
IS

Equation (3.4.3) corresponds to the norm minimization problem (Problem 2.6.3),
whereas Eq. (3.4.2) corresponds to the scaling problem (Problem 2.6.4). We already
know that Eq. (3.4.1) holds with & = 0 if and only if Eq. (3.4.2) holds with ¢ = 0
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3. The minimal canonical form of a tensor network

if and only if Eq. (3.4.3) holds with ¢ = 0 (by Theorem 3.3.8 and the definition of
the minimal canonical form). In Section 3.4.2 we will show that the three error
measures can be related in a precise way. The quantitative relation between € and ¢
is a special case of the non-commutative duality theorem (Theorem 2.6.7). Their
relation to Eq. (3.4.1) is new and relies on extending an argument from [KLLR18]
in the setting of operator scaling; accordingly, we may target either.

3.4.1. First-order algorithm

We start by motivating our first algorithm, which we present explicitly in Algo-
rithm 3.1, and recall several results from Chapter 2. Let G = GL(D1)X- - -XGL(Dm)
and K = U(D1) X - -- X U(Dm). Suppose we are given a tensor 0 # T = (TM)d €
Matd D.xDy. and we would like to approximately compute a minimal canon-
ical forrn Tmln Since the latter is defined as a minimum norm tensor in the orbit
closure, a natural way to address this is by minimizing or “infimizing” the norm
or, equivalently, the log-norm or Kempf-Ness function Fr: G — R given by

1
Fr(g) = logllg - Tl = 5 logllg -T2

Since Fr(g) = Fr(kg) for all k € K and g € G, the objective function Ft can
be defined on the space K\G := {Kg : g € G} of right K-cosets in the gauge
group G. This space may be endowed with a natural Riemannian metric, yielding a
simply-connected complete Riemannian manifold with non-positive curvature [BH13;
Bha09]. In particular, between any two points there exist unique geodesics (here:
shortest paths). Explicitly, the geodesics through g = (g1,...,gm) € G take the
form K(e*®igy,...,eXmg) for X = (X1, ..., Xm) € H.O

The point then is the following: While not convex in the ordinary sense, the
function Fr(p) is geodesically convex, that is, convex along these geodesics. This
means for any (gi,...,gm) € Gand (Xy,...,Xm) € H,

a%ZOFT(etxlgl,. : tXmgm) > 0.

Therefore, a reasonable approach to minimizing Fr is to use a gradient descent.
Moreover, the computation done in Eq. (3.3.4) shows that the gradientat g = I =
(ID1/ ey IDm) s

1 2
at:OFT(etX], ey etxm) = dt—0 (etX1’ o etXm) T
2||T||2 | |
Tr p£ Z Tr[Xk (pk 17 Pk 2)] (3.4.4)

where p = |T) (T|. Accordingly, starting at g = I and moving along the geodesic
with this direction, we should take a gradient step of the form

— L( _ T) 1 ( T )
— PL1—P = (pPmi—p
T—g-T, where g¢:= (e N7 12) e T (PmaPma) )

"We can also identify K\G with P = PD(D;) X - - - X PD(D,) by the map Kg + g g. Then the
geodesics can be written as (\/_etYH/_ .., pmetYm \Pm), where py = gkgk and the Yy
are certain Hermitian matrices. These are tuples of the familiar geodesics of PD(Dy), see
e.g. Chapter 7 and Section 9.2 or [BH13; Bha09].
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3.4. Algorithms for computing minimal canonical forms

Algorithm 3.1: Computing PEPS normal forms

Input: A uniform PEPS tensor T € MatD D, xDy-D,, and e > 0.
Output: A gauge transformation g € GL(Dl) X -+ X GL(D).

g9 «— (Ip,,...,Ip,);
2 fort=0,1,... do

[y

3 T — g(t) T

4 pt) |T(t)> (T(t)|;

s | if e Liallel — (P)TIIP < € then
6 | return gV

7 end if

8 fork=1,...,mdo

, ‘ o) e—ﬁm LU= (1)

10 end for

11 end for

for some suitable step size 1 > 0. Note that, crucially, this amounts to acting by the
gauge group, i.e., will automatically remain in the G-orbit!

Similarly to the ordinary gradient descent in Euclidean space, under suitable
hypotheses on a geodesically convex objective one can provide a “safe” choice for
the step size 1. In the present case, the objective Fr is 4m-smooth along geodesics
(as follows from Lemma 3.4.7 and Proposition 2.6.6): forevery g = (g1,...,9m) € G
and X = (X1,...,Xm) € H, one has

R Fr(e™gy, ..., e mgm) < 4m|X|1?,
where || X||?> = -, [1X«]||?. For such functions, n = L is a suitable step size and
this is what we use in Algorithm 3.1. Below, we g1ve e formal guarantees for the

performance of the algorithm. We remark that Theorem 3.4.1 is a special case
of [BFG+19, Thm. 4.2].

Theorem 3.4.1. Let T € Mat% DyxDiDo be such that Tmin # 0 (for some and hence
for any minimal canonical form) and let € > 0. Then Algorithm 3.1 outputs a group
element g € GL(D1) X - - - X GL(D,) such that the tensor S := g - T satisfies

1 | & 2
Tro ZHGM - 01,2“ <e¢, where o=|S)(S|,
k=1

within O(1% log L

T ||) iterations.
min

Proof. We analyze Algorithm 3.1: although we could appeal to a general re-
sult (Proposition 6.5.3), we give the analysis in this concrete setting. For t =
0,1,2,... and g the group elements produced by the algorithm. If the algorithm
does not terminate in the t-th iteration, then, using Eq. (3.4.4),

Fr(g™") - Fr(g®™)
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3. The minimal canonical form of a tensor network

1L
I

(t) (T 1 _
= Frole mT o (P11=(P15) ),...,e Im T (t)(p (p

= FT<t>(€_ﬁVFT(”(I)) - Fro ()

) — Fro(I)

2
< Tr

VFro (1) - (—ﬁVFT(t)(I))

mi 1
+ gH—HVFT(t)(I)

- e IV I <~
T gm!' T 8m’
where the first inequality follows since Fr is a convex and 4m-smooth function
(see Example 3.4.6 and Proposition 2.6.6) . Accordingly, if the algorithm has not
terminated up to and including the t-th iteration, then

” rrun” t t 0 52
lo <logllg™ - T|l -log I TIl = Fr(g™) - Fr(g?) < -t —,
T IT]] glg g 9 g sm
or
b S g T .
”Tmin”

The iteration bound of Theorem 3.4.1 involves || Tmin||. If the entries of T are
given by some finite number of bits then this quantity can be estimated in an
a priori fashion, by first rescaling T such that its entries are given by Gaussian
integers, i.e., are in Z[i], and then using the following result.

Proposition 3.4.2. Let T € MatD "Dy XD Do, with Tmin # 0, and assume that all
entries of T are in Z[i]. Then,

1

I Tminll > =——=-
j=1 Dj

Proof. We use the fact that the invariant ring is generated by the functions P ;
defined in Eq. (3.3.3). Since Tmin # 0, there existn > 1, w € St and i € [d]™ such
that Pi(T) # 0. But P, is a polynomial with integer coeff1c1ents in the entries
of T; therefore, evaluating it on T with entries in Z[i] must yield |Pr:(T)| > 1
Furthermore, it is an invariant under the PEPS action, so we deduce for any g € G:

1< Pri(D) = Pri(g - Tl = [Tr [ (Rey @+ @ R, (9 - T @+ 0 (9 - T
<Rmy @+ @R | [I(g - T @@ (g - TE)].

Since each Ry is unitary, the same is true of their tensor product. As it acts on a
space of dimension (H;’;l DJ?)“, one obtains

n

m
IRy @+ ® Rec, Il = [ ] D5

j=1

Furthermore,

lig- T @& (g- T < (maxllg - TVI)™ <llg - TII™.

Combining the two estimates, taking n-th roots and the infimum over g € G yields
the desired estimate. m|
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3.4. Algorithms for computing minimal canonical forms

The above approach of evaluating an invariant to prove norm lower bounds is
used in other settings as well, e.g., for tensor scaling in [BGO+18, Thm. 7.12], and
for much more general actions in [BFG+19, Cor. 7.19]; but appealing to the latter
result would result in a worse bound.

We obtain the following corollary, which implies an poly(2,input size)-time
algorithm, cf. [BFG+19, Rem. 8.1]:

Corollary 3.4.3. Let T € Mat%l__,DmelmDm be a tensor such that Tmin # 0 (for some
and hence for any minimal canonical form). Assume that the entries of T are in Q[i]
and given by storing the numerators and denominators in binary. Let ¢ > 0. Then
Algorithm 3.1 outputs a group element g € GL(D1) X - - - X GL(D ) such that the tensor
S := g - T satisfies

1 | & 2
Tro ZHGM - 012” <e, where o=1S)(S|.
k=1

within O(é - poly({T))) iterations, where (T) denotes the total number of bits used to
represent T.

3.4.2. Relation between approximation errors

In Section 3.4.1, we discussed three natural notions of approximation error in
Egs. (3.4.1) to (3.4.3), and we gave an algorithm targeting Eq. (3.4.2), i.e., given a
tensor T and ¢ > 0, we discussed how to obtain a tensor S € G - T such that

1 | & 2
Tro ZHGk’l - O{,ZH < ¢ where o=|S)(S|.
k=1

We will now see that there is a precise quantitative relationship between these
notions. As we will see, the following quantity will play a crucial role.

Definition 3.4.4. Given bond dimensions Dy, ..., D, define

1
_, ifm=1,
D3/

Y :=v(D1,...,Dpn) = 11 ,

: if m > 2.
Y Di (2m) Do/ hm

Note that vy is only inverse polynomially small in the bond dimension for m =1,
while it is exponentially small for m > 2. Then we have the following relation
between Egs. (3.4.2) and (3.4.3).

Theorem 3.4.5. Let0 # T € Mat%l_,_Dmel,_,Dm and S € G- T. Then:

E < ”Tmin”2 52 2

1 m
el g e (e
Y ISP s T T“Né Tl %

where o = |S) (S| and y is the constant defined in Definition 3.4.4. In particular, if e <y,
then Tpin # 0.

4
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3. The minimal canonical form of a tensor network

We will prove Theorem 3.4.5 by appealing to a non-commutative duality theorem
stated in [BFG+19, Thm. 1.17], which we stated previously in Theorem 2.6.7. To
apply this theorem in our setting, we must lower bound the weight margin as
defined in Definition 2.6.5, a complexity measure defined by combinatorial data
associated with representations. The parameter y which appears in Definition 3.4.4
is a lower bound on this weight margin.

We briefly recall how to compute the weights for this particular setting:

Example 3.4.6. Let GL(D) act on Matpxp by conjugation. A maximal subtorus of
GL(D) is given by the set T(D) := (C*)P consisting of invertible diagonal D x D
matrices, and its Lie algebra Lie(T(D)) consists of all diagonal matrices, which may
be identified with CP. Then for Y € CP, we have

ediag(Y)EiJ’ e diag(Y) — eYi—Yj Eij/

where Ey; are the elementary matrices. Therefore the weights are given by the
functionals w;(Y) = Y; —Yj, with corresponding weight spaces V, ; = CEyj. Note
that wy; can be identified with e; — e; € CP. The action of GL(D) on Mat%xD has
the same weights, but now each weight space is d-dimensional.

Now consider the action of the gauge group G = GL(D1) X --- X GL(Dy,) on
V= Matl(?l)l---Dmel---Dm' the space of PEPS tensors, as defined in Definition 3.3.3.
As mentioned, a maximal torus for G is given by Tg = T(D1) X - - T(D,), and the
Lie algebra of Tg may be identified with CP1 @ --- @ CPm. Then it is easy to show
that the weights are just tuples of weights as above, i.e.,

(611 - e]-l,. ..,eim - ejm)
with iy, jx € [Dk] for k € [m].

To prove Theorem 3.4.5, we still need to bound the parameters y(7r) and N()
for our specific representations.

Lemma 3.4.7. Fortheaction of G = GL(D1)X: - -XGL(Dm)onV = Mat%l,__Dm
the weight norm N(7) is given by

XDl"'Dm’

N(7) = V2m,
and the weight margin y(m) is lower bounded as

Y(m) >,
where 7y is the constant defined in Definition 3.4.4.

Proof. The expression for the weight norm follows directly from Example 3.4.6.
For m = 1, the lower bound on the weight margin follows from [BFG+19,
Thm. 6.21]: the representation is a quiver representation, where the quiver is given
by one vertex with d self-loops. For m > 2, the lower bound on the weight margin
follows from [BFG+19, Thm. 6.10]. O

Proof of Theorem 3.4.5. This follows by combining Theorem 2.6.7 and Lemma 3.4.7.
|
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3.4. Algorithms for computing minimal canonical forms

Now that we know that Egs. (3.4.2) and (3.4.3) can be related to each other, we
will relate these to Eq. (3.4.1). In the one direction, it is clear that Eq. (3.4.1) implies
a small error in the sense of Eq. (3.4.3):

”S_Tmin“ < ”Tm'm” >1-— ”Tmin_sll
IIS]] N N

>1-5

In the remainder of this section we show that Eq. (3.4.2) implies a small error
in the sense of Eq. (3.4.1), closing the circle. It is useful to make the following
abbreviation for the gradient of the norm square function at the identity:

ws) = (Gk,1 - Ul’z)kzl € Herm(D1) ® - -- ® Herm(D,,), where o :=|S)(S]|.

We write {i and not p to distinguish it from the gradient of the log-norm, as in
Eq. (3.4.4) and Definition 2.5.1, but note that

1 m 2
~ _ _ 2 _ T
IE(S)|| = e Tr(o) = €||S||©, where €= _TI‘O'J kg_lﬂcrk,l — Gk,ZH i (3.4.5)
Then we will consider the gradient flow of ||i(S)[|? := 3 1t llpx1 — p12||2:

SO =S (3.4.6)

{sm = ~V[[ElR(s ()
We will see that the solution S(t) to this ODE remains in the gauge orbit of S and
that it converges to a minimal canonical form Sp,in whose distance to S in the sense
of Eq. (3.4.1) can be controlled using Eq. (3.4.2). We note here that the study of
the gradient flow for the norm square of the moment map is an important tool in
this area; see Section 12.2.2 for a more detailed discussion. While the following
arguments work in complete generality, here we restrict to the gauge action of
G = GL(D1) X - - - X GL(Dy, ) since this is all we need.

We start by analyzing Eq. (3.4.6). Existence and uniqueness of the solution S(t)
of this ordinary differential equation on some maximal (possibly infinite) interval
of definition [0, tmax), Where tmax € (0, 00], follows from Picard-Lindelof theory.
Then one can prove the following lemma, cf. [BEG+19, Prop. 3.27 and its proof]:

Lemma 3.4.8. Let S(t) be the solution to the dynamical system (3.4.6). Then, for all
t € [0, tmax), we have

(i) AclIR(SW)II* = ~[IS"(D)I>
(ii) d/IS(VI? = 8ISV
(iii) S(t) € G- S, i.e., the solution remains in the G-orbit of S at all times.

Proof. The first claim holds for any gradient flow.
Next, we note that, for all Y € Herm(D1) @ - - - ® Herm(D,,),

(i(S),Y) = %at=o||(e”1, ..., etYm). s||2 = (S,TI(Y)S), (3.4.7)
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3. The minimal canonical form of a tensor network

where (X,Y) = Y L, Tr[Xk Yx] and we denote by TT(Y) the Lie algebra action of Y,
which is defined by

T(Y)S := d1p ((etYl, . etYmy. s) .

By differentiating Eq. (3.4.7) with respect to S in some direction W € V (an operation
we denote by D),

(DWHi(S),Y) = (W, TI(Y)S) + (S, TI(Y)W) = 2Re (W, TI(Y)S) .
Accordingly, forall W €'V,
Dw li(S)II* = 2(Dwi(S), i(S)) = 4Re (W, TI(ii(S))S) .

Thus we have proved that the gradient of ||fi||? is given by the following clean
formula:

VIIEI*(S) = 4TT(i(S))S. (3.4.8)
The second item follows from this and Eq. (3.4.7),

AIS(H)II? = 2(S(t), S'(1)) = ~2(S(1), VIIRIF(S(1))
= =8 (S(t), TI(E(S(1)))S(1)) = ~8IIR(S(L)II*.

As Eq. (3.4.8) states that S’(t) is a tangent vector of the G-orbit through S(t), the
third item also follows. O

Using the preceding, the following key lemma shows that if Spin # 0 then
fi(S(t)) — 0 sufficiently quickly, without S(t) moving too much. Our argument
follows [KLLR18], which treats the case m = 1.

Lemma 3.4.9. Let S(t) denote the solution of Eq. (3.4.6) for a tensor S(0) = S with
Smin # 0 (for some and hence for any minimal canonical form). Consider any T such that
{(S(1)) # 0. Then there exists

, 1
© ST BRI
such that
- 2
sy = 1S (3.49)

(in fact v is the first time such that this is true) and, moreovet,

(S
1S(T) = S(O)]| < 2\15\/ I Y(T))”, (3.4.10)

where vy is the constant from Definition 3.4.4.
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Proof. Suppose that 7" > 1 is such that

Jicseey|P > BEEWIE (3.4.11)
By Item (i) of Lemma 3.4.8,
s > OOy, ¢ g, v

and hence, by Item (ii) of the same lemma,
OlISOI* = -8IA(SW)II* < ~4lES(I*  Vte 7],
Accordingly,
ISCIZ = IS < —4( = DS (V).
On the other hand, using the lower bound in Theorem 3.4.5 and Eq. (3.4.5),
ISCIZ = IS = IS(T)minll* = IS = 1S(Drminl* = IS(OII?

S(T)minl|? (St
ISl Y
Together, we find that for any 1’ such that Eq. (3.4.11) holds, we must have
T<T+ ————.
4y[[R(S(D))|
Accordingly, there must exist some minimal
1
R T — (3.4.12)
4y[[R(S(T)l
such that
e, [(S(1))|?
sy = IS 3413)
Moreover, for this v we have
T T
I562) =50l < [ Isonat= [ y-audia(s)zar
T T
T T
< J —0¢[IL(S(1))]|% at J 1dt
T T
= JIR(SE) 12 - (S 2 V7=
B TG e —
V2 4y[[RS)II
_ 1 [IsE@)
2V2 y
where we used the triangle inequality, then Item (i) of Lemma 3.4.8, then the
Cauchy-Schwarz inequality, and finally Egs. (3.4.12) and (3.4.13). m|
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3. The minimal canonical form of a tensor network

We now prove the desired relation between Egs. (3.4.1) and (3.4.2):

Theorem 3.4.10. Let T be a tensor with Tymin # 0 (for some and hence for any minimal

canonical form) and let S € G - T. Then there exists a minimal canonical form Tpin € G- T
such that

IS — Toninl 2¢e 1 e H .
————— S 4/ — or €= — Ok1—0
] y Tro\ 2

where 7y is the constant from Definition 3.4.4.

Proof. If u(S) = 0 then Tpin = S is @ minimal canonical form of T and there is
nothing to prove. Otherwise let us, for every k > 0, denote by T the first time
when

I8P = IR,

so 1o = 0. By Lemma 3.4.9,

: : i . 2
Tk=§ (L —T1-1) < E — = — < ——
4 S(T1- 4 - S
1=1 =1 YIRS (Ti-1)]| Y 1o 21171”“(3)” YIRS

In particular, {i(S(t)) — 0 as t — oo, since we know from Item (i) of Lemma 3.4.8
that ||{i(S(t))||? is monotonically decreasing.

Next, we prove that the subsequence S(Tx) converges to a minimal canonical
form of T with the desired properties. We first show that the S(ty) form a Cauchy
sequence. Indeed, for any k < 1, using Lemma 3.4.9,

l : (S (T
IS(r) =Sl < 3 IS(tm) = StEm)ll € Y — \/”“( Em-)
m=k+1 2\/—

m=k+1

a3 P

which shows that indeed S(tx) is a Cauchy sequence. If we denote by S’ its limit,
then T’ € G-S=G-T (by Item (iii) of Lemma 3.4.8) and hence T’ # 0 (since
Tmin # 0 by assumption). Moreover, {i(T") = 0 by the above, hence T’ is a minimal
canonical form of T. Finally,

, ) 2||FL(S)|| 2¢e
_ = —_— < = _—
IS =Tl = lim [IS(7o) — S(vu)ll \/ Y ISIl4/ S

using the preceding estimate and Eq. (3.4.5) m|

By combining Corollary 3.4.3 and Theorem 3.4.10 it follows that using the first-
order algorithm in Algorithm 3.1 with ¢ := y5?/2, in time poly(5 L 1 input size)
one can obtain a group element g € G such that the tensor S := g - T satisfies
Eq. (34.1),1ie,

IS — Tonin |
ISl
In the next section we will see that the dependence on & can be improved to
log(1/9), see Corollary 3.4.12.

<.
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3.4.3. Second-order algorithm

As promised earlier, there is also a second numerical method that one can use
to approximate normal forms in our setting. This is a more sophisticated second-
order method, which uses information about the Hessian of the Kempf-Ness
function F,, to determine the direction in which to move (as is done for instance
in Newton’s method), whereas the first-order method discussed in Section 3.4.1
and Algorithm 3.1 before only use information about the gradient (i.e., the moment
map).

We rely on the box-constrained Newton method from [BFG+19, Algo. 5.2], which
uses Newton steps constrained to a constant-sized box to make progress in the
objective. It naturally minimizes the norm of the resulting vector, as opposed to
the size of the gradient. We note that we could also appeal to the interior-point
methods in Chapter 7, but the result is essentially the same. Its guarantees applied
to our setting are as follows:

Theorem 3.4.11 ([BFG+19, Thm. 8.12]). Let T € Mat%l.__DmelmDm be a tensor such
that Tmin # O (for some and hence for any minimal canonical form). Assume that the
entries of T are in Q[1i] and given by storing the numerators and denominators in binary.
Then there exists an algorithm that, given T and 0 < C < 1, returns a group element

g € GL(D1) X - - - X GL(D1y,) such that the tensor S := g - T satisfies ||S|| < ||T|| and

ISl || Tonin |
< ( and hence
|| Tenin | IS

in time poly(y™, Dy, ..., D, log(1/),(T)), where y is defined in Definition 3.4.4, and
(T) is the total number of bits used to represent T.

log =>1-¢

By combining Theorem 3.4.11 with the results of Section 3.4.2, we arrive at the
following result which was stated informally as Result 3 in the introduction.

Corollary 3.4.12. Let T € Mat%l_,_DmelmDm be a tensor such that Tyin # 0 (for some
and hence for any minimal canonical form). Assume that the entries of T are in Q[i] and
given by storing the numerators and denominators in binary. Then there exists an algorithm
that, given T and 0 < & < 1, returns a group element g € GL(D1) X - - - X GL(D1y,) such
that the tensor S := g - T satisfies satisfies ||S|| < ||T|| and

”S - Tmin” < 5,
ISII

in time poly(y™!, Dy, ...,Dm,log(1/5), (T)), where y is defined in Definition 3.4.4, and
(T) is the total number of bits used to represent T.

Proof. Apply the algorithm of Theorem 3.4.11 with

2
Y <4
= ——0
¢ 64m
to obtain in the stated runtime a group element g € G such that the tensor S := g-T
satisfies ||S|| < ||T|| and

(3.4.14)

Toni Tonin |2

iSi is2 > 1-2¢. (3.4.15)
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3. The minimal canonical form of a tensor network

We now check that S satisfies the desired condition. First, by Theorem 3.4.5, for
o = |S) (S| we have that

”Tmin“2 52 1 ik
<1-— for £ 1= — ZHG —ol
IS = 8m Tro\ 4 K17 k2

and hence, using Eq. (3.4.15),

Tmin 2
e < \/Sm (1 _ ”8”2” ) < 4Vmd. (3.4.16)

Finally, Theorem 3.4.10 implies that

N Vv ISl Vv %

where used Eq. (3.4.16) and our choice of C in Eq. (3.4.14). This concludes the
proof. O

2

7

Remark 3.4.13. While Corollary 3.4.12 uses relative 2-error, which is most natural, we
can also obtain a guarantee in absolute error, say

”S - Tmin” < 6,/

by applying Corollary 3.4.12 with & < min(1, /|| T||). As the second-order algorithm
scales polynomially in log(1/8), this runs in time poly(y~!, D1, ..., Dm,log(1/8"),(T)).

3.5. Conclusion and outlook

The current work is a theoretical one, proposing a new canonical form and proving
some of its key properties. The fact that the minimal canonical form is rigorous in
the sense that it can be proven to always exist as well as satisfy the basic properties
discussed in Section 3.3 sets it apart from other heuristic approaches [PMV15;
Evel8]. Besides this, we hope that the minimal canonical form will be of practical
use in tensor network algorithms. Below we outline four potential directions for
application. Detailed numerical study will be required to confirm the usefulness
of these suggestions.

(i) Truncation of bond dimensions. In many tensor network algorithms
truncation of the bond dimension is a crucial step. This is especially the
case for ground state finding algorithms based on imaginary time evolution
(Time Evolving Block Decimation, TEBD) in which each step consist of
applying an operator to the tensor network which increases the ground state
approximation accuracy but also the bond dimension, and then truncating
the bond dimension. One is given a tensor T with a certain bond dimension
D, and one would like to find a tensor T” with a prescribed bond dimension
D’ < D such that the tensor network state using T is approximated as
accurately as possible by the tensor network state using T’. In one spatial
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(iii)

3.5. Conclusion and outlook

dimension, for MPS, there is a natural way to do this using canonical forms.
For instance, one may use the left canonical form, in which case the reduced
state po on the right virtual dimension is maximally mixed. Then one
truncates to the subspace spanned by the eigenvectors of the D’ largest
eigenvalues of the reduced state p; on the left virtual dimension.

The bond dimension truncation scheme for MPS is both computationally
efficient and gives an optimal approximation given a prescribed bond di-
mension. For two-dimensional PEPS there is no truncation scheme known
which has both these desirable properties, which is closely related to the
lacking of the equivalent of a left or right canonical form. Various methods
exist [LCB14b; JWXO08], see for instance [RTP+20] for an overview of different
methods. While these methods perform well in practice, in most cases good
theoretical understanding is lacking. Here, we propose the following natural
truncation scheme: given a tensor T, compute its minimal canonical form S.
Then truncate to the subspace spanned by the eigenvectors corresponding to
the D’ largest eigenvalues.

This proposal leads various questions which should be addressed in follow-
up work. First of all, it would be interesting to use such a truncation
method in existing PEPS algorithms and study the performance of such
schemes numerically. Secondly, as our methods are designed for uniform
(translation-invariant) systems one would hope that they are also of use to
iPEPS methods, where precisely the absence of a canonical form has led to
heuristic approaches to gauge-fixing [PBT+15; PMV15] which work well in
practice. We would like to emphasize that especially the (non-rigorously
defined) canonical form in [PMV15] is fairly close in spirit to the minimal
canonical form: it is defined by a condition similar (but different) to the
characterization in Theorem 3.3.8. This canonical form has been shown
to indeed improve convergence of imaginary time evolution algorithms,
which offers some hope for the prospect of using the minimal canonical
form for truncation purposes. Finally, a potential advantage of truncation
schemes based on the minimal canonical form is that one could attempt to
the framework of geometric invariant theory to prove that such a truncation
scheme has good theoretical properties.

Numerical stability. Using minimal canonical forms in variational algorithms
may be helpful, since appropriate gauge fixing is known to enhance the
stability of variational algorithms [LCB14a; PBT+15].

Boundary-based approaches. PEPS have a very useful and explicit bulk-
boundary correspondence [CPSV11], which allows one to map bulk proper-
ties in a region R to properties of the associated boundary state pr, defined
essentially as the reduced density matrix in the virtual indices of the PEPS
tensor | Tr) obtained after blocking the original PEPS tensor T in the given
region R. The key insight of [CPSV11], formalized later in [KLP19; PP23],
is that if one interprets pg as a Gibbs state pr = e HE, the properties of He
(the so-called entanglement Hamiltonian) encode the properties of the bulk of
the system. This has led for instance to new numerical methods to detect
topological phase transitions [SPCP13]. Since Hg and pg live in the virtual
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(iv)

Hilbert spacec, it is crucial for this approach to be meaningful that the only
gauge freedom one considers comes from unitaries, which do not change
any of the relevant properties of Hg or pg, rather than arbitrary invertible
matrices. This is precisely what is ensured by working with the minimal
canonical form.

Privacy in PEPS-based machine learning algorithms. Tensor networks,
and PEPS and MPS in particular, have been used as variational Anséitze in
machine learning contexts [SS516; CPZ+17]. This has the appeal that one
can import known optimization techniques in condensed matter problems
to machine learning. Another potential advantage, compared to neural
network-based approaches, lies in a higher interpretability; it is precisely the
characterization of global properties in the local tensors of a tensor network
which explains its success in quantum many-body problems. In [PHM+22] a
new potential advantage of tensor networks in a machine learning context
has been proposed, which we will now explain briefly. There are two possible
ways to look at a trained neural network or tensor network: as a black box
in which one has only access to the input-output relation or as a white box
in which all internal parameters are provided. It is shown in [PHM+22],
with machines trained in real data bases with medical records, that those
internal parameters can reveal sensitive information from the training data
set which however are not contained in the black-box picture. This white-box
versus black-box scenario is the underlying problem behind obfuscation
protocols® and it is well known there that the perfect solution comes from
the existence of a well-defined canonical form for the white-boxes that maps
them one-to-one to the set of black boxes. The basic idea in [PHM+22]
is that this can be done in MPS by defining a new canonical form which
selects analytically and uniquely an element for each orbit of a normal MPS.
However, as it is also discussed in [PHM+22], a way of sampling uniformly
on all possible white-box representations of the same black-box function
could equally do the job.

The minimal canonical form gives a way to extend this idea trivially to
general PEPS. If the presentation (white-box) of the PEPS obtained in the
training process is its minimal canonical form, sampling uniformly on all
possible white-boxes amounts to sampling with the Haar measure on the
unitary group, which can easily be done (as opposed to sampling on the
whole general linear group). It is an interesting open question to see how
this idea works in practice for PEPS. For MPS it is shown in [PHM+22] that
privacy improvements in practice are indeed dramatic.

As alluded to in Section 3.3.4 another natural direction of inquiry is to find
physically relevant models where there is topological order which is only revealed
on manifolds other than a torus, and see how this relates to the minimal canonical
form. Finally, it would be interesting to connect to recent approaches that apply
techniques from algebraic geometry and algebraic complexity theory [BCS13] to
tensor network theory, for instance [CLVW20; CGFW21]. There are also various

®Though the inherent continuous nature of the variables makes the problem slightly different in
this case.
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concrete follow-up questions concerning properties of the minimal canonical form
and generalizations.

(i)

(if)

(iii)

Non-uniform PEPS. In this work we have mainly restricted to uniform PEPS,
where we consider contractions of copies of a single identical tensor. We also
saw one example with non-uniform tensors, for MPS in Section 3.2.3. In that
case, we were able to recover the usual theory of canonical forms for MPS
with open boundary conditions. Clearly, an interesting direction for future
research is to investigate generalizations of the minimal canonical form to
non-uniform PEPS. In this case we consider a fixed graph I' = (V, E), with a
collection of tensors (T, )yvev at each vertex and where we contract along the
edges E. We now have a group GL(D.) acting on each edge e in the graph,
so the full gauge group G is the product over all edges e € E of these groups.
This setup is very similar to the one described in Section 3.2.3. We would
like to formulate an appropriate minimization problem over a group orbit.
There are two obvious ways to approach this. The first option is to minimize

S llg - Tl

vev

and define a minimal canonical form ((Ty)veV)min as satisfying

((TV)VEV)min = argmin {Z ”SV”Z : (SV)VEV €G- (TV)VEV}

veV

In the case where all tensors are equal, this should reduce to the minimal
canonical form for uniform PEPS. A second option (which is similar to the
MPS construction in Section 3.2.3) would be to consider for each edge e the
tensor network state |T.) where we have contracted all edges except e. We
have a group action of GL(D.) on this state, and we may minimize over its
orbit. We will report on these generalizations in future work.

Algorithms for deciding gauge equivalence. While we have addressed the
issue of computing a minimal canonical form for a given tensor, we have not
extensively discussed algorithms for deciding whether two tensors S and T
are gauge equivalent. One approach is given by Result 4: one may simply
check that |Sx) = |Tx) forall 7t € ST withn < npax = exp(O(mD? log(mD)))
(or in the case of MPS, for n < D?). However, an alternative strategy is as
follows. By Theorem 3.3.7, it suffices to first compute minimal canonical
forms Smin and Tpmin (for which we have already provided algorithms) and
then determine whether these are related by unitary gauge transformations
(which is rather nontrivial). For m = 1, this strategy has been implemented
in [AGL+18], while for m > 2 we defer to future work.

Computational complexity. It would be interesting to relate the computation
of minimal canonical forms and of checking gauge equivalence to other
orbit problems that have recently been studied intensely in the theoretical
computer science literature, in order to get a better understanding of the
computational complexity of the problem (see [BFG+19] and references
therein).
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4. An introduction to interior-point
methods

This chapter provides a gentle introduction to the theory of interior-point methods
for convex programming in Euclidean space. We focus on intuition and omit most
proofs here, both for readability and to avoid redundancy, as we extend this theory
(with detailed proofs) to geodesically convex objectives on Riemannian manifolds
in Chapter 7.

The development of interior-point methods is one of the greatest successes in
convex optimization, and by now has a long history dating back to the works of
Frisch [Fri55], Karmarkar [Kar84a; Kar84b], Gill et al. [GMS+86], Renegar [Ren88]
and many others. It led to one of the first polynomial-time algorithms for linear
programming (in contrast with the simplex algorithm due to Dantzig [Dan63]), the
other being the ellipsoid method due to Khachiyan [Kha80]. In the seminal work
of Nesterov and Nemirovskii [NN94], it was shown that the key property to the
analysis of interior-point methods is the notion of self-concordance. Essentially every
convex programming problem is in principle amenable to interior-point methods,
which follows from constructions of self-concordant barriers for arbitrary (bounded)
convex domains, cf. [NN94; Hill4; Fox15; BE19; Che23]. Furthermore, interior-
point methods are eminently practical, and currently give the best algorithms for
linear programming [LS20; Bra19].

This chapter is structured as follows. In Section 4.1 we explain the general idea
of interior-point methods. Section 4.2 introduces the most important part of the
formalism, notably that of self-concordant barriers for a convex domain. Lastly,
Section 4.3 discusses the general algorithm for solving optimization problems
on convex domains with a self-concordant barrier. We follow the exposition
in [Ren01]; other useful sources on interior-point methods are [NN94; Nes18]. We
also refer to [BV04] as a general source on convex optimization techniques.

4.1. The idea

We recall the standard interior-point formalism for solving a convex program

minimize {(c,p)
, (4.1.1)
subjectto p €D,
where c € Eand D C E is a closed convex set in some Euclidean space E, and
(+,-) is the inner product on E. Note that this captures all convex programming
problems, by the epigraph construction: if f: D — R is some convex function, then
we can rewrite minpep f(p) = ming, 1)ce, t, where

Er={(p,t) e DX R:Af(p) <t}
This chapter is adapted from [BLNW20; HNW23].
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4. Anintroduction to interior-point methods

Figure 4.1.: A schematic representation of following the central path.

is the epigraph of f, which is a convex domain by convexity of f. For convenience
we also assume that D is bounded and has non-empty interior.

The idea of the interior-point methods is then as follows. Since D is bounded,
the objective in Eq. (4.1.1) is bounded, and the optimum is attained at some p. €
0D in the boundary. However, in general it may be hard to search directly
over 0D. One notable case in which this is done is Dantzig’s simplex method
for linear programming [Dan63], but this does not in general yield efficient
algorithms [KM72]. Instead, an interior-point method iteratively produces points
in the interior of the domain of optimization.

More formally, the setup is as follows. Assume one has a barrier functional
Y: int(D) — R, which s a strictly convex function such that ¥(p;) — coasint(D) >
pi — p € 0D. Consider the central path, consisting of the minimizers z(n) € int(D)
of the self-concordant functionals

Yin(p) :=n(c,p) + ¥(p)

for every 1 € R5. These minimizers exist, since D is bounded and ¥ blows up
at the boundary of D; moreover, the z(1) are unique, since V¥ is strictly convex.
Morally speaking, one should also expect that as 1 — oo, z(1) converges to p.:
after all, minimizers of ¥, are also minimizers of {c, p) + %‘P(p), and for large n
the second term is less relevant. Therefore, to solve Eq. (4.1.1), it should suffice
to approximately find z(n;) for an increasing sequence of 1;, which is in some
sense an easier problem: ¥, is strictly convex (because V¥ is), and one has a good
initial guess for z(ni), namely z(ni-1), so local optimization methods are likely to
be useful.
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4.2. Self-concordant barriers

Before we make the above precise, we fix some notation and language. We
denote by val the optimal value of Eq. (4.1.1), and we say ps € D is a -minimizer
of Eq. (4.1.1) if

(c,ps) < val + 0.

We say a function ¥: int(D) — R is twice continuously differentiable if its gradient
and Hessian, which we shall always denote by

g(p) = grad¥(p),  H(p) = Hess¥(p),

are well-defined at any point p € int(D), and H(p) depends continuously on p.
Recall that a function 1 is convex if for any p, p’ € int(D) and t € (0, 1), one has

Y(tp + (1 - 1)p) < th(p) + (1 - hp(p'),

and strictly convex if the inequality is strict for t € (0,1). An equivalent criterion
for convexity is that the Hessian H(p) is positive semidefinite for all p € int(D),
and a sufficient criterion for strict convexity is that H(p) is positive definite for
all p € int(D). In this case, the Hessian H(p) defines a local norm on E for any p € D:
for v € E, we write

Vllwp = Vv, Hp)v) .

We also write B} (p,1) = {p’ € E : ||p’ — pllw,p < 1} for the Dikin ellipsoid, which is
the open ball with radius 1 centered at some point p € D, measured in the local
norm |||y, at the same point.

To ensure that one can follow the central path and to justify the claim that z(n)
should converge to a minimizer, one needs to impose additional conditions on V.
The following notion is central in the theory of interior-point methods.

Definition 4.2.1. Let D C E be closed convex set with non-empty interior. A
(strongly non-degenerate) self-concordant barrier functional for D is a strictly convex
and twice continuously differentiable function ¥: int(D) — R, satisfying the
following additional properties:

(i) For any p € int(D), the open ball B}, (p, 1) is contained in int(D). Moreover,
for any p’ € B} (p, 1), we have

Y ’
vy _ 1

< - forallv € E\ {0}.
VIwp — 1=1p" = pllwyp

1=llp" = pllw,p <

(ii) The parameter v of the barrier, defined by

v:=sup {|[H(p) 'g(p)Il§,, : p €int(D)},

is finite.
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Roughly speaking, property (i) guarantees that the Hessian H(p) does not change
too quickly, when one takes small steps as measured in the norm induced by H(p).
This estimate on its own is usually referred to as self-concordance of a function,
and provides rigorous guarantees on the performance of Newton’s method (as
we shall explain later). One of the key reasons the notion of self-concordance
was introduced is that it is invariant under affine reparamerization: traditional
analyses of Newton’s method tend to assume that the Hessian of the objective is
Lipschitz, but such an estimate is not scale-invariant.

Property (ii) says that the gradient is uniformly bounded with respect to the local
norm, i.e., the parameter is naturally a type of “Lipschitz constant”. It primarily
plays a role in the speed at which one can follow the central path, as we discuss
below in Section 4.3.

One can show that a self-concordant barrier ¥ automatically blows up at the
boundary of its domain: if p; € int(D) converges to p € 9D, then ¥(p;) — oo and
lg(pi)|]2 = oo for i — oo; see [Ren01, Thm 2.2.9]. This justifies calling it a barrier
for the domain.

An important property of self-concordant barriers as defined above is that they
satisfy a certain barrier calculus. This means that given barriers for a domain,
it is easy to construct new barriers. For instance, affine reparameterization or
restrictions, products of domains, and intersections of domains all admit self-
concordant barriers whenever each of the components admits one. The parameter
of the barrier also behaves well under these operations: for both products and
intersections, the parameter of the resulting barrier is the sum of the parameters of
its constituents.

We note here that (i) is usually difficult to verify directly. The original definition
of self-concordance due to Nesterov and Nemirovskii [NN94, Def. 2.1.1] is as
follows: a C3-smooth convex function ¥: int(D) — R is self-concordant if for
all p € int(D) and u € E, the function ¢(t) = W(p + tu) satisfies

0™ (1)] < 2(¢" (1)),

or equivalently,
ID>W(p)[u, w,ul| < 2D2¥(p)[u, u*/2. (4.2.1)

That this definition is equivalent (for C3-smooth functions) is shown in [Ren01,
Sec. 2.5]. However, it is usually far more tractable to verify this estimate, and
in Chapter 7 we shall actually use this perspective. We provide some examples of
self-concordant barriers here:

Example 4.2.2 (Linear programming). An instructive example is the barrier ¥(p) =
—logp for the half-line R>o € R, which has parameter v = 1. To see that ¥ is
self-concordant, we compute for p > 0:

1 1 2
Vip)=-= Vip)== Vi) =-=
p p? p’
Therefore [W"(p)| = 2¥”(p)>/? holds exactly. Furthermore, the parameter is 1,
since (V'(p))*/¥"(p) = 1.
Together with the barrier calculus described above, self-concordant barriers for
all convex polytopes can be obtained, given a description of the polytope as a finite
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intersection of hyperplanes. This implies that interior-point methods can be used to
solve linear programming problem: a self-concordant barrier for the set of x € R™
described by inequalities (a;,x) < b; for aj,...,ax € R™and by,...,byx € Ris
given by
k
W(x) = > —In(b; — (aj,x)).

j=1

Example 4.2.3 (Semidefinite programming). Let D = SPD(n, C) denote the cone of
positive-semidefinite matrices with entries in C. Then ¥: int(D) = PD(n,C) — R
given by W(P) = —logdet(P) is a self-concordant barrier with parameter v =
n [NN94, Prop. 5.4.5]. This barrier can be used for semidefinite programming
problems.

Example 4.2.4 (Second-order cone). Letn > 1and D = {(x,r) € R*XR : ||x]|2 < r}.
ThenV: int(D) — R defined by

Y(x, 1) = ~log(r* - [Ix|I3)

is a self-concordant barrier with parameter v = 2 [NN94, Prop. 5.4.3]; in particular
independent, the parameter is independent of n. This barrier is particularly useful
for enforcing norm-constraints on domains.

In the context of unconstrained geometric programming, see Chapter 5, the
following barrier is instrumental:

Example 4.2.5 (Exponential cone). Let D = {(y,z) € R?: eY < z} be the exponential
cone. Then ¥: int(D) — R defined by

¥(y,z) = —log z — log(log(z) — y)

is a self-concordant barrier for D, with parameter v = 2. Proving this is non-trivial
even with Eq. (4.2.1), see [NN94, Prop. 5.3.3].

Example 4.2.6 (Operator logarithm hypograph). A natural non-commutative exten-
sion of the exponential cone would be the set

D’ ={(Y,Z) e Herm(n)*: e¥ < 7}

where e¥ < Z refers to the Léwner ordering, i.e., Z — e is positive semidefinite.
However, the exponential function is not operator-convex [Bhal3, Prob. V.5.1],
so D’ is not a Euclidean convex set. This is also a setback in the context of
non-commutative norm minimization problems, as we explain now. For a repre-
sentation 7t: G — GL(V)and v € V' \ {0} as in Section 2.6, observe that

inf ||g - Vv||? = inf * = inf T(x) 422
;1616”9 V| JIQG("’”(g gv) xéﬂe(m("’e V) (4.2.2)

since 7(g*g) = m(eX) = "™ for some X € iLie(K) (by the polar decomposition,
Theorem 2.2.16), where TT = dm1 : Lie(G) — Lie(GL(V)) is the induced map on Lie
algebras. If D’ were convex, we could write Eq. (4.2.2) as a convex optimization
problem over D’ with the linear constraint Y = TT(X) for some X.
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By contrast, the hypograph of the operator logarithm is convex, i.e.,
D = {(Y,Z) € Herm(n)* : Y < log(Z), Z > 0}

is a convex set, because the operator logarithm is operator-concave [Bha09, Ex. 4.2.5].
This domain admits the self-concordant barrier

Y(Y,Z) = —logdet(Z) — log det(Y — log(2)),

with barrier parameter 2n. More generally, for operator-monotone functions, one
can construct barriers for their epigraphs [FZ20; FS22].

4.3. Following the central path

Under the assumption that ¥ is a self-concordant barrier functional, one can show
that one can indeed follow the central path, consisting of the minimizers z(n)
of ¥;, =n{c,-) +¥. One follows the central path along a sequence ofn; <1 <---
which grows geometrically, with a rate depending on the parameter v > 0 of the
barrier. To find z(n;) starting from z(ni-1), one uses Newton’s method as applied
to ¥,,;, whose behaviour is controlled by using the self-concordance of the barrier
functional (Definition 4.2.1(i)). It is also well-known [Ren01, (2.12)] that

(¢, z(m)) < val + % (4.3.1)

so following the central path as 1 — oo guarantees convergence of z(n) to a
minimizer p. of the objective.

A precise description of the main stage is given in Algorithm 4.1, and a schematic
representation is given in Fig. 4.1. One assumes to have a starting parameter 1,
and a starting point pg € int(D), which is an approximate minimizer of ¥,,, so in
particular close to z(no). Then, for i > 1, one chooses an appropriate n; > 1i-1
such that a single Newton step for the function ¥,,; at point p;_1 produces a point
pi that is guaranteed to remain close to the central path. Since grad ¥y, (p) =
nic + grad ¥(p) = nic + g(p) and Hess ¥y, (p) = Hess ¥(p) = H(p), the point p;
obtained by taking a single Newton step is given by

pi = pi-1 — (Hess Wy, (pi-1)) ™" grad Wn, (pi-1) = pic1 — H(pi)) " (nic + g(pi-1))-

If we write

ai(p) := IIHP) " (ic + g())llw,p,

then the length of the Newton step, measured in the local norm at pi—1, is «i(pi-1).
Furthermore, one can show that «;(p) is directly related to the distance of p to
the minimizer z(n;) of W, (cf. [Ren01, Thm. 2.2.5]). Therefore, by choosing the 1;
such that «;(pi) stays small, we guarantee that the iterates p; remain close to the
central path. This is achieved by first estimating a;(pi-1) in terms of «i—1(pi-1),
the ratio i /ni-1, and the parameter v of the barrier, and then bounding «;(pi) in
terms of «;(pi-1) using self-concordance [Ren01, (2.15)—(2.16)]. Provided n; — oo
asi— oo, Eq. (4.3.1) suggests that the p; converge to a minimizer of the objective.
A suitable choice of the 11;, along with a quantitative guarantee on the precision
achieved by any particular p; is given by the following theorem.
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Algorithm 4.1: MainStage

Input: starting point pg € D, starting parameter g > 0, objective ¢ € E,
iteration count T > 0, parameter v > 1 and oracle access to gradient
g(p) and Hessian H(p) of barrier ¥: int(D) —» R

1 fori=1,...,Tdo
Ni (1 + #) Ni-1;
3 Pi < Pi-1 — H(pi_l)_l (T]iC + g(‘pi_l)) ; > Newton step for Wy, at pi-1

4 end for
5 return p;

2

Theorem 4.3.1 (Main stage, [Ren01, p. 46-47, (2.14), and (2.17)]). Let¥: int(D) — R
be a strongly non-degenerate self-concordant barrier functional for D with parameter v > 1.
Let g > 0 be given, and suppose po € int(D) satisfies

0(po) = Mo} (n0¢ + 9(po)llw,pn < 432)

Then the iterations of Algorithm 4.1 are well-defined and we have, for all i € [T|, that
ai(pi) < 5, 1P — M)l 2ty < 3, and (¢, pi) < val + %V-
In particular, for T > 10\/Vlog(%n%), Algorithm 4.1 returns a point pt € int(D)
satisfying
(c,pT) < val + 0.

One issue with the above strategy is that one has to know a good starting
point: after all, one cannot expect to follow the central path without starting close
to it! Finding such a starting point is the purpose of the preliminary stage. A
precise definition of a good starting point (and starting parameter) is satisfying
the hypotheses of Theorem 4.3.1. An algorithm that achieves this is presented
in Algorithm 4.2. One starts from an arbitrary point pj, € int(D) and follows the
central path associated with the objective —g(p;) and the same self-concordant
barrier. This objective is chosen because pj, is the minimizer of —u(g(p;), p) + ¥(p)
when p =1, i.e., p is exactly on the central path at time 1. Now one decreases the
parameter (i, rather than increasing it, until one obtains an approximate minimizer
of ¥ = V¥y. Finally, one chooses an appropriate 9 > 0 and performs a single
Newton step for ¥, that is guaranteed to yield a point pg satisfying Eq. (4.3.2).
Only this last step depends on the objective c of the convex program Eq. (4.1.1). The
following definition and theorem bound the number of iterations of Algorithm 4.2
and give a lower bound on 1.

Definition 4.3.2 (Symmetry). Let D C E be a compact convex subset, and let
p € int(D). The symmetry of D with respect to p is defined by

sym(p) =max{a >0 : p+a(p—-D) C D}.

If L is an affine line through p, then L N D consists of two chords from p to the
boundary of D; the symmetry parameter sym(p) is the smallest possible ratio of
the lengths of the smallest and longest chord. Therefore, the symmetry is always at
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4. Anintroduction to interior-point methods

Algorithm 4.2: PreliminaryStage

Input: starting point p;, € D, objective ¢ € E, parameter v > 1 and oracle
access to gradient g(p) and Hessian H(p) of barrier ¥: int(D) — R

1 Yy« 1;

2 go < g(py);

31« 0;

s+ while [H(p}) " g(p))llwp, > & do

5 1e—1i+1;

6 Wi (1 - ﬁ) Wi-1;

7 p’l — pli—l - H(pli_l)_l(—l_ligo + g(pll—l))’ > Newton step for —pigo+¥ at pf_;
8 end while

9 Mo — (12[HEP) " ellwp) ™

10 Po < ]Z),l - H(p’i)"l(noc + g(p/l)) ; > Newton step for Wy, at p}

11 return (po,Mo);

most 1, and from this description, it is also clear that one can bound the symmetry
by providing a ball centered at p contained in the interior of D, and another ball
centered at p containing all of D; see Lemma 5.4.3.

Theorem 4.3.3 (Preliminary stage, [Ren01, (2.19)]). Let ¥: int(D) — R be a strongly
non-degenerate self-concordant barrier functional for D with parameter v > 1, let
Py € int(D) be a starting point, and let ¢ € E be the objective. Then Algorithm 4.2
with this choice of starting point p{, outputs a vector pg € int(D) and ng > 0 satisfying
Eq. (43.2), 1.,

_ 1
IH(po) ™ (oc + g(po))llw,pe < Y
as soon as H{l > 18v(1 + 1/sym(py)), i.e., after at most

log(18v(1 +

o)
sym(po) 36v
—log(1 - ) < 8vvlog (sym(pé))

. . 1 _
iterations. Moreover, we have the lower bound 1y > TV —val)’ where V = maxpep (C, P).

Together, Theorems 4.3.1 and 4.3.3 can be summarized as follows:

Theorem 4.3.4 (Theorem 2.4.1 in [Ren01]). Let D C E be a compact convex subset
with non-empty interior. Assume V: int(D) — R is a strongly non-degenerate self-
concordant barrier functional for D with parameter v > 1. Furthermore, for ¢ € E,
define val = minyep (¢, p) and V = maxpep (¢, p). Finally, let 0 < & <V — val be the
desired precision and let p{) € int(D) be a starting point for the preliminary stage. Then,

Algorithm 4.2 outputs a point pg € int(D) and a parameter 1y > 12(\/ WD satisfying the

hypotheses of Theorem 4.3.1. Algorithm 4.1 with inputs po, no and T > 10y/v log(¢ )
outputs a point pt satisfying

(c,pT) —val <.
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4.3. Following the central path

The total number of iterations is upper bounded by

18W10g( 36V V—val)

sym(py) 0

and each iteration involves computing the gradient and Hessian of the self-concordant
barrier Y and basic matrix arithmetic.
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5. Interior-point methods for
commutative scaling problems

In this chapter we show that the interior-point framework from Chapter 4 is useful in
the context of the norm-minimization and scaling problems as defined in Section 2.6,
when the acting group is commutative. In this case, the underlying objective is
convex on Euclidean space: more specifically, it reduces to an unconstrained
geometric programming problem. It serves as a useful example, showing what
kind of challenges arise in applying interior-point methods to scaling problems, and
sets a baseline for results one may hope to achieve in the general non-commutative
setting.

The chapter is organized as follows. In Section 5.1 give a detailed introduction to
(unconstrained) geometric programming and the relation to commutative scaling.
In Section 5.2 we provide a brief summary of the results: we define the geometric
condition measures and the facet gap, and state the IPM iteration complexity results.
In Section 5.3 we discuss the condition numbers defined in Section 5.2 in more
detail and show how they imply diameter bounds on (approximate) minimizers
of the GP. In Section 5.4 we explain how to use these diameter bounds together
with the general framework of interior-point methods to prove Theorems 5.2.2
and 5.2.5 and their corollaries. Lastly, in Section 5.5, we give a priori bounds on
the condition numbers in terms of the encoding length of the input and we also
provide better condition number bounds when the geometric program is totally
unimodular. These bounds imply that the iteration complexity of the interior-point
methods is polynomial in the input size.

5.1. Introduction

Geometric programming is an optimization paradigm that generalizes linear
programming and has a wide range of applications [DPZ67; BKVHO07]. We
shall concern ourselves only with unconstrained geometric programs. These are
optimization problems of the form

minimize f(z)

51.1
subjectto z € RY,, ( )
where f(z) is a posynomial in positive real variables z1, ..., zn. That is,
k k n
fz)=) quz¥ =) qif |2, (5.1.2)
i=1 i=1  j=1

This chapter is adapted from [BLNW20].
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5. Interior-point methods for commutative scaling problems

where the coefficients q; are positive and the exponents wj ;j are real numbers. In a
general geometric program (GP), one adds posynomial inequality and monomial
equality constraints. Although posynomials are non-convex in general, they are
convex in x € R™ after the change of variables z; = e*i. This means they are the
simplest family of geodesically convex programming problems.

Deciding whether an unconstrained geometric program is bounded from below
captures membership of a vector in a convex hull, as we shall see shortly. In this
sense, unconstrained GP can be viewed as a generalization of linear programming.1
Therefore simple algorithms like gradient descent or Newton’s method are unlikely
to yield efficient algorithms. However, it is also well known that unconstrained
geometric programs can be solved in polynomial time via the ellipsoid method,
see [NR99].

It seems common wisdom that GP can be solved in polynomial time via interior-
point methods, however we were unable to find a rigorous justification of this
claim in the literature, see for instance [NN94; KK96; NR99; KXY97; AY98; BV04;
NTO05; KT18]. To remedy this, we provide a systematic treatment of unconstrained
GP, along with detailed complexity bounds for two interior-point algorithms for
unconstrained GP in terms of natural geometric condition numbers. Our first
algorithm applies to instances that (roughly speaking) have a well-conditioned
Newton polytope, while our second algorithm has no such assumption but instead
relies on a novel condition number for the GP.

We also provide effective bounds on the condition numbers for rational inputs.
Our results improve over the optimization algorithms of [BFG+19], which apply
to general non-commutative norm minimization and scaling problems. Under
additional combinatorial assumptions, satisfied for instance in the case of matrix
scaling and balancing, we match the iteration complexity of the interior-point
methods provided in [CMTV17].

5.1.1. The computational problems

We define the computational problems associated with Eq. (5.1.1) in a more formal
way, specializing the norm minimization and scaling problems from Section 2.6. We
write q = (q1,...,qk) € IR];O for the vector of coefficients and Q = {w1, ..., wk} C
R™ for the set of exponents of the posynomial Eq. (5.1.2).

After the reparameterization z; = e*i, the objective takes the form

k

k
D gz =) qiel . (5.1.3)
j=1

=1

This is in fact even log-convex in x. It is convenient to give its logarithm a name,
and to allow an overall shift of the w;’s by a fixed vector 6 € R™: we define

K K
Fo(x) := log(Z qje<“’i_e"‘>) = log(Z qje<“’i’x>) -(0,x), Fy:= Xier]}{fn Fo(x).

j=1 j=1
(5.1.4)

!General geometric programming is even a direct generalization: when the objective and
constraints are all monomials, the change of variables turns the GP into a general linear program.
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5.1. Introduction

When the wj are integer vectors, expressions like the above (for 6 = 0) arise as
Kempf-Ness functions for commutative groups; in fact, by virtue of the weight
decomposition (Theorem 2.2.13), this captures all commutative norm minimization
problems. More precisely, if G = (C*)™ acts on V = C? via

w1 Wn

(Wl,. . '/WTL) : e(.U = Wl Wn e(,U/

where {e, } is the canonical orthonormal basis for V, then for v € V'\ {0}, we have

1 w
logllw - v|| = Elog( S Moliw |2).
we

Reparameterizing |wi|?> = e*t and q = |V |? yields the unconstrained GP of the
form Eq. (5.1.4) (up to the prefactor 2).

We note that the notation Fg should not be confused with the notation “F,,” for
the Kempf-Ness function from Section 1.2 and Chapter 2. The role of v € V is now
played by the vector q, which we view as fixed. Instead, we are primarily interest in
the behavior of algorithms as 6 € R™ changes; in particular for the question “is 6 in
the Newton polytope?” (with the usual scaling problem corresponding to 6 = 0).

The problem of unconstrained geometric programming is to approximate the
infimum to arbitrary precision:

Problem 5.1.1 (Unconstrained GP with shift). Given as input exponents wy, ..., wy €
R™, a shift ® € R™, q € ]REO, and a precision & > 0, find x5 € R™ such that
Fo(xs) < F*e + 4.

Clearly, any solution to this problem provides a (1 + 28)-multiplicative and
a (2||ql|10)-additive approximation to the value of the original geometric pro-
gram Eq. (5.1.1).

Problem 5.1.1 depends crucially on the Newton polytope of f, which is defined as
the convex hull of the set of exponents Q). This is exactly the moment polytope for
the commutative setting, see Section 2.5. A slight refinement of the Kempf-Ness
theorem (Theorems 2.4.4 and 2.5.5) in this setting is then:

Proposition 5.1.2. The function Fg defined in Eq. (5.1.4) satisfies:
(i) Fy > —ocoifand only if 0 € conv(Q), and in this case Fy = logminiey) qi,

(ii) Fy = Fo(x) for some x € R™ if and only if O € relint(conv Q), where relint(-)
denotes the relative interior.

Proof. Property (i) follows from the observation that Fg is unbounded from below
if and only if there exists some x € R™ such that (w; — 6,x) < 0foralli € [k]. This
is in turn is equivalent to 6 ¢ conv Q) by Farkas’ lemma [BV04, Sec. 5.8]. Now in
case 0 € conv Q, for every x € R™, there exists j € [k] such that (w; —0,x) > 0,
and it follows that

Fo(x) = log(qje“"i_e"‘)) > log m[% qi. (5.1.5)
1€

One direction of property (ii) follows from the observation that grad F(x) is
always in relint(conv Q); therefore, if F§y = Fg(x) for some x, we have grad Fo(x) =
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5. Interior-point methods for commutative scaling problems

grad F(x) — 6 = 0 and 0 is in relint(conv Q). The other direction follows from
diameter bounds proven later (Proposition 5.3.1): if 0 is in the relative interior
of conv Q, then one can show that every x € R™ with ||x||» sufficiently large
satisfies Fg(x) > Fg(0). O

Thus, deciding whether Fj is finite or not can be done by testing membership in
the Newton polytope (a linear programming problem). By convexity, Problem 5.1.1
is directly related to the problem of minimizing (the norm of) the gradient
grad Fg(x), which is given by

kg e{wix) gy,
. qiel Y w
grad Fo(x) = Z]_: % L _9
o1 gyl

We refer to this as the associated scaling problem, specializing the definition
from Section 2.6.

Problem 5.1.3 (Scaling problem with shift). Given as input exponents w1, ..., wy €
R™, a shift ® € R™, q € IR];O, and a precision € > 0, find x, € R™ such that
lgrad Fo(xe)l2 = ||grad F(xe) — 6]|2 < e.

The shift 0 is useful in various contexts, such as matrix scaling (as discussed in Sec-
tion 1.1): observe that rather than using the potential function f from Eq. (1.1.1),
one could have also used the function

F(x1,...,Xn,Y1,...,Yn) = log

Z Al] eXi+yj) - <(X/ y)/ (T, C)> .

ij=1

which is essentially an unconstrained geometric program with q’s given by the Aj;,
w’s given by (e, ;) € R™ x R™, and the shift given by the target marginals (r, c).

5.1.2. Entropy maximization

Minimizing Fg also has a useful dual formulation, which is given by an entropy
maximization problem [SV14]. More precisely,

k k
Fo = inf Fo(x) = sup{—D(pIIq) : ) pjwj=0,) pj=1,p> 0}, (5.1.6)
= =1

where D(pl|q) = Z};l p; log E—; denotes the Kullback-Leibler (KL) divergence between

a probability distribution p and the distribution q = (qy, . .., qk) (wWhich need not
be normalized). Thus, the dual program Eq. (5.1.6) is feasible (i.e., has non-empty
domain) when 0 is in the convex hull of the wi, which is often referred to as
the Newton polytope of the unconstrained geometric program. Furthermore, the
optimal solution is a probability distribution on O = {w;} with mean 6 that
minimizes the KL divergence to the initial distribution q. When q = (1,...,1) is the
all-ones vector, —D(p||q) = Z]le pilog & is the Shannon entropy of p. In this case,
Eq. (56.1.6) amounts to the discrete entropy maximization problem which naturally
arises in machine learning and statistics, motivated by the maximum entropy
principle [Jay57b; Jay57a]. From this perspective, it is also easy to see the connection
between matrix scaling and to entropy-regularized optimal transport [Cut13].
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5.1. Introduction

5.1.3. Diameter bounds

To solve the entropy maximization problem Eq. (5.1.6), [SV14; SV19] proposed
ellipsoid methods for the equivalent geometric program Eq. (5.1.4) that are tractable
even when k is large. They focused on the case that () consists of integer vectors
(which is already of substantial interest) and gave a priori diameter bounds as
required for the ellipsoid method. In [SV14], it was shown that if 0 is at a distance
n > 0 from the boundary of the Newton polytope then there is a minimizer x* of
norm ||x*[|2 < loﬁ X In [SV19], a diameter bound was obtained in terms of the unary
facet complexity of the Newton polytope: if conv(Q) can be described by linear
inequalities with integer coefficients in {—M, ..., M}, then for any 6 € conv(Q)
there is a d-approximate minimizer x5 of the function Fg with ||x;5]]2 < R, where
R = poly(n, M, log 1). This bound is particularly useful if 0 is very close to (or
on) the boundary of conv (. We generalize both of these bounds to the case
where O C R™ is not necessarily integral.

5.1.4. Complexity

We comment briefly on the notion of complexity used in this chapter. The stated
complexity bounds on the given interior-point methods are given in the number
of iterations. Each iteration consists however consists of arithmetic operations
(computing gradients and Hessians, and solving a linear system for taking Newton
steps). Therefore we only get polynomial-time algorithms in a (infinite-precision)
real-number model of computation [BCSS98]. It is currently unknown whether
this can be extended to the Turing-machine model of computation: the obstruction
is that it is unclear whether the bit-complexity of the numbers appearing in the
algorithm remains bounded or not. In the setting of linear programming this is
known not to be an issue [Ren88], and in the context of semidefinite programming
such a result is only relatively recent [KV16]. One hint that such a result might
hold in our setting is that the updates (given by Newton steps) in the usual IPM
framework are well-known to be error-robust, see for instance [CMTV17, Sec. 6.3].

5.1.5. Notation and assumptions

Throughout we will always assume that the shift is contained in the Newton
polytope, i.e., 8 € conv(Q). In order to state our results, we define a quantity
capturing the condition of q € R¥:

-l 517)
miniefk] 9i
where ||q||1 = Z]le qi- We refer to q as a distribution, in the sense of a unnor-
malized probability distribution; the normalization is not important for solving
the unconstrained GP, and this is reflected in 3 being invariant under rescaling
q.- Note that k < < %;?nik < oo. With this notation, observe that if 6 € conv Q,
then by Proposition 5.1.2 we have Fg(0) - F, < logl|qll1 — log minic[i qi = log(p).
We denote by B(9, 1) the closed ball centered at © with radius r, and aff(Q)
denotes the affine hull of Q (i.e., the smallest affine subspace of R™ containing Q).
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5. Interior-point methods for commutative scaling problems

~

_——

Figure 5.1.: An illustration of rg and Re.

5.2. Summary of results

5.2.1. Well-conditioned instances

Here we state we state our results in terms of the natural condition measures rg
and Rg defined below; see Fig. 5.1.

Definition 5.2.1 (Geometric condition measures). Given an instance of the uncon-
strained GP or scaling problem with QO € R™ and shift 6 € conv(Q), we define g
as the radius of the largest ball about 0 contained in the polytope:

o = max{r > 0: B(0,r) Naff(Q) C conv(Q)} = d(0, d conv(Q)).

We say that the instance is well-conditioned if rg > 0, and ill-conditioned otherwise.
Similarly, we define Rg as the radius of the smallest enclosing ball about ©:

Rg = min{R > 0 : conv(Q) C B(6,R)} = maéHw - 0||2.
we

Thus, an instance is well-conditioned when 0 is in the relative interior of the
Newton polytope, and ill-conditioned if it is on the boundary. The quantity rg is
closely related to a condition measure due to [Gof80], which is widely used in the
context of testing polyhedral cone feasibility [BC13; DVZ20], see Remark 5.3.2.

Our first result is a bound on the number of iteration steps of a natural interior-
point method (IPM), which solves well-conditioned instances of unconstrained GP.

Theorem 5.2.2. There is an interior-point algorithm (Algorithm 5.2) that, given as input
a well-conditioned instance of the unconstrained GP problem with shift (Problem 5.1.1),
returns x5 € R™ such that Fo(xs) < Fgy + & within

@) (\/Elog (k]:—ee% log(k(ﬁ)))

iterations. The starting point of the algorithm is determined explicitly by the input, and
every iteration is a Newton step.
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5.2. Summary of results

We emphasize that it is not necessary to provide a lower bound on ¢ as input.
The algorithm follows the interior-point method framework of [NN94; Ren01],
which consists of a preliminary stage and a main stage. We refer back to Chapter 4
for details, but briefly recall the most important aspects. The preliminary stage
uses a starting point that is easily computed in terms of the input data, and

outputs a starting point for the main stage within O(Vk log(k E—g log(kf3))) Newton
iterations. The main stage then produces a sequence of points xo, x1, ... such that

Fo(xj) —Fy < Clog(kp) exp(—j—\/%) for some known constants ¢, C > 0, implying the
claimed iteration bound. The same algorithm along with a conversion between

the precision for geometric programming and the precision required for scaling
problem (see Section 5.4.3) gives the following.

Corollary 5.2.3. There is an algorithm that, given as input a well-conditioned instance of
the scaling problem with shift (Problem 5.1.3), returns x € R™ such that

llgrad Fo(x¢)|l2 = ||grad F(xe) = 0J]> < ¢

with the number of iterations bounded by

o(ﬁlog (kRe R—f log(kB))).

To

As an application, we note that Theorem 5.2.2 can be used to solve the weak
membership problem for a convex polytope given in vertex-representation [GLS12]:
uponinput Q € Q™, 0 € Q™, and ¢ > 0 (without assuming 0 € conv(Q)), the weak
membership problem asks to assert either that d(6, conv(Q)) < ¢ or that B(6, ¢)
is not contained in conv(Q) (these conditions are not mutually exclusive). In
order to decide this, one can run the algorithm from Corollary 5.2.6 with q =
(1,...,1) € R¥, and precision ¢. If the algorithm does not terminate within the
stated (polynomial) number of iterations, or if the returned point x, € R™ does not
satisfy |[grad F(x¢) — 0]|2 < ¢, one may conclude that 8 ¢ conv(Q), hence B(6, ¢) is
not contained in conv(Q) either. Otherwise, we obtain a point x, € R™ such that
lgrad F(x¢) — 0|2 < ¢; since grad F(x,) € conv(Q)), one can therefore safely assert
that d(6, conv(Q)) < «.

5.2.2. General instances

We now discuss our results for general instances (well-conditioned or not). Here
we provide an interior-point algorithm that approximates the unconstrained GP to
arbitrary precision with an iteration complexity bound that is independent of 6. For
this, we prove a 0-independent diameter bound for approximate minimizers. The
following quantity controls our bound (see Fig. 5.2).

Definition 5.2.4 (Facet gap). Let O € R™ be a finite set. The facet gap @ > 0 of Q is
the smallest distance from any w € Q to the affine span of any facet of conv(Q)
not containing w.

Note that the facet gap depends on () and not just on the Newton polytope.
Our diameter bound in terms of the facet gap (Theorem 5.3.3) generalizes a
0-independent diameter bound obtained in [SV19] for integral () C Z™ to arbitrary
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5. Interior-point methods for commutative scaling problems

Figure 5.2.: The facet gap ¢ is the shortest line segment (dotted).

Q ¢ R"™, with only small modifications to the proof. The quantity that controls
their diameter bound is called the unary facet complexity of the Newton polytope,
denoted by ufc. We recover their diameter bound by showing that, in the integral
case, the facet gap and the unary facet complexity are related by ¢! < v/n - ufc;
see Section 5.3.

We denote the diameter of the Newton polytope by

N = max||w; — wj|2. (5.2.1)
1#)

Our algorithmic result is the following.

Theorem 5.2.5. There is an interior-point algorithm (Algorithm 5.1) that, given as input
an instance of the unconstrained GP problem (Problem 5.1.1) with shift © € conv(Q) and
a lower bound 0 < @o < @ on the facet gap, returns x5 € R™ such that

Fo(xs) < F*G +90

within

o[ s g es (7))

Po

iterations. The starting point is determined explicitly by the input, and every iteration is a
Newton step for a function that depends on @y.

Theorem 5.2.5 applies to arbitrary points 6 in the Newton polytope and achieves
an iteration complexity that is fully independent of 6. In contrast, Theorem 5.2.2
applies only to well-conditioned instances and its complexity is sensitive to the
distance of 0 to the boundary of the Newton polytope. However, the former
algorithm relies crucially on an a priori lower bound on the facet gap of Q, while
the latter has no such requirement. As such, our two algorithmic results are
incomparable.

As in the well-conditioned case, our algorithm also allows one to solve the
scaling problem with a similar iteration complexity bound.
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5.2. Summary of results

Corollary 5.2.6. There is an algorithm that, given as input an instance of the scaling
problem (Problem 5.1.3) with shift © € conv(Q), as well as a lower bound 0 < @ < @ on
the facet gap, returns x. € R™ such that

llgrad Fo(xe)ll2 = |lgrad F(x) — 6|2 < €

with the number of iterations bounded by

ot 22]

5.2.3. Condition measures for rational instances

Up to now, instances of the GP and scaling problems were allowed to be given by
arbitrary real vectors. We now discuss how our condition measures (and thereby
the iteration complexity) can for rational instances be effectively bounded in terms
of the encoding length. We will focus our attention on rg and ¢ since the other
condition measures {3, Rg, N can be straightforwardly bounded. Throughout, we
follow the conventions of [GLS12] for the encoding length: we encode rational
numbers (and rational vectors) in binary, and write (-) for the encoding length.

By standard techniques, we derive in Section 5.5.1 polynomial upper bounds
on log, rgl and the facet gap in terms of the input bit-size. This implies that the
iteration complexities of our interior-point methods are bounded by a polynomial
in the encoding length of the instance.

We briefly compare the resulting guarantees to previous work. In the setting
where () C Z™ is integral, [BFG+19] gave a first-order method was found which
solves the scaling problem in poly(1/¢, Rg) iterations. They also developed a second-
order method for the unconstrained GP problem based on the recently introduced
notion of robustness whose iteration complexity is poly(log(1/5), Rg/re, 1), see
[ALOW17; CMTV17; CKV20]. Our results therefore improve upon both, as we
have a logarithmic dependence on 1/¢ (for the scaling problem) and 1/6 (for the
geometric program), and logarithmic dependence on Rg/rg. An application of the
ellipsoid method gives similar guarantees [NR99], but is usually not practical.

5.2.4. Total unimodularity

The general bounds on the condition measures in terms of the encoding length
can be improved under a combinatorial hypothesis, as we show in Section 5.5.2.
We call an instance totally unimodular if the exponents w; are all integral and the
matrix A whose columns are given by the wj is totally unimodular, i.e., every
subdeterminant is +1 or 0. Important examples of totally unimodular matrices
are provided by the incidence matrices of directed graphs [Sch98, §19.3, Example
2]. We show that in this situation, the facet gap is bounded as ¢! < n%?2,
see Theorem 5.5.4.2 This implies that the interior-point algorithm in Theorem 5.2.5
can solve the unconstrained GP problem in O(Vk log(%)) iterations and the scaling

problem in a(ﬁlog(%)) iterations. The 6(-) notation here hides a polylogarithmic
dependence on the input length.

2In [BFG+19], the similar bound 13! < 2(®n%?2 appears.

127



5. Interior-point methods for commutative scaling problems

Many widely studied applications fall into this setting, among them matrix
scaling; see Section 1.1. In this case, the underlying graph is a complete bipartite
directed graph. Thus our interior-point algorithm runs in a(ﬁlog(%)) iterations
for finding an e-approximate (r, c¢)-scaling of a non-negative matrix with k non-
zero entries (if such a scaling exists). The matrix balancing problem can similarly
be modeled by taking the underlying graph to be a complete directed graph.
Unconstrained GPs arising from directed graphs can in general be related to
nonlinear flow problems on directed graphs [CMTV17].

The iteration complexity that we obtain for matrix scaling and balancing slightly
improves over (but is essentially the same as) the one given in [CMTV17] for an
interior-point method designed specifically for these problems. It is natural to
ask whether we can also meet the time complexity of the latter, which relied on a
slightly different objective function and a clever implementation of approximate
Newton iterations by using Laplacian solvers. We leave this question for future
investigation.

5.3. Condition measures and diameter bounds

Throughout, we fix an instance of the unconstrained GP or scaling problem with
QO =A{wy,...,wx} CR", q € IR‘;O, and shift 0 € conv(Q). Let W denote the
direction vector space of the affine span aff(Q)), which equals the linear span of the
wji — 0 in R™. Since the objective function Fg: R™ — R from Eq. (5.1.4) satisfies
Fo(x) = Fo(x + h) for all h € W+, we can restrict the optimization problem to W.

5.3.1. Well-conditioned instances

We first show the following diameter bound for a well-conditioned geometric
program.

Proposition 5.3.1 (Well-conditioned diameter bound). Assume 6 € relint(conv(Q)).

Then there exists x € W with ||x||2 < lofeﬁ such that Fo(x) = Fj.

Proof. For any x € W with [|x|l2 = 1, maxyeconv(q) (U — 6, x) is the distance from
0 to the face of conv(Q) determined by the vector x. Minimizing over all such x
results in the shortest distance from 6 to any face of the polytope conv(Q)), which
equals Tg. This shows that

Te = min max (u-6,x)= min maxw. (5.3.1)
xeW ueconv(Q) xeW\{0} ie[k]  [Ix]|2

lIx]l2=1

log

Therefore, if x € W satisfies ||x|[z > —=2

0,x) > log(f3). This shows that

(9‘3), there exists ip € [k] such that (w;, —

et > gy, el 0™ > qy B > flqll = e, (5.3.2)

hence Fg(x) > Fg(0). This completes the proof. O
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In the special case where O € {0,1}™ and q = (1,...,1), this reduces to the
log k
To

diameter bound ||x||> < 7+ shown in [SV14] and improved in [SV19] to ||x|2 <
for general Q) but the same q.

Remark 5.3.2. Put a; = w;i — 0 and consider the matrix A with columns a; := ai/||ai||>.
The GCC condition number [BC13, §6.7] of A can be characterized as the inverse of

(@i, x)
min max ~—~~,
xeW\{0} ie[k] |||l

Upon replacing Qi by ay, this quantity becomes rg, see Eq. (5.3.1). The geometric condition
measure rg thus is closely related to the GCC condition number (or Goffin measure), which
is widely used in the context of testing polyhedral cone feasibility.

5.3.2. General instances

In this subsection we allow 6 to be an arbitrary point in the Newton polytope.
Here, the central quantity is the facet gap of () (Definition 5.2.4).

The following theorem improves upon [SV19, Thm. 4.1]. Its proof follows
essentially the same argument, with a slight modification that also avoids the
recursion and leads to a slightly better bound.

Theorem 5.3.3 (Diameter bound via facet gap). Forany 0 < 6 < 23 and 6 € conv(Q),
there exists x € W such that

Il < 2 1og %
and Fg(x) < Fy + 6, where m = dim aff(Q) < n.

Proof. To start, choose vectors a; € W with ||a;|]» = 1 and scalars b; € R forj € |
some finite index set, such that the Newton polytope is defined by

conv(Q) = {p € aff(Q) : (p,a;) <b; Vje ]} .

We assume each inequality defines a facet of the polytope. Define the normal
cone N, at a vertex w to be N = {3 _j¢5, ¢jaj : ¢j > 0}, where Jo, = {j € ] :
(aj, w) = b;} is the set of tight constraints at w. It is well-known that W = |, N,
where w ranges over the vertices of conv(Q) (the normal fan is complete).

Now fix 0 € conv(Q) and let x* € W be such that

d
Fo(x") < Fy + >

Then x* € N, for some vertex w’ € Q of conv(Q), hence there exists a sub-
set ]’ C Jor € J and non-negative numbers {c; }jeyr such that x* = } ;.  cja;. By
Carathéodory’s theorem, we may assume |J’| < m = dim W. Now define

= Liog 2B
A.—(plog(é),
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5. Interior-point methods for commutative scaling problems

which is positive by the assumption that 6 < 23, and set

X = Z min(cj, A)a;.
jey
Since |lajll> = 1, we have ||x|2 < |J’| - A < mA, so x satisfies the desired norm

bound.
To complete the proof, it therefore suffices to show that

Fo(x) < Fo(x') + g (53.3)

We start by setting c; = min(cj, A) for convenience, so that x = 3 ;¢ cg aj. Let Jo
consist of those j € ]’ such that c; # cj, i.e, cj > Aand c; = A. We may assume
there exists at least one jo € Jo; otherwise, c; < A for every j € J', so we have x = x*
and Eq. (5.3.3) holds trivially. Now consider the intersection of () with the face
defined by the constraints J’,

Q' ={we:(a,w)=>b; Vje]},
IfweQ\Q,then w ¢ aff(Q)’), and
(w,x) — (', x) = ch(w -w',q) = ch ({w, aj) —bj)

5 <y
< ¢, ({w, aj) = bjo) = A ({w, @jy) = bj)

< —@A =log (%) .

The first inequality holds since each term in the sum is non-positive. The second
inequality follows from the observation that the distance from w to the affine span
of the facet defined by a;, and bj, is

b;, — (w, aj,)
— = = bj, — (W, q5,) > @
llajoll2

by definition of the facet gap. So we obtain for w € Q \ Q' that

Belw~w' ™ < g (5.3.4)
On the other hand, if w € ), then
(W=8,%) = (w=0,x) =Y (¢j—c}){w—-0,a;) < (w=86,x") (5.3.5)

j€Jo

since ¢j > cg and (6, a;) < bj = (w, aj) for all j € J'. Therefore, we now obtain

e’ qie<wi_e'x>

—_— , .e(wi—e,x)
Fe(x) = log( Z qie(wi—e,x)) + lOg (1 n Zl.w1¢Q qi

iLwie)’

E . ef{wi—0,x)
wi— i rqie
< log( E qie< i 9,x)) LwigQ’ Y

. i—6,
LwieQ)’ ZiiwiEQ’ qle<w1 )
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5.3. Condition measures and diameter bounds

o{wi—0,x)
o{wi—0,x) Zi:wieg' gie
<10g( Z qie )+ qi,e(w’—e,x)

iLwie)’
. )
< log( Z qrelwi=ox >) +5
iLwie)’
N
< FQ(X ) + 5

In the second inequality we denoteby 1" € [k] anindex such that wi; = w’, observing
that w” € QO’. The third inequality follows from Egs. (5.3.4) and (5.3.5). O

In contrast with the diameter bound for well-conditioned instances, which is in
terms of the distance of 0 to the boundary of the Newton polytope, the diameter
bound in Theorem 5.3.3 is independent of the shift 0. However, the facet gap is not
an intrinsic property of the Newton polytope conv(Q), but depends on the entire
set of exponents (), so the same is true for the diameter bounds in terms of the
facet gap. The following example shows that this is necessary.

Example 5.3.4. Consider for ¢ € (0,1/2] the instance with Q = {0, ¢,1} C R,
q=(1,1,1) € R? and 0 = 0. It is clear that conv(Q) = [0, 1] and that Q has facet
gap equal to ¢. Furthermore, we have

Fo(x) =log(1+e®*+¢eX) >0
and limy_,_o Fo(x) =0, so Fy = 0. On the other hand,

Fo(x) > log (1 +e®™),

so any d-approximate minimizer for o € (0, 1) must satisfy that [x| > —x > % log .

The following definition is from [SV19].

Definition 5.3.5 (Unary facet complexity). Let P € R™ be an integral polytope.
The unary facet complexity ufc(P) is the smallest integer M > 0 such that P can be
described as the intersection of the affine span of P with half-spaces (p,a) < b,
where a € Z™,b € R, and ||al|c < M.

We show now that the facet gap can be bounded in terms of the unary facet
complexity.

Proposition 5.3.6. For (O C Z™ we have

% < Vn - ufe(conv(Q)).

Proof. For any facet F C conv(Q) there exists a corresponding half-space (-, a) < b

defined by a € Z™, b € R, and ||a||e < ufc(conv(Q))). Then the affine span of the
facet is given by aff(F) = aff(Q)) N H, where H is the affine hyperplane

H={peR":(a,p)=D>}.
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5. Interior-point methods for commutative scaling problems

As a consequence, the distance from any w € Q \ F to aff(F) can be lower bounded
by the distance of w to the affine hyperplane H, that is,

b-{(a,w) (a,w)-(aw) S 1

d(w, aff(F)) > = > ,
(w,aff0) > =11, T T (o )

where w’ is an arbitrary point in O N F. To see the inequality, note that the
numerator is positive and an integer since a, w, w’ € Z™, so at least 1, whereas the
denominator is at most yn - ufc(conv(Q)). O

Thus, Theorem 5.3.3 and Proposition 5.3.6 imply the following diameter bound:
for integral () C Z™, there exists a 6-approximate minimizer of Fg of norm

2
Ix|l2 < 1372 ufe(conv(Q)) (ZLP +log (Fk)) ,

where [, = maxi|log qi| and we used that f < kfmd < ke?'». The right-
hand side bound is essentially the original diameter bound from [SV19] with a
logarithmically improved dependence on n. The middle bound is very similar to a

bound stated in an older version of [CKV20].

5.4. Interior-point methods for unconstrained geometric
programming

In this section, we show that approximate minimizers of Fg may be found efficiently
using the interior-point method framework as in Chapter 4. The idea is to rewrite
the geometric program as a linear optimization objective over a more complicated
convex domain, for which we know an explicit self-concordant barrier functional.
The domain and the corresponding barrier will be slightly different in the well-
conditioned and the general case.

We first give the main ingredients that are common to the analysis of both the well-
conditioned instances and the general instances. In the next two subsections we give
the algorithms and complexity bounds for each case. Fix Q = {wj,..., wx} € R™,
q € R, and a shift 8 € conv(Q). Following the general strategy outlined above,
we relate the geometric program to the minimization of a linear function over a
compact convex domain. For R > 0, define

k
Dor = {(x,z,t) eWxXRFXR : Zzi <1, qie<‘*’i_e’x> < zie' Vi€ [K],
i=1 (5.4.1)

t <log(skllall), lixll2 < R}.
Here we recall that W is the span of the vectors w; — 6 or, equivalently, the direction
vector space of aff(QQ). Note (x,z,t) € Dg,r implies z; > 0 for all i € [k]. The

convexity of the domain Dg r follows from the convexity of the exponential map
and of the ¢2-norm ball.
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5.4. Interior-point methods for unconstrained geometric programming

Consider the linear objective ¢ = (0,...,0;0,...,0;1) on Dgr. To see the
relation between this objective and the unconstrained GP, note that for any
p = (x,z,t) € Dg g, onehas (c,p) = tand

k k
Fo(x) = logZ qiel®i0x logZ ziet < t, (5.4.2)

so the minimum of the linear objective c on Dg r gives an upper bound on the
minimum of the unconstrained GP restricted to the ball ||x||2 < R. In the following
lemma we show that these minima are in fact the same. Consequently, if (x, z, t) is
a d-approximate minimizer of ¢ on the domain Dg r, then x is a §-approximate
minimizer of Fg(x), restricted to vectors of norm ||x|[> < R.

Lemma 5.4.1 (Value). For any R > 0, we have

val ;== min (¢c,p) = min t= min Fg(x), (5.4.3)
peDor (x,z,t)eDgr Ix]><R
V:= max (c,p) = max t=log(5k||ql}). (5.4.4)
peDor (x,z,t)eDgr

Furthermore, the difference V — val satisfies
log(5k) < V —val < log(5k) (5.4.5)
Proof. For the first claim, note that Eq. (5.4.2) implies that

val > min Fg(x).
lIxll2<R
Now consider a minimizer x of the right-hand side, which we can assume to be
in W. Then, t := Fg(x) is such that

t < Fg(0) = logllqll1 < log(5kllqll1),

and if we set z; := q;e{®¥i79~t then

k k
Zzi - Z qie<wt—9,x>e—t = eFo(X)p=Folx) — 1.

i=1 i=1
Thus we find that (x, z, t) € Dg g, with t = Fg(x), and Eq. (5.4.3) follows.
To see that Eq. (5.4.4) holds, note that the upper bound V < log(5k||q]|1) follows
directly from the constraint on the t-variable, and this upper bound being an
equality for the point

1

1
p=(0,...,0; E,...,E;log(Sklqul)) € Do gr.

Lastly, to show Eq. (5.4.5), note that

l= inf F > inf F =F, >1 in qi
val = Inf (Fold) > inf Fe(x) =Fp > logming
where the last inequality is Eq. (5.1.5). We clearly also have val < Fg(0) = log||ql|1,
so val satisfies

log 1 ﬁqi < val < log||ql|:.

ig|

Combining this with Eq. (5.4.4) yields Eq. (5.4.5). O
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5. Interior-point methods for commutative scaling problems

The key to applying interior-point methods to unconstrained geometric program-
ming is the following result, which gives an explicit barrier functional for Dg r. It
is well-known that such a barrier can be constructed, as it follows from standard
barrier functionals (Section 4.2) and barrier combination rules.

Proposition 5.4.2 (Barrier). The compact domain Dg g € W X R* x R has non-empty
interior. Moreover, it admits the self-concordant barrier functional

" "
Yo r(x,z,t) = — Z logzi — Z log (log zi — (wi — 6,x) +t —log q)

i=1 i=1
— log(log(5klIgll1) - t) — log(1 - ¥y z1) — log(R* = [IxI3),
with complexity parameter v = 2k + 3.

Proof. It is clear that Dg r has non-empty interior (for example, Eq. (5.4.7) below
gives a point in the interior). We now derive the barrier functional. It is well-known
that the epigraph of the exponential, given by

{(yz) e RXR : eY <z},

admits the self-concordant barrier functional (y, z) — —logz —log(log z — y), with
complexity parameter 2; see [NN94, Prop. 5.3.3]. Recall also that the logarithmic
barrier functional T — —log T for the halfline R>o € R has complexity parameter 1.
Then the closed convex set

{(y,z,1) e REXRFXR : eVt < z; forallie€ [k], T> 0} (5.4.6)

is simply the product of k copies of the epigraph of the exponential and the half
line, so a barrier functional ¥’ is given by the sum of the barrier functionals for
each term in the product [NN94, Prop. 2.3.1 (iii)], i.e.,

k k
Y(y,z,1) = - Z log z; — Z log(logzi —yi) —logT.
i=1 i=1

The complexity parameter is then at most the sum of the individual complexity
parameters, i.e., 2k + 1. Next, note that

{(x,z,t) e WXR*XR : qiel® 7% < zie' foralli e [k], t < log(5kllqll1)}
is the preimage of Eq. (5.4.6) under the injective affine transformation

A: WXRkXR_)RkXRkXR/ (X/Z/t) — (<w1—e,x>_t+10gq1,---
oo {w —0,x) —t+logqy; z1, ..., zi; log(5kllqll) — t),

hence by [NN94, Prop. 2.3.1 (i)] admits the self-concordant barrier functional

K K
(W oA)x,zt)=— Zlogzi — Zlog (logzi — (wi — 6,x) + t —log q4)

i=1 i=1

—log(log(5kllqll1) - t)
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5.4. Interior-point methods for unconstrained geometric programming

with the same complexity parameter 2k + 1. Finally, we may incorporate the linear
constraint 3, z; < 1 by adding the logarithmic barrier —log(1 — ¥ ¥, z;), and
the £2-norm constraint ||x||> < R by adding the barrier — log(R? — ||x||%) ; see [Ren01,
Prop. 2.3.1 (ii)]. This increases the complexity parameter to 2k + 3 and results in
the desired domain and barrier. O

Next we need to bound the symmetry of a suitable starting point, as defined
in Definition 4.3.2. For this, we will use the following lemma.

Lemma 5.4.3. Let D C E be a closed convex subset, and let p € D. Suppose that v < R
are two radii such that B(p,r) € D C B(p, R), where the closed balls are taken with respect
to an arbitrary norm on E. Then, D is bounded, p € int(D), and

.
> —.
sym(p) =

Proof. Clearly D is bounded and contains p in its interior. For the symmetry claim,
note that for any u € D, we have u € B(p, R), so p —u € B(0, R), and hence

p+z(p—w) € B(p,7) C D.

This shows that p + (p — D) € D, which implies the desired lower bound on the
symmetry. i

One important aspect of Lemma 5.4.3 is the freedom in choosing a norm; in
particular, we do not assume that the norm comes from the inner product on E.
We will now use this freedom to bound the symmetry of the following starting
point:

1

1

po=(0,...,0;
which is clearly contained in the interior of Dg .

Proposition 5.4.4 (Symmetry bound). For any R > 0, we can bound the symmetry
of Do,r with respect to the point p;, by

1

———— < 10max(ReR, k,log(4kp)),
sym(p) ( B(4kB))
where we recall that Rg = maxie[y)|lwi — 0]2.

Proof. We wish to apply Lemma 5.4.3 using the following norm on W X R¥ x R:

B Il 2, 1
lGe, 2, )| = max{ R 3l fogakp) |

We first show that every (x, z, t) € Dg r satisfies

l6x 2, 6) = | < 1. (5.4.8)
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By definition [|x||> < R. Moreover, z; > 0, so

k
2 1,2 1) _2 1) 2 1
Slz- <l | <D g+ <3S+ <L
3177 3l 3(Z1 Zk) 3(],_1ZJ Zk) 3( Zk)

Moreover, by Egs. (5.1.5), (5.4.3) and (5.4.4), it holds that

logm[ia qi < Fy <val <t <V =log(5k|lql1),
1€

hence

[t — log(4klIqll)|

log(4kB)
_ max{log(5kllqll1) ~ log(4kllqll1), log(4kllqll1) ~ log minicjy ds}
b log(4kp)

_ max{log 3, log(4kpB)} <
B log(4kp)

Thus we have proved Eq. (5.4.8).
We now show that Dg r contains any point (x,z,t) € W X Rk X R in the ball

1 1
10max(RoR, k, log(4kp))  10°

|||(x, z,t) — p6||| < (5.4.9)

The latter implies that ||x|2 < 1—% < R, so x certainly satisfies the norm bound.
Moreover, Eq. (5.4.9) ensures that ||x||> < ﬁ, and so

qiet im0 < qieRolixllz < gie!/10 < /10| q]| (5.4.10)
for all 1 € [k]. Next, we also have %lzi — 21k| < 10ka hence
7 1
—— < zi € —, 4.
20k 7S 20k (6411)
which implies that
k
13
i € — <
221 20 1
i=1

Finally, note that Eq. (5.4.9) entails

£~ log@kligl)l _ 1
log(4kp) - 101log(4kp)’

hence |t — log(4k||ql[1)]| < 11—0, which implies that

log(e™"/'04k]|q]l1) < t < log(e!/"%4k]|q]l1) < log(5kl|ql1) (5.4.12)
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where the last inequality uses 4 - e!/10 < 5. This shows that t < log(5k||q||1), which
is necessary for (x, z,t) € Dg,r. We now verify zie* > qie“"i_e"‘> ; combining the
lower bound on t from Eq. (5.4.12) and the lower bound from Eq. (5.4.11) yields

siet > oee Oakgll = L Olql > Vgl (5.413)
Together, Egs. (5.4.10) and (5.4.13) show that qie{®i79%) < ziet, as desired. Thus
we have proved that (x, z, t) € Dg r for any point in the satisfying Eq. (5.4.9). The
bound on the symmetry then follows from Lemma 5.4.3, where the radius of
the outer ball is given by Eq. (5.4.8) and the radius of the inner ball is given by
Eq. (5.4.9). 0

In the remainder we consider two different situations. For general instances, we
choose R according to a given lower bound on the facet gap, using Theorem 5.3.3.
In the well-conditioned case, where 0 is contained in the relative interior of the
Newton polytope, we see that the upper bound on the z; variables already leads
to a bounded domain; this allows us to obtain an algorithm that is independent of
any explicit radius bound.

5.4.1. General instances

Suppose the facet gap of the instance is lower bounded by some ¢g > 0. Then,
Theorem 5.3.3 and Eq. (5.4.3) show that for 6 < 43 and

n 23
R=—log|—
00 © (5/2)
the minimum value of (c, (x,z,t)) withc = (0,...,0;0,...,0;1) and (x,z,t) € Do r
is at most

. . 0
val = ”’rcr”1212R Fo(x) < Fy + >
Therefore, in order to obtain a $-approximate minimizer for the geometric program,
it suffices to find a 6/2-approximate minimizer on Dg r. The latter is achieved
by Algorithm 5.1, which is an interior-point algorithm for the self-concordant
barrier functional Wg r derived above. Its iteration complexity is bounded by the
following theorem.

Theorem 5.2.5. There is an interior-point algorithm (Algorithm 5.1) that, given as input
an instance of the unconstrained GP problem (Problem 5.1.1) with shift © € conv(Q) and
a lower bound 0 < @q < @ on the facet gap, returns xs € R™ such that

Fo(xs) < FB +0
within
N1 5k N1 k{3
2 N L 2 [2KB Y N1 Kp
41Vk log | 3600 k no-5log ( = )) o(ﬁlog (kn(po = log ( < )))
iterations. The starting point is determined explicitly by the input, and every iteration is a
Newton step for a function that depends on @y.
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Algorithm 5.1: IPM for unconstrained GP: general case

Input: exponents wyq, ..., wx € R™, coefficients q € ]R>O, shift 0 € conv(Q),
precision 0 < 6 < 1 lower bound ¢ on facet gap
Domain: De R ={(x,z,t) e WXR*XR : qie“‘“"e'X> < zie' Vi€ [K],
S K2z <1,|Ix|l < Rand t < log(5k||qll1)}, where
W = span{w; — 6, .. -0},andR=1 log(é/Z)
Barrier: Yo r(x,z,t) = —log(R2—||x||2) —log(l—zl=1 zi) —log(log(5kllqll1)—
t) + Sk —logz; — log(logzi — (wi — 6,x) —log qi + t)
Complexity parameter: v =2k + 3
1 Py (00,055, 5 log(dkllall);
2 c<—(0,...,00 ,0;1);
3 (Po,Mo) < PreliminaryStage(pé, c);
4 (x,z,t) « MainStage(po, no, T = 10Wlog(§#5/2), c);
5 returnt

Proof. The result follows from applying Theorem 4.3.4 to find a $-approximate
minimizer, with the closed convex domain Dg g, the self-concordant barrier
functional Wg r from Proposition 5.4.2 with complexity parameter v = 2k + 3, the
symmetry bound given by Proposition 5.4.4, and the starting point Eq. (5.4.7), along
with the estimate log(5k) < V —val < log(5kf) from Eq. (5.4.5) and the bound
Ro = maxi|lwi — 0] < N = maxi4j||w;i — wj]|2, which holds for any 6 € conv(Q).
The number of iterations is at most

36v  V —val
18vvlog (sym(pé) 572 )

< 41Vklog (3600k21_) max n— log (46[3) k, log(4kp)) log(5k )

(
< 41Vklog (3600k2 N 210g (52‘3))

ounfoiionf2]) u

If all the inputs for Algorithm 5.1 are rational and encoded in binary, then ||q||1,
B, and ¢ are at most exponentially large in the encoding length. Since the iteration
complexity depends logarithmically (or even doubly logarithmically) on these
quantities, the resulting iteration complexity is at most polynomial in the encoding
length of the input. See Section 5.5 for details.

5.4.2. Well-conditioned instances

Now assume the instance is well-conditioned, so 0 is contained in the relative
interior of the Newton polytope. Here, we consider

k
Dg = {(x,z,t) eWxRMXR : Y z <1, qiel® 0% <ziet Vie[k],
i=1
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Algorithm 5.2: IPM for unconstrained GP: well-conditioned case

k
>0/

Input: exponents wy, ..., wx € R™, coefficient vector q € R
shift 6 € relint conv(Q)), precision 0 < 6 <1
Domain: Dg = {(x,z,t) e WX RK xR : q;e{®79% < ziet Vie [K],

> ¥ zi <1andt <log(5kllqll1)}, where W = span{w; — 0}
Barrier: Wo(x,z,t) = —log(1 - Y\, zi) — log(log(5kllqll1) — t) +
Z]f:l —logz;i —log(logzi — (wi — 6,x) —log qi + t)
Complexity parameter: v = 2k + 2
1 Py — (O,...,O;ﬁ,...,i;log(4k||q||1));
2 c«(0,...,0;0,...,0;1);
3 (po,Mo) < PreliminaryStage(py, c);
4 (x,z,t) « MainStage(po, no, T = 10\/710g(gn%), c);
5 return t

t < log(5klalln)},

which looks just like Dg r except that we omitted the norm bound on x. We claim
that the two domains coincide for any

R > 10805KB)

o (5.4.14)

Indeed, if there were some (x, z, t) € Dg with ||x||2 > R then Eq. (5.3.2) would show
that qioe“"%"e’X> > 5k||ql|1 for some iy € [k]. This is a contradiction, since for any
(x,z,t) € Dg we have

po

K
qi,e'Ci0%) Z qielwiox Zziet < e' < 5k|[q]l1.
i=1 1=1

Thus we see that, indeed, Dg = Dg r for any R as in Eq. (5.4.14).

As a consequence, the value of the convex program for the domain Dy is exactly
equal to F},, as follows from Eq. (5.4.3). Moreover, the domain Dg is bounded and
satisfies the symmetry bound given in Proposition 5.4.4 with R = log(5kf3)/re.
Since Dg no longer depends explicitly on the radius bound, we can use the
self-concordant barrier functional

K K
Yo(x,z,t) =— Zlogzi — Zlog (logzi — (w;i — 6,x) +t —log q4)

i=1 i=1

~log(log(5kllqll1) — t) — log(1 - ¥, z;)

with complexity parameter v = 2k +2. Using this modification we readily obtain an
interior-point algorithm for well-conditioned instances. Importantly, this algorithm
does not explicitly depend on 1¢ or any other condition measure. By contrast,
Algorithm 5.1 required as input a lower bound on the facet gap. The algorithm is
stated in Algorithm 5.2, and the following theorem gives a precise iteration bound.

(5.4.15)
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5. Interior-point methods for commutative scaling problems

Theorem 5.2.2. There is an interior-point algorithm (Algorithm 5.2) that, given as input
a well-conditioned instance of the unconstrained GP problem with shift (Problem 5.1.1),
returns xs € R™ such that Fo(xs) < Fy + 0 within

36Vk log [ 1440120 1 10g2(5k[3)) - o(@log (k&1 log(kﬁ)))
T9 O T9 O

iterations. The starting point of the algorithm is determined explicitly by the input, and
every iteration is a Newton step.

Proof. Apply Theorem 4.3.4 to find a d-approximate minimizer, with the closed
convex domain Dg, the self-concordant barrier functional Wg given in Eq. (5.4.15)
with complexity parameter v = 2k + 2, the symmetry bound given in Proposi-
tion 5.4.4 with R = log(5kf)/re, and the starting point Eq. (5.4.7), along with the
estimate on (V — val) from Eq. (5.4.5). The number of iterations is then at most

18W10g( 36v V—Val)

sym(py) 8
1 log(SkB))

< 36Vklog | 144k .
& sym(p;) b

< 36\/Elog 144k2%10 log(5k[3)]:—9 log(SkB))
0

=36Vklog 1440k2]:—9% log2(5kl3))
0
Re 1
= O(\/Elog (k—— log(kﬁ))) =
To )

As in the situation of Theorem 5.2.5, if all the inputs in Algorithm 5.2 are rational,
then the iteration complexity is again at most polynomial in the encoding length
of the inputs. Again see Section 5.5 for details.

5.4.3. Geometric programming and scaling

In this subsection, we show that in order to solve the scaling problem with precision
e > 0, it suffices to solve the corresponding unconstrained geometric program with
some precision & = 6(¢). This is a special case of the (easy direction of) quantitative
version of the Kempf-Ness theorem stated in Theorem 2.6.7, and is well-known
(see e.g. [SV19; BFG+19]), but re-stated and included for concreteness.

k
>0/

Lemma 5.4.5 (Smoothness). For any wy, ..., wy,0 € R™and q € R, the function

k
Fo: R™ > R, Fo(x)=log) qief®w o0

i=1

is L-smooth with L = Ré, where Rg = max;||wi — 0]|2. Recall that this means that its
gradient is L-Lipschitz or, equivalently, that its Hessian has eigenvalues < L.
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5.5. Bounds on condition measures

Proof. The gradient VFg(x) € R™ is given by

Y i1 qiel 0¥ (wi - 0)

Y qie(@wi=0x) .
Therefore, the Hessian of F at x is the linear map V2Fg(x): R™ — R™ given by
> i1 qiete 0 (wi - 8)(wi - 6)"

Z]le qielwi=0x)

VFQ(X) =

V2Fo(x) = — (VFe(x))(VFo(x))".

Hence we see that the eigenvalues of the Hessian can be upper bounded by the
eigenvalues of M := V2Fg(x) + (VFg(x))(VFo(x))", because (VFg(x))(VFg(x))" is
positive semidefinite. The matrix M is a convex combination of the rank-one
matrices (w; — 0)(w; — 0)T, so we can bound its eigenvalues by Ré. O

The following proposition then shows that the scaling problem can be solved by
solving the corresponding geometric program with sufficient precision.

Proposition 5.4.6 (Scaling from optimization). Assume that © € conv(Q), and let
x € R™ be such that Fg(x) < Fy + & for some & > 0. Then,

lgrad Fo(ol2 _
2
2Ry
In particular, to solve the scaling problem with precision € > 0 it suffices to find a solution

for the unconstrained GP with accuracy & = €2/ (ZR%)).

Proof. A standard argument shows that an L-smooth function can always be
decreased in controlled way by following a gradient step. Namely, if we define
X’ = x — £ VFg(x) then, using Taylor’s expansion to second order and bounding the
quadratic contribution using smoothness,

) 1 1 1
Fo(x") — Fo(x) < —fllgrad Fo(x)II5 + legradFe(X)llﬁ = —legradFe(X)llﬁ-

As x is a d-approximate minimizer of Fg, we must have
1
i”grad Fe(x)llg <.

The desired bound follows since we have L = Ré by Lemma 5.4.5. |

This proposition allows one to deduce Corollaries 5.2.3 and 5.2.6 directly from
Theorems 5.2.2 and 5.2.5, respectively.

5.5. Bounds on condition measures

In this section, we give bounds on the condition measures from Section 5.3 for
rational instances in terms of their binary encoding length. These bounds show
that our interior-point algorithms have polynomial iteration complexity. We also
explain how to obtain tighter estimates under a total unimodularity assumption
on the Newton polytope. Throughout this section, we follow the conventions
of [GLS12]: we encode rational numbers and vectors in binary, and write (-) for
the encoding length.
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5. Interior-point methods for commutative scaling problems

5.5.1. General bounds

We first give lower bounds on r¢ and ¢, the distance of 0 to the boundary of
the Newton polytope and the facet gap of (), respectively. All other condition
measures can be directly bounded in terms of the input length.

Lemma 5.5.1. Let QO € Q™. If 0 € Q™ N relintconv(Q), then
1
log, — < 6n?max (w;) + (8) —n.
&2 To ie[k]< 1> < >

If © = 0, this can be improved to 3n> maxie[x] (Wi) — n. Moreover, we have log, % <
(6n? + 1) maxie[i] (wi) — .

Proof. The polytope conv(Q) has vertex complexity at most v := max;e[x] (wi), so
by [GLS12, Lem. 6.2.4], it has facet complexity at most ¢ := 3n?v. This means
that the polytope can be defined by inequalities of the form (-,a) < b for a € Q™,
b € Q with encoding length (a) + (b) < ¢.

As a consequence, if F is any facet of conv(Q) then its distance to 6 can be lower
bounded as

b-(06,a)
llall2

for certain a € Q™, b € Q with (a) + (b) < ¢. Now we have ||al|z < 2{¥~™ by
[GLS12, Lem. 1.3.3], while b— (6, a) is a positive rational number with denominator
of absolute value at most 2{0*{P)+(0) ¢ 20+(0)  We conclude that the distance
from 0 to the facet F is at least
b-(6,a) S 1 S 1 3 1
lall2 7 0h+(0)0(a)-n T 22¢+(0)-n ~ g6nZmaxi{wi)+(8)-n’

d(6,F) > d(6, aff(F)) >

Since the facet was arbitrary this implies the first claim. If 0 = 0, then we instead
estimate

= 2 2 2 ,
||CL||2 ||(l||2 2(b)2(a)-n 2¢-n 23n2 maxi{wi)-n

which proves the second claim.
The argument for the third claim is as for the proof of first claim, but with 0
replaced by any w; not on the facet under consideration. |

Finally, we show that the unary facet complexity of an integral polytope can be
similarly bounded in terms of the encoding length. Via Proposition 5.3.6, this also
implies a bound on the facet gap, albeit with a worse polynomial scaling in the
dimension n.

Lemma 5.5.2. Let O C Z™. Then the unary facet complexity of conv(Q) satisfies
log, ufc(conv Q) < 3n3 m% (wi)y —n.
ie[k
Proof. Again by [GLS12, Lem. 6.2.4], the polytope conv(Q) may be described by
inequalities of the form (p,a) < b with a € Q™, b € @ of total encoding length
(a) + (b) < ¢ := 3n? maxie[k] (Wi). Multiplying by the denominators of a gives
a’ € Z", b’ € @ such that a’ has encoding length at most n¢ = 3n3 maxie[k] (Wi).
Now the desired inequality follows from the bound [|a’[|e < [|@’|l2 < 2@~ ™. O
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5.5. Bounds on condition measures

5.5.2. Total unimodularity

We now show how to improve the bounds given above in case the set of exponents
Q) satisfies a total unimodularity hypothesis.

Definition 5.5.3 (Total unimodularity). An integer matrix A € Z™¥ is called
totally unimodular if every square submatrix of A has determinant 0, 1 or —1. We
say that Q = {wq, -, wyx} € Z™ is totally unimodular if the associated matrix
Ao = [w1| e |wk] with columns wy, ..., wy is totally unimodular.

As an important source of totally unimodular instances, suppose that G is a di-
rected graph with vertex set V = [n], edge set E of size k, and edge weights qi; > 0
for ij € E. Since the incidence matrix of a directed graph is totally unimodu-
lar [Sch98, §19.3, Example 2], the associated geometric program

Fge(x)=log Y qije™™ —(0,x) (5.5.1)
ijeE

is totally unimodular.

If O is totally unimodular, every w; has entries only in {+1,0}. Therefore, we
can bound the radius of the smallest enclosed ball around any 6 € conv(Q), as
well as the diameter of the Newton polytope by

Ro = min||w; — 02 < N = max||w; — wjl2 < 2vn. (5.5.2)
ie[k] i#j

We now show that the inverse distance to the boundary and the inverse facet gap
can similarly be upper bounded by a polynomial in n, which is an exponential
improvement over the general bounds of Lemma 5.5.1.

Theorem 5.5.4 (Totally unimodular bounds). Let () C Z™ be totally unimodular.
Then the unary facet complexity ufc(conv(Q)) < n. As a consequence, @ > n=>/2,
Furthermore, if @ € Q™ N relint conv(Q), then we have o > 279 n=3/2, which can be
improved to n~3/2 if @ = 0.

Proof. Assume first that conv(Q) is a full-dimensional polytope. Then every facet
of conv(Q) is the convex hull of some affinely independent vy,...,vy € Q. By
Cramer’s rule, the affine hyperplane spanned by the facet consists of all x € R™
such that

1 1 ... 1
X1
det| . =0.
. Vl [P Vn
Xn

Expanding the determinant along the first column gives the linear equation

D (=1)" det(Dy)x; = —det(Dy) (5.5.3)

i=1
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5. Interior-point methods for commutative scaling problems

where Dj is obtained by deleting the (i + 1)-th row from the matrix

1 ... 1
Vi1 -+ Vn,1
vl,n e vn’l

For i,j € [n], let Di be obtained by deleting the first row and the j-th column from
Dj; then expanding the determinant det(D;) along the first row gives

n
|det(D)| < ) _|det(D))| <n (5.5.4)
j=1

since D]i is a submatrix of An and hence submodular. By replacing the equality in
Eq. (6.5.3) by an inequality and varying over all facets, we obtain a complete set of
defining inequalities for the polytope. This shows that the unary facet complexity
ufc(conv(Q)) is at most n. The lower bound on the facet gap now follows from
Proposition 5.3.6.

We now consider an arbitrary 8 € Q™ in the interior of conv(Q)) and bound its
distance to the boundary. Set a = [det(D3),...,det(Dn)]" and b = —det(Dy), so
that the hyperplane defined by Eq. (5.5.3) reads (x, a) = b. The distance from 0 to
the facet is then lower bounded by

[b-<6,a)f _ [b=<6, a)
llall2 nd2 '

where we used that |lallz < Yn|la]le < n%2 by Eq. (5.5.4). Note that (6, a) # b,
since 0 is not contained in the hyperplane. Moreover, a € Z™ and b € Z. Therefore,
if 0 = Othen |b—(6, a)| = |b| is an integer (in fact, equal to 1 by total unimodularity),
while in general it is a rational number with denominator at most 2¢9). In either
case we obtain the desired lower bound on rg.

Finally, suppose that conv(Q) has dimension r < n. Then there exists a set of
vectorsU = {uy,...,un_}in{0, ey, ..., en } such that conv(QUU) has dimension n.
Moreover, O U U is still totally unimodular. Hence by the previous part of the
proof, conv(Q U U) has unary facet complexity at most n. Every facet of conv(Q) is
now the intersection of some facet of conv(Q U U) with the affine span of (3, so the
unary facet complexity of conv Q is also at most n. Furthermore, since the distance
from O to any facet of conv () is at least as large as the distance from 0 to any facet
of conv(Q U U) not containing 6, we also inherit the lower bound on r¢. O

The lower bound rj! > n~32 when 0 = 0 already appears in [BFG+19, Cor. 6.11]
as a lower bound on the weight margin y(m) of a representation 7 : T(n) — GL(V)
whose weights are exactly Q). The proof given there is similar to the one we give
(as well as to the proof of [GLS12, Lem. 6.2.4], which is also a key ingredient for
Lemma 5.5.1): both use Cramer’s rule to express equations for facets of conv(Q)
in terms of subdeterminants of the matrix Ao, which are bounded by the total
unimodularity.

The following corollary specializes Theorem 5.2.5 and Corollary 5.2.6 to the
totally unimodular case, using Eq. (5.5.2) and the lower bound on the facet gap
from Theorem 5.5.4.
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5.5. Bounds on condition measures

Corollary 5.5.5. There is an interior-point algorithm (Algorithm 5.1) that, given as input
an instance of the unconstrained GP problem with shift and totally unimodular QO C Z™,
returns xs € R™ such that Fo(xs) < Fy + 0 within

o) -]

iterations. Similarly, given an instance of the scaling problem with totally unimodular QO C
Z™, the same algorithm returns x, € R™ such that ||grad Fo(x.)||2 < € within

O(\/Elog (kn% log (@))) = 6(@105_; (%))
iterations. Here, the notation O(-) hides poly(input) terms inside the logarithm.

In particular, this theorem applies to matrix scaling (and balancing, see Chap-
ter 13), by using the following geometric program which is totally unimodular:

Fo(x,y) =log ) qizeXi vim(rariey),

1)
Here, even stronger bounds can be obtained: the diameter of the Newton polytope
is N = 2 and the facet gap satisfies @ > n~1/2, since the unary facet complexity of
the Newton polytope is in fact equal to 1 [SV19].

For matrix scaling, the state of the art for general matrices is a near-linear time
algorithm [CKL+22; BCK+23]. Prior to this work, the best was an interior-point
method given in [CMTV17, Thm. 6.1], which obtains an iteration complexity of

6(@1055 (@)) (5.5.5)

to find an (r, c)-scaling of a nonnegative matrix. They use an objective that is
slightly different from our Fg, namely

foloy) =D qie™ ™V = (1,%) + (c,y),

i,j

that is, the ‘shift’ is done additively instead of in the exponent. We see that the
iteration complexity in Corollary 5.5.5 slightly improves over Eq. (5.5.5).
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6. Preliminaries in Riemannian
geometry

In this chapter, we recall some basic concepts in Riemannian geometry that we
will need in the remainder of this part, and fix our notation. We mostly follow the
conventions of [Leel8], and assume basic familiarity with the theory of smooth
manifolds. See [Leel3; Leel8; BH13] for comprehensive introductions to differential
geometry, Riemannian geometry and non-positive curvature, respectively.

6.1. Metric, lengths, distances

Throughout, we let M denote a connected Riemannian manifold. Unless specified
otherwise, all differential geometric objects (manifolds, functions, sections, etc.)
are assumed to be C*-smooth. We write TyM and T;M for the tangent and
cotangent space at a point p € M, and write TM and T*M the tangent and
cotangent bundle of M, respectively. The space of sections of a vector bundle E
on M is denoted by I'(E). Sections of the (co)tangent bundle are called (co)vector
fields. Given a function f, we write df for its differential, which is a covector field.
Then Xf = df(X) is the directional derivative of f in direction X for any vector
field X. The Lie bracket of two vector fields X and Y is the vector field [X, Y] that
acts as [X, Y]f = X(Yf) — Y(Xf) on any function f. More generally, for k,1 > 0, a
(k, V)-tensor field is by definition a section of the bundle T*YM := (TM)®*@(T*M)®!
or, equivalently, a C*(M)-multilinear map N'(T*M)* x I(TM)! — C®(M); when
k = 1 we can also think of it as a C*(M)-multilinear map I'(TM)! — I'(TM).

The Riemannian metric on M is a smoothly varying family of inner products on
the tangent spaces, i.e., for every p € M we have an inner product -, ->p on T,M

such that the map p - ¢, ->p is a section of the bundle T®?M. The induced norm
on T, M is denoted by ||-||,. We write (X, Y) and [|X]| for the functions computing
the pointwise inner product and norm, respectively, of vector fields X, Y.

Using the Riemannian metric, we can define the length of a piecewise regular

(meaning smooth and non-zero derivative) curve by L(y) = J: IV (t)[ly(x)dt. This is
independent of the parameterization. In particular, we may always reparameterize
such that the curve has unit speed, i.e., ||V(t)|| = 1, except for finitely many points;
in this case the length is L(y) = b — a. Given a notion of length, we define the
Riemannian distance d(p, q) between any two points p, q € M as the infimum of
the lengths of all piecewise regular curves from p to q. In this way, M becomes a
metric space. Its topology is the same as the original topology of the manifold M.

This chapter is adapted from [HNW23].
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6.2. Covariant derivative and curvature

The Riemannian metric determines the Levi-Civita connection V. It assigns to
any two vector fields X and Y the covariant derivative VxY of Y along X, which
is again a vector field, and is determined uniquely by being a connection on
the tangent bundle (meaning it is C*-linear in X, R-linear in Y, and satisfies the
product rule Vx(fY) = fVxY + (Xf)Y for all functions f) which is compatible with the
metric in the sense that X(Y, Z) = (VxY, Z) + (Y, VxZ) and symmetric (torsion-free),
meaning VxY — VyX = [X, Y], where [X, Y] denotes the Lie bracket. The C*(M)-
linearity in X implies that V><Y|p depends only on the tangent vector v := X, at
the point p € M and the values of Y in an arbitrarily small neighbourhood of p;
accordingly we will also write V,Y. Moreover, X — VxY defines a (1,1)-tensor
field, called the total covariant derivative VY of Y.

One can uniquely extend the above to define connections and covariant deriva-
tives for all tensor bundles T*"YM by demanding that for functions it agrees with
the differential, that it satisfies a product rule with respect to tensor products,
Vx(T®S) = (VxT)®S +T®(VxS) for all vector fields X and tensor fields T, S, and
that it commutes with all contractions. As a consequence,

X(T(wl,. . .,(Uk,Zl,.. .,ZL)) = (VxT)((Ul,.. .,wk,Zl,. . .,Zl)
+ T(wal, wy, ..., Wk, 2Z1,.. .,Z[) (6.2.1)
+ ... +T(wlz---;wk/ZI/---/Zl—LVXZl)

forany (k, 1)-tensor field T, vector fields X, Z, . .., Z1, and covector fields wy, ..., wk.
Again, we write V,, T := (VxT),, as this only depends on the tangent vector v := X, at
the point p € M. For any (k, 1)-tensor field T, the map (wy, ..., wk, X, Z1,...,Z1) —
(VxT)(w1,...,wx, Z1,...,2Z1)defines a (k, 1+1)-tensor field, called the total covariant
derivative and denoted by VT. We note that [Leel8] uses a different convention.
In particular, we can define the Hessian of a function f as V*f = V(Vf), which is a
(0,2)-tensor field that turns out to be symmetric for the Levi-Civita connection; see
Section 6.4.

Let M € M be an embedded submanifold, equipped with the induced metric,
and let V denote its Levi-Civita connection. If X, Y are vector fields on M that are
extended arbitrarily to a neighborhood of M in M, then the Gauss formula holds
on M:

VxY = VxY +I(X,Y), (6.2.2)
where I(X,Y) := m+(VxY) is the shape tensor or second fundamental form 1 of M, with
mt: TM|x; — (TM)* the orthogonal projection [Lee18, Thm. 8.2].

While the covariant derivative itself is not a tensor field, it can be used to define
the so-called Riemann curvature tensor which is a fundamental local invariant of
Riemannian manifolds. Given vector fields X, Y, Z, we can define the vector field

R(X, Y)Z = Vx(VyZ) - Vy(VXZ) - V[X,Y]Z-

We may think of R(X,Y) as a C*-linear operator on the tangent bundle; hence R
is a (1,3)-tensor field. The operator R(X,Y) is skew-symmetric, and it is a skew-
symmetric function of X and Y. It further satisfies the algebraic Bianchi identity
R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0. It can also be useful to define R(X,Y, Z, W) :=
(R(X,Y)Z, W), which is a (0, 4)-tensor field.
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6.3. Parallel transport, geodesics, completeness

A closely related object is the sectional curvature, which given two linearly
independent tangent vectors v, w € T, M at the same point p € M is defined by

K(v,w) = (Rv, ww, v},

V,V)p (W, W)y, = (v, w)i.

It only depends on the two-dimensional tangent plane spanned by v and w. The
sectional curvature determines the Riemann curvature tensor uniquely. Its sign
is an important characteristic of a Riemannian manifold. We say that M has
non-positive (sectional) curvature if K(v,w) < 0 for allv,w € TM and p € M.

One has the following useful geometric interpretation of sectional curva-
ture [Mey89]:

Proposition 6.2.1. Let p € M and v,w € T, M be orthogonal unit vectors. Let f(t) =
%d(Expp (tv), Exp,, (tw))?. Then near t = 0, one has the Taylor expansion

f(t) = t* - tt+ O(t).

K(v, w)
6
In other words, when the sectional curvature K(v,w) is non-positive, the

geodesics Expp (tv) and Expp (tw) diverge faster than one would expect from

the situation in Euclidean space (see Section 6.3 for the definition of geodesics).

There is also a more global interpretation of having non-positive curvature every-
where [BH13, Thm. 1.6]:

Theorem 6.2.2. Let M be a simply connected complete Riemannian manifold. Then M has
non-positive sectional curvature everywhere (i.e., K(v,w) for all p € M and u,v € T,M)
if and only if the CAT(0)-inequality! holds: for all p,x,y,z € M such that d(x,y) =
d(x, z) + d(z,y) (i.e., z is a midpoint of x and y), we have

1 1 1
d(p,2)* < 5d(p,%)* + 5d(p,y)* = 7d(x y)". (6.2.3)

We note that the Eq. (6.2.3) is tight for all p, x,y, z € M if and only if M has no
curvature.

The next lemma records how these notions behave under rescaling of the
Riemannian metric.

Lemma 6.2.3. Let M be a Riemannian manifold with Riemannian metric -,-), and
letc > 0. Let M’ be the same manifold but with Riemannian metric given by (-,-)" = ¢ (-, ).
Then M has the same Levi—Civita connection as M, and hence the same (1, 3)-curvature
tensor. For every p,q € M, one has dm/(p,q) = Vedm(p,q). Furthermore, for
all p € M and linearly independent v,w € T,M = T, M/, the sectional curvature satisfies
Kmr(v, w) = Km(v, w)/c.

6.3. Parallel transport, geodesics, completeness

All definitions given so far restrict naturally to open subsets. However, it is often
useful to restrict to curves in a manifold and differentiate a vector or tensor field

!This inequality is named after Cartan, Alexandrov and Toponogov [BH13], and should not be
confused with the E(0)-inequality.
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along it. If v is a curve defined on an interval I C R, then a (k, 1)-tensor field along y

is a function Y: I —» T&UM such that Y(t) € Tw(/lal))l\/l for every t € 1, i.e., a section

of the pullback bundle v*T® U Then there is a unique R-linear operator Dy, called
the covariant derivative along vy, that satisfies the product rule D(fY) = fY + fDY
for f € C*(I) for f € C*(I), and which agrees with V) for every tensor field that
extends to a neighborhood of y.

A vector or tensor field Y along a curve v is called parallel if its covariant
derivative along vy vanishes identically, i.e., D{Y = 0. For any curve y: I — M,
T
equations imply that there always exists a unique parallel tensor field Y along y
such that y(0) = yo, called the parallel transport of yo along y. For any t € I,

0 € I, and any tensor yp € M, standard results in ordinary differential

we get a linear isomorphism T ;: Ti/]zbg)M — T;IE;I))M by setting T +(yo) = Y(t)
called a parallel transport map. This is useful to compute covariant derivatives:
if T is a (k,1)-tensor field then for allp € M, v € T,M, ny,...,Mx € M, and

wi, ..., Wi € T,M we have

VoT(Me, - Mo Wi, -, W) = 0t=0 Ty () (Ty N1, - -, Ty Mk Ty tW1, - -+, Ty tWL),
(6.3.1)

where vy is an arbitrary curve such that y(0) = p and v(0) = v. We are often
interested in parallel transport along the manifold’s geodesics, which we introduce
next.

A curve v is called a geodesic if it is parallel to its own tangent vector field, i.e.,
D¢y = 0. For every p € M and v € T, M, there is a unique geodesic y: I - M
with y(0) = p and y(0) = v, defined on some maximal open interval I containing
0. Note that y(t) = 7, +(V(0)) forall t € I. If 1 € I, we define Exp,, (v) == vy(D).
We call M geodesically complete if I = R, i.e., if geodesics with arbitrary initial
data exist for arbitrary times. Then the exponential map is defined on the whole
tangent space, Exp,: T,M — M. The Hopf-Rinow theorem states that if M is
connected, geodesic completeness is equivalent to completeness with respect to the
Riemannian distance function, as well as to the Heine—Borel property (bounded
closed subsets are compact).

Any length-minimizing curve is a geodesic when parameterized with unit
speed. In general, geodesics are only locally length-minimizing, but when M is
connected and complete then any two points p, ¢ € M are connected by a length-
minimizing geodesic, although there may be many other geodesics. However,
if M is not only complete but also has non-positive sectional curvature, then by
the Cartan-Hadamard theorem the exponential map at each point is a covering
map. In particular, if M also is simply connected, then the exponential map
is a diffeomorphism, so there is a unique (up to reparameterization) geodesic
connecting any two points p and q. We will denote the corresponding parallel
transport by T, 4. Manifolds that are simply connected, geodesically complete,
and have non-positive sectional curvature are called Hadamard manifolds. This
includes a great variety of spaces of import in applications, such as Euclidean and
hyperbolic spaces, the positive definite matrices, and other symmetric spaces with
non-positive curvature (see Chapters 9 and 10).
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6.4. Gradient and Hessian

Given a function f: D — R defined on an open subset D C M, we define its
gradient as the vector field grad(f) that is dual to its differential. That is, for all
vector fields X we have

(grad(f), X) = df(X) = Xf.

The Hessian of f is defined as the second covariant derivative V?f = V(Vf) = Vdf,
which is a (0, 2)-tensor field, that is, a smoothly varying family of bilinear forms.
By definition and using Eq. (6.2.1), we have for any two vector fields X and Y that

(VZ)(X,Y) = (Vxdf)(Y) = X(df(Y)) — df(VxY) = X(Yf) = (Vx )T, (6.4.1)

which implies that Hessian is a symmetric tensor, by the symmetry of the Levi-
Civita connection. Since the Hessian is a symmetric tensor, it is determined by the
associated quadratic form. The latter can be conveniently calculated in terms of
geodesics: foranyp € Mandv € T,M,

(V2)p(v,v) = aizof(Expp (tv)). (6.4.2)

Using metric compatibility, one can write (V2f)(X,Y) = (Vx grad(f), Y), which
shows that the (1,1)-tensor field Hess(f) := V grad(f) is the natural operator
definition of the Hessian.

One can similarly consider higher covariant derivatives, but these need no longer
be symmetric as a consequence of the non-vanishing of the curvature tensor. In
particular, the third covariant derivative is no longer captured by its diagonal
(V3f)p(v, Vv, V) = aizof(Expp (tv)). This complicates the theory of self-concordance,
as we will discuss in Section 8.1.

6.5. Convexity

Finally we recall here some basic notions of convexity on Riemannian manifolds.
We first discuss convexity of subsets and then turn to convexity of functions. We
assume that M is connected and geodesically complete, so that any two points are
connected by a (length-minimizing) geodesic.

A subset D € M is called (totally) convex if for every geodesicy: [0,1] — M with
v(0) € D and y(1) € D, it holds that y(t) € D for all t € [0,1]. We remark that, in
general, two points can be connected by more than one geodesic; accordingly there
is more than one natural definition of convexity. We are primarily interested in
applications to Hadamard spaces, where any two points are connected by a unique
geodesic, just like in Euclidean space.

A (not necessarily continuous) function f: D — R defined on a convex sub-
set D € M is called convex if for every geodesicy: [0,1] — M with y(0) € D and
v(1) € D, it holds that f oy: [0,1] — R is convex. That is, f is convex along all
geodesics in its domain. Equivalently, f is convex if and only if its epigraph

Er={(p,t) e DX R:f(p) <t} (6.5.1)
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is a convex subset of M x RR. If the epigraph is also closed as a subset of M X R,
then f is called closed convex. This useful condition controls the behavior of a
convex function at its boundary, as in the following lemma, which thanks to
the Hopf-Rinow theorem can be proved just like in the Euclidean case [Nes18,
Thm. 3.1.4]. In particular, any continuous convex function on a closed domain is
closed convex. Parts (i) and (ii) state that any closed convex function f: D — R is
lower semicontinuous, also if we extend it to M by setting f(p) = oo for p ¢ D (in
fact, this characterizes when a convex function is closed, but we will not need this).

Lemma 6.5.1. Let f: D — R be a (not necessarily continuous) closed convex function
defined on a convex subset D € M. Then:

(i) If (px) € D is a sequence s.t. Peo = liMy—00 px € D, then liminfy_,o f(pk) >
f(Poo)-

(i) If (px) € D is a sequence s.t. limy_,« px € D, then limy . f(px) = .

(iii) If for some L € R the level set L = {p € D : f(p) < L} is non-empty and bounded,
then f attains its minimum.

Proof. (i) We need to show: for any subsequence (py;) such that lim;_,« f(py;) =
foo for some fo, € R U {£oo}, we have that foo > f(poo). If foo = 0 there is
nothing to show. If fo, € R then we have lim; e (px;, f(Pk;)) = (Poo, f) € Ey,
since the epigraph is closed, and hence fo, > f(pw). Finally, we note foo, = —00
cannot occur. Indeed, if foo = —oo then f(py;) < f(p) — 1 for j large enough,
hence (py;, f(p~) — 1) € E for j large enough and hence limj o (px;, f(Peo) —
1) = (Poo, f(peo) — 1) € E¢, which is a contradiction.

(ii) Assume this is not so. Then there are a subsequence (py;) and L € R
such that f(py;) < L for all j. Now, limj«(px;, L) = (peo, L), where peo :=
limy o px, but each (py;, L) is contained in the epigraph, and hence the same
must be true for the limit. It follows that p € D, which is a contradiction.

(iii) Since the level set £ is non-empty, it contains a sequence (px) such that
limy 0 f(pi) = f := inf,ep f(p). Because the epigraph is a closed subset
of M X R, the same is true for £ X {L} = Ef N (M X {L}), and hence £ is a
closed subset of M. It is also bounded by assumption. By the Hopf-Rinow
theorem, which is applicable because we assume that M is geodesically
complete, it follows that £ is compact. After passing to a subsequence, we
may therefore assume that pe := limx_,o px exists and is in £ € D. For
continuous f, we then have f(p.) = f. and this concludes the proof. If f is
not continuous then we can proceed as follows. First suppose that f, = —oco.
Fix any pg € L. Because M is geodesically complete and L is bounded,
there exists a constant C > 0 such that we can write py = Exppo(uk) for
some ux € Tp,M such that ||ux|lp, = d(po,px) < C for all k. Then we
can choose oy € (0,1) such that «x — 0 and o f(px) — —oco. Then the
points qi := Exp,, (xiuy) satisfy

f(qr) < (1 — o) f(po) + o f(px) = f(po) + au(f(px) — f(po)) — —o0,

where the first inequality holds by geodesic convexity. In particular, there
is some constant K € R such that f(qx) < K < f(pg) for large enough k.
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Now, (g, K) is in the epigraph and converges to (po, K), because ax — 0
and |[ukl|lp, < C for all k. But f(pg) > K, so (po, K) is not in the epigraph.
This contradicts the assumption that the epigraph is closed. Thus we
must have that f, > —oco. Then, limy_,«(px, f(px)) = (pe, f+) and since the
epigraph is closed, it must contain the latter, meaning that f(p.) < f. and
hence f(pe) = f.. O

We will later (in Section 8.2) be in the situation that D C M is open and we
are interested in smooth objective functions f: D — R that have a closed convex
extension, meaning that f extends to a closed convex function on some convex
superset of D. This is the case in particular if f extends to a continuous convex
function on the closure D.

Just like in the Euclidean setting [Nes18, Thm. 3.1.5], one can see that the sum of
two closed convex functions is again closed convex.

Lemma 6.5.2. Let f1: D1 — R, f2: D2 — R be closed convex functions defined on
convex subsets D1,Dp € M. Then the function f1 + 2 is a closed convex function
on D1 N Do.

Proof. It is clear that f1 + f; is a convex function on D := Dj N Dy. To see that it
is closed, consider an arbitrary convergent sequence (px, ti) in E¢,+,, with limit
point (Peo, te) € M X R. By Lemma 6.5.1, since f; and f; are closed convex, we
have

li‘1<111nf f1(px) = f1(pe) and lilin inf f2(px) = f2(pPoo),
and hence

teo = lim tyx > li‘?linffl(pk) + lilininffz(pk) > f1(Poo) + F2(Peo),

k—oo
which means that (pe, te) € Ef,+f,. Hence f1 + f3 is closed. ]

As in the Euclidean setting, one can also characterize convexity differentially. In
particular, a C2-smooth function f: D — R defined on an open convex subset D C
M is convex if and only if the quadratic forms defined by the Hessian are positive
semidefinite, i.e.,

(V)p(v,v) > 0 (6.5.2)

forall v e T,M and p € D. We discuss two refinements of the notion of convexity
(for simplicity only in the C2-smooth setting): If f is strictly convex along any
geodesic in the domain, then f is called strictly convex. A sufficient condition for
strict convexity is the following: for every p € D, the Hessian (V*f),, is positive
definite, i.e., Eq. (6.5.2) holds with equality only for v = 0 € T, M. Similarly, we say
that f is p-strongly convex for some p > 0 if it is so along any unit-speed geodesic in
the domain. This is the case if and only if, forallv € T,M and p € D,

(V3)p (v, v) > ulvl3.

In convex optimization, upper bounds on the Hessian of a convex function are
often also useful. We say that f is v-smooth (not to be confused with smoothness in
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the sense of C™) if it is so along any unit-speed geodesic in the domain, that is, if
and only if
(Vp(v,v) < vIvIIg

forallv € T,M and p € D. When M is a Hadamard space then it is well-known
that the distance d(-, po) to any fixed point pgp € M is convex, and that %dz(-, Po) is
1-strongly convex, just like in Euclidean space. However, the latter will in general
no longer be smooth. We discuss these important functions in Chapter 9.

In this context, we also record the following two useful propositions, which are
well-known, see e.g. [Udr94, Thm. 7.4.2]:

Proposition 6.5.3. Let f: D — R be a C2-smooth function defined on an open convex
subset D C M, and assume that f is v-smooth. Let v = —1 grad(f), and q = Exp,, (v).
If q € D, then we have

1 2
f(q) < f(p) — - llgrad(f)yp I5.
Proof. Letw € T,M. Then function g(t) = f(Exp]D (tw)) satisfies
1 144 ’
f(p) + tdfp(w) < g(t) = f(p) + tdfp(w) + 59" (t)

for some t’ € [0, t] by the Lagrange remainder form of Taylor’s theorem. From
the v-smoothness of f, it follows that g is also v-smooth, and so g”(t’) < v|[w|?>. In

particular, forw = -3 = grad(f)" we obtain
1 1
fa) = g(1) < f(p) - ;dfp(v) + 3 IVI = (p) — - llgrad(fp ;. 0

Proposition 6.5.4. Let f: D — R be a C2-smooth function defined on an open convex
subset D C M, and assume that f is v-smooth and p-strongly-convex, and achieves its
minimum at some p, € D. Letv = - grad fand q = Exp,(v). If q € D, then we have

(@) = f(p.) < (1-£)(Fp) - 1(p.)).

Proof. We adapt the Euclidean proof of [BG19, Thm. 3.8]. If w € T,M is such
that Exp,,(w) = p., then by a similar argument as for Proposition 6.5.3,

1
f(p.) > f(p) + dfp(w) + EMHWH%-

Since df,(w) = (grad(f)p, w), we may use the inequality
1 1 1
(grad(f)p, w) = <ﬁ grad(f)p, Vuw) < Ellgrad(f)pllp +selwll
to conclude that f(p.) > f(p) — ﬁ llgrad(f), ||]20. Hence by Proposition 6.5.3
1
f(q) = f(p.) < f(p) = f(p.) = 5-lIgrad(fp I
= (1= 2) = 160 + {190 = 160 = o grac

< (1-2)) - rp). 0
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Let D € M be a convex subset (not necessarily open) that is also an embedded
submanifold. Equip D with the induced metric and let V denote its Levi-Civita
connection. Then D is a totally geodesic submanifold, so its shape tensor I
vanishes [Leel8, Prop. 8.12]. Now let T be a (0, 1)-tensor field on D that is extended
arbitrarily to a neighborhood of D in M. Then by Egs. (6.2.1) and (6.2.2) we find
that VT = VT'(TD)®(1+1), where the right-hand side notation means that we restrict
VT to a (0,1 + 1)-tensor field on D. In particular, we inductively see that for every
function f: M — R and every 1 > 0, the following holds on D:

V'F = V'l rpyer. (6.5.3)
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7. Interior-point methods on manifolds:
overview

Interior-point methods have proven to be extremely successful in the context of
convex optimization on Euclidean space, as explained in Chapter 4 and exemplified
in the context of commutative scaling in Chapter 5. However, so far, these successes
have been restricted to convex optimization on Euclidean space. While there is
a strong connection between self-concordance-based interior-point methods and
Riemannian geometry [Dui99; NT02; NNO8], the framework of interior-point
methods has not yet been generalized to objectives which are geodesically convex,
i.e., convex on Riemannian manifolds. Indeed, while there have been previous
attempts at extending interior-point methods to this setting [Udr97; Ji07; J]MJ07],
a satisfactory generalization of the Euclidean theory had still been elusive — in
particular, the natural quadratic convergence analysis of Newton’s method for
self-concordant functions, which in turn enables efficient path-following methods
with global guarantees.

Instead, research on Riemannian optimization has so far largely focused on
different approaches. There is extensive literature on first- and second-order
methods for convex and non-convex optimization, see e.g. [Udr94; AMS09; Sat21;
Bou23] for comprehensive overviews and [FS02; DPM03; ABMO0S8; SH15; ZS16;
AS20; WS22; SW22]. Recently, [LY22] gave a path-following method for non-
convex constrained manifold optimization which does not use self-concordance.
In another direction, geodesic updates can also be useful for Euclidean convex
optimization problems [Per23a; Per23b].

We extend the interior-point method framework to Riemannian manifolds.
We generalize the key notion of self-concordance, and show that (unlike prior
definitions) it gives the same structural results and guarantees as in the Euclidean
setting, in particular local quadratic convergence of Newton’s method. This allows
us to give a path-following method for optimizing suitable objective functions over
domains for which a self-concordant barrier is available, and we give complexity
guarantees that match the Euclidean ones.

As explained in Chapter 1, we are particularly motivated to find efficient algo-
rithms for the norm-minimization and scaling problems as defined in Section 2.6.
However, the framework has applications beyond scaling problems. For instance,
it allows us to answer: Given points py, ..., pm on a Riemannian manifold, what is
the minimum radius ball that contains all these points? What is their geometric
median, i.e., the point that minimizes the sum of distances to each p;? The
first question has been studied before in the Riemannian setting [AN13; NH15],
and [NH15] gave an algorithm for the specific case of hyperbolic space, yielding a
ball with radius at most a factor 1 + § larger than the optimal radius in O(1/8%)
iterations. The geometric median problem has been studied in [FV]09; Yan10],

This chapter is adapted from [HNW23].
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and [Yan10] gave an explicit subgradient algorithm on general manifolds, finding
a point whose squared distance to the point achieving minimal sum of distances
to the pj is at most € in O(1/¢) iterations.

For the minimum-enclosing ball problem and the geometric median problem, our
framework gives (to the best of our knowledge) the first algorithms for efficiently
finding high-precision solutions in non-positive curvature. For the entire class
of scaling and non-commutative optimization problems, our framework yields
new algorithms that match the complexity guarantees of the state-of-the-art
algorithms [BFG+19], while not obviously suffering from the same obstructions as
those methods, opening up a new avenue for future research.

Indeed, the current state-of-the-art methods are fundamentally incapable of
providing algorithms that run in polynomial time in all parameters for the
general scaling problem. The main reason that we lack the kind of sophisticated
optimization methods that are known in the Euclidean setting, as reviewed earlier
in Section 1.3, is due to the geometry of the spaces that one has to optimize
over, which poses fundamental new challenges and obstructions. The lack of
a constructive analog of cutting-plane methods or the ellipsoid method [Rus19;
CMB23], and the exponential volume growth of balls, form obstructions to efficient
optimization. The latter can be used to prove black-box lower bounds for first-order
algorithms, with a linear dependence on a bound to the distance of the optimizer
of the objective [HM21a; CB22; CB23]. Moreover, the distance to an optimizer can
be exponential in the input size in the context of scaling problems [FORW21].

To overcome these challenges and obstructions, it is natural to resort to methods
which are capable of better exploiting the structure of the optimization problem at
hand. Interior-point methods offer a powerful such framework in the Euclidean
case, and they have already proved successful for commutative scaling problems
(see Chapter 5). With this work, we hope to contribute a first clear step towards
generalizing this powerful framework to the manifold setting.

We believe that our results suggest and reinforce several interesting directions for
follow-up research. For instance, does every convex domain admit a self-concordant
barrier, as is the case in the Euclidean setting? Do there exist self-concordant
barriers with better barrier parameters which can be used for these applications,
leading to better algorithms? Alternatively, can it be shown that our constructions
are essentially optimal? Can interior-point methods on manifold always be
initialized efficiently, and is there a suitable notion of duality?!

In the remainder of this chapter, we give a more detailed overview of our results.
We start with our proposed notion of self-concordance in Section 7.1, followed by a
discussion of self-concordant barriers and a path-following method in Section 7.2.
In Section 7.3 we give the first examples of self-concordant functions on manifolds,
as well as examples of self-concordant barriers. In Section 7.4 we explain why the
norm minimization and scaling problems as defined in Section 2.6 fit into this
framework. The application to the minimum enclosing ball problem is discussed
in Section 7.5, and we discuss geometric median problem in Section 7.6. We discuss
future directions and open questions in more detail in Section 7.7.

IThe lack of nontrivial linear functions in the presence of curvature poses significant challenges.
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7.1. Self-concordance and Newton’s method on
manifolds

Throughout, f: D — R is a smooth function defined on a convex subset D € M of a
connected, geodesically complete Riemannian manifold M. Then f is called convex
if it is convex along geodesics. Let V denote the covariant derivative (or Levi-Civita
connection), which allows taking derivatives of vector and tensor fields, and in
particular to define Hessians V2f and higher derivatives (see Chapter 6). Then our
proposed generalization of self-concordance to possibly curved manifolds is as
follows.

Definition 7.1.1 (Self-concordance). For « > 0, a convex function f is called «-
self-concordant if, for all p € D and for all tangent vectors u,v,w € T,M, we
have

(V3)p (11, v, )| < %\/(sz)p(u, W (V205 (0, W)y (V2p(w,w).  (7.11)

If f is closed convex, meaning its epigraph is closed, then f is called strongly «-self-
concordant.

Self-concordance can be interpreted as giving a bound on the norm of the third
derivative (V3f),, that is, on the change of the Hessian (V>f),, with respect to
the (possibly degenerate) inner product defined by the Hessian itself. We say
that f is «-self-concordant along geodesics if one requires the above bound only
foru=v =w, thatis, if forall p € D and for all u € T,M, we have

2
Va

When M = R"™, the third derivative is a symmetric tensor and hence the two
notions coincide. However, in general, the third derivative is not symmetric in
all its arguments, and indeed its asymmetry is precisely related to the manifold’s
curvature via the Ricci identity [Leel8, Thm. 7.14], as we discuss in Section 8.1. Prior
work only considered self-concordance along geodesics [Ji07] (which suffices for a
damped Newton method) and did not take the asymmetry into account [Udr97;
JMJO07].

Here we show explicitly that self-concordance is in general strictly stronger than
self-concordance along geodesics (see Section 7.3), and it is the stronger notion that
allows for the desired quadratic convergence of Newton’s method — a cornerstone
of the interior-point theory. Assume for simplicity that the Hessian (V2f),, is
positive definite for all p € D. Then the Newton iterate of f at p € D is defined by
minimizing the local quadratic approximation:

[(V3), (W, w, 1) < —=((V2f), (u,w))*/2. (7.1.2)

1
P+ o= Expp(u*), u’ = argmin| f(p) + dfp(u) + —(sz)p(u, uw)|.
ueT,M 2
The progress is quantified in terms of the Newton decrement, which is directly
related to the gap between the original function value and the minimum of the
local quadratic approximation. It is defined for any o« > 0 and p € D as
|dfp (w)]
At,«(p) = sup P . (7.1.3)

0£ueT, M +/a(VZf)p (u, 1)
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Then we prove following result on general Riemannian manifolds in Theorem 8.1.16:

Theorem 7.1.2 (Quadratic convergence). Let f: D — R be a strongly «-self-concordant
function defined on an open convex set D € M, with positive definite Hessian. Let p € D
be a point such that A¢,«(p) < 1. Then the Newton iterate remains in the domain, i.e.,
pt+ € D, and moreover

At,o(p) )2.

A < |
falpe) (1—Af,(x(p)

To relate the Newton decrements at p and py,+, we control the change in the
Hessian of f along the geodesic from p to p¢,+. This crucially uses the notion of
self-concordance of Eq. (7.1.1), rather than the weaker definition along geodesics
as in Eq. (7.1.2). This is because there are two directions involved: the one of the
geodesic, and the one corresponding to the subsequent Newton decrement.

7.2. Barriers and a path-following method on manifolds

Interior-point methods provide a natural and modular approach for minimizing
an objective f constrained to a bounded convex domain D € M. We briefly recall
the setup from Chapter 4. The key idea is to, rather than minimize f directly,
minimize for t > 0 the function

Fe: D —>R, F:=tf+F,

where F is a self-concordant “barrier” that is finite on D and diverges to co on its
boundary.2 This automatically ensures the constraint, as F is finite only on D, and
for large t the objective dominates. One then starts with an approximate minimizer
of Fand t ~ 0, and follows the central path z(t) := argmin ., F¢(p) by iteratively
performing two steps: increase t to some t’ such that the current point is still not
too far from z(t’) , and then take a Newton step for F- to move closer to it. For
large enough t > 0, we arrive at an approximate minimizer of fon D € M.

More precisely, the function F: D — R is required to be a (non-degenerate strongly
self-concordant) barrier for D, with barrier parameter © > 0, which means that F
is strongly 1-self-concordant, has positive definite Hessian, and Ar(p)? < 0 for
all p € D. The barrier parameter 0 controls how rapidly t can be increased in every
iteration.

In order to guarantee that Newton’s method indeed moves closer to the central
path, we are interested in conditions on f that ensure that the functions F; are
self-concordant for every t > 0, with a constant independent of t. One way to
guarantee this is to assume that the objective f: D — R is compatible with the

2In the Euclidean setting, the barrier F(x) = —logx models the constraint that x > 0, and
F(X) = —log detX defines the constraint that X is a positive-definite matrix [NN94; Ren01].
Constraints are combined simply by adding the respective barriers. In the manifold setting,
barriers are much harder to come by, but we give general constructions and concrete examples
in Section 8.2 and Chapters 9 and 10.
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barrier F in the following sense: there are constants (31, 32 > 0 such that, for
allpeDandu,veT,M,

|(V3£)p (1, v, V)| < 2B1/(V2F)p (1, W)(V2F)p (v, V)

+ 2B (V2D (v, V) (V2 (, W (V2) (v, v).

In particular, linear and quadratic functions are compatible with arbitrary self-
concordant barriers, but these are not the only examples, and we crucially use this
level of generality to give algorithms for the general scaling or non-commutative
optimization problem. We expand on compatibility in Section 8.2.2, and show that
it is also useful for constructing new self-concordant barriers, for instance for the
epigraph of a function compatible with a self-concordant barrier (Theorem 8.2.11).3
Our notion of compatibility is inspired by a similar notion in the Euclidean setting,
as is our analysis of the path-following method [NN94]. Its precise guarantees
match those from the Euclidean setting, and are given in the following theorem,
which we prove in Theorem 8.2.17:

Theorem 7.2.1 (Path-following method). Let D € M be an open, bounded, and convex
domain, and let f,F: D — R be smooth convex functions, such that F is a self-concordant
barrier with barrier parameter © > 0 and f has a closed convex extension. Let o > 0 be such

that Fy := tf + F is «-self-concordant for all t > 0. Let p € D be such that A¢(p) < %,
and let ¢ > 0. Then, using

O((1+ \/g)log((e”‘)kf"”?'p))

Newton iterations, one can find a point pe € D such that

f(pe) — inf f(q) < e.
qeD

The quantity [|dfp ||} . is a lower bound on the variation sup ;. , f(q) — infqep f(q)
of f over D (Lemma 8.2.18), and hence imposes a natural notion of scale in the
complexity bound.

7.3. Examples of self-concordance: Squared distance
in non-positive curvature

Self-concordance on manifolds is much more difficult to verify than for Euclidean
space, and this begs the question whether nontrivial examples even exist. A natural
candidate is f(p) = d(p,po)?, the squared distance function to some point py €
M. On Euclidean space, f is trivially self-concordant, as its third derivative

SWhile optimizing a function f on a domain D can always be reduced to optimizing a linear
function over its epigraph {(p,t) € D x R : f(p) < t}, this requires a barrier for the epigraph.
We construct such a barrier precisely when f is compatible with F. However, it may be more
difficult to initialize the path-following method on the epigraph rather than directly on D, so it
can be advantageous to optimize f directly. See Section 10.1.
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vanishes identically. In the presence of curvature the third derivative can be
nonzero. Nevertheless, we prove that the squared distance is self-concordant
on PD(n) and, as a corollary, also on a broad class of manifolds with non-positive
curvature.

We now discuss this in more detail. Asin the introduction, we denote by PD(n) =
PD(n, C) the complex positive-definite matrices, endowed with the well-known
affine-invariant Riemannian metric, which is given as follows. Since PD(n) is an
open subset of Herm(n), the Hermitian n X n-matrices, we can identify the tangent
space TpPD(n) at every P € PD(n) with Herm(n). Then the Riemannian metric
is defined as follows: for any two tangent vectors U,V € TpPD(n), their inner
product is

U, Vyp =Tr [P7'UPV].

With this metric, PD(n) is a Hadamard manifold, i.e., a simply connected geodesi-
cally complete Riemannian manifold with non-positive curvature. Its geodesics,
parallel transport, covariant derivatives, and so forth all have well-known closed-
form expressions, which are amenable to tools from matrix analysis. For example,
the geodesics through P € PD(n) are of the form t — VPet"/P for H € Herm(n),
and geodesic midpoints are the same as operator geometric means. The distance
between two matrices P, Q € PD(n), defined as the minimum length of any path
connecting them, is

d(P, Q) = [llog(P~/2QP~1/2)||s,

where ||-||gs denotes the Hilbert-Schmidt (i.e., Frobenius) norm. In Theorem 9.2.11
we show:

Theorem 7.3.1 (Self-concordance of squared distance). For any Py € PD(n), the
squared distance f: PD(n) — R. to Py, defined by £(P) = d(P, Py)?, is 2-self-concordant.

We conjecture that the squared distance is actually 8-self-concordant, see Re-
mark 9.2.10. Self-concordance on PD(n, C) implies the same result for the squared
distance on any convex subset of it. Therefore, the self-concordance holds on any
Hadamard manifold that is also a so-called symmetric space;* we will call this
a Hadamard symmetric space. In particular, using [BH13, Prop. 10.58] we obtain
the following result, which covers most non-positively curved spaces of import
in applications, including the general scaling or non-commutative optimization
problem (Section 10.1):

Corollary 7.3.2. Let G € GL(n, R) be an algebraic subgroup® such that g* € G for every
ge€G. Set M:={g'g:ge G} CPD(n,R). Then M C PD(n, R) is a convex subset,
and for every po € M, the function f: M — R, f(p) = d(p, po)? is 2-self-concordant.

Hyperbolic space H™ is a paradigmatic example of a manifold with non-positive
curvature in this class. Corollary 7.3.2 implies that the squared distance function to
a point in H™ is 1-self-concordant, as one has to rescale the curvature by a factor 2

*Any such space is the product of a symmetric space of non-compact type and a Euclidean
space [Hel79, Prop. V.4.2], and embeds, possibly after rescaling the metric on each of its de
Rham factors, as a complete convex submanifold of PD(n, R) for some n > 1, and hence also
in PD(n, C) [Ebe97, Thm. 2.6.5]. See [Hel79] for more background.

5This means that G is a subset of GL(n, R) determined by polynomial equations in the matrix
entries.
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to obtain an isometric embedding into PD(n, C). Similarly, the conjectured 8-self-
concordance on PD(n, C) would imply 4-self-concordance on H™.

We are able to prove the stronger result that the squared distance on H™ is in
fact 8-self-concordant, and that this is optimal, see Theorem 9.3.1. In contrast, the
squared distance on hyperbolic space is Z-self-concordant along geodesics, as was
shown previously in [Ji07, Lem. 11].% It is an interesting open question whether
there exists a universal constant C > 0 such that if M is a Hadamard manifold
with all sectional curvatures in [—«, 0], then for every py € M, f(p) = d(p, po)?
is C/k-self-concordant.

Using the self-concordance of the squared distance, it is easy to construct a
self-concordant barrier for its epigraph (Theorem 8.2.11). To this end we provide
the following result, which applies in particular to PD(n), hyperbolic space, and
all other Hadamard symmetric spaces.

Theorem 7.3.3 (Epigraph barrier). Let M be a Hadamard manifold, and let py € M.
Assume that the function f: M — R, f(p) = d(p, po)? is o-self-concordant. Let D =
{(p,S) e M xR : f(p) < S}. Then, the function F: D — R defined by

F(p,$) = ~log(5 - d(p, po)?) + ~dp, po) (7:3.1)

is strongly 1-self-concordant, and A¢(p, S)*> < 1+ 2 d(p, po)*

The reason that the proposition does not state that F is a barrier is that the Newton
decrement Ar(p, S) is not bounded by a constant, but rather depends on the distance
to the point pg. To obtain a barrier, one needs to impose an additional constraint
on the domain to force it to be bounded, for instance by requiring that S < Sy,
which can be implemented by adding a logarithmic barrier term —log(So — S) to F.
The dependence of the Newton decrement on the distance to py is caused by the
term &d(p,]oo)2 in Eq. (7.3.1), but without this term the function would not be
self-concordant. See also Theorem 8.2.14, where we construct a barrier for the
sublevel set of a self-concordant function, with barrier parameter depending on
the gap in function value.

We also provide a strengthening of the above theorem for hyperbolic space (see
Theorem 9.3.7):

Theorem 7.3.4. Let M = H™, pg € M, and define f: M — R by f(p) = d(p, po)>. Let
D ={(p,R,S) e M X Rs9 X Rsp : RS —f(p) > 0}. Then the function F: D — R by

F(p,R,S) = —1og(RS — f(p)) + f(p)
is strongly %-self-concordant. Furthermore, Ag 1 (p,R,S)? < 4+ 4f(p).

The significance of this result is that it can be used to construct a barrier for
the epigraph of the distance to a point, rather than the squared distance, by
restricting to the subspace defined by the equation S = R. This is essential for
applying the framework to the geometric median problem, see Section 7.6. In the
Euclidean setting, the additional f-term is unnecessary; see for instance the proof

6They prove that My = 4/16/27, where the constant M is related to the constant o in our definition
of self-concordance along geodesics by M¢ = 2/+/cx.
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of [NN94, Prop. 5.4.3]. In our setting the proof is more complicated, as it involves
a strengthening of the self-concordance estimate on the third derivative of the
squared distance. The key estimates which enable our proof of the above theorem
are given in Theorem 9.3.1.

7.4. Application I: Non-commutative optimization and
scaling problems

Our first application is the one which motivated us to extend the framework in the
first place. We briefly recap the setting from Section 2.6. Let G € GL(n, C) be a
connected algebraic subgroup such that g* € G forall g € G. Let m: G — GL(V) be
aregular representation on a finite-dimensional complex vector space V. Assume V
is endowed with an inner product such that the unitary matrices in G act unitarily.
The general norm minimization problem asks to minimize the norm over the orbit
of a given vector v € V, that is, we wish to minimize ||7t(g)v|| over g € G. Note
that ||7t(g)v]|? = (v|n(g*g)[v) (we use here that 7t(g)* = 7t(g*); this can be proven
using the Cartan decomposition, see Section 10.1 for details). Accordingly, it
suffices to minimize the function defined by’

dv: M =R,  v(p) = log (vim(p)[v)

over M = {g’g : g € G} = GNPD(n). This function is convex along the
geodesics of M. It is also N(7)?-smooth in the convexity sense, where N(m) is
the weight norm of the action, see Section 2.6 for details. Therefore, if ¢, is
bounded from below, a simple gradient descent algorithm can be used to find a
point p € M such that ||grad(¢y)p || < & within O(N(7)*[dv(I) —infqem dv(q)]/6%)
iterations, see Proposition 6.5.3 or [BFG+19, Thm. 4.2]. A more sophisticated
box-constrained Newton method is able to find an e-approximate minimizer p.
of ¢, within O((1+Ro)N(7t) log[(¢p+(I) —infqem $v(q))/¢€]) iterations, where Ry > 0
is an upper bound on the distance to such a minimizer [BFG+19, Thms. 5.1 & 5.7].
Using our interior-point path-following method we prove the following result in
Theorem 10.1.9:

Theorem 7.4.1 (Non-commutative optimization). Let 0 # v € V and Ry, ¢ >
0. Let M = {g'g: g€ G} CPDM)and D = {p € M : d(p,po) < Ro}, and
define : M — R by o(p) = log (v|n(p)|v). Then there is an algorithm that
within O((1 + Ro)N(7r) log(N(7)Ro/ €)) iterations of the path-following method finds p, €
D such that
bv(pe) — inf dy(p) < e.
peD

This essentially matches the complexity of the box-constrained Newton method
mentioned above, which is currently the state-of-the-art. There is a small difference,
in that our complexity has N(m)Rg in the logarithm, rather than the potential
gap &v(I) — infgem dv(q); these are related since ¢, is N(m)-Lipschitz. The

This function differs from the Kempf-Ness function F,: G — R, g — log||g - v|| defined
in Chapter 2. Note that %d)v(g*g) = F,(g). This changes certain estimates by factors of 2. The
reason for the change in notation is that after identifying K\G with M with via Kg — gg,
working with ¢, is more pleasant.
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approach we take to obtain this result is to use the barrier on M which arises
from Corollary 7.3.2 and Theorem 7.3.3, and to show that ¢, is compatible with
the squared distance function, which is enough to implement the path-following
method, as explained earlier. It would be very interesting to find a suitable barrier
for this problem with a smaller barrier parameter (or prove that no such barrier
exists).

7.5. Application Il: Minimum-enclosing ball problem
on PD(n)

Next we consider the minimum enclosing ball (MEB) problem: given distinct
points p1,...,pm € M, find p € M such that R(p) := max; d(p, pi) is minimal.
When M = R"™ is Euclidean space, this is a well-studied problem in computational
geometry. There, it can be formulated as a second-order cone problem, to which
interior-point methods are applicable (see, e.g., [KMY04]).

When M is a Hadamard manifold, the distance to a point is convex, and hence
the MEB problem is a convex optimization problem. In particular, for hyperbolic
space M = H™, there has been previous work on the MEB problem [AN13; NH15].
The only algorithm with explicit complexity bounds that we are aware of is due to
Nielsen and Hadjeres [NH15]. If R, is the minimal radius of an MEB and 6 > 0, then
they can find a point p € H™ such that max; d(p,pi) < (1 + 8)R. within O(1/8?)
iterations of an algorithm, each of which is simple to implement.

To find MEBs using interior-point methods, it is sufficient to have a barrier
for the epigraph of the squared distance. In particular, the barrier constructed
using Theorems 7.3.1 and 7.3.3 can be used to solve this problem on PD(n), and
we prove the following result in Theorem 10.2.5:

Theorem 7.5.1 (Minimum enclosing ball). Let p1,...,pm € PD(n) be m > 3 points,
and set Rop = maxixj d(pi, pj). Let R(p) = max; d(p, pi), set R. = infyem R(p), and
let ¢ > 0. Then with O((m + 1)R%) iterations of a damped Newton method and

2
41 +m(R% +1)log (M )

iterations of the path-following method, one can find p. € PD(n) such that

)

R(pe) - R < e.

A similar result can be obtained on arbitrary Hadamard symmetric spaces. We
also note that the optimal radius R. satisfies Ry < 2R, (Lemma 10.2.2), so that
the above also yields a multiplicative error guarantee. Compared to the results
of [NH15], we have a logarithmic dependence on the precision ¢, but a linear
dependence on Ry (as opposed to no dependence).
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7.6. Application lll: Geometric median on hyperbolic
space

Our last application is the geometric median problem. In the Euclidean setting this is
also known as the Fermat—Weber problem [CLM+16]. It is formally defined as follows:
given points pi,...,pm € M, not all contained in a single geodesic, find pg € M
such that

m
Po € argmin s(p) := Z d(p, p;)-
peH™ j=1

The objective function s is convex on Hadamard manifolds M. In contrast
with the geometric mean (or barycenter) problem, which is to find the minimizer
of Z)";‘l d(p, p;)?, finding the geometric median is non-trivial even on M = R™.
The first and one of the best-known algorithms for this problem on Euclidean space
is Weiszfeld’s algorithm [Wei37], which is a simple iterative procedure based on
solving the first-order optimality condition grad(s), = Z}El(p -p;)/d(p,p;) =0
for p, while treating the d(p, p;) as constants. Unfortunately, the update rule is
not well-defined when p is one of the p;’s (which can be fixed, see e.g. [Ost78]),
and it may converge very slowly in general. In [XY97] it was observed that one
can also apply interior-point methods, by viewing the geometric median problem
as a second-order cone program. More recent work [CLM+16] has shown that a
specialized long-step interior-point method is capable of solving the geometric
median problem on R™ in nearly-linear time, and we refer the reader to their paper
for a broader literature review. Weiszfeld’s approach has been generalized to the
Riemannian setting [FV]J09]. A sub-gradient approach [Yan10] can find a point
with squared distance to the minimizer of s at most ¢ in O(1/¢) iterations; however,
in the negatively curved setting, it suffers from an exponential dependence on the
quantity Ry = maxizj d(pi, pj)-

We can solve the geometric median problem on hyperbolic space H™ by using
our interior-point framework and our barrier for the epigraph of the distance
constructed using Theorem 7.3.4, which serve as analogs of the second-order cone
and the associated barrier. In Theorem 10.3.5 we prove:

Theorem 7.6.1 (Geometric median). Let py,...,pm € H™ be m > 3 points, not all on
one geodesic, and set Ry = maxij d(pi, p;j). Defines: H™ — Rbys(p) = Z;zl d(p, pj),
and let ¢ > 0. Then with O((m + 1)R(2)) iterations of a damped Newton method and

2
,/m(Rg +1)log (w))

iterations of the path-following method, one can find p. € H™ such that

)

s(pe) — inf s(q) < e.
qeH™

For not too small ¢, the cost is dominated by the damped Newton method,
which we use to find a good starting point for the path-following method. We
leave it as an open problem as to whether this can be avoided. Furthermore, the
above applies only to H™ rather than to PD(n): it relies on the barrier constructed
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using Theorem 7.3.4, which uses a non-trivial strengthening of the self-concordance
estimates for the squared distance. We expect that such a strengthening can also be
obtained more generally, and this would immediately generalize the algorithmic
result from Theorem 7.6.1 to these spaces; we also leave this as a problem for future
work.

7.7. Outlook

We summarize the results in this section and mention some future directions.
We extend the basic theory of interior-point methods to manifolds, and show
that the developed framework is capable of capturing interesting geodesically
convex optimization problems. In particular, we define a suitable version of self-
concordance on Riemannian manifolds, and show that it gives the same guarantees
for Newton’s method as in the Euclidean setting. This is used to analyze a path-
following method for the optimization of compatible objectives over domains
for which one has a self-concordant barrier. We exhibit non-trivial examples
of self-concordant functions, namely squared distance functions on PD(n), and
more generally symmetric spaces with non-positive curvature, and construct
related self-concordant barriers. The framework is able to capture the optimization
of Kempf-Ness functions, a problem which has connections to many areas of
mathematics and computer science, leading to algorithms with state-of-the-art
complexity guarantees. It also applies to computing the geometric median on
hyperbolic space, for which we give an algorithm capable of finding high-precision
solutions. This demonstrates the power of the framework, and we believe that it
encompasses many more problems.
Our work highlights known challenges and suggests new directions:

e [t is natural to search for self-concordant barriers for the aforementioned
applications which have better barrier parameters. Alternatively, is it possible
to prove lower bounds that show that the constructions given in our work
are essentially optimal?

¢ In Euclidean convex optimization, there are universal constructions of self-
concordant barriers, cf. [NN94; Hill4; Fox15; BE19; Che23]. Can one
find such a construction for manifolds? We describe a concrete proposal.
Let D € M be a compact convex subset of a Hadamard manifold M, with
non-empty interior. Denote by CM* the cone over the boundary at infinity
of M [Hir22a]. Its elements can be identified with the geodesic rays y emanat-
ing from a fixed base point and hence determine Busemann functions b-, as
in Eq. (10.1.6). Define F*: CM*® — R by F*(y) = log [, exp(~by(q)) dvol(q).
Then the inverse Legendre-Fenchel conjugate F: D — R of F*, given by
F(p) = SUP, ccpme —b,(p) — F'(v), is a natural candidate for a barrier for D.
Indeed, for Euclidean space M = R™ it reduces precisely to the entropic barrier
of Bubeck and Eldan [BE19].

* From the perspective of interior-point methods, we currently only treat
the main stage, which minimizes an objective given a starting point that is
well-centered with respect to the barrier F. Can one give a general procedure
for finding such a starting point from an arbitrary feasible point p € D? In the
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Euclidean setting, this is achieved by applying the path-following method
with the linear objective f := — (grad(F)y, ) in reverse, starting at t = 1. This is
sensible as p is exactly a minimizer of Fy = tf+Fatt = 1. Busemann functions
generalize linear functions to Hadamard manifolds, hence is natural to instead
use f = b, with vy the geodesic ray starting at p € M with direction grad(F),.
When f is compatible with F (as we show in Section 10.1 for specific f and F),
then one can use the same time steps as for the main stage, and switch to the
main stage as soon as Af,« < % One method for lower bounding the t for
which this happens is as follows: if F is p-strongly convex and f is v-smooth,

then Ar o (q) is at most Ak, «(q)V1 + tv/u + tlldfqlly , /o and [[dfqllE , o
can be bounded (for instance) using Lipschitzness of f and strong convexity
of F. We leave a more careful analysis of this idea to future work. We note
that in the Euclidean setting, the complexity is often bounded in terms of
the (a)symmetry of domain D with respect to the point p, see Section 4.3
and [NN94, Eq. (3.2.24)] for details, but such a bound does not seem to
generalize to the Riemannian setting.

It would be interesting to understand whether there is a suitable notion
of primal-dual methods in the Riemannian setting, or a notion of duality
which interacts well with self-concordance. While there exists a version of
Legendre-Fenchel duality for Hadamard manifolds M, where the dual space
is CM®, the cone over the boundary at infinity of M discussed above, the
conjugate of a convex function need not be convex [Hir22a]. Other proposals
such as [BHS+21] require a stronger notion of convexity.



8. Interior-point methods on manifolds:
the framework

In this chapter we generalize the Euclidean (self-concordance based) interior-
point method framework to the setting of Riemannian manifolds. In Section 8.1
we define self-concordance and show that it yields guarantees for Newton’s
method that are familiar from the Euclidean setting. In Section 8.2 we turn to
self-concordant barriers, define a notion of compatibility of an objective with a
self-concordant barrier, and show that for these objectives one can give a implement
a path-following method.

8.1. Self-concordance and Newton’s method

In this section we generalize the notion of self-concordance and the corresponding
analysis of Newton’s method from the Euclidean setting to the Riemannian setting,
and we comment on complications incurred by curvature. For expositions of
the Euclidean theory of self-concordance and interior-point methods we refer
to [NN94; Nes18; Ren01]. Throughout this section we assume that M is a connected
and geodesically complete Riemannian manifold.

8.1.1. Self-concordance

Let f: D — R be a convex function defined on an open convex subset D € M. Then
the Hessian is positive semidefinite, by Eq. (6.5.2), hence induces a (semi-)norm at
each point. The rate of change of the Hessian is captured by the third covariant
derivative, V3f = V(V(Vf)) = V(V3f). A function is called self-concordant if the
latter can be bounded in terms of the former, as follows:

Definition 8.1.1 (Self-concordance). Let f: D — R be a convex function defined
on an open convex subset D C M, and let a > 0. We say that f is «-self-concordant
if, for all p € D and for all u,v,w € T, M, we have

(V1) v, W)l < %\/Wf)p(u,u)\/<v2f>p<v,v>\/<v2f>p<w,w>, (5.1.1)

It is called strongly «-self-concordant if is not just convex but closed convex, that is,
if its epigraph (6.5.1) is a closed subset of M X R.

Here we follow the conventions of [NN94]. To interpret the definition, let us
for a convex function f, a point p in its domain, and « > 0 define the positive

This chapter is adapted from [HNW23].
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semidefinite bilinear form and seminorm

2
VW) 1o = W and  [|ullrpe = ‘/W' 8.1.2)

When the Hessian is positive definite (as is the case, e.g., when f is strongly convex),
these endow M with a new Riemannian metric. In convex optimization, (-, )¢ «
is called the “local inner product” and ||-||¢,p,« the “local norm”, but we will
refrain from using this terminology as it is ambiguous in the Riemannian setting.
For « = 1, we will usually abbreviate (-, )¢, := (-, )¢, 1 and |||l p := [|-[l,p,1. We
can now rewrite Eq. (8.1.1) as follows:

(V2H)p (w, v, W) < 2wl p,acl VIl p oW, (8.1.3)

Thus self-concordance can be interpreted as a boundedness of the third covariant
derivatives at each point with respect to the seminorms defined by the Hessian.

We record some basic properties. Recall that self-concordant functions are
defined on an open and convex domain, by definition.

Lemma 8.1.2. (i) Let f be a (strongly) -self-concordant function and let ¢ > 0. Then
cf is (strongly) ca-self-concordant.

(ii) Let fi.: Dx — R be ay-self-concordant functions for k = 1,2, and suppose D :=
D1 N Dy is non-empty. Then f := f; + fo: D — R is «-self-concordant, with
o := min(ou, 0xp). If the functions fy are strongly «i-self-concordant, then f is
strongly «-self-concordant.

(iii) Let fi.: Dx — R be o-self-concordant functions for k = 1,2. Then the function
f: D1 X Do — R defined by f(p1,p2) := f1(p1) + f2(p2) is a-self-concordant. If
both functions fy are strongly «-self-concordant, then so is f.

Property (i) follows from the definition, and (iii) follows from (ii). Before we
prove (ii), we give a simpler characterization of self-concordance. As the Hessian
is symmetric, third covariant derivatives are symmetric in the last two arguments.
This can also be seen explicity from the following formula for the third covariant
derivative V3f, which follows from Eq. (6.2.1) and holds for any three vector fields
XY, Z:

(V3)(X,Y, Z) = X((sz)(Y, Z)) — (V2F)(VxY, Z) — (V2F)(Y, VX 2). (8.1.4)

This leads to the following simplification:

Lemma 8.1.3. A convex function f: D — R defined on an open convex subset D € M is
o-self-concordant if, and only if, for all p € M and u,v € T, M, we have

(V1) (w,v,v)] < %,/(vzf)p(u, W) (V26), (v, v) (8.1.5)

or, equivalently,

(V3 1)p(w, v, V)| < 2e[ulltp ol VIT, o (8.1.6)
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However, third covariant derivatives are not symmetric when M is a curved
manifold, as follows from the Ricci identity [Leel8, Thm. 7.14]. To see this, we
combine Egs. (6.4.1) and (8.1.4) to see that for any three vector fields X, Y, Z:

(VP)(X, Y, Z) = X(Y(Z)) = X(Vy2)f) = (VXY)(ZF) + (Vo 2)f
= Y((Vx2)f) + (Vy(Vx ).

Using symmetry of the Levi-Civita connection, one finds that
(V*H(X, Y, Z) = (V3)(Y, X, Z) = =(R(X, V)2)f = = (R(X,Y)Z, grad(f)) ~ (8.17)

Accordingly, the third covariant derivative is in general not symmetric. Indeed,
the asymmetry is precisely related to the nonvanishing of the Riemann curvature
tensor!

Due to this asymmetry, to establish self-concordance, we have to show Eq. (8.1.5)
for possibly different u,v € T,M, whereas we could assume u = v in the Euclidean
case; see Section 8.1.2 for more details. The following proof of Lemma 8.1.2(ii) is a
generalization of [Nes18, Thm. 5.1.1] to our setting.

Proof of Lemma 8.1.2(ii). Forp € D = D1 N Dz and u,v € T,M, we have
[(V36)p (w,v, V)|

2+/(V25)p (u, w)(V2F) 5 (v, v)

|(V3f1)p (LL, v, V)l + |(V3f2)p (LL, v, V)l

24(V2f1)p (u, 1) + (V2F2)p (w, w)((V2F1)p (v, v) + (VH2)p (v, )
_ Wi /o +xwa/yor

X% + x%(wl + wy)

<

(8.1.8)

where we let x; := /(V2f)p (1, u) and w; = (V*fi),(v,v) for i = 1,2, and for
the last estimate we used «;-self-concordance of f;. We now upper bound the
quantity in Eq. (8.1.8). Observing invariance under the change (x1, x2, w1, wp) —
(sx1, sx2, tw1, twy) for s, t > 0, we may consider the following optimization prob-
lem:

maximize  wixi/Vog + waxo /oo
s.t. x‘i‘+x%:1, w1+ wy =1,
X1,X2, w1, wy > 0.

First we fix wj, and maximize over the choice of x;. This is a linear maximization
over the intersection of the unit circle with the positive orthant, with objective
given by (w1/+4/o1, wa/4/x2), which is itself in the positive orthant. Therefore the
maximum is attained at

(w1/va1, wa/yx2)

(x1,%x2) =
\/w%/cxl + w%/ocz

where the value of the objective is \/ w% /&1 + w3/ . This reduces the problem to

maximize \/w‘%/oc1 + w%/ocz st. wp+wyr=1, wy,wy =0.
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By convexity of the objective, the maximum is attained at (wi, w2) = (1,0)
or (w1, wz) = (0,1). Therefore Eq. (8.1.8) is at most max(1/+/x1,1/+/x3), and f is «-
self-concordant for o = min(x;, x2). The claim that f is strongly «-self-concordant
whenever the f; are strongly «;-self-concordant then follows from Lemma 6.5.2. O

We now state a key property that is required for the analysis of Newton’s method
of self-concordant functions. It quantifies the change of the Hessian or local norm
as a function of the distance, measured with respect to the norm (8.1.2), providing
a finitary version of Definition 8.1.1, generalizing an important property (Def-
inition 4.2.1) from the Euclidean setting. Then the following result is a direct
translation of the Euclidean argument in [NN94, Thm. 2.1.1] along with the notion
of self-concordance from Definition 8.1.1.

Theorem 8.1.4 (Stability of Hessians). Let f: D — R be an «-self-concordant function
defined on an open convex subset D € M, and let p € D. Let u € T,M be such that
= |lullfpe <1 Ifq:= Expp(u) € D, then we have the following estimate: for
allv e T,M,

(1= 1) (V2£)p (v, v) < (V) g(Ty1v, Ty,1v) < ﬁ (V) (v, ), (8.1.9)
-7T

or, equivalently,

L=1(Vh)p = T, 1 (VPh)g < (VZf)p,

(-7’
where Ty 1 denotes the parallel transport along the geodesic y(t) := Exp, (tu) from p to q.

Proof. Since the domain is convex, we know that y(t) = Exp,, (tuye Dforallt e
[0, 1]. Consider the following two functions:

b:[0,1] =R, d(t) = (VH)y ) (Tyv, Tyev),
P: 0,11 = R, () = (V2H)y ) (Ty, 11, Ty,c)-

Using Eq. (6.3.1), with T = V2f and using that y(t) = t,,+u, we have
B = (V0 (V20)) (T, 00, Ty,9) = (V000 Tyv, Ty 0).
Hence, using «-self-concordance as in Eq. (8.1.1),
: 2
[P(D)] < —=Vb(t) (1) (8.1.10)
Vo
Similarly,

(1) = (Vyo(V20) (ry,010, Ty00) = (VH(Ty, 0, Ty, Ty 10),

and hence using only «-self-concordance along the geodesic v, as in Eq. (8.1.13),
we find that

()] < %xp(tﬁ/z. (8.1.11)
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8.1. Self-concordance and Newton's method

With these estimates in place we can proceed as in the proof of [NN94, Thm. 2.1.1].
By Gronwall’s inequality, there are two cases: either 1) vanishes identically on the
interval [0, 1], or it is everwhere positive. In the former case, Eq. (8.1.10) implies
that ¢ is constant and hence ¢(1) = $(0), which in turn implies the claim. In the
latter case, we can write Eq. (8.1.11) as

Lol 1 (8.1.12)

29072 S Vo

CRTCREE

from which it follows that

1/2 012 _ 1 _Lzl—rt
WO oy J‘ Vallilime Vo Ve

and hence, sincer < 1,

Vi < 2

-1t

Thus Eq. (8.1.10) implies

. 2r
PO < = ().

Similarly to the above, either ¢ vanishes identically on [0, 1], in which case there is
nothing to prove, or it is everywhere positive, in which case we have

[0clog d(b)] <

1-1t
and hence
d(t) 1
log —= 2(0) < 2log T
For t =1 this yields the desired inequality. m]

8.1.2. Self-concordance along geodesics

When M = R" is a Euclidean space, then the third derivative is symmetric in
all three arguments, and standard results on trilinear forms [Ban38] imply that
the above is equivalent to |8i:0f(p + tv)| = [(V3H)p(v,v,V)]| < 20‘”"”13‘,p,oc for all
p,v € R™, which shows that self-concordance is equivalent to self-concordance along
the geodesics of Euclidean space. This characterization is highly useful for showing
that functions are self-concordant. The richness of the family of self-concordant
functions is a key reason for the wide applicability of interior-point methods [NN94;
Hil14; Fox15; BE19; Che23].
This notion can also be generalized naturally to the Riemannian setting:

Definition 8.1.5 (Self-concordance along geodesics). Let f: D — R be a convex
function defined on an open convex subset D € M, and let & > 0. We say that f is
o-self-concordant along geodesics if, for all p € D and for all v € T,M, we have

/
02y (Exp, (1) = (V)5 (0w, )]l < —= (VA (00)) (8.1.13)

&l
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or, equivalently,

0o f(Exp,, (tv))| = [(V21)p (v, v, W < 2Vl | - (8.1.14)
It is called strongly o-self-concordant along geodesics if is not just convex but closed
convex, that is, if its epigraph (6.5.1) is a closed subset of M X R.

In other words, f is (strongly) x-self-concordant along geodesics if and only if for
every geodesicy: R — M, the function foy: I — R is (strongly) x-self-concordant
on I := y~}(D). There is also a version of Lemma 8.1.2 as a direct consequence of
the Euclidean result.

Definition 8.1.5 had been proposed in [Ji07; JMJ07] as a suitable notion of self-
concordance in the Riemannian setting. Clearly, any (strongly) self-concordant
function is also (strongly) self-concordant along geodesics. However, since third
covariant derivatives are not symmetric in all arguments when M is a curved
manifold, as we saw in Eq. (8.1.7), self-concordance along geodesics need not
imply self-concordance in the stronger sense of Definition 8.1.1, in contrast to
what was suggested in [JM]J07, Eq. (3) and Prop. 1]. While self-concordance
along geodesics already allows lifting several useful results from the Euclidean
theory, it is the stronger notion of Definition 8.1.1 that is required to prove the
fundamental Theorem 8.1.4, which underpins the analysis of the Newton method
in the quadratic convergence regime in Theorem 8.1.16. We give non-trivial
examples of self-concordant functions on curved spaces in Chapters 9 and 10.

In the remainder of this subsection we discuss a number of useful results for
functions that are self-concordant along geodesics. These follow directly from
the Euclidean theory. While some of these were already proved in [Ji07; J]MJ07],
we give all proofs to keep the exposition self-contained. We start with a version
of [Nes18, Thm. 5.1.5].

Proposition 8.1.6 (Stability of second derivative along geodesic). Let f: D — R be
o-self-concordant along geodesics, with D € M open and convex, and let p € D. Consider
any geodesic y(t) = Expp(tu) such that (1) € D, and set v := |[u||tp,«. Then the
o-self-concordant function g(t) := f(y(t)) for t € [0, 1] satisfies the lower bound

g> 90 __ o (8.1.15)
(1+tr)?  (1+1tr)?
and if rt < 1 also the upper bound
. 2
<90 _ o (8.1.16)

Ta-w? -
Proof. As in the proof of Theorem 8.1.4, we consider the function

V:[0,1] = R, b(t) =§(t),

and find from Eq. (8.1.11) that it either vanishes identically on [0, 1], in which case
the claim holds trivially, or it is everywhere positive, in which case Eq. (8.1.12)
holds, namely forall t € [0,1],

1

aﬂp(t)—lﬁ‘ <=
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8.1. Self-concordance and Newton's method

Accordingly,
PO) (1~ tr) = (O] = <) < (O + —= = p(0) (1 + 1),
V& Va
which implies both bounds. O

The lower bound strengthens the one in Eq. (8.1.9) in the special case that v = .
The upper bound implies that any function that is strongly self-concordant along
geodesics must contain a certain region in its domain. We first define the region
and then state the result.

Definition 8.1.7 (Dikin ellipsoid). Let f: D — R be a convex function defined on
an open convex subset D C M, and let « > 0. Then the (open) Dikin ellipsoid of
radiusT > 0 atp € M is

B (1) = {Exp, (W) i we oM, g, < 7).

For o« = 1, we abbreviate BS_ := B% ..
f,p f,p.1

The following result is easily generalized from the Euclidean setting. The proof
is essentially the same as in [NN94, Thm. 2.1.1].

Corollary 8.1.8 (Dikin inclusion). Let f: D — R be strongly o-self-concordant along
geodesics, defined on an open convex subset D € M. Then B o +(1) € D foreveryp € D.

Proof. Take any v € T,M such that r := ||[v||tp,« < 1. Let o be the supremum of
those s > 0 such that y(s) := Expp(sv) € D. Since p € D and D is open, we know
that o > 0, and since D is convex, we know that y(s) € D for all s € [0, 0).

We need to show that y(1) € D and claim that in fact 0 > 1/r > 1 (with 1/0 = o).
For sake of finding a contradiction, assume that this is not so, i.e., that o < 1/r.
For every s € [0, 0) we can apply Proposition 8.1.6 with u := sv, which satisfies
lullt,p,o = st < or < 1. Then the upper bound in Eq. (8.1.16) gives

_

Tyl

g(s) <

where g(s) = f(y(s)). Accordingly, the function g has bounded derivative on [0, o),
thus it is itself bounded on this interval, say g(s) < L for some L € R. As fis
strongly self-concordant, the level set {q € D : f(q) < L} is closed in M, and hence
it must contain y(0) = limgp y(s). But D is open, so this in turn implies there
must also exist some t > o such that y(t) € D, contradicting the definition of o. O

In other words, for any p € D and u € T, M such that |[ul|,p,« < 1itis automati-
cally true that Exp]D (u) € D, so we do not have to assume this in Theorem 8.1.4
and Proposition 8.1.6.

The above also implies that a strongly-self-concordant function can only have a
degenerate Hessian if its domain contains a geodesic.

Corollary 8.1.9 (Domain). If a strongly «-self-concordant function f: D — R contains
no (infinite) geodesic in its domain, then (V*f),, is positive definite for all p € D. In
particular, this is the case if M is a Hadamard manifold and the domain is bounded.
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Proof. If (V*f)(u,u) = 0 for some p € D and u € T, M, then Expp(lRu) - Bip LD
Thus Corollary 8.1.8 shows that D contains the geodesic y(t) = Expp (tu) for
teR. |

The following results bound a self-concordant function in terms of its linear
approximation at some arbitrary point, in terms of the quantity

p:(=00,1) > R, p(r)=-1r-log(l-1), (8.1.17)

which is p(r) = %1.2 + O(13) for small r. The first result lifts [Nes18, Thm. 5.1.8]
to the geodesic setting and follows directly by integrating the lower bound in
Proposition 8.1.6.

Corollary 8.1.10 (Lower bound). Let f: D — R be «-self-concordant along geodesics,
defined on an open convex subset D € M, and let p € D. Then, for every u € T, M such
that q := Expp (u) € D, we have

octr?
dfq (Ty’tLL) - dfp (LL) = T’CT (8118)
where v := ||u||p,o and T denotes the parallel transport along the geodesic y(t) :=

Exp,, (tu) from p to q, and

f(q) > f(p) + dfp(u) + ap(-7).
Proof. By Proposition 8.1.6, we see that g(t) := 1"(Expp (tu)) satisfies

2

§(t) > ———
(1+tr)
for all t € [0,1]. By integrating,
toar? octr?

g(t) — g(0) 2‘[ ——ds = ——.
! ) 0 (1+s1)? I+tr

Since ¢(0) = df,(u) and g(1) = df4(Ty,1u), this proves the first bound. One more
integral yields

1 2

6(1) - g(0) - g(0) > J st

0 1+sr

ds = a(r —log(l + 1)) = ap(-7). O

The second result generalizes [Nes18, Thm. 5.1.9] to the geodesic setting and
follows by similarly integrating the upper bound in Proposition 8.1.6.

Corollary 8.1.11 (Upper bound). Let f: D — R be «-self-concordant along geodesics,
defined on an open convex subset D C M, and let p € D. Then, for every u € T, M such
that q := Expp(u) € Dand v := ||u|lfp,« <1, we have

otr?

dfq (Ty,tu) - dfp (u) < m
where Ty, ¢ denotes the parallel transport along the geodesic y(t) = Exp ,(tu) from p to q,
and

7

f(q) < f(p) + dfp(w) + op(r).

If f is strongly «-self-concordant along geodesics, then the requirement that q € D is
automatic (by Corollary 8.1.8).
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Proof. Similarly to the proof of Corollary 8.1.10, we can apply Proposition 8.1.6 to
see that the function g(t) := 1’(Expp (tw)) satisfies

2

§(t) < ——
(1-1tr)
for all t € [0,1]. By integration,
toar? otr?
g(t) — g(0) < J —ds =
! ! 0 (1-sr)? I-tr
and
, U sr?
g(1) — g(0) — g(0) < Jo T—or ds = a(-r —log(l — 1)) = ap(r). |

8.1.3. Newton’s method

We are now ready to give an analysis of Newton’s method for self-concordant
functions. In particular, as in the Euclidean case, we are able to provide quadratic
guarantees on the changes in the so-called Newton decrement (Theorem 8.1.16).
This key result requires self-concordance. Afterwards we also recall some useful
results due to [Ji07; JMJ07] which only rely on self-concordance along geodesics.

Recall Newton’s method (cf. [Udr94, §7.5]): given a convex function f and a
point p in its domain, consider its local quadratic approximation

f(Exp,(v)) = f(p) + dfp(v) + %(sz)p (v,v)

and minimize the right-hand side over all v € T,M. If (sz)p is non-degenerate
and hence positive definite, as we will assume for convenience, there is a unique
minimizer called the Newton step.

Definition 8.1.12 (Newton step and Newton iterate). Let f: D — R be a convex
function defined on an open convex set D C M, and let p € D be a point such that
(Vf),, is positive definite. Then we define the Newton step of f at p as the unique
vector n¢ , € T, M such that

(V3)p (g, ) = —dfp (8.1.19)
and the Newton iterate of f at p is defined as
P+ = Epr(nf,p) eM,
which need not be in D. We can also write
Nep = — Hess(f);,1 grad(f)p and p¢y = Expp(— Hess(f);1 grad(f)p).
in terms of the gradient vector and Hessian operator (see Section 6.4).

The gap between the function value and the minimum of the quadratic approxi-
mation is

1 x o
E(sz)p(nf,p/nf,p) = E”nf,pll]zc,p,(x = EAf,oc(p)zr

where A¢  is the so-called Newton decrement, which we define next.
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Definition 8.1.13 (Newton decrement). Let f: D — R be a convex function defined
on an open convex set D € M, let p € D be a point such that (V*f),, is positive
definite, and let @ > 0. Then we define the Newton decrement of f at p by

Af,cx(p) = ”nf,p”f,p,oc
. |dfp ()] |dfp (V)]

= %”dfpllfp(x: max P = max L ,

P 0xveT,M V|| p,oc 0£vET,M [a(V2F), (v, V)

lw ()]

Vllp,o

where ”w”;,p,oc ‘= MaXoxveT,M
by [||lt,p,«- That s,

is the dual norm of w € T{;M induced

At,a(p) = min{A > 0: df, ® dfp < AN (V3), } (8.1.20)
1 2
=min{A > 0: —dfp(u) - E(sz)p(u, u) < }\TOC Yue T,M}.  (8.1.21)

For o« = 1, we abbreviate A¢ := A¢ 1 and ||-||’;/p = ||-||’]2’p,1.

The Newton decrement is invariant under rescaling f in the sense that A¢,o =
Acf,co for any constant ¢ > 0 (cf. Lemma 8.1.2). When (V2f)p is degenerate,
the Newton decrement can still be defined as Af «(p) = inf{c > 0 : |dfp(v)| <
ocl|[vllt,p,« Vv € ToM}, which has the same interpretation as explained above; but
we will mostly not need this.

Just like in the Euclidean case the Newton decrement provides a certificate for
the existence of minimizers and the function gap. This essentially follows from the
Euclidean argument [Nes18, Thm. 5.1.13].

Proposition 8.1.14 (Existence of minimizers). Let f: D — R be «-self-concordant
along geodesics, defined on an open convex subset D € M. If p € D is such that
At,«(p) < 1, then f is bounded from below: we have

fo:= ég]g f(q) = f(p) — ap(As,«(p)), (8.1.22)

where p is the quantity defined in Eq. (8.1.17). If in addition f is strongly «-self-concordant
along geodesics and (V2f),, is positive definite, then the function attains its minimum at
some p. € D.

Proof. We abbreviate A := A¢ «(p) and 1 := ||ul|tp,«. Forevery q = Expp(u) €D,
we have using Corollary 8.1.10 and the definition of the Newton decrement the
lower bound

f(q) — f(p) > dfp(u) + ap(=7) > —arA + xp(=7) = ad(7), (8.1.23)
where
d(r)=7(1-A) —log(1l +r).
If A <1, 8(r) is minimized at r = A/(1 — A), and we obtain

f(q) = f(p) > (A +log(1 = A)) = —ap().

To see the second equality, replace u by tu for t € R, and maximize over t.
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8.1. Self-concordance and Newton's method

This implies Eq. (8.1.22).

On the other hand, 5(r) — o0 as 1 — o0, so Eq. (8.1.23) shows that the level set
{q € D:f(q) < f(p)} is contained in a Dikin ellipsoid of some suitable radius. If
we assume that (V?f),, is positive definite then Dikin ellipsoids are bounded. Thus
if f is also a-strongly self-concordant along geodesics then Lemma 6.5.1 (iii) shows
that f attains its minimum at some p. € D. O

The minimizer in Proposition 8.1.14 is unique assuming strict convexity, as
follows, e.g., if V2f is positive definite throughout the domain. The Newton
decrement also certifies closeness to minimizers if they exist:

Lemma 8.1.15. Let f: D — R be «-self-concordant along geodesics, defined on an open
convex subset D € M, and let p € D be such that A¢,«(p) < 1. If f attains a minimum
at p. = Exp,,(u) for u € T, M, then

}\f,oc(p)
1- Af,oc(p) '

Proof. Consider the geodesicy(t) = Exp, (tu) fromp to p.. Thenby Corollary 8.1.10,
we have

Iullp,o <

2
or
Too < dfp, (Tyu) = dfp(u) = —=dfp(u) < |dfp(u)] < arAs,«(p),
where r := ||ul|t,p,«; the equality follows because dfy,, = 0 because p. is a minimizer

of f. Thus we have

T
1+r

< }\f,oc(p)

and for A¢,«(p) < 1 this implies the desired bound. O

The following theorem is key to the analysis of Newton’s method for self-
concordant functions. It bounds the Newton decrement after one Newton step
quadratically in terms of the original Newton decrement. This requires self-
concordance in the sense of Definition 8.1.1, rather than the weaker notion along
geodesics, as its proof involves comparing the length of the new Newton step
transported along the geodesics given by the previous Newton step, i.e., there
are two natural directions. The proof adapts the Euclidean argument in [Ren01,
Thm. 2.2.4].

Theorem 8.1.16. Let f: D — R be a strongly «-self-concordant function defined on
an open convex set D € M, with positive definite Hessian. Let p € D be a point such
that ¢ «(p) < 1. Then the Newton iterate remains in the domain, i.e., ps+ € D, and
moreover

}\f,oc(p) )2.

A S|l—/—————=
f,O((pf,+) (1 _ Af’a(p)

Proof. We abbreviate the Newton step, iterate, and increment by np, := n¢ ,, p :=
Pf+,and A := A¢ «(p), respectively. Corollary 8.1.8 along with the definitions shows
that p; € D. Then the entire geodesic segment y(t) := Exp,, (tny) for t € [0,1] is
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contained in the domain D. We now prove the desired estimate, starting with
Theorem 8.1.4, which gives the upper bound

df,, (w df,, (T 1v
}\f/(x(p.;_) max | P+( )l = max | P+( Y, )l
weTp, M o||w||¢ P, VET'PM O‘llTy,lvllf,p+,oc

< , 8.1.24
1-Aver,M  &|[V||fp,« ( )

where T, 1 denotes parallel transport along the geodesic v from p to p,. Next, we
observe that by the fundamental theorem of calculus, Eq. (6.3.1), and Eq. (8.1.19),
forallve T,M,

rl
0

rl
= | (Vy@df)y@)(ty,cv) dt +df,(v)
0

rl
= ; (sz)y(t)(Ty,tnp,Ty,tv) dt + df,(v)

rl
= [(V )y (0)(Ty, e, Ty, 0v) = (V2F)p (np, v)] dt

= B(np,v) (8.1.25)

where we have introduced the symmetric bilinear form
1
B: ToMXT,M —» R, B(w,v) = J [(VZF)y ) (Ty 1w, Ty,ev) — (V2 (u,v)] dt
0

By Theorem 8.1.4 and using [|[tny ||,p,« = tA, we have, for allv € T, M,

[(1 = tA)? = 1] (V2)p (v, v) < (V2H)y (1) (Ty 1V, Ty, ev) — (V2H)p (v, V)

! - 1] (sz)]D (v,v).

< -
(1—tA)?

By integrating the lower and upper bounds fromt =0tot =1,

(?\ - }\—2) (sz)p(v v) < B(v,v) < ( A ) (sz)p(\) V).

One may verify that max{A — A2/3,A/(1 —=A)} = A/(1 = A) as A < 1. Together with
the Cauchy-Schwarz inequality, this implies that for all u,v € T, M,

A oA
BV < = (V20 (14,10 (V2 (00,9) = eV pa
Together with Egs. (8.1.24) and (8.1.25), we obtain the upper bound

Byl AN
T AveoM allV g S (A=A Pltee =730

}\f,cx(p+)
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Theorem 8.1.16 implies that the Newton method converges quadratically for
sufficiently small A. For example, suppose that A <A, :=1 - % Then we have

2 2
A A )
R < = < %y A,

(1_7\) (1_7\*) 2A A (8.1.26)

meaning the Newton decrement decreases quadratically and stays below A., so we
can iterate. This implies the following result (cf. [NN94, Thm. 2.2.3]):

Theorem 8.1.17 (Quadratic convergence of the Newton method). Let f: D — R be
a strongly o-self-concordant function defined on an open convex set D C M, with positive

definite Hessian. Let pg € D be a point such that A o (po) < A :=1— 1/V2 ~ 0.293.
Then the Newton iterations

Pt+1 = Exppt(nf,pt)
are well-defined for all t € N (i.e., each p+ € D) and we have

1 v 1
Ara(pe) < 3(@Aa(po)’ < 5(2A)7.

In particular, O(log log <) Newton iterations suffice to find a point p such that f(p¢) <
f.+ ¢ for e < ofe.

Proof. We abbreviate At := A¢ «(pt). By Theorem 8.1.16 and Eq. (8.1.26), one can
see inductively that p; € D is well-defined for all t € N and that we have Ay < A.
and

2}\t < (2}\t_1)2 < e < (2}\0)2t < (2}\*)2t/

as claimed. This also implies the last statement, since to achieve f(pt) < f. + ¢
it suffices to have p(A¢) < &/a, by Proposition 8.1.14, and we have p(A¢) < A? for
}\t < }\*. O

What if we have a starting point such that the Newton decrement does not
guarantee quadratic convergence? In this case it is well-known that one can employ
a damped Newton method, with a step size that ensures that one stays inside the
Dikin ellipsoid (and hence in the domain) at each step. This works just the same
in the Riemannian setting and only requires self-concordance along geodesics

(cf. [Nes18, Thm. 5.1.15]):

Theorem 8.1.18 (Damped Newton method). Let f: D — R be strongly o-self-
concordant along geodesics, defined on an open convex set D € M, with positive definite
Hessian. Let po € D be an arbitrary starting point. Then the damped Newton iterations

1
1+ }\f,oc(pt)

are well-defined for all t € N (i.e., each p+ € D) and we have

P+l = Exppt(ut) where uy = Nt p,

f(pt+1) < f(pt) — xp(=Ar),

where p is the quantity defined in Eq. (8.1.17). In particular, if f is bounded from below
and we set f. := infyep f(p), then O((f(po) — f.)/ ) damped Newton iterations suffice to
find a point py such that A¢,«(pt) < A. (or any other constant).
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Proof. We abbreviate A¢ := Af «(pt). Using Corollary 8.1.11 one can see inductively
that v := |[utllf,p,a = At/(1 +A¢) < 1and py € D is well-defined for all t € N.
Moreover,

f(pes1) < f(pe) + dfp, (ue) + xp(r)

= f(pe) = (V2H)p (e p,, we) + ap(r)
2

7\’[
= f(pt) - oc( - p(r))

1+ }\t
= f(pt) — (A — log(1 + Ayp))
= f(pe) — ap(=A)- -

In particular, Theorem 8.1.18 and Corollary 8.1.8 have the following structural
consequence.

Corollary 8.1.19. Let f: D — R be strongly «-self-concordant along geodesics, defined
on an open convex set D C M, with positive definite Hessian. Then f is bounded from
below if and only if it attains its minimum (necessarily at a unique minimizer, by strict
convexity).

By combining Theorems 8.1.17 and 8.1.18, we see that we can approximately
minimize any strongly x-self-concordant function with positive definite Hessian
by first using damped Newton steps from an arbitrary starting point po until
we arrive at point with Newton decrement < A.; then we are in the quadratic
convergence regime and we can take ordinary Newton steps until we arrive at a
point p+ with p(As «(pt)) < €/, so that p¢ is an e-approximate minimizer. This
requires O((f(po) — f.)/ o + loglog(«/¢e)) Newton iterations.

8.2. Barriers, compatibility, and the path-following
method

The methods developed in Section 8.1 are sufficient to optimize strongly self-
concordant functions. However, it is difficult to guarantee that one starts in the
quadratic convergence regime for Newton’s method, and the damped Newton
method has a worst-case complexity which depends on the gap in function
value. Moreover, most convex optimization problems do not take the form of
a minimization of a strongly self-concordant function over its natural domain.
Rather, one is given a convex objective f and a domain D and wants to minimize
the former over the latter.

In this section, we show how to circumvent these two issues, assuming one has
a self-concordant barrier for the domain over which one optimizes. To this end, we
generalize the analysis of so-called path-following (interior-point) methods [NN94]
from the Euclidean to the Riemannian setting. We treat not only the case of
geodesically linear objectives, but the more general class of objectives that are
compatible with the given self-concordant barrier. This will be useful for the
applications discussed in Chapter 10. Throughout this section we assume that M
is a connected and geodesically complete Riemannian manifold.
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8.2.1. Self-concordant barriers

We first define the notion of a self-concordant barrier. The estimates in this section
only require the self-concordance to be along geodesics, and we make explicit
whenever this is the case. However, the path-following method presented in
Section 8.2.3 requires the stronger notion.

Definition 8.2.1 (Barrier). Let D C M be an open and convex subset, and let © > 0.
We say that a function F: D — R is a non-degenerate strongly self-concordant barrier
with parameter 0, or in short a 0-barrier, if F is a strongly 1-self-concordant function
with positive definite Hessian such that Ar(p) < Vo for all p € D, with Af = Af;
the Newton decrement (Definition 8.1.13). We say that F is a 0-barrier along geodesics
if it is only strongly 1-self-concordant along geodesics.

The parameter of a barrier plays an important role in the complexity analysis of
the path-following method that we discuss in Section 8.2.3. The following lemma
follows readily from the definition:

Lemma 8.2.2. Let F1: D1 — R be a 01-barrier and let Fo: Dy — R be a 05-barrier. Then
F1 + Fais a (01 + 02)-barrier for D := Dy N Dy, assuming D is non-empty.

Next, we prove an important inequality which involves the barrier parameter.
To state the result, we define a Riemannian version of the so-called Minkowski
function(al) or gauge function. It measures the inverse distance from a point to the
boundary of the domain.

Definition 8.2.3 (Minkowski functional). Let D € M be an open convex subset.
For p € D, we define the Minkowski functional by
Tpp: TpM = Ry, 7mpp(u) = inf{s >0: Expp(%u) € D}.

This is well-defined since D is open and hence 7ip ,(1) < oo for every u €
T, M. Note that if s := 71p ,(u) = 0, then the entire infinite geodesic ray y(t) =
Expp (tuw) is contained in the domain, while if s > 0 then Expp(%u) is a point in
its boundary oD = D \ D. Moreover, if u € TpM is such that Exp, (u) € D, then
mp(u) < 1.

Then we have the following result, which can be deduced directly from its Eu-
clidean version [NN94, §2.3.2]. We provide a self-contained proof for convenience.

Proposition 8.2.4. Let D C M be open and convex, and let F: D — R be a ©-barrier
along geodesics. Then one has, for all p € D and u € T, M,

dFp(u) < 07p p(w).
In particular, if = Exp,(u) € D then
dFp(u) < 6.

Proof. The second statement follows from the first by the preceding discussion.
To prove the first, let p € D and u € T,M. If dF,(u) < 0 then there is nothing to
prove, so we assume that dF,(u) > 0. Define

g(t) := F(Exp,,(tw)).
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Then gis well-defined on the interval I = [0, 7tp (w)~1), where we interpret 0~! = co.
By definition of the Newton decrement and recalling that §(t) > 0 as F has positive
definite Hessian, we have

(9(1)*

0 < ?\%(p) = 0.

Since we assumed that §(0) = dF,(u) > 0, we find that 6 > 0, as well as g(t) > 0
for all t € I, by convexity. Accordingly, we can write the above as

at(i) = - 9t < —1/
g(t) (1) 6

which implies that

1 1 t 1 1 t
50" at(m)‘“m‘éf
and hence

1 8900
BCERTO)

o(t) > —

e
g(0) ©

As the right-hand side diverges as t approaches 0/¢(0), we must have t < 8/g(0)
for all t € I. Hence

TD,p (u)_l < wr

which is the desired bound. O
As a consequence, non-trivial barriers must have positive parameter:

Corollary 8.2.5. Let D € M be open and convex, and let F: D — R be a 0-barrier along
geodesics with © = 0. Then F is constant and D = M.

Proof. Proposition 8.2.4 shows that dF = 0, hence F is locally constant and V2F = 0.
Because F is strongly self-concordant, we may apply Corollary 8.1.8 to conclude
that Exp ,(T,M) € D and hence D = M, since M is connected and geodesically
complete. m|

The minimizer of a barrier, which if it exists is necessarily unique (recall that
barriers have positive definite Hessians by definition), plays a special role in the
theory.

Definition 8.2.6 (Analytic center). Let D € M be open and convex, and let F: D —
R be a 0-barrier along geodesics. If F attains its minimum, then the unique
minimizer is called the analytic center of D.

Recall that a barrier attains its minimum if and only if it is bounded from below
(Corollary 8.1.19). The following result shows that the domain is necessarily
enclosed in a Dikin ellipsoid about the analytic center, with radius given by the
barrier’s parameter. It adapts the Euclidean argument (cf. [Nes18, Thm. 5.3.9],
[NNO94, Prop. 2.3.2 (iii)]) to the Riemannian setting.
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Proposition 8.2.7 (Enclosing Dikin ellipsoid). Let D € M be open and convex, and
let F: D — R be a 0-barrier along geodesics. If © > 0 and F is bounded from below, with
analytic center p. € D, then

D C B} (20+1),

where BY Fp. = B° | denotes the Dikin ellipsoid (Definition 8.1.7). That is, the domain is
contained in the Dzkm ellipsoid with radius 20 + 1 about p..

Proof. Let u € Tp,M be such that [[ullrp, = 1, and let y(t) := Expp*(tu). By
Corollary 8.1.8, we know that B‘]’:lp*(l) C D, hence g(t) := F(y(t)) is well-defined
fort e [0,1).

To show that D € By | (26 + 1), by convexity of D it suffices to show that
Y(1+26) ¢ D. From Eq. (8.1.18) in Corollary 8.1.10 and p. being a minimizer of F,
it follows that, for t € [0, 1),

t

dFy(1)(Ty,110) = dFy ) (Ty,01t) = dFyp (W) = §(8) = §(0) > T

Proposition 8.2.4 on the other hand implies that for

dFy(t)(Ty,tu) < eﬂDly(t)(T%tu).
Together, we obtain that, for every t € [0, 1),

t

eTtD,y(t)(T%tu) = m

By the definition of the Minkowski functional, for every s € [0, 7tp (1) (Ty,t (1)),
we have

Y{t+2) = Bxpy, ((t-+ 1) = Bxp g () # D.

Therefore, for every t € [0,1) and s € [0, ﬁ), we have

y(t+1)¢D.
Lettingt — 1 and s — 1/(20) gives that y(1 +20) ¢ D, since M \ D isclosed. O

8.2.2. Compatibility

Given a barrier F, for which convex functions f is it the case that tf + F is self-
concordant for all t > 0, with parameter independent of t? This is clearly the case
if f is (affine) linear or quadratic in the sense that the third covariant derivative V3f
vanishes. We now define the more general notion of compatibility, which suffices
for this, as shown in Proposition 8.2.10 below.

Definition 8.2.8 (Compatibility). Let D C M be open and convex, let f,F: D — R
be convex functions. For (31, 32 > 0, we say that f is (31, 2)-compatible with F if for
allp € D and u,v € T,M, one has

(V3 6)p (w, v, V)| < 2B1+/(V2F)p (1, w)(V26)p (v, V) .

+ 22 (V2F)p (v, 0) (V26 (u, W) (V2H) (0, v).
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For 3 > 0, we say that f is 3-compatible with F along geodesics if for all p € D

andv € T,M,
[(V3)p (v, v, V)| < 2B+/(V2F)p (v, V)(V2£)p (v, V). (8.2.2)

Clearly, if f is a linear or a convex quadratic function, in the sense that its second
or third covariant derivative vanishes, then it is clearly automatically compatible
with any convex F. Moreover, any «-self-concordant function is (31, 32)-compatible
with itself, for 1 + B2 = 1/+/x. As we show in Proposition 8.2.10, given a barrier F
for a domain D and a convex objective function f, compatibility guarantees that
tf + F is self-concordant for all t > 0, with a parameter independent of t, and
hence one can use the path-following method presented in Section 8.2.3 below to
optimize f over D. We apply this theory in Chapter 10.

Compatibility along geodesics reduces to the well-known Euclidean notion,
see [NN94, Def. 3.2.1] or [Nes18, Def. 5.4.2]. In these works it is also explained
how to generalize the notion of compatibility to vector-valued functions f, which is
useful for constructing new barriers out of old ones; see [NN94, §5.1.2] or [Nes18,
§5.4.6] for details. We do not provide such a generalization here. Clearly, if f is
(B1, B2)-compatible with F then it is also 3-compatible with F along geodesics for
B := 1+ B2. Yet the latter does not imply the former, even in the Euclidean setting.

We may equivalently write Egs. (8.2.1) and (8.2.2) as follows in terms of the
seminorms ||-[[gp = [[llg,p,1 induced by the inner products (-, ")y, = (,)g,p1
defined in Eq. (8.1.2):

[(V36)p (1, v, V)| < 2f:’>1||u||1E,pIIVII%,p + 2B2(vilEpllullep lIVIlep (8.2.3)
and
[(V36), (v, v, v)| < 2B|Iv||F,pIIVII%,p- (8.2.4)

We now state some basic properties of compatibility. The following result holds
analogously for compatibility along geodesics.

Lemma 8.2.9. Let D C M be open and convex, F: D — R a convex function, and 3 €
R2,.

(i) Let f: D — R be a convex function that is 3-compatible with F and let ¢ > 0. Then
cf is B-compatible with F.

(ii) Let f1,f2: D — R be two convex functions that are each (3-compatible with F. Then
their sum f1 + f3 is 3-compatible with T.

Proof. Property (i) is clear from the definition, as both sides of Eq. (8.2.1) are
positively homogeneous in f. To prove property (ii), we note that for every p € D
and u,v € T, M,

[(V3(f1 + £2))p (w, v, W] < [(V3F1)p (1, v, )] + [(V3H2)p (w, v, V)]

< 261 \ (VZF)]D (LL, u)(vzfl)‘p (V/ V) + 261 \ (V2F)p (‘LL, u)(VZfZ)p (V, V)
+ 282V (V) (0, ) (VIVF1)p (1, N (VD) (0, ) + V(TR (VTP (0, 9)
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< 261 V (VZF)P (LL, LL)(V2f1 )p (\), V) + 261 \, (VzF)p (LL, U)(szz)p (V/ \))
+ 2823 (V2E)y (v, W (V261)p (1, 1) + (V22)p (0 Wy (V2H1)p (4, v) + (V262) (v,0)

= 2B14/(VZF)p (w, w)(V(f1 + 2))p (v, V)

+ 22 J(V2F) (0, 9)4 (V2(F1 + £2))p (1, 1) (V(F1 + £2))p (0, v).

The first inequality holds by compatibility of f; and of f, with F, and the second
inequality uses the Cauchy-Schwarz inequality. O

We now show that if a convex function f is compatible with a self-concordant
function F (e.g., a barrier), then tf + F is self-concordant for every t > 0, with a self-
concordance constant that is independent of t. We emphasize that itis not necessary
for f itself to be self-concordant. The proof is inspired by [NN94, Prop. 3.2.2] in
the Euclidean setting. The result holds analogously if we use compatibility and
self-concordance along geodesics in the hypothesis and conclusion.

Proposition 8.2.10. Let D C M be open and convex and let f,F: D — R be convex
functions. Suppose that f is (31, p2)-compatible with F and F is 1-self-concordant.
Then tf + F: D — R is «-self-concordant for every t > 0, with

4(B2-(B1-1?) .. .9
o ety B3> 2max{Bu(Bi— 1), 1-Bu),

1 i
max(B21] otherwise.

If in addition F is strongly 1-self-concordant and f has a closed convex extension, then
tf + F: D — R is strongly «-self-concordant for every t > 0.

Proof. We abbreviate Fy := tf + F. Clearly, Fy is convex for every t > 0, so it remains
to prove the self-concordance estimate. For any p € D and u,v € T, M, using
Egs. (8.1.6) and (8.2.3),

|(V3Ft)]D (u,v,v)|
< t(V3)p (v, )| + (VP F)p(u, v, v)|

2 2
< 2tBalfullrplVilE, + 2tB2lVIIFpllulleplvilep + 2lullep lIVIE,

2 2
= 2(Veltullep (VEB2IVlEp IVl ) + Ialle (¢B1UIME , + VI, )

2 2
<2, [t + ||u||%,p\/ (ViBallvlieplvliep) + (tBallviZ, + VI, )

2
= 2||u||a,p\/tﬁgnvni,pnvn%,p +(tBalvIR, + VI, )

using the Cauchy-Schwarz inequality in the second-to-last step. To show that F¢
is a-self-concordant, by Eq. (8.1.5) it therefore suffices to show that (note we use
|-l g,p,1 rather than ||-[|g p,«!)

2 1
2
\/tﬁgnvu%,pnvu%,p+(tfsl||v||%,p+||v||%,p) <2, 629
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Without loss of generality, we can assume that ||v||]2:t - 1. Writing x := ||v||% . and
y = |v||? r We see that Eq. (8.2.5) holds provided we can prove that

1
B2txy + (Brtx +y)* < - (8.2.6)

for all x,y > O subject to the constraint tx + y = 1. Eliminating t and x using this
constraint, the left-hand side can be written as

d(y) = B3~ y)y + (B1(1 ~y) +y)’
= (1= B1)? ~ B2Ju* + (261 — 283 + B3)y + B2,

so we wish to show that q(y) < 1/« for ally € [0, 1]. Note that q(y) is a quadratic
polynomial. We distinguish two cases:
If (1-p1)?< [5%, then q is strictly concave and attains its maximum on R at

2By -2p2 + B2
2(B2 - (1-B1)?)
Note that y. € (0, 1) if and only if
0<2p; - 283 + B3 <2(B3 - (1- 1),

which is equivalent to

Ys

B2 > 2max{B1(B1 - 1),1 - B1}.
If y. € (0, 1), then the maximum of q(y) on [0, 1] is given by

(2B1—2p% + B2’ B3 +4B13
4(p3 - (1-p1)?) 4(p3 - (1-p1)?)’
while otherwise it is attained at the boundary, where q(0) = [3% and q(1) = 1.

If (1-B1)? > [3%, then q(y) is convex and hence attains its maximum always at
the boundary. Summarizing both cases, we find that

qy.) = +pT=

M i —1)2 2 2 _ 3
max q(y) = 4 2(B3-1-p17) if (B1 —1)* < 5 and B3 > 2max{B1(B1 - 1),1 - B1},
yelol] max{p2,1} otherwise.

The condition of the first case is equivalent to

B3 > 2max{B1(B1 — 1),1 - B1},

and hence we have confirmed Eq. (8.2.6). Thus we have proved thatFy = tf+Fisan «-
self-concordant function on D. Finally, the last claim follows from Lemma 6.5.2 O

Finally, we construct a self-concordant barrier for the epigraph of any function
compatible with a barrier for its domain. This result generalizes the Euclidean
result [Nes18, Thm. 5.3.5], which constructs a self-concordant barrier for the open

epigraph
Ef:={(p,t) e DxXR:f(p) <t} (8.2.7)

of a self-concordant barrier. As before, it holds analogously if we use the notions
along geodesics in the hypothesis and conclusion.
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Theorem 8.2.11 (Barriers for epigraphs). Let D C M be open and convex and let
f,F: D — R be convex functions. Suppose that f is (31, 32)-compatible with F and F is
1-self-concordant. Then, the function

G:E; > R, G(p,t)=-log(t—f(p)) + F(p)
defined on the open epigraph €S, see Eq. (8.2.7), is convex and «-self-concordant, with
o := max{1 + B3, B1 + 1B3, 3p3}. (8.2.8)

Furthermore, for every (p,t) € E{ one has

)\G,(X(p/ t)z =

2 1 2

o
If in addition F is strongly 1-self-concordant and f has a closed convex extension, then G is

strongly o-self-concordant. In particular, if F is a ©-barrier for D and f has a closed convex
extension, then G/ocis a (1 + 0)/o-barrier for EX.

Proof. We identify v € T, ) ES = T, D ® R and write v = (v;,vt), with v, € T,D
and v¢ € R. Then the differential of G is given by

dGp)(v) = . ) (vt - dfp(vp)) + dF,(vp) (8.2.10)
and the Hessian of G by
(V2G)(p,1)(v, V) (8.2.11)
1 2 1 2 2
= —(v¢ —dfp(v + Vo) (Vp, vp) + (VF)p (v, vp) .
(t—f(p))z( t P( P)) t—f(p)( )p( P p) ( )p( P p)
=C2
=:A2 =B '

The underbraced terms are all non-negative as t > f(p) and both f and F are convex,
hence we can write them as squares of real numbers A, By, C,. This also shows
that G is convex. We now prove that G is self-concordant. The third covariant
derivative can be computed as follows: for all u,v € T, 1)E$, we have

(V2G) (1, v,v) = —m(m - fp(uup) (v = dfp(vp))°
_ m(vt — afy (vp)) (V2)p (11, vp)
- m(ut — dfp (up)) (V2F)p (v, V)
= _11? (7, vp, ) + (VP v, vp)
oA A2 - zAvt_%z(m(sz)p(up,vp) ~ A,B
- _1f (Ve p v, vp) + (P F)p(p, vy, )
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Now, we have

1

by the Cauchy-Schwarz inequality,

_2
t—1f(p)

= 2(B1B3Cy + B2BuBC,

1 3 2
170 (tp, vp, vp)| < (Billellep VI, + Balivllep il plivllcp )

t—f(p

by compatibility of f with F as in Eq. (8.2.3), and finally
[(V3F)p (up, v, vp)| < 2C, C2

by 1-self-concordance of F (Eq. (8.1.5)). Combining these estimates, we can upper
bound the third covariant derivative of G in absolute value as

[(V3G)p, 1y (1, v, v)|
< 2AuA2 +2A, BBy + AuB2 + 2((513%Cu + BZBuBVCv) +2C.C2
= Au(2A2 + B2) + BL(2A, By, +2B2B,Cy) + Cu(2p1B2 +2C3)

< \/AZ +B2 +C? \/(2A2 +B2)2 + (2A,B, +2B2B,Cy)? + (231B2 +2C32)2
< 2\/(V G) o)1, u)\/max{l + B2, By + 12, 2B2H(V2G) 0 (v, V)

=ﬁ¢wmwmmwammw

where the last inequality holds due to 2xy < x? + y?, as in

}L[(mi +B3) + (2A, By, +2B2ByCy)? + (2B1B3 +2C3)?|
= Ab+ (4+ B2)BS + Ch+ 24283 +2(B1 + 3B3)B2C + 28,4, B3C,
= AL+ (3+83)BY + CE+2A2B2 +2(Br + 4B2)B2CE +2( P83 ) ( 2 B2ALC
<A+ ( +B )34 +C4 4 2A2B2 +2(f31 + 2B2)82C2 + 384 4 4p2A2C2
= Ad 4 (1 + [3%)133 +Ct +2A2B2 + 2([31 +1p2 )B%C%, +22p2A2C2
< max{1 + B2, 1 + 1%, 362}(/\2 + B2+ CZ)

We conclude that G is indeed «-self-concordant with « as in Eq. (8.2.8).
Next, we prove the bound on the differential. Using Eq. (8.2.10) and with A,, B,,
as in Eq. (8.2.11), we have

|[dGp,0(V)| < Ay + [dFp(vp)] < Ay + Ap(p)Cy

S VL+AR(P)2AT + CF < V1 + AF(P)Z\/(WG)(p,t)("rV)f
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by definition of the Newton decrement and the Cauchy-Schwarz inequality. Thus

we find that
1+ Ap(p)?
el < LEAIEE,

which establishes Eq. (8.2.9).
Finally, if F is strongly 1-self-concordant, hence closed convex on D, and if f has
a closed convex extension then it is easy to see that G is closed convex on EZ, using

that (s, t) > —log(t — s) is closed convex on {(s, t) € R? : s < t}. O
In particular, we can apply this construction to any self-concordant function:

Corollary 8.2.12. Let D € M be open and convex and let f: D — R be 1-self-concordant.
Then g(p,t) = —log(t — f(p)) + f(p) is a convex and 1-self-concordant function on the

open epigraph % of f, see Eq. (8.2.7). It satisfies Ag(p, t) < v/1 + A¢(p)? forall (p,t) € EZ.
If f is strongly self-concordant, so is g. In particular, if f is a ©-barrier, g is a (1 + 0)-barrier
for EX.

To end this section, we provide a variant of the above barrier for level sets of a
convex function which does not use the notion of compatibility, but has a parameter
that depends on the variation of the function. For a convex function f: M — R
and n € R for which there is p € M with f(p) <1, the open level set Ly < Mis
defined by

L: ={peM]|f(p) <n} (8.2.12)

Define the logarithmic barrier F: L2 . R by

Fn(p) = —logn —f(p)) (p € L) (8.2.13)

The logarithmic barrier is convex and has bounded Newton decrements as follows.

Lemma 8.2.13. The function F = F,, defined in Eq. (8.2.13) is smooth, closed convex, and
satisfies
dFp(w? < (VFp(w,u) (weT,M, pe L3). (8.2.14)

Proof. Let w(p) :=n — f(p) > 0. Then we have

dfp(w)
w(p) ’

Then by convexity of f, (V2F)p(u, 1) > 0 and hence F is convex, and satisfies
(V2F)p (w,w) > dFp(w)%

The closedness of F is seen as follows: Consider a sequence (py, zk) in the
epigraph of F, that converges to (peo, Zo) € M X R. Note that f is smooth on M,
and hence so is F on £g . By continuity of f, L7 is open, hence disjoint from

its boundary in M. Therefore any boundary point q of L} satisfies f(q) > n.
Therefore, it is impossible for pe, to belong to the boundary of L¢ : that would
imply f(peo) > 1, which would imply ze, > 0. Hence po € L?n’ and F(ze) =

B (sz)p (u,u) N dfp(u)2
- w(p) w(p)?

dFp(u) = (V2F)p(w,w) (8.2.15)

limy 00 F(pk) < limy00 2k = Zeo- O
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If an «-self-concordant function F satisfies Eq. (8.2.14), then F/« is an «-barrier.
The following is an extension of [Nes18, Thm. 5.1.4] to our setting; the result below
is originally due to H. Hirai [Hir22b]:

Theorem 8.2.14 (Barriers for level sets). Suppose that f: M — R is «-self-concordant.
Then b2 L3 — Ris o-self-concordant for

, A -f) a+1
T 2m - ) o+ 1)

(8.2.16)

where f* := infxem f(x). In particular, Fy /o is an O((n — f*)/ «)-barrier for L3 0

When only considering self-concordance along geodesics, the constant &’ can be
taken as oo/((n — f*) + o), which is exactly what is proven in [Nes18, Thm. 5.1.4].
For self-concordance, however, a little modification is required, which leads to a
weaker constant.

Proof. Our starting point is Eq. (8.2.15), where we recall that w(p) = 1 — f(p). Since
df,(u)? = (dfp, ® dfp)(u,w), and (Vy(df ® df))p(w, ) = ((Vydf)p ® dfp, + dfp, ®
(Vydf)p)(w,u) = 2dfp (u)(V2f)p(u, v), the covariant derivative of V2F is given by
(suppressing p’s for convenience)

V3f(v,u,u) N df(v)V2f(u,u) N 2df(w)V3f(u, v) N 2df(v)df(u)?

w w? w? w3
(8.2.17)

V3F(v, u,u) =

Hence we have

IVPF(v, u,u)] <

24/ V2f(v, v)V2f(u, 1) . |df(v)|VZf(u, w)
Vow

w?

2|df(w) |y V2E(v, v V2w, 1) 2|df(v)|df(w)?
+ 2 + 3 .

Define 1,7, &1, € by

T := VV2(v,v)/w, T:= YV (u,u)/w, & = |df(v)|/w, & := |df(w)|/w.

Then we have

|V3F(v, u, u)| - (1/VX)w 21712 + (1/2)E1T2 + &y T + 182
2+/V2F (v, v)V2F(u, 1) (1] + EDVA(T? + £2)

We bound the right-hand side as follows. By homogeneity, we may consider the
optimization problem:

(8.2.18)

maximize (1/Vo)w 211 + (1/2)&11% + EriT + £1E2 s.t. T% + 5% =1, T+ &2 =1.

For fixed (7, &), optimizing with respect to (11, &1) is a linear optimization over the
unit circle, and the optimum is attained at

(1/ Vo2 + £x,(1/2)7* + E2)
VAV w22 + £n)2 + (1/2)72 + £2)2.
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8.2. Barriers, compatibility, and the path-following method

Then the problem reduces to

maximize \/((1/\/&)(»1/212 FET2 4 ((1/2)12 + E2)2 st. T2+ E2=1.

This optimization problem can be solved using the method of Lagrange multipliers.
For convenience set ¢ = y/w/«, and define q(T, &) = (vw/ot? + £1)% + (T2/2 + £2)2.
The system of equations
0:q(T, &) =ut, deq(r,&)=nug, T+E=1 peR
has six solutions (7, &, 1), given by
1 1
(0,+1,4), ————(2¢,1,16¢* + 16¢% + 4), ———(-2¢, -1,16¢* + 16c2 + 4),
N

4c?2 +1 V4c2 +1
1

1
——(3,-2¢,16¢? +9), ———(-3,2¢, 16¢% + 9)
4c2 +9 V4c2 +9

and the largest value attained of q(, &) attained at any of these points is (2c? +
1)2/(4c? + 1). Therefore, the right-hand side of Eq. (8.2.18) is at most

2(w/o) +1)2
dw/o)+1

In other words, this gives that o = (4(w/a) +1)/(2(w/x) + 1)? is a suitable self-
concordance constant at p. Taking the maximum over p € L yields the choice
of o’ in Eq. (8.2.16). O

8.2.3. Path-following method

We now discuss a path-following method for objectives which are compatible
with a barrier. To this end, we consider the approach of [NN94, Ch. 3]. Their
Euclidean framework is rather general, and deals with self-concordant families. We
specialize to self-concordant families generated by a barrier, and generalize the
corresponding path-following method to the Riemannian setting. The goal is to
minimize a convex objective function f over an open convex domain D, that is, to
find p € D such that f(p) = infqep f(q). The running assumption we shall make is
that we have a barrier F for the domain D such that the function

Fr=tf+F: D >R

is a-self-concordant for all t > 0, with a parameter « that is independent of t. One
way to guarantee this is to assume that f is compatible with F, as shown before in
Proposition 8.2.10.

The basicidea of the path-following method is as follows (as explained previously
in Chapter 4). The algorithm keeps track of two pieces of data, a point p in the
domain D and a time parameter t. The initial data to the algorithm is specified by a
point p_; € D such that Af «(p-1) is small. We then choose a time parameter ty > 0
such that we are in the quadratic convergence regime for Newton’s method
for F, as determined by Theorem 8.1.17, say Ar, o(p-1) <A =1- 1/V2. Such
initial data can be obtained for instance by using the damped Newton method of
Theorem 8.1.18, or in the Euclidean setting by a similar (reverse) path-following
method. We then iterate the following procedure for k =0,1,2,...:
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8. Interior-point methods on manifolds: the framework

(i) Update px-1 to px € D by taking one Newton step with respect to Fy,, so
that Ar tk’(x(pk+1) becomes smaller.

(ii) Increase ty to some ty41 by a constant factor, such that )\th,oc(Pk) < A, still
holds.

Throughout the algorithm, py will be an approximate minimizer of F¢,. One can
also show that if ty is large enough, approximate minimizers of F, are approximate
minimizers of f.

We first determine by what factor one can increase t while keeping the Newton
decrement below some threshold. The following result is a translation of [NN94,
Thm. 3.1.1] to our setting. Note that here, we do not assume that tf + F is
self-concordant.

Lemma 8.2.15. Let D C M be open and convex, let F: D — R be a 0-barrier along
geodesics, and let f: D — R be a convex function. Furthermore, let t,t’, x,c > 0 and

p € D be such that
1+ —

A
logY <1- Ft’“(p).

Cc

cCyx

Then Ar, «(p) < c implies that Ar,, «(p) < c.

Proof. Let p € D. Throughout the proof, all derivatives of functions defined on M
will be taken at the point p, hence we shall omit the subscript. We will assume
that t’ > t, but the proof for t’ < t is analogous. For every 0 # u € T, M, define a
function ¢, : [t,t'] = R by

dFs(u)
VV2Fg(u, 1) .

To prove the lemma, it suffices to show that |, (t')| < cy/forallu # 0. Since ¢y, =
— ., we may assume without loss of generality that ¢, (t") > 0. We first compute
the derivative of ¢:

Puls) =

3. bu(s) = df(w)  1dFs(uw)- V2f(u, 1)

V) 2 (VW)

_1 Duls) - 1 dF(w)  1dFg(w)- V(u,u)
s R 2 (VR wpR

_ lcbu(s) 1 dR(w) N 1 dFs(u) - V2F(u, 1)
2s S VI (w,u) 28 (V2Fs(u, )32
1 V2F(u, u 1 dF(u

= gdlu(s) (1 + VZFS((u,u))) —~ g\/ﬁ'

Let to be the largest s € [t, t'] such that ¢, (tg) = 0; if such an s does not exist, then
set tg = t. Let t* € [tg, t'] be such that ¢, (t*) is maximal over this interval, and
set d7, = b, (t*). Then,

-
¢y, = dulto) +J dsd(s)ds

to
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8.2. Barriers, compatibility, and the path-following method

vl V2F(u, u) 1 [dF(u)]
< d)u(t()) + J;O Z_Sd)u(s) (1 + m) + g\/ﬁ] ds

!
< |$ulto) + J

to

1(IJu(s) + 1\/6] ds
S s

< |pu(®)] + (%, + VO) log :—O;

the second inequality follows since V2Fs > VZF as f is convex and using that F
is a ©-barrier; the last inequality is ensured by our choice of tg. Using | (t)| <
VoAr, «(p), we obtain

( —log — ) < VAR, «(p) + VO log — (8.2.19)
On the other hand, since t < tg < t* < t/, our assumption implies that
1+—10— 1+— <1—7\Ft'—“(p),
cvVa c
or equivalently
VX AE, o(p) + VO log:— < cx/&(1 —~log :—) (8.2.20)
0 0

Combining Egs. (8.2.19) and (8.2.20) gives ¢7, < ¢V, implying that |, ()] < cvVox
as desired.

We now show that for large t > 0, approximate minimizers of F; correspond
to approximate minimizers of f. The proposition and proof we give below are
adapted from [NN94, Prop. 3.2.4].

Proposition 8.2.16. Let D C M be open and convex, let F: D — R be a 0-barrier along
geodesics for D, and let f: D — R be a smooth convex function which has a closed convex
extension. For some fixed t > 0, suppose that Fy := tf + F is «-self-concordant along
geodesics for some « > 0 and that it is bounded from below. Then for every p € D such
that v, «(p) < %, we have

20 + xp(Ar,,«(p))
t

4

f(p) — inf f(q) <
qeD

where we recall from Eq. (8.1.17) that p(r) = —r —log(1 — ).

Proof. By Lemma 6.5.2, F; is closed convex and hence strongly «-self-concordant
along geodesics. Because its Hessian is positive definite and we have Ar, «(p) < 1,
Proposition 8.1.14 implies that F; attains its minimum at a unique minimizer py . €
D and moreover

Fe(p) = Fe(pts) < ap(Ar,,a(p))- (8.2.21)
Furthermore, Lemma 8.1.15 shows that if u € T, M is such that Expp (W) = pes
then Ar. o (p) .
Fe, o p
< ——— <z
R SR
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where the last inequality follows from A, «(p) < % Using Corollary 8.1.11, we
obtain that
Eprt,*(V) = Exp,, (2u) € D,

where v = T, ju is the parallel transport of u from p to p¢. along the geodesic
v(t) := Exp,,(tu). By Proposition 8.2.4, it follows that
dFp,.(v) <6

and hence, using convexity of F and Exp,, (v) =p,

F(pts) — F(p) < —=dFp,,(—v) = dFp,.(v) < 6. (8.2.22)
Together, Egs. (8.2.21) and (8.2.22) then show that

i) = Pl FD)
< Fi(pt) + ap(Ar,,«(p)) — F(p)
t
F(pt,) = F(p) + xp(AF,«(P))
t
0 + xp(Ar,,«(p))
n .

= f(pt) +

< f(pes) + (8.2.23)

We will now give an upper bound on f(p.) —f(q) for every q € D. Letv € T, .M
be such that Exp, (v) = q. Using the convexity of f, the fact that py . is a minimizer

of F¢, and Proposition 8.2.4 (in this order) gives

f(pe,) — f(q) < —dfp,,(v) = pt' <
Combining this with Eq. (8.2.23) and optimizing over q € D gives the desired
bound. O

We now come to the main result of this section, giving a path-following method
which converges to a minimizer of the objective, generalizing [NN94, Prop. 3.2.4]
to our setting.

Theorem 8.2.17. Let D C M be an open, convex, and bounded domain. Let F: D — R
be a ©-barrier for D, and let f: D — R be a smooth convex function with a closed
convex extension. Let « > 0 be such that Fy := tf + F is a-self-concordant for all t > 0.

Choose 1 > AV > A@ > 0 such that (12‘;3()1)

AV =1 \@ =L Finally, let p € D be given such that A, (p) < AV, and assume that p
is not a minimizer of f. Define a sequence of time parameters

2
) <A@ < 1 a suitable choice is given by

A — A 1 _A\©2
to:\/& *F(P)’ te=to - exp (N AT fort=0,1,2,...,
laf AD + 0/

and a sequence of points

P-1=p, Pe=(pPe-1)r +fort=012....
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8.2. Barriers, compatibility, and the path-following method

i.e., pg is the Newton iterate of pg—1 with respect to Fy,. Then this sequence is well-defined,
in the sense that pg € D for all € > 0, and it satisfies

2(60 + o) || dfp [ 1) _ 7@
f(pe) - inlfjf(q)<2(e+(x)— plirp 0 A A .
qe

= ex —
. VoA T\ A+ B/a
Proof. By the assumptions on f and strong self-concordance of F, we see from

Lemma 6.5.2 that F; is strongly a-self-concordant on D for all t > 0. We shall prove
by induction on { that for every { > 0, we have p; € D and

}\th,oc(PE—l) <A, }\th,oc(pﬂ) <A@,
Let us first check that A, «(p-1) = Ar,,«(p) < AW, For every u # 0, we have

|d(Feo)p (W) < toldfp(w) + |dFp (w)]

|dfp (W)

= (VoA = Ar(p)) i+ [aFp ()
PIF,p

< (VaA® = Ar(@))llullrp + 1dFp I, Il p

= Ve fullr
< VeV ullr, s

hence ”d(FtO)P”*FtO,p < VoA, which is equivalent to Ak, a(p) < A, Next,

if ?\Fte,a(pg_l) < AD for some ¢ > 0, then by applying Theorem 8.1.16, we find that
the Newton iterate py is in D and satisfies

A \2
2)
}\Fte,(X(pE) < (1 _ )\(1)) < )\ .

Lastly, it remains to verify that if A tzr“(p ¢) <A@ for some € > 0, then Ar tz+1,c,c(pe) <
A, The t; are chosen exactly so that

Vo t \o AD 2@ A2
1+ log =1+ =1-—.
ADVx ) |0t AV | | A0 + Voo AT

We conclude that Ar,,_,«(p) < A by Lemma 8.2.15. Lastly, the bound on f(p;) —

infqep f(q) follows from Proposition 8.2.16, where we use that A < 1 and p(}) ~
0.072 < 2. O

We end with a simple but useful lemma to upper bound the quantity ||df}, ||} o

Lemma 8.2.18. Let p € D, and f,F: D — R be such that f is convex and F is strongly
1-self-concordant on D. Then

1dfpll} , < sup f(q) — f(p) < sup f(q) — inf f(q).
qeD qeD qeD
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8. Interior-point methods on manifolds: the framework

Proof. By Corollary 8.1.8, the Dikin ellipsoid B := B} p(l) of radius 1 is contained
in D. Then the convexity of f gives

||dfp||’;/p= sup |dfp(u)|= sup dfy(u)

ueT,M ueT,M
lullrp<1 lullep<1
< sup f(Exp,(w) - (p) = sup f(q) - f(p),
uel,M qeB
el p<1
which is at most sup ., f(q) — f(p)as B C D. |
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9. Self-concordance of the squared
distance in non-positive curvature

In this chapter we discuss self-concordance of the squared distance function to
a point. In Section 9.1 we recall some useful formulas that apply to arbitrary
Hadamard manifolds. In Section 9.2 we focus on the space PD(n) of positive-
definite complex n X n matrices and prove that the distance squared to any
point is self-concordant. This relies on explicit computations of higher covariant
derivatives. Next, in Section 9.3 we use these same formulas to deduce stronger
self-concordance estimates in the case of hyperbolic space H™, and use these
to construct a barrier for the distance function rather than its square; all this
generalizes readily to the model spaces of arbitrary constant negative curvature.

9.1. Hadamard manifolds

Let M be a Hadamard manifold, i.e., a simply-connected geodesically-complete
Riemannian manifold with non-positive sectional curvature (cf. Section 6.3).
Fix po € M and consider the function that computes the squared distance to the
point po, that is,

f:M—-R, f(p) = d(p/ PO)Z-

Then it is known that f is 2-strongly convex (which follows from variational
principles for the energy of a curve, cf. [Leel8, Thm. 10.22]). In fact, this is a
defining property of the more general class of CAT(0)-spaces, see Theorem 6.2.2
and [BH13]. It will also be useful to consider the distance to po,

g:M—R, g(p)=dp, po),

which is still convex. The following lemma summarizes well-known properties of
these functions.

Lemma 9.1.1. Let M be a Hadamard manifold, let po € M, and define f,g: M — R
by f(p) = d(p, po)? and g(p) = d(p, po). Then f is 2-strongly convex and g is convex.
For every p # po, g is smooth at p, and the differentials and Hessians satisfy

dfp = 2g(p)dgy = —2 (Bxp;,' (po), Do 9.1.1)
df ® df
2f

V2f =2gV?g+2dg®dg >2dg®dg = (9.1.2)

Proof. The strong convexity of f and convexity of g hold on any CAT(0)-space [BH13,
Cor. 11.2.5]. Whenever p # po, f(p) # 0 and hence g = Vf is smooth at p. By the

This chapter is adapted from [HNW23].
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9. Self-concordance of the squared distance in non-positive curvature

chain rule, df = 2g dg. To compute these, note that g is 1-Lipschitz by the triangle
inequality, so |[dgp (w)| < [[u]|, for all u € T, M. But since the geodesic from p in
the direction Exp;l(po) has constant speed and reaches py at time 1, it follows that

dgp (Bxp;,' (o)) = —g(p)-
As ||Exp];1 (po)llp = g(p), an application of the Cauchy-Schwarz inequality
g(p) = [dgp (Bxp,'(po))| = [{(grad g)p, Exp,' (po))|
< Il(grad @)y Iy IExp; (Pl < IExp; (o)l

holds with equality. It follows that (grad g), = —g(p)‘lExpgl(po) and dgp =
—g(p)~! <Exp;1(p0), -),and df, = -2 (Exp;l(po), ~>p. We finally derive the formulas
for the Hessians. Applying the product rule to df = 2g dg yields

(sz)p = 29(p)(V29)p +2dgp ® dgp,

The lower bound in Eq. (9.1.2) follows since (V2g),, > 0, as a consequence of the
convexity of g. |

Corollary 9.1.2. The Newton decrement of f(p) = d(p,po)? is given by A¢(p) =
V2 d(p, po)-

Proof. Recall the variational characterization of the Newton decrement (Eq. (8.1.20)):

Ar(p) = min{A > 0: df, ® df, < A (V3f), }.

Thus, A+ < V2f by Eq. (9.1.2). As g is linear in the direction Exp];1 (po), its Hessian
vanishes in this direction and so we in fact have equality, by the first equality in
Eq. (9.1.2). O

We use Lemma 9.1.1 to prove the following result, which is used later to prove
Theorem 9.3.7.

Lemma 9.1.3. Let ¥: M X R X R>0 — R be the function defined by
Y(p,R,S) =R —Std(p,po)*

Then VY is concave, with Hessian given by

-1 _ ®2 20
VzW:_z(s gdS —dg) s+(Vf 2dg®dg)5ol

where f, g are as in Lemma 9.1.1, dS is the differential of the projection (p,R,S) — S, and
we write dg for the differential of (p, R, S) — g(p) by a slight abuse of notation. Moreover,
foru = (up, ug, us) and w = (wp, Wg, ws) tangent vectors at (p, R, S), one has

V3W(w,u,u) = —ZEVZ‘P(W, u) — s

1
S S VY (u,u) - §V3f(Wp,up/up)-
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Proof. Clearly,
d¥ = dR + S72fdS — Sl df.

Since VdR = 0 = VdS, this yields
V2Y = -2573fdS @ dS + S2df ® dS + S2dS ® df — STIVAA. (9.1.3)
We now use Egs. (9.1.1) and (9.1.2) to rewrite the above as

VY = -2573g2dS ® dS +252g(dg ® dS + dS ® dg) — S"'(2gV?g +2dg ® dg)
= -25Y(S71gdS — dg)®* — 25" 1gV?g.

Taking one more derivative in Eq. (9.1.3), we obtain

V3W(w, u, u) = 6574 dS(w) dS(u)? — 253 df(w) dS(u)? — 4573dS(w) df(u) dS(u)
+2572V2f(w, u) dS(u) + S72dS(w)V3f(u, u) — STIV3F(w, u, u)
= -2571dS(u) V¥ (w, u) — S71dS(w) V2W(u, u) — STIV3f(w,u,u). O

Corollary 9.1.4. Let D = {(p,R,S) € M X R50 X Rs : RS — f(p) > 0}. Then the
function F: D — R defined by F(p,R,S) = —log(R — S~1d(p, po)?) is convex.

9.2. Positive definite matrices

In this section, we specialize to the space PD(n) = PD(n, C) of positive definite
Hermitian n X n matrices, which is a Hadamard manifold when endowed with a
well-known Riemannian metric. We collect a number of well-known results from
the literature and then derive explicit formulas for the higher derivatives of the
squared distance on this space by using techniques from matrix analysis. The main
result of this section is Theorem 9.2.11, where we show that the squared distance
is self-concordant on PD(n). As explained in the introduction, this implies that
the squared distance is self-concordant on arbitrary Hadamard symmetric spaces.

We will often use notation of the form h(P) where h: Ry — R is some scalar-
valued function, which refers to the Hermitian matrix obtained by expanding P
in an eigenbasis and applying h to its eigenvalues. Examples include but are not
limited to expressions of the form P' with t € R, P+ A = P + Al where A € R,
log(P), et cetera.

We think of PD(n) as an open submanifold of the n x n Hermitian matrices
Herm(n) € C™™, so that we can identify TpPD(n) = Herm(n) at any P € PD(n).
Concretely, X € Herm(n) corresponds to the tangent vector of the curve t —
P + Xt = PV2(I + tP~1/2XP~1/2)P1/2 at t = 0. These curves would be geodesics if
we equipped PD(n) with the Euclidean metric inherited from Herm(n). Instead,
we introduce the following Riemannian metric on PD(n):

X,Y)p := Tr [(P—1/2XP—1/2)(P—1/2YP—1/2)] = Tr [P~1XP1Y] 9.2.1)

for X,Y € TpPD(n). This is real-valued as the Hilbert-Schmidt inner product of
two Hermitian matrices. Interestingly, (-, -)p is also the Euclidean Hessian of the
function P — —log det(P), which is a Euclidean self-concordant barrier for PD(n).
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It is immediate from the definition that for every P € PD(n), the bijection
Q — PY2QP!2 is a Riemannian isometry of PD(n), meaning it preserves inner
products between tangent vectors. Then it also preserves the distance between any
two points: for any P, Q, Q" € PD(n), we have

d(Q, Q) = d(Pl/ZQPl/Z, Pl/zQ’Pl/z).

Therefore, if one is interested in properties of squared distance f(P) = d(P, Py)?,
one may choose Pg = I without loss of generality. This will be convenient for our
purposes.

We now give explicit formulas for the geodesics on PD(n). For any P € PD(n),
the exponential map at P reads

Expp(X) = P1/2P 2XP2pl/2 (9.2.2)
and hence the geodesics through P take the form
P(t) = Expyp(tX) = P12etP /2 XP 2p1/2

In particular, the geodesics through P = I are of the form Exp(tX) = e*X. From the
description of the exponential map above it follows that Exp,: TpPD(n) — PD(n)
is a smooth bijection for all P, with smooth inverse given by

Exppl(Q) = P/2log(P~1/2QP~1/2)P1/2,

By the Hopf-Rinow theorem, there exists a length-minimizing geodesic, which is
unique by the bijectivity of the exponential map; hence the distance induced by
the Riemannian metric is

d(P, Q) = |1og(P™>QP~?)]lus = [llog(Q™/2PQ™"/?)||mss.
where ||-||gs denotes the Hilbert-Schmidt (Frobenius) norm, because d(P, Q) =
IExp3! (Q)llp-

The geodesics on PD(n) can be naturally described using the operator geometric
mean, which is defined for P, Q = PD(n) and t € [0, 1] to be

P#tQ = Pl/Z(P—l/ZQP—l/Z)tpl/Z.
The above formula for the geodesics through P shows that this is equal to

Expp (tExpp'(Q)), and so it is the “time-t”-geodesic-midpoint between P and

One can also explicitly describe the parallel transport along geodesics. For P, Q €
PD(n), the parallel transport of X € TpPD(n) along the unique geodesic from P to
Q is given by!

Tpoo(X) = p1/2(p=1/2Qp-1/2)1/2p=1/2xp=1/2(p-1/2Qp-1/2)1/2p1/2, 9.2.3)

1One way of proving Eq. (9.2.3) is as follows [Sak96, Lem. IV.6.2]: for every P € PD(n), the geodesic
inversion map sp: PD(n) — PD(n) given by sp(Q) = ExpP(—Expgl(Q)) = PQ~!P is an isometry
(more generally, the maps Q — Q™! and Q — AQA" are isometries for every A € GL(n, C)).
Let Py, P1 € PD(n), and let y: R — M be the unique geodesic such that y(0) = Py and y(1) = P;.
Then sp,(v(t)) = y(-t) and sp,(y(t)) = v(1 —t). If X; is a parallel vector field along v, then
so is d(sp,)(X-t), as sp, is an isometry; but d(sp,)p, = —Itp,PD(n), and so d(sp,)(X=t) = —X¢
by the uniqueness of parallel vector fields. Similarly, d(s,/2)(X1/2-t) = =Xi/24+t, and so
d(sy(1/2) © spy)(Xo) = X1 = Tpy—p,(X0). Expanding the definition of s,1/2) o sp, (also called
a transvection), it is easy to see that its derivative is exactly the right-hand side in Eq. (9.2.3).
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This may be conveniently restated as
tp-12yp-1/2, _ _ tp-1/2yvp-1/2
TP Exp, (tY)(X) = Pl/2(e2P  PYPTINprl/2xp1/2(o2PTEYPTpl/2 (9.2.4)

which for the geodesics emanating from the identity specializes to

t

TiLetz(X) = ezZXe1%,
ie.,
T1-q(X) = Q'2XQ!,

Now consider a function f: PD(n) — R. It follows from the previous considera-
tions and the discussion in Section 6.3 that the third derivative at I € PD(n) can be
computed as follows for X, Z € T{PD(n):

(V3f)1(Z, X, X) = at=0(vzf)expl(t2) (TI—>epr(tZ)(X)/ TI—>epr(tZ)(X))

= dt=0(V2F) iz (e2%Xe2Z, e24Xe1 7).

Although we will not need it explicitly, one can also use the above to determine
the covariant derivative of a general vector field. More precisely, the covariant
derivative VxY, where X € TpPD(n) and Y(t) is a vector field defined along the
curve P(t) = Expp(tX), is given by

VxY = 0t=0Tp(n)-pr(Y(1)).

For P = I, we have
. 1
VXY = 0t=0Tex1(Y(1) = atzoe_%XY(t)e_%X =Y(0) - E{X' Y(0)}

where we write {X, Y} = XY + YX for the anticommutator of X and Y.

Lastly, we have an explicit expression for the Riemann curvature tensor on PD(n).
The fact that the curvature tensor is of this form follows from [Hel79, Thm. IV.4.2],
and the prefactor of 1 can be deduced from the fact that SPD(2, C) is a model space
for constant curvature —1 (the prefactor appears because we work directly with
positive-definite matrices, rather than the quotient GL(C)/U(n)). Alternatively,
one may consult the self-contained explicit proof available in [DP15]:

Lemma 9.2.1. The Riemann curvature (1,3)-tensor at P € PD(n) is given by
1
R(X,Y)Z = _Z[[P_l/zxp_l/z, P—l/ZYP—l/z]/ P—l/zzP—1/2]

for every X,Y,Z € TpPD(n). In particular, the curvature tensor is parallel along any
geodesic.

This last property may be more succinctly stated as follows: if one thinks of R as
a (0,4)-tensor, then VR = 0. Therefore PD(n) is a locally symmetric space, see [LeelS,
Thm. 10.19], and because it is simply connected, it is also a globally symmetric space.
A simple computation using the above lemma shows that PD(n) has sectional
curvatures bounded by an n-independent constant with our normalization of the
metric:
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9. Self-concordance of the squared distance in non-positive curvature

Lemma 9.2.2. The space PD(n) has all sectional curvatures in [—%, 0].

Proof. LetX,Y € Ti{PD(n) = Herm(n)have || X||1 = [|Y|[1 = 1and (X, Y); = Tr[XY] =
0. Assume without loss of generality that Y is diagonal. Then

1 n
(RX, V)Y, X) =~ DX A(Y55 = Yaa).
i,j=1

This is clearly at most 0, and

n n n
D IXGPYG-Ya)r <20 Y IXylP(YG+YR) <2 ) IXy PIVIE = 2XIFIYIE = 2,
i,j=1 1,j=1,1#j i,j=1

1
so K(X,Y) > —3. |

We now turn to the task of computing higher derivatives of the squared distance
on PD(n). Recall from Section 9.2 that the distance between P, Q € PD(n) is given
by d(P,Q)? = ||log(P_1/ 2Qp-1/ 2)||2HS. To differentiate this, we use the following
integral expression for the operator logarithm: for Q € PD(n), one has

<1 1
10g(Q) = JO (m - Q n }\) d}\, (925)
where Q + A is shorthand for Q + Al, and Qi)\ = (Q + A)"l. The advantage

of this expression is that it is an integral of rational functions of Q, which is
straightforward to differentiate using the Leibniz integral rule and the following
rule for differentiating matrix inverses: if t — Q¢ € PD(n) is a smooth curve
defined on an open interval containing 0, then

0t=0(Q7") = —Q; ' (3t=0Q1)Q; Y, (9.2.6)

as can be seen from differentiating the identity Q¢ Q¢! = L.

We now use this integral representation to compute derivatives of the squared
distance. For convenience, we consider only the squared distance to the identity
I € PD(n), but this is without loss of generality; to compute the derivatives of
d(-, P)? for P € PD(n), one may use the fact that Q — P1/2QP!/2 is an isometry
sending I to P. First, we record the formula for the first derivative.

Proposition 9.2.3. Let f(Q) = d(Q,I)? = ||10g(Q)||12LIS. Then for U € ToPD(n),

dfo(U) = 2Tr[Q ' og(Q)U] = 2(Q"*10g(Q)Q"* W), ,
where (-, -)q is the Riemannian metric in PD(n) defined in Eq. (9.2.1).

Proof. Let Q¢ = Exp(tU) be the geodesic through Q in the direction U. Then by
Eq. (9.2.2), we have

Q¢ = Ql/zethl/Zqul/ZQl/zl
and so

91=0f(Qt) = dt=0lllog(Qu)lIfs = 2 Tr[log(Q) - de=o log(Qr)]-
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To evaluate 99 log(Q+), we use Eq. (9.2.5) and Eq. (9.2.6) to obtain

©( 1 © 1
el = dpe - - — A
t=010g(Qv) t-OL (1+7\ Qt+7\)d)\ L Q+7\uQ+7\d

Therefore

- ” ! — -1
dt=0f(Q¢) = 27Tr llog(Q) L RS d?\] =2Tr[Q ' log(Q) - U],
where we used cyclicity of the trace and f(;)o (q+;7\)2 dx =q7 L O

Remark 9.2.4. In the above proof, one may also use the curve t — Q + tU instead of the
geodesic, because they agree in first order: it holds that 0 ¢=o(Q+tU) = U = d¢=0Exp, (tU),
and hence first derivatives of functions are not affected. However, for the second derivative,
(V2)p(U,U) = a%zof(Epr(tU)) and 07_,f(Q + tU) are generally distinct; a simple
example is given by the function f(P) = Tr[P], differentiating at Q = L.

Remark 9.2.5. One may observe that
~Q'210g(Q)Q"? = Expy (1)
so that dfo(U) = -2 (Exp L(D), U) which also follows from Lemma 9.1.1.

In the next theorem, we compute the higher covariant derivatives of the squared
distance. We write {A, B} := AB + BA for the anticommutator of two matrices.

Theorem 9.2.6. Let f(Q) = d(Q,1)?, and U,W € ToPD(n). Set Ul = Q~1/2UQ~1/2
and W = QY2WQ~1/2, Then the second derivative of f satisfies

(vzf)Q(u,u)=J0 dATr [Ql < QH\{Q u}l
* 1
:L AT gl (@ }l

and the third derivative is given by
(V¥)o(W, U, u)

S 1
:J d)\Tr[Q )\ QH\(uWQ+Qwu)

Q « Q
Q+?\(uQ+7\W+WQ oy }\{u’Q}]'

Proof. For the second derivative, we use the identity (V2fg)(U, U) = aizof(Qt)
where Q¢ = Epr(tU). From Proposition 9.2.3 it follows that

0:f(Qy) = 2Tr [Q; ' 1og(Q)(3:Qy)] -

As Q¢ = Expq(tU) = Ql/2etQ7?UQ™2(1/2 e have

atQt — uQ—l/ZetQ—l/ZUQ—l/2Q1/2’ a%:()Qt — uQ—lu’
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9. Self-concordance of the squared distance in non-positive curvature

which together with Eq. (9.2.6) leads to

Ea% of(Qt)

= Tr [(-Q'UQ ! log(Q)U) + Q' (3¢=0 log(Q))U + Q' 1og(Q)(3%_,Q4)]

=Tr [Q—lr LR dxul
0

Q+A Q+A
« 1 1
= u
[} ™ e o
To replace the last UQ™! by %{U, Q71}, note that

Tr[(Q + M) 7'U(Q +A)T'UQ™ = Tr[(Q +)'UQ™HQ +A)~'U]
= Tr[(Q + M)'U(Q + M) 'Q~'U]
where we first used cyclicity and next that Q!'and (Q + A)"! commute. Using the
definition U = Q~1/2UQ~1/2 yields the statement in the lemma.

We now turn to the third derivative. Let U,W € ToPD(n), set Q¢ = Epr(tW)
and let Uy = 1o, (U), explicitly given in Eq. (9.2.4):

tp-1/2 -1/2 _ _ t-1/2 -1/2
Ut = 1Qoq. (W) = QM2 "WRTH QT 2UQ ™22 TWR QY2

The two basic derivatives that we need are
1
dizoUy = E(WQ—lu +UQIW), 9-0Q =W

This yields, again using Eq. (9.2.6),
(V*Q(W, U, 1) = de=p(V*)q, (Us, Uy)

e 1
= O¢= T
t_OJ er+)\ Q+7\
:J Tr

1 1
w
1
+ = T

{Q7 ,Ut}l dA

{Q™ U}l

Q+7\ Q+?\ Q+7\

WQ™U+UQ™'W)=——={Q7}, U}l

Q FA
{Q" U}l

Q+?\
1 1

oAl Q+A Q+A
]WQ—l u}

+

+ Tr

1
Q?\Q
1 1

{Q ,WQU +UQ~ 1W}l dA

1
FIT
2 ol

1 1 _ _
1

1
QA Q7\
1 1

oot tlgm )Q+?\{Q U}] dx.

Substituting W = Q/2WQ/? and U = Q'/2UQ"/? yields the theorem. O
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We now explicitly compute the integral expressions in Theorem 9.2.6 in terms
of the entries of the matrices U and W. We assume without loss of generality
that Q = diag(qi, ..., qn) by considering the expression in an eigenbasis of Q.
Furthermore, we shall assume that all q; are distinct; expressions at general Q may
be obtained by taking limits, but the inequalities we will derive automatically hold
for all Q by continuity. Let us start with the second derivative. Take U € Herm(n).
Then for U = Q~1/2UQ /% we have

1
Q7\Q+7\

1 .
ZJ qk+7\ q +}\ulk(qk+ql)

1
- 2Z|ukk|2 4 Y [l p et AU T8k a), 927)
Kl =

(V3o (U, U) = de)\Trl ——{0,Q}

where we evaluated the integral using the identities

° 1 1 «© 1 _ log(x/y)
L mwo=r | amem e o9

for distinct x,y > 0. We now evaluate the third derivative in a similar manner. The
only new difficulty is in performing the integration with respect to A, for which we
record the following lemma.

Lemma 9.2.7. For distinct x,y,z > 0, one has

o0 1
Jo CES ST A
_ =(log(x) - log(y)) + y(log(z) - log(x)) + x(log(y) -~ log(2))
x- -2 '

Proof. One can deduce from a partial fraction decomposition that

(x-y)ly-2z)(x—2) _Yy-z z-x Xx-y
(x+MNU+A)z+N)  x+A y+A z+A

and the latter integrates to

“y-z z-x x-y [ 1 1
- + + dA = - - dA
JO X+A Y+A zZ+A , Z)(1+>\ X )

o

—_
=+
>

- (7‘ X)(1+>\ y+7\)d7\

1
' “‘-”(m‘ﬂ)‘“

!J

= (y — z)log(x) + (z — x) log(y) + (x —y)log(z). O

For convenience we will use the following notation. Define H: IR2>O — R by

(x +y)log(x/y)

H(x,y) = —

(9.2.9)
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9. Self-concordance of the squared distance in non-positive curvature

if x,y > 0 are distinct, and

H(x, x) = 2. (9.2.10)
Next, we define T: R? ) — R by
x+y (x+z y+z
Txy