
C
lassical and quantum

algorithm
s for scaling problem

s
H

arold N
ieuw

boer

Classical and quantum algorithms
for scaling problems

Harold Nieuwboer



Classical and quantum algorithms
for scaling problems

Harold Adriaan Nieuwboer



Copyright © by Harold Nieuwboer.
Cover co-designed with Garazi Muguruza Lasa.

The author acknowledges support by the NWO through grant OCENW.KLEIN.267.



Classical and quantum algorithms
for scaling problems

Academisch Proefschrift

ter verkrĳging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus

prof. dr. ir. P.P.C.C. Verbeek
ten overstaan van een door het College voor Promoties ingestelde commissie,

in het openbaar te verdedigen in de Agnietenkapel
op woensdag 31 januari 2024, te 16.00 uur

door

Harold Adriaan Nieuwboer

geboren te Haarlem



Promotiecommissie

Promotores: prof. dr. M. Walter Ruhr-Universität Bochum
prof. dr. E.M. Opdam Universiteit van Amsterdam

Overige leden: prof. dr. H.M. Buhrman Universiteit van Amsterdam
prof. dr. P. Bürgisser Technische Universität Berlin
dr. D.N. Dadush CWI
dr. O. Fawzi ENS Lyon
prof. dr. C. Schaffner Universiteit van Amsterdam
prof. dr. R.M. de Wolf Universiteit van Amsterdam
dr. J. Zuiddam Universiteit van Amsterdam

Faculteit der Natuurwetenschappen, Wiskunde en Informatica



List of publications
This dissertation is based on the following papers. The authors of these papers
have equally contributed to the obtained results.

[BLNW20] Interior-point methods for unconstrained geometric program-
ming and scaling problems
Peter Bürgisser, Yinan Li, Harold Nieuwboer, Michael Walter
arXiv:2008.12110, 2020

[AGL+21] Quantum Algorithms for Matrix Scaling and Matrix Balancing
Joran van Apeldoorn, Sander Gribling, Yinan Li, Harold Nieuw-
boer, Michael Walter, Ronald de Wolf
48th International Colloquium on Automata, Languages, and
Programming (ICALP), 2021, 110:1–110:17
arXiv:2011.12823, 2020

[GN22] Improved Quantum Lower and Upper Bounds for Matrix Scaling
Sander Gribling, Harold Nieuwboer
39th International Symposium on Theoretical Aspects of Computer
Science (STACS), 2022, 35:1–35:23
arXiv:2109.15282, 2021

[AMN+23] The minimal canonical form of a tensor network
Arturo Acuaviva, Visu Makam, Harold Nieuwboer,
David Pérez-Garcia, Friedrich Sittner, Michael Walter, Freek Wit-
teveen
IEEE 64th Annual Symposium on Foundations of Computer Sci-
ence (FOCS), 2023, to appear
arXiv:2209.14358, 2022

[AGN23] Basic quantum subroutines: finding multiple marked elements
and summing numbers
Joran van Apeldoorn, Sander Gribling, Harold Nieuwboer
arXiv:2302.10244, 2023

[HNW23] Interior-point methods on manifolds: theory and applications
Hiroshi Hirai, Harold Nieuwboer, Michael Walter
IEEE 64th Annual Symposium on Foundations of Computer Sci-
ence (FOCS), 2023, to appear
arXiv:2304.04771, 2023
This paper is the result of merging the two independent publica-
tions [Hir22b] and [NW23]. Results that were exclusively contributed
by [Hir22b] are explicitly attributed as such.

v

https://arxiv.org/abs/2008.12110
https://arxiv.org/abs/2011.12823
https://arxiv.org/abs/2109.15282
https://arxiv.org/abs/2209.14358
https://arxiv.org/abs/2302.10244
https://arxiv.org/abs/2303.04771




Contents
1. Introduction 1

1.1. Examples of scaling problems and applications . . . . . . . . . . . . 3
1.2. Scaling, polytopes and invariants . . . . . . . . . . . . . . . . . . . . 6
1.3. Algorithms and obstructions to efficiency . . . . . . . . . . . . . . . 10
1.4. Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

I. Scaling problems and applications 19

2. Setting the stage 21
2.1. Notation and conventions . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2. Preliminaries on algebra, geometry and groups . . . . . . . . . . . . 21
2.3. Geometry, orbits, and invariants . . . . . . . . . . . . . . . . . . . . 30
2.4. The Kempf–Ness theorem . . . . . . . . . . . . . . . . . . . . . . . . 41
2.5. The moment map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.6. The computational problems . . . . . . . . . . . . . . . . . . . . . . 47

3. The minimal canonical form of a tensor network 53
3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2. Matrix product states . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3. Projected entangled pair states . . . . . . . . . . . . . . . . . . . . . 72
3.4. Algorithms for computing minimal canonical forms . . . . . . . . . 91
3.5. Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . 102

II. Interior-point methods for scaling 107

4. An introduction to interior-point methods 109
4.1. The idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.2. Self-concordant barriers . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.3. Following the central path . . . . . . . . . . . . . . . . . . . . . . . . 114

5. Interior-point methods for commutative scaling problems 119
5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.2. Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.3. Condition measures and diameter bounds . . . . . . . . . . . . . . . 128
5.4. Interior-point methods for unconstrained geometric programming 132
5.5. Bounds on condition measures . . . . . . . . . . . . . . . . . . . . . 141

6. Preliminaries in Riemannian geometry 147
6.1. Metric, lengths, distances . . . . . . . . . . . . . . . . . . . . . . . . 147
6.2. Covariant derivative and curvature . . . . . . . . . . . . . . . . . . . 148

vii



6.3. Parallel transport, geodesics, completeness . . . . . . . . . . . . . . 149
6.4. Gradient and Hessian . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.5. Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7. Interior-point methods on manifolds: overview 157
7.1. Self-concordance and Newton’s method on manifolds . . . . . . . . 159
7.2. Barriers and a path-following method on manifolds . . . . . . . . . 160
7.3. Examples of self-concordance: Squared distance in non-positive

curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.4. Application I: Non-commutative optimization and scaling problems 164
7.5. Application II: Minimum-enclosing ball problem on PD(n) . . . . . 165
7.6. Application III: Geometric median on hyperbolic space . . . . . . . 166
7.7. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

8. Interior-point methods on manifolds: the framework 169
8.1. Self-concordance and Newton’s method . . . . . . . . . . . . . . . . 169
8.2. Barriers, compatibility, and the path-following method . . . . . . . 182

9. Self-concordance of the squared distance in non-positive curvature 199
9.1. Hadamard manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
9.2. Positive definite matrices . . . . . . . . . . . . . . . . . . . . . . . . . 201
9.3. Constant negative curvature . . . . . . . . . . . . . . . . . . . . . . . 212

10. Interior-point methods for non-commutative scaling and geometric prob-
lems 223
10.1. Non-commutative optimization and scaling problems . . . . . . . . 223
10.2. The minimum enclosing ball problem . . . . . . . . . . . . . . . . . 229
10.3. The geometric median on model spaces . . . . . . . . . . . . . . . . 232
10.4. The Riemannian barycenter . . . . . . . . . . . . . . . . . . . . . . . 235

III. Quantum algorithms and lower bounds for scaling 237

11. An introduction to quantum algorithms and lower bounds 239
11.1. Quantum computing . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
11.2. Common subroutines . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
11.3. Lower bound techniques . . . . . . . . . . . . . . . . . . . . . . . . . 245

12. Basic quantum subroutines, improved 247
12.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
12.2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
12.3. Fast Grover search for multiple items, without quantum memory . 252
12.4. Improved query complexity for approximate summation . . . . . . 261

13. Matrix scaling and matrix balancing 267
13.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
13.2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
13.3. Quantum subroutines for matrix scaling and balancing . . . . . . . 283



14. Quantum Sinkhorn and Osborne algorithms 297
14.1. Quantum Sinkhorn algorithm . . . . . . . . . . . . . . . . . . . . . . 297
14.2. Improved analysis for entrywise-positive matrices . . . . . . . . . . 306
14.3. Randomized quantum Sinkhorn algorithm . . . . . . . . . . . . . . 312
14.4. Randomized quantum Osborne algorithm . . . . . . . . . . . . . . . 317

15. Quantum box-constrained Newton methods 327
15.1. Minimizing second-order robust convex functions . . . . . . . . . . 327
15.2. Quantum box-constrained matrix scaling . . . . . . . . . . . . . . . 332
15.3. Quantum box-constrained matrix balancing . . . . . . . . . . . . . . 341

16. Quantum query lower bounds: constant precision 349
16.1. Partially learning a string hidden in a permutation . . . . . . . . . . 349
16.2. Lower bound for matrix scaling . . . . . . . . . . . . . . . . . . . . . 352
16.3. Lower bound for matrix balancing . . . . . . . . . . . . . . . . . . . 354

17. Quantum query lower bounds: high precision 359
17.1. The basic lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . 359
17.2. Definition of the scaling instances and analysis of row marginals . . 360
17.3. Concentration of column marginals . . . . . . . . . . . . . . . . . . . 361
17.4. Strong convexity properties of the potential . . . . . . . . . . . . . . 363
17.5. Concluding the lower bound for matrix scaling . . . . . . . . . . . . 366
17.6. Lower bound for matrix balancing . . . . . . . . . . . . . . . . . . . 367
17.7. Lower bound for computing the row marginals . . . . . . . . . . . . 373

Bibliography 375

Abstract 395

Samenvatting 397

Acknowledgements 399





1. Introduction
This thesis is concerned with scaling problems, which have been of much interest in
recent years. It is a class of computational problems with a plethora of connections
to different areas of mathematics, physics and computer science. Although many
structural aspects of these problems are understood by now, we only know how to
solve them efficiently in special cases.

To demonstrate the breadth of this subject, we mention some applications:
approximating the permanent [LSW00], non-commutative rational identity test-
ing [GGOW16], Brascamp–Lieb inequalities [GGOW18], Horn’s problem on spectra
of sums of Hermitian matrices [Fra18], the Paulsen problem [KLLR18; HM21b],
strengthening the Sylvester–Gallai theorem [BDWY12; DSW14; DGOS18], lower
bounds on unbounded-error communication complexity [For01], approximat-
ing optimal transport plans in machine learning [Cut13], maximum-likelihood
estimation in statistics [AKRS21b; AKRS21a; DM21; DMW22; FORW21], the
quantum marginal problem [Kly02; Kly04; Kly06; BGO+18; BFG+18], asymptotic
non-vanishing of Kronecker coefficients in representation theory [IMW17; BFG+18],
and geometric invariant theory [KN79; NM84; MFK94]. We refer to [BFG+19] for a
more complete overview and the history of scaling problems. Related orbit problems
also have strong connections to Mulmuley and Sohoni’s geometric complexity
theory approach to Valiant’s VP versus VNP [Val79; MS08; BLMW11; Mul17; IP17;
BIP19; DIP20], and various notions of tensor rank and the complexity of matrix
multiplication [Str86; Str87; Str88; Str91; Lan17; CVZ21; BIL+21; Der22].

The primorial example of a scaling problem is that of matrix scaling, after
which this class of problems is named (with the problem itself going back to
Kruithof [Kru37] in 1937, and the terminology dating back to at least 1968 [MO68]).
Its statement is deceptively simple: given a matrix with non-negative real entries,
rescale its rows and columns by positive numbers, such that the resulting matrix
has all row and column sums 1, i.e., the rescaled matrix is doubly stochastic.
A non-commutative version of this problem called operator scaling was introduced by
Gurvits [Gur04] in the context of Edmonds’ problem. Here, one is asked to “rescale”
a completely positive map such that it becomes unital and trace-preserving; this
can be viewed as a “quantum generalization” of double stochasticity. This can
be further generalized to the tensor scaling problem, where one has to convert a
pure multipartite quantum state to a quantum state whose one-body marginals are
proportional to the identity matrix, using only a restricted set of operations. Such
a generalization arises naturally in the context of understanding the entanglement
of quantum states [Kly02; Kly04; BGO+18; BFG+18]. We discuss matrix and tensor
scaling in more detail in Section 1.1.

As elucidated in a long sequence of works and explained in Section 1.2, these
problems and many others can be solved by solving a norm minimization problem:
given a linear action of a “nice” group on a suitably normed vector space, and

This chapter is partially adapted from [BLNW20; AGL+21; AMN+23; HNW23].
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1. Introduction

a vector therein, the goal is to find a vector of minimal norm in its orbit (or the
closure thereof). The celebrated Kempf–Ness theorem [KN79] states that such a
minimum norm vector is exactly the solution to the scaling problem! This is an
important result in the area of geometric invariant theory, which can also be used
to understand the structure of scaling problems. For instance, whether a scaling
problem admits a solution at all is governed by certain invariant polynomials [MFK94;
KN79]. This connection is useful in the context of analyzing the performance of
algorithms for scaling.

When the group is commutative, such as in the case of matrix scaling, norm
minimization problems reduce to (unconstrained) geometric programs, a well-known
generalization of linear programming. After a suitable change of coordinates, such
programs are convex, and can be solved efficiently using techniques from convex
optimization [NR99; SV14; CMTV17; ALOW17; BLNW20].

In operator scaling and tensor scaling, which capture many of the previously
mentioned problems, the group is non-commutative; hence this class of problems
has also been called non-commutative (group) optimization problems. There is again a
relevant notion of convexity: the norm minimization problem is a geodesically convex
optimization problem on a homogeneous space of non-positive curvature. Currently,
the best algorithms exploit this geodesic convexity and geodesic generalizations
of convex programming techniques to give algorithms with provable guarantees.
However, efficient algorithms are known only in special cases, which have recently
been understood to satisfy a certain total unimodularity property [BFG+19].

This thesis contributes to this area in various ways:

Interior-point methods for scaling. We give new algorithms for non-commutative
scaling problems with complexity guarantees that match the prior state of the
art. To this end, we extend the well-known (self-concordance based) interior-point
method (IPM) framework to the setting of Riemannian manifolds. This approach
is particularly motivated by the fact that – as we also show – IPMs give efficient
algorithms for commutative scaling problems. Moreover, the IPM framework does
not obviously suffer from the same obstructions as previous methods, which we
discuss in more detail in Section 1.3. It also yields the first high-precision algorithms
for other natural geometric problems such as computing geometric medians and
minimum-enclosing balls on symmetric spaces of non-positive curvature.

Quantum algorithms for scaling. For the important (commutative) problems
of matrix scaling and balancing, we show that one can leverage the power of
quantum computation to outperform the (already very efficient) state-of-the-art
classical algorithms. In certain parameter regimes, this yields algorithms which
can solve the matrix scaling problem in time sublinear in the size of the input
matrix, when one is given quantum query access to the matrix; classically, this is
impossible, as one has to at least read the input to the problem! We also show
that in certain regimes our quantum algorithms are optimal, and in other regimes
no quantum speedup over the classical methods is possible. Along the way, we
provide improvements over the long-standing state of the art for basic quantum
subroutines, such as searching for all marked elements in a list, and computing
the sum of a list of numbers.

2



1.1. Examples of scaling problems and applications

Scaling for tensor networks. We also identify a new application in the context
of tensor networks for quantum many-body physics. We use the theory to define
a canonical form for uniform projected entangled pair states, circumventing
previously known undecidability results. Computing the canonical form amounts
to solving a norm minimization problem, or equivalently a scaling problem, and we
give algorithms with rigorous complexity guarantees for doing so. We also show,
by characterizing the invariant polynomials, that the canonical form is determined
by evaluating the tensor network contractions on networks of bounded size.

Organization. The rest of this introduction is organized as follows. In Section 1.1
we discuss matrix and tensor scaling in more detail. In Section 1.2 we informally
define the general scaling problem, give an overview of its structural properties,
and hint at the connection to geometric invariant theory. Next, in Section 1.3
we discuss the current state-of-the-art for algorithms for scaling problems, and
obstructions to providing efficient algorithms for the general setting. Finally,
in Section 1.4 we give a more precise overview of the contributions in this thesis.

1.1. Examples of scaling problems and applications
Matrix scaling. Let A ∈ Rn×n

⩾0 be a matrix with non-negative entries. Then the
matrix scaling problem is to rescale the rows and columns of A so that its row and
column sums are approximately given by 1 and 1, respectively. That is, we wish to
find positive diagonal matrices X, Y ∈ Rn×n such that XAY is approximately doubly
stochastic. Observe that the set of pairs (X, Y)with X, Y positive diagonal matrices
forms a group under matrix multiplication. This group acts on A ∈ Rn×n

⩾0 by left-
and right-multiplying, and we must find a matrix with certain row and column
sums in the orbit A; hence we have a group, a representation and a vector in it.

This problem is very well-studied and has a wide range of applications. It was
introduced by Kruithof for Dutch telephone traffic computation [Kru37], and has
also been used in other areas of economics [Sto64]. In mathematics, it has been
used as a common tool in practical linear algebra computations [LG04; Bra10;
PC11; OCPB16], but also in statistics [Sin64], optimization [RS89], optimal trans-
port [Cut13], and for strengthening the Sylvester-Gallai theorem [BDWY11]. Matrix
scaling can be solved in polynomial time [KK96; NR99], and deciding scalability
can even be done in strongly polynomial time [LSW00]. More recent works even
provide near-linear time algorithms under reasonable assumptions [ALOW17;
CMTV17; CKL+22; BCK+23]. We refer to [Ide16] for a survey of matrix scaling, its
applications and some history.

A common approach to solving matrix scaling problems is Sinkhorn’s algorithm,
which is a simple iterative procedure, which alternates between scaling the rows
sums and the column sums to the desired marginals:

(i) Initialize X, Y = In to the identity matrix.

(ii) Update Xi by Xi← 1/(
∑︁n

j=1 XiAijYj) for i ∈ [n].

(iii) Update Yj by Yj← 1/(
∑︁n

i=1 XiAijYj) for j ∈ [n].

(iv) Go back to step (ii).

3



1. Introduction

The update rule in (ii) is such that at the end of this step, XAY has row sums equal
to 1, and similarly, XAY has column sums equal to 1 at the end of (iii). Surprisingly,
this algorithm converges to an actual solution whenever one exists. This can be
(morally) justified by the following argument: let 1 ∈ Rn be the all-ones vector,
and consider the function f : Rn ×Rn→ R given by

f(x1, . . . , xn,y1, . . . ,yn) =
n∑︂

i,j=1
Aije

xi+yj − ⟨x, 1⟩ − ⟨y, 1⟩ . (1.1.1)

Then f is a convex function, so its critical points are automatically minimizers.
One can check that the gradient grad f(x,y) of f at (x,y) is zero if and only
if diag(ex)Adiag(ey) is doubly stochastic. In other words, f acts as a convex potential
function for the matrix scaling problem. Furthermore, Sinkhorn’s algorithm can be
seen as performing block coordinate descent with respect to the variables x1, . . . , xn
and y1, . . . ,yn. The convexity of f then suggests that this algorithm should
converge whenever an (approximate) scaling of A exists. This function can also be
used to give quantitative bounds on the convergence speed. The state-of-the-art
algorithms for solving the matrix scaling problem (as well as the very similar matrix
balancing problem) are based on minimizing f or closely related functions [CMTV17;
ALOW17; CKL+22].

It turns out that it is also easy to characterize when a matrix A is scalable [RS89],
and this is governed by its support: A is (exactly) scalable if and only if the
tuple (1/n, 1/n) is in (the relative interior of) the convex hull of the vectors (ei, ej) ∈
Rn ×Rn such that Aij > 0. In fact, this convex hull is exactly the set of achievable
row and column sums (after normalizing). Therefore, determining whether A is
scalable is a convex polytope membership problem, and may be solved using linear
programming techniques. This condition also has a combinatorial interpretation:
if A is viewed as a weighted bipartite adjacency matrix, then A is scalable if and
only if the corresponding graph contains a bipartite perfect matching.

Tensor scaling and quantum marginals. Given density matrices ρ1, . . . , ρk, each
describing the quantum state of one party, does there exist a k-party pure quantum
state with marginals equal to the ρk? This problem is called the one-body quantum
marginal problem, and is a special case of the tensor scaling problem, which is
as follows. For simplicity, we take k = 3 parties of the same dimension n ⩾ 2.
Let |ψ⟩ ∈ V := Cn⊗Cn⊗Cn be a pure state, and letg = (g1,g2,g3) ∈ G := SL(n,C)3.
Consider the (unnormalized) pure state |ψg⟩ = (g1 ⊗ g2 ⊗ g3) |ψ⟩, let ρg =

|ψg⟩ ⟨ψg | /⟨ψg |ψg⟩ be the associated density matrix, and let ρg,j = Trjc[ρg]
denote its reduced density matrix on the j-th subsystem for j ∈ [3] (obtained
by taking the partial trace over the other two subsystems). Then what are the
possible achievable triples of reduced density matrices (ρg,1, ρg,2, ρg,3), as g ranges
over SL(n,C)3?

This question has an operational interpretation: the states |ψg⟩ are precisely
those that can be made from |ψ⟩ using stochastic local operations and classical
communication (SLOCC). The “local operations” part here refers to the fact that
we are only allowed to act with tensor products g1 ⊗ g2 ⊗ g3. The “stochasticity
and classical communication” part amounts to allowing local measurements with
post-selection on joint outcomes, such that the overall protocol succeeds with
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1.1. Examples of scaling problems and applications

some non-zero probability. This naturally yields local operations in GL(n,C);
however, since we do not care about the overall normalization, we are free to work
with SL(n,C) instead.

We explain how to relate this problem to a norm minimization problem, for
the special case of whether (I/n, I/n, I/n) is achievable. Consider the following
minimization of the (for convenience squared) ℓ2-norm over all rescalings of |ψ⟩:

inf
g1,g2,g3∈SL(n,C)

∥(g1 ⊗ g2 ⊗ g3) |ψ⟩∥22. (1.1.2)

Then the (logarithmic) gradient of the objective at g = (g1,g2,g3) is given by
(ρg,1 − I/n, ρg,2 − I/n, ρg,3 − I/n). As minimizers of Eq. (1.1.2) are critical points of
the objective, i.e., points where the gradient vanishes, these correspond to quantum
states with maximally mixed marginals. The quantum marginal problem amounts
to characterizing the set of possible gradients for generic |ψ⟩. It turns out that the set
of sorted eigenvalues of the achievable gradients is a convex polytope [Kly04; BGO+18;
BFG+18]! This is a special case of a much more general phenomenon [NM84; GS84;
Kir84a; Bri88]. Therefore the existence of a pure state with given local spectra is
governed by a finite number of linear inequalities on the eigenvalues. We explain this
in more detail in Section 1.2. However, we remark here that these inequalities are
not computationally useful, since it is difficult to enumerate them [Kly04; VW17], and
hence determining whether a joint spectrum can arise requires other approaches.

We can reduce the domain of optimization toM = SPD(n) × SPD(n) × SPD(n),
where SPD(n) denotes the complex positive-definite matrices of unit determinant:
since Pj := g∗

j
gj is an arbitrary matrix in SPD(n), Eq. (1.1.2) is equivalent to:

inf
P1,P2,P3∈SPD(n)

⟨ψ|(P1 ⊗ P2 ⊗ P3)|ψ⟩ (1.1.3)

Unfortunately, the domain is non-convex as a subset of the Euclidean space of
triples of Hermitian matrices, and in any case the objective would not be a convex
function of the variables if relaxed to PD(n), so it is not clear that one could use
standard techniques such as semidefinite programming to solve this problem.
Moreover, the naive exponential reparameterization Pi = eHi with Hermitian Hi

does not yield a convex problem in theHi either, because the matrix exponential is
not operator convex [Bha13, Prob. V.5.1].

However, a key observation is that the objective becomes convex when SPD(n)
and hence M is given a natural non-Euclidean geometry, namely the so-called
affine-invariant metric, which also appears as the Fisher-Rao metric for Gaussian
covariance matrices in statistics (see Section 7.3 for a precise definition). Then the
straight lines of Euclidean space get replaced by the geodesics of the new metric,
which take the form Pj(t) =

√︁
Pje

tHj
√︁
Pj for traceless Hermitian matrices Hj and

clearly remain in SPD(n). It is easy to verify that the objective in Eq. (1.1.3) is convex
along such geodesics (in fact, log-convex). This is the “correct” non-commutative
generalization of the fact that f(x,y) in Eq. (1.1.1) is convex, but would not be
without the change of coordinates exi = Xi, eyj = Yj.

The tensor scaling problem is not currently known to be solvable in polynomial
time in all parameters, although partial results are known [BFG+18], which we
elaborate on later. There is complexity-theoretic evidence that polynomial-time
algorithms might exist, as the one-body quantum marginal problem (i.e., tensor
scaling for generic |ψ⟩) is in NP ∩ coNP [BCMW17].
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1. Introduction

1.2. Scaling, polytopes and invariants
We now explain on a high level the connection between the previous examples,
and define the general scaling and norm minimization problems. In each of the
examples, there is some initial data: a matrix in the case of matrix scaling, and
a multipartite quantum state in the case of tensor scaling. They are transformed
according to a certain set of allowed operations, which in each case forms a group:
pairs (X, Y) of positive diagonal matrices in the case of matrix scaling, and triples
of invertible matrices in SL(n,C) in the case of tensor scaling. The goal is to reach
a certain scaling or “marginal condition”: having certain row and column sums, or
the quantum state having maximally mixed reduced one-body density matrices.

These fit together in a general framework as follows [BFG+19]: we are given
a group G, a representation π : G → GL(V) of G, and some vector v ∈ V \ {0}.
We write g · v = π(g)v for the result of acting with g on a vector v ∈ V . The
group G is assumed to be a connected complex reductive algebraic group, given to us
as a subgroup G ⊆ GL(n,C) satisfying explicit polynomial equations. Examples
of such G are GL(n,C) itself, the group SL(n,C) consisting of determinant-one
matrices, the special orthogonal group SO(n,C), the symplectic group Sp(2n,C),
and products of these groups. Particularly important is the group of diagonal
matrices (C×)n = GL(1,C)n, and all relevant commutative G are in fact isomorphic
to this group. In more detail, we assume that G is closed under adjoints (g ∈ G
implies g∗ = g⊤ ∈ G), that the action π is regular (given by polynomials) and that V
is a complex Hilbert space such that the subgroup K = G ∩U(n) of G acts on V by
unitary matrices.

The objective for the norm minimization problem is then the Kempf–Ness func-
tion Fv : G→ R, defined by

Fv(g) = log∥g · v∥, F∗v = inf
g∈G

Fv(g). (1.2.1)

Note that g · v is never the zero vector, so the above is well-defined. The in-
fimum infg∈G∥g · v∥ = eF

∗
v is sometimes called the capacity cap(v) of v [Gur04;

BGO+18; BFG+19]. Then we define:

Problem 1.2.1 (Norm minimization). Let v ∈ V \ {0} and δ > 0. Then the norm
minimization problem for v is to find gδ ∈ G such that Fv(gδ) ⩽ F∗v + δ, or to assert
that Fv is unbounded from below.

Clearly, if the Kempf–Ness function has a minimizer, then there must be some
point where its gradient vanishes. This gradient lives in the Lie algebra Lie(G) ⊆
Cn×n of G; informally, this is the set of infinitesimal directions at I ∈ G. We
write Lie(K) ⊆ Lie(G) for the Lie algebra of K defined similarly, and iLie(K) =
{iX : X ∈ Lie(K)} ⊆ Lie(G). In the case of K = U(n), Lie(K) is given by the
skew-Hermitian matrices, so iLie(K) consists of the Hermitian matrices.

The scaling problem then arises naturally as the problem of minimizing the
norm of the gradient, and formally defined as follows. Define the moment map
µ : V \ {0} → iLie(K) by letting µ(v) ∈ Lie(G) be the unique matrix satisfying

Tr[µ(v)H] = ∂t=0 log∥etH · v∥

for all H ∈ Lie(G). In other words, µ(v) is the gradient of Fv : G → R at the
identity I ∈ G. Then µ(v) naturally takes values in iLie(K): K acts unitarily on V ,
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1.2. Scaling, polytopes and invariants

hence preserves the norm, so the only way to change Fv is to move in directions
orthogonal to Lie(K), and its orthogonal complement is exactly iLie(K).

Problem 1.2.2 (Scaling). Let v ∈ V \ {0} and ε > 0. Then the scaling problem for v is to
find gε ∈ G such that ∥µ(gε · v)∥HS ⩽ ε, or to assert that no such gε exists.

To see that the matrix scaling problem is indeed a special case of the above
requires a (small) effort; in particular, there is some disconnect between the fact
that we work over the complex numbers here, and over non-negative real numbers
for matrix scaling. Let G = ST(n) × ST(n) be the group of pairs of diagonal n × n
matrices with entries in C× and determinant 1, and let G act on V = Cn×n via

(X, Y) · B = XBY =

⎡⎢⎢⎢⎢⎣
X1

. . .
Xn

⎤⎥⎥⎥⎥⎦ B
⎡⎢⎢⎢⎢⎣
Y1

. . .
Yn

⎤⎥⎥⎥⎥⎦ ,

i.e., by rescaling the rows and columns by X and Y respectively. Endowing V with
the Hilbert–Schmidt inner product, we see that

FB(X, Y) = log∥XBY∥HS =
1
2 log

n∑︂
i,j=1
|XiBijYj |2

and the moment map at B, i.e., the gradient of FB at (X, Y) = (I, I) is given by

gradX,Y=I FB(X, Y) =
∑︁n

i,j=1 |Bij |2(diag(ei), diag(ej))
∥B∥2HS

− (I/n, I/n).

The correction −(I/n, I/n) appears because the X and Y are constrained to have
determinant 1, hence infinitesimal changes in X and Y are restricted to matrices
with trace 0. Observe now that the moment map µ((X, Y) · B) is zero if and only
if the matrix Awith entries Aij = |Xi |2 |Bij |2 |Yj |2 has row and column sums 1/n.
Furthermore, whether this condition holds depends only on the absolute values of
the entries of B, X, and Y, explaining why the matrix scaling problem only involves
non-negative numbers.

We motivated the scaling problem above by asserting that if the norm mini-
mization problem has an exact minimizer, then the gradient of the Kempf–Ness
function must vanish somewhere, and so the scaling problem is solvable for ε = 0.
In fact, the scaling problem can be solved for all ε > 0 if and only if the norm
minimization problem is solvable for all δ > 0, i.e., the Kempf–Ness function is
bounded from below [KN79]:

Theorem 1.2.3 (Kempf–Ness). The Kempf–Ness function Fv is bounded from below if
and only if 0 ∈ µ(G · v). Furthermore, its minimum is attained if and only if 0 ∈ µ(G · v).

The second part of the theorem is a consequence of the geodesic convexity of Fv.
We briefly explain this. Since the action ofK = G∩U(n) preserves the inner product
and hence the norm on V , the Kempf–Ness function is also naturally defined on
the quotient space K\G consisting of the right-cosets of K. This space is a simply
connected symmetric space, and can be endowed with a natural Riemannian metric
such that it has non-positive curvature. The geodesics (straight lines) with respect to
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this metric are curves of the form t ↦→ KetHg, where H ∈ iLie(K) and g ∈ G. Then
the crucial point is that Fv is convex along these geodesics:

∂2
tFv(KetHg) ⩾ 0.

Any two points onK\G are connected by a (unique) geodesic as well. Together with
the convexity, this makes it easy to see that the critical points of Fv are automatically
global minimizers.

To understand why the theorem holds beyond the case where Fv has an exact
minimizer, i.e., where one only assumes that Fv is bounded from below, requires
more input from geometric invariant theory (GIT). The following is a central definition
in GIT:

Definition 1.2.4 (Stability and null cone). We say that v ∈ V is semistable if 0 ∉ G · v,
where G · v ⊆ V is the closure of the G-orbit of v. Equivalently, Fv is bounded from
below.

If v is not semistable, then v is called unstable. The set𝒩 = {v ∈ V : v unstable}
is called the null-cone of the representation.

The null-cone can be seen as the set of “bad vectors” in the context of form-
ing quotients of projective varieties, as we shall explain in Section 2.3.4. With
this definition and the Kempf–Ness theorem in hand, the decision variant of
the norm-minimization and scaling problems is the following question: for a
given v ∈ V , is v semistable? In the rest of this section we explain why one can
hope to algorithmically solve this problem at all.

Moment polytopes. It turns out that characterizing when 0 ∈ µ(G · v) has a rather
combinatorial nature. When G is commutative, i.e., isomorphic to (C×)n, then
the representation V is characterized by a finite set of integer vectors Ω ⊂ Zn

called the weights of the representation. Every vector v can be decomposed as a
sum v =

∑︁
ω∈Ω vω such that z = (z1, . . . , zn) ∈ G acts on vω by multiplication

with zω = z
ω1
1 · · · z

ωn
n . The closure of the image of the moment map µ(G · v) is

then characterized as follows: it is the convex hull of thoseω ∈ Ω for which vω ≠ 0.
In particular it is a convex polytope, usually referred to as the moment polytope. In
the case of matrix scaling, this is the set of (asymptotically) achievable pairs (r, c)
of row and column sums [RS89].

In the non-commutative setting, a similar result holds. Then the closure of
the intersection ∆(v) = µ(G · v) ∩ C+ with a positive Weyl chamber C+ is again a
convex polytope [NM84; GS84; Bri87], called the moment polytope of v. For the
tensor scaling problem, intersecting with the positive Weyl chamber amounts
to computing the ordered spectrum of each of the one-body reduced density
matrices, so the moment polytope consists of possible joint spectra (and their
limits) achievable by SLOCC operations on a starting state v = |ψ⟩ [Kly02; Kly04].

A quantitative Kempf–Ness theorem. An important property is now that, because
there are only finitely many weights, there are only finitely many possible ∆(v) for
a given representation V ! As a consequence, either 0 ∈ ∆(v) and v is semistable, or
the distance between 0 and ∆(v) is lower bounded by a constant that depends only
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on the representation π : G→ GL(V). A slight relaxation of this distance is known
as the weight margin γ(π) > 0. Note that if ∥µ(g · v)∥ < γ(π), then this g ∈ G can be
viewed as a certificate that v is semistable!

The weight margin plays an important role in the analysis of the algorithms for
norm-minimization and scaling problems, and makes an appearance in diameter
bounds on approximate minimizers. It also appears in a quantitative version of the
Kempf–Ness theorem: vectors which are approximately scaled also have nearly
minimal norm [BFG+19], with the conversion between these two errors depending
on γ(π).

One important situation in which γ(π) is only inverse-polynomially small (as
compared to inverse-exponentially) is when the matrix whose rows are given by
the weightsω ∈ Ω of the representation is totally unimodular. This combinatorial
criterion guarantees that the facets of ∆(v) are not “too complicated”. As a
consequence, either 0 is not in the moment polytope, or it is “far away” from it.
This happens in various situations of interest, such as matrix scaling and balancing
and operator scaling (and more generally for quiver representations), but notably
not for tensor scaling.

There is also another direction for the quantitative Kempf–Ness theorem: vectors
with close to minimal norm are approximately scaled. The parameter which
appears in this conversion is the weight norm N(π). This is the largest norm the
image of the moment map can take, i.e., supv∈V\{0}∥µ(v)∥HS. Its name comes from
the fact that this is also the largest norm of a weight of the representationV . One can
show that the Kempf–Ness function is Lipschitz with N(π) as Lipschitz constant,
and the weight norm is also useful for bounding its higher-order derivatives (in
particular the function is smoothly convex as we shall see later). Moreover, N(π) is
generally small for representations of interest (polynomially bounded in the input
size, and sometimes even constant).

Scaling problems and invariant theory. Feasibility of the scaling problem is also
intricately related to invariant theory, and this plays a key role in the runtime
analysis of the algorithms. A classical result due to Mumford [MFK94] gives
an equivalent criterion for v being in the null-cone. Let C[V] denote the ring of
polynomials on V , and let C[V]G denote the invariant polynomials on V , i.e., the set
of those p ∈ C[V] such that p(g ·w) = p(w) for allw ∈ V and g ∈ G. It is clear that
if v is in the null-cone, then p(0) = p(v) for all p ∈ C[V]G; after all, polynomials
are continuous, and 0 ∈ G · v. More generally, if v,w ∈ V are two vectors, then one
can ask whether G · v and G ·w have a non-empty intersection; if this is the case,
then p(v) = p(w) for all p ∈ C[V]G. Remarkably, this is also a sufficient condition:

Theorem 1.2.5 (Mumford). Let v,w ∈ V . Then G · v ∩ G ·w ≠ ∅ if and only
if p(v) = p(w) for all p ∈ C[V]G.

One of the important properties of the ring of invariants is that it is also finitely
generated as an algebra:

Theorem 1.2.6 (Hilbert). There exist finitely many p1, . . . ,pr ∈ C[V]G such that
every p ∈ C[V]G is a polynomial in the pj.

This suggests that determining whether v is in the null-cone is a decidable
problem. Indeed, one can compute generators p1, . . . ,pr as above [DK15], then test
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whether pj(v) = pj(0) for all j = 1, . . . , r. However, this approach is computationally
infeasible: there can be too many generators, their degree may be high, or there may
be complexity-theoretic obstructions to evaluating them efficiently [GIM+20]. We
discuss this in more detail in Section 2.6. Nevertheless the above criterion is useful
for analyzing algorithms for the norm-minimization and scaling problems. One
way in which the above enters is that if one can show that there exists a generating
set of polynomials p1, . . . ,pr with bounded integral coefficients (in some basis)
and a suitable bound on their degrees, then this yields a priori estimates on the
values of F∗v; see [BFG+19, Sec. 7] for the general approach and Proposition 3.4.2
for an example.

1.3. Algorithms and obstructions to efficiency
We now turn to algorithms for solving scaling problems, highlighting the different
approaches that have been taken so far in the literature. We also discuss certain
geometric obstructions to giving efficient algorithms for general scaling problems.

Alternating minimization. In the case of matrix scaling, we saw that the simple
iterative Sinkhorn’s algorithm is capable of finding solutions. This holds more
generally for the operator scaling and tensor scaling problems (discussed above).
The fundamental structure that is used here is that the domain is a product space,
and that optimizing over one factor is easy. Such algorithms are more generally
known as alternating minimization or coordinate descent algorithms, and can be
analyzed for many examples, such as matrix scaling, operator scaling and tensor
scaling [LSW00; Gur04; GGOW20; BGO+18; BFG+18]. Unfortunately, not every
scaling problem admits such a structure.

Gradient descent. As the general optimization problem is (geodesically) convex,
one may hope to apply standard convex optimization techniques. One such
standard technique is gradient descent. It turns out that one can analyze gradient
descent algorithms in our setting, and this yields efficient algorithms in some
parameters [BFG+19, Thm. 4.2]:

Theorem 1.3.1 (Gradient descent). Given semistable v ∈ V \ {0} and ε > 0, there exists
an algorithm that solves the scaling problem in

O

(︃
N(π)2
ε2 (Fv(I) − F

∗
v)

)︃
iterations. Every iteration consists of computing the gradient of the Kempf–Ness function
and basic linear algebraic operations.

This follows rather straightforwardly from Fv being smoothly geodesically convex
with smoothness parameter O(N(π)2); this quantity is an upper bound on the
second derivative of Fv along a unit speed geodesic. The parameter N(π) is
usually small (polynomial in the input size) and the same holds for the potential
gap Fv(I)−F∗v. However, the dependence on the achieved precision ε > 0 is typically
unsatisfactory: it is polynomial in 1/ε rather than log(1/ε) (even in the Euclidean
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setting). This is not enough for certain applications, such as deciding whether 0
is in the moment polytope ∆(v) in polynomial time: after all, here one needs to
pick ε of size roughly the weight margin γ(π), which can be inverse exponential in
the input size [AV97; FR21]. Moreover, the Kempf–Ness function is usually not
strongly convex, so one should not expect to get a poly log(1/ε)-convergence rate
from simple gradient descent algorithms.

Box-constrained Newton methods. More recently, box-constrained Newton methods
have made an appearance in the literature [CMTV17; ALOW17; AGL+18; BFG+19;
CKV20]. This is a method for minimizing a certain class of convex functions where
every iteration is essentially a Newton step, but constrained to a subdomain (box or
ball) of essentially fixed size. The number of required iterations for approximately
minimizing the objective is polynomial in a diameter bound R on an (approximate)
solution, log 1

δ and a parameter known as the robustness parameter of the objective.
Robustness of the objective guarantees that the local quadratic approximation
obtained from a second-order Taylor expansion is relatively accurate; the size of
the robustness parameter determines the diameter of the region in which such an
approximation holds.

The Kempf–Ness function can be shown to be robust [BFG+19], with robustness
parameter controlled by the weight normN(π) of the representation. This was used
in the non-commutative setting to give polynomial time algorithms for operator
scaling and the related orbit closure intersection problem [AGL+18], improving
upon the results of [GGOW16].1

A general non-commutative version of this second-order method is given
in [BFG+19, Prop. 5.5, Thm. 5.7], and its guarantees are as follows:

Theorem 1.3.2 (Box-constrained Newton method). Given semistable v ∈ V \ {0}
and δ > 0, there exists an algorithm that solves the norm minimization problem
in ˜︁O(R poly(N(π),C, log(1/δ))) iterations. An iteration consists of computing an explicit
gradient and Hessian, solving a Euclidean convex quadratic optimization problem, and
basic linear algebraic operations. Here, R is a bound on the distance to an δ-approximate
minimizer, C = Fv(I) − F∗v is the potential gap, and ˜︁O(·) hides polylogarithmic terms in R.

To make use of this guarantee, one has to bound the quantities R and C. The
quantity C is usually bounded by making use of the structure of the invariant
polynomials on the representation (although in the commutative case, more
concrete bounds can be obtained, see Chapter 5). The best general bounds on R are
linear in terms of the inverse weight margin 1/γ(π), which is exponentially large
in general [BFG+19, Prop. 5.6].

In fact, the box-constrained Newton methods are known to be fundamentally
incapable of providing polynomial-time algorithms for general scaling problems.
The reason is that the distance to an approximate minimizer is in general exponential
in the input size [FR21] (even in the commutative setting), and every iteration of a
box-constrained Newton method is only capable of traversing an (almost) constant
distance. Therefore one cannot always achieve optimality within a polynomial
number of iterations.

1We note that in the setting of operator scaling, solving the OCI problem, the null-cone problem
and determining the non-commutative rank can be done efficiently through other approaches
as well, see [GGOW16; IQS17; IQS18; DM20a; HH21; FSG23].
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In the commutative setting, the issue of large diameter bounds can be overcome.
For example, one can appeal to the ellipsoid method to show that unconstrained ge-
ometric programs are solvable in polynomial time [NR99]. In the non-commutative
setting no analog of the ellipsoid method is available, however, so one is forced to
look for other methods.

Geometric obstructions. A significant obstruction to providing efficient algo-
rithms is that the geometry of the domains makes it fundamentally more difficult
to solve optimization problems. This is caused by the fact that they have non-
positive curvature, whereas Euclidean space has zero curvature. As an example, the
natural metric on the space SU(2)\SL(2,C) turns it into (3-dimensional) hyperbolic
space, which has constant negative curvature; see Fig. 1.1 for an illustration of
the Poincaré disk model of 2-dimensional hyperbolic space. Rusciano [Rus19]
gave a (non-constructive) cutting-plane method in non-positive curvature, with a
logarithmic dependence on the volume of the domain. Unfortunately, the volume
of balls in manifolds of non-positive curvature can grow exponentially with the
radius (even in constant dimension); in particular, this is the case for symmetric
spaces of non-positive curvature, see e.g. [GN99]. This immediately suggests that a
generalization of cutting-plane and/or ellipsoid methods to non-positive curvature
should not suffice for solving scaling problems, assuming their runtime will, as
in the Euclidean setting, depend logarithmically on the volume of a bounding
ball, which would still be exponential here. In fact, it remains open whether
there exists a first-order algorithm for minimizing Lipschitz geodesically convex
functions, with polynomial dependence on the dimension, a diameter bound and
a logarithmic dependence on the precision [CMB23] (in light of the exponential
volume scaling of balls, this would be similar to the ellipsoid method in Euclidean
space).

The exponential volume scaling can also be used to prove lower bounds in a
black-box setting: there exist (natural) optimization problems for which, if one can
only make queries to a function- and gradient oracle, any algorithm that finds an
approximate minimizer must make a number of queries that is linear in the distance
to the approximate minimizer [HM21a; CB22; CB23]. This again suggests that
efficient algorithms for geodesic convex optimization in non-positive curvature
in general, and for non-commutative optimization problems in particular, must
make use of additional structure beyond diameter bounds, as the distance to an
approximate minimizer is in general exponential in the input size [FR21].

1.4. Summary of results
This thesis is naturally divided into three parts, and here we discuss them in the
order in which they appear.

Part I: Scaling problems and applications. We start by setting the mathematical
stage in Chapter 2, with basic background on geometric invariant theory (with
additional introductory material on algebraic geometry and algebraic groups), a
proof of the Kempf–Ness theorem, properties of the moment map and moment
polytopes, and a formal definition of the norm minimization and scaling problems.
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Figure 1.1.: A picture of the Poincaré disk model of hyperbolic space. The distance
between two points z,w ∈ D = {z ∈ C : |z| < 1} is given by d(z,w) =
arcosh(1 + 2|z −w|2/((1 − |z|2)(1 − |w|2))). The horizontal and vertical
axes and red arcs are geodesics, given by circular arcs meeting the
boundary orthogonally. The blue curve indicates the boundary of a
ball of radius 2 about the point (0, 1

2).

Next, in Chapter 3, we identify a novel application of geometric invariant theory
and algorithms for scaling problems in the context of quantum many-body physics.
We use it to define a minimal canonical form for tensor networks defining projected
entangled-pair states (PEPS). These are a higher-dimensional generalization of the
well-known matrix product states, a class of computationally useful ground-state
Ansätze for local Hamiltonians. This shows that previous undecidability results
for testing properties of PEPS can be circumvented.

On a technical level, given a tensor T ∈ (CD1×D1 ⊗ · · · ⊗ CDm×Dm)d, one can
define a quantum state |TΓ ⟩ on any contraction graph Γ , and these states are what
are known as the PEPS. The resulting quantum state |TΓ ⟩ is invariant under the
simultaneous conjugation action of GL(D1)×· · ·×GL(Dm) on T . To understand the
physical properties of these quantum states |TΓ ⟩, it is desirable to have canonical
representatives of the orbit (closure) of T . We define such a canonical form Tmin,
called the minimal canonical form: it is a minimum norm vector in the orbit closure
(or equivalently, the solution to a scaling problem), and has excellent structural
properties as a result of the general theory as explained in Section 1.2, in particular
the theorems of Mumford and Kempf–Ness. Computing the minimal canonical
form can be done with any of the algorithms for norm minimization, albeit not
efficiently in all parameters, because the weight margin of the representation is
inverse exponentially small in the bond dimensions D1, . . . ,Dm (unlessm = 1).

Moreover, we show that two tensors T ,S have a common minimal canonical
form if and only if on any contraction graph Γ , |TΓ ⟩ = |SΓ ⟩. This is achieved by
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observing that the coefficients of such states form a generating set for the invariant
polynomials on the underlying representation, and can be seen as a generalization
of well-known results from classical invariant theory [Pro76; Raz74; For86] on the
invariant polynomials of simultaneous matrix conjugation for GL(D). We also
bound the size of the graphs Γ for which one has to check this condition, by relying
on more modern tools from constructive invariant theory [Der00].

Part II: Interior-point methods for scaling. This part is concerned with the devel-
opment of new classical algorithms for scaling problems. As mentioned previously,
in the commutative case there are various approaches to obtaining efficient algo-
rithms for commutative scaling problems, even when the approximate solution can
be far away from the starting point. Chapters 4 and 5 are concerned with one such
approach, namely to use the framework of (Euclidean) interior-point methods (IPMs)
for unconstrained geometric programming problems. These form an essential part
of the modern optimization toolbox, as they give polynomial iteration-complexity
guarantees in great generality and in some cases state-of-the-art methods (such
as for linear programming), and are also extremely performant in practice. We
provide a gentle introduction to the theory of IPMs in Chapter 4.

Next in Chapter 5, we apply the IPM framework in the context of unconstrained
geometric programming. We show that one can formulate IPMs whose complexity
can be analyzed in terms of condition numbers that are defined in terms of the
geometry of the moment polytope. For rational inputs, these condition numbers
are bounded in terms of the input size, leading to polynomial iteration complexity
bounds for unconstrained geometric programming and hence also for scaling
problems:

Theorem 1.4.1 (IPM for commutative norm minimization). Let G = (C×)n and
let π : G→ GL(V) be a regular representation, given explicitly in terms of its weightsΩ ⊂
Zn. Given semistable v ∈ V and δ > 0, there exists an interior-point method which
outputs gδ ∈ G such that Fv(gδ) ⩽ F∗v+δwithinO(poly(log(1/δ), input size)) iterations.
An iteration consists of computing an explicit gradient and Hessian, and basic linear
algebraic operations.

To go from commutative to non-commutative scaling problems, we next gener-
alize the Euclidean interior-point method framework to the setting of Riemannian
manifolds. An overview of the key ingredients and applications of this gener-
alization is given in Chapter 7. For convenience, preliminaries on Riemannian
geometry and geodesic convexity are collected in Chapter 6. In summary, the main
achievements are as follows:

In Chapter 8, the Euclidean framework as discussed in Chapter 5 is extended to
the Riemannian setting. We define an appropriate notion of self-concordance in
the Riemannian setting. Essentially the same guarantees as in the Euclidean setting
are obtained; of particular note are the quadratic convergence rate of Newton’s
method for self-concordant functions, and path-following methods for objectives
on domains admitting a self-concordant barrier. More precisely, we prove the
following:

Theorem 1.4.2 (Path-following method). LetD ⊆M be an open, bounded, and convex
domain in a complete Riemannian manifold M, and let f, F : D→ R be smooth convex
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functions, such that F is a self-concordant barrier with barrier parameter θ ⩾ 0 and f has
a closed convex extension. Let α > 0 be such that Ft := tf + F is α-self-concordant for
all t ⩾ 0. Let p ∈ D be sufficiently close to the analytic center of F, and let ε > 0. Then,
using

O

(︄(︄
1 +

√︃
θ

α

)︄
log

(︄
(θ + α)∥dfp∥∗F,p

ε
√
α

)︄)︄
Newton iterations, one can find a point pε ∈ D such that

f(pε) − inf
q∈D

f(q) ⩽ ε.

Of course, the above is not useful without explicit examples of self-concordant
functions. In Chapter 9 we show that every symmetric space of non-positive
curvature admits self-concordant functions, namely the squared distance to a
point:

Theorem 1.4.3. Let M be a symmetric space of non-positive curvature. Then for
every p0 ∈M, the function f : M→ R given by f(p) = d(p,p0)2 is α-self-concordant for
some α > 0 that depends only onM.

We use this to construct a self-concordant barrier for the manifold analogue of
second-order cones (or rather a bounded version thereof).

In Chapter 10 we show that the IPM framework captures scaling problems as
well as other natural geometric problems on non-positively curved symmetric
spaces. In particular, we obtain algorithms for non-commutative scaling problems
whose guarantees match the state-of-the-art as in Theorem 1.3.2:

Theorem 1.4.4 (IPM for norm minimization). Let G be a connected reductive linear
algebraic group and π : G→ GL(V) a regular representation. Given semistable v ∈ V \{0}
and δ > 0, there exists an interior-point method that solves the norm minimization problem
in ˜︁O(R poly(N(π),C, log(1/δ))) iterations. An iteration consists of computing an explicit
gradient and Hessian, and basic linear algebraic operations. Here, R is a bound on the
distance to a δ-approximate minimizer, C = Fv(I) − F∗v is the potential gap, and ˜︁O(·) hides
polylogarithmic terms in R.

Showing that scaling problems are captured by the framework involves proving
new estimates on the derivatives of the Kempf–Ness function, generalizing the
robustness bounds that were essential to the box-constrained Newton methods dis-
cussed earlier. Moreover, computing geometric medians and minimum-enclosing
balls can be solved to high precision using the IPM framework, whereas previous
methods were only capable of efficiently providing low-precision solutions.

Part III: Quantum algorithms and lower bounds for scaling. In this part of the
thesis, we explore the potential of quantum computers to provide faster algorithms
for scaling problems than the classical state-of-the-art. We focus on improvements
to basic quantum subroutines and the well-studied matrix scaling and balancing
problems. In Chapter 11 we provide a short introduction to quantum computing,
recall some basic quantum subroutines that we invoke later, and recall techniques
for proving (query) lower bounds for quantum algorithms.
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1. Introduction

Chapter 12 is then concerned with two basic problems. The first is: given
quantum query access to a bit string x ∈ {0, 1}n, find all i ∈ [n] such that xi = 1.
This is a generalization of the unstructured database search problem, where one
has to find a single index i such that xi = 1. The search problem famously
admits a quantum algorithm known as Grover’s algorithm [Gro96] solving it with
probability ⩾ 2/3 in time ˜︁O(√n), whereas any classical algorithm must makeΩ(n)
queries to x to solve the problem with constant probability. Our contribution here
is the following:

Theorem 1.4.5. Let x ∈ {0, 1}n have Hamming weight k = |x|. Then there exists a
quantum algorithm which, with probability⩾ 2/3, finds allkmarked indices usingO(

√
nk)

queries and ˜︁O(√nk) other basic operations, while using only a small quantum memory.

The query complexity above is optimal, as can be deduced from lower bounds
for threshold functions [BBC+01]. Previous algorithms either used a factor log(k)
more queries, or a factor k more basic operations. For simplicity, the above is
stated for solving the problem with constant success probability, but we note that
one can achieve a high success probability with a better complexity than obtained
from a standard boosting procedure.

The second problem is: given ε > 0 and quantum query access to a vector v ∈
[0, 1]n, compute a (1±ε)-multiplicative approximation of the sum

∑︁n
i=1 vi. Previous

approaches solved this problem in O(
√
n/ε) queries and a similar number of other

operations [Gro97; Gro98; BHMT02]. We improve this as follows:

Theorem 1.4.6. Let v ∈ [0, 1]n and ε > 0. Then there exists a quantum algorithm
which finds, with probability ⩾ 2/3, a (1 ± ε)-multiplicative approximation of

∑︁n
i=1 vi,

using O(
√︁
n/ε) queries and ˜︁O(√︁n/ε) other basic operations.

Again, the above is only stated for constant success probability, but improvements
are possible for higher success probability.

Next, we turn to quantum algorithms for matrix scaling and balancing, and the
limitations of using quantum computers for these problems. In Chapter 13 we give
a more comprehensive overview of the literature on these problems and state the
main results of Chapters 14 to 17 more precisely. These results are summarized
in Fig. 1.2. In this chapter we also define our input model, set our notation for
the following chapters, and build several relevant quantum subroutines for later
use. This includes quantum subroutines for computing logarithms of sums of
exponentials, and testing whether a matrix is approximately scaled. For these
subroutines, we rely on the improved summation technique from Chapter 12.

In Chapter 14 we discuss quantum implementations of Sinkhorn’s algorithm
for matrix scaling, including a version with random updates; the latter analysis
extends naturally to Osborne’s algorithm for matrix balancing. For matrix scaling,
this achieves the following:

Theorem 1.4.7. Given an n × n matrix A with non-negative entries and probability
distributions r, c ∈ Rn

>0, if A can be (asymptotically) (r, c)-scaled, then scaling matrices X
and Y such that ∥r(XAY) − r∥1 + ∥c(XAY) − c∥1 ⩽ ε can be found using ˜︁O(n1.5/ε3)
quantum queries to the entries of A, and a similar number of other operations. When A
is entrywise-positive, this bound can be improved to ˜︁O(n1.5/ε2) quantum queries and a
similar number of other operations.

16



1.4. Summary of results

Figure 1.2.: A schematic representation of the complexity and limitations of quan-
tum algorithms for matrix scaling of entrywise-positive matrices. The
horizontal axis gives the precision ε as a function of n (with ε0 being
a certain constant), whereas the vertical axis gives the exponent p in
a complexity of order np for the problem of ε-ℓ1-scaling. The blue
line represents the classical state-of-the-art complexity ˜︁O(n2), the red
line represents the quantum box-constrained Newton method with
complexity ˜︁O(n1.5/ε) (Theorem 1.4.8). The area shaded in red indicates
the possible complexities a quantum algorithm for matrix scaling could
have in the respective ε-regime, whereas the area shaded in grey is
ruled out by Theorem 1.4.9. The green line corresponds to the lower
boundΩ(n1.5/

√
ε) for the problem of computing ε-ℓ1-approximations

of the vector of row sums of a normalized matrix (Theorem 17.7.1).

For comparison, the classical Sinkhorn algorithm would take time ˜︁O(n2/ε2),
or ˜︁O(n2/ε) in the entrywise-positive case. A similar statement holds for matrix
balancing.

Chapter 15 describes our second-order quantum algorithms for scaling and bal-
ancing. These are based on the box-constrained Newton methods due to [CMTV17]
and recent work on quantum algorithms for graph sparsification [AW22]. We
prove the following:

Theorem 1.4.8. Given an n × n matrix A with non-negative entries and probability
distributions r, c ∈ Rn

>0, if A can be (asymptotically) (r, c)-scaled, then scaling matrices X
and Y such that ∥r(XAY) − r∥1 + ∥c(XAY) − c∥1 ⩽ ε can be found using ˜︁O(R1.5 n1.5/ε)
quantum queries to the entries of A, and a similar number of other operations. Here, R is a
bound on the distance to an O(ε2)-approximate minimizer.

For matrices A which are entrywise-positive, R = ˜︁O(1) and hence the complexity
is ˜︁O(n1.5/ε).

The classical equivalent of this algorithm would find an ε-ℓ1-scaling in time ˜︁O(n2)
for entrywise-positive matrices. A similar result holds for matrix balancing,
although there one only obtains ε-ℓ2-balancings (as opposed to ε-ℓ1) for technical
reasons.
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1. Introduction

Lastly, in Chapters 16 and 17, we prove quantum query lower bounds in the
constant-ε and small-ε regimes, respectively. These are summarized as follows:

Theorem 1.4.9. There exists a constant ε0 > 0 such that ε0-ℓ1-scaling a matrix A to
uniform marginals requiresΩ(n1.5) queries toA. Moreover, for an explicit ε = 1/poly(n),
ε-ℓ1-scaling A to uniform marginals requires ˜︁Ω(n2) queries to A.

The lower bound bound in the constant-precision regime is based on a reduction
to a variant of multiple search problems. The lower bound in the high-precision
regime is based on a reduction to certain counting problems, and heavily relies
on properties of the convex potential from Eq. (1.1.1), along with a concentration
argument. The ˜︁Ω(n2) lower bound implies that essentially every entry of Amust
be queried, and no general improvement over the classical state of the art is
possible in this regime, since for entrywise-positive matrices classical algorithms
can find ε-ℓ1-scalings in time ˜︁O(n2). We also prove aΩ(n1.5/

√
ε)-lower bound for

finding ε-ℓ1-approximations of the vector of row sums of matrix in Theorem 17.7.1.
This is morally also a lower bound for scaling: all algorithms (to the best of our
knowledge) explicitly compute (an approximation of) the row and column sums
of the matrix, and an ε-ℓ1-approximation of the row and column sums is exactly
enough to test whether a matrix is ε-ℓ1-scaled.
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Part I.

Scaling problems and applications
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2. Setting the stage

In this chapter, we set the mathematical stage for the scaling problems as discussed
in Chapter 1. First in Section 2.1 we set some basic notation. Next, Section 2.2
collects some preliminary material on algebraic varieties and algebraic groups.
Section 2.3 then turns to the topic of geometric invariant theory, where we discuss
Mumford’s theorem (Theorem 2.3.7), properties of the ring of invariant polynomials,
the Hilbert–Mumford theorem (Theorem 2.3.16), and the notion of stability and
its relation to quotients of projective varieties. This is followed by a proof of the
Kempf–Ness theorem in Section 2.4 and a detailed discussion of the moment map
in Section 2.5. Lastly, we formally define the computational problems (scaling
and norm minimization) in detail in Section 2.6, as well as a quantitative relation
between these.

2.1. Notation and conventions

Before we get to the main content of this chapter, we fix some terminology and
notation. For n ⩾ 1, we write [n] for the set {1, . . . ,n}. For 1 ⩽ p ⩽ ∞, we
write ∥·∥p for the p-norm on Rn or Cn. The standard inner product on Rn or
Cn is defined by ⟨u, v⟩ = u∗v =

∑︁n
i=1 uivi. In particular, our inner products are

complex-linear in the second argument, to be consistent with physicists’ Dirac
notation.

The space ofm×nmatrices over a fieldF is denoted byFm×n, or as Matm×n(F)
when additional superscripts are necessary. We write Tr[A] =

∑︁n
i=1Aii for the trace

of a matrixA ∈ Fn×n. ForF ∈ {R,C}, the Hilbert–Schmidt inner product onFm×n

is defined by ⟨A,B⟩ = Tr[A∗B], where A∗ is the conjugate transpose of A. The
induced norm is denoted by ∥A∥HS =

√︁
⟨A,A⟩. We also write Herm(n) ⊆ Cn×n

for the Hermitian (i.e., self-adjoint) matrices. The operator norm of A ∈ Fm×n is
defined by ∥A∥∞ = sup∥u∥2=1∥Au∥2.

The group of invertible n × n matrices over a field F is denoted by GL(n,F),
and SL(n,F) consists of those g ∈ GL(n,F) with det(g) = 1, where det is the
determinant. The special case GL(1,F) is denoted by F× = F \ {0}. We also
write U(n) = {g ∈ GL(n,C) : g∗ = g−1} for the unitary matrices over C.

2.2. Preliminaries on algebra, geometry and groups

In this section we collect preliminaries on affine and algebraic varieties, and linear
algebraic groups. The reader is encouraged to consult this section only as necessary.

This chapter is partially adapted from [AMN+23].
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2. Setting the stage

2.2.1. Affine varieties
For m ⩾ 1, we let C[x1, . . . , xm] denote the ring of polynomials in m vari-
ables x1, . . . , xm with coefficients in C. For given polynomials p1, . . . ,pr ∈
C[x1, . . . , xm], the (embedded) affine variety V(p1, . . . ,pr) ⊆ Cm defined by the pj
is their common zero set,1 i.e.,

V(p1, . . . ,pr) = {(x1, . . . , xm) ∈ Cm : pj(x1, . . . , xm) = 0, ∀j ∈ [r]}.

For an ideal J ⊆ C[x1, . . . , xm], we may similarly define V(J) as the common zero
set of all polynomials f ∈ J.

Affine varieties in Cm have the following properties:

(i) Cm = V(0) is an affine variety, and so is ∅ = V(C[x1, . . . , xm]).

(ii) If X1, . . . ,Xl are affine varieties, then so is X1 ∪ · · · ∪ Xl.

(iii) If {Xi}i∈I is a (possibly infinite) collection of affine varieties, then
⋂︁

i∈I Xi is
an affine variety.

These three properties imply that if we declare the affine varieties to be the closed
subsets of Cm, then this forms a topology, known as the Zariski topology. Any
polynomial p ∈ C[x1, . . . , xm] viewed as a function Cm→ C is then a continuous
map (with respect to the Zariski topologies onCm andC; we recall that continuity
means preimages of open sets are open, or equivalently preimages of closed sets
are closed). Notably, by the fundamental theorem of algebra and the fact that C[x]
is a principal ideal domain, the closed subsets of C are C itself and the finite
subsets.2

Since we may view p ∈ C[x1, . . . , xm] as functions Cm→ C, one may consider
the restriction p|X to an affine variety X ⊆ Cm; this is automatically a continuous
function X→ Cwith respect to the subspace topology. The restriction map is an
algebra3 homomorphism C[x1, . . . , xm] → {X → C continuous}, and its kernel
(i.e., the polynomials which restrict to the zero function) is called the vanishing
ideal I(X) of X. By the first isomorphism theorem, the quotient C[x1, . . . , xm]/I(X)
is isomorphic the image of the restriction map, which forms a subalgebra of {X→
C continuous}.We shall refer to this subalgebra as the coordinate ring or ring of
regular functions of X, and denote it by C[X].

More generally, if (X,R) is a pair where X is a topological space, and R is a
subalgebra of the algebra of continuous functions X→ C, then we call this pair
an affine variety if there exists some m ⩾ 0 and a homeomorphism f : X → Z

with Z ⊆ Cm Zariski-closed, such that the map f∗ : C[Z] → R given by f∗(p) = p◦ f
is an isomorphism of algebras. Again, we refer to the algebra R as the coordinate
ring or ring of regular functions of X.

1It may happen that this set is empty, but only if the ideal in C[x1, . . . , xm] generated by the pj is
all of C[x1, . . . , xm].

2As a word of caution, a continuous function need not be a polynomial: every bĳection C→ C is
continuous with respect to the Zariski topology. In fact, there are 2|C| many such bĳections and
only |C| many polynomials (since polynomials have finitely many non-zero coefficients).

3An algebra over C is a vector space over C endowed with a C-bilinear multiplication map. We
assume that all algebras are associative, unital, and commutate unless stated otherwise.
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2.2. Preliminaries on algebra, geometry and groups

Although not obvious from the above definition, it turns out that X is uniquely
determined (as a topological space) by the algebra R. The algebras R which can
arise as coordinate rings of affine varieties can also be characterized as follows:

• It is finitely generated, in the sense that there exist q1, . . . ,qr ∈ R such that
every element q ∈ R can be written as a polynomial expression in the qj (and
the constant function 1).

• Its nilradical, consisting of those p ∈ R such that pn = 0 for some n ⩾ 0, is the
zero ideal {0} ⊆ R.

To see that these hold for coordinate rings of affine varieties, it suffices to check
for R of the form C[Z] with Z ⊆ Cm Zariski-closed, where these properties are
obvious: x1 |Z, . . . , xm |Z generate the algebra, and if pn is a polynomial which
vanishes on Z, then so is p. That all these algebras arise as coordinate rings of
affine varieties follows from Hilbert’s Nullstellensatz.

Theorem 2.2.1 (Hilbert’s Nullstellensatz, [Wal17, Thm. 1.3]). Let J ⊆ C[x1, . . . , xm]
be an ideal. If J is a proper ideal, then the vanishing locus V(J) = {(x1, . . . , xm) ∈
Cm : p(x1, . . . , xm) = 0,p ∈ J} of J is non-empty. Furthermore, the set I(V(J)) of
polynomials p ∈ C[x1, . . . , xm] vanishing onV(J) is the radical

√
J = {p ∈ C[x1, . . . xm] :

pn ∈ J for some n ⩾ 1} of J.

This can be used to show that every R which has trivial nilradical and is
finitely generated with generators q1, . . . ,qm arises as the coordinate ring of
an affine variety. The algebra homomorphism φ : C[x1, . . . , xm] → R, given
by xj ↦→ qj is surjective. By the first isomorphism theorem, R is isomorphic
to C[x1, . . . , xm]/ker(φ). As R has trivial nilradical, ker(φ)must be a radical ideal,
in the sense that if pn ∈ ker(φ) for some n ⩾ 1, then p ∈ ker(φ). Therefore the
Nullstellensatz gives I(V(ker(φ))) =

√︁
ker(φ) = ker(φ), and R ≅ C[Z] where Z =

V(ker(φ)).
As important as the affine varieties themselves, if not more, are maps between

them. For two affine varieties (X,R) and (Y,S), we say that a continuous map f : X→
Y is a regular map or morphism of affine varieties if f∗S ⊆ R (recall that R and S are
assumed to be subalgebras of the ring of continuous C-valued functions on X, Y,
and f∗S = {p ◦ f : p ∈ S}).

Given two affine varieties (X,R) and (Y,S), we define their product to be the
affine variety whose underlying set is X × Y, and whose coordinate ring is R ⊗ S,
viewed as a subalgebra of the C-valued functions on X × Y. Note that R ⊗ S is
finitely generated because R and S are. However, we endow X × Y with the Zariski
topology, rather than the product topology. This topology is defined such that if
we choose embeddings X ⊆ Cn and Y ⊆ Cm as Zariski-closed subsets, then the
topology on X × Y is the subspace topology on X × Y with respect to the Zariski
topology on Cn ×Cm = Cn+m.

2.2.2. Algebraic varieties
While we shall forego a precise definition, it is convenient to enlarge the category of
spaces to that of algebraic varieties. The idea is that although the category of affine
varieties is well-behaved, it does not allow us to do all the geometry we might
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2. Setting the stage

wish to. For instance, the projective space Pm, whose points are lines through
the origin in Cm+1, is a classical object of interest in algebraic geometry, but it is
not an affine variety. One way to remedy this is as follows. Instead of studying a
topological space Xwith an algebra of functions R that are globally defined on X,
the idea is to specify for every open subset U ⊆ X a “coordinate ring” 𝒪X(U),
which is again a subalgebra of continuous functions U→ C. We impose certain
compatibility conditions on𝒪X (it must be a sheaf ), the pair (X,𝒪X) is called a ringed
space, and 𝒪X is called the sheaf of regular functions or the structure sheaf.4 An
algebraic pre-variety is then a ringed space which is covered by a collection of open
subsets {Ui}i∈I ⊆ X such that (Ui,𝒪X(Ui)) is an affine variety. An algebraic variety
is then a separated algebraic pre-variety, which means that the diagonal ∆X ⊂ X×X
is closed (with respect to the Zariski topology on X×X). A regular map or morphism
between algebraic varieties X and Y is then a function f : X→ Y such that if U ⊆ Y
is open and p ∈ 𝒪Y(U) is a regular function on U, then f∗(p) = p ◦ f is a regular
function on f−1(U), i.e., p ◦ f ∈ 𝒪X(f−1(U)).

For an affine variety X, the sheaf of regular functions is determined as follows.
Every open set U ⊆ X is the union of basic open sets Dp = X \ V(p) ⊆ X

where p ∈ C[X] (recall that V(p) is the vanishing set of p). The regular functions
on U are then those f : U → C such that for every x ∈ U, there exists p ∈ C[X]
such that x ⊆ Dp ⊆ U and f|Dp is the restriction of some C[X][p−1], i.e., f(y) =∑︁k

j=0 qj(y)p(y)−j for all y ∈ Dp and some q0, . . . ,qk ∈ C[X].
As an example, consider X = C2 with coordinates x1, x2 and U = X \ {x1x2 = 0}.

Then the regular functions onU are those f : U→ C are those inC[x1, x2, (x1x2)−1];
for instance, f(x1, x2) = (x1 + x2)/(x1x2). On the other hand, the regular functions
on X \ {0} are just restrictions of regular functions on X: it would have to be
simultaneously in C[x1, x2, x−1

2 ] and C[x1, x2, x−1
1 ], i.e., in C[x1, x2] = C[X].5

The canonical example of an algebraic variety that is not affine is projective
space Pm. As a set, it is given by Pm = (Cm+1 \ {0})/∼ where x ∼ y if and only if
there exists λ ∈ C× = C \ {0} such that y = λx. A typical element ofPm is denoted
by [x0 : . . . : xm], the equivalence class of x = (x0, . . . , xm) ∈ Cm+1 \ {0}. For a
collection S ⊆ C[x0, . . . , xm] of homogeneous polynomials, the set of [x0 : . . . : xm]
such that p(x0, . . . , xm) = 0 for all p ∈ S is well-defined. The Zariski topology
onPm is then defined by declaring such common zero sets to be the closed subsets.

The most important open subsets of Pm are those given by the inequality xi ≠ 0,
where i ∈ {0, . . . ,m}. On this open subset, the regular functions are those of
the form [x0 : . . . : xm] ↦→ q(x0

xi
, . . . , ˆ︁xi

xi
, . . . , xm

xi
) where q ∈ C[z1, . . . , zm] is a

polynomial, and the hat indicates omission of that argument.
Lastly, we recall that a topological space X is irreducible if, whenever X = X0 ∪ X1

for closed subsets X0,X1 ⊆ X, one has X = X0 or X = X1. For an affine variety X,
irreducibility is equivalent to the coordinate ring C[X] being an integral domain,

4The tuple (X,𝒪X) is in fact a locally ringed space, which means that the stalk at each point is a local
ring, i.e., has a unique maximal ideal. The stalk at a point consists of “functions defined on
an infinitesimal neighbourhood” of the point, and the maximal ideal is given by the functions
vanishing at the point.

5This phenomenon occurs more generally in complex analysis: if U ⊆ Cm is a Euclidean open set
and A ⊆ U is an analytic set of codimension ⩾ 2, then any holomorphic function f on U \ A
extends uniquely to a holomorphic function on U [GH78, p. 7, p. 396].
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i.e., having no non-zero zero divisors.6 The Krull dimension of topological space X is
defined as the maximal length d of a chain ∅ ≠ X0 ⊂ · · · ⊂ Xd ⊆ X of distinct closed
irreducible subspaces; if no such subspaces exist, then the Krull dimension is
defined to be −∞. The Krull dimension of Cn endowed with the Zariski topology
is n. Note that the Krull dimension does not always capture the “usual” notion of
dimension, since e.g. the only closed non-empty irreducible subsets of Cn with
the standard topology are singletons, and hence has dimension 0.

2.2.3. Linear algebraic groups and their representations
Important examples of algebraic varieties for us are the linear algebraic groups.
An algebraic group is simply an algebraic variety Gwith a group structure that
is compatible with the variety structure: a multiplication map G × G → G, an
inversion map G → G and an identity element e ∈ G, which satisfy the group
laws, and such that multiplication and inversion are regular maps.7

The canonical example of an algebraic group is GL(n,C), consisting of all n × n
invertible matrices with entries in C. This is an affine variety, even though it is
not Zariski-closed in Cn×n. Observe that A ∈ Cn×n is in GL(n,C) if and only
if det(A) ≠ 0. To encode this as the vanishing set of a polynomial, we add an extra
variable t and view GL(n,C) as the set of those (a11,a12, . . . ,ann, t) ∈ Cn2+1 such
that det(A)t − 1 = 0, where A = (aij)ni,j=1. The multiplication on GL(n,C) is of
course given by matrix multiplication, which is a regular map since entries of the
resulting matrix are polynomials in the two matrices; the inversion is also regular
because A−1 = det(A)−1 adj(A) where adj(A) is the adjugate matrix, whose entries
are given by (signed) minors of A, hence also polynomials in the aij.

A linear algebraic group is a subgroup G ⊆ GL(n,C) which is Zariski-closed
in GL(n,C), i.e., there are polynomials p1, . . . ,pr in the matrix entries of g
and det(g)−1 such that G = {g ∈ GL(n,C) : pj(g) = 0, j ∈ [r]}. Examples of
interest are the special linear group SL(n,C), consisting of thoseAwith det(A) = 1,
the orthogonal and special orthogonal groups O(n,C) and SO(n,C), the sym-
plectic group, but also the group of invertible upper triangular matrices. The
group C× = C \ {0} = GL(1,C) and products thereof are particularly simple8

examples as well. We shall refer to (C×)d as an algebraic torus of dimension d
(and extend this language to G which are isomorphic to (C×)d). A notable
non-example of linear algebraic groups is the unitary group U(n): its defining
equations are gg∗ = In = g∗g, which involves complex conjugation, and hence is
not a polynomial in the entries of g.9

6More generally irreducibility corresponds to the nilradical being a prime ideal, but since our
coordinate rings have trivial nilradical, this corresponds to the zero ideal being prime, i.e.,C[X]
being an integral domain.

7Note that X × X is again endowed with the Zariski topology.
8Unfortunately, this group is not simple in the sense of Lie groups, because that definition excludes

abelian groups.
9More generally, if G ⊆ GL(n,C) is a linear algebraic group, then G is either finite or unbounded

(in the Euclidean sense). To see this, observe thatG is affine, hence has finitely many irreducible
components by the Lasker–Noether theorem. On each irreducible component, a regular function
is either unbounded or constant: their image is irreducible and the irreducible subsets of C are
the singletons and C itself. In particular every coordinate map G ↦→ C, g ↦→ gij is unbounded
or constant, and if all of them are constant then G has finitely many elements.
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As is a common theme in mathematics, we attempt to reduce complicated
questions to linear algebra problems. Recall that a representation is a group
homomorphism π : G → GL(V), where V is a finite-dimensional vector space
over C. Such a representation is regular if the matrix entries of π(g)with respect to
any basis of V are polynomial functions of the matrix entries of g and of det(g)−1

(i.e., the components are regular functions on G). We call a representation π
irreducible if every G-invariant subspace W ⊆ V satisfies W = {0} or W = V .10

Furthermore, a representation π is completely reducible if there exist irreducible
subrepresentations V1, . . . ,Vr ⊆ V such that V = V1 ⊕ · · · ⊕ Vr. To make the theory
(more) tractable, we further restrict the class of groups that we are interested in:

Definition 2.2.2 (Linearly reductive group). Let G ⊆ GL(n,C) be a linear algebraic
group. ThenG is called linearly reductive if for every regular representation π : G→
GL(V) andG-invariant subspaceV1 ⊆ V , there exists aG-invariant subspaceV2 ⊆ V
such that V = V1 ⊕ V2.

By induction on the dimension of V , one can show that every regular represen-
tation of a linearly reductive group is completely reducible. When one studies
representations of finite groups, or more generally compact Lie groups, every
representation satisfies the above propetry, as there one can introduce an invariant
inner product by an averaging procedure. However, for algebraic groups, the
notion is non-trivial: for general G it may happen that although a representa-
tion V is not irreducible, there do not exist G-invariant subspaces V1,V2 ⊆ V such
that V = V1 ⊕ V2 (and hence V is not completely reducible); we give the canonical
example below.11

Example 2.2.3. Consider the linear algebraic group

G =

{︃[︃
1 z

0 1

]︃
: z ∈ C

}︃
⊆ GL(2,C),

which is isomorphic toC. ThenG acts by left-multiplication on V = C2. If 0 ⊊ W ⊊
V is a non-zero G-invariant proper subspace, then dim(W) = 1 andW = span(w)
for some 0 ≠ w ∈ W. The G-invariance then implies that w must be a common

eigenvector of every g ∈ G; but
[︃
1 1
0 1

]︃
has only e1 ∈ C2 as an eigenvector,

hence W = span(e1). This is therefore the unique non-zero G-invariant proper
subspace, and as a consequence there does not exist a G-invariant W′ ⊆ V such
that V =W ⊕W′.

However, some respite is offered by the following theorem, which gives a fairly
explicit characterization of the linearly reductive groups:

Theorem 2.2.4 ([Wal17, Lem. 3.5, Thm. 3.13]). Let G ⊆ GL(n,C) be a linear algebraic
group. Assume that G is symmetric, that is, for every g ∈ G, its adjoint g∗ is also in G.
Then G is linearly reductive.
10An irreducible πmust be eaten in one biG bite.
11In a sense, the example described is also the only obstruction to being linearly reductive (in

characteristic 0). An equivalent definition of reductivity is that every smooth connected
unipotent normal subgroup of G is trivial, where a unipotent group is one that is isomorphic to
a subgroup of the upper triangular matrices with ones on the diagonal.
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Moreover, ifG is linearly reductive, then there exists some g ∈ GL(n,C) such that gGg−1

is symmetric.

The first part of this theorem is most important to us, and its proof relies on
the interplay between the Zariski and Euclidean topology on GL(n,C). This
requires some terminology from differential geometry. We recall that a Lie group is
a topological group which is also a smooth manifold, such that the inversion and
multiplication maps are smooth.

If G ⊆ GL(n,C) is a linear algebraic group, then G is Zariski-closed in GL(n,C).
This implies that it is also closed subset with respect to the Euclidean topology
on GL(n,C). Furthermore, with this topology, it admits a smooth atlas such
that G is a Lie group, a result due to von Neumann [Neu29] and É. Cartan [Car52,
Sec. II.III] (when the outer group is an abstract Lie group):

Theorem 2.2.5 (Closed subgroup theorem, [GW09, Prop. 1.3.12]). LetH ⊆ GL(n,C)
be a closed subgroup with respect to the Euclidean topology. Then H is a Lie group.

This also leads to examples of Lie groups which are not algebraic. The most
important for us is the unitary group U(n), which consists of those g ∈ GL(n,C)
such that gg∗ = In = g∗g. This group is compact with respect to the Euclidean
topology. Even though it is not linear algebraic, there is still a strong connection to
linear algebraic groups:

Theorem 2.2.6. Let G ⊆ GL(n,C) be a symmetric linear algebraic group. Then K =

G ∩ U(n) is a maximal compact subgroup of G with respect to the Euclidean topology.
Furthermore, the Zariski-closure of K in GL(n,C) is G.

To relate this to the reductivity of G, we require one last ingredient:

Theorem 2.2.7. Let K ⊆ GL(n,C) be a Lie group, compact with respect to the Euclidean
topology. Then there exists a unique left Haar measure on K, i.e., a left-K-invariant Borel
probability measure on K.

Corollary 2.2.8. Let K ⊆ GL(n,C) be a Lie group, compact with respect to the Euclidean
topology. Let π : K→ GL(V) be a continuous representation of K. Then there exists an
inner product ⟨·, ·⟩ (complex linear in the second argument) on V such that π(K) ⊆ U(V).
Furthermore, if V0 ⊆ V is a K-invariant subspace, then there exists a K-invariant
subspace V1 ⊆ V such that V = V0 ⊕ V1.

Proof. Take an arbitrary inner product ⟨·, ·⟩′ on V , then define

⟨v,w⟩ =
∫
K

⟨k · v,k ·w⟩′ dk,

where integration is performed with respect to the left Haar-measure on K. For
any K-invariant subspace V0 ⊆ V , the orthogonal complement V1 := V⊥0 with
respect to ⟨·, ·⟩ is then K-invariant and satisfies V = V0 ⊕ V1. □

Corollary 2.2.9. Let G ⊆ GL(n,C) be a symmetric linear algebraic group. Let π : G→
GL(V) be a regular representation of G, and let V0 ⊆ V be a G-invariant subspace. Then
there exists a G-invariant subspace V1 such that V = V0 ⊕ V1. In particular, G is linearly
reductive.
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Proof. The subspace V0 is alsoK-invariant, so there exists a decomposition V = V0⊕
V1 where V1 is K-invariant. The claim is that V1 is alsoG-invariant. LetΠ0 : V → V0
be the projection. Then for v ∈ V1, the set {g ∈ G : Π0(g · v) = 0} is defined by a
polynomial system of equations (since Π0 is just a linear map), and contains K;
but K is Zariski-dense in G, so it must be all of G. Therefore Π0(g · v) = 0 and
hence g · v ∈ V1 for all g ∈ G. □

Definition 2.2.10. For a Lie group G ⊆ GL(n,C), we define its Lie algebra by

Lie(G) = {X ∈ Cn×n : etX ∈ G for all t ∈ R}.

For an abstract Lie group G, Lie(G) can be defined as the tangent space at the
identity element e ∈ G, i.e., Lie(G) = TeG. This can be endowed with a Lie bracket
in a natural way, see [Lee13, Ch. 8].

Definition 2.2.11 (Simple and semisimple). A Lie algebra is called simple if it is has
no non-trivial proper ideals. It is called semisimple if it is a direct sum of simple
Lie algebras. A connected linear algebraic group G ⊆ GL(n,C) is called semisimple
if Lie(G) is semisimple.

Definition 2.2.12 (Tori). Let T be a Lie group. Then T is called a compact torus if T is
compact, connected, and commutative. For a Lie group K, if a subgroup TK ⊆ K is
maximal with respect to being a compact torus, then we call TK a maximal compact
torus in K.

If T is a commutative linear algebraic group, then T is called an algebraic torus.
If G ⊆ GL(n,C) is a linear algebraic group and T ⊆ G is a Zariski-closed subgroup
which is maximal with respect to being an algebraic torus, then we call T a maximal
algebraic torus in G.

It can be shown that every compact torus TK is isomorpic as a Lie group
to U(1)dimR(TK), where U(1) = S1 = {z ∈ C : |z| = 1} is the circle or unitary
group on C1. Similarly, every algebraic torus T is isomorphic as a linear algebraic
group to (C×)dimC(T ). Furthermore, maximal (compact or algebraic) tori have the
following properties: they exist, any two of them are conjugate by an element of
the containing group, and the Zariski closure of any compact torus in a linear
algebraic group G is an algebraic torus [Wal17, Thm. 2.21].

A crucial fact is the following, which gives a characterization of the irreducible
representations of tori:

Theorem 2.2.13. Let T be an algebraic torus, TK ⊆ T a maximal compact torus,
and φ : T → GL(V) a regular representation. Then there exists a unique finite
set Ω = Ω(φ) ⊂ Lie(T )∗ and a decomposition V = ⊕ω∈ΩVω into non-empty sub-
spaces Vω, such that for all X ∈ Lie(T ) and v =

∑︁
ω∈Ω vω,

φ(exp(X))v =
∑︂
ω∈Ω

eω(X)vω.

Here, Lie(T )∗ is the space of C-linear maps Lie(T ) → C, and exp: Lie(T ) → T is the
exponential map.

Moreover, if V is endowed with an inner product such that φ(TK) ⊂ U(V), then the
decomposition V = ⊕ω∈ΩVω is orthogonal.
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Definition 2.2.14 (Weights of a representation). The set Ω appearing in Theo-
rem 2.2.13 are referred to as the weights of the representation, and the decomposi-
tion V = ⊕ω∈ΩVω as the weight decomposition.

More generally, for a connected linear algebraic group G ⊆ GL(n,C), a choice of
maximal algebraic torus T ⊆ G, and a regular representation π : G→ GL(V), we
refer toΩ(π) = Ω(π|T ) ⊂ Lie(T )∗ as the weights of π.

It is often convenient to think of Ω not as a subset of Lie(T )∗ but as a subset
of Lie(T ). Assume T ⊆ GL(n,C) is symmetric, so that TK = T ∩U(n). One obtains
an identification Lie(T ) ≅ Lie(T )∗ via the Hilbert–Schmidt inner product ⟨·, ·⟩
on Lie(T ) ⊆ Cn×n. Explicitly, if f ∈ Lie(T )∗, we identify it with f̃ ∈ Lie(T ) such that

⟨f̃,X⟩ = Tr[(f̃)∗X] = f(X).

for all X ∈ Lie(T ); recall that our inner products are complex-linear in the second
argument by convention.

Under this identification, a weightω becomes an element of iLie(TK): indeed,
if X ∈ Lie(TK) and vω ∈ Vω \ {0}, then for all t ∈ R,

φ(exp(tX))vω = etω(X)vω.

Therefore if ω(X) had a non-zero real part, assumed positive without loss of
generality, taking the limit as t → ∞ would cause φ(exp(tX))vω to diverge.
However φ(exp(tX))vω ∈ φ(TK)vω and the latter is a compact set because TK is
compact. As a consequence, ω(X) ∈ iR for X ∈ Lie(TK) ⊆ iHerm(n), and hence
Tr[(ω̃)∗X] ∈ iR implies that ω̃must be Hermitian and in iLie(TK) ⊆ Herm(n).

Suppose now that T = (C×)n ⊆ GL(n,C) is the standard algebraic n-torus
and φ : T → GL(V) is a representation with weights Ω ⊂ iLie(TK). Then the
exponential map Lie(T ) ≅ Cn→ T is given by exp(x1, . . . , xn) = (ex1 , . . . , exn). This
is surjective, and so for z = (z1, . . . , zn) ∈ T , there exists (x1, . . . , xn) ∈ Lie(T ) = C
such that zi = exi , and hence

φ(z)vω = φ(exp(x))vω = eω(x)vω.

The right-hand side needs to be independent of the choice of x with exp(x) = z,
and in particular for z = (1, . . . , 1), the set of all such x is given by 2πiZn. As
a consequence, ω(x) ∈ 2πiZ whenever x ∈ 2πiZn, and so ω ≅ ω̃ ∈ iLie(TK) is
naturally in Zn (as seen by evaluatingω(2πiej)with ej the standard basis vectors).

For given weights Ω ⊂ Zn, one can explicitly realize a representation V with
weights Ω as follows. Let V ⊂ C[u1, . . . ,un,u−1

1 , . . . ,u−1
n ] be the set of Laurent

polynomials which are linear combinations of monomials of the form uω withω ∈
Ω. Then V ≅ CΩ inherits the inner product from the latter, and admits a T -action
by

(z1, . . . , zn) · uω = zωuω,
which clearly has weights given byΩ.

Next, we turn to decompositions of linear algebraic groups. We have the
following theorem [Wal17, Thm. 2.22]:

Theorem 2.2.15 (Cartan decomposition). Let G ⊆ GL(n,C) be a symmetric linear
algebraic group and K = G ∩ U(n). Then for any maximal compact torus TK ⊆ K, its
Zariski closure T satisfies G = KTK.

29



2. Setting the stage

In the special case of G = GL(n,C) and K = U(n), this captures the existence of
the singular value decomposition. The only difference is that in the singular value
decomposition, the element t ∈ T is only allowed to take positive real values,
whereas above they are allowed to be any (non-zero) complex numbers. From
this, one can easily deduce the existence of a decomposition as in the following
theorem:

Theorem 2.2.16 (Polar decomposition). Let G ⊆ GL(n,C) be a symmetric linear
algebraic group and K = G ∩U(n). Then Lie(G) = Lie(K) ⊕ iLie(K), and the map K ×
iLie(K) → G given by (k,X) ↦→ keX is a diffeomorphism.

This is stated in [Wal17, Thm. 2.16] with the weaker assertion that the map is
a homeomorphism. The fact that this map is a diffeomorphism (i.e., a smooth
bĳection with a smooth inverse) is more difficult to prove; we refer to [BH13,
Thm. II.10.58].

2.3. Geometry, orbits, and invariants
Geometric invariant theory (GIT) is a field of mathematics that studies orbits of
group actions from a perspective that combines geometry and algebra. Inspired by
the much earlier work on invariant theory by Hilbert [Hil93], Mumford [MFK94]
studied two intimately related questions. The first question is as follows: given
an action of a (nice) algebraic group G on an algebraic variety X, how does
one construct a quotient space X/G as an algebraic object? Although the set of
orbits {G · x : x ∈ X} can be endowed with the quotient topology, this is often
ill-behaved, and it is not clear how to endow it with a suitable algebraic structure.
The second question is how to construct suitable moduli spaces of certain algebraic
objects (e.g. polarized smooth algebraic curves of a given genus) up to equivalence
as algebraic varieties.

We give a gentle introduction to GIT and review some central results (albeit
restricting ourselves to a relatively simple setting). These results motivate the
algorithmic questions which are of primary interest to us later on. Because of
this focus, we also only shortly return to the question of how to construct the
previously mentioned quotients (and do not comment on moduli spaces at all).

Throughout this section, we often refer to the textbook on GIT by Wallach [Wal17]
and we follow his concrete approach; for a more abstract account see the seminal
monograph [MFK94]. We shall work exclusively over C as a base field.

2.3.1. Mumford’s theorem
LetGbe a linearly reductive group, letXbe an algebraic variety, and letσ : G×X→ X

be an action of G such that σ is a regular map. We shall refer to such an algebraic
variety as a G-variety. The idea of a quotient space is that it should be a space
whose points are identified with the orbits of the action: if x ∈ X, its orbit is given
by G · x = {σ(g, x) : g ∈ G} ⊆ X. While one could formally define the quotient
space as just the set of such orbits, it is natural to want to have more structure; in
this case, we would like it to be an algebraic variety as well.

We distinguish two different notions of a quotient space. Let proj2 : G × X→ X

denote the projection onto the second coordinate.
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Definition 2.3.1 (Categorical quotient). A space12 Y with a morphism q : X→ Y is
called a categorical quotient of X by G if:

(i) q ◦ σ = q ◦ proj2, i.e., q is G-invariant,

(ii) for any space Z and morphism f : X→ Z such that f ◦ σ = f ◦ projX, there
exists a unique morphism f̂ : Y → Z such that f = f̂ ◦ q.

A more refined notion of quotient space is as follows:

Definition 2.3.2 (Geometric quotient). A space Y together with a morphism q : X→
Y is called a geometric quotient of X by G if:

(i) q ◦ σ = q ◦ proj2,

(ii) q is a quotient map in the topological sense, i.e., q is surjective and U ⊆ Y is
open if and only if q−1(U) is open,

(iii) for every y ∈ Y, q−1(y) is a single G-orbit, and

(iv) for U ⊆ Y open, f : U→ C is a regular function on U if and only if f ◦ q is a
regular function on q−1(U).

The first important observation to make is that ifX is anyG-variety and f : X→ Z

is a regular map such that f◦σ = f◦projX, then f is constant on orbit closuresG · x.13

Therefore, if any orbit G · x ⊆ X is not closed, one has no hope of obtaining a
geometric quotient.

Example 2.3.3. LetX = Cm+1\{0}. ThenX is an algebraic variety: it is covered by the
affine open sets Ui = {(x0, . . . , xm) ∈ Cm+1 : xi ≠ 0}. The regular functions on Ui

are those of the form (x0, . . . , xm) ↦→ q(x0
xi

, . . . , ˆ︁xi

xi
, . . . , xm

xi
) where q ∈ C[z1, . . . , zm]

is a polynomial. Let C× act on X by

λ · (x0, . . . , xm) = (λx0, . . . , λxm).

Then m-dimensional projective space Pm is the geometric quotient of X by this
action of C×.

Example 2.3.4. LetC× act onC2 by λ · (x1, x2) = (λx1, λ−1x2). Then the closed orbits
are of the form C× · (x1, x2)with x1x2 ≠ 0, and the orbit {0}. The other orbits are
those of the form C× · (x1, x2) with exactly one of x1 and x2 non-zero, and 0 is
in their orbit closure. The existence of non-closed orbits implies that there is no
geometric quotient of C2 by C×. However, the categorical quotient is given by C,
with the quotient map C2 → C given by (x1, x2) ↦→ x1x2.
12The vague terminology is on purpose. In general, one may need to further enlarge the category

of objects for quotients to exist, to e.g. schemes. Moduli spaces in particular may not even exist
as schemes, instead falling into the bigger category of algebraic spaces or stacks [Art71; Knu71],
see e.g. [Ols16] for a modern introduction.

13We take the closure with respect to the Zariski topology here, but note that in the affine or
projective setting over C, the Zariski-closure of G · x agrees with the closure with respect to the
Euclidean topology.
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Example 2.3.5 (Adjoint action). Let G = GL(n,C), let X = Cn×n, and let g ∈ G act
on x ∈ X by g · x := gxg−1. Recall that every x ∈ X can be put into Jordan canonical
form: there exists g ∈ GL(n,C), k1, . . . ,km ⩾ 0 s.t.

∑︁m
i=1 ki = n and λ1, . . . , λm ∈ C

(not necessarily distinct) such that

g · x = ⊕mi=1Jλi,ki ,

where Jλ,k is the k × kmatrix given by

Jλ,k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
λ 1 0 . . . 0
0 λ 1 . . . 0

. . . . . .
0 0 . . . λ 1
0 0 . . . 0 λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Observe that by acting with diagonal matrices, one can make the off-diagonal
entries have arbitrary sizes – in particular, one can send them all to zero. For
example, if a,b ∈ Z, then⎡⎢⎢⎢⎢⎣

1
za

zb

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
λ 1 0
0 λ 1
0 0 λ

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
1
z−a

z−b

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
λ z−a 0
0 λ za−b

0 0 λ

⎤⎥⎥⎥⎥⎦ .

Taking the limit z→ ∞ when b > a > 0 shows that Jλ,1 ⊕ Jλ,1 ⊕ Jλ,1 is in G · Jλ,3.
Similarly, Jλ,1 ⊕ Jλ,2 is also in the orbit closure (using a = b > 0).

From the above discussion, it is clear that the image of x under any G-invariant
morphism X→ Z can depend only on the generalized eigenvalues of x. The closed
orbits correspond exactly to those x ∈ Xwhich have a full eigenbasis, i.e., ki = 1
for all i ∈ [m].

The adjoint action discussed above is particularly nice, because we can exactly
determine all the orbits (using the Jordan canonical form). However, one cannot
hope to achieve this for general representations. One particularly important setting
for which this is still sometimes doable to some extent (but not always) is that
of quiver representations. We refer to [Rei08] for an overview of this theory in the
context of geometric invariant theory.

In this subsection, we establish a fundamental result on orbit closures in the
affine setting due to Mumford. Before we state it, we make a definition:

Definition 2.3.6. Let X be an affine G-variety. A (G-)invariant polynomial is a
polynomial p ∈ C[X] such that, for every g ∈ G and x ∈ X, p(g · x) = p(x).
The invariant ring, denoted by C[X]G, is the algebra consisting of all G-invariant
polynomials.

Theorem 2.3.7 (Mumford). Let X be an affine G-variety, and let x, x′ ∈ X. Then G · x
contains a unique closed orbit. Furthermore, G · x ∩G · x′ ≠ ∅ (and in particular contain
the same unique closed orbit) if and only if p(x) = p(x′) for all invariant polynomials
p ∈ C[X]G.

It is clear that if y ∈ G · x ∩ G · x′, then p(x) = p(y) = p(x′) for every p ∈ C[X]G,
since p is a continuous G-invariant function and hence constant on orbit closures.
The other direction is the interesting one. We start with a fundamental result:
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Proposition 2.3.8 ([Wal17, Lem. 3.1]). Every orbit closure G · x contains a closed orbit.

We explain the idea, and for simplicity assume G is connected. Let z ∈ G · x
be such that dim(G · z) is minimal. We then claim that G · z is closed, and
argue by contradiction. Because G is connected, it is irreducible, hence G · z
is irreducible and so is its closure Y := G · z. Any proper closed subset Y′ ⊂ Y
satisfies dim(Y′) < dim(Y): if Y0 ⊂ · · · ⊂ Yd is any chain of distinct closed
irreducible subspaces of Y′, then Y0 ⊂ · · · ⊂ Yd ⊂ Y is a chain of distinct closed
irreducible subspaces of Y (the Yi are closed in Y because Y′ is). Now G · z is
automatically Zariski-open in G · z, as a consequence of Chevalley’s theorem on
constructible sets, see [Wal17, Lem. 3.1]. Therefore if Y ≠ G · z, then Y′ = Y \ (G · z)
is closed and non-empty. Then any y ∈ Y′ satisfies dim(G · y) ⩽ dim(Y′) (here we
use that for arbitrary Z ⊂ Y′, one has dim(Z) ⩽ dim(Y′)). Since dim(Y′) is strictly
smaller than dim(Y) = dim(G · z), we see that the latter is not minimal.

Next, we recall that any given a variety, any two disjoint affine subvarieties can
be separated by regular function:

Lemma 2.3.9 ([Wal17, Thm. 3.12]). Let X be an affine variety and let Y,Z ⊆ X be disjoint
affine subvarieties. Then there exists p ∈ C[X] such that p|Y ≡ 0 and p|Z ≡ 1.

Proof. Let J ⊆ C[X] denote the ideal of polynomials vanishing on Y. Then L = J|Z
is an ideal in C[Z].14 Because Y ∩ Z = ∅, for every z ∈ Z there must exist p ∈ L
such that p(z) ≠ 0, as otherwise we would have z ∈ Y. Therefore we must
have L = C[Z] by the Nullstellensatz (Theorem 2.2.1), as any proper ideal in C[Z]
would have non-empty common zero set. In particular, there exists some p ∈ J
such that p|Z = 1 ∈ C[Z]. □

The goal now is to upgrade Lemma 2.3.9 to a setting where all objects are G-
invariant, in the following sense: we replaceX, Y,Z by affine varieties upon whichG
acts, and we replace arbitrary polynomial functions on X by invariant polynomials
on X. The linear reductivity of G provides us with the following ingredient:15

Proposition 2.3.10. LetG be a linearly reductive group. Then for every affineG-variety X,
there exists an operator RX : C[X] → C[X]G called the Reynolds operator, with the
following properties:

(i) RX(1) = 1.

(ii) If p ∈ C[X] and q ∈ C[X]G, then RX(qp) = qRX(p).

(iii) If Y ⊆ X is aG-invariant Zariski-closed subset, then for every p ∈ C[X], RY(p|Y) =
RX(p)|Y .

We sketch the proof. The idea is to think of C[X] as a regular representation
of G, under the action (g · p)(x) := p(g−1 · x). ThenC[X]G is the maximal subspace
on which G acts trivially, i.e., the maximal trivial subrepresentation, and so it
14We use here that the varieties are affine: the ring homomorphism C[X] → C[Z] given by

restriction is surjective (by definition), hence the image of the C[X]-ideal J ⊆ C[X] under this
ring homomorphism is also a C[Z]-ideal in C[Z].

15We restrict the statement to coordinate rings C[X] for convenience, but such an operator also
exists for general “dual actions”, see [MFK94, Sec. 1.1].
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would be enough to construct a projection onto this subspace. One complication
is that C[X] is usually infinite-dimensional, so it is not obvious that there is a
well-defined (or canonical) complementary subspace, and hence no obvious way to
construct a projection RX : C[X] → C[X]G. However, one has the following useful
ingredients:

(i) If V ⊆ C[X] is a finite-dimensional subspace, then there exists a finite-
dimensional G-invariant subspace V′ ⊆ C[X] containing V .

(ii) Every finite-dimensional regular representation V of G splits as a direct
sum V = VG ⊕W, where VG consists of those v ∈ V such that g · v = v for
every g ∈ G, andW is the sum of all irreducible non-trivial subspaces of V
[Wal17, Lem. 3.6].

Then one can define the Reynolds operator RX as follows. For p ∈ C[X], let V ⊆
C[X] be a finite-dimensional invariant subspace containing p. Then let RX(p) be
the image of p under the projection V = VG ⊕W → VG. Verifying that RX is a
linear operator with the desired properties is left as an exercise to the reader.

The above description of RX is rather abstract. For GL(n,C) or SL(n,C), more
explicit descriptions exist via Cayley’sΩ-process; see for instance [Stu08; DK15].
This explicit description is also useful for analyzing algorithms for scaling problems,
see [BFG+19].

From Lemma 2.3.9 and the existence of the Reynolds operator RX as in Proposi-
tion 2.3.10, one deduces the following separation theorem:

Theorem 2.3.11 (Mumford, [MFK94, Cor. 1.2]). Let G be a linearly reductive group,
let X be an affine G-variety and let Y,Z ⊆ X be G-invariant disjoint affine subvarieties.
Then there exists p ∈ C[X]G such that p|Y ≡ 0 and p|Z ≡ 1.

Together with Proposition 2.3.8, this proves Theorem 2.3.7: if G · y ⊆ G · x
andG ·y′ ⊆ G · x′ are closed orbits, then p(x) = p(y) and p(x′) = p(y′) for every p ∈
C[X]G. Therefore if p(x) = p(x′) for every p ∈ C[X]G, we have p(y) = p(y′), soG ·y
andG ·y′ cannot be separated by aG-invariant regular function; by Theorem 2.3.11,
G ·y andG ·y′ cannot be disjoint, and in fact must be equal (since two group orbits
intersect if and only if they are equal). Therefore G · y ⊆ G · x ∩G · x′.

2.3.2. The invariant ring
We next discuss a classical fact about invariant rings due to Hilbert [Hil93].

Theorem 2.3.12 (Finite generation). Let X be an affine G-variety. Then the invariant
ring C[X]G is a finitely generated algebra.

This can be proven using the existence of Reynolds operators, see [Wal17, Thm. 3.11].
In short, becauseC[X] is Noetherian, the ideal J ⊆ C[X] generated byC[X]G admits
finitely many generators in C[X]G. The Reynolds operators can then be used to
show that these also generate C[X]G as an algebra.

Since C[X]G is a subalgebra of C[X], it also has trivial nilradical. Therefore, the
above theorem shows that C[X]G is the coordinate ring of an affine variety! In
fact, the affine variety defined by it is a categorical quotient of V by G [MFK94,
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Thm. 1.1], thus proving that affine G-varieties have affine categorical quotients. This
quotient is a geometric quotient if and only if every orbit G · x is closed [MFK94,
Amp. 1.3, Def. 0.8] (which is clearly a necessary condition, by the discussion
below Definition 2.3.2).

We give some examples of invariant rings:

Example 2.3.13 (Torus action). Let X = Ck, letω1, . . . ,ωk ∈ Zn and let G = (C×)n
act on X via

(z1, . . . , zn) · (x1, . . . , xk) = (zωjxj)kj=1, zωj := z(ωj)1
1 · · · z(ωj)n

n .

Note that the action of G is linear on X, hence is a representation. The vec-
tors ω1, . . . ,ωk are exactly the weights associated with the representation (see
Definition 2.2.14).

The invariant ring C[X]G consists of those p ∈ C[X] which are linear com-
binations of monomials xa = x

a1
1 · · · x

ak

k
, a ∈ Zk

⩾0, such that
∑︁k

i=1 ajωj = 0.
Therefore a generating set of invariants can be obtained from a Hilbert basis for
the set A = {a ∈ Zk

⩾0 :
∑︁k

i=1 ajωj = 0}, i.e., a (necessarily unique) minimal set
of a1, . . . ,ar such that every a ∈ A is a non-negative integer combination of the ai.
Writing down such a Hilbert basis is computationally hard in general, see [Stu08,
Sec. 1.4] for more details and Chapter 3 for an explicit example.

Example 2.3.14 (Matrix scaling). Let G = ST(n) × ST(n)where ST(n) ⊆ GL(n,C)
denotes the group of n × n diagonal matrices with unit determinant. We let G act
on V = Cn×n by

(X, Y) · A = XAY.
The Lie algebra Lie(G) is given by pairs (U,V)withU,V ∈ Cn×n diagonal matrices
with Tr[U] = Tr[V] = 0, and the exponential map exp: Lie(G) → G is given
by (U,V) ↦→ (eU, eV ) (interpreted as matrix exponentiation, but this agrees with
exponentiating the diagonal entries of U). Note that G is an algebraic torus of
dimension 2(n − 1). Because

(eU, eV ) · A = eUAeV =

n∑︂
i,j=1

eUii+VjjAijeie
T
j ,

the weights of the representation are given by the formsωij ∈ Lie(T )∗ defined by

ωij(U,V) = Uii + Vjj.

Identifying Lie(T )∗ ≅ Lie(T ) yields

ωij = (eieTi −
I

n
, ejeTj −

I

n
);

note that the − I
n appears because Lie(T ) consists of pairs of traceless matrices.

Now assume that p ∈ C[V] is an invariant polynomial; then as in Example 2.3.13,
p is a sum of invariant monomials in the entries of A, i.e., expressions of the form

k∏︂
ℓ=1
Aiℓjℓ
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for pairs (i1, j1), . . . , (ik, jk) ∈ [n]2. A monomial is invariant under the action if and
only if

∏︁k
ℓ=1 XiℓYiℓ is constant over all (X, Y) ∈ G; but that implies that this product

is a power of det(X)det(Y), i.e., every i ∈ [n] and j ∈ [n] appears the same number
of times among the i1, . . . , ik and j1, . . . , jk respectively. As a result, a generating set
for the invariants of the action is given by the matching monomialsA ↦→∏︁n

ℓ=1Aℓσ(ℓ),
where σ ∈ Sn is a permutation.

We note here that the sum of the squared absolute values of this generating set
is the permanent of the matrix with (i, j)-th entry given by |Aij |2, which made an
appearance as a progress measure for analyzing Sinkhorn’s algorithm for matrix
scaling in [LSW00]. From Mumford’s theorem (Theorem 2.3.7) one deduces that
this permanent is positive if and only if 0 ∈ G · A, which is true if and only if the
support of A contains a bipartite perfect matching.

Example 2.3.15 (Adjoint action). Let X = Cn×n and let G = GL(n,C) act on X
by g · x := gxg−1. Then for every k ⩾ 0, the polynomial x ↦→ Tr[xk] is a G-
invariant polynomial by cyclicity of the trace. In fact, essentially all of the invariant
polynomials are of this form: C[X]G is generated (as an algebra) by these maps.
This is due to Weyl [Wey46], see [Pro76] for a more accesible proof using Schur–
Weyl duality. We shall study this example and generalizations of it in more detail
in Chapter 3.

One can use the Cayley–Hamilton theorem to bound the number of generators
needed: the characteristic polynomial det(λI − A) is of the form p0(A) + · · · +
λnpn(A) for some invariant polynomials p0, . . . ,pn ∈ C[x11, x12, . . . , xnn] (since
the characteristic polynomial is invariant under conjugation). These polynomials
are exactly the elementary symmetric polynomials in the (generalized) eigenvalues
of A: if λ1, . . . , λn are the eigenvalues, then

pi(A) = ei(λ1, . . . , λn)

where ei is the i-th elementary symmetric polynomial in n variables. Now observe
that the traces Tr[Ak] are power sums of the eigenvalues, since Tr[Ak] = λk1 +· · ·+λkn.
It is well-known that both the elementary symmetric polynomials ei for 1 ⩽ i ⩽ n,
and the power sum polynomials of degree 1 ⩽ i ⩽ n, form a generating set for the
ring of symmetric polynomials in n variables, as can be deduced from e.g. [Sag13,
Thm. 4.3.7]. Moreover, for k ⩾ n,

Ak = Ak−nAn = Ak−n
(︂
−p0(A) − · · · − pn−1(A)An−1

)︂
by the Cayley–Hamilton theorem, and hence Tr[Ak] can be expressed as a polyno-
mial in Tr[Aj] for j < k by induction.

The fact that the invariants here are all given by symmetric polynomials in the
eigenvalues is a phenomenon that occurs more generally. Let G be a connected
semisimple algebraic Lie group, Lie(G) its Lie algebra endowed with the adjoint
action of G, T a maximal algebraic torus in G, Lie(T ) the corresponding Cartan
subalgebra, andW = N(T )/T the Weyl group where N(T ) is the normalizer of T
in G, Then Chevalley’s restriction theorem (see e.g. [Wal17, Thm. 3.62]) states that the
natural algebra morphism C[Lie(G)]G→ C[Lie(T )]W induced by restriction is an
isomorphism. For G = SL(n,C), Lie(G) consists of the traceless n × n matrices,
T are the diagonal n × n matrices with determinant 1 and Lie(T ) the traceless
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diagonal n × n matrices, and W ≅ Sn acts on Lie(T ) by permuting the diagonal
elements. Therefore C[Lie(T )]W consists of the symmetric polynomials in the
diagonal entries.

2.3.3. The Hilbert–Mumford theorem
In the proof of Proposition 2.3.8, we saw that the (unique) closed orbit G · w in
an orbit closure G · v is characterized as the unique orbit (closure) of minimal
dimension in G · v. Let Gw = {g ∈ G : g ·w = w} be the stabilizer of w. Then Gw

is also a linear algebraic group (the equation g · w = w defines a Zariski-closed
usbset of G) and hence has a well-defined dimension; by orbit-stabilizer reasoning,
one expects that dim(G) = dim(G · w) + dim(Gw). Therefore if the dimension
of G ·w is minimal, dim(Gw) is maximal, and in particular larger than dim(Gv). It
turns out that this can in fact be “witnessed” by a 1-parameter subgroup of G, in
the following sense:

Theorem 2.3.16 (Extended Hilbert–Mumford criterion). Let π : G → GL(V) be a
regular representation, let v ∈ V and letG ·w ⊆ G · v be the unique closed orbit. Then there
exists an algebraic group homomorphism φ : C×→ G such that limz→0φ(z) · v ∈ G ·w.
Furthermore, if G is chosen to be a symmetric subgroup of GL(n,C), then φ can be chosen
such that φ(z) = φ(z)∗.

The theorem in the case where w = 0 (i.e., 0 ∈ G · v) is what is usually known as
the Hilbert–Mumford criterion, and is due to Hilbert [Hil93, p. V.18] in the case
ofG = GL(n,C), and Mumford for generalG [MFK94, Thm. 2.1]. This general form
also appears implicitly in the proof [MFK94, p. 53], explicitly in Kempf [Kem78,
Thm. 1.4], and was also proven by Richardson [Bir71, Thm. 4.2] using different
methods. Birkes [Bir71] showed that a version of the criterion also holds over R.
For an accessible proof we refer to [Wal17, Thm. 3.24]

The above result serves as an incredible computational criterion, for the following
reason: suppose one wants to characterize all v ∈ V such that 0 ∈ G · v; we refer
to such v as being G-unstable (we explain why this notion is interesting in the
next subsection). To achieve this, first fix a maximal algebraic torus T ⊆ G. Then
it is often feasible to explicitly determine those w ∈ V with 0 ∈ T ·w. Now
let v ∈ V be such that 0 ∈ G · v. Then the Hilbert–Mumford criterion yields
some φ : C×→ Gwith limz→0φ(z) · v = 0. Since any two maximal algebraic tori
are conjugate [Wal17, Thm. 2.21], there exists some g ∈ G such that gφ(z)g−1 ∈ T
for all z ∈ C×; but this implies that g · v is T -unstable! Therefore the union of
the G-orbits of T -unstable vectors is exactly the set of G-unstable vectors, and
one can hope to give a “basis-invariant” characterization of G-unstable vectors by
appropriately rephrasing T -instability. We give some examples in Section 2.3.4.

To see how the theorem connects to discussion at the start of this subsection,
assume that G · v is not closed, and that dim(Gv) = 0. If w′ := limz→0φ(z) · v,
then φ(C×) ⊆ Gw′. Therefore dim(Gw′) ⩾ 1 > 0 = dim(Gv). Since w′ = g ·w for
some g ∈ G, Gw′ = gGwg

−1 is isomorphic to Gw, and hence dim(Gw) ⩾ 1.16

16It is unclear how to generalize this argument to dim(Gv) ⩾ 1; even though φ(C×) is not in Gv,
it could still be the case that Gφ(z)v = φ(z)Gvφ(z)−1 “converges” to a subgroup of Gw′ , and
henceφ(C×)would not be an actual witness to the growth in dimension. However, whenφ(C×)
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2.3.4. Stability and quotients of projective varieties
It is very often natural to consider projective varieties X ⊆ Pm rather than affine
varieties, as they are better behaved in many ways; for instance, they are complete,
which is the algebraic analog of compactness. Taking quotients in this context is a
more delicate procedure, however. One of the reasons is that unlike for the affine
setting, any globally defined regular function is constant, so C[X] = C and we
have no useful direct analog of C[X]G.

Let us be somewhat more precise. Consider a regular representation π : G→
GL(V) of a symmetric linear algebraic group G ⊆ GL(n,C). Then this descends to
an action of G on P(V). Let X ⊆ P(V) be a G-invariant closed subset of P(V). Then
we can attempt to construct a quotient of X as follows. The set X′ ⊆ V defined by

X′ = {v ∈ V : [v] ∈ X or v = 0}

is an affine variety in V : if p1, . . . ,pr ∈ C[V] are homogeneous polynomials whose
common zero set on P(V) is X, then X′ is their common zero set in V . It is easy
to verify that X′ is also G-invariant. Then we define the GIT quotient X//G as the
projectivization ProjR of the graded ring R = ⊕d⩾0C[X′]Gd , where C[X′]G

d
is the

set of G-invariant homogeneous polynomials of degree d. The points of ProjR are
given by homogeneous ideals in R which maximal with respect to the property
of not containing the irrelevant ideal ⊕d>0C[X′]Gd , see [Har77] for details. This
corresponds to the fact that a projective space P(V) is formed by first removing the
origin, and then identifying points on the same line. Note also thatC[X′]G0 = C[X′]0
consists of the constant functions on X′, hence is isomorphic to C. It can be turned
into an algebraic variety in a similar manner as for projective space P(V), which is
the projectivization ProjC[V].

In the G-invariant setting, we must therefore first remove the points equivalent
to zero, under the relation given by v ∼ w if and only if G · v ∩ G ·w ≠ ∅. This
motivates (part of) the following terminology:

Definition 2.3.17 (Stability). Let π : G → GL(V) be a regular representation. A
vector v ∈ V \ {0} is called17

(i) unstable if 0 ∈ G · v,

(ii) semistable if 0 ∉ G · v,

(iii) polystable if G · v is closed, and

(iv) stable if v is polystable and the stabilizer Gv of v is finite.

The semistable locus Xss, the polystable locus Xps and the stable locus Xs ⊆ X consist
of those x = [v] ∈ X such that v is semistable, polystable or stable, respectively. The
set of v ∈ V with v unstable or 0 is referred to as the null-cone of the action on V .

is in the normalizer of Gv, this is the case; in particular, this interpretation is valid when G is
commutative (i.e. G = T ). Furthermore, many actions encountered in the wild are such that
generic points have finite stabilizer.

17In [MFK94], properly stable is used for what we call stable, and stable is used for v such that there
is an open neighbourhood U ⊆ Xss of [v] containing only polystable points.
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The usefulness of unstable versus semistable is clear from the previous discussion.
To appreciate the value of a vector being stable, observe that by the extended
Hilbert–Mumford criterion (Theorem 2.3.16), if v,w ∈ V \ {0} are vectors such
that v ∈ G ·w \ (G · w) and G · v is closed, the stabilizer Gv of v contains a 1-
parameter subgroup of G (see Section 2.3.3). Therefore Gv will not be finite.
From the perspective of taking quotients, this means that the orbit of a vector
which is stable is guaranteed not to be identified with any other orbit. Moreover,
the polystable orbits are in one-to-one correspondence with the points in the
set-theoretic quotient Xss/G by Theorem 2.3.7.

Generally, the GIT quotient q : X→ X//G = Xss/G is a categorical quotient. If
there exist stable points in the sense of Mumford [MFK94, Def. 1.7], then there is
a non-empty open subset U ⊆ Xss/G such q−1(U) consists of all Mumford-stable
points, and q|q−1(U) : q−1(U) → U is a geometric quotient [MFK94, Thm. 1.10]. The
set q−1(U) contains all stable points.

We note here that [MFK94] constructs this quotient in a more general setting:
rather than assuming X to be projective, one can take an arbitrary scheme, together
with an invertible sheaf L on X such that G also linearly acts on L in a way that
lifts the action on X. This data is referred to as a G-linearization. When X ⊆ P(V)
is projective and the action of G comes from a linear action on V , such a G-
linearization of the action can be obtained as follows: invertible sheaves are the
algebraic analogue of line bundles, and over P(V) one has a tautological bundle
τ→ P(V) whose fiber over [v] ∈ P(V) is given by C · v ⊆ V (the corresponding
invertible sheaf is often denoted by 𝒪(−1)). The global sections of the dual L of
the tautological line bundle (corresponding to 𝒪(1)) are linear functions on V ,
i.e., C[V]1. More generally, global sections of L⊗d are homogeneous degree d
polynomials. One can define the various notions of stability relative to a G-
linearization L by using G-invariant sections of L⊗d, see [MFK94, Def. 1.7]; that
this generalizes Definition 2.3.17 then follows from Theorem 2.3.7.

Example 2.3.18 (Adjoint action). Let G = SL(n,C) act on V = {x ∈ Cn×n : Tr[x] =
0} by g · x = gxg−1, and let X = P(V). Then any matrix in G · x has the same
eigenvalues as x, and so if x is unstable, its eigenvalues must all be zero, i.e., x is
nilpotent. Clearly any nilpotent x is also unstable: first put x into Jordan canonical
form, then one can push the off-diagonal elements to zero as in Example 2.3.5. In
other words, the unstable vectors are exactly the nilpotent matrices. The polystable
vectors are those with all Jordan blocks of size one, i.e., having a full eigenbasis.
There are no stable vectors: if x has a full eigenbasis, then any matrix g ∈ SL(n,C)
which is diagonal in this basis commutes with x, so g · x = gxg−1 = x. In particular,
the stabilizer Gx contains an algebraic torus of dimension n − 1, so is not finite
unless n = 1. It is however true that matrices x with n distinct eigenvalues are not
in G · x′ \ (G · x′) for any x′, as can be deduced from the Jordan canonical form and
the Hilbert–Mumford criterion Theorem 2.3.16, see Example 2.3.5.

The set of x with n distinct eigenvalues form the non-vanishing set of the dis-
criminant of the characteristic polynomial of x, which is G-invariant (because the
characteristic polynomial is). This set is also exactly the set of stable vectors in the
sense of Mumford.

Example 2.3.19 (Binary forms). We consider the classical example of binary forms
of degree d [MFK94, Sec. 4.1]. Let V = C[x,y]d = Symd((C2)∗) denote the space
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of homogeneous degree d polynomials in two variables x,y. Then G = SL(2,C)
acts on V by (g · p)(x,y) = p(g−1(x,y)), where g−1 · (x,y) is defined by matrix
multiplication on C2. Let T = {diag(z, z−1) : z ∈ C×} be the maximal algebraic
torus in G. Note that every 1-parameter subgroup of G is conjugate to a subgroup
of T , so by the Hilbert–Mumford criterion (Theorem 2.3.16), the set of unstable
vectors p ∈ V is exactly given by the G-orbits of the T -unstable vectors.

We now determine the p ∈ V which are T -unstable. Suppose p(x,y) =∑︁d
i=0 aix

iyd−i for ai ∈ C. Then p is T -unstable if and only if either ai = 0
for all i ⩽ d/2 or ai = 0 for all i ⩾ d/2. To see this, suppose that for all x,y ∈ C,

lim
z→0
((diag(z−1, z) · p)(x,y) = lim

z→0

d∑︂
i=0
aiz

d−2ixiyd−i = 0.

Thenaizd−2i→ 0 as z→ 0 for all i = 0, . . . ,d, and in particularai = 0 wheneverd−
2i ⩽ 0. Similarly, the above limit being zero as z → ∞ would imply ai = 0
whenever d − 2i ⩾ 0.

To characterize their G-orbits, we observe the following: every p ∈ V \ {0}
admits a (not necessarily unique) factorization

p(x,y) =
d∏︂
j=0
(bjx + cjy)

as a product of linear forms, for some coefficients bj, cj ∈ C. It is enough to prove
this by induction on d, and the statement is trivial for d = 1. For higher d, observe
that for λ ∈ C,(︃ [︃

1 0
λ 1

]︃
· p

)︃
(x,y) = p(x,y − λx) =

d∑︂
i=0
aix

i(y − λx)d−i,

whose coefficient of xd is some polynomial in λ. By the fundamental theorem of
algebra, there exists some λ0 ∈ C for which p(x,y − λ0x) has vanishing coefficient
for xd (except in the case where the coefficient is constant as a function of λ, but
then p is a multiple of xd), and hence factorizes as p(x,y − λ0x) = yq(x,y) for
some q ∈ C[x,y]d−1. But then p(x,y) = (y + λ0x)q(x,y + λ0x) is a factorization
of p.

From this factorization, one can deduce that p is G-unstable if and only if some
linear factor appears strictly more than d/2 in the factorization, where two linear
factors are considered equivalent if and only if differ by a scalar multiple. The
semistable points are those where every linear factor occurs at most d/2 times, and
the polystable points are those where this inequality is strict.

The GIT quotient P(V)//G can be interpreted as the “moduli space of d points
on P1”, as every linear factor specifies a unique point in P1. The existence of the
factorization can also be deduced abstractly by observing that the map (P1)d→
Pd = P(V) given by multiplying the relevant linear forms is smooth, has irreducible
image and has derivative of rank d at a generic point, so the image must be all
of Pd. This map is also SL(2,C)-equivariant, and we have used this above to give
a “constructive” proof of the existence of such a factorization.
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2.4. The Kempf–Ness theorem
We now return to the problem of classifying orbit closures. Let G be a connected
symmetric linear algebraic group, π : G → GL(V) a regular representation, K a
maximal compact subgroup ofG, and assumeV is endowed with aK-invariant inner
product. We shall denote the induced norm on V by ∥·∥. Recall that Theorem 2.3.7
shows that two orbit closures intersect if and only if they contain the same
closed orbit; in a sense, the closed orbit classifies the orbit closure. However,
it is still desirable to understand whether one can give an essentially canonical
representative within the closed orbit. The Kempf–Ness theorem [KN79] achieves
this. For convenience, we use the following terminology, which is not entirely
standard but is natural:18

Definition 2.4.1 (Minimum norm vectors). For v ∈ V , we say that vmin is a minimum
norm vector for v if

vmin ∈ argmin{∥w∥ : w ∈ G · v}.
That is, vmin is a minimum norm vector for v if vmin ∈ G · v and ∥vmin∥ =

min
w∈G·v∥w∥ = infg∈G∥g · v∥.

Clearly, any vector v ∈ V has a minimum norm vector vmin: the set {w ∈
G · v : ∥w∥ ⩽ ∥v∥} is compact (closed and bounded) with respect to the Euclidean
topology, and ∥·∥ is a continuous function thereon, so achieves its minimum. The
minimum norm vectors are in general not unique, since if vmin is a minimum norm
vector then so is k · vmin for any k ∈ K (recall that K preserves the inner product,
hence also the norm). Crucially, this is the only source of non-uniqueness, as we
shall see shortly.

It is also convenient to make the following definition:

Definition 2.4.2. Let v ∈ V \ {0}. Then the Kempf–Ness function Fv : G → R

associated with v is given by

Fv(g) = log∥g · v∥.

Note that taking the logarithm is well-defined since G acts by invertible linear
transformations, hence g · v is never zero. Observe that if vmin is a minimum norm
vector for v, then vmin = 0 and Fv is unbounded from below, or Fv(g) ⩾ log∥vmin∥
for all g ∈ G.

We now focus on the properties of the minimum norm vector itself. It is clear
that if w is a vector of minimal norm in an orbit closure, then it is in particular a
vector of minimal norm in its own G-orbit, hence the derivatives of the norm (or
norm squared) must vanish in any direction along the orbit. These directions are
given by the Lie algebra Lie(G) of G, which is the complex vector space consisting
of all matrices X ∈ Cn×n such that etX ∈ G for all t ∈ R (see Definition 2.2.10).
Then t ↦→ etX ·w is a smooth curve in the orbit of w. Accordingly, if w is a vector
of minimum norm in its orbit, then ∥etX ·w∥2 must have a minimum at t = 0 and
the derivative at t = 0 will vanish. This motivates the following definition:

Definition 2.4.3. A vectorw ∈ V is called critical if ∂t=0∥etX ·w∥2 = 0 for every X ∈
Lie(G), or equivalently if w ≠ 0, ∂t=0Fw(etX) = 0 for every X ∈ Lie(G).
18For instance, [NM84] uses the term “minimal vector”.
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Since K acts unitarily, the norm will always be preserved if we move in directions
that keep us in the K-orbit; these are given by the Lie algebra Lie(K) of K. As K =

G ∩ U(n) ⊆ GL(n,C), Lie(K) consists of those X ∈ Lie(G) such that X is skew-
Hermitian. Furthermore, Lie(G) splits as a direct sum Lie(G) = Lie(K) ⊕ iLie(K)
(as a vector space, but not as a Lie algebra). One can show that Definition 2.4.3 is
equivalent to demanding that ∂t=0∥etX ·w∥2 = 0 for all X ∈ iLie(K); the latter are
precisely the Hermitian matrices in Lie(G).

Criticality is the natural first-order condition for a vector to have minimum
norm in its orbit (“at a minimum, all derivatives vanish”). Remarkably, this is also
sufficient! This was shown by Kempf and Ness [KN79], which further characterizes
the existence of minimum norm vectors. The precise statement is as follows, see
also [Wal17, Thm. 3.26]:

Theorem 2.4.4 (Kempf–Ness). Let v ∈ V . Then:

(i) v is critical if and only if ∥g · v∥ ⩾ ∥v∥ for every g ∈ G (i.e., v has minimum norm
in its orbit).

(ii) If v is critical and w ∈ G · v is such that ∥v∥ = ∥w∥, then w ∈ K · v.

(iii) If G · v is closed then there exists a critical element v′ ∈ G · v.

(iv) If v is critical then G · v is closed.

In particular, v is a minimum norm vector for itself (i.e., has minimum norm in G · v) if
and only if it has minimum norm in its orbit (meaning ∥g · v∥ ⩾ ∥v∥ for all g ∈ G), which
is the case if and only if v critical.

Thus, minimum norm vectors (or critical vectors) are unique up to the K-action,
and their G-orbits are closed, hence provide essentially canonical representatives
of orbit closures.

We now comment on the proof of Theorem 2.4.4 as given in [KN79]. Part (iii)
follows from non-negativity and continuity of the norm-function with respect to
the Euclidean topology onV : the function is bounded from below onG ·v, assumed
to be closed (Zariski-closed implies Euclidean-closed), hence has a minimizer.
Parts (i) and (ii) are less trivial. Let us assume that v ≠ 0. Then consider the
Kempf–Ness function Fv : G→ R defined by Fv(g) = log∥g · v∥ (Definition 2.4.2).
Then Fv is K-invariant, in the sense that Fv(kg) = Fv(g) for every k ∈ K and g ∈ G.
Therefore Fv may also be viewed as a function on the quotient K\G. Parts (i)
and (ii) then assert that Fv has a unique critical point, which is simultaneously its
minimizer. The key reason is that, when K\G is endowed with an appropriate
geometry, the function Fv is (strictly) convex along geodesics. We shall now use the
concrete meaning of this statement for the proof (in fact only for eFv , which is
weaker), and defer a detailed discussion of geodesic convexity of the Kempf–Ness
function to Proposition 2.6.6 and Chapters 6 and 10.

We first prove a short proposition.

Proposition 2.4.5. Let Ω ⊆ Zn be a finite set and let qω ⩾ 0 for ω ∈ Ω. Define a
function a : Rn→ R by

a(x) =
∑︂
ω

qωe
2⟨ω,x⟩.

Then:
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(i) 0 is a critical point of a if and only if a(x) ⩾ a(0) for all x ∈ Rn.

(ii) If 0 is a critical point of a and a(x) = a(0) for some x ∈ Rn, then ⟨ω, x⟩ = 0 for
allω ∈ Ω such that qω > 0.

Proof. (i) This follows directly from the fact that a is a convex function on Rn.
(ii) Consider the function b(t) = a(t x) for t ∈ R. By convexity, b(t) ⩽ t a(0) +
(1 − t)a(x) = a(0) for t ∈ [0, 1]. Since 0 is critical for a, we also have b(t) ⩾ b(x) for
all t ∈ [0, 1]. Therefore b and its derivative b′ are constant on [0, 1]. This implies
that b′′(0) = 4

∑︁
ω qω⟨ω, x⟩2 = 0, hence either qω = 0 or ⟨ω, x⟩ = 0. □

Proof of Theorem 2.4.4. (i). The non-trivial direction is to show that if v is critical,
then ∥g · v∥ ⩾ ∥v∥ for every g ∈ G. Fix g ∈ G. By the Cartan decomposition (Theo-
rem 2.2.15), there exist k,h ∈ K and t ∈ T such that g = kth. Then g = (kh)(h−1th)
is such that kh ∈ K and h−1th ∈ h−1Th, which is a maximal algebraic torus inG and
symmetric (since h ∈ K implies h−1 = h∗). Choose an adjoint-preserving isomor-
phism (C×)n ≅ T ; this yields an adjoint-preserving isomorphism (C×)n ≅ h−1Th
as well since h ∈ K. By Theorem 2.2.13, there exists a finite set Ω ⊆ Zn such
that V =

⨁︁
ω∈Ω Vω orthogonally decomposes into weight spaces.

Now observe that if h−1th = (z1, . . . , zn) under the isomorphism and v =∑︁
ω∈Ω vω, we have

∥g · v∥2 = ∥((kh)(h−1th)) · v∥2 = ∥(h−1th) · v∥2 =
∑︂
ω∈Ω
|z|2ω∥vω∥2

where |z|2ω = (|z1 |2)ω1 · · · (|zn |2)ωn . It is now convenient to make a change of
coordinates: let xj = log|zj |. Then

∥g · v∥2 =
∑︂
ω∈Ω

e2⟨ω,x⟩∥vω∥2

Observe that this function is convex in x. Since v is critical, we have ∂s=0∥esX ·
v∥2 = 0 for every X ∈ Lie(G), so in particular for X ∈ Lie(h−1Th). We now
invoke Proposition 2.4.5 to obtain that ∥(h−1th) · v∥2 ⩾ ∥v∥2. Item (ii) now also
follows: if ∥g · v∥ = ∥v∥, then in the weight decomposition for h−1Thwe see that
for everyω ∈ Ω, either qω = 0 or ⟨ω, x⟩ = 0. This implies that (h−1th) · v = v, and
so g · v = kh · (h−1th) · v = kh · v ∈ K · v.

We prove part (iv) by contraposition. Suppose thatG ·v is not closed. Then by the
Hilbert–Mumford criterion (Theorem 2.3.16) there exists a point w ∈ G · v \ (G · v)
and a symmetric one-parameter subgroupφ : C×→ G such that limz→0φ(z)v = w.
Again by the weight decomposition, there exist integersΩ ⊂ Z and coefficients qω
such that

∥φ(ex)v∥2 =
∑︂
ω∈Ω

qωe
2ωx.

Since limz→0φ(z)v = w, we must have

lim
x→−∞

∥φ(ex)v∥2 < ∞;

hence for everyω ∈ Ω, either qω = 0 orω ⩾ 0. Furthermore, sincew is not inG · v,
there is some ω > 0 with qω > 0, and in particular we have ∥φ(ex)v∥ < ∥v∥
for x < 0. This shows that v is not critical. □
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2.5. The moment map
We saw in the Kempf–Ness theorem (Theorem 2.4.4) that critical vectors have
minimal norm among all vectors in their orbit closure, and every orbit closure
contains such vectors. Criticality was defined in terms of the derivative of the
Kempf–Ness (log-norm) function on the group. This derivative turns out to be
interesting in its own right. Let G ⊆ GL(n,C) be a connected symmetric linear
algebraic group, K = G ∩U(n) a maximal compact subgroup, and π : G→ GL(V)
a regular representation such that V is a Hilbert space and π(K) ⊆ U(V).

Definition 2.5.1 (Moment map). For v ∈ V \ {0}, let Fv : G→ R, g ↦→ log∥g · v∥ be
its Kempf–Ness function. The moment map19 µ : V \ {0} → iLie(K) is given by

µ(v) = gradg=I Fv(g) = gradg=I log∥g · v∥.

The gradient is taken with respect to the Hilbert–Schmidt inner product on Lie(G) ⊆
Cn×n, i.e., it is uniquely determined by

⟨µ(v),X⟩ = Tr[µ(v)∗X] = ∂t=0 log∥etX · v∥ = ∂t=0Fv(etX), X ∈ Lie(G).

Some comments on this definition are in order. Although not immediately
obvious, the moment map as defined above is actually a moment map in the
symplectic sense for the action of K on the projectivization P(V) of V [NM84],
where the projectivization of V is endowed with (a scalar multiple of) the Fubini–
Study form. The moment map is also K-equivariant with respect to the adjoint
action on iLie(K), in the sense that µ(k · v) = kµ(v)k−1 for k ∈ K. Its codomain is
also slightly non-standard: usually, µ(v)would be an element of the dual Lie(K)∗.
However, the above concrete definition naturally takes values in iLie(K), since K
acts unitarily on V and hence the derivative in those directions is zero. As a
consequence, µ(v) ∈ iLie(K) ⊆ Herm(n) and hence µ(v)∗ = µ(v).

When G = T = (C×)n is an algebraic torus, the codomain of the moment map
is iLie(TK) = Rn. The image µ(T · v) is then the set of all possible gradients
of the Kempf–Ness function Fv on the quotient space TK\T ≅ Rn, where the
isomorphism is given by (x1, . . . , xn) ← ⫞ (ex1 , . . . , exn). Under this isomorphism,
Fv is of the form 1

2 log
(︂∑︁

ω∈Ω |vω |2e2⟨ω,x⟩
)︂
, where the Ω ⊂ Zn is the set of

weights appearing in the weight decomposition V = ⊕ω∈ΩVω, and v =
∑︁

ω∈Ω vω;
see Definition 2.2.14.

A straightforward computation yields the following proposition:

Proposition 2.5.2. Let π : (C×)n → GL(V) be an action on V with π(U(1)n) ⊆ U(V)
and weightsΩ ⊂ Zn. Then for v ∈ V \ {0} of the form v =

∑︁
ω∈Ω vω,

µ(v) =
∑︁

ω∈Ω |vω |2ω
∥v∥2 .

Therefore, µ(v) is in the convex hull of the support supp v ⊆ Ω, i.e., the ω ∈ Ω for
which vω ≠ 0. From elementary convex analysis [Roc70, Thm. 26.5] it also follows
19The name moment map as introduced in English by Marsden and Weinstein [MW74] is technically

a mistranslation of the French “application moment”, a term introduced in [Sou67]. Although the
correct choice would be to call it a momentum map, we do not break this tradition.
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that the image µ(T · v) of an orbit is an open convex set in iLie(TK) ≅ Rn. In fact, its
image is entire relative interior of conv(supp v), hence its closure (with respect to
the Euclidean topology) is conv(supp v). We give a self-contained proof of this fact
in Chapter 5. More generally, for Hamiltonian torus actions on connected compact
symplectic manifolds, the image of the moment map is a convex set [Ati82; GS82;
Kir84a].

For non-commutativeG, a variation of the convexity statement is also true [Kos73;
NM84; GS84; Bri87], even outside the Kähler setting [Kir84a]. A precise statement
requires somewhat more terminology. One can choose a closed cone iLie(TK)+ ⊆
iLie(K) called a positive Weyl chamber. Then for every H ∈ iLie(K), the adjoint
orbit {kHk−1 : k ∈ K} intersects iLie(TK)+ in a unique point [Hel79, Ch. VII,
Prop. 2.2, Thm. 2.22]. For K = U(n), this amounts to the statement that a Hermitian
matrix is unitarily diagonalizable, such that the diagonal elements are ordered in
a decreasing manner. We define this to be spec↘(H).

Definition 2.5.3 (Moment polytope). Let v ∈ V \ {0}. Then the moment polytope∆(v)
of v is defined as

∆(v) = spec↘(µ(G · v)) = µ(G · v) ∩ iLie(TK)+,

where the closure is taken with respect to the Euclidean topology on iLie(TK)+ ⊆
iLie(TK). The moment polytope of V is defined by ∆ = ∪v∈V\{0}∆(v), or equiva-
lently ∆ = spec↘ µ(V \ {0})).

The nomenclature is justified by the following theorem [NM84; GS84; Bri87]:

Theorem 2.5.4. Let v ∈ V \ {0}. Then ∆(v) is a convex polytope.

The convexity holds in fact not just for orbit (closures) but for arbitrary irreducible
closed G-subvarieties of P(V).

Using the moment map and the various notions of stability (Definition 2.3.17),
the Kempf–Ness theorem (Theorem 2.4.4) can be reformulated as follows:

Theorem 2.5.5. Let v ∈ V \ {0}. Then:

(i) µ(v) = 0 if and only if ∥g · v∥ ⩾ ∥v∥ for every g ∈ G.

(ii) If µ(v) = 0, then µ−1(0) ∩G · v = K · v.

(iii) If v is polystable then 0 ∈ µ(G · v).

(iv) If µ(v) = 0 then v is polystable.

Furthermore, v is semistable if and only if 0 ∈ ∆(v).

We note here that the above rephrasing has the following interesting consequence.
Consider the map µ̃ : P(V) → iLie(K) given by µ̃([v]) = µ(v) (note thatµ is invariant
under rescaling v). Assume also that 0 ∈ iLie(K) is a regular value of µ̃, and that K
acts freely and properly onM = µ̃−1(0). Then the symplectic quotient [MW74; Mey73]
µ̃−1(0)/K is a symplectic manifold whose points are in one-to-one correspondence
with the GIT quotient P(V)ss//G, and this fact is of great importance. We refer
to [Kir98] for a modern survey.

Next, we give an example of a non-commutative moment map:
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Example 2.5.6 (Adjoint action). LetG = GL(n,C) act on V = Cn×n via conjugation.
We endow V with the Hilbert–Schmidt norm. Then for v ∈ V \ {0} the Kempf–
Ness function is given by Fv(g) = log∥gvg−1∥HS. Given a Hermitian matrix H ∈
iLie(U(n)), we have

∂t=0Fv(etH) = log∥etHve−tH∥HS =
1
2
∂t=0 Tr[e−tHv∗e2tHve−tH]

∥v∥2HS

=
Tr[H(vv∗ − v∗v)]

∥v∥2HS
.

Since the moment map µ(v) is characterized by Tr[µ(v)H] = ∂t=0Fv(etH), we obtain

µ(v) = vv
∗ − v∗v
∥v∥2HS

.

Therefore v is critical if and only if v is unitarily diagonalizable, and v is polystable
if and only if it becomes unitarily diagonalizable after some (non-unitary) change of
basis, thus if and only if v is similar to a diagonal matrix, as we saw in Example 2.3.18.

Example 2.5.7 (Bipartite quantum states). Let G = GL(n,C) ×GL(n,C) act on V =

Cn⊗Cn byg·v = (g1⊗g2)v. Then forH = (H1,H2) ∈ iLie(K) = Herm(n)⊕Herm(n)
a tuple of Hermitian matrices, we have

∂t=0 log∥exp(tH) · v∥ = ∂t=0 log∥(etH1 ⊗ etH2)v∥

=
1
∥v∥2 (⟨v, (H1 ⊗ I)v⟩ + ⟨v, (I ⊗ H2)v⟩)

= Tr[H1ρ1] + Tr[H2ρ2] = ⟨(H1,H2), (ρ1, ρ2)⟩ ,

where ρ =
|v⟩ ⟨v|
⟨v|v⟩ and ρ1 = Tr2[ρ], ρ2 = Tr1[ρ] are its partial traces. Therefore the

moment map is given by
µ(v) = (ρ1, ρ2).

Now the eigenvalues of the first component are exactly given by the Schmidt
coefficients of v (its singular values when viewed as an operator Cn → Cn),
and the same holds for the second component. Clearly, the number of non-zero
coefficients cannot increase by acting with G, but the Schmidt coefficients can
be changed arbitrarily (by acting with diagonal matrices in the Schmidt basis).
Therefore µ(G · v) consists of (σ1,σ2) ∈ Herm(n) ×Herm(n) with σ1,σ2 positive
semidefinite, having the same eigenvalues, Tr[σ1] = Tr[σ2] = 1, and rank(σ1) ⩽
rank(ρ1). Note that all these constraints can be viewed as linear inequalities on
the ordered spectra of ρ1, ρ2, hence the achievable ordered spectra form a convex
polytope.

The moment polytope also admits a purely representation-theoretic description.
IfC[V]d denotes the ring of homogeneous polynomials of degree on d, thenC[V]d
is also a representation of G, under (g · p)(v) = p(g−1 · v). The irreducible
representations Vλ ofG are determined by their highest weights λ ∈ Lie(TK)+, which
is a dominant integral element of Lie(T )∗. In the case of GL(n,C), the irreducible
representations are labelled by integer sequences λ1 ⩾ . . . ⩾ λn. If Vλ denotes
the irreducible representation labelled by a dominant integral vector λ, then the
following was shown by Mumford [NM84] and Brion [Bri87]:
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Theorem 2.5.8. The moment polytope ∆ satisfies

∆ =

{︃
λ

d
: Vλ is a subrepresentation of C[V]d

}︃
.

A similar description exists for the moment polytope of an irreducible closed G-
subvariety of P(V), where C[V]d is replaced by the homogeneous functions
of degree d on the cone over X. This representation-theoretic characterization
yields the connection between the quantum marginal problem and the asymptotic
non-vanishing of Kronecker coefficients, see e.g. [Kly04].

2.6. The computational problems
We now put a more computational spin on the theory developed in the previous
sections. Let G ⊆ GL(n,C) be a connected symmetric linear algebraic group,
and π : G → GL(V) a regular representation such that V is endowed with a K-
invariant inner product ⟨·, ·⟩, and induced norm ∥·∥. Suppose we are given explicit
descriptions ofG as a subgroup of GL(n,C)described by finitely many polynomials
equations, the representation π described by its matrix coefficients with respect to
some basis of V , and the vectors v, v′ ∈ V in the same basis. How does one decide
algorithmically whether v and v′must necessarily be the same in the quotient V//G,
that is, whetherG · v∩G · v′ ≠ ∅? We shall refer to this as the orbit closure intersection
(OCI) problem.

Problem 2.6.1 (Orbit closure intersection). Given a linearly reductive group G ⊆
GL(n,C), a regular representation π : G → GL(V), and vectors v, v′ ∈ V , determine
whether G · v ∩G · v′ ≠ ∅.

Mumford’s theorem (Theorem 2.3.7) together with Hilbert’s finiteness theorem
(Theorem 2.3.12) suggest that this is a decidable problem. In fact, there exist
algorithms that, given equations for G and the entries of the representation π
expressed in some basis of V , compute generators p1, . . . ,pr ∈ C[V]G [DK15].
Accordingly, determining whether two vectors v, v′ are equivalent in the sense of
GIT (i.e., G · v ∩G · v′ ≠ ∅) can in principle be decided by an algorithm – simply
check whether pj(v) = pj(v′) for all j ∈ [r]. However, this is impractical, since
known algorithms for computing generators are inefficient (run in exponential time
or worse) and in many situations one will have to deal with generators that have
exponentially large degree (we will in fact see an explicit example in Section 3.3)
or are hard to evaluate in the sense of computational complexity [GIM+20].
Furthermore, it is not clear how such an algebraic approach could go beyond the
decision problem to compute, e.g., an element in the orbit closure intersection,
or a sequence of group elements that drives one there. We note here that in the
commutative setting one also has these obstructions, but here one can still use an
invariant-theoretic approach to solve the OCI problem [BDM+21]; for OCI in the
setting of operator scaling one can also give polynomial-time algorithms based on
invariants [DM20a].

We have now seen in the Kempf–Ness theorem (Theorem 2.4.4) that mini-
mum norm vectors provide essentially canonical representatives of orbit closures.
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Therefore, an alternative approach as follows: to decide whether v and v′ have
intersecting orbit closures, first compute minimum norm vectors vmin and v′min, and
then determine whether there exists a k ∈ K such that vmin = k · v′min. Of course,
this is easier said than done, although it has been done in the setting of operator
scaling [AGL+18]. One should in general not be expect to be able to compute
the minimum norm vectors vmin exactly; for example, they may have irrational
entries,20 so rational-number arithmetic can only produce approximate results. It
is also not obvious how to certify that a vector has approximately minimal norm in
its orbit closure. Moreover, it may be computationally difficult to decide whether
two vectors are in the same K-orbit; this problem is known to be at least as hard as
graph isomorphism [CGQ+23], but efficiently solvable in special cases [AGL+18;
BDM+21; DKMV23].

In light of the notion of (in)stability (Section 2.3.4), one particularly interesting
case of the OCI problem is when v′ = 0, i.e., determining whether v is in the null
cone.

Problem 2.6.2 (Null cone). Given a regular representationπ : G→ GL(V) of a connected
linearly reductive group G ⊆ GL(n,C), and v ∈ V \ {0}, determine whether 0 ∈ G · v.

We now observe that by the Kempf–Ness theorem, v ∈ V is in the null cone if
and only if vmin = 0, which holds if and only if infg∈G∥g · v∥ = 0. Therefore, the
null cone problem can be viewed as characterizing the optimal value of the norm
minimization problem:

Problem 2.6.3 (Norm minimization). Given a regular representation π : G→ GL(V)
of a connected linearly reductive group G ⊆ GL(n,C), v ∈ V \ {0} and δ > 0, output
either g ∈ G such that log∥g · v∥ ⩽ log∥vmin∥ + δ, or assert that v is in the null cone of V .

Rephrased in terms of the Kempf–Ness function Fv(g) = log∥g · v∥, the norm
minimization problem asks to find an δ-approximate minimizer of Fv, or to assert
that Fv is unbounded from below. Note that taking the logarithm of the norm
is natural given the scale invariance of the problem: if vmin is a minimum norm
vector for v, then λvmin is a minimum norm vector for λv.

There is another natural error measure: recall from Theorem 2.4.4 that v is
a minimum norm vector if and only if v is critical, i.e., µ(v) = 0 where µ(v) =
gradg=I Fv(g) is the moment map and Fv is the Kempf–Ness function. Therefore
the norm of the moment map is also a natural error measure, as this measures the
distance from zero; we use here the norm induced by the Hilbert–Schmidt norm
on Lie(G) ⊆ Cn×n.

Problem 2.6.4 (Scaling). Given a regular representation π : G→ GL(V) of a connected
linearly reductive algebraic group G ⊆ GL(n,C), v ∈ V \ {0} and ε > 0, output
either g ∈ G such that ∥µ(g · v)∥ ⩽ ε, or assert that v is in the null cone of V .

The norm-minimization and scaling problems are equivalent for δ = ε = 0
as shown by the Kempf–Ness theorem. Although not obvious, it turns out
a quantitative relationship also holds [BFG+19]. To state this, we define the
following two parameters:
20A simple example is given by C× acting on C2 via z · (v1, v2) = (zv1, z−1v2). The U(1)-orbit of

minimum norm vectors of v = (1, 2) is given by U(1) · (
√

2,
√

2).

48



2.6. The computational problems

Definition 2.6.5 (Weight margin and weight norm). The weight margin γ(π) of the
representation π is defined as

γ(π) = min{d(0, conv Γ ) : Γ ⊆ Ω(π), 0 ∉ conv Γ }.

Here, conv Γ refers to the convex hull of Γ ⊆ Lie(T )∗. The weight norm N(π) is
defined by

N(π) = max{∥ω∥ : ω ∈ Ω(π)}.
The distance d(·, ·) and ∥·∥ are defined in terms of the Hilbert-Schmidt inner
product after identifying Lie(T )∗ ≅ Lie(T ) ⊆ Cn×n.

While these parameters are somewhat abstract, we give a short justification for
their appearance. Let v ∈ V \ {0}, and restrict to the case where G = T = (C×)n is
commutative. Recall from Proposition 2.5.2 that if one considers the weightsΩ(π)
as a subset of iLie(TK) (Definition 2.2.14) and v =

∑︁
ω∈Ω(π) vω, then one has

µ(v) = 1
∥v∥2

∑︂
ω∈Ω
∥vω∥2ω.

We observe now that the support supp v, i.e., the set ofω such that vω ≠ 0, does
not change when one acts with G = T . This implies that if v ∈ V \ {0} is such
that the convex hull of its support does not contain 0, then ∥µ(g · v)∥ ⩾ γ(π)
for all g ∈ G. Note that this also implies that vmin = 0: one can use a (rational)
separating hyperplane between 0 and conv(supp v) to find a direction Y ∈ iLie(K)
such that etY · v → 0 as t → ∞. This is exactly the Hilbert–Mumford criterion
(Theorem 2.3.16) in the unstable case for commutative groups.

In the non-commutative case, for T ⊆ G a maximal algebraic torus, the moment
map µT with respect to T is the projection of µG onto iLie(TK), and so ∥µG(v)∥ ⩾
∥µT (v)∥. By the Hilbert–Mumford criterion, if a vector v is G-unstable, then it
is T -unstable with respect to some T . Hence ∥µG(v)∥ ⩾ ∥µT (v)∥ ⩾ γ(π). Therefore
also in the non-commutative case it is true that ∥µG(v)∥ < γ(π) implies that v is
semistable.

The appearance of the weight norm N(π) is simpler to explain: it is an upper
bound on the norm of the moment map µ(v). But µ(g · v) is the gradient of the
Kempf–Ness function Fv at g ∈ G, and hence Fv is N(π)-Lipschitz (thought of as a
function on K\G). More generally N(π) appears when bounding the higher-order
derivatives of Fv [BFG+19, Prop. 3.13]:

Proposition 2.6.6 (Smoothness). Let v ∈ V\{0}. Then for everyg ∈ G andH ∈ iLie(K),

0 ⩽ ∂2
t=0Fv(etHg) ⩽ 2N(π)2∥H∥2HS.

Proof. Without loss of generality one may take g = I, since Fv(etHg) = Fg·v(etH).
Recall that we write ⟨·, ·⟩ for the inner product on V . Let Π = dπI : Lie(G) →
Lie(GL(V)) be the induced representation on the Lie algebras. Then

∂tFv(etH) =
1
2∂t log ⟨π(etH)v,π(etH)v⟩

=
⟨π(etHv,Π(H)π(etH)v⟩

∥π(etH)v∥2
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and

∂2
t=0Fv(etH) = 2 ⟨Π(H)v,Π(H)v⟩∥v∥2 − 2 ⟨v,Π(H)v⟩

2

∥v∥4

= 2
(︂
⟨Π(H)w,Π(H)w⟩ − ⟨w,Π(H)w⟩2

)︂
(2.6.1)

= 2 ⟨w, (Π(H) − ⟨w,Π(H)w⟩ I)2w⟩ . (2.6.2)

wherew = v/∥v∥. NowΠmaps iLie(K) to iLie(U(V)) ⊆ Herm(V) and henceΠ(H)−
⟨w,Π(H)w⟩ I is a Hermitian operator, hence its square is a positive-semidefinite
operator. In particular, Eq. (2.6.2) gives ∂2

t=0Fv(etH) ⩾ 0. Moreover, using Eq. (2.6.1)
we can upper bound the second derivative by

2∥Π(H)w∥2 ⩽ 2∥Π(H)∥2∞ ⩽ 2N(π)2∥H∥2HS

where ∥·∥∞ is the operator norm. For the last inequality, we appeal to [BFG+19,
Prop. 3.11], which states that the weight normN(π) is equal to max{∥Π(H)∥∞ : H ∈
iLie(K), ∥H∥HS = 1}. This fact can be proven by explicitly considering a maximal
torus whose Lie algebra contains H. □

We are now in a position to state a quantitative relationship between the norm
of the moment map and the approximation ratio ∥vmin∥/∥v∥ for v ∈ V \ {0}:

Theorem 2.6.7 (Non-commutative duality, [BFG+19, Thm. 1.17]). For v ∈ V \ {0}
with minimum norm vector vmin (Definition 2.4.1), we have

1 − ∥µ(v)∥
γ(π) ⩽

∥vmin∥2
∥v∥2 ⩽ 1 − ∥µ(v)∥

2

4N(π)2 .

The upper bound can be deduced from a geodesic gradient descent argument
for Fv (Proposition 6.5.3), using the 2N(π)2-smoothness proved in Proposition 2.6.6.
The lower bound is more delicate to prove, and we do not comment further on it.

One can generalize the scaling problem as follows: rather than just ask whether 0
is in the moment polytope, one can also ask if a specific (rational) pointp ∈ iLie(TK)+
is in the moment polytope ∆(v) of a given vector v ∈ V \ {0}. We do not state this
problem formally here and refer instead to [BFG+19]. However, we note that this
is still related to a (geodesic) convex optimization problem. In the commutative
case, one can simply modify the Kempf–Ness by simply adding a linear function
(after a change of coordinates), see Chapter 5 for details. In the non-commutative
case, the corresponding norm minimization problem is on a different (possibly
much larger) representation, as can be seen by a shifting trick [NM84; Bri87].

As an extension of the scaling problem, one can also ask the following question:
suppose that v ∈ V \ {0} is unstable. Then still ∆(v) is a convex polytope, so there
exists a closest point to 0, i.e., the projection of 0 onto ∆(v). Can one find this point
efficiently? As was observed in [NM84; Kir84b], following the gradient flow of the
functionP(V) → R given by [v] ↦→ ∥µ(v)∥2HS from a starting point [v0] is in a sense
equivalent to following the gradient flow of the Kempf–Ness function Fv0 . This
gradient flow always stays in the G-orbit of [v0] ∈ P(V), and actually converges to
a minimizer on its projective orbit closure. This result has been proposed as an
algorithmic tool for testing moment polytope membership in [WDGC13; Wal14],
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but giving rigorous guarantees for algorithmically following this gradient flow in
the unstable case remains an open problem. However, we do note that it has proven
useful for the purpose of giving diameter bounds on approximate minimizers for
the norm minimization and scaling problems, see for instance [KLLR18] (where it
was used to solve the Paulsen problem), [AGL+18; KLR19] and [BFG+19, Prop. 5.6].
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3. The minimal canonical form of a
tensor network

In this chapter we identify a novel application of geometric invariant theory as
discussed in Chapter 2 in the context of tensor networks in quantum many-body
physics. The chapter is organized as follows. We provide a detailed introduction
below in Section 3.1. In Section 3.2, we show how to apply geometric invariant
theory to construct the minimal canonical form for matrix product states. Our
main results are proved in Section 3.3, where we introduce the minimal canonical
form for PEPS and establish its properties. In Section 3.4 we provide explicit
algorithms for computing the minimal canonical form. We end with a brief outlook
in Section 3.5, suggesting applications for the minimal canonical form and avenues
for future research.

3.1. Introduction
Tensor networks are a fruitful area of interconnection between quantum information
theory and quantum many-body physics. On the one hand, tensor network states
are rich enough to approximate with high accuracy most states which are relevant
in condensed matter physics, such as Gibbs states and ground states. On the other
hand, tensor networks are sufficiently simple that they enable one to manipulate
complex quantum states, both numerically and theoretically. For the purpose of
numerics, one can design variational optimization algorithms to simulate strongly
interacting quantum systems. On the other side of the spectrum, tensor networks
have been a powerful theoretical method to obtain simple characterizations of
complex global phenomena like topological order.

Roughly speaking a tensor network is defined by a set of tensors with two types
of indices: virtual ones, whose dimension is called the bond dimension, and physical
ones, associated to the different subsystems of a quantum many-body system.
These tensors generate a state (called a tensor network state) in the physical Hilbert
spaces of the system by contracting the virtual indices on a given graph, typically
a lattice associated to the interaction pattern of a Hamiltonian. The graphical
notation for tensor network contractions is briefly reviewed in Fig. 3.1a.

The success of tensor network states as a numerical variational family dates
back to the pioneering paper [Whi92], where the Density Matrix Renormalization
Group (DMRG) algorithm was proposed as a way to approximate ground states of
one-dimensional systems. Nowadays, this algorithm is seen as a way to minimize
energy over the manifold of Matrix Product States (MPS), the first and most well-
known family of tensor networks. From the perspective of quantum information
theory, one may also see MPS as pairs of maximally entangled states to which

This chapter is adapted from [AMN+23].
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3. The minimal canonical form of a tensor network

locally a projection operator is applied. This allowed the generalization of the
construction to more complex scenarios, including higher dimensions [VPC04;
VC04]. There, the associated objects are called Projected Entangled Pair States
(PEPS), precisely due to the perspective of applying projectors to a configuration
of maximally entangles states. By now, there can be no doubt that this is one of
the most important and powerful paradigms in numerical simulation of quantum
systems [JCF+21; RBC21; SDC+22; ZCC+17], a recent highlight being the classical
simulation [PZ22] of the Google quantum supremacy experiment [AAB+19].

On the theoretical side tensor networks allow one to give local characterizations,
in terms of their defining tensors, of global properties of interest, such as symmetries
or topological order. The pioneering work [FNW92], independently from the
DMRG proposal [Whi92], started this line of research. One of the first milestones
was the cohomology-based classification of one-dimensional symmetry-protected
topological (SPT) phases [CGW11; PBTO12; SPC11]. Today, this is an active area of
investigation, see for instance the recent review [CPSV21] for details on the current
state of the art. For instance, tensor networks are used for the characterization of
topological order and topological phase transitions in higher spatial dimensions.
Other important theoretical results concern rigorous approximation bounds,
showing rigorously that classes of physically relevant states such as ground states
and Gibbs states can be approximated accurately by PEPS.

Recently, due to their nice numerical and analytical properties, tensor networks
have started to permeate other areas. Prominent examples are quantum gravity
[HNQ+16; PYHP15] and machine learning [SS16; CPZ+17], as well as (hybrid)
classical simulation of quantum circuits [PHOW20; NLD+22].

An important feature both in theory and practice is the gauge symmetry of a
tensor network. By inserting matrices on the virtual bonds of a tensor in such way
that they cancel when the network is contracted, one modifies the local tensors
while leaving the many-body state unchanged, see Fig. 3.2a. In this context one
desires: (1) a fundamental theorem that guarantees the gauge symmetry is the
only freedom in tensors to give rise to the same states, and (2) a canonical form,
which fixes this gauge degree of freedom in a natural way. Sometimes, both come
together: some fundamental theorems only apply to tensors in a canonical form.

To make this more concrete, we consider PEPS in one spatial dimension, i.e.,
MPS. One key reason which make MPS easier to work with than, e.g., 2D PEPS, is
that there are canonical forms with good theoretical properties and an associated
fundamental theorem. This has played a crucial role in the development of the
theory since its inception [FNW92], see [CPSV21] for a review. We focus on the
uniform (or translation-invariant) case, where one places the same 3-tensor T on
each site and contracts with periodic boundary conditions, resulting in a many-
body quantum state |Tn⟩ for any system size n. One may view T as a tripartite
quantum state on one physical and two virtual Hilbert spaces, the latter of bond
dimension D. It is always possible (after blocking sites together and setting
irrelevant off-diagonals to zero) to choose a gauge such that the reduced state on
one of the two virtual Hilbert space is maximally mixed.1 The result is called a left
or right canonical form and it is unique up to unitary gauge symmetries. It has the

1As we will see in Definition 3.2.5, strictly speaking this is only true independently in each of the
diagonal blocks which remain in the canonical form. There is a proportionality constant that
can be different in each one of those blocks.
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(a) Graphical notation: A reminder of the
graphical notation for tensor network
contractions. If the tensors are inter-
preted as matrices, arrows indicate
the direction of multiplication. The
examples include matrix multiplica-
tion, the trace of a product of matrices,
and in the bottom row, a matrix prod-
uct state.

CD1 CD1

CD2

CD2

CdT

|Tn,m⟩

(b) Uniform PEPS in 2D: A tensor T gives
rise to states |Tn,m⟩ on a periodic n ×
m lattice by placing T at the sites and
contracting with periodic boundary
conditions.

Figure 3.1.

following virtues:

(A) It satisfies a fundamental theorem: two tensors T and T ′ give rise to the
same states on any number of sites, meaning |Tn⟩ = |T ′n⟩ for all n, if and only
if they have a common canonical form.

(B) It allows lifting symmetries: if T is in canonical form, any global symmetry
U⊗n |Tn⟩ = |Tn⟩ for all n can be implemented by a unitary gauge symmetry
on T . This is key to classifying phases of matter and when studying entan-
glement spectra/Hamiltonians, to upgrade virtual to physical degrees of
freedom.

(C) It provides a way to truncate, which is key for efficient accurate numerics:
given a tensor T with bond dimensionD, it allows finding a tensor T ′ of bond
dimension D′ < D such that |T ′n⟩ ≈ |Tn⟩ for all n.

Clearly, it would be of great use to extend the theory of canonical forms to tensor
networks in two or more spatial dimensions! However, it is known that there are
significant obstructions. For example [SMG+20; Sch20]:

( ) The following problem is undecidable: Given a PEPS tensor T , decide if the
associated states |Tn,m⟩ vanish on periodic lattices of any size n ×m.

This suggests there should not exist any useful (computable) canonical form
generalizing (A), since by comparing the canonical forms of T and the zero tensor
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g1 g−1
1

g2

g−1
2

T S=

⇓

=

(a) Gauge invariance: For g = (g1,g2) ∈
GL(D1)×GL(D2), if one defines the tensor
S = g · T as in the figure, the correspond-
ing states |Tn,m⟩ and |Sn,m⟩ are equal.

=

=

(b) Canonical form conditions: A tensor
is in canonical form if the reduced
density matrices of the tensor as a
quantum state are equal up to trans-
position (corresponding to reversing
the arrows in diagrammatic notation).

Figure 3.2.

one could otherwise decide whether |Tn,m⟩ = 0 for all n and m. Indeed, before
our work, no canonical form was known for PEPS tensor networks in two or more
dimensions that applied to general tensors and rigorously satisfied properties such
as the above.

On the other hand, a fundamental theorem is known if one restricts, e.g.,
to the class of normal tensors [MGP+18]. Moreover, heuristic approaches for
canonical forms [Eve18; KKOS12; LCB14b; PMV15; PBT+15] and the truncation
problem (C) are successfully used in practice to trade off efficient computation and
approximation accuracy [RTP+20].

3.1.1. Summary of results: a canonical form in any dimension and
a fundamental theorem

In this work we introduce a new canonical form for general PEPS in arbitrary spatial
dimension. It rigorously satisfies a number of desirable properties – particularly
a fundamental theorem. The obstruction ( ) is overcome by the following twist:
roughly speaking, the canonical form captures when two tensors give rise to the
same quantum states not just on the torus, but on any surface! This is achieved by
pioneering the application of geometric invariant theory, an area of mathematics
that studies symmetries, to tensor network theory and drawing on recent research
in non-commutative group optimization.2

We now define the new canonical form and highlight its main properties
2Geometric invariant theory has already been used in quantum information in other contexts,

such as in the study of multipartite entanglement [Kly02; VDD03; GW10; BRV18], or in the
quantum marginal problem [Kly04; DH05; CM06; Kly06; WDGC13; Wal14], but not in the area
of tensor networks to the best of our knowledge.
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3.1. Introduction

and the new fundamental theorem. Here we only discuss uniform PEPS in
m spatial dimensions. These are defined by a single tensor T , with 2m + 1
legs, one associated to the physical Hilbert space, and two legs each for the
spatial directions k ∈ {1, . . . ,m}, associated with virtual Hilbert spaces of bond
dimension Dk. The gauge group G = GL(D1) × · · · ×GL(Dm) acts on the virtual
legs of the tensor as illustrated in Fig. 3.2a. We say Tmin is a minimal canonical
form of T if it “infimizes” the ℓ2-norm among all gauge equivalent tensors:

Tmin = argmin
{︂
∥S∥ : S ∈ G · T

}︂
. (3.1.1)

In the language of Section 2.4, Tmin is a minimum norm vector. Two important
remarks are in order: First, we consider the closure G · T of the gauge group orbit
of T , so that the minimum is attained. Thus there need not be a single gauge
transformation g ∈ G such that g · T = Tmin, but rather a sequence g(k) ∈ G such
that g(k) · T → Tmin (the same is true for the usual canonical forms of MPS when
one has to set off-diagonal blocks to zero). This is, however, natural, since the
uniform PEPS determined by a tensor depend continuously on the tensor, hence
remain unchanged even when taking limits. Second, while any tensor clearly has
a minimal canonical form, uniqueness up to unitaries is a priori unclear. This is
addressed by our first result, which justifies calling Tmin a ‘canonical form’.

Result 1 (Canonical form). Any tensor has a minimal canonical form. It is unique up to
unitary gauge symmetry. Moreover, two tensors T , T ′ have a common minimal canonical
form if and only if G · T ∩ G · T ′ ≠ ∅.

The condition G · T ∩ G · T ′ ≠ ∅ is the natural definition of gauge equivalence,
since then T , T ′ determine the same PEPS as explained above. Result 1, which we
formally state as Theorem 3.2.9 for MPS and Theorem 3.3.7 for PEPS, states that
this is captured by the minimal canonical form. It also guarantees the analogue of
property (B) for normal tensors, stated as Corollary 3.3.9.

We can characterize the minimal canonical form in terms of the reduced states
of the virtual bonds. To this end, interpret T as a quantum state and denote by ρk,1
and ρk,2 the reduced states of the two virtual bonds in the k-th direction. Then we
have the following characterization, illustrated in Fig. 3.2b.

Result 2 (Characterization). A tensor is in minimal canonical form if and only if
ρk,1 = ρT

k,2 for 1 ⩽ k ⩽ m.

Interestingly, this shows our minimal canonical form does not coincide with the
usual ones for MPS (m = 1); it also differs from previously proposed heuristics in
higher dimensions. We prove Result 2 in Theorem 3.2.10 for MPS and Theorem 3.3.8
for PEPS.

This begs the question whether it can be computed effectively, even for MPS.
Our next result answers this in the affirmative.

Result 3 (Computation). There is an algorithm which computes a minimal canonical
form of a tensor T up to given ℓ2-error δ > 0. For fixed bond dimensions, it runs in time
polynomial in log 1

δ and in the bitsize of T .
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3. The minimal canonical form of a tensor network

We prove this in Corollary 3.4.12. The algorithm depends exponentially on the
bond dimensions (form > 1). We also give an algorithm whose runtime depends
only polynomially on the bond dimension, but also on 1

ε , where εmeasures the
accuracy to which the condition in Result 2 is fulfilled (see Corollary 3.4.3). In
Section 3.4 we discuss these and another natural way of quantifying approximation
error; we relate them in Section 3.4.2.

Finally, we discuss our fundamental theorem. We start with the following
observation (for simplicity in 2D): If two tensors are gauge equivalent, they not
only determine the same state |Tn,m⟩ on any n ×m lattice, but also if we contract
according to an arbitrary graph such that only left and right virtual legs, and only
top and bottom virtual legs are connected. We say Γ is a contraction graph and write
|TΓ ⟩ for the corresponding uniform PEPS, see Fig. 3.3. Intuitively, this means we
consider tensor networks on surfaces of arbitrary topology rather than only on the
torus. Clearly, these notions generalize to any spatial dimension. We find that this
precisely captures gauge equivalence, in any spatial dimension! Indeed, we have
the following result which we formalize and prove as Theorem 3.3.11:

Result 4 (Fundamental theorem). Two tensors T , T ′ are gauge equivalent (meaning
G · T ∩ G · T ′ ≠ ∅) if and only if |TΓ ⟩ = |T ′Γ ⟩ for all contraction graphs Γ . It suffices to
consider to graphs on eÕ(mD2) vertices.

We further show eΩ(mD) vertices are necessary when m ⩾ 2, while for m = 1
we find two MPS tensors to be gauge equivalent iff |Tn⟩ = |T ′n⟩ for 1 ⩽ n ⩽ Õ(D),
which is essentially tight [DM20a]. While we stress that our fundamental theorem
is of independent interest, as it precisely characterizes when two tensors are gauge
equivalent, we note that gauge equivalence is the same as having a common
canonical form (by Result 1). Accordingly, our theorem proves a version of
property (A) for PEPS in any spatial dimension, and as we show in Corollary 3.3.14,
this also implies global symmetries of the states |TΓ ⟩ can be lifted to unitary gauge
symmetries, as in property (B). Strikingly, it shows that deciding whether two
tensors generate the same uniform PEPS |TΓ ⟩ on arbitrary contraction graphs
is decidable – in stark contrast to the problem when we restrict to uniform
PEPS |Tn,m⟩ on periodic rectangular lattices. The undecidability of the latter
is proved by relating it to the problem of deciding if a given set of tiles tiles a
torus [SMG+20]. Our result implies that this problem becomes decidable if one
allows for some arbitrary “surface” (contraction graph).

Given the practical and theoretical importance of canonical forms and funda-
mental theorems, we hope our results offer a useful new tool for the study and
application of tensor networks. From a theory perspective, our results may be
helpful in studying virtual symmetries of tensor networks, which are crucial
in understanding topological order. From a practical perspective, it would be
interesting to investigate if our canonical form can improve the numerical stability
of variational optimization algorithms and other numerical methods [VHCV16],
as it could be expected by the known close connection between gauge fixing and
stability [LCB14a; PMV15]. Our results also imply that one can sample uniformly
from all PEPS tensors in minimal canonical form in the same orbit. This has
applications beyond quantum information, e.g., it allows to extend the technique
of [PHM+22] for enhancing privacy in machine learning from MPS to PEPS. Finally,
we note that our approach generalizes naturally to other tensor network types and
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G · T ∩G · S ≠ ∅ |TΓ ⟩ = |SΓ ⟩ for all Γ

g(n) · T h(n) · S↗ ↖ ⇔ =

Figure 3.3.: Fundamental theorem: Two tensors S and T are gauge equivalent, mean-
ingG · T∩G · S ≠ ∅ or that limn→∞ g(n) ·T = limn→∞ h(n) ·S for certain
g(n),h(n) ∈ G (equivalently, the two tensors have a common minimal
canonical form), if and only if they contract to the same state on all
contraction graphs.

gauge groups; it would be exciting to explore this in followup work. We discuss
all these points further in Section 3.5.

3.1.2. Overview of methods: geometric invariant theory and
geodesic convex optimization

On a high level, our approach is to start with the desired gauge symmetry and
explore its natural consequences (rather than with a specific class of networks, such
as PEPS on a torus). In our case this means starting with the action of the gauge
group G = GL(D1) × · · · ×GL(Dm) on the vector space of PEPS tensors of a certain
format, as above. To prove Results 1 and 2, we rely on the results of geometric
invariant theory as developed in Chapter 2, in particular Mumford’s theorem
(Theorem 2.3.7) and the Kempf–Ness theorem (Theorem 2.4.4). To prove Result 3,
we instantiate the general framework of [BFG+19] (but give some improvements)
and we relate the approximation guarantees provided by that framework to ℓ2-error
(which is nontrivial).

So far, we have focused on geometry, but we now move to invariants to connect
to tensor networks and sketch the proof of our fundamental theorem (Result 4).
Mumford’s theorem (Theorem 2.3.7) implies that two tensors T , T ′ are gauge
equivalent (meaning G · T ∩ G · T ′ ≠ ∅) if and only if P(T ) = P(T ′) for any G-
invariant polynomial P. Now, for any contraction graph Γ , the tensor network
state |TΓ ⟩ is unchanged by gauge symmetries, and therefore its coefficients are
G-invariant polynomials in T . We use constructive invariant theory to prove
that, conversely, any G-invariant polynomial can be obtained from coefficients of tensor
network states. A theorem by Derksen [Der00] allows bounding the size of Γ , which
concludes the proof.

3.1.3. Notation
The baseline for the notation is as in Section 2.1. We write y = argmin{f(x) : x ∈ X}
to denote that y ∈ X and f(y) = min{f(x) : x ∈ X}; in general this will not uniquely
determine y. In this chapter we write Matn×n′ for the complex vector space of
complex n × n′ matrices, as opposed to Cn×n′. To be consistent with physicists’
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M

CD CD

Cd

|Mn⟩

Figure 3.4.: Matrix product state: M = (M(i))d
i=1 ∈ MatdD×D gives rise to a state |Mn⟩

for any system size n.

notation, we write (·)† instead of (·)∗ for the adjoint (in this chapter only). We denote
identity matrices by I and use subscripts to denote context when this increases
clarity. We write GL(n) for GL(n,C) and SL(n) = SL(n,C). We will use boldface
for m-tuples of matrices, e.g., X = (X1, . . . ,Xm), but never for the d-tuples that
make up uniform MPS or PEPS tensors. Finally, we denote by C[V] the algebra of
polynomial functions on a vector space V .

3.2. Matrix product states
In this section, we discuss the setting of matrix product states (MPS). While MPS
are very well-understood theoretically, it is instructive to revisit this setting from
our new perspective and contrast our minimal canonical form to the known ones,
which also enjoy excellent theoretical properties.

We start by defining uniform (or translation-invariant) MPS and briefly reviewing
existing canonical forms in Section 3.2.1. We then introduce the minimal canonical
form in Section 3.2.2. Finally, in Section 3.2.3 we also discuss the case of non-uniform
MPS with open boundary conditions.

3.2.1. Gauge freedom and canonical forms for uniform MPS
We denote by MatdD×D the vector space of d-tuples of D ×D-matrices.

Definition 3.2.1 (Uniform MPS). For any matrix tuple M = (M(i))d
i=1 ∈ MatdD×D

and system size n ∈ N, we define the uniform (or translation-invariant) matrix
product state (MPS) as the (not necessarily) quantum state |Mn⟩ ∈ (Cd)⊗n whose
coefficients are given by

⟨i1, . . . , in |Mn⟩ = TrM(i1) · · ·M(in) (∀i1, . . . , in ∈ [d]). (3.2.1)

We refer to d as the physical dimension and D as the bond dimension.

We will interchangeably refer toM as a matrix tuple or as an MPS tensor. Indeed,
it is often useful to think ofM itself as a 3-tensor, or as an (unnormalized) quantum
state |M⟩ ∈ H1 ⊗ H2 ⊗ Hphys on the tensor product of a physical Hilbert space
Hphys = Cd and two virtual Hilbert spaces H1 = H2 = CD, where H1 is the
‘left’ virtual Hilbert space and H2 is the ‘right’ virtual Hilbert space, see Fig. 3.4.
Formally:

⟨a,b, i|M⟩ = ⟨a|M(i) |b⟩ .
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M

g ·M

g g−1 gg−1

=

|M4⟩

|(g ·M)4⟩

Figure 3.5.: MPS gauge invariance: Tensors related by a gauge transformation give
rise to the same MPS.

We may then compute the reduced density matrices of ρ = |M⟩⟨M| on either of
the two virtual Hilbert spaces:

ρ1 =

d∑︂
i=1
M(i)(M(i))† and ρ2 =

d∑︂
i=1
(M(i))TM(i). (3.2.2)

An important property of MPS is that the states |Mn⟩ are left invariant (for any
n) if we conjugate each matrix M(i) in the tuple by the same invertible matrix.
Formally:

Definition 3.2.2 (Gauge action). We define the gauge action of g ∈ GL(D) on
M = (M(i))d

i=1 by

g ·M := (gM(i)g−1)di=1.

If we think ofM as a quantum state |M⟩ in H1 ⊗ H2 ⊗ Hphys, the gauge action can
be written as

g · |M⟩ := |g ·M⟩ = (g ⊗ g−T ⊗ I) |M⟩ .

Lemma 3.2.3 (Gauge symmetry). For everyM ∈ MatdD×D, g ∈ GL(D), and n ∈ N,
we have

|Mn⟩ = |(g ·M)n⟩ .

This is shown in Fig. 3.5.
It is then a natural question to ask whether this is the only freedom in the tensor

M to define the same state |Mn⟩ for all n. The answer is no, as is well-known and
illustrated by the following example:

Example 3.2.4. Let

M(0) =

[︃
1 1
0 0

]︃
and M(1) =

[︃
0 1
0 1

]︃
.

and

M̂
(0)

=

[︃
1 0
0 0

]︃
and M̂

(1)
=

[︃
0 0
0 1

]︃
.
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Then both tensors define the same MPS, for any system size n ∈ N, namely the
GHZ states

|Mn⟩ = |M̂n⟩ = |0⟩⊗n + |1⟩⊗n .

However, there is no g ∈ GL(D) so that g ·M = M̂.

The underlying problem is that when the matrices M(i) in a tuple are all in
upper triangular form (with respect to some basis), the off-diagonal terms are
totally irrelevant for the final state |Mn⟩. The standard way to deal with this is to
remove such off-diagonal terms in a structured manner. Let us briefly sketch the
procedure, but refer to [CPSV21] and [SPWC10] for details and nomenclature.

One starts looking for a minimal common invariant subspace of all M(i) and
changeM(i) by PM(i)P+QM(i)Q, with P being the orthogonal projector onto such
a subspace and Q = I − P. It is not difficult to see that the new tensor defines the
same original MPS. Now one proceeds similarly with QM(i)Q until one reaches a
block diagonal form. The minimality of the subspaces guarantees that, in each of
the diagonal blocks b, the corresponding tensor, sayMb, fulfills the property that
the associated completely positive (CP) map ℰb given by Xb ↦→

∑︁
iM

(i)
b
Xb(M(i)b )†

is irreducible. Normalizing so that the spectral radius of the map is 1, this implies
that the eigenvalues of modulus 1 are all non degenerate and they are exactly the
q-th roots of unity with a q dividing the size Db of the matrices M(i)

b
. One can

then distinguish two cases: q = 1, in which case the map ℰb is primitive, or q > 1,
in which case one can “block” or group together q sites; then the resulting tensor
in H1 ⊗ H2 ⊗ H⊗qphys consists of block diagonal matrices whose associated CP maps
are also primitive.

To make a long story short, starting with a matrix tuple M, after projecting
and blocking following the above procedure, one obtains a new matrix tuple M̃
such that each M̃(i) is block diagonal, M̃(i) = ⊕bM(i)b , and the CP maps ℰb are
all primitive. It is now possible to act with a gauge g ∈ GL(D), which can also
be taken to be block-diagonal, g = ⊕bgb, so that one obtains in each block b of
M̂ := g · M̃ the canonical condition. That is, there exist constants cb ∈ R+ such that

d∑︂
i=1
(M̂(i)b )†M̂

(i)
b = cbIDb (∀b), (3.2.3)

meaning that, after normalization, the maps ℰb : Xb ↦→
∑︁

i M̂
(i)
b Xb(M̂

(i)
b )† are

trace preserving completely positive (TPCP) maps, i.e., quantum channels. One
could analogously have taken the dual condition

d∑︂
i=1
M̂
(i)
b (M̂

(i)
b )† = cbIDb (∀b), (3.2.4)

meaning the ℰb are completely positive unital (CPU) maps.
For generic matrix tuples M, the channel X ↦→

∑︁
iM

(i)X(M(i))† is already
primitive. In this case, M is called normal and one can obtain a left or right
canonical form M̂ by acting with a suitable gauge group element: M̂ = g ·M for
some g ∈ GL(D).
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3.2. Matrix product states

Definition 3.2.5 (Left and right canonical form). A matrix tuple (MPS tensor) is
said to be in left canonical form if it is block diagonal, with each diagonal block a
normal tensor fulfilling Eq. (3.2.3). The right canonical form is defined analogously
by imposing the dual condition in Eq. (3.2.4).

The above procedure guarantees that, after discarding off-diagonal blocks and
at the price of blocking, one can bring any MPS tensor into left or right canonical
form. For instance, in Example 3.2.4 the tensor M̂ is block diagonal, its blocks are
1-dimensional and hence trivially primitive, and moreover ρ̂1 = ρ̂2 = I2. Thus M̂ is
both in left and right canonical form. For tensors in canonical form, (unitary) gauge
symmetry is the only freedom for two tensors to generate the same MPS:

Theorem 3.2.6 (Fundamental theorem of MPS, [CPSV17; CPSV21]). LetM, N be
both in left (or right) canonical form and |Mn⟩ = |Nn⟩ for all n ∈ N. Then there exists a
unitary u ∈ U(D) such that u ·M = N.

The name “fundamental theorem” stems from its numerous applications, and we
refer for instance to [CPSV21] or [HV17] for an accounting of several of these.

3.2.2. The minimal canonical form for uniform MPS
We now define a new canonical form for uniform MPS. Its appeal is that it will
naturally generalize to tensors with an arbitrary gauge symmetry and in particular
to PEPS in higher dimensions, and that it can be analyzed using the powerful tools
from geometric invariant theory.

Our starting point is the following simple but powerful observation: For a given
matrix tuple M ∈ MatdD×D, we should not only consider gauge transformations
M ↦→ g ·M for some g ∈ GL(D), but also limits of such. Indeed, suppose we
have a sequence of gauge group elements gk ∈ GL(D) such that gk ·M converges
to some M̃. Then, since the MPS |Mn⟩ are continuous functions of the matrix
tupleM, we still have

|M̃n⟩ = lim
k→∞

|(gk ·M)n⟩ = |Mn⟩ (∀n ∈ N).

In other words, all matrix tuples in the orbit closure GL(D) ·M determine the same
MPS. This naturally leads to the following definition:

Definition 3.2.7 (Gauge equivalence). LetM,N ∈ MatdD×D be two matrix tuples.
We say thatM andN are gauge equivalent if and only if GL(D) ·M∩GL(D) ·N ≠ ∅.

This is the natural notion of gauge equivalence for MPS tensors, since ifM and
N are gauge equivalent in the sense just defined then

|Mn⟩ = |Nn⟩ (∀n ∈ N).

Indeed, it is the smallest equivalence relation generated by gauge transformations
and taking limits. In particular, to define a canonical form we should naturally
look at orbit closures, not just at orbits. How could we single out special elements
in the orbit closure? The Kempf–Ness theorem (see Section 2.4) motivates the
following definition:
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3. The minimal canonical form of a tensor network

Definition 3.2.8 (Minimal canonical form of MPS). We say Mmin ∈ MatdD×D is
a minimal canonical form for a matrix tuple (MPS tensor) M ∈ MatdD×D if it is an
element of minimal norm in the orbit closure of the latter:

Mmin = argmin {∥M′∥ : M′ ∈ GL(D) ·M},
where we use the Euclidean norm ofM (or |M⟩), that is,

∥M∥ =
√︁
⟨M|M⟩ =

(︄
d∑︂
i=1

Tr
[︂
(M(i))†M(i)

]︂ )︄1/2

=

(︄
Tr

[︄
d∑︂
i=1
(M(i))†M(i)

]︄)︄1/2

.

We sayM ∈ MatdD×D is in minimal canonical form if it is a minimal canonical form
for itself.

Note that any MPS tensor has a minimal canonical form – in contrast to the usual
left or right canonical form of Definition 3.2.5, no explicit projecting and blocking
is required.

Clearly, the minimal canonical form is a special case of the general notion
of a minimum norm vector (Definition 2.4.1) for the action of G = GL(D) on
V = MatdD×D (Definition 3.2.2). We can now use the general theory of geometric
invariant theory to understand the basic properties of this canonical form and we
will see the usefulness of the general results of Sections 2.3 and 2.4. First of all,
while the minimal canonical form is not uniquely defined, it is uniquely defined
up to unitary gauge transformations (the action of K = U(D)), and it precisely
characterizes gauge equivalence (Definition 3.2.7):
Theorem 3.2.9 (Minimal canonical form). LetM,N ∈ MatdD×D. Then the following
are equivalent:

(i) M and N have a common minimal canonical form.

(ii) IfMmin,Nmin are minimal canonical forms ofM,N thenU(D)·Mmin = U(D)·Nmin.
That is, minimal canonical forms ofM andN are related by unitary gauge symmetries.

(iii) M and N are gauge equivalent, i.e., GL(D) ·M ∩GL(D) ·N ≠ ∅.
Proof. This is an immediate consequence of Theorems 2.3.7 and 2.4.4. □

The characterization of minimum norm vectors as critical vectors (Theorem 2.4.4)
allows us to give an easy characterization for a matrix tiple to be in minimal canon-
ical form. To see this, we compute the condition for a matrix tupleM ∈ MatdD×D
to be critical (Definition 2.4.3), i.e., we evaluate the moment map (Definition 2.5.1):
For X ∈ Herm(D) = iLie(K), we have

∂t=0∥etX ·M∥2 = ∂t=0

d∑︂
i=1

Tr
[︂
(etXM(i)e−tX)†etXM(i)e−tX

]︂
= ∂t=0

d∑︂
i=1

Tr
[︂
(M(i))†e2tXM(i)e−2tX

]︂
= 2 Tr

[︄
X

(︄
d∑︂
i=1
M(i)(M(i))† − (M(i))†M(i)

)︄]︄
. (3.2.5)

Thus we arrive at the following (illustrated in Fig. 3.6):
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3.2. Matrix product states

= = =

Figure 3.6.: MPS canonical forms: From left to right, the conditions for respectively
right, left and minimal canonical forms for MPS.

Theorem 3.2.10 (Characterization). Let M ∈ MatdD×D. Then M is in minimal
canonical form if and only if ∥g ·M∥ ⩾ ∥M∥ for all g ∈ GL(D). This is the case if and
only if

d∑︂
i=1
M(i)(M(i))† =

d∑︂
i=1
(M(i))†M(i). (3.2.6)

Equivalently, the reduced density matrices of ρ = |M⟩⟨M| on the virtual bonds are the
same up to a transpose:

ρ1 = ρT2 . (3.2.7)

Proof. Note thatM is critical if and only if the derivative in Eq. (3.2.5) vanishes for
all X ∈ Herm(D). Thus both statements follow from Theorem 2.4.4. □

Given a tensorM it is perhaps at first glance surprising that there always exist
gauge transformations gk ∈ GL(D) such that limk→∞ gk ·M satisfies the condition
in Eqs. (3.2.6) and (3.2.7) – yet as we just saw this follows readily from geometric
invariant theory. We also note that Theorem 3.2.10 also shows that the minimal
canonical form for MPS will in general not coincide with the usual left or right
canonical form (Definition 3.2.5); there appears to be no obvious way to convert
one into the other. In Section 3.4 we give a simple iterative algorithm that computes
the minimal canonical form to arbitrary precision.

To get more intuition about the definition and the relevance of the orbit closure,
we revisit Example 3.2.4.

Example 3.2.11. In Example 3.2.4 we saw that the following matrix tuplesM, M̂ ∈
Mat2

2×2 both define the GHZ states:

M(0) =

[︃
1 1
0 0

]︃
, M(1) =

[︃
0 1
0 1

]︃
and M̂

(0)
=

[︃
1 0
0 0

]︃
, M̂

(1)
=

[︃
0 0
0 1

]︃
.

Theorem 3.2.10 shows that M̂ is already in minimal canonical form, whileM is not.
Indeed, while ρ̂1 = ρ̂T2 = I2 for ρ̂ = |M̂⟩ ⟨M̂|, the reduced states of ρ = |M⟩ ⟨M|
satisfy

ρ1 =M(0)(M(0))† +M(1)(M(1))† =
[︃
3 1
1 1

]︃
,

ρT2 = (M(0))†M(0) + (M(1))†M(1) =
[︃
1 1
1 1

]︃
.
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3. The minimal canonical form of a tensor network

Moreover, in this example it is easy to see that there does not exist a g ∈ GL(2) such
that g ·M is in minimal canonical form. However, if we let

gε =

[︃
ε 0
0 1

]︃
then we may verify that

gεM
(0)g−1

ε =

[︃
ε 0
0 1

]︃ [︃
1 1
0 0

]︃ [︃
ε−1 0
0 1

]︃
=

[︃
1 ε

0 0

]︃
gεM

(1)g−1
ε =

[︃
ε 0
0 1

]︃ [︃
0 1
0 1

]︃ [︃
ε−1 0
0 1

]︃
=

[︃
0 ε

0 1

]︃
so as we let ε→ 0 we see that gε ·M→ M̂, which as just discussed is in minimal
canonical form.
Example 3.2.12. An amusing special case is d = 1, so we have a single matrix
M ∈ MatD×D. The minimal canonical form is given by the diagonal matrix with
the same eigenvalues as M (repeated according to their algebraic multiplicity).
Indeed, there are matrices gε such that gε ·M = gεMg

−1
ε is in Jordan normal form,

but with ε instead of 1 as the offdiagonal entries. Letting ε → 0 we obtain the
desired diagonal matrix.

From Examples 3.2.11 and 3.2.12 it is clear that, by virtue of considering the
orbit closure, the minimal canonical form automatically sets off-diagonal blocks
to zero, which is an additional step which needs to be manually taken in the
usual approach to canonical forms for MPS (see Section 3.2.1). There, as already
commented in Section 3.2.1, it may also be necessary to block together multiple
sites. The geometric invariant theory approach makes these steps redundant.3

We will now prove a fundamental theorem for MPS where this will become
explicit. Before stating the result, we state the ingredient that will be used to
prove it. In invariant theory, the action of the gauge group on MPS tensors
(Definition 3.2.2) is known as the simultaneous conjugation action of GL(D) on matrix
tuples in MatdD×D. There, it is known that the ring of invariant polynomials is
generated precisely by the coefficients (3.2.1) of the corresponding matrix product
states for system size 1 ⩽ n ⩽ D2, as stated in the following theorem:
Theorem 3.2.13 (Procesi-Razmyslov-Formanek [Pro76; Raz74; For86; DP17]). The
invariant ring for the simultaneous conjugation action, i.e.,C[MatdD×D]GL(D), is generated
by the invariant polynomials Pi, where

Pi(M) = ⟨i1, . . . , in |Mn⟩ = TrM(i1) · · ·M(in),

for all i = (i1, . . . , in) ∈ [d]n and n ∈ N. Moreover, it suffices to restrict to n ∈ [D2].
Thus, geometric invariant theory implies that gauge equivalence of the tensors

(which by Theorem 3.2.9 is captured by the minimal canonical form) is precisely
equivalent to equality of the corresponding matrix product states! We summarize
this in the following fundamental theorem for MPS (note that it works in full
generality, without the need to block sites or remove off-diagonal terms):

3As a side remark, there is actually no need to block in the usual canonical form for MPS. This is a
consequence of Theorem 16 in [DCSP17], together with the overlooked observation that the
matrix Z appearing there can be absorbed in another gauge transformation.
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3.2. Matrix product states

Theorem 3.2.14 (Fundamental theorem for MPS). LetM,N ∈ MatdD×D. Then the
following are equivalent:

(i) M and N are gauge equivalent, i.e., GL(D) ·M ∩GL(D) ·N ≠ ∅.

(ii) |Mn⟩ = |Nn⟩ for all n ∈ N.

(iii) |Mn⟩ = |Nn⟩ for n = 1, . . . ,D2.

Proof. This follows from Theorems 2.3.7 and 3.2.13. □

Remark 3.2.15. It is also known that the invariant ring is not generated when restricting
to n ⩽ D2/8 [For86]. However, while a system of generators of the invariant ring always
suffices to separate orbit closures, this is in fact not necessary. Theorem 1.14 in [DM20a]
shows that the third condition in Theorem 3.2.14 can be improved almost quadratically to:

3’. |Mn⟩ = |Nn⟩ for n = 1, . . . , 4D log2D + 12D − 4,

and it has been conjectured that n = O(D) suffices [Shi19]. Example 3.2.17 shows that
this is essentially tight.

Example 3.2.16. In Example 3.2.4 we saw two matrix tuples M, M̂ ∈ Mat2
2×2

that defined the GHZ states, for all system sizes. By our fundamental theorem,
Theorem 3.2.14, this implies that they are gauge equivalent, meaning that

GL(D) ·M ∩GL(D) · M̂ ≠ ∅.

Now, in Example 3.2.11 we saw that M̂ is already in minimal canonical form. By
the Kempf–Ness theorem (Theorem 2.4.4) this means that the orbit of M̂ is already
closed. It follows that

M̂ ∈ GL(D) ·M,

which is in exact agreement with what we saw in Example 3.2.11.

Example 3.2.17. We also revisit Example 3.2.12, the case of a single matrix. For
M,N ∈ MatD×D, the equality of quantum states means that TrMn = TrNn for alln,
which is the case if and only ifM,N have the same characteristic polynomial and
hence the same eigenvalues with the same algebraic multiplicities – in agreement
with the discussion in Example 3.2.12. Thus we see that in this special case it
suffices to have equality for all n = 1, . . . ,D. This is also necessary, since, e.g., for
M a D × D-permutation matrix representing a D-cycle we have TrMn = 0 for
1 ⩽ n < D.

Together, Theorems 3.2.9 and 3.2.14 show that ifM, N are two matrix tuples in
minimal canonical form that give rise to the same quantum states, thenM and N
are related by a unitary gauge symmetry. As a consequence, we can lift unitary
symmetries to the virtual level. Again, we do not need to make any assumptions
about the tensorM.

Corollary 3.2.18 (Lifting symmetries). Suppose thatM,N ∈ MatdD×D are in minimal
canonical form and u ∈ U(d) is a unitary such that u⊗n |Mn⟩ = |Nn⟩ for all n ∈ N.
Then there exists a unitary U ∈ U(D) such that (I ⊗ I ⊗ u) |M⟩ = (U ⊗ Ū ⊗ I) |N⟩.
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3. The minimal canonical form of a tensor network

In other words, the action of u on the physical degrees of M is implemented by
the gauge action of U on N.

Proof. LetM′ ∈ MatdD×D be the matrix tuple defined by

|M′⟩ := (I ⊗ I ⊗ u) |M⟩ .

ThenM′ is also in minimal canonical form, since u is unitary and hence we have
∥g ·M∥ = ∥g ·M′∥ for all g ∈ GL(D). Moreover, by construction it holds that

|M′n⟩ = u⊗n |Mn⟩ = |Nn⟩

for all n ∈ N. Thus Theorem 3.2.14 shows that M′ and N are gauge equivalent,
and it follows from Theorem 3.2.9 that there exists a unitary gauge transformation
U ∈ GL(D) such that U ·N =M′. □

We note that U need not be unique; for instance,M itself may have a stabilizer,
i.e., there may exist U ∈ U(D) such that U ·M = M. Indeed, this is exactly the
case in which the MPS given by M has a global on-site symmetry, for which
Corollary 3.2.18 reproduces, for the minimal canonical form, the known local
characterization of symmetries on MPS [CPSV21] usually obtained via the left or
right canonical form and Theorem 3.2.6.

Such characterization is the key step in the classification of symmetry protected
topological phases done in [CGW11; PBTO12; SPC11]. The connection is as follows.
If a system is invariant under the action of an onsite (global) symmetry group ug,
one gets u⊗ng |Ψn⟩ = |Ψn⟩ for its ground state |Ψn⟩ (global phases do not play a
relevant role here). Since |Ψn⟩ is known to be very well approximated by MPS
one may want to solve equation u⊗ng |Mn⟩ = |Mn⟩ for the MPS generated by some
tensorM. By Corollary 3.2.18, this is characterized by the existence of Ug ∈ U(D)
such that (I ⊗ I ⊗ ug) |M⟩ = (Ug ⊗ Ūg ⊗ I) |M⟩. It is not difficult to see that Ug

must be a projective representation of the symmetry group. The classification of
SPT phases is given then by all non-equivalent projective representations, which is
precisely described by the second cohomology group of the group cohomology
of the symmetry group. The general validity of this approach has been recently
established by the groundbreaking results of Ogata [Oga20].

The idea that the relevant topological content of a system lies in its boundary
has also given rise to the study of a bulk-boundary correspondence, usually
known in this context as “entanglement spectra” or “entanglement Hamiltonian”
[CPSV11], in which one upgrades the boundary to a physical system and looks
for a dictionary between bulk and boundary properties. This is precisely the
reason that tensor networks have become rather popular in the context of AdS-CFT
holography in quantum gravity. For this program it is rather crucial that the
boundary representations of the physical on-site symmetries are indeed given
themselves by unitary representations, which is precisely what Corollary 3.2.18
guarantees for the MPS case.

Remark 3.2.19. As commented in Section 3.2.1, a MPS state can also be interpreted
as a CP map on the virtual Hilbert spaces, where M ∈ MatdD×D is interpreted such
that the M(i) are Kraus operators of a CP map ℰ, usually called the transfer operator.
Equivalently, the reduced state ρ12 of the quantum state ρ = |M⟩ ⟨M| on both virtual
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Hilbert spaces is the Choi operator of ℰ. As explained above Definition 3.2.5, the left
and right canonical form conditions are equivalent to ℰ either being completely positive
trace-preserving (CPTP) or unital (CPU). This perspective is particularly useful when
dealing with contractions of large or infinite uniform MPS (the thermodynamic limit).

What is the interpretation of the minimal canonical form in this perspective? It is not
hard to see that a mixed quantum state ρ12 with conjugate marginals (i.e., ρ1 = ρT2 ) that are
full-rank contains exactly the same data as a CPTP mapΦ along with a full-rank invariant
density operator Ω (i.e., Φ(Ω) = Ω). The isomorphism ρ12 ↦→ (Φ,Ω) is defined by
definingΦ = Φ1→2 as the CPTP map with Choi operator ρ−1/2

1 ρ12ρ
−1/2
1 andΩ = ρ2 = ρT1 .

If the marginals do not have full rank we can restrict to its support. By duality, this is
in turn is the same as a CP unital map ϕ along with a faithful invariant stateω in the
algebraic sense: We have an isomorphism (Φ,Ω) ↦→ (ϕ,ω), defined by taking ϕ = Φ†

andω(X) = TrΩX. At this point we do not see a natural interpretation of these conditions
for MPS contractions in the thermodynamic limit.

3.2.3. Canonical forms for MPS with open boundary conditions
We will now consider open boundary conditions. We use the invariant theory
framework to define canonical forms, which in this case are closely related to
well-known canonical forms. Then it is natural to fix the system size n, and to
consider the non-uniform setting. Let

V =

n−1⨁︂
k=0

MatdDk×Dk+1

where D0 = Dn = 1. As usual, d is the physical dimension and the Dk are the
bond dimensions (which may vary per bond). Let M = (M0, . . . ,Mn−1) ∈ V , then
the associated MPS state |M⟩ (note that now we have a fixed system size) is defined
by

⟨i0 . . . in−1 |M⟩ =M(i0)
0 M

(i1)
1 . . .M(in−1)

n−1 .

We let G = GL(D1) × · · · ×GL(Dn−1) act on V by gauge transformations. To define
this action, let g = (g1, . . . ,gn−1) ∈ G and M = (M0, . . . ,Mn−1) ∈ V . Then the
action is given by

g ·M = ((1,g1) ·M0, (g1,g2) ·M1, . . . , (gn−2,gn−1) ·Mn−2, (gn−1, 1) ·Mn−1).

where forMi = (M(j)i )dj=1

(gi,gi+1) ·Mi := (giM(j)i g
−1
i+1)

d
j=1.

It is clear that the resulting MPS state is invariant under the action of G. For every
‘bond cut’ k ∈ {1, . . . ,n − 1}, we let

Wk := Matdk×Dk
⊕MatDk×dn−k

and we define a G-action onWk by

g · (wleft,wright) = (wleftg
−1
k ,gkwright).
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Then we have a map ιk : V →Wk, which maps the vector of MPS tensors M to a
pair of ‘half-chain contractions’ (Mk,left,Mk,right)

⟨i0 . . . ik−1 |Mk,left =M
(i0)
0 M

(i1)
1 . . .M(ik−1)

k−1 , Mk,right |ik . . . in−1⟩ =M(ik)k
. . .M(in−1)

n−1 .

This map is clearly G-equivariant. We can patch the maps ιk together to obtain a
G-equivariant polynomial map

ι : V →W :=
n−1⨁︂
k=1

Wk.

We can think ofMk,left andMk,right as the states where we have contracted all the
bonds except the k-th. In this perspective the reduced density matrices on the left
and right copies of CDk are given by

ρk,left =
∑︂
i

(M(ik−1)
k−1 )

† . . . (M(i0)
0 )
†M(i0)

0 . . .M(ik−1)
k−1 =M†

k,leftMk,left

ρT
k,right =

∑︂
i

M
(ik)
k

. . .M(in−1)
n−1 (M

(in−1)
n−1 )

† . . . (M(ik)
k
)† =Mk,rightM

†
k,right

We claim that norm minimization in the image of ι leads to a canonical form where
ρk,left = ρ

T
k,right, which we call the minimal canonical form for non-uniform MPS:

Definition 3.2.20. Let M ∈ V . Then Mmin is a minimal canonical form for M if
ι(Mmin) is an element of minimal norm with respect to the orbit closure G ·M, i.e.,

Mmin = argmin {∥ι(M′)∥ : M′ ∈ GL(D) ·M}.

The norm we are considering here is again the Euclidean one. Note also that
g · ιk(M) only depends on gk. Therefore, we may also write gk · ιk(M). In
minimizing ∥g · ι(M)∥ we may minimize each ∥gk · ιk(M)∥ separately. By the
same general theory as applied in Section 3.2.2 we deduce that the canonical form
exists and is unique up to conjugation by unitary elements in G. Moreover, as
in Theorem 3.2.10 we may set an appropriate derivative equal to zero to find a
condition for when M is in minimal canonical form.

Letting gk(t) = etXk for Xk ∈ Herm(Dk)we see that

∥gk(t) · ιk(M)∥2

= Tr
[︂
(gk(t)−1)†M†

k,leftMk,leftgk(t)−1 + gk(t)Mk,rightM
†
k,rightgk(t)

†
]︂

= Tr
[︂
e−2tXkM†

k,leftMk,left +Mk,rightM
†
k,righte

2tXk

]︂
and hence, denoting by g(t) = (g1(t), . . . ,gn−1(t))we have

∂t=0∥ι(g(t) ·M)∥2 = ∂t=0

n−1∑︂
k=1
∥gk(t) · ιk(M)∥2

= 2
n−1∑︂
k=1

Tr
[︂
Xk

(︂
Mk,rightM

†
k,right −M

†
k,leftMk,left

)︂]︂
.
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Setting this equal to zero is equivalent to ρk,left = ρ
T
k,right for all k.

We may explicitly perform the minimization; it is closely related to Vidal’s
canonical form [Vid03]. We can perform a singular value decomposition

Mk,left = V1Σ1U1

where V1 ∈ Matdk×Dk
is an isometry, Σ1 ∈ MatDk×Dk is diagonal with nonnegative

entries and U1 ∈ MatDk×Dk is unitary. Next, we perform a singular value
decomposition on Σ1U1Mk,right so

Σ1U1Mk,right = U2Σ2V2

where V2 ∈ MatDk×dn−k is an isometry, Σ2 ∈ MatDk×Dk is diagonal with nonnega-
tive entries and U2 ∈ MatDk×Dk is unitary. Let Πi be the projection onto ker(Σi)
and let Σ̃i = Σi + Πi. Then let

gk =

√︂
Σ̃
−1
2 U

†
2Σ̃1U1

and we let M̃k,left =Mk,leftg
−1 and M̃k,right = gMk,right. Then we may verify that

the associated reduced density matrices are

ρk,left = M̃
†
k,leftM̃k,left

=

√︂
Σ̃2U

†
2Σ̃
−1
1 U1M

†
k,leftMk,leftU

†
1Σ̃
−1
1 U2

√︂
Σ̃2

=

√︂
Σ̃2U

†
2Σ̃
−1
1 U1U

†
1Σ1V

†
1V1Σ1U1U

†
1Σ̃
−1
1 U2

√︂
Σ̃2

= Σ2

and

ρT
k,right = M̃k,rightM̃

†
k,right

=

√︂
Σ̃
−1
2 U

†
2Σ̃1U1Mk,rightM

†
k,rightU

†
1Σ̃1U2

√︂
Σ̃
−1
2

=

√︂
Σ̃
−1
2 U

†
2U2Σ2U2U

†
2Σ2U

†
2U2

√︂
Σ̃
−1
2

= Σ2.

Therefore, defining gk in this fashion for each k gives g ·M in minimal canonical
form. In this case it is not necessary to go to the closure to obtain the canonical
form.

This canonical form coincides with the one of Vidal [Vid03], usually written in
the form ∑︂

i0...in−1

Γ
(i0)
0 Λ1Γ

(i1)
1 Λ2 · · ·Λn−1Γ

(in−1)
n−1 |i0, in−1⟩ (3.2.8)

if one identifiesM(ik)
k

with
√
ΛkΓ

(ik)
k

√
Λk+1. The reason is that, by the properties

of Vidal’s canonical form [Vid03; Sch11], such choice fulfills the algebraic charac-
terization of the minimal canonical form given by ρk,left = ρ

T
k,right for all k. Since

the positive diagonal matrices Λk correspond to the Schmidt coefficients of the
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3. The minimal canonical form of a tensor network

bipartition of the system in the cut [0 : k − 1], [k − 1], the minimal canonical form
can be understood in this case as an even distribution of those weights. This
particular distribution of weights has also appeared extensively in the standard
MPS literature [OV08].

There are also left and right canonical forms [Sch11]. These fit in the same
framework, which we will now show for the left canonical form (with the right
canonical form being completely analogous). Let V be as before, but now we
consider the action ofG = SL(D1)× · · · ×SL(Dn−1). We letWk = Matdk×Dk

(which
is only the left half chain) and we let ιk : V →Wk be given byMk = ιk(M)

⟨i0 . . . ik−1 |Mk =M
(i0)
0 M

(ii)
1 . . .M(ik−1)

k1

(so this is what previously wasMk,left). The group action is given by theMk ↦→
Mkg

−1
k

. We similarly define

ι : V →W :=
n−1⨁︂
k=1

Wk.

Computing the gradient as before, but now restricting to traceless X (as we are
optimizing over SL(Dk)) we find that at the minimum of the norm ∥g · ι(M)∥ the
reduced density matrix ρk,left must be proportional to the identity for all k. Again,
we can explicitly realize the minimum, without going to the closure. To this end
we perform a singular value decompositionMk = VΣU. Let Π be the projection
onto ker(Σ) and let Σ̃ = Σ+Π. Then taking gk = det(Σ̃U)−1/DkΣ̃U ∈ SL(Dk) yields
a uniform reduced density matrix ρk,left.

3.3. Projected entangled pair states
In this section we start by defining projected entangled pair states (PEPS), in
particular uniform PEPS. In Section 3.3.2 we introduce the minimal canonical form
for PEPS. We will see that by closely analogous arguments to the MPS case we
may establish its basic properties. In Section 3.3.4 we relate to two-dimensional
tilings and explain how our results are compatible with earlier no-go results for the
existence of canonical forms for PEPS. In Section 3.3.5 we study in more detail the
role of the orbit closure and show that in many cases of interest the orbit is closed.

3.3.1. Definition of uniform PEPS
We will now define a generalization of MPS, known as Projected Entangled Pair
States (PEPS). We start by defining a rather general version, and then specialize to
cases of interest. As input we require a graph Γ = (V ,E) and dimensions (De)e∈E
(the bond dimensions) and (dv)v∈V (the physical dimensions). Let E(v) denote the
set of edges incident to v ∈ V . Then we let Hv := Cdv and for each e ∈ E(v) we
let Hv,e := CDe . The PEPS will now be constructed from a collection of tensors
(T [v])v∈V where

T [v] ∈ ⎛⎜⎝
⨂︂
e∈E(v)

Hv,e
⎞⎟⎠ ⊗ Hv.
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3.3. Projected entangled pair states

The resulting PEPS is a state on
⨂︁

v∈V Hv and is constructed by ‘contracting along
the edges’. If e = (v,w) is an edge incident to v and w, then the contraction map
δe : Hv,e ⊗ Hw,e→ C along e is defined by

|ij⟩ ↦→ δi,j

and extending by linearity. We may apply these maps along each of the edges in E
and this yields a state |TΓ ⟩ on

⨂︁
v∈V Hv.

A clean way of writing this contraction operation (and also explaining the
nomenclature projected entangled pair states) is by the identity

|TΓ ⟩ = ⎛⎜⎝
⨂︂

e=(v,w)∈E

(︄
De−1∑︂
i=0
⟨ii|

)︄
⊗ IV⎞⎟⎠

⨂︂
v∈V

T [v].

where IV is the identity operator on
⨂︁

v∈V Hv.
We will now specialize to the case of uniform PEPS. In this case we place the same

tensor at each vertex. It is natural to contract the tensors placed on periodic grids
inm spatial dimensions, but we will see that other graphs are also relevant. We
denote the physical dimension by d and the associated physical Hilbert space by
Hphys = C

d, and there arem relevant bond dimensions in the different directions,
which we will denote by Dk for k ∈ [m]. For each direction k ∈ [m]we have two
Hilbert spaces Hk,1 = CDk and Hk,2 = CDk . Similar to the MPS case, we may
interpret the PEPS tensor T either as a tensor

|T⟩ ∈
(︄

m⨂︂
k=1

Hk,1 ⊗ Hk,2

)︄
⊗ Hphys (3.3.1)

or as a matrix tuple

T = (T (i))di=1, T (i) ∈
m⨂︂
j=1

MatDj×Dj (3.3.2)

and we will generally identify this space of matrix tuples as MatdD1...Dm×D1...Dm
.

Typically, one constructs corresponding quantum states by placing copies of the
tensor on a grid and contracting along the bond dimensions, see Fig. 3.7.

Definition 3.3.1 (Uniform PEPS on a grid). For any matrix tuple T = (T (i))d
i=1 ∈

MatdD1...Dm×D1...Dm
and system sizes n1, . . . ,nm ∈ N, we define the uniform (or

translation-invariant) projected entangled pair state (PEPS) as the (not necessarily)
quantum state |Tn1,...,nm⟩ ∈ (Cd)⊗n, where n = n1 . . .nm and which is given by
contracting n copies of T on an n1 × · · · × nm periodic grid.

We would like to allow a broader class of uniform PEPS, where one may use
in principle any possible contraction graph. In such a contraction graph we only
demand that the directions are matched up, in the sense that we always contract
Hk,1 with Hk,2. A natural way to express such contractions is as follows. Suppose
that we have n vertices, with at each vertex a copy of T , and we are given a
contraction graph. We will define permutations πk ∈ Sn for each direction k ∈ [m].
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3. The minimal canonical form of a tensor network

T

|Tn,m⟩ |Tπ⟩

Figure 3.7.: Projected entangled pair states: Given a tensor T , here in two spatial
dimensions, we may contract on a n1 × n2 grid to obtain |Tn1,n2⟩ or
using arbitrary permutations π = (π1,π2) to get |Tπ⟩.

Suppose that in direction k α,β ∈ [n] are such that the Hilbert space Hk,2 of the
α-th copy of T is contracted with the Hilbert space Hk,1 of the β-th copy of T , then
we let πk map α to β. Each contraction map (and ordering of the vertices) then
uniquely determines permutations πk ∈ Sn. As permutations π = (π1, . . . ,πm)
completely determine the contraction of the n copies of T to a quantum state on
H⊗nphys = (C

d)⊗n we denote this state by |Tπ⟩. For k ∈ [m] let Rπk be the operator
on (CDk)⊗n permuting the n tensor factors.

Definition 3.3.2 (Uniform PEPS on arbitrary contraction graphs). For any matrix
tuple T = (T (i))d

i=1 ∈ MatdD1...Dm×D1...Dm
, system size n and for π = (π1, . . . ,πm) ∈

Smn we define the associated uniform projected entangled pair state (PEPS) as the (not
necessarily) quantum state |Tπ⟩ ∈ (Cd)⊗n which has coefficients defined by

⟨i1, . . . , in |Tπ⟩ = Tr
[︂
(Rπ1 ⊗ . . . ⊗ Rπm)T (i1) ⊗ . . . ⊗ T (in)

]︂
i = (i1, . . . , in) ∈ [d]n.

We may use the coefficients of the contracted state |Tπ⟩ to define functions
Pπ,i ∈ C[MatdD1...Dm×D1...Dm

] as

Pπ,i(T ) = ⟨i1, . . . , in |Tπ⟩ . (3.3.3)

For m = 1 we get back the usual notion of MPS. Note that in this case, if we
assume the contraction graph to be connected, there is a unique way to contract
the tensors, corresponding to any full cycle in Sn. Indeed, for T ∈ MatdD×D and
π = (1 2 . . .n) ∈ Sn we see that |Tπ⟩ = |Tn⟩ as defined in Eq. (3.2.1).

We also note that we recover the notion of uniform PEPS on a grid by choosing
appropriate permutations. For instance, form = 2, and a grid of size n1 × n2 this
would correspond to using the permutations

π1 = (1 2 . . .n1)(n1 + 1 n1 + 2 . . . 2n1) . . . ((n2 − 1)n1 + 1 (n2 − 1)n1 + 2 . . .n2n1)
π2 = (1 n1 + 1 . . . (n2 − 1)n1 + 1)(2 n1 + 2 . . . (n2 − 1)n1 + 2)(n1 2n1 . . .n2n1).

This yields (upon appropriately identifying the copies of Hphys) an equivalence
|Tn1,n2⟩ = |T(π1,π2)⟩.

As in the MPS case, we have a ‘gauge group’ acting on the tensor. We can now
act with a different group element along each direction k ∈ [m].
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3.3. Projected entangled pair states

Definition 3.3.3 (Gauge action). We define the gauge action of g ∈ G = GL(D1) ×
· · · ×GL(Dm), where g = (g1, . . . ,gm), on T ∈ MatdD1...Dm×D1...Dm

as

g · T =

(︂
(g1 ⊗ . . . ⊗ gm)T (i)(g−1

1 ⊗ . . . ⊗ g−1
m)

)︂d
i=1

.

If we think of T as a quantum state |T⟩ in
(︁⨂︁m

k=1Hk,1 ⊗ Hk,2
)︁
⊗ Hphys, the gauge

action can be written as

g · |T⟩ =
(︄(︄

m⨂︂
k=1

gk ⊗ g−Tk

)︄
⊗ I

)︄
|T⟩ .

As in the MPS case, it is easy to see that this action keeps the associated PEPS
invariant. By continuity, this is also true after taking limits, giving rise to the
following lemma.

Lemma 3.3.4. For every T ∈ MatdD1...Dm×D1...Dm
, G = GL(D1) × · · · × GL(Dm), if

T ′ ∈ G · T , then for all π ∈ Smn

|Tπ⟩ = |T ′π⟩ .

and in particular

Pπ,i(T ) = Pπ,i(T ′).

In other words, the coefficient functions Pπ,i are polynomials in the invariant ring
C[MatdD1...Dm×D1...Dm

]G. We have a corresponding notion of gauge equivalence.

Definition 3.3.5 (Gauge equivalence). Let S, T ∈ MatdD1...Dm×D1...Dm
be two matrix

tuples. Let G = GL(D1) × · · · ×GL(Dm). We say that S and T are gauge equivalent if
and only if G · S ∩G · T ≠ ∅.

3.3.2. Minimal canonical form
We consider uniform PEPS in m spatial dimensions with bond dimensions
D1, . . . ,Dm and physical dimension d. We denote the gauge group by G =

GL(D1) × · · · ×GL(Dm). We denote by K = U(D1) × · · · ×U(Dm) ⊂ G the unitary
subgroup. We can now follow exactly the same approach as in the MPS case to
define the minimal canonical form, and the same general results from geometric
invariant theory allow us to prove its basic properties.

Definition 3.3.6 (Minimal canonical form PEPS). We say Tmin ∈ MatdD1...Dm×D1...Dm

is a minimal canonical form of T ∈ MatdD1...Dm×D1...Dm
if it is an element of minimal

norm in the orbit closure G · T , i.e.,

Tmin = argmin {∥S∥ : S ∈ G · T }.

We say T ∈ MatdD1...Dm×D1...Dm
is in canonical form if it is a minimal canonical form

for itself, i.e. an element of minimal norm in G · T .
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3. The minimal canonical form of a tensor network

The norm considered in the definition is, as in the MPS case, the Euclidean norm
of T (or |T⟩):

∥T ∥ =
√︁
⟨T |T⟩ =

(︄
d∑︂
i=1

Tr
[︂
(T (i))†T (i)

]︂ )︄1/2

.

The minimal canonical form is not uniquely defined, but it is unique up to the
action by the unitary group K = U(D1) × · · · ×U(Dm):

Theorem 3.3.7 (Minimal canonical form). Let S, T ∈ MatdD1...Dm×D1...Dm
. Then the

following are equivalent:

(i) S and T have a common minimal canonical form.

(ii) If Smin and Tmin are minimal canonical forms for S and T , then K · Smin = K · Tmin.

(iii) S and T are gauge equivalent, i.e., G · S ∩G · T ≠ ∅.

Proof. This is an immediate consequence of Theorems 2.3.7 and 2.4.4. □

Recall that if T ∈ MatdD1...Dm×D1...Dm
is a PEPS tensor, we saw in Eq. (3.3.1)

that we may consider it as a quantum state |T⟩. For each ‘direction’ k ∈ [m] we
have two virtual Hilbert spaces Hk,1 and Hk,2 of dimension Dk and there is the
physical Hilbert space Hphys of dimension d. We denote by ρk,j the reduced state
of ρ = |T⟩⟨T | on Hk,j.

The characterization of minimum norm vectors as critical norm vectors in
Theorem 2.4.4 can be used to give a condition for a tensor to be in minimal
canonical form. To find this condition we perform a computation similar to the
MPS case. We identify iLie(K)with Herm(D1) × · · · ×Herm(Dm) and compute for
X = (X1, . . . ,Xm) ∈ Herm(D1) × · · · ×Herm(Dm)

∂t=0∥(etX1 , . . . , etXm) · T ∥2

= ∂t=0 Tr

[︄
d∑︂
i=1
(e2tX1 ⊗ . . . ⊗ e2tXm)T (i)(e−2tX1 ⊗ . . . ⊗ e−2tXm)(T (i))†

]︄
= 2

m∑︂
k=1

Tr

[︄
ID1 ⊗ . . . ⊗ Xk ⊗ . . . ⊗ IDm

(︄
d∑︂
i=1
T (i)(T (i))† − (T (i))†T (i)

)︄]︄
= 2

m∑︂
k=1

Tr
[︂
Xk

(︂
ρk,1 − ρTk,2

)︂]︂
.

(3.3.4)

Theorem 3.3.8 (Characterization). Let T ∈ MatdD1...Dm×D1...Dm
. Then T is in minimal

canonical form if and only if ∥g · T ∥ ⩾ ∥T ∥ for all g ∈ G. This is the case if and only if the
reduced density matrices of ρ = |T⟩⟨T | on the virtual bonds are the same in each direction,
up to a transpose:

ρk,1 = ρTk,2 (∀k ∈ [m]) (3.3.5)

Proof. By Theorem 2.4.4, T is in minimal canonical form if and only if it is critical,
which means that the derivative in Eq. (3.3.4) should vanish for all X. This is
equivalent to ρk,1 = ρT

k,2 for all k ∈ [m]. □
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3.3. Projected entangled pair states

= =

Figure 3.8.: Minimal canonical form PEPS: Graphical version of the conditions
ρ1,1 = ρT1,2 and ρ2,1 = ρT2,2 from Theorem 3.3.8.

These conditions are illustrated in Fig. 3.8 for m = 2. Without the framework
of invariant theory, it is not clear that one can indeed transform any tensor by
gauge transformations to satisfy the conditions in Theorem 3.3.8. This is an
important difference with earlier proposals for canonical forms for PEPS. For
instance, [PMV15] proposes a canonical form based on a similar (but different)
condition. However, in that case, it is not clear that such a canonical form indeed
exists for any tensor.

Both Theorem 3.3.7 and Theorem 3.3.8, giving the “uniqueness” of the canonical
form and its algebraic characterization respectively, only require situations in which
one is already interested in analyzing tensors related by gauge transformations.
Reducing to such a situation is the goal of the Fundamental Theorems. For MPS
we already saw such fundamental theorems, in particular Theorem 3.2.14, which
apply to general MPS.

For PEPS the situation is more complicated, but for important special cases,
fundamental theorems are known. In particular, fundamental theorems are known
for the family of normal tensors [CPSV17], proven for the uniform 2D case in
[PSG+10], and extended to the general case in [MGP+18].

To define normal tensors, we first recall the notion of an injective PEPS tensor. A
tensor T ∈ MatdD1...Dm×D1...Dm

is injective if it is injective as a map from the virtual
legs to the physical legs, i.e. if it is injective as a d×D2

1 . . .D2
m matrix. The tensor T

is normal if it is injective after blocking together a number of copies to a single new
tensor. Let us explain what we mean by ‘blocking’. Given T ∈ MatdD1...Dm×D1...Dm

we can contractn = n1 . . .nm copies of T on a rectangular lattice of sizen1×· · ·×nm

sites to obtain a new tensor T̃ with physical dimension dn and bond dimensions
D

n2...nm

1 ,Dn1n3...nm

2 , . . . ,Dn1...nm−1
m . The tensor T is normal if there exists some

blocking such that the resulting tensor T̃ is injective.
Hence in the normal case, which is a generic condition, Theorem 3.3.7 and

Theorem 3.3.8 together with the Fundamental Theorem of [PSG+10] already
apply to show the following statement (for simplicity we only write down the
two-dimensional case):

Corollary 3.3.9. Two normal tensors T and S in MatdD1D2×D1D2
define the same state

in all n1 × n2 grids, i.e. |Tn1,n2⟩ = |Sn1,n2⟩ for all n1,n2 ∈ N, if and only if their
corresponding minimal canonical forms Smin and Tmin are related by local unitary gauges:
Smin = U · Tmin for a suitable unitary U ∈ U(D1) ×U(D2).

Moreover, we will see below in Proposition 3.3.20 that the orbit of a normal
tensor is always closed. However, this is not the end of the story. There are other
(non-normal) tensors which define the same state in all n1 × n2 grids, but are
nevertheless not related by a gauge transformation. An explicit example appears
in [MGSC18], in the context of 2D SPT phases. We provide the example here:
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3. The minimal canonical form of a tensor network

Example 3.3.10. The idea of the example is simple but ingenious. Take pairs of
MPS normal tensors A and B so that |A4⟩ = |B4⟩ but |Aj⟩ ≠ |Bj⟩ for all j > 4.4 The
explicit examples of [MGSC18] have physical dimension 2 and are given by the
matrices:

A(1) =

[︃
1 0
0 2

]︃
, A(2) =

[︃
24 −10
17 −3

]︃
,

where B(1) = A(1) and B(2) = −A(2).
Now, in each vertex of a two dimensional grid, place four qubits and, by joining

each one of those qubits with the closest one in each of the nearest neighbor sites,
fill in the lattice with a set of non-overlapping plaquettes 𝒫. The states we are
interested are |MA⟩ =

⨂︁
p∈𝒫 |A4⟩p and |MB⟩ =

⨂︁
p∈𝒫 |B4⟩p. It is now obvious

how to define the associated PEPS tensorsMA andMB for the vertices. Just take,
with the appropriate identification of indices, MA = A⊗4, MB = B⊗4 (recall that
each vertex contains four qubits and therefore the physical dimension is 16). It is
shown in [MGSC18] that tensorsMA,MB are not in the same GL4×GL4 orbit. One
can indeed show that the closure of their orbits do not intersect. One possibility is
just to realize that, because of the symmetry of the tensorsMA andMB, they are
already in minimal canonical form, and therefore their orbits are already closed.
The other possibility is to compareMA andMB in different contraction graphs Γ .
It is easy to find some Γ for which the length of some of the plaquettes are larger
than 4 and then the fact that |Aj⟩ ≠ |Bj⟩ for j > 4 implies that the associated states
|MA,Γ ⟩ and |MB,Γ ⟩ are different, which in turn implies that the orbits ofMA and
MB cannot intersect.

3.3.3. Fundamental theorem and invariant theory of uniform PEPS
This example makes clear that we have to change perspective to derive a Funda-
mental Theorem which is an analog to the MPS one (Theorem 3.2.14). Instead of
starting with the condition |Sn1,n2⟩ = |Tn1,n2⟩ for all n1,n2, and asking how the
tensors S and T are related, we start with the condition that S and T are gauge
equivalent, and we ask how we can characterize this based on the corresponding
tensor network states. It turns out that we need to compare the states not just on
grids, but on arbitrary contraction graphs. That is, the appropriate conditions is
|Sπ⟩ = |Tπ⟩ for tuples of permutations π.

Additionally, for MPS we found that it suffices to consider systems of size at most
D2 (Theorem 3.2.14) or even Õ(D) (Remark 3.2.15). Form ⩾ 2 we prove a similar
bound, but now we need a system size exponential in D (and we show below, in
Proposition 3.3.15, that this exponential dependence cannot be avoided). Formally,
we have the following weak version of a Fundamental Theorem, illustrated in
Fig. 3.3.

Theorem 3.3.11 (Fundamental Theorem for PEPS). Let S, T ∈ MatdD1...Dm×D1...Dm
.

Then the following are equivalent:

(i) The G-orbit closures of S and T intersect, i.e., G · S ∩G · T ≠ ∅.
4It is only proven in [MGSC18] that |A5⟩ ≠ |B5⟩, but since it is also shown that both A and
B become injective when blocking two sites, known bounds for the fundamental theorem
[MGP+18] imply already that if |Aj⟩ = |Bj⟩ for any j ⩾ 6, then A and B would be gauge-related
and then |A5⟩ = |B5⟩.
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(ii) |Sπ1,...,πm⟩ = |Tπ1,...,πm⟩ for all πk ∈ Sr for all r ∈ N.

(iii) |Sπ1,...,πm⟩ = |Tπ1,...,πm⟩ for all πk ∈ Sr for r ⩽ exp(cmD2 logD) where D =

max{D1, . . . ,Dm} and c is a constant.

To prove this result, we start with the following lemma (which is a basic result
in invariant theory [KP96, §4.6]), which allows us to reduce the study of invariant
polynomials C[MatdD×D]G to the study of multilinear invariant polynomials.
While the result is a basic one, it is a key component in proving a number of first
fundamental theorems in invariant theory, see [KP96] for more details.

Lemma 3.3.12. For any subgroup G ⊂ GL(D), any polynomial P in the ring of invariant
polynomials C[MatdD×D]G can be written as a linear combination of multihomogeneous
invariant polynomials Pn of some multidegree n = (n1, . . . ,nd), each of which can be
written as

Pn(M(1), . . . ,M(d)) = Q(M(1), . . . ,M(1)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
n1 times

, . . . ,M(d), . . . ,M(d)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
nd times

), (3.3.6)

where Q is a multilinear G-invariant polynomial in n =
∑︁d

i=1 ni matrix variables.

Proof. Let P = P(M(1), . . . ,M(d)) ∈ C[MatdD×D]G. First we show that we may
assume that P is multihomogeneous, i.e., homogeneous of some degree ni in each
matrix variableM(i). Indeed, we can write

P(M(1), . . . ,M(d)) =
∑︂

n=(n1,...,nd)
Pn(M(1), . . . ,M(d)),

where Pn is homogeneous of degree ni in the matrix variableM(i). Since the space
of homogeneous polynomials of multidegree n is invariant under GL(D), and
spaces of different multidegree are linearly independent, each Pn is G-invariant.
Thus we may without loss of generality assume that P = Pn. Next, we reduce
to multilinear invariants of some possibly larger number of matrices, as follows.
Consider P(M(1,1)+ · · · +M(1,n1), . . . ,M(d,1)+ · · · +M(d,nd)), a polynomial in formal
matrix variablesM(i,j) for i ∈ [d] and j ∈ [ni], and write

P(M(1,1) + · · · +M(1,n1), . . . ,M(d,1) + · · · +M(d,nd))
=

∑︂
h=(h1,1,...,hd,nd

)
Ph(M(1,1), . . . ,M(d,nd)),

where Ph is homogeneous of degree hi,j in each matrix variableM(i,j). Now note
that for all t1,1, . . . , td,nd ,

P(t1,1M
(1,1) + · · · + t1,n1M

(1,n1), . . . , td,1M
(d,1) + · · · + td,ndM

(d,nd))
=

∑︂
h=(h1,1,...,hd,nd

)
thPh(M(1,1), . . . ,M(d,nd)), (3.3.7)

so if we takeM(i,j) ≡M(i) for all i ∈ [d] and j ∈ [ni]we have

P(t1,1M
(1) + · · · + t1,n1M

(1), . . . , td,1M
(d) + · · · + td,ndM

(d))
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=
∑︂

h=(h1,1,...,hd,nd
)
thPh(M(1), . . . ,M(1)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

n1 times

, . . . ,M(d), . . . ,M(d)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
nd times

).

On the other hand, by multihomogeneity,

P(t1,1M
(1) + · · · + t1,n1M

(1), . . . , td,1M
(d) + · · · + td,ndM

(d))
= (t1,1 + · · · + t1,n1)n1 · · · (td,1 + · · · + td,nd)ndP(M(1), . . . ,M(d))

=
∑︂

h=(h1,1,...,hd,nd
)

(︃
n1

h1,1 . . . h1,n1

)︃
· · ·

(︃
nd

h1,1 . . . h1,nd

)︃
thP(M(1), . . . ,M(d)).

Comparing coefficients and specializing to h = (1, . . . , 1), we find that

P(M(1), . . . ,M(d)) = 1
n1! · · ·nd!P1,...,1(M(1), . . . ,M(1)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

n1 times

, . . . ,M(d), . . . ,M(d)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
nd times

).

Note that P1,...,1 is a multilinear polynomial in
∑︁d

i=1 ni matrix variables. Since
the left-hand side of Eq. (3.3.7) is G-invariant, we may also assume that P1,...,1 is
G-invariant. □

We now return to our setting, where G = GL(D1) × · · · ×GL(Dm), and use this
lemma to prove.

Proposition 3.3.13. The ring of invariant polynomials C[MatdD1...Dm×D1...Dm
]G is

generated by functions Pπ,i as in Eq. (3.3.3) for n ⩽ exp(cmD2 log(mD)) where
D = max{D1, . . . ,Dm} and c > 0 is a universal constant.

Proof. Let P = P(T (1), . . . , T (d)) ∈ C[MatdD1...Dm×D1...Dm
]G. By Lemma 3.3.12 with

D = D1 . . .Dm we may reduce to the case where P = Pn for some n = (n1, . . . ,nd),
and we can write

P(T (1), . . . , T (d)) = ⟨R, T (1) ⊗ . . . ⊗ T (1)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
n1 times

⊗ T (2) ⊗ . . . ⊗ T (2)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
n2 times

⊗ . . . ⊗ T (d) ⊗ . . . , T (d)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
nd times

⟩ ,

where ⟨·, ·⟩ is the trace inner product and where

R ∈
(︂
End(CD1 ⊗ . . . ⊗ CDm)⊗n

)︂G
.

The total degree is given by n =
∑︁d

i=1 ni. Now note that(︂
End(CD1 ⊗ . . . ⊗ CDm)⊗n

)︂G
≅ End((CD1)⊗n)GL(D1) ⊗ . . . ⊗ End((CDm)⊗n)GL(Dm)

≅ C[Rπ1 : π1 ∈ Sn] ⊗ . . . ⊗ C[Rπm : πm ∈ Sn]
≅ C[Rπ1 ⊗ . . . ⊗ Rπm : π1, . . . ,πm ∈ Sn]

where we denote by Rπk the operator acting on (CDk)⊗n permuting the n copies
of CDk according to πk. Thus, R is a linear combination of elements of the
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3.3. Projected entangled pair states

form Rπ = Rπ1 ⊗ . . . ⊗ Rπm , for π = (π1, . . . ,πm). We conclude that the ring of
invariant polynomials C[MatdD1...Dm×D1...Dm

]G is generated as a vector space by the
polynomial functions Pπ,i as in Eq. (3.3.3) for π ∈ Smn and n ∈ N. In particular,
the invariant polynomials of degree at most r are spanned by the Pπ,i for π ∈ Smn
and i ∈ [d]n for n ⩽ r.

We now use general results in invariant theory to bound the degree necessary
to generate the invariant ring as an algebra. For convenience, we write V :=
MatD1···Dm×D1···Dm , so we are interested in degree bounds for the action of G =

GL(D1) × · · · ×GL(Dm) on Vd = MatdD1···Dm×D1···Dm
. We first appeal to a classical

theorem by Weyl [Wey46, II.5 Thm. 2.5.A] which states that if d > dim(V), a
generating set of invariants for Vd can be obtained by acting with GL(d) on a
generating set for C[Vdim(V)]G ↩→ C[Vd]G (cf. [KP96, §7.1]). In particular, any
degree bound for d = dim(V) also applies to d > dim(V). Accordingly, we may
assume without loss of generality that d ⩽ dim(V). Next, we observe that since
we act by simultaneous conjugation, the invariants for the action of G are the same
as for G′ := SL(D1) × · · · × SL(Dm), so we can restrict to the latter. By results of
Derksen [Der00] the ring of invariants is generated by invariant polynomials of
degree at most

r ⩽
3
8 dim(Vd)(Ht−dim(G′)Adim(G′))2 (3.3.8)

where t,H,A are integers computed as follows. We think ofG′ as being embedded
in ⊕m

k=1 MatDk×Dk ≅ C
t, with t =

∑︁m
k=1D

2
k
. Then G′ is defined as the common

zero set of the polynomials det(gk) − 1 for k ∈ [m]. The integer H is the maximal
degree of these polynomials, i.e., H = maxkDk. If one fixes an arbitrary basis
of Vd, the matrix entries of the representation of G′ are polynomial functions of
the coordinates of Ct (that is, the entries of the gk). The integer A is the maximal
degree of these polynomials. To compute it, note that (g1, . . . ,gm) ∈ G′ acts on
a matrix tuple T = (T (i))d

i=1 ∈ Vd by simultaneous conjugation by g1 ⊗ · · · ⊗ gm.
Thus, we left multiply each matrix T (i) with g1 ⊗ · · · ⊗ gm, the entries of which are
polynomials of degreem in the entries of the gk, and we right multiply each T (i)
with

g−1
1 ⊗ · · · ⊗ g

−1
m = adj(g1) ⊗ · · · ⊗ adj(gm), (3.3.9)

where adj(gk) is the adjugate matrix of gk (here we used that gk ∈ SL(Dk),
so that we did not have to divide by the determinant when computing the
inverse); since the entries of the adjugate matrix are given by cofactors of gk
and hence have degree Dk − 1, the entries of (3.3.9) are polynomials of degree∑︁m

k=1(Dk − 1). Therefore, each matrix entry of the representation of G′ is a
polynomial of degree A = m +

∑︁m
k=1(Dk − 1) =

∑︁m
k=1Dk.

Evaluating Eq. (3.3.8) with dim(Vd) = d
∏︁m

k=1D
2
k
, d ⩽ dim(V), dim(G′) =∑︁m

k=1(D2
k
− 1), H = maxkDk, t =

∑︁m
k=1D

2
k

and A =
∑︁m

k=1Dk shows that we can
bound the required degree by

n ⩽
3
8

(︄
d

m∏︂
k=1

D2
k

)︄ ⎛⎜⎝
(︃
max
k
Dk

)︃m (︄
m∑︂
k=1

Dk

)︄∑︁m
k=1(D2

k
−1)⎞⎟⎠

2

⩽ exp(cmD2 log(mD))

for some universal constant c ⩾ 0. □
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3. The minimal canonical form of a tensor network

Proof of Theorem 3.3.11. It is clear that (i)⇒ (ii)⇒ (iii). The fact that (iii)⇒ (i) is a
consequence of Proposition 3.3.13 and Theorem 2.3.7. □

Corollary 3.3.14 (Lifting symmetries). Suppose that S, T ∈ MatdD1...Dm×D1...Dm
are

in minimal canonical form and u ∈ U(d) is a unitary such that u⊗n |Sπ⟩ = |Tπ⟩ for all
π ∈ Smn and n ∈ N. Then there exist unitaries Uk ∈ U(Dk) such that (I ⊗ u) |S⟩ =
((
⨂︁m

k=1Uk ⊗ Ūk) ⊗ I) |T⟩.

Proof. Let S′ ∈ MatdD×D be the matrix tuple defined by

|S′⟩ := (I ⊗ u) |S⟩ .

Then S′ is also in minimal canonical form, since u is unitary and hence we have
∥g · S∥ = ∥g · S′∥ for all g ∈ G. Moreover, by construction it holds that

|S′π⟩ = u⊗n |Sπ⟩ = |Tπ⟩

for all π ∈ Smn and n ∈ N. Thus Theorem 3.3.11 shows that S′ and T are gauge
equivalent, and it follows from Theorem 3.3.7 that there exist unitary gauge
transformations Uk ∈ U(Dk) such that (I ⊗ u) |S⟩ = ((

⨂︁m
k=1Uk ⊗ Ūk) ⊗ I) |T⟩. □

The degree bounds in Proposition 3.3.13 are a direct consequence of deep and
completely general results in invariant theory. These bounds are in general not
necessarily sharp. As an example, the degree bounds obtained in this way for the
MPS case are still exponential, while we know from Theorem 3.2.13 that in this
special case we have a degree bound ofD2. Moreover, we know from Remark 3.2.15
that in this case invariants of degree Õ(D) already suffice to determine whether
two MPS tensors are gauge equivalent.

However, this is quite special for one spatial dimension. For PEPS with spatial
dimensionm ⩾ 2, we now show that one in general needs to consider invariants
of degree exponential in the bond dimension in order to decide whether two PEPS
tensors are gauge equivalent (even if one is the zero tensor). For convenience we
takem = 2, D1 = D2 = D, and d = 1 (that is, the tensor networks defined by the
PEPS tensors are scalars).

Proposition 3.3.15 (Degree lower bound). There exists a function nmin(D) = eΩ(D)
and, for every D, a tensor T ∈ MatD2×D2 with the following properties:

(i) For any invariant polynomial P ∈ C[MatD2×D2]GL(D)×GL(D) of degree less than
nmin(D), we have P(T ) = P(0).

(ii) There exists an invariant polynomial P of degree nmin(D) such that P(T ) ≠ P(0). In
particular, we have 0 ∉ G · T , meaning that T is not gauge equivalent to the zero
tensor.

In particular, the ring of invariant polynomials C[Matd
D2×D2]GL(D)×GL(D) for any d ⩾ 1

is not generated by the polynomials of degree n < nmin(D).

Proof. The last statement of the proposition is an immediate consequence of the
described properties of T . Indeed, if the ring of invariants were generated by
invariant polynomials of degree smaller than nmin(D), then P(T ) = P(0) for all such
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3.3. Projected entangled pair states

polynomials P would imply that P(T ) = P(0) for all invariant polynomials P – but
we know that P(T ) ≠ P(0) for at least one invariant polynomial of degree nmin(D).

We will explicitly construct a tensor T ∈ MatD2×D2 . For d = 1 and for π ∈ Smn
and 1 = (1, . . . , 1) we abbreviate Pπ,1 = Pπ. Since the Pπ for π ∈ S×2

n for n < r are
homogeneous and span the degree r polynomials in C[MatD2×D2]GL(D)×GL(D) it
suffices to show that Pπ(T ) = 0 for π ∈ S×2

n for n < nmin, while there exists some
π ∈ S×2

n for n = nmin such that Pπ(T ) ≠ 0. We will take nmin = 2D + 2D−1 − 2.
To explain the construction and the argument we start with a construction where

we allow the physical dimension d to grow with D, and we construct a tensor
S ∈ Mat2D−1

D2×D2 with certain properties. Then, we will use a trick to reduce the
physical dimension. Let {|j⟩}D−1

j=0 denote the standard basis of CD. We choose the
tensor S as follows:

S(1) = |0⟩ ⟨1| ⊗ |0⟩ ⟨1| , S(2j) = |j⟩ ⟨0| ⊗ |0⟩ ⟨j| , S(2j+1) = |0⟩ ⟨j + 1| ⊗ |j⟩ ⟨j + 1|

for j = 1, . . . ,D − 1 and where the index j should be read modulo D (so |D⟩ = |0⟩).
We will now argue that one the one hand, for all i = (i1, . . . , in) ∈ [2D − 1]n and
n < 2D + 2D−1 − 2 we have Pπ,i(S) = 0 for all π, while on the other hand for
n = 2D + 2D−1 − 2 there is some π and i = (i1, . . . , in)with Pπ,i(S) ≠ 0.

We start by showing that if i = (i1, . . . , in) with n < 2D + 2D−1 − 2 then we
have Pπ,i(S) = 0. To conveniently reason about contractions in the tensor network
picture we will name the four virtual legs of the tensors as follows:

|left⟩ ⟨right| ⊗ |down⟩ ⟨up|

and call the two directions ‘horizontal’ and ‘vertical’. In the tensor network picture,
we observe that for each even i = 2j one can only contract the upper leg of S(2j)
along the vertical direction with a copy of S(2j+1) in order for the result to be
nonzero. That is, if we have ik = i even, then π2 must map k to lwhere il = i + 1.
Similarly, for i = 2j + 1 < 2D − 1 odd we need to contract the right leg of S(2j+1)

with the left leg of a copy of S(2j+2) in the horizontal direction and its upper leg
with a copy of S(2j+3) in the vertical direction. Together these conditions imply that
if ni denotes the number of copies of S(i) one requires in order for the contraction
to be nonzero, we have ni+2 ⩾ ni+1 + ni for i < 2D − 1 odd and ni+1 ⩾ ni for
i ⩽ 2D even. By similar reasoning, for even i = 2j, the left leg of a copy of S(2j)
needs to be contracted in the horizontal direction with a copy of S(2j−1), and for
odd i = 2j + 1 > 1, the down leg of a copy of S(2j+1) needs to be contracted in the
vertical direction with a copy of S(2j) or S(2j−1). This implies that if ni ≠ 0 for i ⩾ 2
we also need either ni−1 or ni−2 to be nonzero and in particular n1 ⩾ 1.

Solving the recursion with n1 ⩾ 1 gives n2i+1 ⩾ 2i and n2i ⩾ 2i−1 for i =
1, . . . ,D − 1. We then have

n =

2D−1∑︂
i=1

ni ⩾ 2D + 2D−1 − 2.

On the other hand, it is easy to see that if we take ni copies of S(i) with n1 = 1,
n2i = 2i−1 and n2i+1 = 2i we can indeed contract to something nonzero.
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3. The minimal canonical form of a tensor network

Now, to prove the proposition, we adapt the previous construction to d = 1. We
construct T ∈ MatD2×D2 as

T = T (1) =
2D−1∑︂
i=1

S(i).

Consider some arbitrary π ∈ Smn . We may expand T =
∑︁

i S
(i) for each copy of T

to find

Pπ(T ) =
∑︂

i∈[d]n
Pπ,i(S).

By construction of S, each Pπ,i(S) is either zero or one, proving that Pπ(T ) ≠ 0 if
and only if there is some i = (i1, . . . , in) such that Pπ,i(S) ≠ 0.

By our previous arguments for S this implies that for all n < 2D + 2D−1 − 2 and
π ∈ Smn we have Pπ(T ) = 0, but that for n = 2D+2D−1−2 we can find some π ∈ Smn
such that Pπ(T ) ≠ 0. □

Remark 3.3.16. The argument of Proposition 3.3.15 can be extended tom > 2. We define
a generalization of S ∈ Matm(D−1)+1

Dm×Dm as follows: for i = 1, . . . ,D− 1 and j = 1, . . . ,m− 1
set

S(1) = (|0⟩ ⟨1|)⊗m, S(m(i−1)+j+1) = (|0⟩ ⟨0|)⊗(j−1) ⊗ |i⟩ ⟨0| ⊗ (|0⟩ ⟨i|)⊗(m−j).

and

S(mi+1) = (|0⟩ ⟨i + 1|)⊗(m−1) ⊗ |i⟩ ⟨i + 1| .

Note that as before we interpret the basis states modulo D, i.e., |D⟩ = |0⟩. Then again
define T ∈ MatDm×Dm by

T = T (1) =
m(D−1)+1∑︂

i=1
S(i)

Essentially the same argument yields

nmin = 1 +
D−1∑︂
i=1

2i(m−1)
m−1∑︂
j=0

2j = exp(Ω(mD))

so the degree lower bound also scales exponentially inm.

We note here that proving degree lower bounds is not often an easy task, and
in literature often has to employ rather involved and indirect techniques to get
exponential lower bounds even in very familiar cases, see e.g., [DM20b; DM22].
The technique we use above is far more straightforward and explicit even though
the setting we study here is somewhat similar to some of the cases handled in the
aforementioned papers.
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3.3. Projected entangled pair states

3.3.4. Two-dimensional tensor networks, tilings and topology
Consider the following question: given a PEPS tensor T in two spatial dimensions,
determine whether there exist n1,n2 such that the associated state |Tn1,n2⟩ on a
rectangular periodic lattice of size n1×n2 is nonzero. This problem is undecidable,
see [SMG+20]. The proof of the undecidability given in [SMG+20] is by reducing
to the problem of the existence of a periodic tiling given some set of tiles. Given a
set of square tiles where each edge of the tile is associated to one of D boundary
colors, the question is whether there exists a tiling (meaning that the boundary
colors of adjacent tiles match) which is periodic. Equivalently, this gives a tiling of
the two-dimensional torus. It is known that the existence of such tilings, given a
set of tiles, is undecidable in general [GK72], and in [SMG+20] it was shown how
to embed this problem into a PEPS tensor T of bond dimensions D1 = D2 = D

such that the associated state |Tn1,n2⟩ on a n1 × n2 periodic rectangular lattice is
nonzero if and only if there exists a n1 × n2 periodic tiling. The construction of
such a tensor T is as follows. Let d be the number of tiles, label the tiles with an
index i ∈ [d], and similarly label the colors with an index j ∈ [D]. Then if the tile i
has colors j1, j2, j3, j4 on respectively the left, right, upper and lower sides, define
T (i) := |j1⟩ ⟨j2 | ⊗ |j3⟩ ⟨j4 |. It is not very hard to see that under this construction the
resulting PEPS state |Tn1,n2⟩ is nonzero if and only if there exists a n1 ×n2 periodic
tiling. In fact, the argument in [SMG+20] is for PEPS tensors with boundary
conditions, but the undecidability of the existence of periodic tilings [GK72] yields
the same result for PEPS with periodic boundary conditions.

Interestingly, Proposition 3.3.13 shows that if one relaxes the problem to asking
whether a PEPS tensor yields the zero state on any contraction graph, the problem
is decidable, as we only have to check all graphs of size at most exp(O(D2 logD)).
Alternatively, the PEPS tensor yields the zero state on any contraction graph if and
only if its minimal canonical form is the zero tensor. In the language of invariant
theory, the PEPS tensor yields the zero state on any contraction graph if and only
if it is in the null cone.

Example 3.3.17. The following is the smallest set of tiles that only gives aperiodic
tilings, meaning that if we take any rectangle with periodic boundary conditions,
the associated PEPS equals zero [JR21].

On the other hand it is easy to construct a geometry for which the associated PEPS
is nonzero:
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In general, Proposition 3.3.13 together with the reduction in [SMG+20] shows that
given a set of tiles with D colors, then there exists a ‘generalized tiling’ (i.e. an
arbitrary way to glue together the edges of the tiles) on some closed (possibly
non-orientable) surface if and only if such a generalized tiling exists using at most
exp(𝒪(D2 logD) tiles. The problem of deciding, given a set of tiles, whether there
exists some generalized tiling is thus a decidable problem. The construction in
Proposition 3.3.15 in fact used a PEPS corresponding to a tiling problem, showing
that there are indeed situations where the smallest possible generalized tilings are
of size at least exp(Ω(D)).

As argued in [SMG+20] their undecidability result excludes the possibility of
a computable canonical form for two-dimensional PEPS which is such that two
tensors T ,S yield the same state on all periodic lattices (so |Tn1,n2⟩ = |Sn1,n2⟩
for all n1,n2) if and only if they have the same canonical form. On the other
hand, we saw in Corollary 3.3.9 that any two normal tensors which yield the same
state on a periodic lattice are related by a local gauge transformation. However,
even if generic tensors are normal, in two spatial dimensions many interesting
tensors describing physical systems are not normal, in particular those associated
to topological order, either conventional or symmetry-protected [CPSV21]. One
way to interpret our Fundamental Theorem (Theorem 3.3.11) is that for some
tensors it does not suffice to place them on periodic lattices and that the state they
describe has a type of topological order which is only revealed by placing the
states on a (possibly non-orientable) two-dimensional manifold other than a torus.
This is an idea which is worth exploring in the future, and it is reminiscent of the
well-known fact that different topological sectors can be detected by imposing
different boundary conditions [CPSV21].

3.3.5. When does one need the orbit closure?

In general, finding the minimal canonical form requires one to go to the closure of
the orbit of the action by the gauge group. In other words, if T ∈ MatdD1...Dm×D1...Dm

is a PEPS tensor in m spatial dimensions, then there may not exist a minimal
canonical form Tmin of the form (g1, . . . ,gm) · T , but only one that can be written
as a limit of such tensors: Tmin = limj→∞(g(j)1 , . . . ,g(j)m) · T . In other words, such
a T is not polystable in the language of Section 2.3.4. When is taking limits really
necessary? In this section we will discuss conditions under which one does not
need to go to the closure and give an example where it is required. We consider
PEPS tensors inm spatial dimensions, and fix bond dimensions D1, . . . ,Dm and
physical dimension d. We denote by G = GL(D1) × · · · ×GL(Dm).

We will now argue that given a tensor S ∈ MatdD1...Dm×D1...Dm
in minimal

canonical form, if there exists a T which has S as a canonical form and which
requires taking an orbit closure, then the tensor Smust have a continuous symmetry.
We formalize the notion of a continuous symmetry by a multiplicative one-parameter
subgroup of G, which is a homomorphism of Lie groups ϕ : C×→ G. Given such a
homomorphism we will write g(z) for ϕ(z) and we will say that g(z) is nontrivial
if g(z) is not proportional to the identity for all z ∈ C×.

The result we are aiming for is a consequence of the Hilbert–Mumford criterion
in geometric invariant theory. If T ∈ MatdD1...Dm×D1...Dm

is any tensor, and Tmin is an
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associated minimal canonical form, thenG·Tmin is a closed orbit (by the Kempf–Ness
Theorem, see Theorem 2.4.4). The Hilbert–Mumford criterion (Theorem 2.3.16)
then implies that there exists a one-parameter subgroup g(z) ∈ G such that

lim
z→0

g(z) · T = S

where S ∈ G · Tmin.

Proposition 3.3.18 (Non-closed implies symmetry). Suppose S ∈ MatdD1...Dm×D1...Dm

is such that G · S is closed (in particular this is valid if S is in minimal canonical form).
Suppose that there exists T such that S ∈ G · T but S ∉ G · T , then there exists a nontrivial
one-parameter subgroup g(z) ⊂ G, z ∈ C× such that g(z) · S = S for all z ∈ C×.

Proof. By the Hilbert–Mumford criterion there exists g ∈ G and a one-parameter
subgroup h(z) ∈ G such that

lim
z→0

h(z) · T = g · S.

This one-parameter subgroup must be nontrivial since S ∉ G · T . Let g(z) =
g−1h(z)g. Then

g(z) · S = g−1h(z)g · S = lim
w→0

g−1h(z)h(w) · T

= lim
w→0

g−1h(zw) · T

= g−1 · (g · S) = S

confirming that g(z) is a symmetry for S. □

Example 3.3.19. Returning to the GHZ state in Example 3.2.4, we note that it
indeed has a one-parameter subgroup symmetry, for instance for

g(z) =
[︃
1 0
0 z

]︃
it holds that g(z) ·M =M.

An important class of examples of PEPS tensors which lead to closed orbits are
injective and normal tensors, already defined in Section 3.3.2. For those tensors
(in particular for normal MPS) one does not need to take closures to construct
the minimal canonical form. In fact we show that if there is any normal tensor in
G · T , then G · T is closed (and in particular contains a minimal canonical form
for T ). A similar result has been shown for the case of MPS in [MGSC18] and has
applications in the classification of two-dimensional SPT phases. This is a nice
example where the geometric invariant theory framework allows for a particularly
simple and conceptually elegant proof.

Proposition 3.3.20 (Canonical form normal PEPS). Suppose T ∈ MatdD1...Dm×D1...Dm

is such that its orbit closure G · T contains a normal tensor. Then G · T = G · T .
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3. The minimal canonical form of a tensor network

Proof. By Proposition 3.3.18 it suffices to show that if T is normal, thenG ·T is closed
and there is no nontrivial one-parameter subgroup g(z) such that g(z) · T = T for
all z ∈ C×.

Let T̃ be the n = n1 × · · · × nm blocking of T such that T̃ is injective. So, if we let
D̃i = D

n1...ni−1nk+1...nm

i
and d̃ = dn,

T̃ ∈ Matd̃
D̃1...D̃m×D̃1...D̃m

.

Let S be any tensor in G · T and let S̃ be the n1 × · · · × nm blocking of S. Since
S ∈ G · T there must be a sequence g(j) = (g(j)1 , . . . ,g(j)m) ∈ G for j ∈ N such that

lim
j→∞

g(j) · T = S.

Since g · T is invariant under rescaling the gk by a constant, we may assume
that ∥g(j)

k
∥∞ = 1 for all k and j. If we let g̃(j)

k
= (g(j)

k
)⊗n1...ni−1ni+1...nm and g̃(j) =

(g̃(j)1 , . . . , g̃(j)m) then

lim
j→∞

g̃(j) · T̃ = S̃.

Now, interpret T̃ as an element of (CD̃ ⊗ CD̃)d̃ where D̃ = D̃1 . . . D̃m, so

T̃ = (T̃ (i))d̃i=1, T̃
(i) ∈ CD̃ ⊗ CD̃.

Then the fact that T̃ is injective implies that there exists a tensor M̃ ∈ (CD̃ ⊗ CD̃)d̃
which is an inverse to T̃ in the sense that

d̃∑︂
i=1
T̃
(i)(M̃(i))† = I

D̃
2

is the identity map. Let Ñ(j) be the contraction of g̃(j) · T̃ with M̃:

Ñ
(j)

=

d̃∑︂
i=1

(︂
g̃(j) ⊗ (g̃(j))−T T̃ (i)

)︂
(M̃(i))†

(writing g̃(j) = g̃(j)1 ⊗ . . . ⊗ g̃(j)m in a slight abuse of notation). Then, Ñ(j) must be a
converging sequence (since g̃(j) · T̃ is so). On the other hand, since M̃ is the inverse
to T̃ ,

Ñ
(j)

= g̃(j) ⊗ (g̃(j))−T .

The fact that this sequence converges implies that ∥(g̃(j))−T ∥∞ = ∥(g̃(j))−1∥∞ is
bounded and hence there is some constant C such that for all k ∈ [m] and j ∈ N
we may bound ∥(g(j)

k
)−1∥∞ ⩽ C. However, this implies that g(j) is contained in a

compact subset of G and therefore has a converging subsequence, which in turn
implies that

S = lim
j→∞

g(j) · T ∈ G · T .
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3.3. Projected entangled pair states

So, we conclude thatG · T is closed. Secondly, suppose that there exists a nontrivial
one-parameter subgroup g(z) such that g(z) · T = T for all z ∈ C×. Using the same
notation as before, this implies that there exists a one-parameter subgroup g̃(z)
such that g̃(z) · T̃ = T̃ . However, applying the inverse M̃, this implies

g̃(z) ⊗ g̃(z)−T = I

which implies that g(z)must be proportional to the identity for all z ∈ C×. □

Beyond normal PEPS states there are also other states of interest where Proposi-
tion 3.3.18 implies that one never needs to go to the closure to obtain the minimal
canonical form.

Example 3.3.21. In two spatial dimensions an important example of a PEPS state
which is not normal is the toric code. This is a state usually defined on a qubit
lattice. To write it as a PEPS state one may group together four physical sites into
a single site of four qubits. The toric code PEPS tensor is then given, as a map
from the bond legs to the physical legs, by T = 1

2I
⊗4 + 1

2Z
⊗4. Alternatively, for

i, j,k, l ∈ {0, 1}

T (i,j,k,l) =

{︄
|i⟩ ⟨j| ⊗ |l⟩ ⟨k| if i + j + k + l is even,
0 if i + j + k + l is odd.

This tensor is in minimal canonical form, since all virtual marginals are maximally
mixed. We will now verify that this tensor has a finite symmetry group, and hence
(as opposed to the GHZ state) there are no tensors for which T is in their orbit
closure while not in the orbit itself. Suppose that g · T = T for g = (g1,g2) with
gk ∈ GL(2) for k = 1, 2. This is equivalent to

g1 ⊗ g−T1 ⊗ g2 ⊗ g−T2 |i⟩ |j⟩ |k⟩ |l⟩ = |i⟩ |j⟩ |k⟩ |l⟩ .

for all i + j + k + l = 0 mod 2. We can choose i and j arbitrary, so g1 must be
diagonal. By the same reasoning, g2 must be diagonal as well. If we let

gi =

[︃
gi,0 0

0 gi,1

]︃
then we find g1,ig2,k = g1,jg2,l for all i+ j+k+ l = 0 mod 2. By choosing i ≠ j and
k ≠ l it is easy to see that this implies that after scaling by a global constant (which
is irrelevant) gi,j ∈ ±1 so we cannot have a nontrivial one-parameter subgroup
symmetry.

Example 3.3.22. The previous example can be generalized to arbitrary quantum
double models for abelian groups G. For an arbitrary finite group G we may
construct a PEPS tensor (also known as a G-isometric PEPS tensor) as follows. The
Hilbert space along each of the bond legs consists of the group algebra C[G] with
basis {|g⟩}g∈G, so the bond dimension isD = |G|. The group G acts by the regular
representation on C[G] as g |h⟩ = |gh⟩. The physical Hilbert space is given by
C[G]⊗4. Then the PEPS tensor is given, as a map from the bond Hilbert spaces to
the physical Hilbert space as

T =
1
|G|

∑︂
g∈G

g ⊗ ḡ ⊗ g ⊗ ḡ
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3. The minimal canonical form of a tensor network

The toric code tensor is a special case of this construction for G = Z2. Essentially
the same argument as for the toric code shows that (up to a global constant) the
symmetries of this tensor form a discrete set if the group G is abelian and hence
C[G] decomposes into one-dimensional irreducible representations. Therefore,
GL(D) ×GL(D) · T = GL(D) ×GL(D) · T .

Example 3.3.23. To give a nontrivial example where we do have a continuous
symmetry, and we have non-closed orbits, we use a construction inspired by
[DCS18], which investigates PEPS with continuous virtual symmetries. Consider
a 2-dimensional PEPS tensor T with physical and bond dimensions all equal to
two, given by

T (0) =
∑︂

i,j∈{0,1}
|i⟩ ⟨j| ⊗ |j⟩ ⟨i|

T (1) =
∑︂

i,j∈{0,1}
|i⟩ ⟨j| ⊗ X |i⟩ ⟨j| X.

In the standard basis we may write this out as

T (0) =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎦ and T (1) =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ .

See [DCS18] for a graphical notation, expressing contractions as loop diagrams.
All the virtual marginals of T are maximally mixed, so T is in minimal canonical
form. It is now easy to see that g(z) = (h(z),h(z)) is a one-parameter subgroup
symmetry for

h(z) =
[︃
1 0
0 z

]︃
.

Indeed, since h(z) |i⟩ ⟨j| h(z)−1 = zi−j |i⟩ ⟨j| and h(z)X |i⟩ ⟨j| Xh(z)−1 = zj−iX |i⟩ ⟨j| X

(h(z) ⊗ h(z)) T (0)
(︂
h(z)−1 ⊗ h(z)−1

)︂
=

∑︂
i,j∈{0,1}

zi−j |i⟩ ⟨j| ⊗ zj−i |j⟩ ⟨i| = T (0)

(h(z) ⊗ h(z)) T (1)
(︂
h(z)−1 ⊗ h(z)−1

)︂
=

∑︂
i,j∈{0,1}

zi−j |i⟩ ⟨j| ⊗ zj−iX |i⟩ ⟨j| X = T (1).

Let us construct an explicit example where we need the closure to reach the
minimal canonical form. Let N = |1⟩ ⟨0| ⊗ |1⟩ ⟨0| and let

S(0) = T (0) +N and S(1) = T (1) +N.

In the standard basis

S(0) =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0
0 0 1 0
0 1 0 0
1 0 0 1

⎤⎥⎥⎥⎥⎥⎦ and S(1) =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0
0 1 1 0
0 1 1 0
1 0 0 0

⎤⎥⎥⎥⎥⎥⎦ .
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Now, since h(z) |1⟩ ⟨0| h(z)−1 = z |1⟩ ⟨0| and T is invariant under g(z),

(h(z) ⊗ h(z))S(i)
(︂
h(z)−1 ⊗ h(z)−1

)︂
= T (i) + z2N

so

lim
z→0

g(z) · S = T .

On the other hand, since 1 = rank(T (1)) ≠ rank(S(1)) = 2 we see that S is not in the
orbit of T .

3.4. Algorithms for computing minimal canonical forms
In this section we address the question of how to compute minimal canonical
forms algorithmically. We will discuss two algorithms (and sketch potential
applications in Section 3.5). The first one is eminently practical and stated explicitly
in Algorithm 3.1. The second one has a better runtime dependence in theory, but
is less practical. We follow and apply the general framework of [BFG+19] but give
some tighter bounds in our setting.

Before discussing our results and presenting our algorithm in more detail, we
discuss what it means to compute a minimal canonical form. In general, minimal
canonical forms cannot be represented exactly in finite precision, so one is naturally
led to look for approximations. Then there are at least three natural choices of
what it might mean to approximately compute a minimal canonical form of a given
PEPS tensor T :

• ℓ2-error in the space of tensors: Given δ > 0, find a tensor S ∈ G · T that is δ-close
in ℓ2-norm to a minimal canonical form Tmin of T . It is natural consider
relative error (but see Remark 3.4.13):

∥S − Tmin∥
∥S∥ ⩽ δ. (3.4.1)

• ℓ2-error in the first-order characterization: Given ε > 0, find a tensor S ∈ G · T
such that

1
Trσ

⌜⎷
m∑︂
k=1

∥︁∥︁∥︁σk,1 − σTk,2

∥︁∥︁∥︁2
⩽ ε where σ = |S⟩ ⟨S| . (3.4.2)

• error in the norm of the tensor: Given ζ > 0, find a tensor S ∈ G · T whose norm
is almost minimal:

∥Tmin∥
∥S∥ ⩾ 1 − ζ. (3.4.3)

Equation (3.4.3) corresponds to the norm minimization problem (Problem 2.6.3),
whereas Eq. (3.4.2) corresponds to the scaling problem (Problem 2.6.4). We already
know that Eq. (3.4.1) holds with δ = 0 if and only if Eq. (3.4.2) holds with ε = 0
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3. The minimal canonical form of a tensor network

if and only if Eq. (3.4.3) holds with ζ = 0 (by Theorem 3.3.8 and the definition of
the minimal canonical form). In Section 3.4.2 we will show that the three error
measures can be related in a precise way. The quantitative relation between ε and ζ
is a special case of the non-commutative duality theorem (Theorem 2.6.7). Their
relation to Eq. (3.4.1) is new and relies on extending an argument from [KLLR18]
in the setting of operator scaling; accordingly, we may target either.

3.4.1. First-order algorithm
We start by motivating our first algorithm, which we present explicitly in Algo-
rithm 3.1, and recall several results from Chapter 2. LetG = GL(D1)×· · ·×GL(Dm)
and K = U(D1) × · · · ×U(Dm). Suppose we are given a tensor 0 ≠ T = (T (i))d

i=1 ∈
MatdD1...Dm×D1...Dm

and we would like to approximately compute a minimal canon-
ical form Tmin. Since the latter is defined as a minimum norm tensor in the orbit
closure, a natural way to address this is by minimizing or “infimizing” the norm
or, equivalently, the log-norm or Kempf–Ness function FT : G→ R given by

FT (g) = log∥g · T ∥ = 1
2 log∥g · T ∥2.

Since FT (g) = FT (kg) for all k ∈ K and g ∈ G, the objective function FT can
be defined on the space K\G := {Kg : g ∈ G} of right K-cosets in the gauge
groupG. This space may be endowed with a natural Riemannian metric, yielding a
simply-connected complete Riemannian manifold with non-positive curvature [BH13;
Bha09]. In particular, between any two points there exist unique geodesics (here:
shortest paths). Explicitly, the geodesics through g = (g1, . . . ,gm) ∈ G take the
form K(etX1g1, . . . , etXmgm) for X = (X1, . . . ,Xm) ∈ H.5

The point then is the following: While not convex in the ordinary sense, the
function FT (p) is geodesically convex, that is, convex along these geodesics. This
means for any (g1, . . . ,gm) ∈ G and (X1, . . . ,Xm) ∈ H,

∂2
t=0FT

(︂
etX1g1, . . . , etXmgm

)︂
⩾ 0.

Therefore, a reasonable approach to minimizing FT is to use a gradient descent.
Moreover, the computation done in Eq. (3.3.4) shows that the gradient at g = I =
(ID1 , . . . , IDm) is

∂t=0FT

(︂
etX1 , . . . , etXm

)︂
=

1
2∥T ∥2∂t=0

∥︁∥︁(etX1 , . . . , etXm) · T
∥︁∥︁2

=
1

Tr ρ

m∑︂
k=1

Tr
[︂
Xk

(︂
ρk,1 − ρTk,2

)︂]︂
. (3.4.4)

where ρ = |T⟩ ⟨T |. Accordingly, starting at g = I and moving along the geodesic
with this direction, we should take a gradient step of the form

T ↦→ g · T , where g :=
(︃
e
−η 1

Trρ

(︂
ρ1,1−ρT

1,2

)︂
, . . . , e−η

1
Trρ

(︂
ρm,1−ρT

m,2

)︂ )︃
,

5We can also identify K\G with P = PD(D1) × · · · × PD(Dm) by the map Kg ↦→ g†g. Then the
geodesics can be written as (√p1e

tY1
√
p1, . . . ,√pmetYm

√
pm), where pk = g†

k
gk and the Yk

are certain Hermitian matrices. These are tuples of the familiar geodesics of PD(Dk), see
e.g. Chapter 7 and Section 9.2 or [BH13; Bha09].
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Algorithm 3.1: Computing PEPS normal forms
Input: A uniform PEPS tensor T ∈ MatdD1···Dm×D1···Dm

and ε > 0.
Output: A gauge transformation g ∈ GL(D1) × · · · ×GL(Dm).

1 g(0)← (ID1 , . . . , IDm);
2 for t = 0, 1, . . . do
3 T (t)← g(t) · T ;
4 ρ(t)← |T (t)⟩ ⟨T (t) |;
5 if 1

(Trρ(t))2
∑︁m

k=1∥ρ
(t)
k,1 − (ρ

(t)
k,2)T ∥2 ⩽ ε2 then

6 return g(t);
7 end if
8 for k = 1, . . . ,m do

9 g
(t+1)
k
← e

− 1
4m

1
Trρ(t)

(ρ(t)
k,1−(ρ

(t)
k,2)

T )
g
(t)
k

;
10 end for
11 end for

for some suitable step size η > 0. Note that, crucially, this amounts to acting by the
gauge group, i.e., will automatically remain in the G-orbit!

Similarly to the ordinary gradient descent in Euclidean space, under suitable
hypotheses on a geodesically convex objective one can provide a “safe” choice for
the step size η. In the present case, the objective FT is 4m-smooth along geodesics
(as follows from Lemma 3.4.7 and Proposition 2.6.6): for everyg = (g1, . . . ,gm) ∈ G
and X = (X1, . . . ,Xm) ∈ H, one has

∂2
t=0FT (etX1g1, . . . , etXmgm) ⩽ 4m∥X∥2,

where ∥X∥2 =
∑︁m

k=1∥Xk∥2. For such functions, η = 1
4m is a suitable step size and

this is what we use in Algorithm 3.1. Below, we give formal guarantees for the
performance of the algorithm. We remark that Theorem 3.4.1 is a special case
of [BFG+19, Thm. 4.2].

Theorem 3.4.1. Let T ∈ MatdD1···Dm×D1···Dm
be such that Tmin ≠ 0 (for some and hence

for any minimal canonical form), and let ε > 0. Then Algorithm 3.1 outputs a group
element g ∈ GL(D1) × · · · ×GL(Dm) such that the tensor S := g · T satisfies

1
Trσ

⌜⎷
m∑︂
k=1

∥︁∥︁∥︁σk,1 − σTk,2

∥︁∥︁∥︁2
⩽ ε, where σ = |S⟩ ⟨S| ,

within O(m
ε2 log ∥T ∥

∥Tmin∥ ) iterations.

Proof. We analyze Algorithm 3.1: although we could appeal to a general re-
sult (Proposition 6.5.3), we give the analysis in this concrete setting. For t =

0, 1, 2, . . . and g(t) the group elements produced by the algorithm. If the algorithm
does not terminate in the t-th iteration, then, using Eq. (3.4.4),

FT (g(t+1)) − FT (g(t))
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= FT (t)(e
− 1

4m
1

Trρ(t)
(ρ(t)1,1−(ρ

(t)
1,2)

T )
, . . . , e

− 1
4m

1
Trρ(t)

(ρ(t)
m,1−(ρ

(t)
m,2)

T )) − FT (t)(I)
= FT (t)(e−

1
4m∇FT (t) (I)) − FT (t)(I)

⩽ Tr
[︃
∇FT (t)(I) ·

(︃
− 1

4m∇FT (t)(I)
)︃]︃
+ m8

∥︁∥︁∥︁∥︁− 1
m
∇FT (t)(I)

∥︁∥︁∥︁∥︁2

= − 1
8m ∥∇FT (t)(I)∥

2 < − ε
2

8m ,

where the first inequality follows since FT is a convex and 4m-smooth function
(see Example 3.4.6 and Proposition 2.6.6) . Accordingly, if the algorithm has not
terminated up to and including the t-th iteration, then

log ∥Tmin∥
∥T ∥ ⩽ log ∥g(t) · T ∥ − log ∥T ∥ = FT (g(t)) − FT (g(0)) < −t

ε2

8m ,

or
t <

8m
ε2 log ∥T ∥

∥Tmin∥
. □

The iteration bound of Theorem 3.4.1 involves ∥Tmin∥. If the entries of T are
given by some finite number of bits then this quantity can be estimated in an
a priori fashion, by first rescaling T such that its entries are given by Gaussian
integers, i.e., are in Z[i], and then using the following result.

Proposition 3.4.2. Let T ∈ MatdD1···Dm×D1···Dm
with Tmin ≠ 0, and assume that all

entries of T are in Z[i]. Then,

∥Tmin∥ ⩾
1∏︁m

j=1Dj
.

Proof. We use the fact that the invariant ring is generated by the functions Pπ,i
defined in Eq. (3.3.3). Since Tmin ≠ 0, there exist n ⩾ 1, π ∈ Smn and i ∈ [d]n such
that Pπ,i(T ) ≠ 0. But Pπ,i is a polynomial with integer coefficients in the entries
of T ; therefore, evaluating it on T with entries in Z[i] must yield |Pπ,i(T )| ⩾ 1.
Furthermore, it is an invariant under the PEPS action, so we deduce for any g ∈ G:

1 ⩽ |Pπ,i(T )| = |Pπ,i(g · T )| =
|︁|︁|︁Tr

[︂
(Rπ1 ⊗ · · · ⊗ Rπm)((g · T (i1)) ⊗ · · · ⊗ (g · T (in)))

]︂ |︁|︁|︁
⩽ ∥Rπ1 ⊗ · · · ⊗ Rπm ∥ · ∥(g · T (i1)) ⊗ · · · ⊗ (g · T (in))∥.

Since each Rπj is unitary, the same is true of their tensor product. As it acts on a
space of dimension (∏︁m

j=1D
2
j
)n, one obtains

∥Rπ1 ⊗ · · · ⊗ Rπm ∥ =
(︄

m∏︂
j=1
Dj

)︄n
.

Furthermore,

∥(g · T (i1)) ⊗ · · · ⊗ (g · T (in))∥ ⩽ (max
i
∥g · T (i)∥)n ⩽ ∥g · T ∥n.

Combining the two estimates, taking n-th roots and the infimum over g ∈ G yields
the desired estimate. □
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The above approach of evaluating an invariant to prove norm lower bounds is
used in other settings as well, e.g., for tensor scaling in [BGO+18, Thm. 7.12], and
for much more general actions in [BFG+19, Cor. 7.19]; but appealing to the latter
result would result in a worse bound.

We obtain the following corollary, which implies an poly( 1ε , input size)-time
algorithm, cf. [BFG+19, Rem. 8.1]:

Corollary 3.4.3. Let T ∈ MatdD1···Dm×D1···Dm
be a tensor such that Tmin ≠ 0 (for some

and hence for any minimal canonical form). Assume that the entries of T are in Q[i]
and given by storing the numerators and denominators in binary. Let ε > 0. Then
Algorithm 3.1 outputs a group element g ∈ GL(D1) × · · · ×GL(Dm) such that the tensor
S := g · T satisfies

1
Trσ

⌜⎷
m∑︂
k=1

∥︁∥︁∥︁σk,1 − σTk,2

∥︁∥︁∥︁2
⩽ ε, where σ = |S⟩ ⟨S| .

within O( 1
ε2 · poly(⟨T⟩)) iterations, where ⟨T⟩ denotes the total number of bits used to

represent T .

3.4.2. Relation between approximation errors
In Section 3.4.1, we discussed three natural notions of approximation error in
Eqs. (3.4.1) to (3.4.3), and we gave an algorithm targeting Eq. (3.4.2), i.e., given a
tensor T and ε > 0, we discussed how to obtain a tensor S ∈ G · T such that

1
Trσ

⌜⎷
m∑︂
k=1

∥︁∥︁∥︁σk,1 − σTk,2

∥︁∥︁∥︁2
⩽ ε where σ = |S⟩ ⟨S| .

We will now see that there is a precise quantitative relationship between these
notions. As we will see, the following quantity will play a crucial role.

Definition 3.4.4. Given bond dimensions D1, . . . ,Dm, define

γ := γ(D1, . . . ,Dm) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
D

3/2
1

, ifm = 1,

1∑︁m
i=1Di

· 1
(2m)(

∑︁m
i=1 Di−1)/2 ifm ⩾ 2.

Note that γ is only inverse polynomially small in the bond dimension form = 1,
while it is exponentially small for m ⩾ 2. Then we have the following relation
between Eqs. (3.4.2) and (3.4.3).

Theorem 3.4.5. Let 0 ≠ T ∈ MatdD1···Dm×D1···Dm
and S ∈ G · T . Then:

1 − ε
γ
⩽
∥Tmin∥2

∥S∥2
⩽ 1 − ε2

8m for ε := 1
Trσ

⌜⎷
m∑︂
k=1

∥︁∥︁∥︁σk,1 − σTk,2

∥︁∥︁∥︁2
,

where σ = |S⟩ ⟨S| and γ is the constant defined in Definition 3.4.4. In particular, if ε < γ,
then Tmin ≠ 0.
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3. The minimal canonical form of a tensor network

We will prove Theorem 3.4.5 by appealing to a non-commutative duality theorem
stated in [BFG+19, Thm. 1.17], which we stated previously in Theorem 2.6.7. To
apply this theorem in our setting, we must lower bound the weight margin as
defined in Definition 2.6.5, a complexity measure defined by combinatorial data
associated with representations. The parameter γwhich appears in Definition 3.4.4
is a lower bound on this weight margin.

We briefly recall how to compute the weights for this particular setting:

Example 3.4.6. Let GL(D) act on MatD×D by conjugation. A maximal subtorus of
GL(D) is given by the set T (D) := (C×)D consisting of invertible diagonal D ×D
matrices, and its Lie algebra Lie(T (D)) consists of all diagonal matrices, which may
be identified with CD. Then for Y ∈ CD, we have

ediag(Y)Eije
−diag(Y) = eYi−YjEij,

where Eij are the elementary matrices. Therefore the weights are given by the
functionalsωij(Y) = Yi − Yj, with corresponding weight spaces Vωij = CEij. Note
thatωij can be identified with ei − ej ∈ CD. The action of GL(D) on MatdD×D has
the same weights, but now each weight space is d-dimensional.

Now consider the action of the gauge group G = GL(D1) × · · · × GL(Dm) on
V = MatdD1···Dm×D1···Dm

, the space of PEPS tensors, as defined in Definition 3.3.3.
As mentioned, a maximal torus for G is given by TG = T (D1) × · · · T (Dm), and the
Lie algebra of TG may be identified with CD1 ⊕ · · · ⊕ CDm . Then it is easy to show
that the weights are just tuples of weights as above, i.e.,

(ei1 − ej1 , . . . , eim − ejm)

with ik, jk ∈ [Dk] for k ∈ [m].

To prove Theorem 3.4.5, we still need to bound the parameters γ(π) and N(π)
for our specific representations.

Lemma 3.4.7. For the action ofG = GL(D1)×· · ·×GL(Dm) onV = MatdD1···Dm×D1···Dm
,

the weight norm N(π) is given by

N(π) =
√

2m,

and the weight margin γ(π) is lower bounded as

γ(π) ⩾ γ,

where γ is the constant defined in Definition 3.4.4.

Proof. The expression for the weight norm follows directly from Example 3.4.6.
For m = 1, the lower bound on the weight margin follows from [BFG+19,

Thm. 6.21]: the representation is a quiver representation, where the quiver is given
by one vertex with d self-loops. Form ⩾ 2, the lower bound on the weight margin
follows from [BFG+19, Thm. 6.10]. □

Proof of Theorem 3.4.5. This follows by combining Theorem 2.6.7 and Lemma 3.4.7.
□
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3.4. Algorithms for computing minimal canonical forms

Now that we know that Eqs. (3.4.2) and (3.4.3) can be related to each other, we
will relate these to Eq. (3.4.1). In the one direction, it is clear that Eq. (3.4.1) implies
a small error in the sense of Eq. (3.4.3):

∥S − Tmin∥
∥S∥ ⩽ δ ⇒ ∥Tmin∥

∥S∥ ⩾ 1 − ∥Tmin − S∥
∥S∥ ⩾ 1 − δ

In the remainder of this section we show that Eq. (3.4.2) implies a small error
in the sense of Eq. (3.4.1), closing the circle. It is useful to make the following
abbreviation for the gradient of the norm square function at the identity:

µ̃(S) :=
(︂
σk,1 − σTk,2

)︂m
k=1
∈ Herm(D1) ⊕ · · · ⊕ Herm(Dm), where σ := |S⟩ ⟨S| .

We write µ̃ and not µ to distinguish it from the gradient of the log-norm, as in
Eq. (3.4.4) and Definition 2.5.1, but note that

∥µ̃(S)∥ = εTr(σ) = ε∥S∥2, where ε =
1

Trσ

⌜⎷
m∑︂
k=1

∥︁∥︁∥︁σk,1 − σTk,2

∥︁∥︁∥︁2
. (3.4.5)

Then we will consider the gradient flow of ∥µ̃(S)∥2 :=
∑︁m

k=1∥ρk,1 − ρTk,2∥2:{︄
S′(t) = −∇∥µ̃∥2(S(t))
S(0) = S

(3.4.6)

We will see that the solution S(t) to this ODE remains in the gauge orbit of S and
that it converges to a minimal canonical form Smin whose distance to S in the sense
of Eq. (3.4.1) can be controlled using Eq. (3.4.2). We note here that the study of
the gradient flow for the norm square of the moment map is an important tool in
this area; see Section 12.2.2 for a more detailed discussion. While the following
arguments work in complete generality, here we restrict to the gauge action of
G = GL(D1) × · · · ×GL(Dm) since this is all we need.

We start by analyzing Eq. (3.4.6). Existence and uniqueness of the solution S(t)
of this ordinary differential equation on some maximal (possibly infinite) interval
of definition [0, tmax), where tmax ∈ (0,∞], follows from Picard–Lindelöf theory.
Then one can prove the following lemma, cf. [BFG+19, Prop. 3.27 and its proof]:

Lemma 3.4.8. Let S(t) be the solution to the dynamical system (3.4.6). Then, for all
t ∈ [0, tmax), we have

(i) ∂t∥µ̃
(︁
S(t)

)︁
∥2 = −∥S′(t)∥2.

(ii) ∂t∥S(t)∥2 = −8∥µ̃(S(t))∥2.

(iii) S(t) ∈ G · S, i.e., the solution remains in the G-orbit of S at all times.

Proof. The first claim holds for any gradient flow.
Next, we note that, for all Y ∈ Herm(D1) ⊕ · · · ⊕ Herm(Dm),

⟨µ̃(S),Y⟩ = 1
2∂t=0

∥︁∥︁(etY1 , . . . , etYm) · S
∥︁∥︁2

= ⟨S,Π(Y)S⟩ , (3.4.7)
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where ⟨X,Y⟩ =
∑︁m

k=1 Tr[XkYk] and we denote by Π(Y) the Lie algebra action of Y ,
which is defined by

Π(Y)S := ∂t=0

(︂
(etY1 , . . . , etYm) · S

)︂
.

By differentiating Eq. (3.4.7) with respect to S in some directionW ∈ V (an operation
we denote by DW),

⟨DWµ̃(S),Y⟩ = ⟨W,Π(Y)S⟩ + ⟨S,Π(Y)W⟩ = 2 Re ⟨W,Π(Y)S⟩ .

Accordingly, for allW ∈ V ,

DW ∥µ̃(S)∥2 = 2 ⟨DWµ̃(S), µ̃(S)⟩ = 4 Re ⟨W,Π(µ̃(S))S⟩ .

Thus we have proved that the gradient of ∥µ̃∥2 is given by the following clean
formula:

∇∥µ̃∥2(S) = 4Π(µ̃(S))S. (3.4.8)

The second item follows from this and Eq. (3.4.7),

∂t∥S(t)∥2 = 2 ⟨S(t),S′(t)⟩ = −2 ⟨S(t),∇∥µ̃∥2(S(t))⟩
= −8 ⟨S(t),Π(µ̃(S(t)))S(t)⟩ = −8∥µ̃(S(t))∥2.

As Eq. (3.4.8) states that S′(t) is a tangent vector of the G-orbit through S(t), the
third item also follows. □

Using the preceding, the following key lemma shows that if Smin ≠ 0 then
µ̃(S(t)) → 0 sufficiently quickly, without S(t) moving too much. Our argument
follows [KLLR18], which treats the casem = 1.

Lemma 3.4.9. Let S(t) denote the solution of Eq. (3.4.6) for a tensor S(0) = S with
Smin ≠ 0 (for some and hence for any minimal canonical form). Consider any τ such that
µ̃(S(τ)) ≠ 0. Then there exists

τ′ ⩽ τ + 1
4γ∥µ̃(S(τ))∥ .

such that

∥µ̃(S(τ′))∥2 =
∥µ̃(S(τ))∥2

2 (3.4.9)

(in fact τ′ is the first time such that this is true) and, moreover,

∥S(τ′) − S(τ)∥ ⩽ 1
2
√

2

√︄
∥µ̃

(︁
S(τ)

)︁
∥

γ
, (3.4.10)

where γ is the constant from Definition 3.4.4.
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Proof. Suppose that τ′ > τ is such that

∥µ̃(S(τ′))∥2 >
∥µ̃(S(τ))∥2

2 . (3.4.11)

By Item (i) of Lemma 3.4.8,

∥µ̃(S(t))∥2 >
∥µ̃(S(τ))∥2

2 ∀t ∈ [τ, τ′]

and hence, by Item (ii) of the same lemma,

∂t∥S(t)∥2 = −8∥µ̃(S(t))∥2 < −4∥µ̃(S(τ))∥2 ∀t ∈ [τ, τ′].

Accordingly,

∥S(τ′)∥2 − ∥S(τ)∥2 < −4(τ′ − τ)∥µ̃(S(τ))∥2.

On the other hand, using the lower bound in Theorem 3.4.5 and Eq. (3.4.5),

∥S(τ′)∥2 − ∥S(τ)∥2 ⩾ ∥S(τ′)min∥2 − ∥S(τ)∥2 = ∥S(τ)min∥2 − ∥S(τ)∥2

= ∥S(τ)∥2
(︃
∥S(τ)min∥2
∥S(τ)∥2 − 1

)︃
⩾ −∥µ̃(S(τ))∥

γ
.

Together, we find that for any τ′ such that Eq. (3.4.11) holds, we must have

τ′ < τ + 1
4γ∥µ̃(S(τ))∥ .

Accordingly, there must exist some minimal

τ′ ⩽ τ + 1
4γ∥µ̃(S(τ))∥ . (3.4.12)

such that

∥µ̃(S(τ′))∥2 =
∥µ̃(S(τ))∥2

2 . (3.4.13)

Moreover, for this τ′ we have

∥S(τ′) − S(τ)∥ ⩽
∫ τ′

τ

∥S′(t)∥ dt =
∫ τ′

τ

√︂
−∂t∥µ̃

(︁
S(t)

)︁
∥2 dt

⩽

√︄∫ τ′

τ

−∂t∥µ̃
(︁
S(t)

)︁
∥2 dt

√︄∫ τ′

τ

1dt

=

√︂
∥µ̃

(︁
S(τ)

)︁
∥2 − ∥µ̃

(︁
S(τ′)

)︁
∥2
√
τ′ − τ

⩽
∥µ̃

(︁
S(τ)

)︁
∥

√
2

√︃
1

4γ∥µ̃(S(τ))∥

=
1

2
√

2

√︄
∥µ̃

(︁
S(τ)

)︁
∥

γ
,

where we used the triangle inequality, then Item (i) of Lemma 3.4.8, then the
Cauchy-Schwarz inequality, and finally Eqs. (3.4.12) and (3.4.13). □
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We now prove the desired relation between Eqs. (3.4.1) and (3.4.2):
Theorem 3.4.10. Let T be a tensor with Tmin ≠ 0 (for some and hence for any minimal
canonical form) and let S ∈ G · T . Then there exists a minimal canonical form Tmin ∈ G · T
such that

∥S − Tmin∥
∥S∥ ⩽

√︃
2ε
γ

for ε := 1
Trσ

⌜⎷
m∑︂
k=1

∥︁∥︁∥︁σk,1 − σTk,2

∥︁∥︁∥︁2
,

where γ is the constant from Definition 3.4.4.
Proof. If µ(S) = 0 then Tmin = S is a minimal canonical form of T and there is
nothing to prove. Otherwise let us, for every k ⩾ 0, denote by τk the first time
when

∥µ̃(S(τk))∥2 =
1

2k
∥µ̃(S)∥2,

so τ0 = 0. By Lemma 3.4.9,

τk =

k∑︂
l=1
(τl − τl−1) ⩽

k∑︂
l=1

1
4γ∥µ̃(S(τl−1))∥

=
1

4γ

k∑︂
l=1

1√︂
1

2l−1 ∥µ̃(S)∥
⩽

2k/2

γ∥µ̃(S)∥

In particular, µ̃(S(t)) → 0 as t→∞, since we know from Item (i) of Lemma 3.4.8
that ∥µ̃(S(t))∥2 is monotonically decreasing.

Next, we prove that the subsequence S(τk) converges to a minimal canonical
form of T with the desired properties. We first show that the S(τk) form a Cauchy
sequence. Indeed, for any k ⩽ l, using Lemma 3.4.9,

∥S(τk) − S(τl)∥ ⩽
l∑︂

m=k+1
∥S(τm) − S(τm−1)∥ ⩽

l∑︂
m=k+1

1
2
√

2

√︄
∥µ̃

(︁
S(τm−1)

)︁
∥

γ

=
1

2
√

2

√︄
∥µ̃

(︁
S
)︁
∥

γ

l∑︂
m=k+1

√︃
1

2m−1 ⩽

√︄
2∥µ̃

(︁
S
)︁
∥

γ

√︃
1

2k
,

which shows that indeed S(τk) is a Cauchy sequence. If we denote by S′ its limit,
then T ′ ∈ G · S = G · T (by Item (iii) of Lemma 3.4.8) and hence T ′ ≠ 0 (since
Tmin ≠ 0 by assumption). Moreover, µ̃(T ′) = 0 by the above, hence T ′ is a minimal
canonical form of T . Finally,

∥S − T ′∥ = lim
l→∞
∥S(τ0) − S(τl)∥ ⩽

√︄
2∥µ̃

(︁
S
)︁
∥

γ
= ∥S∥

√︃
2ε
γ

using the preceding estimate and Eq. (3.4.5) □

By combining Corollary 3.4.3 and Theorem 3.4.10 it follows that using the first-
order algorithm in Algorithm 3.1 with ε := γδ2/2, in time poly( 1

γ , 1
δ , input size)

one can obtain a group element g ∈ G such that the tensor S := g · T satisfies
Eq. (3.4.1), i.e.,

∥S − Tmin∥
∥S∥ ⩽ δ.

In the next section we will see that the dependence on δ can be improved to
log(1/δ), see Corollary 3.4.12.
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3.4.3. Second-order algorithm
As promised earlier, there is also a second numerical method that one can use
to approximate normal forms in our setting. This is a more sophisticated second-
order method, which uses information about the Hessian of the Kempf–Ness
function Fv to determine the direction in which to move (as is done for instance
in Newton’s method), whereas the first-order method discussed in Section 3.4.1
and Algorithm 3.1 before only use information about the gradient (i.e., the moment
map).

We rely on the box-constrained Newton method from [BFG+19, Algo. 5.2], which
uses Newton steps constrained to a constant-sized box to make progress in the
objective. It naturally minimizes the norm of the resulting vector, as opposed to
the size of the gradient. We note that we could also appeal to the interior-point
methods in Chapter 7, but the result is essentially the same. Its guarantees applied
to our setting are as follows:

Theorem 3.4.11 ([BFG+19, Thm. 8.12]). Let T ∈ MatdD1···Dm×D1···Dm
be a tensor such

that Tmin ≠ 0 (for some and hence for any minimal canonical form). Assume that the
entries of T are inQ[i] and given by storing the numerators and denominators in binary.
Then there exists an algorithm that, given T and 0 < ζ < 1, returns a group element
g ∈ GL(D1) × · · · ×GL(Dm) such that the tensor S := g · T satisfies ∥S∥ ⩽ ∥T ∥ and

log ∥S∥
∥Tmin∥

⩽ ζ and hence ∥Tmin∥
∥S∥ ⩾ 1 − ζ

in time poly(γ−1,D1, . . . ,Dm, log(1/ζ), ⟨T⟩), where γ is defined in Definition 3.4.4, and
⟨T⟩ is the total number of bits used to represent T .

By combining Theorem 3.4.11 with the results of Section 3.4.2, we arrive at the
following result which was stated informally as Result 3 in the introduction.

Corollary 3.4.12. Let T ∈ MatdD1···Dm×D1···Dm
be a tensor such that Tmin ≠ 0 (for some

and hence for any minimal canonical form). Assume that the entries of T are inQ[i] and
given by storing the numerators and denominators in binary. Then there exists an algorithm
that, given T and 0 < δ < 1, returns a group element g ∈ GL(D1) × · · · ×GL(Dm) such
that the tensor S := g · T satisfies satisfies ∥S∥ ⩽ ∥T ∥ and

∥S − Tmin∥
∥S∥ ⩽ δ,

in time poly(γ−1,D1, . . . ,Dm, log(1/δ), ⟨T⟩), where γ is defined in Definition 3.4.4, and
⟨T⟩ is the total number of bits used to represent T .

Proof. Apply the algorithm of Theorem 3.4.11 with

ζ := γ2

64mδ
4 (3.4.14)

to obtain in the stated runtime a group element g ∈ G such that the tensor S := g · T
satisfies ∥S∥ ⩽ ∥T ∥ and

∥Tmin∥
∥S∥ ⩾ 1 − ζ and hence ∥Tmin∥2

∥S∥2 ⩾ 1 − 2ζ. (3.4.15)
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We now check that S satisfies the desired condition. First, by Theorem 3.4.5, for
σ = |S⟩ ⟨S| we have that

∥Tmin∥2

∥S∥2
⩽ 1 − ε2

8m for ε := 1
Trσ

⌜⎷
m∑︂
k=1

∥︁∥︁∥︁σk,1 − σTk,2

∥︁∥︁∥︁2
,

and hence, using Eq. (3.4.15),

ε ⩽

√︄
8m

(︃
1 − ∥Tmin∥2

∥S∥2

)︃
⩽ 4
√
mζ. (3.4.16)

Finally, Theorem 3.4.10 implies that

∥S − Tmin∥
∥S∥ ⩽

√︃
2ε
γ

and hence ∥S − Tmin∥
∥S∥ ⩽

√︃
2ε
γ
⩽

√︄
8
√
mζ

γ
⩽ δ,

where used Eq. (3.4.16) and our choice of ζ in Eq. (3.4.14). This concludes the
proof. □

Remark 3.4.13. While Corollary 3.4.12 uses relative ℓ2-error, which is most natural, we
can also obtain a guarantee in absolute error, say

∥S − Tmin∥ ⩽ δ′,

by applying Corollary 3.4.12 with δ < min(1, δ′/∥T ∥). As the second-order algorithm
scales polynomially in log(1/δ), this runs in time poly(γ−1,D1, . . . ,Dm, log(1/δ′), ⟨T⟩).

3.5. Conclusion and outlook
The current work is a theoretical one, proposing a new canonical form and proving
some of its key properties. The fact that the minimal canonical form is rigorous in
the sense that it can be proven to always exist as well as satisfy the basic properties
discussed in Section 3.3 sets it apart from other heuristic approaches [PMV15;
Eve18]. Besides this, we hope that the minimal canonical form will be of practical
use in tensor network algorithms. Below we outline four potential directions for
application. Detailed numerical study will be required to confirm the usefulness
of these suggestions.

(i) Truncation of bond dimensions. In many tensor network algorithms
truncation of the bond dimension is a crucial step. This is especially the
case for ground state finding algorithms based on imaginary time evolution
(Time Evolving Block Decimation, TEBD) in which each step consist of
applying an operator to the tensor network which increases the ground state
approximation accuracy but also the bond dimension, and then truncating
the bond dimension. One is given a tensor T with a certain bond dimension
D, and one would like to find a tensor T ′ with a prescribed bond dimension
D′ < D such that the tensor network state using T is approximated as
accurately as possible by the tensor network state using T ′. In one spatial
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dimension, for MPS, there is a natural way to do this using canonical forms.
For instance, one may use the left canonical form, in which case the reduced
state ρ2 on the right virtual dimension is maximally mixed. Then one
truncates to the subspace spanned by the eigenvectors of the D′ largest
eigenvalues of the reduced state ρ1 on the left virtual dimension.

The bond dimension truncation scheme for MPS is both computationally
efficient and gives an optimal approximation given a prescribed bond di-
mension. For two-dimensional PEPS there is no truncation scheme known
which has both these desirable properties, which is closely related to the
lacking of the equivalent of a left or right canonical form. Various methods
exist [LCB14b; JWX08], see for instance [RTP+20] for an overview of different
methods. While these methods perform well in practice, in most cases good
theoretical understanding is lacking. Here, we propose the following natural
truncation scheme: given a tensor T , compute its minimal canonical form S.
Then truncate to the subspace spanned by the eigenvectors corresponding to
the D′ largest eigenvalues.

This proposal leads various questions which should be addressed in follow-
up work. First of all, it would be interesting to use such a truncation
method in existing PEPS algorithms and study the performance of such
schemes numerically. Secondly, as our methods are designed for uniform
(translation-invariant) systems one would hope that they are also of use to
iPEPS methods, where precisely the absence of a canonical form has led to
heuristic approaches to gauge-fixing [PBT+15; PMV15] which work well in
practice. We would like to emphasize that especially the (non-rigorously
defined) canonical form in [PMV15] is fairly close in spirit to the minimal
canonical form: it is defined by a condition similar (but different) to the
characterization in Theorem 3.3.8. This canonical form has been shown
to indeed improve convergence of imaginary time evolution algorithms,
which offers some hope for the prospect of using the minimal canonical
form for truncation purposes. Finally, a potential advantage of truncation
schemes based on the minimal canonical form is that one could attempt to
the framework of geometric invariant theory to prove that such a truncation
scheme has good theoretical properties.

(ii) Numerical stability. Using minimal canonical forms in variational algorithms
may be helpful, since appropriate gauge fixing is known to enhance the
stability of variational algorithms [LCB14a; PBT+15].

(iii) Boundary-based approaches. PEPS have a very useful and explicit bulk-
boundary correspondence [CPSV11], which allows one to map bulk proper-
ties in a region R to properties of the associated boundary state ρR, defined
essentially as the reduced density matrix in the virtual indices of the PEPS
tensor |TR⟩ obtained after blocking the original PEPS tensor T in the given
region R. The key insight of [CPSV11], formalized later in [KLP19; PP23],
is that if one interprets ρR as a Gibbs state ρR = e−HE , the properties of HE

(the so-called entanglement Hamiltonian) encode the properties of the bulk of
the system. This has led for instance to new numerical methods to detect
topological phase transitions [SPCP13]. Since HE and ρR live in the virtual

103



3. The minimal canonical form of a tensor network

Hilbert spacec, it is crucial for this approach to be meaningful that the only
gauge freedom one considers comes from unitaries, which do not change
any of the relevant properties of HE or ρR, rather than arbitrary invertible
matrices. This is precisely what is ensured by working with the minimal
canonical form.

(iv) Privacy in PEPS-based machine learning algorithms. Tensor networks,
and PEPS and MPS in particular, have been used as variational Ansätze in
machine learning contexts [SS16; CPZ+17]. This has the appeal that one
can import known optimization techniques in condensed matter problems
to machine learning. Another potential advantage, compared to neural
network-based approaches, lies in a higher interpretability; it is precisely the
characterization of global properties in the local tensors of a tensor network
which explains its success in quantum many-body problems. In [PHM+22] a
new potential advantage of tensor networks in a machine learning context
has been proposed, which we will now explain briefly. There are two possible
ways to look at a trained neural network or tensor network: as a black box
in which one has only access to the input-output relation or as a white box
in which all internal parameters are provided. It is shown in [PHM+22],
with machines trained in real data bases with medical records, that those
internal parameters can reveal sensitive information from the training data
set which however are not contained in the black-box picture. This white-box
versus black-box scenario is the underlying problem behind obfuscation
protocols6 and it is well known there that the perfect solution comes from
the existence of a well-defined canonical form for the white-boxes that maps
them one-to-one to the set of black boxes. The basic idea in [PHM+22]
is that this can be done in MPS by defining a new canonical form which
selects analytically and uniquely an element for each orbit of a normal MPS.
However, as it is also discussed in [PHM+22], a way of sampling uniformly
on all possible white-box representations of the same black-box function
could equally do the job.
The minimal canonical form gives a way to extend this idea trivially to
general PEPS. If the presentation (white-box) of the PEPS obtained in the
training process is its minimal canonical form, sampling uniformly on all
possible white-boxes amounts to sampling with the Haar measure on the
unitary group, which can easily be done (as opposed to sampling on the
whole general linear group). It is an interesting open question to see how
this idea works in practice for PEPS. For MPS it is shown in [PHM+22] that
privacy improvements in practice are indeed dramatic.

As alluded to in Section 3.3.4 another natural direction of inquiry is to find
physically relevant models where there is topological order which is only revealed
on manifolds other than a torus, and see how this relates to the minimal canonical
form. Finally, it would be interesting to connect to recent approaches that apply
techniques from algebraic geometry and algebraic complexity theory [BCS13] to
tensor network theory, for instance [CLVW20; CGFW21]. There are also various

6Though the inherent continuous nature of the variables makes the problem slightly different in
this case.
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concrete follow-up questions concerning properties of the minimal canonical form
and generalizations.

(i) Non-uniform PEPS. In this work we have mainly restricted to uniform PEPS,
where we consider contractions of copies of a single identical tensor. We also
saw one example with non-uniform tensors, for MPS in Section 3.2.3. In that
case, we were able to recover the usual theory of canonical forms for MPS
with open boundary conditions. Clearly, an interesting direction for future
research is to investigate generalizations of the minimal canonical form to
non-uniform PEPS. In this case we consider a fixed graph Γ = (V ,E), with a
collection of tensors (Tv)v∈V at each vertex and where we contract along the
edges E. We now have a group GL(De) acting on each edge e in the graph,
so the full gauge group G is the product over all edges e ∈ E of these groups.
This setup is very similar to the one described in Section 3.2.3. We would
like to formulate an appropriate minimization problem over a group orbit.
There are two obvious ways to approach this. The first option is to minimize∑︂

v∈V
∥g · Tv∥2

and define a minimal canonical form ((Tv)v∈V )min as satisfying

((Tv)v∈V )min = argmin

{︄∑︂
v∈V
∥Sv∥2 : (Sv)v∈V ∈ G · (Tv)v∈V

}︄
In the case where all tensors are equal, this should reduce to the minimal
canonical form for uniform PEPS. A second option (which is similar to the
MPS construction in Section 3.2.3) would be to consider for each edge e the
tensor network state |Te⟩ where we have contracted all edges except e. We
have a group action of GL(De) on this state, and we may minimize over its
orbit. We will report on these generalizations in future work.

(ii) Algorithms for deciding gauge equivalence. While we have addressed the
issue of computing a minimal canonical form for a given tensor, we have not
extensively discussed algorithms for deciding whether two tensors S and T
are gauge equivalent. One approach is given by Result 4: one may simply
check that |Sπ⟩ = |Tπ⟩ for allπ ∈ Smn withn ⩽ nmax = exp(𝒪(mD2 log(mD)))
(or in the case of MPS, for n ⩽ D2). However, an alternative strategy is as
follows. By Theorem 3.3.7, it suffices to first compute minimal canonical
forms Smin and Tmin (for which we have already provided algorithms) and
then determine whether these are related by unitary gauge transformations
(which is rather nontrivial). Form = 1, this strategy has been implemented
in [AGL+18], while form ⩾ 2 we defer to future work.

(iii) Computational complexity. It would be interesting to relate the computation
of minimal canonical forms and of checking gauge equivalence to other
orbit problems that have recently been studied intensely in the theoretical
computer science literature, in order to get a better understanding of the
computational complexity of the problem (see [BFG+19] and references
therein).
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4. An introduction to interior-point
methods

This chapter provides a gentle introduction to the theory of interior-point methods
for convex programming in Euclidean space. We focus on intuition and omit most
proofs here, both for readability and to avoid redundancy, as we extend this theory
(with detailed proofs) to geodesically convex objectives on Riemannian manifolds
in Chapter 7.

The development of interior-point methods is one of the greatest successes in
convex optimization, and by now has a long history dating back to the works of
Frisch [Fri55], Karmarkar [Kar84a; Kar84b], Gill et al. [GMS+86], Renegar [Ren88]
and many others. It led to one of the first polynomial-time algorithms for linear
programming (in contrast with the simplex algorithm due to Dantzig [Dan63]), the
other being the ellipsoid method due to Khachiyan [Kha80]. In the seminal work
of Nesterov and Nemirovskii [NN94], it was shown that the key property to the
analysis of interior-point methods is the notion of self-concordance. Essentially every
convex programming problem is in principle amenable to interior-point methods,
which follows from constructions of self-concordant barriers for arbitrary (bounded)
convex domains, cf. [NN94; Hil14; Fox15; BE19; Che23]. Furthermore, interior-
point methods are eminently practical, and currently give the best algorithms for
linear programming [LS20; Bra19].

This chapter is structured as follows. In Section 4.1 we explain the general idea
of interior-point methods. Section 4.2 introduces the most important part of the
formalism, notably that of self-concordant barriers for a convex domain. Lastly,
Section 4.3 discusses the general algorithm for solving optimization problems
on convex domains with a self-concordant barrier. We follow the exposition
in [Ren01]; other useful sources on interior-point methods are [NN94; Nes18]. We
also refer to [BV04] as a general source on convex optimization techniques.

4.1. The idea
We recall the standard interior-point formalism for solving a convex program

minimize ⟨c,p⟩
subject to p ∈ D,

(4.1.1)

where c ∈ E and D ⊆ E is a closed convex set in some Euclidean space E, and
⟨·, ·⟩ is the inner product on E. Note that this captures all convex programming
problems, by the epigraph construction: if f : D→ R is some convex function, then
we can rewrite minp∈D f(p) = min(p,t)∈Ef

t, where

Ef = {(p, t) ∈ D ×R : f(p) ⩽ t}
This chapter is adapted from [BLNW20; HNW23].
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Figure 4.1.: A schematic representation of following the central path.

is the epigraph of f, which is a convex domain by convexity of f. For convenience
we also assume that D is bounded and has non-empty interior.

The idea of the interior-point methods is then as follows. Since D is bounded,
the objective in Eq. (4.1.1) is bounded, and the optimum is attained at some p∗ ∈
∂D in the boundary. However, in general it may be hard to search directly
over ∂D. One notable case in which this is done is Dantzig’s simplex method
for linear programming [Dan63], but this does not in general yield efficient
algorithms [KM72]. Instead, an interior-point method iteratively produces points
in the interior of the domain of optimization.

More formally, the setup is as follows. Assume one has a barrier functional
Ψ : int(D) → R, which is a strictly convex function such thatΨ(pi) → ∞ as int(D) ∋
pi→ p ∈ ∂D. Consider the central path, consisting of the minimizers z(η) ∈ int(D)
of the self-concordant functionals

Ψη(p) := η⟨c,p⟩ + Ψ(p)

for every η ∈ R>0. These minimizers exist, since D is bounded and Ψ blows up
at the boundary of D; moreover, the z(η) are unique, since Ψ is strictly convex.
Morally speaking, one should also expect that as η → ∞, z(η) converges to p∗:
after all, minimizers of Ψη are also minimizers of ⟨c,p⟩ + 1

ηΨ(p), and for large η
the second term is less relevant. Therefore, to solve Eq. (4.1.1), it should suffice
to approximately find z(ηi) for an increasing sequence of ηi, which is in some
sense an easier problem: Ψη is strictly convex (because Ψ is), and one has a good
initial guess for z(ηi), namely z(ηi−1), so local optimization methods are likely to
be useful.
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4.2. Self-concordant barriers
Before we make the above precise, we fix some notation and language. We
denote by val the optimal value of Eq. (4.1.1), and we say pδ ∈ D is a δ-minimizer
of Eq. (4.1.1) if

⟨c,pδ⟩ ⩽ val + δ.

We say a functionΨ : int(D) → R is twice continuously differentiable if its gradient
and Hessian, which we shall always denote by

g(p) = gradΨ(p), H(p) = HessΨ(p),

are well-defined at any point p ∈ int(D), and H(p) depends continuously on p.
Recall that a function ψ is convex if for any p,p′ ∈ int(D) and t ∈ (0, 1), one has

ψ(tp + (1 − t)p′) ⩽ tψ(p) + (1 − t)ψ(p′),

and strictly convex if the inequality is strict for t ∈ (0, 1). An equivalent criterion
for convexity is that the Hessian H(p) is positive semidefinite for all p ∈ int(D),
and a sufficient criterion for strict convexity is that H(p) is positive definite for
all p ∈ int(D). In this case, the HessianH(p) defines a local norm on E for any p ∈ D:
for v ∈ E, we write

∥v∥Ψ,p =
√︁
⟨v,H(p)v⟩ .

We also write B◦p(p, 1) = {p′ ∈ E : ∥p′ − p∥Ψ,p < 1} for the Dikin ellipsoid, which is
the open ball with radius 1 centered at some point p ∈ D, measured in the local
norm ∥·∥Ψ,p at the same point.

To ensure that one can follow the central path and to justify the claim that z(η)
should converge to a minimizer, one needs to impose additional conditions on Ψ.
The following notion is central in the theory of interior-point methods.

Definition 4.2.1. Let D ⊆ E be closed convex set with non-empty interior. A
(strongly non-degenerate) self-concordant barrier functional for D is a strictly convex
and twice continuously differentiable function Ψ : int(D) → R, satisfying the
following additional properties:

(i) For any p ∈ int(D), the open ball B◦p(p, 1) is contained in int(D). Moreover,
for any p′ ∈ B◦p(p, 1), we have

1 − ∥p′ − p∥Ψ,p ⩽
∥v∥Ψ,p′

∥v∥Ψ,p
⩽

1
1 − ∥p′ − p∥Ψ,p

for all v ∈ E \ {0}.

(ii) The parameter ν of the barrier, defined by

ν := sup {∥H(p)−1g(p)∥2Ψ,p : p ∈ int(D)},

is finite.
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Roughly speaking, property (i) guarantees that the HessianH(p) does not change
too quickly, when one takes small steps as measured in the norm induced by H(p).
This estimate on its own is usually referred to as self-concordance of a function,
and provides rigorous guarantees on the performance of Newton’s method (as
we shall explain later). One of the key reasons the notion of self-concordance
was introduced is that it is invariant under affine reparamerization: traditional
analyses of Newton’s method tend to assume that the Hessian of the objective is
Lipschitz, but such an estimate is not scale-invariant.

Property (ii) says that the gradient is uniformly bounded with respect to the local
norm, i.e., the parameter is naturally a type of “Lipschitz constant”. It primarily
plays a role in the speed at which one can follow the central path, as we discuss
below in Section 4.3.

One can show that a self-concordant barrier Ψ automatically blows up at the
boundary of its domain: if pi ∈ int(D) converges to p ∈ ∂D, then Ψ(pi) → ∞ and
∥g(pi)∥2 →∞ for i→∞; see [Ren01, Thm 2.2.9]. This justifies calling it a barrier
for the domain.

An important property of self-concordant barriers as defined above is that they
satisfy a certain barrier calculus. This means that given barriers for a domain,
it is easy to construct new barriers. For instance, affine reparameterization or
restrictions, products of domains, and intersections of domains all admit self-
concordant barriers whenever each of the components admits one. The parameter
of the barrier also behaves well under these operations: for both products and
intersections, the parameter of the resulting barrier is the sum of the parameters of
its constituents.

We note here that (i) is usually difficult to verify directly. The original definition
of self-concordance due to Nesterov and Nemirovskii [NN94, Def. 2.1.1] is as
follows: a C3-smooth convex function Ψ : int(D) → R is self-concordant if for
all p ∈ int(D) and u ∈ E, the function ϕ(t) = Ψ(p + tu) satisfies

|ϕ′′′(t)| ⩽ 2(ϕ′′(t))3/2,

or equivalently,
|D3Ψ(p)[u,u,u]| ⩽ 2D2Ψ(p)[u,u]3/2. (4.2.1)

That this definition is equivalent (for C3-smooth functions) is shown in [Ren01,
Sec. 2.5]. However, it is usually far more tractable to verify this estimate, and
in Chapter 7 we shall actually use this perspective. We provide some examples of
self-concordant barriers here:

Example 4.2.2 (Linear programming). An instructive example is the barrier Ψ(p) =
− logp for the half-line R⩾0 ⊆ R, which has parameter ν = 1. To see that Ψ is
self-concordant, we compute for p > 0:

Ψ′(p) = −1
p

, Ψ′′(p) = 1
p2 , Ψ′′′(p) = − 2

p3 .

Therefore |Ψ′′′(p)| = 2Ψ′′(p)3/2 holds exactly. Furthermore, the parameter is 1,
since (Ψ′(p))2/Ψ′′(p) = 1.

Together with the barrier calculus described above, self-concordant barriers for
all convex polytopes can be obtained, given a description of the polytope as a finite

112



4.2. Self-concordant barriers

intersection of hyperplanes. This implies that interior-point methods can be used to
solve linear programming problem: a self-concordant barrier for the set of x ∈ Rn

described by inequalities ⟨aj, x⟩ ⩽ bj for a1, . . . ,ak ∈ Rn and b1, . . . ,bk ∈ R is
given by

Ψ(x) =
k∑︂
j=1
− ln(bj − ⟨aj, x⟩).

Example 4.2.3 (Semidefinite programming). LetD = SPD(n,C) denote the cone of
positive-semidefinite matrices with entries in C. Then Ψ : int(D) = PD(n,C) → R

given by Ψ(P) = − log det(P) is a self-concordant barrier with parameter ν =

n [NN94, Prop. 5.4.5]. This barrier can be used for semidefinite programming
problems.

Example 4.2.4 (Second-order cone). Let n ⩾ 1 andD = {(x, r) ∈ Rn×R : ∥x∥2 ⩽ r}.
Then Ψ : int(D) → R defined by

Ψ(x, r) = − log(r2 − ∥x∥22)

is a self-concordant barrier with parameter ν = 2 [NN94, Prop. 5.4.3]; in particular
independent, the parameter is independent of n. This barrier is particularly useful
for enforcing norm-constraints on domains.

In the context of unconstrained geometric programming, see Chapter 5, the
following barrier is instrumental:

Example 4.2.5 (Exponential cone). LetD = {(y, z) ∈ R2 : ey ⩽ z} be the exponential
cone. Then Ψ : int(D) → R defined by

Ψ(y, z) = − log z − log(log(z) − y)

is a self-concordant barrier forD, with parameter ν = 2. Proving this is non-trivial
even with Eq. (4.2.1), see [NN94, Prop. 5.3.3].

Example 4.2.6 (Operator logarithm hypograph). A natural non-commutative exten-
sion of the exponential cone would be the set

D′ = {(Y,Z) ∈ Herm(n)2 : eY ⪯ Z}

where eY ⪯ Z refers to the Löwner ordering, i.e., Z − eY is positive semidefinite.
However, the exponential function is not operator-convex [Bha13, Prob. V.5.1],
so D′ is not a Euclidean convex set. This is also a setback in the context of
non-commutative norm minimization problems, as we explain now. For a repre-
sentation π : G→ GL(V) and v ∈ V \ {0} as in Section 2.6, observe that

inf
g∈G
∥g · v∥2 = inf

g∈G
⟨v,π(g∗g)v⟩ = inf

X∈iLie(K)
⟨v, eΠ(X)v⟩ (4.2.2)

since π(g∗g) = π(eX) = eΠ(X) for some X ∈ iLie(K) (by the polar decomposition,
Theorem 2.2.16), where Π = dπI : Lie(G) → Lie(GL(V)) is the induced map on Lie
algebras. If D′ were convex, we could write Eq. (4.2.2) as a convex optimization
problem over D′ with the linear constraint Y = Π(X) for some X.
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By contrast, the hypograph of the operator logarithm is convex, i.e.,

D = {(Y,Z) ∈ Herm(n)2 : Y ⪯ log(Z), Z ⪰ 0}

is a convex set, because the operator logarithm is operator-concave [Bha09, Ex. 4.2.5].
This domain admits the self-concordant barrier

Ψ(Y,Z) = − log det(Z) − log det(Y − log(Z)),

with barrier parameter 2n. More generally, for operator-monotone functions, one
can construct barriers for their epigraphs [FZ20; FS22].

4.3. Following the central path
Under the assumption that Ψ is a self-concordant barrier functional, one can show
that one can indeed follow the central path, consisting of the minimizers z(η)
of Ψη = η ⟨c, ·⟩ +Ψ. One follows the central path along a sequence of η1 < η2 < · · ·
which grows geometrically, with a rate depending on the parameter ν ⩾ 0 of the
barrier. To find z(ηi) starting from z(ηi−1), one uses Newton’s method as applied
to Ψηi , whose behaviour is controlled by using the self-concordance of the barrier
functional (Definition 4.2.1(i)). It is also well-known [Ren01, (2.12)] that

⟨c, z(η)⟩ ⩽ val + ν
η

, (4.3.1)

so following the central path as η → ∞ guarantees convergence of z(η) to a
minimizer p∗ of the objective.

A precise description of the main stage is given in Algorithm 4.1, and a schematic
representation is given in Fig. 4.1. One assumes to have a starting parameter η0,
and a starting point p0 ∈ int(D), which is an approximate minimizer of Ψη0 , so in
particular close to z(η0). Then, for i ⩾ 1, one chooses an appropriate ηi > ηi−1
such that a single Newton step for the function Ψηi at point pi−1 produces a point
pi that is guaranteed to remain close to the central path. Since gradΨηi(p) =
ηic + gradΨ(p) = ηic + g(p) and HessΨηi(p) = HessΨ(p) = H(p), the point pi
obtained by taking a single Newton step is given by

pi = pi−1 − (HessΨηi(pi−1))−1 gradΨηi(pi−1) = pi−1 −H(pi−1)−1(ηic + g(pi−1)).

If we write

αi(p) := ∥H(p)−1(ηic + g(p))∥Ψ,p,

then the length of the Newton step, measured in the local norm at pi−1, is αi(pi−1).
Furthermore, one can show that αi(p) is directly related to the distance of p to
the minimizer z(ηi) of Ψηi (cf. [Ren01, Thm. 2.2.5]). Therefore, by choosing the ηi
such that αi(pi) stays small, we guarantee that the iterates pi remain close to the
central path. This is achieved by first estimating αi(pi−1) in terms of αi−1(pi−1),
the ratio ηi/ηi−1, and the parameter ν of the barrier, and then bounding αi(pi) in
terms of αi(pi−1) using self-concordance [Ren01, (2.15)–(2.16)]. Provided ηi→∞
as i→∞, Eq. (4.3.1) suggests that the pi converge to a minimizer of the objective.
A suitable choice of the ηi, along with a quantitative guarantee on the precision
achieved by any particular pi is given by the following theorem.
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Algorithm 4.1: MainStage
Input: starting point p0 ∈ D, starting parameter η0 > 0, objective c ∈ E,

iteration count T ⩾ 0, parameter ν ⩾ 1 and oracle access to gradient
g(p) and Hessian H(p) of barrier Ψ : int(D) → R

1 for i = 1, . . . , T do
2 ηi←

(︂
1 + 1

8
√
ν

)︂
ηi−1;

3 pi← pi−1 −H(pi−1)−1 (ηic + g(pi−1)) ; ⊲ Newton step for Ψηi
at pi−1

4 end for
5 return pT ;

Theorem 4.3.1 (Main stage, [Ren01, p. 46–47, (2.14), and (2.17)]). LetΨ : int(D) → R

be a strongly non-degenerate self-concordant barrier functional forDwith parameter ν ⩾ 1.
Let η0 > 0 be given, and suppose p0 ∈ int(D) satisfies

α0(p0) = ∥H(p0)−1(η0c + g(p0))∥Ψ,p0 ⩽
1
9. (4.3.2)

Then the iterations of Algorithm 4.1 are well-defined and we have, for all i ∈ [T ], that
αi(pi) ⩽ 1

9 , ∥pi − z(ηi)∥(z(ηi)) ⩽
1
5 , and ⟨c,pi⟩ ⩽ val + 6

5ηi
ν.

In particular, for T ⩾ 10
√
ν log(65 ν

η0δ
), Algorithm 4.1 returns a point pT ∈ int(D)

satisfying

⟨c,pT ⟩ ⩽ val + δ.

One issue with the above strategy is that one has to know a good starting
point: after all, one cannot expect to follow the central path without starting close
to it! Finding such a starting point is the purpose of the preliminary stage. A
precise definition of a good starting point (and starting parameter) is satisfying
the hypotheses of Theorem 4.3.1. An algorithm that achieves this is presented
in Algorithm 4.2. One starts from an arbitrary point p′0 ∈ int(D) and follows the
central path associated with the objective −g(p′0) and the same self-concordant
barrier. This objective is chosen because p′0 is the minimizer of −µ⟨g(p′0),p⟩ +Ψ(p)
when µ = 1, i.e., p′0 is exactly on the central path at time 1. Now one decreases the
parameter µ, rather than increasing it, until one obtains an approximate minimizer
of Ψ = Ψ0. Finally, one chooses an appropriate η0 > 0 and performs a single
Newton step for Ψη0 that is guaranteed to yield a point p0 satisfying Eq. (4.3.2).
Only this last step depends on the objective c of the convex program Eq. (4.1.1). The
following definition and theorem bound the number of iterations of Algorithm 4.2
and give a lower bound on η0.

Definition 4.3.2 (Symmetry). Let D ⊆ E be a compact convex subset, and let
p ∈ int(D). The symmetry of Dwith respect to p is defined by

sym(p) = max {a ⩾ 0 : p + a(p −D) ⊆ D}.

If L is an affine line through p, then L ∩D consists of two chords from p to the
boundary of D; the symmetry parameter sym(p) is the smallest possible ratio of
the lengths of the smallest and longest chord. Therefore, the symmetry is always at
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Algorithm 4.2: PreliminaryStage
Input: starting point p′0 ∈ D, objective c ∈ E, parameter ν ⩾ 1 and oracle

access to gradient g(p) and Hessian H(p) of barrier Ψ : int(D) → R

1 µ0 ← 1;
2 g0 ← g(p′0);
3 i← 0;
4 while ∥H(p′

i
)−1g(p′

i
)∥Ψ,p′

i
> 1

6 do
5 i← i + 1;
6 µi←

(︂
1 − 1

8
√
ν

)︂
µi−1;

7 p′
i
← p′

i−1 −H(p
′
i−1)−1(−µig0 + g(p′i−1)); ⊲ Newton step for −µig0+Ψ at p′

i−1

8 end while
9 η0 ← (12∥H(p′

i
)−1c∥Ψ,p′

i
)−1 ;

10 p0 ← p′
i
−H(p′

i
)−1(η0c + g(p′i)) ; ⊲ Newton step for Ψη0 at p′

i

11 return (p0,η0);

most 1, and from this description, it is also clear that one can bound the symmetry
by providing a ball centered at p contained in the interior of D, and another ball
centered at p containing all of D; see Lemma 5.4.3.

Theorem 4.3.3 (Preliminary stage, [Ren01, (2.19)]). Let Ψ : int(D) → R be a strongly
non-degenerate self-concordant barrier functional for D with parameter ν ⩾ 1, let
p′0 ∈ int(D) be a starting point, and let c ∈ E be the objective. Then Algorithm 4.2
with this choice of starting point p′0 outputs a vector p0 ∈ int(D) and η0 > 0 satisfying
Eq. (4.3.2), i.e.,

∥H(p0)−1(η0c + g(p0))∥Ψ,p0 ⩽
1
9,

as soon as µ−1
i
⩾ 18ν(1 + 1/sym(p′0)), i.e., after at most

log(18ν(1 + 1
sym(p′0)

))

− log(1 − 1
8
√
ν
)

⩽ 8
√
ν log

(︃
36ν

sym(p′0)

)︃
iterations. Moreover, we have the lower bound η0 ⩾

1
12(V−val) , where V = maxp∈D ⟨c,p⟩.

Together, Theorems 4.3.1 and 4.3.3 can be summarized as follows:

Theorem 4.3.4 (Theorem 2.4.1 in [Ren01]). Let D ⊆ E be a compact convex subset
with non-empty interior. Assume Ψ : int(D) → R is a strongly non-degenerate self-
concordant barrier functional for D with parameter ν ⩾ 1. Furthermore, for c ∈ E,
define val = minp∈D ⟨c,p⟩ and V = maxp∈D ⟨c,p⟩. Finally, let 0 < δ < V − val be the
desired precision and let p′0 ∈ int(D) be a starting point for the preliminary stage. Then,
Algorithm 4.2 outputs a point p0 ∈ int(D) and a parameter η0 ⩾

1
12(V−val) satisfying the

hypotheses of Theorem 4.3.1. Algorithm 4.1 with inputs p0, η0 and T ⩾ 10
√
ν log(65 ν

η0δ
)

outputs a point pT satisfying

⟨c,pT ⟩ − val ⩽ δ.
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4.3. Following the central path

The total number of iterations is upper bounded by

18
√
ν log

(︃
36ν

sym(p′0)
V − val
δ

)︃
and each iteration involves computing the gradient and Hessian of the self-concordant
barrier Ψ and basic matrix arithmetic.
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5. Interior-point methods for
commutative scaling problems

In this chapter we show that the interior-point framework from Chapter 4 is useful in
the context of the norm-minimization and scaling problems as defined in Section 2.6,
when the acting group is commutative. In this case, the underlying objective is
convex on Euclidean space: more specifically, it reduces to an unconstrained
geometric programming problem. It serves as a useful example, showing what
kind of challenges arise in applying interior-point methods to scaling problems, and
sets a baseline for results one may hope to achieve in the general non-commutative
setting.

The chapter is organized as follows. In Section 5.1 give a detailed introduction to
(unconstrained) geometric programming and the relation to commutative scaling.
In Section 5.2 we provide a brief summary of the results: we define the geometric
condition measures and the facet gap, and state the IPM iteration complexity results.
In Section 5.3 we discuss the condition numbers defined in Section 5.2 in more
detail and show how they imply diameter bounds on (approximate) minimizers
of the GP. In Section 5.4 we explain how to use these diameter bounds together
with the general framework of interior-point methods to prove Theorems 5.2.2
and 5.2.5 and their corollaries. Lastly, in Section 5.5, we give a priori bounds on
the condition numbers in terms of the encoding length of the input and we also
provide better condition number bounds when the geometric program is totally
unimodular. These bounds imply that the iteration complexity of the interior-point
methods is polynomial in the input size.

5.1. Introduction
Geometric programming is an optimization paradigm that generalizes linear
programming and has a wide range of applications [DPZ67; BKVH07]. We
shall concern ourselves only with unconstrained geometric programs. These are
optimization problems of the form

minimize f(z)
subject to z ∈ Rn

>0,
(5.1.1)

where f(z) is a posynomial in positive real variables z1, . . . , zn. That is,

f(z) =
k∑︂
i=1
qiz

ωi =

k∑︂
i=1
qi

n∏︂
j=1
z
ωi,j
j

, (5.1.2)

This chapter is adapted from [BLNW20].
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5. Interior-point methods for commutative scaling problems

where the coefficients qi are positive and the exponentsωi,j are real numbers. In a
general geometric program (GP), one adds posynomial inequality and monomial
equality constraints. Although posynomials are non-convex in general, they are
convex in x ∈ Rn after the change of variables zi = exi . This means they are the
simplest family of geodesically convex programming problems.

Deciding whether an unconstrained geometric program is bounded from below
captures membership of a vector in a convex hull, as we shall see shortly. In this
sense, unconstrained GP can be viewed as a generalization of linear programming.1
Therefore simple algorithms like gradient descent or Newton’s method are unlikely
to yield efficient algorithms. However, it is also well known that unconstrained
geometric programs can be solved in polynomial time via the ellipsoid method,
see [NR99].

It seems common wisdom that GP can be solved in polynomial time via interior-
point methods, however we were unable to find a rigorous justification of this
claim in the literature, see for instance [NN94; KK96; NR99; KXY97; AY98; BV04;
NT05; KT18]. To remedy this, we provide a systematic treatment of unconstrained
GP, along with detailed complexity bounds for two interior-point algorithms for
unconstrained GP in terms of natural geometric condition numbers. Our first
algorithm applies to instances that (roughly speaking) have a well-conditioned
Newton polytope, while our second algorithm has no such assumption but instead
relies on a novel condition number for the GP.

We also provide effective bounds on the condition numbers for rational inputs.
Our results improve over the optimization algorithms of [BFG+19], which apply
to general non-commutative norm minimization and scaling problems. Under
additional combinatorial assumptions, satisfied for instance in the case of matrix
scaling and balancing, we match the iteration complexity of the interior-point
methods provided in [CMTV17].

5.1.1. The computational problems
We define the computational problems associated with Eq. (5.1.1) in a more formal
way, specializing the norm minimization and scaling problems from Section 2.6. We
write q = (q1, . . . ,qk) ∈ Rk

>0 for the vector of coefficients and Ω = {ω1, . . . ,ωk} ⊆
Rn for the set of exponents of the posynomial Eq. (5.1.2).

After the reparameterization zi = exi , the objective takes the form

k∑︂
j=1
qjz

ωj =

k∑︂
j=1
qje
⟨ωj,x⟩. (5.1.3)

This is in fact even log-convex in x. It is convenient to give its logarithm a name,
and to allow an overall shift of theωj’s by a fixed vector θ ∈ Rn: we define

Fθ(x) := log

(︄
k∑︂
j=1
qje
⟨ωj−θ,x⟩

)︄
= log

(︄
k∑︂
j=1
qje
⟨ωj,x⟩

)︄
− ⟨θ, x⟩, F∗θ := inf

x∈Rn
Fθ(x).

(5.1.4)
1General geometric programming is even a direct generalization: when the objective and

constraints are all monomials, the change of variables turns the GP into a general linear program.
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5.1. Introduction

When theωj are integer vectors, expressions like the above (for θ = 0) arise as
Kempf–Ness functions for commutative groups; in fact, by virtue of the weight
decomposition (Theorem 2.2.13), this captures all commutative norm minimization
problems. More precisely, if G = (C×)n acts on V = CΩ via

(w1, . . . ,wn) · eω = w
ω1
1 · · ·w

ωn
n eω,

where {eω} is the canonical orthonormal basis for V , then for v ∈ V \ {0}, we have

log∥w · v∥ = 1
2 log

(︄ ∑︂
ω∈Ω
|vω |2 |wω |2

)︄
.

Reparameterizing |wi |2 = exi and qω = |vω |2 yields the unconstrained GP of the
form Eq. (5.1.4) (up to the prefactor 2).

We note that the notation Fθ should not be confused with the notation “Fv” for
the Kempf–Ness function from Section 1.2 and Chapter 2. The role of v ∈ V is now
played by the vector q, which we view as fixed. Instead, we are primarily interest in
the behavior of algorithms as θ ∈ Rn changes; in particular for the question “is θ in
the Newton polytope?” (with the usual scaling problem corresponding to θ = 0).

The problem of unconstrained geometric programming is to approximate the
infimum to arbitrary precision:

Problem 5.1.1 (Unconstrained GP with shift). Given as input exponentsω1, . . . ,ωk ∈
Rn, a shift θ ∈ Rn, q ∈ Rk

>0, and a precision δ > 0, find xδ ∈ Rn such that
Fθ(xδ) ⩽ F∗θ + δ.

Clearly, any solution to this problem provides a (1 + 2δ)-multiplicative and
a (2∥q∥1δ)-additive approximation to the value of the original geometric pro-
gram Eq. (5.1.1).

Problem 5.1.1 depends crucially on the Newton polytope of f, which is defined as
the convex hull of the set of exponentsΩ. This is exactly the moment polytope for
the commutative setting, see Section 2.5. A slight refinement of the Kempf–Ness
theorem (Theorems 2.4.4 and 2.5.5) in this setting is then:

Proposition 5.1.2. The function Fθ defined in Eq. (5.1.4) satisfies:

(i) F∗
θ
> −∞ if and only if θ ∈ conv(Ω), and in this case F∗

θ
⩾ log mini∈[k] qi,

(ii) F∗
θ
= Fθ(x) for some x ∈ Rn if and only if θ ∈ relint(convΩ), where relint(·)

denotes the relative interior.

Proof. Property (i) follows from the observation that Fθ is unbounded from below
if and only if there exists some x ∈ Rn such that ⟨ωi − θ, x⟩ < 0 for all i ∈ [k]. This
is in turn is equivalent to θ ∉ convΩ by Farkas’ lemma [BV04, Sec. 5.8]. Now in
case θ ∈ convΩ, for every x ∈ Rn, there exists j ∈ [k] such that ⟨ωj − θ, x⟩ ⩾ 0,
and it follows that

Fθ(x) ⩾ log(qje⟨ωj−θ,x⟩) ⩾ log min
i∈[k]

qi. (5.1.5)

One direction of property (ii) follows from the observation that grad F(x) is
always in relint(convΩ); therefore, if F∗

θ
= Fθ(x) for some x, we have grad Fθ(x) =
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5. Interior-point methods for commutative scaling problems

grad F(x) − θ = 0 and θ is in relint(convΩ). The other direction follows from
diameter bounds proven later (Proposition 5.3.1): if θ is in the relative interior
of convΩ, then one can show that every x ∈ Rn with ∥x∥2 sufficiently large
satisfies Fθ(x) > Fθ(0). □

Thus, deciding whether F∗
θ

is finite or not can be done by testing membership in
the Newton polytope (a linear programming problem). By convexity, Problem 5.1.1
is directly related to the problem of minimizing (the norm of) the gradient
grad Fθ(x), which is given by

grad Fθ(x) =
∑︁k

j=1 qje
⟨ωj,x⟩ωj∑︁k

j=1 qje
⟨ωj,x⟩

− θ.

We refer to this as the associated scaling problem, specializing the definition
from Section 2.6.

Problem 5.1.3 (Scaling problem with shift). Given as input exponentsω1, . . . ,ωk ∈
Rn, a shift θ ∈ Rn, q ∈ Rk

>0, and a precision ε > 0, find xε ∈ Rn such that
∥grad Fθ(xε)∥2 = ∥grad F(xε) − θ∥2 ⩽ ε.

The shiftθ is useful in various contexts, such as matrix scaling (as discussed in Sec-
tion 1.1): observe that rather than using the potential function f from Eq. (1.1.1),
one could have also used the function

F(x1, . . . , xn,y1, . . . ,yn) = log

(︄
n∑︂

i,j=1
Aije

xi+yj

)︄
− ⟨(x,y), (r, c)⟩ .

which is essentially an unconstrained geometric program with q’s given by theAij,
ω’s given by (ei, ej) ∈ Rn ×Rn, and the shift given by the target marginals (r, c).

5.1.2. Entropy maximization
Minimizing Fθ also has a useful dual formulation, which is given by an entropy
maximization problem [SV14]. More precisely,

F∗θ = inf
x∈Rn

Fθ(x) = sup
{︃
−D(p∥q) :

k∑︂
j=1
pjωj = θ,

k∑︂
j=1
pj = 1, p ⩾ 0

}︃
, (5.1.6)

whereD(p∥q) =
∑︁k

j=1 pj log pj

qj
denotes the Kullback–Leibler (KL) divergence between

a probability distribution p and the distribution q = (q1, . . . ,qk) (which need not
be normalized). Thus, the dual program Eq. (5.1.6) is feasible (i.e., has non-empty
domain) when θ is in the convex hull of the ωi, which is often referred to as
the Newton polytope of the unconstrained geometric program. Furthermore, the
optimal solution is a probability distribution on Ω = {ωj} with mean θ that
minimizes the KL divergence to the initial distribution q. When q = (1, . . . , 1) is the
all-ones vector, −D(p∥q) =

∑︁k
i=1 pi log 1

pi
is the Shannon entropy of p. In this case,

Eq. (5.1.6) amounts to the discrete entropy maximization problem which naturally
arises in machine learning and statistics, motivated by the maximum entropy
principle [Jay57b; Jay57a]. From this perspective, it is also easy to see the connection
between matrix scaling and to entropy-regularized optimal transport [Cut13].

122



5.1. Introduction

5.1.3. Diameter bounds
To solve the entropy maximization problem Eq. (5.1.6), [SV14; SV19] proposed
ellipsoid methods for the equivalent geometric program Eq. (5.1.4) that are tractable
even when k is large. They focused on the case thatΩ consists of integer vectors
(which is already of substantial interest) and gave a priori diameter bounds as
required for the ellipsoid method. In [SV14], it was shown that if θ is at a distance
η > 0 from the boundary of the Newton polytope then there is a minimizer x∗ of
norm ∥x∗∥2 ⩽ logk

η . In [SV19], a diameter bound was obtained in terms of the unary
facet complexity of the Newton polytope: if conv(Ω) can be described by linear
inequalities with integer coefficients in {−M, . . . ,M}, then for any θ ∈ conv(Ω)
there is a δ-approximate minimizer xδ of the function Fθ with ∥xδ∥2 ⩽ R, where
R = poly(n,M, log 1

δ). This bound is particularly useful if θ is very close to (or
on) the boundary of convΩ. We generalize both of these bounds to the case
whereΩ ⊆ Rn is not necessarily integral.

5.1.4. Complexity
We comment briefly on the notion of complexity used in this chapter. The stated
complexity bounds on the given interior-point methods are given in the number
of iterations. Each iteration consists however consists of arithmetic operations
(computing gradients and Hessians, and solving a linear system for taking Newton
steps). Therefore we only get polynomial-time algorithms in a (infinite-precision)
real-number model of computation [BCSS98]. It is currently unknown whether
this can be extended to the Turing-machine model of computation: the obstruction
is that it is unclear whether the bit-complexity of the numbers appearing in the
algorithm remains bounded or not. In the setting of linear programming this is
known not to be an issue [Ren88], and in the context of semidefinite programming
such a result is only relatively recent [KV16]. One hint that such a result might
hold in our setting is that the updates (given by Newton steps) in the usual IPM
framework are well-known to be error-robust, see for instance [CMTV17, Sec. 6.3].

5.1.5. Notation and assumptions
Throughout we will always assume that the shift is contained in the Newton
polytope, i.e., θ ∈ conv(Ω). In order to state our results, we define a quantity
capturing the condition of q ∈ Rk

>0:

β =
∥q∥1

mini∈[k] qi
, (5.1.7)

where ∥q∥1 =
∑︁k

i=1 qi. We refer to q as a distribution, in the sense of a unnor-
malized probability distribution; the normalization is not important for solving
the unconstrained GP, and this is reflected in β being invariant under rescaling
q. Note that k ⩽ β ⩽ maxi qi

mini qi
k < ∞. With this notation, observe that if θ ∈ convΩ,

then by Proposition 5.1.2 we have Fθ(0) − F∗θ ⩽ log∥q∥1 − log mini∈[k] qi = log(β).
We denote by B(θ, r) the closed ball centered at θ with radius r, and aff(Ω)

denotes the affine hull ofΩ (i.e., the smallest affine subspace of Rn containingΩ).
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5. Interior-point methods for commutative scaling problems

Figure 5.1.: An illustration of rθ and Rθ.

5.2. Summary of results

5.2.1. Well-conditioned instances
Here we state we state our results in terms of the natural condition measures rθ
and Rθ defined below; see Fig. 5.1.

Definition 5.2.1 (Geometric condition measures). Given an instance of the uncon-
strained GP or scaling problem withΩ ⊆ Rn and shift θ ∈ conv(Ω), we define rθ
as the radius of the largest ball about θ contained in the polytope:

rθ = max{r ⩾ 0 : B(θ, r) ∩ aff(Ω) ⊆ conv(Ω)} = d(θ,∂ conv(Ω)).

We say that the instance is well-conditioned if rθ > 0, and ill-conditioned otherwise.
Similarly, we define Rθ as the radius of the smallest enclosing ball about θ:

Rθ = min{R ⩾ 0 : conv(Ω) ⊆ B(θ,R)} = max
ω∈Ω
∥ω − θ∥2.

Thus, an instance is well-conditioned when θ is in the relative interior of the
Newton polytope, and ill-conditioned if it is on the boundary. The quantity rθ is
closely related to a condition measure due to [Gof80], which is widely used in the
context of testing polyhedral cone feasibility [BC13; DVZ20], see Remark 5.3.2.

Our first result is a bound on the number of iteration steps of a natural interior-
point method (IPM), which solves well-conditioned instances of unconstrained GP.

Theorem 5.2.2. There is an interior-point algorithm (Algorithm 5.2) that, given as input
a well-conditioned instance of the unconstrained GP problem with shift (Problem 5.1.1),
returns xδ ∈ Rn such that Fθ(xδ) ⩽ F∗θ + δ within

O

(︃√
k log

(︂
k
Rθ

rθ

1
δ

log(kβ)
)︂)︃

iterations. The starting point of the algorithm is determined explicitly by the input, and
every iteration is a Newton step.
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5.2. Summary of results

We emphasize that it is not necessary to provide a lower bound on rθ as input.
The algorithm follows the interior-point method framework of [NN94; Ren01],
which consists of a preliminary stage and a main stage. We refer back to Chapter 4
for details, but briefly recall the most important aspects. The preliminary stage
uses a starting point that is easily computed in terms of the input data, and
outputs a starting point for the main stage withinO(

√
k log(k Rθ

rθ
log(kβ)))Newton

iterations. The main stage then produces a sequence of points x0, x1, . . . such that
Fθ(xj) − F∗θ ⩽ C log(kβ) exp(− jc√

k
) for some known constants c,C > 0, implying the

claimed iteration bound. The same algorithm along with a conversion between
the precision for geometric programming and the precision required for scaling
problem (see Section 5.4.3) gives the following.

Corollary 5.2.3. There is an algorithm that, given as input a well-conditioned instance of
the scaling problem with shift (Problem 5.1.3), returns xε ∈ Rn such that

∥grad Fθ(xε)∥2 = ∥grad F(xε) − θ∥2 ⩽ ε

with the number of iterations bounded by

O

(︃√
k log

(︂
k
Rθ

rθ

Rθ

ε
log(kβ)

)︂)︃
.

As an application, we note that Theorem 5.2.2 can be used to solve the weak
membership problem for a convex polytope given in vertex-representation [GLS12]:
upon inputΩ ⊆ Qn, θ ∈ Qn, and ε > 0 (without assuming θ ∈ conv(Ω)), the weak
membership problem asks to assert either that d(θ, conv(Ω)) ⩽ ε or that B(θ, ε)
is not contained in conv(Ω) (these conditions are not mutually exclusive). In
order to decide this, one can run the algorithm from Corollary 5.2.6 with q =

(1, . . . , 1) ∈ Rk, and precision ε. If the algorithm does not terminate within the
stated (polynomial) number of iterations, or if the returned point xε ∈ Rn does not
satisfy ∥grad F(xε) − θ∥2 ⩽ ε, one may conclude that θ ∉ conv(Ω), hence B(θ, ε) is
not contained in conv(Ω) either. Otherwise, we obtain a point xε ∈ Rn such that
∥grad F(xε) − θ∥2 ⩽ ε; since grad F(xε) ∈ conv(Ω), one can therefore safely assert
that d(θ, conv(Ω)) ⩽ ε.

5.2.2. General instances
We now discuss our results for general instances (well-conditioned or not). Here
we provide an interior-point algorithm that approximates the unconstrained GP to
arbitrary precision with an iteration complexity bound that is independent of θ. For
this, we prove a θ-independent diameter bound for approximate minimizers. The
following quantity controls our bound (see Fig. 5.2).

Definition 5.2.4 (Facet gap). LetΩ ⊆ Rn be a finite set. The facet gap φ > 0 ofΩ is
the smallest distance from any ω ∈ Ω to the affine span of any facet of conv(Ω)
not containingω.

Note that the facet gap depends onΩ and not just on the Newton polytope.
Our diameter bound in terms of the facet gap (Theorem 5.3.3) generalizes a

θ-independent diameter bound obtained in [SV19] for integralΩ ⊆ Zn to arbitrary
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5. Interior-point methods for commutative scaling problems

Figure 5.2.: The facet gap φ is the shortest line segment (dotted).

Ω ⊆ Rn, with only small modifications to the proof. The quantity that controls
their diameter bound is called the unary facet complexity of the Newton polytope,
denoted by ufc. We recover their diameter bound by showing that, in the integral
case, the facet gap and the unary facet complexity are related by φ−1 ⩽

√
n · ufc;

see Section 5.3.
We denote the diameter of the Newton polytope by

N = max
i≠j
∥ωi −ωj∥2. (5.2.1)

Our algorithmic result is the following.

Theorem 5.2.5. There is an interior-point algorithm (Algorithm 5.1) that, given as input
an instance of the unconstrained GP problem (Problem 5.1.1) with shift θ ∈ conv(Ω) and
a lower bound 0 < φ0 ⩽ φ on the facet gap, returns xδ ∈ Rn such that

Fθ(xδ) ⩽ F∗θ + δ

within

O

(︃√
k log

(︃
kn
N

φ0

1
δ

log
(︃
kβ

δ

)︃)︃)︃
iterations. The starting point is determined explicitly by the input, and every iteration is a
Newton step for a function that depends on φ0.

Theorem 5.2.5 applies to arbitrary points θ in the Newton polytope and achieves
an iteration complexity that is fully independent of θ. In contrast, Theorem 5.2.2
applies only to well-conditioned instances and its complexity is sensitive to the
distance of θ to the boundary of the Newton polytope. However, the former
algorithm relies crucially on an a priori lower bound on the facet gap ofΩ, while
the latter has no such requirement. As such, our two algorithmic results are
incomparable.

As in the well-conditioned case, our algorithm also allows one to solve the
scaling problem with a similar iteration complexity bound.
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5.2. Summary of results

Corollary 5.2.6. There is an algorithm that, given as input an instance of the scaling
problem (Problem 5.1.3) with shift θ ∈ conv(Ω), as well as a lower bound 0 < φ0 ⩽ φ on
the facet gap, returns xε ∈ Rn such that

∥grad Fθ(xε)∥2 = ∥grad F(xε) − θ∥2 ⩽ ε

with the number of iterations bounded by

O

(︃√
k log

(︃
kn
N

φ0

Rθ

ε
log

(︃
kβRθ

ε

)︃)︃)︃
.

5.2.3. Condition measures for rational instances
Up to now, instances of the GP and scaling problems were allowed to be given by
arbitrary real vectors. We now discuss how our condition measures (and thereby
the iteration complexity) can for rational instances be effectively bounded in terms
of the encoding length. We will focus our attention on rθ and φ since the other
condition measures β, Rθ, N can be straightforwardly bounded. Throughout, we
follow the conventions of [GLS12] for the encoding length: we encode rational
numbers (and rational vectors) in binary, and write ⟨·⟩ for the encoding length.

By standard techniques, we derive in Section 5.5.1 polynomial upper bounds
on log2 r

−1
θ

and the facet gap in terms of the input bit-size. This implies that the
iteration complexities of our interior-point methods are bounded by a polynomial
in the encoding length of the instance.

We briefly compare the resulting guarantees to previous work. In the setting
whereΩ ⊆ Zn is integral, [BFG+19] gave a first-order method was found which
solves the scaling problem in poly(1/ε,Rθ) iterations. They also developed a second-
order method for the unconstrained GP problem based on the recently introduced
notion of robustness whose iteration complexity is poly(log(1/δ),Rθ/rθ,n), see
[ALOW17; CMTV17; CKV20]. Our results therefore improve upon both, as we
have a logarithmic dependence on 1/ε (for the scaling problem) and 1/δ (for the
geometric program), and logarithmic dependence on Rθ/rθ. An application of the
ellipsoid method gives similar guarantees [NR99], but is usually not practical.

5.2.4. Total unimodularity
The general bounds on the condition measures in terms of the encoding length
can be improved under a combinatorial hypothesis, as we show in Section 5.5.2.
We call an instance totally unimodular if the exponentsωi are all integral and the
matrix A whose columns are given by the ωi is totally unimodular, i.e., every
subdeterminant is ±1 or 0. Important examples of totally unimodular matrices
are provided by the incidence matrices of directed graphs [Sch98, §19.3, Example
2]. We show that in this situation, the facet gap is bounded as φ−1 ⩽ n3/2,
see Theorem 5.5.4.2 This implies that the interior-point algorithm in Theorem 5.2.5
can solve the unconstrained GP problem in ˜︁O(√k log( 1δ)) iterations and the scaling
problem in ˜︁O(√k log( 1ε)) iterations. The ˜︁O(·) notation here hides a polylogarithmic
dependence on the input length.

2In [BFG+19], the similar bound r−1
θ
⩽ 2⟨θ⟩n3/2 appears.
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5. Interior-point methods for commutative scaling problems

Many widely studied applications fall into this setting, among them matrix
scaling; see Section 1.1. In this case, the underlying graph is a complete bipartite
directed graph. Thus our interior-point algorithm runs in ˜︁O(√k log( 1ε)) iterations
for finding an ε-approximate (r, c)-scaling of a non-negative matrix with k non-
zero entries (if such a scaling exists). The matrix balancing problem can similarly
be modeled by taking the underlying graph to be a complete directed graph.
Unconstrained GPs arising from directed graphs can in general be related to
nonlinear flow problems on directed graphs [CMTV17].

The iteration complexity that we obtain for matrix scaling and balancing slightly
improves over (but is essentially the same as) the one given in [CMTV17] for an
interior-point method designed specifically for these problems. It is natural to
ask whether we can also meet the time complexity of the latter, which relied on a
slightly different objective function and a clever implementation of approximate
Newton iterations by using Laplacian solvers. We leave this question for future
investigation.

5.3. Condition measures and diameter bounds
Throughout, we fix an instance of the unconstrained GP or scaling problem with
Ω = {ω1, . . . ,ωk} ⊆ Rn, q ∈ Rk

>0, and shift θ ∈ conv(Ω). Let W denote the
direction vector space of the affine span aff(Ω), which equals the linear span of the
ωi − θ in Rn. Since the objective function Fθ : Rn → R from Eq. (5.1.4) satisfies
Fθ(x) = Fθ(x + h) for all h ∈ W⊥, we can restrict the optimization problem toW.

5.3.1. Well-conditioned instances

We first show the following diameter bound for a well-conditioned geometric
program.

Proposition 5.3.1 (Well-conditioned diameter bound). Assume θ ∈ relint(conv(Ω)).
Then there exists x ∈ W with ∥x∥2 ⩽ logβ

rθ
such that Fθ(x) = F∗θ.

Proof. For any x ∈ W with ∥x∥2 = 1, maxu∈conv(Ω) ⟨u − θ, x⟩ is the distance from
θ to the face of conv(Ω) determined by the vector x. Minimizing over all such x
results in the shortest distance from θ to any face of the polytope conv(Ω), which
equals rθ. This shows that

rθ = min
x∈W
∥x∥2=1

max
u∈conv(Ω)

⟨u − θ, x⟩ = min
x∈W\{0}

max
i∈[k]

⟨ωi − θ, x⟩
∥x∥2

. (5.3.1)

Therefore, if x ∈ W satisfies ∥x∥2 >
log(β)
rθ

, there exists i0 ∈ [k] such that ⟨ωi0 −
θ, x⟩ > log(β). This shows that

eFθ(x) ⩾ qi0e
⟨ωi0−θ,x⟩ > qi0β ⩾ ∥q∥1 = eFθ(0), (5.3.2)

hence Fθ(x) > Fθ(0). This completes the proof. □
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In the special case where Ω ⊆ {0, 1}n and q = (1, . . . , 1), this reduces to the
diameter bound ∥x∥2 ⩽ n

rθ
shown in [SV14] and improved in [SV19] to ∥x∥2 ⩽ logk

rθ
for generalΩ but the same q.

Remark 5.3.2. Put ai = ωi−θ and consider the matrixA with columns âi := ai/∥ai∥2.
The GCC condition number [BC13, §6.7] of A can be characterized as the inverse of

min
x∈W\{0}

max
i∈[k]

⟨âi, x⟩
∥x∥2

.

Upon replacing âi by ai, this quantity becomes rθ, see Eq. (5.3.1). The geometric condition
measure rθ thus is closely related to the GCC condition number (or Goffin measure), which
is widely used in the context of testing polyhedral cone feasibility.

5.3.2. General instances
In this subsection we allow θ to be an arbitrary point in the Newton polytope.
Here, the central quantity is the facet gap ofΩ (Definition 5.2.4).

The following theorem improves upon [SV19, Thm. 4.1]. Its proof follows
essentially the same argument, with a slight modification that also avoids the
recursion and leads to a slightly better bound.

Theorem 5.3.3 (Diameter bound via facet gap). For any 0 < δ < 2β and θ ∈ conv(Ω),
there exists x ∈ W such that

∥x∥2 ⩽
m

φ
log

(︃
2β
δ

)︃
and Fθ(x) ⩽ F∗θ + δ, wherem = dim aff(Ω) ⩽ n.

Proof. To start, choose vectors aj ∈ W with ∥aj∥2 = 1 and scalars bj ∈ R for j ∈ J
some finite index set, such that the Newton polytope is defined by

conv(Ω) =
{︁
p ∈ aff(Ω) : ⟨p,aj⟩ ⩽ bj ∀j ∈ J

}︁
.

We assume each inequality defines a facet of the polytope. Define the normal
cone Nω at a vertex ω to be Nω = {

∑︁
j∈Jω cjaj : cj ⩾ 0}, where Jω = {j ∈ J :

⟨aj,ω⟩ = bj} is the set of tight constraints atω. It is well-known thatW =
⋃︁

ωNω,
whereω ranges over the vertices of conv(Ω) (the normal fan is complete).

Now fix θ ∈ conv(Ω) and let x∗ ∈ W be such that

Fθ(x∗) ⩽ F∗θ +
δ

2.

Then x∗ ∈ Nω′ for some vertex ω′ ∈ Ω of conv(Ω), hence there exists a sub-
set J′ ⊆ Jω′ ⊆ J and non-negative numbers {cj}j∈J′ such that x∗ =

∑︁
j∈J′ cjaj. By

Carathéodory’s theorem, we may assume |J′| ⩽ m = dimW. Now define

∆ := 1
φ

log
(︃

2β
δ

)︃
,
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which is positive by the assumption that δ < 2β, and set

x :=
∑︂
j∈J′

min(cj,∆)aj.

Since ∥aj∥2 = 1, we have ∥x∥2 ⩽ |J′| · ∆ ⩽ m∆, so x satisfies the desired norm
bound.

To complete the proof, it therefore suffices to show that

Fθ(x) ⩽ Fθ(x∗) +
δ

2. (5.3.3)

We start by setting c′
j
= min(cj,∆) for convenience, so that x =

∑︁
j∈J′ c

′
j
aj. Let J0

consist of those j ∈ J′ such that c′
j
≠ cj, i.e., cj > ∆ and c′

j
= ∆. We may assume

there exists at least one j0 ∈ J0; otherwise, cj ⩽ ∆ for every j ∈ J′, so we have x = x∗
and Eq. (5.3.3) holds trivially. Now consider the intersection of Ω with the face
defined by the constraints J′,

Ω′ = {ω ∈ Ω : ⟨aj,ω⟩ = bj ∀j ∈ J′},

Ifω ∈ Ω \Ω′, thenω ∉ aff(Ω′), and

⟨ω, x⟩ − ⟨ω′, x⟩ =
∑︂
j∈J′

c′j⟨ω −ω′,aj⟩ =
∑︂
j∈J′

c′j
(︁
⟨ω,aj⟩ − bj

)︁
⩽ c′j0

(︁
⟨ω,aj0⟩ − bj0

)︁
= ∆

(︁
⟨ω,aj0⟩ − bj0

)︁
⩽ −φ∆ = log

(︃
δ

2β

)︃
.

The first inequality holds since each term in the sum is non-positive. The second
inequality follows from the observation that the distance fromω to the affine span
of the facet defined by aj0 and bj0 is

bj0 − ⟨ω,aj0⟩
∥aj0 ∥2

= bj0 − ⟨ω,aj0⟩ ⩾ φ

by definition of the facet gap. So we obtain forω ∈ Ω \Ω′ that

βe⟨ω−ω
′,x⟩ ⩽

δ

2. (5.3.4)

On the other hand, ifω ∈ Ω′, then

⟨ω − θ, x⟩ = ⟨ω − θ, x∗⟩ −
∑︂
j∈J0

(cj − c′j)⟨ω − θ,aj⟩ ⩽ ⟨ω − θ, x∗⟩ (5.3.5)

since cj ⩾ c′j and ⟨θ,aj⟩ ⩽ bj = ⟨ω,aj⟩ for all j ∈ J′. Therefore, we now obtain

Fθ(x) = log

(︄ ∑︂
i:ωi∈Ω′

qie
⟨ωi−θ,x⟩

)︄
+ log

(︄
1 +

∑︁
i:ωi∉Ω′ qie

⟨ωi−θ,x⟩∑︁
i:ωi∈Ω′ qie

⟨ωi−θ,x⟩

)︄
⩽ log

(︄ ∑︂
i:ωi∈Ω′

qie
⟨ωi−θ,x⟩

)︄
+

∑︁
i:ωi∉Ω′ qie

⟨ωi−θ,x⟩∑︁
i:ωi∈Ω′ qie

⟨ωi−θ,x⟩
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⩽ log

(︄ ∑︂
i:ωi∈Ω′

qie
⟨ωi−θ,x⟩

)︄
+
∑︁

i:ωi∉Ω′ qie
⟨ωi−θ,x⟩

qi′e⟨ω
′−θ,x⟩

⩽ log

(︄ ∑︂
i:ωi∈Ω′

qie
⟨ωi−θ,x∗⟩

)︄
+ δ2

⩽ Fθ(x∗) +
δ

2.

In the second inequality we denote by i′ ∈ [k] an index such thatωi′ = ω
′, observing

thatω′ ∈ Ω′. The third inequality follows from Eqs. (5.3.4) and (5.3.5). □

In contrast with the diameter bound for well-conditioned instances, which is in
terms of the distance of θ to the boundary of the Newton polytope, the diameter
bound in Theorem 5.3.3 is independent of the shift θ. However, the facet gap is not
an intrinsic property of the Newton polytope conv(Ω), but depends on the entire
set of exponents Ω, so the same is true for the diameter bounds in terms of the
facet gap. The following example shows that this is necessary.

Example 5.3.4. Consider for φ ∈ (0, 1/2] the instance with Ω = {0,φ, 1} ⊆ R,
q = (1, 1, 1) ∈ R3, and θ = 0. It is clear that conv(Ω) = [0, 1] and thatΩ has facet
gap equal to φ. Furthermore, we have

Fθ(x) = log (1 + eφx + ex) ⩾ 0

and limx→−∞ Fθ(x) = 0, so F∗
θ
= 0. On the other hand,

Fθ(x) ⩾ log (1 + eφx) ,

so any δ-approximate minimizer for δ ∈ (0, 1)must satisfy that |x| ⩾ −x ⩾ 1
φ log 1

2δ .

The following definition is from [SV19].

Definition 5.3.5 (Unary facet complexity). Let P ⊆ Rn be an integral polytope.
The unary facet complexity ufc(P) is the smallest integerM ⩾ 0 such that P can be
described as the intersection of the affine span of P with half-spaces ⟨p,a⟩ ⩽ b,
where a ∈ Zn, b ∈ R, and ∥a∥∞ ⩽M.

We show now that the facet gap can be bounded in terms of the unary facet
complexity.

Proposition 5.3.6. ForΩ ⊆ Zn we have

1
φ
⩽
√
n · ufc(conv(Ω)).

Proof. For any facet F ⊂ conv(Ω) there exists a corresponding half-space ⟨·,a⟩ ⩽ b
defined by a ∈ Zn, b ∈ R, and ∥a∥∞ ⩽ ufc(conv(Ω)). Then the affine span of the
facet is given by aff(F) = aff(Ω) ∩H, where H is the affine hyperplane

H = {p ∈ Rn : ⟨a,p⟩ = b} .
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As a consequence, the distance from anyω ∈ Ω \ F to aff(F) can be lower bounded
by the distance ofω to the affine hyperplane H, that is,

d(ω, aff(F)) ⩾ b − ⟨a,ω⟩
∥a∥2

=
⟨a,ω′⟩ − ⟨a,ω⟩

∥a∥2
⩾

1√
n · ufc(convΩ)

,

where ω′ is an arbitrary point in Ω ∩ F. To see the inequality, note that the
numerator is positive and an integer since a,ω,ω′ ∈ Zn, so at least 1, whereas the
denominator is at most

√
n · ufc(conv(Ω)). □

Thus, Theorem 5.3.3 and Proposition 5.3.6 imply the following diameter bound:
for integralΩ ⊆ Zn, there exists a δ-approximate minimizer of Fθ of norm

∥x∥2 ⩽ n3/2 ufc(conv(Ω))
(︃
2Lp + log

(︃
2k
δ

)︃)︃
,

where Lp = maxi |logqi | and we used that β ⩽ kmaxqi

minqi
⩽ ke2Lp . The right-

hand side bound is essentially the original diameter bound from [SV19] with a
logarithmically improved dependence on n. The middle bound is very similar to a
bound stated in an older version of [CKV20].

5.4. Interior-point methods for unconstrained geometric
programming

In this section, we show that approximate minimizers of Fθ may be found efficiently
using the interior-point method framework as in Chapter 4. The idea is to rewrite
the geometric program as a linear optimization objective over a more complicated
convex domain, for which we know an explicit self-concordant barrier functional.
The domain and the corresponding barrier will be slightly different in the well-
conditioned and the general case.

We first give the main ingredients that are common to the analysis of both the well-
conditioned instances and the general instances. In the next two subsections we give
the algorithms and complexity bounds for each case. FixΩ = {ω1, . . . ,ωk} ⊆ Rn,
q ∈ Rk

>0, and a shift θ ∈ conv(Ω). Following the general strategy outlined above,
we relate the geometric program to the minimization of a linear function over a
compact convex domain. For R > 0, define

Dθ,R =

{︂
(x, z, t) ∈ W ×Rk ×R :

k∑︂
i=1
zi ⩽ 1, qie⟨ωi−θ,x⟩ ⩽ zie

t ∀i ∈ [k],

t ⩽ log(5k∥q∥1), ∥x∥2 ⩽ R
}︂
.

(5.4.1)

Here we recall thatW is the span of the vectorsωi−θ or, equivalently, the direction
vector space of aff(Ω). Note (x, z, t) ∈ Dθ,R implies zi > 0 for all i ∈ [k]. The
convexity of the domain Dθ,R follows from the convexity of the exponential map
and of the ℓ2-norm ball.
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5.4. Interior-point methods for unconstrained geometric programming

Consider the linear objective c = (0, . . . , 0; 0, . . . , 0; 1) on Dθ,R. To see the
relation between this objective and the unconstrained GP, note that for any
p = (x, z, t) ∈ Dθ,R, one has ⟨c,p⟩ = t and

Fθ(x) = log
k∑︂
i=1
qie
⟨ωi−θ,x⟩ ⩽ log

k∑︂
i=1
zie

t ⩽ t, (5.4.2)

so the minimum of the linear objective c on Dθ,R gives an upper bound on the
minimum of the unconstrained GP restricted to the ball ∥x∥2 ⩽ R. In the following
lemma we show that these minima are in fact the same. Consequently, if (x, z, t) is
a δ-approximate minimizer of c on the domain Dθ,R, then x is a δ-approximate
minimizer of Fθ(x), restricted to vectors of norm ∥x∥2 ⩽ R.

Lemma 5.4.1 (Value). For any R > 0, we have

val := min
p∈Dθ,R

⟨c,p⟩ = min
(x,z,t)∈Dθ,R

t = min
∥x∥2⩽R

Fθ(x), (5.4.3)

V := max
p∈Dθ,R

⟨c,p⟩ = max
(x,z,t)∈Dθ,R

t = log(5k∥q∥1). (5.4.4)

Furthermore, the difference V − val satisfies

log(5k) ⩽ V − val ⩽ log(5kβ) (5.4.5)

Proof. For the first claim, note that Eq. (5.4.2) implies that

val ⩾ min
∥x∥2⩽R

Fθ(x).

Now consider a minimizer x of the right-hand side, which we can assume to be
inW. Then, t := Fθ(x) is such that

t ⩽ Fθ(0) = log∥q∥1 ⩽ log(5k∥q∥1),

and if we set zi := qie⟨ωi−θ,x⟩−t then
k∑︂
i=1
zi =

k∑︂
i=1
qie
⟨ωi−θ,x⟩e−t = eFθ(x)e−Fθ(x) = 1.

Thus we find that (x, z, t) ∈ Dθ,R, with t = Fθ(x), and Eq. (5.4.3) follows.
To see that Eq. (5.4.4) holds, note that the upper bound V ⩽ log(5k∥q∥1) follows

directly from the constraint on the t-variable, and this upper bound being an
equality for the point

p =
(︁
0, . . . , 0; 1

k
, . . . , 1

k
; log(5k∥q∥1)

)︁
∈ Dθ,R.

Lastly, to show Eq. (5.4.5), note that

val = inf
∥x∥2⩽R

Fθ(x) ⩾ inf
x∈Rn

Fθ(x) = F∗θ ⩾ log min
i∈[k]

qi

where the last inequality is Eq. (5.1.5). We clearly also have val ⩽ Fθ(0) = log∥q∥1,
so val satisfies

log min
i∈[k]

qi ⩽ val ⩽ log∥q∥1.

Combining this with Eq. (5.4.4) yields Eq. (5.4.5). □
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The key to applying interior-point methods to unconstrained geometric program-
ming is the following result, which gives an explicit barrier functional for Dθ,R. It
is well-known that such a barrier can be constructed, as it follows from standard
barrier functionals (Section 4.2) and barrier combination rules.

Proposition 5.4.2 (Barrier). The compact domain Dθ,R ⊆ W ×Rk ×R has non-empty
interior. Moreover, it admits the self-concordant barrier functional

Ψθ,R(x, z, t) = −
k∑︂
i=1

log zi −
k∑︂
i=1

log
(︁
log zi − ⟨ωi − θ, x⟩ + t − logqi

)︁
− log

(︁
log(5k∥q∥1) − t

)︁
− log

(︁
1 −

∑︁k
i=1 zi

)︁
− log

(︁
R2 − ∥x∥22

)︁
,

with complexity parameter ν = 2k + 3.

Proof. It is clear that Dθ,R has non-empty interior (for example, Eq. (5.4.7) below
gives a point in the interior). We now derive the barrier functional. It is well-known
that the epigraph of the exponential, given by

{(y, z) ∈ R ×R : ey ⩽ z},

admits the self-concordant barrier functional (y, z) ↦→ − log z− log(log z− y), with
complexity parameter 2; see [NN94, Prop. 5.3.3]. Recall also that the logarithmic
barrier functional τ ↦→ − log τ for the half lineR⩾0 ⊆ R has complexity parameter 1.
Then the closed convex set{︁

(y, z, τ) ∈ Rk ×Rk ×R : eyi ⩽ zi for all i ∈ [k], τ ⩾ 0
}︁

(5.4.6)

is simply the product of k copies of the epigraph of the exponential and the half
line, so a barrier functional Ψ′ is given by the sum of the barrier functionals for
each term in the product [NN94, Prop. 2.3.1 (iii)], i.e.,

Ψ′(y, z, τ) = −
k∑︂
i=1

log zi −
k∑︂
i=1

log(log zi − yi) − log τ.

The complexity parameter is then at most the sum of the individual complexity
parameters, i.e., 2k + 1. Next, note that{︁
(x, z, t) ∈ W ×Rk ×R : qie⟨ωi−θ,x⟩ ⩽ zie

t for all i ∈ [k], t ⩽ log(5k∥q∥1)
}︁

is the preimage of Eq. (5.4.6) under the injective affine transformation

A : W ×Rk ×R→ Rk ×Rk ×R, (x, z, t) ↦→
(︁
⟨ω1 − θ, x⟩ − t + logq1, . . .

. . . , ⟨ωk − θ, x⟩ − t + logqk; z1, . . . , zk; log(5k∥q∥1) − t
)︁
,

hence by [NN94, Prop. 2.3.1 (i)] admits the self-concordant barrier functional

(Ψ′ ◦A)(x, z, t) = −
k∑︂
i=1

log zi −
k∑︂
i=1

log
(︁
log zi − ⟨ωi − θ, x⟩ + t − logqi

)︁
− log

(︁
log(5k∥q∥1) − t

)︁
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with the same complexity parameter 2k + 1. Finally, we may incorporate the linear
constraint

∑︁k
i=1 zi ⩽ 1 by adding the logarithmic barrier − log(1 −

∑︁k
i=1 zi), and

the ℓ2-norm constraint ∥x∥2 ⩽ R by adding the barrier − log(R2 − ∥x∥22); see [Ren01,
Prop. 2.3.1 (ii)]. This increases the complexity parameter to 2k + 3 and results in
the desired domain and barrier. □

Next we need to bound the symmetry of a suitable starting point, as defined
in Definition 4.3.2. For this, we will use the following lemma.

Lemma 5.4.3. Let D ⊆ E be a closed convex subset, and let p ∈ D. Suppose that r < R
are two radii such that B(p, r) ⊆ D ⊆ B(p,R), where the closed balls are taken with respect
to an arbitrary norm on E. Then, D is bounded, p ∈ int(D), and

sym(p) ⩾ r
R

.

Proof. ClearlyD is bounded and contains p in its interior. For the symmetry claim,
note that for any u ∈ D, we have u ∈ B(p,R), so p − u ∈ B(0,R), and hence

p + r
R
(p − u) ∈ B(p, r) ⊆ D.

This shows that p + r
R(p −D) ⊆ D, which implies the desired lower bound on the

symmetry. □

One important aspect of Lemma 5.4.3 is the freedom in choosing a norm; in
particular, we do not assume that the norm comes from the inner product on E.
We will now use this freedom to bound the symmetry of the following starting
point:

p′0 =
(︁
0, . . . , 0; 1

2k , . . . , 1
2k ; log(4k∥q∥1)

)︁
, (5.4.7)

which is clearly contained in the interior of Dθ,R.

Proposition 5.4.4 (Symmetry bound). For any R > 0, we can bound the symmetry
of Dθ,R with respect to the point p′0 by

1
sym(p′0)

⩽ 10 max
(︁
RθR,k, log(4kβ)

)︁
,

where we recall that Rθ = maxi∈[k]∥ωi − θ∥2.

Proof. We wish to apply Lemma 5.4.3 using the following norm onW ×Rk ×R:

|||(x, z, t)||| := max
{︃
∥x∥2
R

, 2
3 ∥z∥∞, |t|

log(4kβ)

}︃
.

We first show that every (x, z, t) ∈ Dθ,R satisfies|︁|︁|︁|︁|︁|︁(x, z, t) − p′0
|︁|︁|︁|︁|︁|︁ ⩽ 1. (5.4.8)
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By definition ∥x∥2 ⩽ R. Moreover, zi > 0, so

2
3 |zi −

1
2k | ⩽

2
3

(︃
zi +

1
2k

)︃
⩽

2
3

(︄
k∑︂
j=1
zj +

1
2k

)︄
⩽

2
3

(︃
1 + 1

2k

)︃
⩽ 1.

Moreover, by Eqs. (5.1.5), (5.4.3) and (5.4.4), it holds that

log min
i∈[k]

qi ⩽ F
∗
θ ⩽ val ⩽ t ⩽ V = log(5k∥q∥1),

hence

|t − log(4k∥q∥1)|
log(4kβ)

⩽
max{log(5k∥q∥1) − log(4k∥q∥1), log(4k∥q∥1) − log mini∈[k] qi}

log(4kβ)

=
max{log 5

4 , log(4kβ)}
log(4kβ) ⩽ 1.

Thus we have proved Eq. (5.4.8).
We now show that Dθ,R contains any point (x, z, t) ∈ W ×Rk ×R in the ball|︁|︁|︁|︁|︁|︁(x, z, t) − p′0

|︁|︁|︁|︁|︁|︁ ⩽ 1
10 max(RθR,k, log(4kβ)) <

1
10. (5.4.9)

The latter implies that ∥x∥2 ⩽ R
10 ⩽ R, so x certainly satisfies the norm bound.

Moreover, Eq. (5.4.9) ensures that ∥x∥2 ⩽ 1
10Rθ

, and so

qie
⟨ωi−θ,x⟩ ⩽ qie

Rθ∥x∥2 ⩽ qie
1/10 ⩽ e1/10∥q∥1 (5.4.10)

for all i ∈ [k]. Next, we also have 2
3 |zi − 1

2k | ⩽ 1
10k , hence

7
20k ⩽ zi ⩽

13
20k , (5.4.11)

which implies that

k∑︂
i=1
zi ⩽

13
20 ⩽ 1.

Finally, note that Eq. (5.4.9) entails

|t − log(4k∥q∥1)|
log(4kβ) ⩽

1
10 log(4kβ) ,

hence |t − log(4k∥q∥1)| ⩽ 1
10 , which implies that

log(e−1/104k∥q∥1) ⩽ t ⩽ log(e1/104k∥q∥1) ⩽ log(5k∥q∥1) (5.4.12)

136



5.4. Interior-point methods for unconstrained geometric programming

where the last inequality uses 4 · e1/10 ⩽ 5. This shows that t ⩽ log(5k∥q∥1), which
is necessary for (x, z, t) ∈ Dθ,R. We now verify ziet ⩾ qie⟨ωi−θ,x⟩; combining the
lower bound on t from Eq. (5.4.12) and the lower bound from Eq. (5.4.11) yields

zie
t ⩾

7
20ke

−1/104k∥q∥1 =
7
5e
−1/10∥q∥1 ⩾ e1/10∥q∥1. (5.4.13)

Together, Eqs. (5.4.10) and (5.4.13) show that qie⟨ωi−θ,x⟩ ⩽ ziet, as desired. Thus
we have proved that (x, z, t) ∈ Dθ,R for any point in the satisfying Eq. (5.4.9). The
bound on the symmetry then follows from Lemma 5.4.3, where the radius of
the outer ball is given by Eq. (5.4.8) and the radius of the inner ball is given by
Eq. (5.4.9). □

In the remainder we consider two different situations. For general instances, we
choose R according to a given lower bound on the facet gap, using Theorem 5.3.3.
In the well-conditioned case, where θ is contained in the relative interior of the
Newton polytope, we see that the upper bound on the zi variables already leads
to a bounded domain; this allows us to obtain an algorithm that is independent of
any explicit radius bound.

5.4.1. General instances
Suppose the facet gap of the instance is lower bounded by some φ0 > 0. Then,
Theorem 5.3.3 and Eq. (5.4.3) show that for δ < 4β and

R =
n

φ0
log

(︃
2β
δ/2

)︃
the minimum value of ⟨c, (x, z, t)⟩ with c = (0, . . . , 0; 0, . . . , 0; 1) and (x, z, t) ∈ Dθ,R
is at most

val = min
∥x∥2⩽R

Fθ(x) ⩽ F∗θ +
δ

2.

Therefore, in order to obtain a δ-approximate minimizer for the geometric program,
it suffices to find a δ/2-approximate minimizer on Dθ,R. The latter is achieved
by Algorithm 5.1, which is an interior-point algorithm for the self-concordant
barrier functional Ψθ,R derived above. Its iteration complexity is bounded by the
following theorem.

Theorem 5.2.5. There is an interior-point algorithm (Algorithm 5.1) that, given as input
an instance of the unconstrained GP problem (Problem 5.1.1) with shift θ ∈ conv(Ω) and
a lower bound 0 < φ0 ⩽ φ on the facet gap, returns xδ ∈ Rn such that

Fθ(xδ) ⩽ F∗θ + δ

within

41
√
k log

(︃
3600k2n

N

φ0

1
δ

log2
(︃

5kβ
δ

)︃)︃
= O

(︃√
k log

(︃
kn
N

φ0

1
δ

log
(︃
kβ

δ

)︃)︃)︃
iterations. The starting point is determined explicitly by the input, and every iteration is a
Newton step for a function that depends on φ0.
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Algorithm 5.1: IPM for unconstrained GP: general case
Input: exponentsω1, . . . ,ωk ∈ Rn, coefficients q ∈ Rk

>0, shift θ ∈ conv(Ω),
precision 0 < δ < 1, lower bound φ0 on facet gap

Domain: Dθ,R = {(x, z, t) ∈ W ×Rk ×R : qie⟨ωi−θ,x⟩ ⩽ ziet ∀i ∈ [k],∑︁k
i=1 zi ⩽ 1, ∥x∥2 ⩽ R and t ⩽ log(5k∥q∥1)}, where

W = span{ω1 − θ, . . . ,ωk − θ}, and R = n
φ0

log( 2β
δ/2)

Barrier: Ψθ,R(x, z, t) = − log
(︁
R2−∥x∥22

)︁
−log

(︁
1−

∑︁k
i=1 zi

)︁
−log

(︁
log(5k∥q∥1)−

t
)︁
+
∑︁k

i=1 − log zi − log
(︁
log zi − ⟨ωi − θ, x⟩ − logqi + t

)︁
Complexity parameter: ν = 2k + 3

1 p′0 ←
(︁
0, . . . , 0; 1

2k , . . . , 1
2k ; log(4k∥q∥1)

)︁
;

2 c← (0, . . . , 0; 0, . . . , 0; 1);
3 (p0,η0) ← PreliminaryStage(p′0, c);
4 (x, z, t) ← MainStage(p0, η0, T = 10

√
ν log(65 ν

η0δ/2), c);
5 return t

Proof. The result follows from applying Theorem 4.3.4 to find a δ
2 -approximate

minimizer, with the closed convex domain Dθ,R, the self-concordant barrier
functional Ψθ,R from Proposition 5.4.2 with complexity parameter ν = 2k + 3, the
symmetry bound given by Proposition 5.4.4, and the starting point Eq. (5.4.7), along
with the estimate log(5k) ⩽ V − val ⩽ log(5kβ) from Eq. (5.4.5) and the bound
Rθ = maxi∥ωi − θ∥2 ⩽ N = maxi≠j∥ωi −ωj∥2, which holds for any θ ∈ conv(Ω).
The number of iterations is at most

18
√
ν log

(︃
36ν

sym(p′0)
V − val
δ/2

)︃
⩽ 41
√
k log

(︃
3600k1

δ
max

(︁
n
Rθ

φ0
log

(︃
4β
δ

)︃
,k, log(4kβ)

)︁
log(5kβ)

)︃
⩽ 41
√
k log

(︃
3600k2n

N

φ0

1
δ

log2
(︃

5kβ
δ

)︃)︃
= O

(︃√
k log

(︃
kn
N

φ0

1
δ

log
(︃
kβ

δ

)︃)︃)︃
. □

If all the inputs for Algorithm 5.1 are rational and encoded in binary, then ∥q∥1,
β, andφ0 are at most exponentially large in the encoding length. Since the iteration
complexity depends logarithmically (or even doubly logarithmically) on these
quantities, the resulting iteration complexity is at most polynomial in the encoding
length of the input. See Section 5.5 for details.

5.4.2. Well-conditioned instances
Now assume the instance is well-conditioned, so θ is contained in the relative
interior of the Newton polytope. Here, we consider

Dθ =

{︂
(x, z, t) ∈ W ×Rk ×R :

k∑︂
i=1
zi ⩽ 1, qie⟨ωi−θ,x⟩ ⩽ zie

t ∀i ∈ [k],
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Algorithm 5.2: IPM for unconstrained GP: well-conditioned case
Input: exponentsω1, . . . ,ωk ∈ Rn, coefficient vector q ∈ Rk

>0,
shift θ ∈ relint conv(Ω), precision 0 < δ < 1

Domain: Dθ = {(x, z, t) ∈ W ×Rk ×R : qie⟨ωi−θ,x⟩ ⩽ ziet ∀i ∈ [k],∑︁k
i=1 zi ⩽ 1 and t ⩽ log(5k∥q∥1)}, whereW = span{ωi − θ}

Barrier: Ψθ(x, z, t) = − log
(︁
1 −

∑︁k
i=1 zi

)︁
− log

(︁
log(5k∥q∥1) − t

)︁
+∑︁k

i=1 − log zi − log
(︁
log zi − ⟨ωi − θ, x⟩ − logqi + t

)︁
Complexity parameter: ν = 2k + 2

1 p′0 ←
(︁
0, . . . , 0; 1

2k , . . . , 1
2k ; log(4k∥q∥1)

)︁
;

2 c← (0, . . . , 0; 0, . . . , 0; 1);
3 (p0,η0) ← PreliminaryStage(p′0, c);
4 (x, z, t) ← MainStage(p0, η0, T = 10

√
ν log(65 ν

η0δ
), c);

5 return t

t ⩽ log(5k∥q∥1)
}︂
,

which looks just like Dθ,R except that we omitted the norm bound on x. We claim
that the two domains coincide for any

R ⩾
log(5kβ)
rθ

. (5.4.14)

Indeed, if there were some (x, z, t) ∈ Dθ with ∥x∥2 > R then Eq. (5.3.2) would show
that qi0e

⟨ωi0−θ,x⟩ > 5k∥q∥1 for some i0 ∈ [k]. This is a contradiction, since for any
(x, z, t) ∈ Dθ we have

qi0e
⟨ωi0−θ,x⟩ ⩽

k∑︂
i=1
qie
⟨ωi−θ,x⟩ ⩽

k∑︂
i=1
zie

t ⩽ et ⩽ 5k∥q∥1.

Thus we see that, indeed, Dθ = Dθ,R for any R as in Eq. (5.4.14).
As a consequence, the value of the convex program for the domainDθ is exactly

equal to F∗
θ
, as follows from Eq. (5.4.3). Moreover, the domain Dθ is bounded and

satisfies the symmetry bound given in Proposition 5.4.4 with R = log(5kβ)/rθ.
Since Dθ no longer depends explicitly on the radius bound, we can use the
self-concordant barrier functional

Ψθ(x, z, t) = −
k∑︂
i=1

log zi −
k∑︂
i=1

log
(︁
log zi − ⟨ωi − θ, x⟩ + t − logqi

)︁
− log

(︁
log(5k∥q∥1) − t

)︁
− log

(︁
1 −

∑︁k
i=1 zi

)︁ (5.4.15)

with complexity parameter ν = 2k+2. Using this modification we readily obtain an
interior-point algorithm for well-conditioned instances. Importantly, this algorithm
does not explicitly depend on rθ or any other condition measure. By contrast,
Algorithm 5.1 required as input a lower bound on the facet gap. The algorithm is
stated in Algorithm 5.2, and the following theorem gives a precise iteration bound.
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5. Interior-point methods for commutative scaling problems

Theorem 5.2.2. There is an interior-point algorithm (Algorithm 5.2) that, given as input
a well-conditioned instance of the unconstrained GP problem with shift (Problem 5.1.1),
returns xδ ∈ Rn such that Fθ(xδ) ⩽ F∗θ + δ within

36
√
k log

(︃
1440k2Rθ

rθ

1
δ

log2(5kβ)
)︃
= O

(︃√
k log

(︂
k
Rθ

rθ

1
δ

log(kβ)
)︂)︃

iterations. The starting point of the algorithm is determined explicitly by the input, and
every iteration is a Newton step.

Proof. Apply Theorem 4.3.4 to find a δ-approximate minimizer, with the closed
convex domain Dθ, the self-concordant barrier functional Ψθ given in Eq. (5.4.15)
with complexity parameter ν = 2k + 2, the symmetry bound given in Proposi-
tion 5.4.4 with R = log(5kβ)/rθ, and the starting point Eq. (5.4.7), along with the
estimate on (V − val) from Eq. (5.4.5). The number of iterations is then at most

18
√
ν log

(︃
36ν

sym(p′0)
V − val
δ

)︃
⩽ 36
√
k log

(︃
144k 1

sym(p′0)
log(5kβ)

δ

)︃
⩽ 36
√
k log

(︃
144k2 1

δ
10 log(5kβ)Rθ

rθ
log(5kβ)

)︃
= 36
√
k log

(︃
1440k2Rθ

rθ

1
δ

log2(5kβ)
)︃

= O

(︃√
k log

(︃
k
Rθ

rθ

1
δ

log(kβ)
)︃)︃

. □

As in the situation of Theorem 5.2.5, if all the inputs in Algorithm 5.2 are rational,
then the iteration complexity is again at most polynomial in the encoding length
of the inputs. Again see Section 5.5 for details.

5.4.3. Geometric programming and scaling
In this subsection, we show that in order to solve the scaling problem with precision
ε > 0, it suffices to solve the corresponding unconstrained geometric program with
some precision δ = δ(ε). This is a special case of the (easy direction of) quantitative
version of the Kempf–Ness theorem stated in Theorem 2.6.7, and is well-known
(see e.g. [SV19; BFG+19]), but re-stated and included for concreteness.

Lemma 5.4.5 (Smoothness). For anyω1, . . . ,ωk, θ ∈ Rn and q ∈ Rk
>0, the function

Fθ : Rn→ R, Fθ(x) = log
k∑︂
i=1
qie
⟨ωi−θ,x⟩

is L-smooth with L = R2
θ
, where Rθ = maxi∥ωi − θ∥2. Recall that this means that its

gradient is L-Lipschitz or, equivalently, that its Hessian has eigenvalues ⩽ L.
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5.5. Bounds on condition measures

Proof. The gradient ∇Fθ(x) ∈ Rn is given by

∇Fθ(x) =
∑︁k

i=1 qie
⟨ωi−θ,x⟩(ωi − θ)∑︁k

i=1 qie
⟨ωi−θ,x⟩

.

Therefore, the Hessian of F at x is the linear map ∇2Fθ(x) : Rn→ Rn given by

∇2Fθ(x) =
∑︁k

i=1 qie
⟨ωi−θ,x⟩(ωi − θ)(ωi − θ)T∑︁k

i=1 qie
⟨ωi−θ,x⟩

− (∇Fθ(x))(∇Fθ(x))T .

Hence we see that the eigenvalues of the Hessian can be upper bounded by the
eigenvalues of M := ∇2Fθ(x) + (∇Fθ(x))(∇Fθ(x))T , because (∇Fθ(x))(∇Fθ(x))T is
positive semidefinite. The matrix M is a convex combination of the rank-one
matrices (ωi − θ)(ωi − θ)T , so we can bound its eigenvalues by R2

θ
. □

The following proposition then shows that the scaling problem can be solved by
solving the corresponding geometric program with sufficient precision.
Proposition 5.4.6 (Scaling from optimization). Assume that θ ∈ conv(Ω), and let
x ∈ Rn be such that Fθ(x) ⩽ F∗θ + δ for some δ > 0. Then,

∥grad Fθ(x)∥22
2R2

θ

⩽ δ.

In particular, to solve the scaling problem with precision ε > 0 it suffices to find a solution
for the unconstrained GP with accuracy δ = ε2/(2R2

θ
).

Proof. A standard argument shows that an L-smooth function can always be
decreased in controlled way by following a gradient step. Namely, if we define
x′ = x− 1

L∇Fθ(x) then, using Taylor’s expansion to second order and bounding the
quadratic contribution using smoothness,

Fθ(x′) − Fθ(x) ⩽ −
1
L
∥grad Fθ(x)∥22 +

1
2L ∥grad Fθ(x)∥22 = − 1

2L ∥grad Fθ(x)∥22.

As x is a δ-approximate minimizer of Fθ, we must have
1

2L ∥grad Fθ(x)∥22 ⩽ δ.

The desired bound follows since we have L = R2
θ

by Lemma 5.4.5. □

This proposition allows one to deduce Corollaries 5.2.3 and 5.2.6 directly from
Theorems 5.2.2 and 5.2.5, respectively.

5.5. Bounds on condition measures
In this section, we give bounds on the condition measures from Section 5.3 for
rational instances in terms of their binary encoding length. These bounds show
that our interior-point algorithms have polynomial iteration complexity. We also
explain how to obtain tighter estimates under a total unimodularity assumption
on the Newton polytope. Throughout this section, we follow the conventions
of [GLS12]: we encode rational numbers and vectors in binary, and write ⟨·⟩ for
the encoding length.
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5. Interior-point methods for commutative scaling problems

5.5.1. General bounds
We first give lower bounds on rθ and φ, the distance of θ to the boundary of
the Newton polytope and the facet gap of Ω, respectively. All other condition
measures can be directly bounded in terms of the input length.

Lemma 5.5.1. LetΩ ⊆ Qn. If θ ∈ Qn ∩ relint conv(Ω), then

log2
1
rθ
⩽ 6n2 max

i∈[k]
⟨ωi⟩ + ⟨θ⟩ − n.

If θ = 0, this can be improved to 3n2 maxi∈[k] ⟨ωi⟩ − n. Moreover, we have log2
1
φ ⩽

(6n2 + 1)maxi∈[k] ⟨ωi⟩ − n.

Proof. The polytope conv(Ω) has vertex complexity at most ν := maxi∈[k] ⟨ωi⟩, so
by [GLS12, Lem. 6.2.4], it has facet complexity at most ϕ := 3n2ν. This means
that the polytope can be defined by inequalities of the form ⟨·,a⟩ ⩽ b for a ∈ Qn,
b ∈ Qwith encoding length ⟨a⟩ + ⟨b⟩ ⩽ ϕ.

As a consequence, if F is any facet of conv(Ω) then its distance to θ can be lower
bounded as

d(θ, F) ⩾ d(θ, aff(F)) ⩾ b − ⟨θ,a⟩
∥a∥2

for certain a ∈ Qn, b ∈ Q with ⟨a⟩ + ⟨b⟩ ⩽ ϕ. Now we have ∥a∥2 ⩽ 2⟨a⟩−n by
[GLS12, Lem. 1.3.3], while b−⟨θ,a⟩ is a positive rational number with denominator
of absolute value at most 2⟨a⟩+⟨b⟩+⟨θ⟩ ⩽ 2ϕ+⟨θ⟩. We conclude that the distance
from θ to the facet F is at least

b − ⟨θ,a⟩
∥a∥2

⩾
1

2ϕ+⟨θ⟩2⟨a⟩−n
⩾

1
22ϕ+⟨θ⟩−n =

1
26n2 maxi⟨ωi⟩+⟨θ⟩−n

.

Since the facet was arbitrary this implies the first claim. If θ = 0, then we instead
estimate

b − ⟨θ,a⟩
∥a∥2

=
b

∥a∥2
⩾

1
2⟨b⟩2⟨a⟩−n

⩾
1

2ϕ−n
⩾

1
23n2 maxi⟨ωi⟩−n

,

which proves the second claim.
The argument for the third claim is as for the proof of first claim, but with θ

replaced by anyωi not on the facet under consideration. □

Finally, we show that the unary facet complexity of an integral polytope can be
similarly bounded in terms of the encoding length. Via Proposition 5.3.6, this also
implies a bound on the facet gap, albeit with a worse polynomial scaling in the
dimension n.

Lemma 5.5.2. LetΩ ⊆ Zn. Then the unary facet complexity of conv(Ω) satisfies

log2 ufc(convΩ) ⩽ 3n3 max
i∈[k]
⟨ωi⟩ − n.

Proof. Again by [GLS12, Lem. 6.2.4], the polytope conv(Ω)may be described by
inequalities of the form ⟨p,a⟩ ⩽ b with a ∈ Qn, b ∈ Q of total encoding length
⟨a⟩ + ⟨b⟩ ⩽ ϕ := 3n2 maxi∈[k] ⟨ωi⟩. Multiplying by the denominators of a gives
a′ ∈ Zn, b′ ∈ Q such that a′ has encoding length at most nϕ = 3n3 maxi∈[k] ⟨ωi⟩.
Now the desired inequality follows from the bound ∥a′∥∞ ⩽ ∥a′∥2 ⩽ 2⟨a′⟩−n. □
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5.5.2. Total unimodularity

We now show how to improve the bounds given above in case the set of exponents
Ω satisfies a total unimodularity hypothesis.

Definition 5.5.3 (Total unimodularity). An integer matrix A ∈ Zn×k is called
totally unimodular if every square submatrix of A has determinant 0, 1 or −1. We
say that Ω = {ω1, · · · ,ωk} ⊆ Zn is totally unimodular if the associated matrix
AΩ =

[︁
ω1

|︁|︁ · · · |︁|︁ωk

]︁
with columnsω1, . . . ,ωk is totally unimodular.

As an important source of totally unimodular instances, suppose that G is a di-
rected graph with vertex set V = [n], edge set E of size k, and edge weights qij > 0
for ij ∈ E. Since the incidence matrix of a directed graph is totally unimodu-
lar [Sch98, §19.3, Example 2], the associated geometric program

FG,θ(x) = log
∑︂
ij∈E

qije
xi−xj − ⟨θ, x⟩ (5.5.1)

is totally unimodular.
IfΩ is totally unimodular, everyωi has entries only in {±1, 0}. Therefore, we

can bound the radius of the smallest enclosed ball around any θ ∈ conv(Ω), as
well as the diameter of the Newton polytope by

Rθ = min
i∈[k]
∥ωi − θ∥2 ⩽ N = max

i≠j
∥ωi −ωj∥2 ⩽ 2

√
n. (5.5.2)

We now show that the inverse distance to the boundary and the inverse facet gap
can similarly be upper bounded by a polynomial in n, which is an exponential
improvement over the general bounds of Lemma 5.5.1.

Theorem 5.5.4 (Totally unimodular bounds). Let Ω ⊆ Zn be totally unimodular.
Then the unary facet complexity ufc(conv(Ω)) ⩽ n. As a consequence, φ ⩾ n−3/2.
Furthermore, if θ ∈ Qn ∩ relint conv(Ω), then we have rθ ⩾ 2−⟨θ⟩ n−3/2, which can be
improved to n−3/2 if θ = 0.

Proof. Assume first that conv(Ω) is a full-dimensional polytope. Then every facet
of conv(Ω) is the convex hull of some affinely independent v1, . . . , vn ∈ Ω. By
Cramer’s rule, the affine hyperplane spanned by the facet consists of all x ∈ Rn

such that

det

⎡⎢⎢⎢⎢⎢⎢⎣
1 1 . . . 1
x1
... v1 . . . vn
xn

⎤⎥⎥⎥⎥⎥⎥⎦ = 0.

Expanding the determinant along the first column gives the linear equation

n∑︂
i=1
(−1)i det(Di)xi = −det(D0) (5.5.3)
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where Di is obtained by deleting the (i + 1)-th row from the matrix

D =

⎡⎢⎢⎢⎢⎢⎢⎣
1 . . . 1
v1,1 . . . vn,1

... ...
v1,n . . . vn,1

⎤⎥⎥⎥⎥⎥⎥⎦ .

For i, j ∈ [n], let Dj
i

be obtained by deleting the first row and the j-th column from
Di; then expanding the determinant det(Di) along the first row gives

|det(Di)| ⩽
n∑︂
j=1
|det(Dj

i
)| ⩽ n (5.5.4)

sinceDj
i

is a submatrix of AΩ and hence submodular. By replacing the equality in
Eq. (5.5.3) by an inequality and varying over all facets, we obtain a complete set of
defining inequalities for the polytope. This shows that the unary facet complexity
ufc(conv(Ω)) is at most n. The lower bound on the facet gap now follows from
Proposition 5.3.6.

We now consider an arbitrary θ ∈ Qn in the interior of conv(Ω) and bound its
distance to the boundary. Set a = [det(D1), . . . , det(Dn)]T and b = −det(D0), so
that the hyperplane defined by Eq. (5.5.3) reads ⟨x,a⟩ = b. The distance from θ to
the facet is then lower bounded by

|b − ⟨θ,a⟩|
∥a∥2

⩾
|b − ⟨θ,a⟩|
n3/2 ,

where we used that ∥a∥2 ⩽
√
n∥a∥∞ ⩽ n3/2 by Eq. (5.5.4). Note that ⟨θ,a⟩ ≠ b,

since θ is not contained in the hyperplane. Moreover, a ∈ Zn and b ∈ Z. Therefore,
if θ = 0 then |b−⟨θ,a⟩| = |b| is an integer (in fact, equal to 1 by total unimodularity),
while in general it is a rational number with denominator at most 2⟨θ⟩. In either
case we obtain the desired lower bound on rθ.

Finally, suppose that conv(Ω) has dimension r < n. Then there exists a set of
vectorsU = {u1, . . . ,un−r} in {0, e1, . . . , en} such that conv(Ω∪U) has dimensionn.
Moreover, Ω ∪ U is still totally unimodular. Hence by the previous part of the
proof, conv(Ω∪U) has unary facet complexity at most n. Every facet of conv(Ω) is
now the intersection of some facet of conv(Ω∪U)with the affine span ofΩ, so the
unary facet complexity of convΩ is also at most n. Furthermore, since the distance
from θ to any facet of convΩ is at least as large as the distance from θ to any facet
of conv(Ω ∪U) not containing θ, we also inherit the lower bound on rθ. □

The lower bound r−1
0 ⩾ n

−3/2 when θ = 0 already appears in [BFG+19, Cor. 6.11]
as a lower bound on the weight margin γ(π) of a representation π : T(n) → GL(V)
whose weights are exactlyΩ. The proof given there is similar to the one we give
(as well as to the proof of [GLS12, Lem. 6.2.4], which is also a key ingredient for
Lemma 5.5.1): both use Cramer’s rule to express equations for facets of conv(Ω)
in terms of subdeterminants of the matrix AΩ, which are bounded by the total
unimodularity.

The following corollary specializes Theorem 5.2.5 and Corollary 5.2.6 to the
totally unimodular case, using Eq. (5.5.2) and the lower bound on the facet gap
from Theorem 5.5.4.
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5.5. Bounds on condition measures

Corollary 5.5.5. There is an interior-point algorithm (Algorithm 5.1) that, given as input
an instance of the unconstrained GP problem with shift and totally unimodularΩ ⊆ Zn,
returns xδ ∈ Rn such that Fθ(xδ) ⩽ F∗θ + δ within

O

(︃√
k log

(︃
kn

1
δ

log
(︃
kβ

δ

)︃)︃)︃
= ˜︁O(︃√

k log
(︃

1
δ

)︃)︃
iterations. Similarly, given an instance of the scaling problem with totally unimodularΩ ⊆
Zn, the same algorithm returns xε ∈ Rn such that ∥grad Fθ(xε)∥2 ⩽ ε within

O

(︃√
k log

(︃
kn

1
ε

log
(︃
knβ

ε

)︃)︃)︃
= ˜︁O(︃√

k log
(︃

1
ε

)︃)︃
iterations. Here, the notation ˜︁O(·) hides poly(input) terms inside the logarithm.

In particular, this theorem applies to matrix scaling (and balancing, see Chap-
ter 13), by using the following geometric program which is totally unimodular:

Fθ(x,y) = log
∑︂
i,j
qije

xi−yj−⟨r,x⟩+⟨c,y⟩.

Here, even stronger bounds can be obtained: the diameter of the Newton polytope
is N = 2 and the facet gap satisfies φ ⩾ n−1/2, since the unary facet complexity of
the Newton polytope is in fact equal to 1 [SV19].

For matrix scaling, the state of the art for general matrices is a near-linear time
algorithm [CKL+22; BCK+23]. Prior to this work, the best was an interior-point
method given in [CMTV17, Thm. 6.1], which obtains an iteration complexity of

˜︁O(︃√
k log

(︃
∥q∥1
ε

)︃)︃
(5.5.5)

to find an (r, c)-scaling of a nonnegative matrix. They use an objective that is
slightly different from our Fθ, namely

f̃θ(x,y) =
∑︂
i,j
qije

xi−yj − ⟨r, x⟩ + ⟨c,y⟩,

that is, the ‘shift’ is done additively instead of in the exponent. We see that the
iteration complexity in Corollary 5.5.5 slightly improves over Eq. (5.5.5).
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6. Preliminaries in Riemannian
geometry

In this chapter, we recall some basic concepts in Riemannian geometry that we
will need in the remainder of this part, and fix our notation. We mostly follow the
conventions of [Lee18], and assume basic familiarity with the theory of smooth
manifolds. See [Lee13; Lee18; BH13] for comprehensive introductions to differential
geometry, Riemannian geometry and non-positive curvature, respectively.

6.1. Metric, lengths, distances

Throughout, we letM denote a connected Riemannian manifold. Unless specified
otherwise, all differential geometric objects (manifolds, functions, sections, etc.)
are assumed to be C∞-smooth. We write TpM and T ∗pM for the tangent and
cotangent space at a point p ∈ M, and write TM and T ∗M the tangent and
cotangent bundle of M, respectively. The space of sections of a vector bundle E
onM is denoted by Γ (E). Sections of the (co)tangent bundle are called (co)vector
fields. Given a function f, we write df for its differential, which is a covector field.
Then Xf = df(X) is the directional derivative of f in direction X for any vector
field X. The Lie bracket of two vector fields X and Y is the vector field [X, Y] that
acts as [X, Y]f = X(Yf) − Y(Xf) on any function f. More generally, for k, l ⩾ 0, a
(k, l)-tensor field is by definition a section of the bundle T (k,l)M := (TM)⊗k⊗(T ∗M)⊗l
or, equivalently, a C∞(M)-multilinear map Γ (T ∗M)k × Γ (TM)l → C∞(M); when
k = 1 we can also think of it as a C∞(M)-multilinear map Γ (TM)l→ Γ (TM).

The Riemannian metric onM is a smoothly varying family of inner products on
the tangent spaces, i.e., for every p ∈Mwe have an inner product ⟨·, ·⟩p on TpM
such that the map p ↦→ ⟨·, ·⟩p is a section of the bundle T (0,2)M. The induced norm
on TpM is denoted by ∥·∥p. We write ⟨X, Y⟩ and ∥X∥ for the functions computing
the pointwise inner product and norm, respectively, of vector fields X, Y.

Using the Riemannian metric, we can define the length of a piecewise regular
(meaning smooth and non-zero derivative) curve by L(γ) =

∫b

a
∥γ̇(t)∥γ(t)dt. This is

independent of the parameterization. In particular, we may always reparameterize
such that the curve has unit speed, i.e., ∥γ̇(t)∥ = 1, except for finitely many points;
in this case the length is L(γ) = b − a. Given a notion of length, we define the
Riemannian distance d(p,q) between any two points p,q ∈ M as the infimum of
the lengths of all piecewise regular curves from p to q. In this way,M becomes a
metric space. Its topology is the same as the original topology of the manifoldM.

This chapter is adapted from [HNW23].
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6. Preliminaries in Riemannian geometry

6.2. Covariant derivative and curvature
The Riemannian metric determines the Levi-Civita connection ∇. It assigns to
any two vector fields X and Y the covariant derivative ∇XY of Y along X, which
is again a vector field, and is determined uniquely by being a connection on
the tangent bundle (meaning it is C∞-linear in X, R-linear in Y, and satisfies the
product rule ∇X(fY) = f∇XY + (Xf)Y for all functions f) which is compatible with the
metric in the sense that X⟨Y,Z⟩ = ⟨∇XY,Z⟩ + ⟨Y,∇XZ⟩ and symmetric (torsion-free),
meaning ∇XY − ∇YX = [X, Y], where [X, Y] denotes the Lie bracket. The C∞(M)-
linearity in X implies that ∇XY

|︁|︁
p

depends only on the tangent vector v := Xp at
the point p ∈ M and the values of Y in an arbitrarily small neighbourhood of p;
accordingly we will also write ∇vY. Moreover, X ↦→ ∇XY defines a (1,1)-tensor
field, called the total covariant derivative ∇Y of Y.

One can uniquely extend the above to define connections and covariant deriva-
tives for all tensor bundles T (k,l)M by demanding that for functions it agrees with
the differential, that it satisfies a product rule with respect to tensor products,
∇X(T ⊗ S) = (∇XT ) ⊗ S+ T ⊗ (∇XS) for all vector fields X and tensor fields T , S, and
that it commutes with all contractions. As a consequence,

X(T (ω1, . . . ,ωk,Z1, . . . ,Zl)) = (∇XT )(ω1, . . . ,ωk,Z1, . . . ,Zl)
+ T (∇Xω1,ω2, . . . ,ωk,Z1, . . . ,Zl)
+ . . . + T (ω1, . . . ,ωk,Z1, . . . ,Zl−1,∇XZl)

(6.2.1)

for any (k, l)-tensor field T , vector fieldsX,Z1, . . . ,Zl, and covector fieldsω1, . . . ,ωk.
Again, we write∇vT := (∇XT )p as this only depends on the tangent vector v := Xp at
the point p ∈M. For any (k, l)-tensor field T , the map (ω1, . . . ,ωk,X,Z1, . . . ,Zl) ↦→
(∇XT )(ω1, . . . ,ωk,Z1, . . . ,Zl)defines a (k, 1+l)-tensor field, called the total covariant
derivative and denoted by ∇T . We note that [Lee18] uses a different convention.
In particular, we can define the Hessian of a function f as ∇2f = ∇(∇f), which is a
(0, 2)-tensor field that turns out to be symmetric for the Levi-Civita connection; see
Section 6.4.

Let M̃ ⊆M be an embedded submanifold, equipped with the induced metric,
and let ∇̃ denote its Levi-Civita connection. If X, Y are vector fields on M̃ that are
extended arbitrarily to a neighborhood of M̃ inM, then the Gauss formula holds
on M̃:

∇XY = ∇̃XY + II(X, Y), (6.2.2)
where II(X, Y) := π⊥(∇XY) is the shape tensor or second fundamental form II of M̃, with
π⊥ : TM|M̃→ (TM̃)⊥ the orthogonal projection [Lee18, Thm. 8.2].

While the covariant derivative itself is not a tensor field, it can be used to define
the so-called Riemann curvature tensor which is a fundamental local invariant of
Riemannian manifolds. Given vector fields X, Y, Z, we can define the vector field

R(X, Y)Z := ∇X(∇YZ) − ∇Y(∇XZ) − ∇[X,Y]Z.

We may think of R(X, Y) as a C∞-linear operator on the tangent bundle; hence R
is a (1, 3)-tensor field. The operator R(X, Y) is skew-symmetric, and it is a skew-
symmetric function of X and Y. It further satisfies the algebraic Bianchi identity
R(X, Y)Z + R(Y,Z)X + R(Z,X)Y = 0. It can also be useful to define R(X, Y,Z,W) :=
⟨R(X, Y)Z,W⟩, which is a (0, 4)-tensor field.
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6.3. Parallel transport, geodesics, completeness

A closely related object is the sectional curvature, which given two linearly
independent tangent vectors v,w ∈ TpM at the same point p ∈M is defined by

K(v,w) =
⟨R(v,w)w, v⟩p

⟨v, v⟩p ⟨w,w⟩p − ⟨v,w⟩2p
.

It only depends on the two-dimensional tangent plane spanned by v and w. The
sectional curvature determines the Riemann curvature tensor uniquely. Its sign
is an important characteristic of a Riemannian manifold. We say that M has
non-positive (sectional) curvature if K(v,w) ⩽ 0 for all v,w ∈ TpM and p ∈M.

One has the following useful geometric interpretation of sectional curva-
ture [Mey89]:

Proposition 6.2.1. Let p ∈ M and v,w ∈ TpM be orthogonal unit vectors. Let f(t) =
1
2d(Expp(t v), Expp(t u))2. Then near t = 0, one has the Taylor expansion

f(t) = t2 − K(v,w)6 t4 +O(t5).

In other words, when the sectional curvature K(v,w) is non-positive, the
geodesics Expp(t v) and Expp(tw) diverge faster than one would expect from
the situation in Euclidean space (see Section 6.3 for the definition of geodesics).
There is also a more global interpretation of having non-positive curvature every-
where [BH13, Thm. 1.6]:

Theorem 6.2.2. LetM be a simply connected complete Riemannian manifold. ThenM has
non-positive sectional curvature everywhere (i.e., K(v,w) for all p ∈M and u, v ∈ TpM)
if and only if the CAT(0)-inequality1 holds: for all p, x,y, z ∈ M such that d(x,y) =
d(x, z) + d(z,y) (i.e., z is a midpoint of x and y), we have

d(p, z)2 ⩽ 1
2d(p, x)2 + 1

2d(p,y)2 − 1
4d(x,y)2. (6.2.3)

We note that the Eq. (6.2.3) is tight for all p, x,y, z ∈M if and only ifM has no
curvature.

The next lemma records how these notions behave under rescaling of the
Riemannian metric.

Lemma 6.2.3. Let M be a Riemannian manifold with Riemannian metric ⟨·, ·⟩, and
let c > 0. LetM′ be the same manifold but with Riemannian metric given by ⟨·, ·⟩′ = c ⟨·, ·⟩.
ThenM′ has the same Levi–Civita connection asM, and hence the same (1, 3)-curvature
tensor. For every p,q ∈ M, one has dM′(p,q) =

√
c dM(p,q). Furthermore, for

all p ∈M and linearly independent v,w ∈ TpM = TpM
′, the sectional curvature satisfies

KM′(v,w) = KM(v,w)/c.

6.3. Parallel transport, geodesics, completeness
All definitions given so far restrict naturally to open subsets. However, it is often
useful to restrict to curves in a manifold and differentiate a vector or tensor field

1This inequality is named after Cartan, Alexandrov and Toponogov [BH13], and should not be
confused with the (0)-inequality.
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6. Preliminaries in Riemannian geometry

along it. If γ is a curve defined on an interval I ⊆ R, then a (k, l)-tensor field along γ
is a function Y : I→ T (k,l)M such that Y(t) ∈ T (k,l)

γ(t)M for every t ∈ I, i.e., a section
of the pullback bundle γ∗T (k,l). Then there is a uniqueR-linear operatorDt, called
the covariant derivative along γ, that satisfies the product rule Dt(fY) = ḟY + fDtY

for f ∈ C∞(I) for f ∈ C∞(I), and which agrees with ∇γ̇(t) for every tensor field that
extends to a neighborhood of γ.

A vector or tensor field Y along a curve γ is called parallel if its covariant
derivative along γ vanishes identically, i.e., DtY ≡ 0. For any curve γ : I → M,
0 ∈ I, and any tensor y0 ∈ T (k,l)

γ(0)M, standard results in ordinary differential
equations imply that there always exists a unique parallel tensor field Y along γ
such that γ(0) = y0, called the parallel transport of y0 along γ. For any t ∈ I,
we get a linear isomorphism τγ,t : T (k,l)

γ(0)M → T
(k,l)
γ(t)M by setting τγ,t(y0) = Y(t)

called a parallel transport map. This is useful to compute covariant derivatives:
if T is a (k, l)-tensor field then for all p ∈ M, v ∈ TpM, η1, . . . ,ηk ∈ T ∗pM, and
w1, . . . ,wl ∈ TpMwe have

∇vT (η1, . . . ,ηk,w1, . . . ,wl) = ∂t=0Tγ(t)(τγ,tη1, . . . , τγ,tηk, τγ,tw1, . . . , τγ,twl),
(6.3.1)

where γ is an arbitrary curve such that γ(0) = p and γ̇(0) = v. We are often
interested in parallel transport along the manifold’s geodesics, which we introduce
next.

A curve γ is called a geodesic if it is parallel to its own tangent vector field, i.e.,
Dtγ̇ ≡ 0. For every p ∈ M and v ∈ TpM, there is a unique geodesic γ : I → M

with γ(0) = p and γ̇(0) = v, defined on some maximal open interval I containing
0. Note that γ̇(t) = τγ,t(γ̇(0)) for all t ∈ I. If 1 ∈ I, we define Expp(v) := γv(1).
We call M geodesically complete if I = R, i.e., if geodesics with arbitrary initial
data exist for arbitrary times. Then the exponential map is defined on the whole
tangent space, Expp : TpM → M. The Hopf–Rinow theorem states that if M is
connected, geodesic completeness is equivalent to completeness with respect to the
Riemannian distance function, as well as to the Heine–Borel property (bounded
closed subsets are compact).

Any length-minimizing curve is a geodesic when parameterized with unit
speed. In general, geodesics are only locally length-minimizing, but whenM is
connected and complete then any two points p,q ∈M are connected by a length-
minimizing geodesic, although there may be many other geodesics. However,
if M is not only complete but also has non-positive sectional curvature, then by
the Cartan–Hadamard theorem the exponential map at each point is a covering
map. In particular, if M also is simply connected, then the exponential map
is a diffeomorphism, so there is a unique (up to reparameterization) geodesic
connecting any two points p and q. We will denote the corresponding parallel
transport by τp→q. Manifolds that are simply connected, geodesically complete,
and have non-positive sectional curvature are called Hadamard manifolds. This
includes a great variety of spaces of import in applications, such as Euclidean and
hyperbolic spaces, the positive definite matrices, and other symmetric spaces with
non-positive curvature (see Chapters 9 and 10).
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6.4. Gradient and Hessian

6.4. Gradient and Hessian
Given a function f : D → R defined on an open subset D ⊆ M, we define its
gradient as the vector field grad(f) that is dual to its differential. That is, for all
vector fields Xwe have

⟨grad(f),X⟩ = df(X) = Xf.

The Hessian of f is defined as the second covariant derivative ∇2f = ∇(∇f) = ∇df,
which is a (0, 2)-tensor field, that is, a smoothly varying family of bilinear forms.
By definition and using Eq. (6.2.1), we have for any two vector fields X and Y that

(∇2f)(X, Y) = (∇Xdf)(Y) = X(df(Y)) − df(∇XY) = X(Yf) − (∇XY)f, (6.4.1)

which implies that Hessian is a symmetric tensor, by the symmetry of the Levi-
Civita connection. Since the Hessian is a symmetric tensor, it is determined by the
associated quadratic form. The latter can be conveniently calculated in terms of
geodesics: for any p ∈M and v ∈ TpM,

(∇2f)p(v, v) = ∂2
t=0f(Expp(tv)). (6.4.2)

Using metric compatibility, one can write (∇2f)(X, Y) = ⟨∇X grad(f), Y⟩, which
shows that the (1, 1)-tensor field Hess(f) := ∇ grad(f) is the natural operator
definition of the Hessian.

One can similarly consider higher covariant derivatives, but these need no longer
be symmetric as a consequence of the non-vanishing of the curvature tensor. In
particular, the third covariant derivative is no longer captured by its diagonal
(∇3f)p(v, v, v) = ∂3

t=0f(Expp(tv)). This complicates the theory of self-concordance,
as we will discuss in Section 8.1.

6.5. Convexity
Finally we recall here some basic notions of convexity on Riemannian manifolds.
We first discuss convexity of subsets and then turn to convexity of functions. We
assume thatM is connected and geodesically complete, so that any two points are
connected by a (length-minimizing) geodesic.

A subsetD ⊆M is called (totally) convex if for every geodesic γ : [0, 1] →Mwith
γ(0) ∈ D and γ(1) ∈ D, it holds that γ(t) ∈ D for all t ∈ [0, 1]. We remark that, in
general, two points can be connected by more than one geodesic; accordingly there
is more than one natural definition of convexity. We are primarily interested in
applications to Hadamard spaces, where any two points are connected by a unique
geodesic, just like in Euclidean space.

A (not necessarily continuous) function f : D → R defined on a convex sub-
set D ⊆M is called convex if for every geodesic γ : [0, 1] →Mwith γ(0) ∈ D and
γ(1) ∈ D, it holds that f ◦ γ : [0, 1] → R is convex. That is, f is convex along all
geodesics in its domain. Equivalently, f is convex if and only if its epigraph

Ef = {(p, t) ∈ D ×R : f(p) ⩽ t} (6.5.1)
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is a convex subset of M ×R. If the epigraph is also closed as a subset of M ×R,
then f is called closed convex. This useful condition controls the behavior of a
convex function at its boundary, as in the following lemma, which thanks to
the Hopf-Rinow theorem can be proved just like in the Euclidean case [Nes18,
Thm. 3.1.4]. In particular, any continuous convex function on a closed domain is
closed convex. Parts (i) and (ii) state that any closed convex function f : D→ R is
lower semicontinuous, also if we extend it toM by setting f(p) = ∞ for p ∉ D (in
fact, this characterizes when a convex function is closed, but we will not need this).

Lemma 6.5.1. Let f : D→ R be a (not necessarily continuous) closed convex function
defined on a convex subset D ⊆M. Then:

(i) If (pk) ⊆ D is a sequence s.t. p∞ := limk→∞ pk ∈ D, then lim infk→∞ f(pk) ⩾
f(p∞).

(ii) If (pk) ⊆ D is a sequence s.t. limk→∞ pk ∉ D, then limk→∞ f(pk) = ∞.

(iii) If for some L ∈ R the level set ℒ = {p ∈ D : f(p) ⩽ L} is non-empty and bounded,
then f attains its minimum.

Proof. (i) We need to show: for any subsequence (pkj) such that limj→∞ f(pkj) =
f∞ for some f∞ ∈ R ∪ {±∞}, we have that f∞ ⩾ f(p∞). If f∞ = ∞ there is
nothing to show. If f∞ ∈ R then we have limj→∞(pkj , f(pkj)) = (p∞, f∞) ∈ Ef,
since the epigraph is closed, and hence f∞ ⩾ f(p∞). Finally, we note f∞ = −∞
cannot occur. Indeed, if f∞ = −∞ then f(pkj) ⩽ f(p∞) − 1 for j large enough,
hence (pkj , f(p∞) − 1) ∈ Ef for j large enough and hence limj→∞(pkj , f(p∞) −
1) = (p∞, f(p∞) − 1) ∈ Ef, which is a contradiction.

(ii) Assume this is not so. Then there are a subsequence (pkj) and L ∈ R
such that f(pkj) ⩽ L for all j. Now, limj→∞(pkj ,L) = (p∞,L), where p∞ :=
limk→∞ pk, but each (pkj ,L) is contained in the epigraph, and hence the same
must be true for the limit. It follows that p ∈ D, which is a contradiction.

(iii) Since the level set ℒ is non-empty, it contains a sequence (pk) such that
limk→∞ f(pk) = f∗ := infp∈D f(p). Because the epigraph is a closed subset
of M ×R, the same is true for ℒ × {L} = Ef ∩ (M × {L}), and hence ℒ is a
closed subset ofM. It is also bounded by assumption. By the Hopf–Rinow
theorem, which is applicable because we assume that M is geodesically
complete, it follows that ℒ is compact. After passing to a subsequence, we
may therefore assume that p∞ := limk→∞ pk exists and is in ℒ ⊆ D. For
continuous f, we then have f(p∞) = f∗ and this concludes the proof. If f is
not continuous then we can proceed as follows. First suppose that f∗ = −∞.
Fix any p0 ∈ ℒ. Because M is geodesically complete and ℒ is bounded,
there exists a constant C > 0 such that we can write pk = Expp0

(uk) for
some uk ∈ Tp0M such that ∥uk∥p0 = d(p0,pk) ⩽ C for all k. Then we
can choose αk ∈ (0, 1) such that αk → 0 and αkf(pk) → −∞. Then the
points qk := Expp0

(αkuk) satisfy

f(qk) ⩽ (1 − αk)f(p0) + αkf(pk) = f(p0) + αk(f(pk) − f(p0)) → −∞,

where the first inequality holds by geodesic convexity. In particular, there
is some constant K ∈ R such that f(qk) ⩽ K < f(p0) for large enough k.
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Now, (qk,K) is in the epigraph and converges to (p0,K), because αk → 0
and ∥uk∥p0 ⩽ C for all k. But f(p0) > K, so (p0,K) is not in the epigraph.
This contradicts the assumption that the epigraph is closed. Thus we
must have that f∗ > −∞. Then, limk→∞(pk, f(pk)) = (p∞, f∗) and since the
epigraph is closed, it must contain the latter, meaning that f(p∞) ⩽ f∗ and
hence f(p∞) = f∗. □

We will later (in Section 8.2) be in the situation that D ⊆ M is open and we
are interested in smooth objective functions f : D → R that have a closed convex
extension, meaning that f extends to a closed convex function on some convex
superset of D. This is the case in particular if f extends to a continuous convex
function on the closure D.

Just like in the Euclidean setting [Nes18, Thm. 3.1.5], one can see that the sum of
two closed convex functions is again closed convex.

Lemma 6.5.2. Let f1 : D1 → R, f2 : D2 → R be closed convex functions defined on
convex subsets D1,D2 ⊆ M. Then the function f1 + f2 is a closed convex function
on D1 ∩D2.

Proof. It is clear that f1 + f2 is a convex function on D := D1 ∩D2. To see that it
is closed, consider an arbitrary convergent sequence (pk, tk) in Ef1+f2 , with limit
point (p∞, t∞) ∈ M ×R. By Lemma 6.5.1, since f1 and f2 are closed convex, we
have

lim inf
k→∞

f1(pk) ⩾ f1(p∞) and lim inf
k→∞

f2(pk) ⩾ f2(p∞),

and hence

t∞ = lim
k→∞

tk ⩾ lim inf
k→∞

f1(pk) + lim inf
k→∞

f2(pk) ⩾ f1(p∞) + f2(p∞),

which means that (p∞, t∞) ∈ Ef1+f2 . Hence f1 + f2 is closed. □

As in the Euclidean setting, one can also characterize convexity differentially. In
particular, a C2-smooth function f : D→ R defined on an open convex subsetD ⊆
M is convex if and only if the quadratic forms defined by the Hessian are positive
semidefinite, i.e.,

(∇2f)p(v, v) ⩾ 0 (6.5.2)

for all v ∈ TpM and p ∈ D. We discuss two refinements of the notion of convexity
(for simplicity only in the C2-smooth setting): If f is strictly convex along any
geodesic in the domain, then f is called strictly convex. A sufficient condition for
strict convexity is the following: for every p ∈ D, the Hessian (∇2f)p is positive
definite, i.e., Eq. (6.5.2) holds with equality only for v = 0 ∈ TpM. Similarly, we say
that f is µ-strongly convex for some µ > 0 if it is so along any unit-speed geodesic in
the domain. This is the case if and only if, for all v ∈ TpM and p ∈ D,

(∇2f)p(v, v) ⩾ µ∥v∥2p.

In convex optimization, upper bounds on the Hessian of a convex function are
often also useful. We say that f is ν-smooth (not to be confused with smoothness in
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the sense of C∞) if it is so along any unit-speed geodesic in the domain, that is, if
and only if

(∇2f)p(v, v) ⩽ ν∥v∥2p
for all v ∈ TpM and p ∈ D. WhenM is a Hadamard space then it is well-known
that the distance d(·,p0) to any fixed point p0 ∈M is convex, and that 1

2d
2(·,p0) is

1-strongly convex, just like in Euclidean space. However, the latter will in general
no longer be smooth. We discuss these important functions in Chapter 9.

In this context, we also record the following two useful propositions, which are
well-known, see e.g. [Udr94, Thm. 7.4.2]:

Proposition 6.5.3. Let f : D→ R be a C2-smooth function defined on an open convex
subset D ⊆M, and assume that f is ν-smooth. Let v = − 1

ν grad(f)p and q = Expp(v).
If q ∈ D, then we have

f(q) ⩽ f(p) − 1
2ν ∥grad(f)p∥2p.

Proof. Let w ∈ TpM. Then function g(t) = f(Expp(tw)) satisfies

f(p) + t dfp(w) ⩽ g(t) = f(p) + t dfp(w) +
1
2g
′′(t′)

for some t′ ∈ [0, t] by the Lagrange remainder form of Taylor’s theorem. From
the ν-smoothness of f, it follows that g is also ν-smooth, and so g′′(t′) ⩽ ν∥w∥2. In
particular, for w = − v

ν = −grad(f)p
ν we obtain

f(q) = g(1) ⩽ f(p) − 1
ν
dfp(v) +

1
2 ∥v∥

2
p = f(p) − 1

2ν ∥grad(f)p∥2p. □

Proposition 6.5.4. Let f : D→ R be a C2-smooth function defined on an open convex
subset D ⊆ M, and assume that f is ν-smooth and µ-strongly-convex, and achieves its
minimum at some p∗ ∈ D. Let v = − 1

ν grad f and q = Expp(v). If q ∈ D, then we have

f(q) − f(p∗) ⩽
(︂
1 − µ

ν

)︂
(f(p) − f(p∗)).

Proof. We adapt the Euclidean proof of [BG19, Thm. 3.8]. If w ∈ TpM is such
that Expp(w) = p∗, then by a similar argument as for Proposition 6.5.3,

f(p∗) ⩾ f(p) + dfp(w) +
1
2µ∥w∥

2
p.

Since dfp(w) = ⟨grad(f)p,w⟩, we may use the inequality

⟨grad(f)p,w⟩ = ⟨ 1√
µ

grad(f)p,
√
µw⟩ ⩽ 1

2µ ∥grad(f)p∥2p +
1
2µ∥w∥

2
p

to conclude that f(p∗) ⩾ f(p) − 1
2µ ∥grad(f)p∥2p. Hence by Proposition 6.5.3

f(q) − f(p∗) ⩽ f(p) − f(p∗) −
1

2ν ∥grad(f)p∥2p

=

(︂
1 − µ

ν

)︂
(f(p) − f(p∗)) +

µ

ν

(︃
f(p) − f(p∗) −

1
2µ ∥grad(f)p∥2p

)︃
⩽

(︂
1 − µ

ν

)︂
(f(p) − f(p∗)). □
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6.5. Convexity

Let D ⊆M be a convex subset (not necessarily open) that is also an embedded
submanifold. Equip D with the induced metric and let ∇̃ denote its Levi-Civita
connection. Then D is a totally geodesic submanifold, so its shape tensor II
vanishes [Lee18, Prop. 8.12]. Now let T be a (0, l)-tensor field onD that is extended
arbitrarily to a neighborhood of D inM. Then by Eqs. (6.2.1) and (6.2.2) we find
that ∇̃T = ∇T |(TD)⊗(1+l) , where the right-hand side notation means that we restrict
∇T to a (0, 1 + l)-tensor field on D. In particular, we inductively see that for every
function f : M→ R and every l ⩾ 0, the following holds on D:

∇̃lf̃ = ∇lf|(TD)⊗l . (6.5.3)
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7. Interior-point methods on manifolds:
overview

Interior-point methods have proven to be extremely successful in the context of
convex optimization on Euclidean space, as explained in Chapter 4 and exemplified
in the context of commutative scaling in Chapter 5. However, so far, these successes
have been restricted to convex optimization on Euclidean space. While there is
a strong connection between self-concordance-based interior-point methods and
Riemannian geometry [Dui99; NT02; NN08], the framework of interior-point
methods has not yet been generalized to objectives which are geodesically convex,
i.e., convex on Riemannian manifolds. Indeed, while there have been previous
attempts at extending interior-point methods to this setting [Udr97; Ji07; JMJ07],
a satisfactory generalization of the Euclidean theory had still been elusive – in
particular, the natural quadratic convergence analysis of Newton’s method for
self-concordant functions, which in turn enables efficient path-following methods
with global guarantees.

Instead, research on Riemannian optimization has so far largely focused on
different approaches. There is extensive literature on first- and second-order
methods for convex and non-convex optimization, see e.g. [Udr94; AMS09; Sat21;
Bou23] for comprehensive overviews and [FS02; DPM03; ABM08; SH15; ZS16;
AS20; WS22; SW22]. Recently, [LY22] gave a path-following method for non-
convex constrained manifold optimization which does not use self-concordance.
In another direction, geodesic updates can also be useful for Euclidean convex
optimization problems [Per23a; Per23b].

We extend the interior-point method framework to Riemannian manifolds.
We generalize the key notion of self-concordance, and show that (unlike prior
definitions) it gives the same structural results and guarantees as in the Euclidean
setting, in particular local quadratic convergence of Newton’s method. This allows
us to give a path-following method for optimizing suitable objective functions over
domains for which a self-concordant barrier is available, and we give complexity
guarantees that match the Euclidean ones.

As explained in Chapter 1, we are particularly motivated to find efficient algo-
rithms for the norm-minimization and scaling problems as defined in Section 2.6.
However, the framework has applications beyond scaling problems. For instance,
it allows us to answer: Given points p1, . . . ,pm on a Riemannian manifold, what is
the minimum radius ball that contains all these points? What is their geometric
median, i.e., the point that minimizes the sum of distances to each pi? The
first question has been studied before in the Riemannian setting [AN13; NH15],
and [NH15] gave an algorithm for the specific case of hyperbolic space, yielding a
ball with radius at most a factor 1 + δ larger than the optimal radius in O(1/δ2)
iterations. The geometric median problem has been studied in [FVJ09; Yan10],

This chapter is adapted from [HNW23].
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7. Interior-point methods on manifolds: overview

and [Yan10] gave an explicit subgradient algorithm on general manifolds, finding
a point whose squared distance to the point achieving minimal sum of distances
to the pi is at most ε in O(1/ε) iterations.

For the minimum-enclosing ball problem and the geometric median problem, our
framework gives (to the best of our knowledge) the first algorithms for efficiently
finding high-precision solutions in non-positive curvature. For the entire class
of scaling and non-commutative optimization problems, our framework yields
new algorithms that match the complexity guarantees of the state-of-the-art
algorithms [BFG+19], while not obviously suffering from the same obstructions as
those methods, opening up a new avenue for future research.

Indeed, the current state-of-the-art methods are fundamentally incapable of
providing algorithms that run in polynomial time in all parameters for the
general scaling problem. The main reason that we lack the kind of sophisticated
optimization methods that are known in the Euclidean setting, as reviewed earlier
in Section 1.3, is due to the geometry of the spaces that one has to optimize
over, which poses fundamental new challenges and obstructions. The lack of
a constructive analog of cutting-plane methods or the ellipsoid method [Rus19;
CMB23], and the exponential volume growth of balls, form obstructions to efficient
optimization. The latter can be used to prove black-box lower bounds for first-order
algorithms, with a linear dependence on a bound to the distance of the optimizer
of the objective [HM21a; CB22; CB23]. Moreover, the distance to an optimizer can
be exponential in the input size in the context of scaling problems [FORW21].

To overcome these challenges and obstructions, it is natural to resort to methods
which are capable of better exploiting the structure of the optimization problem at
hand. Interior-point methods offer a powerful such framework in the Euclidean
case, and they have already proved successful for commutative scaling problems
(see Chapter 5). With this work, we hope to contribute a first clear step towards
generalizing this powerful framework to the manifold setting.

We believe that our results suggest and reinforce several interesting directions for
follow-up research. For instance, does every convex domain admit a self-concordant
barrier, as is the case in the Euclidean setting? Do there exist self-concordant
barriers with better barrier parameters which can be used for these applications,
leading to better algorithms? Alternatively, can it be shown that our constructions
are essentially optimal? Can interior-point methods on manifold always be
initialized efficiently, and is there a suitable notion of duality?1

In the remainder of this chapter, we give a more detailed overview of our results.
We start with our proposed notion of self-concordance in Section 7.1, followed by a
discussion of self-concordant barriers and a path-following method in Section 7.2.
In Section 7.3 we give the first examples of self-concordant functions on manifolds,
as well as examples of self-concordant barriers. In Section 7.4 we explain why the
norm minimization and scaling problems as defined in Section 2.6 fit into this
framework. The application to the minimum enclosing ball problem is discussed
in Section 7.5, and we discuss geometric median problem in Section 7.6. We discuss
future directions and open questions in more detail in Section 7.7.

1The lack of nontrivial linear functions in the presence of curvature poses significant challenges.
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7.1. Self-concordance and Newton’s method on manifolds

7.1. Self-concordance and Newton’s method on
manifolds

Throughout, f : D→ R is a smooth function defined on a convex subsetD ⊆M of a
connected, geodesically complete Riemannian manifoldM. Then f is called convex
if it is convex along geodesics. Let ∇ denote the covariant derivative (or Levi–Civita
connection), which allows taking derivatives of vector and tensor fields, and in
particular to define Hessians ∇2f and higher derivatives (see Chapter 6). Then our
proposed generalization of self-concordance to possibly curved manifolds is as
follows.
Definition 7.1.1 (Self-concordance). For α > 0, a convex function f is called α-
self-concordant if, for all p ∈ D and for all tangent vectors u, v,w ∈ TpM, we
have

|(∇3f)p(u, v,w)| ⩽ 2√
α

√︂
(∇2f)p(u,u)

√︂
(∇2f)p(v, v)

√︂
(∇2f)p(w,w). (7.1.1)

If f is closed convex, meaning its epigraph is closed, then f is called strongly α-self-
concordant.

Self-concordance can be interpreted as giving a bound on the norm of the third
derivative (∇3f)p, that is, on the change of the Hessian (∇2f)p, with respect to
the (possibly degenerate) inner product defined by the Hessian itself. We say
that f is α-self-concordant along geodesics if one requires the above bound only
for u = v = w, that is, if for all p ∈ D and for all u ∈ TpM, we have

|(∇3f)p(u,u,u)| ⩽ 2√
α
((∇2f)p(u,u))3/2. (7.1.2)

When M = Rn, the third derivative is a symmetric tensor and hence the two
notions coincide. However, in general, the third derivative is not symmetric in
all its arguments, and indeed its asymmetry is precisely related to the manifold’s
curvature via the Ricci identity [Lee18, Thm. 7.14], as we discuss in Section 8.1. Prior
work only considered self-concordance along geodesics [Ji07] (which suffices for a
damped Newton method) and did not take the asymmetry into account [Udr97;
JMJ07].

Here we show explicitly that self-concordance is in general strictly stronger than
self-concordance along geodesics (see Section 7.3), and it is the stronger notion that
allows for the desired quadratic convergence of Newton’s method – a cornerstone
of the interior-point theory. Assume for simplicity that the Hessian (∇2f)p is
positive definite for all p ∈ D. Then the Newton iterate of f at p ∈ D is defined by
minimizing the local quadratic approximation:

pf,+ := Expp(u∗), u∗ = argmin
u∈TpM

(︃
f(p) + dfp(u) +

1
2(∇

2f)p(u,u)
)︃
.

The progress is quantified in terms of the Newton decrement, which is directly
related to the gap between the original function value and the minimum of the
local quadratic approximation. It is defined for any α > 0 and p ∈ D as

λf,α(p) = sup
0≠u∈TpM

|dfp(u)|√︁
α(∇2f)p(u,u)

. (7.1.3)
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Then we prove following result on general Riemannian manifolds in Theorem 8.1.16:

Theorem 7.1.2 (Quadratic convergence). Let f : D→ R be a stronglyα-self-concordant
function defined on an open convex set D ⊆M, with positive definite Hessian. Let p ∈ D
be a point such that λf,α(p) < 1. Then the Newton iterate remains in the domain, i.e.,
pf,+ ∈ D, and moreover

λf,α(pf,+) ⩽
(︃
λf,α(p)

1 − λf,α(p)

)︃2
.

To relate the Newton decrements at p and pf,+, we control the change in the
Hessian of f along the geodesic from p to pf,+. This crucially uses the notion of
self-concordance of Eq. (7.1.1), rather than the weaker definition along geodesics
as in Eq. (7.1.2). This is because there are two directions involved: the one of the
geodesic, and the one corresponding to the subsequent Newton decrement.

7.2. Barriers and a path-following method on manifolds

Interior-point methods provide a natural and modular approach for minimizing
an objective f constrained to a bounded convex domain D ⊆M. We briefly recall
the setup from Chapter 4. The key idea is to, rather than minimize f directly,
minimize for t > 0 the function

Ft : D→ R, Ft := tf + F,

where F is a self-concordant “barrier” that is finite on D and diverges to∞ on its
boundary.2 This automatically ensures the constraint, as Ft is finite only onD, and
for large t the objective dominates. One then starts with an approximate minimizer
of F and t ≈ 0, and follows the central path z(t) := argminp∈D Ft(p) by iteratively
performing two steps: increase t to some t′ such that the current point is still not
too far from z(t′) , and then take a Newton step for Ft′ to move closer to it. For
large enough t > 0, we arrive at an approximate minimizer of f on D ⊆M.

More precisely, the function F : D→ R is required to be a (non-degenerate strongly
self-concordant) barrier for D, with barrier parameter θ ⩾ 0, which means that F
is strongly 1-self-concordant, has positive definite Hessian, and λF(p)2 ⩽ θ for
all p ∈ D. The barrier parameter θ controls how rapidly t can be increased in every
iteration.

In order to guarantee that Newton’s method indeed moves closer to the central
path, we are interested in conditions on f that ensure that the functions Ft are
self-concordant for every t > 0, with a constant independent of t. One way to
guarantee this is to assume that the objective f : D → R is compatible with the

2In the Euclidean setting, the barrier F(x) = − log x models the constraint that x > 0, and
F(X) = − log detX defines the constraint that X is a positive-definite matrix [NN94; Ren01].
Constraints are combined simply by adding the respective barriers. In the manifold setting,
barriers are much harder to come by, but we give general constructions and concrete examples
in Section 8.2 and Chapters 9 and 10.
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barrier F in the following sense: there are constants β1,β2 ⩾ 0 such that, for
all p ∈ D and u, v ∈ TpM,

|(∇3f)p(u, v, v)| ⩽ 2β1

√︂
(∇2F)p(u,u)(∇2f)p(v, v)

+ 2β2

√︂
(∇2F)p(v, v)

√︂
(∇2f)p(u,u)

√︂
(∇2f)p(v, v).

In particular, linear and quadratic functions are compatible with arbitrary self-
concordant barriers, but these are not the only examples, and we crucially use this
level of generality to give algorithms for the general scaling or non-commutative
optimization problem. We expand on compatibility in Section 8.2.2, and show that
it is also useful for constructing new self-concordant barriers, for instance for the
epigraph of a function compatible with a self-concordant barrier (Theorem 8.2.11).3
Our notion of compatibility is inspired by a similar notion in the Euclidean setting,
as is our analysis of the path-following method [NN94]. Its precise guarantees
match those from the Euclidean setting, and are given in the following theorem,
which we prove in Theorem 8.2.17:

Theorem 7.2.1 (Path-following method). LetD ⊆M be an open, bounded, and convex
domain, and let f, F : D→ R be smooth convex functions, such that F is a self-concordant
barrier with barrier parameter θ ⩾ 0 and f has a closed convex extension. Let α > 0 be such
that Ft := tf + F is α-self-concordant for all t ⩾ 0. Let p ∈ D be such that λF(p) ⩽

√
α
8 ,

and let ε > 0. Then, using

O

(︄(︄
1 +

√︃
θ

α

)︄
log

(︄
(θ + α)∥dfp∥∗F,p

ε
√
α

)︄)︄
Newton iterations, one can find a point pε ∈ D such that

f(pε) − inf
q∈D

f(q) ⩽ ε.

The quantity ∥dfp∥∗F,p is a lower bound on the variation supq∈D f(q) − infq∈D f(q)
of f over D (Lemma 8.2.18), and hence imposes a natural notion of scale in the
complexity bound.

7.3. Examples of self-concordance: Squared distance
in non-positive curvature

Self-concordance on manifolds is much more difficult to verify than for Euclidean
space, and this begs the question whether nontrivial examples even exist. A natural
candidate is f(p) = d(p,p0)2, the squared distance function to some point p0 ∈
M. On Euclidean space, f is trivially self-concordant, as its third derivative

3While optimizing a function f on a domain D can always be reduced to optimizing a linear
function over its epigraph {(p, t) ∈ D ×R : f(p) < t}, this requires a barrier for the epigraph.
We construct such a barrier precisely when f is compatible with F. However, it may be more
difficult to initialize the path-following method on the epigraph rather than directly on D, so it
can be advantageous to optimize f directly. See Section 10.1.
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7. Interior-point methods on manifolds: overview

vanishes identically. In the presence of curvature the third derivative can be
nonzero. Nevertheless, we prove that the squared distance is self-concordant
on PD(n) and, as a corollary, also on a broad class of manifolds with non-positive
curvature.

We now discuss this in more detail. As in the introduction, we denote by PD(n) =
PD(n,C) the complex positive-definite matrices, endowed with the well-known
affine-invariant Riemannian metric, which is given as follows. Since PD(n) is an
open subset of Herm(n), the Hermitian n×n-matrices, we can identify the tangent
space TPPD(n) at every P ∈ PD(n) with Herm(n). Then the Riemannian metric
is defined as follows: for any two tangent vectors U,V ∈ TPPD(n), their inner
product is

⟨U,V⟩P = Tr
[︁
P−1UP−1V

]︁
.

With this metric, PD(n) is a Hadamard manifold, i.e., a simply connected geodesi-
cally complete Riemannian manifold with non-positive curvature. Its geodesics,
parallel transport, covariant derivatives, and so forth all have well-known closed-
form expressions, which are amenable to tools from matrix analysis. For example,
the geodesics through P ∈ PD(n) are of the form t ↦→

√
PetH

√
P for H ∈ Herm(n),

and geodesic midpoints are the same as operator geometric means. The distance
between two matrices P,Q ∈ PD(n), defined as the minimum length of any path
connecting them, is

d(P,Q) = ∥log(P−1/2QP−1/2)∥HS,

where ∥·∥HS denotes the Hilbert–Schmidt (i.e., Frobenius) norm. In Theorem 9.2.11
we show:

Theorem 7.3.1 (Self-concordance of squared distance). For any P0 ∈ PD(n), the
squared distance f : PD(n) → R to P0, defined by f(P) = d(P,P0)2, is 2-self-concordant.

We conjecture that the squared distance is actually 8-self-concordant, see Re-
mark 9.2.10. Self-concordance on PD(n,C) implies the same result for the squared
distance on any convex subset of it. Therefore, the self-concordance holds on any
Hadamard manifold that is also a so-called symmetric space;4 we will call this
a Hadamard symmetric space. In particular, using [BH13, Prop. 10.58] we obtain
the following result, which covers most non-positively curved spaces of import
in applications, including the general scaling or non-commutative optimization
problem (Section 10.1):

Corollary 7.3.2. LetG ⊆ GL(n,R) be an algebraic subgroup5 such that gT ∈ G for every
g ∈ G. SetM := {gTg : g ∈ G} ⊆ PD(n,R). ThenM ⊆ PD(n,R) is a convex subset,
and for every p0 ∈M, the function f : M→ R, f(p) = d(p,p0)2 is 2-self-concordant.

Hyperbolic spaceHn is a paradigmatic example of a manifold with non-positive
curvature in this class. Corollary 7.3.2 implies that the squared distance function to
a point in Hn is 1-self-concordant, as one has to rescale the curvature by a factor 2

4Any such space is the product of a symmetric space of non-compact type and a Euclidean
space [Hel79, Prop. V.4.2], and embeds, possibly after rescaling the metric on each of its de
Rham factors, as a complete convex submanifold of PD(n,R) for some n ⩾ 1, and hence also
in PD(n,C) [Ebe97, Thm. 2.6.5]. See [Hel79] for more background.

5This means that G is a subset of GL(n,R) determined by polynomial equations in the matrix
entries.
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to obtain an isometric embedding into PD(n,C). Similarly, the conjectured 8-self-
concordance on PD(n,C)would imply 4-self-concordance on Hn.

We are able to prove the stronger result that the squared distance on Hn is in
fact 8-self-concordant, and that this is optimal, see Theorem 9.3.1. In contrast, the
squared distance on hyperbolic space is 27

2 -self-concordant along geodesics, as was
shown previously in [Ji07, Lem. 11].6 It is an interesting open question whether
there exists a universal constant C > 0 such that if M is a Hadamard manifold
with all sectional curvatures in [−κ, 0], then for every p0 ∈ M, f(p) = d(p,p0)2
is C/κ-self-concordant.

Using the self-concordance of the squared distance, it is easy to construct a
self-concordant barrier for its epigraph (Theorem 8.2.11). To this end we provide
the following result, which applies in particular to PD(n), hyperbolic space, and
all other Hadamard symmetric spaces.

Theorem 7.3.3 (Epigraph barrier). Let M be a Hadamard manifold, and let p0 ∈ M.
Assume that the function f : M → R, f(p) = d(p,p0)2 is α-self-concordant. Let D =

{(p,S) ∈M ×R : f(p) < S}. Then, the function F : D→ R defined by

F(p,S) = − log
(︂
S − d(p,p0)2

)︂
+ 1
α
d(p,p0)2 (7.3.1)

is strongly 1-self-concordant, and λF(p,S)2 ⩽ 1 + 2
α d(p,p0)2.

The reason that the proposition does not state that F is a barrier is that the Newton
decrement λF(p,S) is not bounded by a constant, but rather depends on the distance
to the point p0. To obtain a barrier, one needs to impose an additional constraint
on the domain to force it to be bounded, for instance by requiring that S < S0,
which can be implemented by adding a logarithmic barrier term − log(S0 − S) to F.
The dependence of the Newton decrement on the distance to p0 is caused by the
term 1

αd(p,p0)2 in Eq. (7.3.1), but without this term the function would not be
self-concordant. See also Theorem 8.2.14, where we construct a barrier for the
sublevel set of a self-concordant function, with barrier parameter depending on
the gap in function value.

We also provide a strengthening of the above theorem for hyperbolic space (see
Theorem 9.3.7):

Theorem 7.3.4. LetM = Hn, p0 ∈M, and define f : M→ R by f(p) = d(p,p0)2. Let
D = {(p,R,S) ∈M ×R>0 ×R>0 : RS − f(p) > 0}. Then the function F : D→ R by

F(p,R,S) = − log(RS − f(p)) + f(p)

is strongly 1
2 -self-concordant. Furthermore, λF, 1

2
(p,R,S)2 ⩽ 4 + 4f(p).

The significance of this result is that it can be used to construct a barrier for
the epigraph of the distance to a point, rather than the squared distance, by
restricting to the subspace defined by the equation S = R. This is essential for
applying the framework to the geometric median problem, see Section 7.6. In the
Euclidean setting, the additional f-term is unnecessary; see for instance the proof

6They prove thatMf =
√︁

16/27, where the constantMf is related to the constantα in our definition
of self-concordance along geodesics byMf = 2/

√
α.
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of [NN94, Prop. 5.4.3]. In our setting the proof is more complicated, as it involves
a strengthening of the self-concordance estimate on the third derivative of the
squared distance. The key estimates which enable our proof of the above theorem
are given in Theorem 9.3.1.

7.4. Application I: Non-commutative optimization and
scaling problems

Our first application is the one which motivated us to extend the framework in the
first place. We briefly recap the setting from Section 2.6. Let G ⊆ GL(n,C) be a
connected algebraic subgroup such that g∗ ∈ G for all g ∈ G. Let π : G→ GL(V) be
a regular representation on a finite-dimensional complex vector spaceV . AssumeV
is endowed with an inner product such that the unitary matrices in G act unitarily.
The general norm minimization problem asks to minimize the norm over the orbit
of a given vector v ∈ V , that is, we wish to minimize ∥π(g)v∥ over g ∈ G. Note
that ∥π(g)v∥2 = ⟨v|π(g∗g)|v⟩ (we use here that π(g)∗ = π(g∗); this can be proven
using the Cartan decomposition, see Section 10.1 for details). Accordingly, it
suffices to minimize the function defined by7

ϕv : M→ R, ϕv(p) = log ⟨v|π(p)|v⟩

over M = {g∗g : g ∈ G} = G ∩ PD(n). This function is convex along the
geodesics of M. It is also N(π)2-smooth in the convexity sense, where N(π) is
the weight norm of the action, see Section 2.6 for details. Therefore, if ϕv is
bounded from below, a simple gradient descent algorithm can be used to find a
point p ∈M such that ∥grad(ϕv)p∥ ⩽ δwithinO(N(π)2[ϕv(I)− infq∈Mϕv(q)]/δ2)
iterations, see Proposition 6.5.3 or [BFG+19, Thm. 4.2]. A more sophisticated
box-constrained Newton method is able to find an ε-approximate minimizer pε
ofϕv withinO((1+R0)N(π) log[(ϕv(I)− infq∈Mϕv(q))/ε]) iterations, where R0 > 0
is an upper bound on the distance to such a minimizer [BFG+19, Thms. 5.1 & 5.7].
Using our interior-point path-following method we prove the following result in
Theorem 10.1.9:

Theorem 7.4.1 (Non-commutative optimization). Let 0 ≠ v ∈ V and R0, ε >
0. Let M = {g∗g : g ∈ G} ⊆ PD(n) and D = {p ∈ M : d(p,p0) ⩽ R0}, and
define ϕv : M → R by ϕv(p) = log ⟨v|π(p)|v⟩. Then there is an algorithm that
withinO((1+R0)N(π) log(N(π)R0/ε)) iterations of the path-following method finds pε ∈
D such that

ϕv(pε) − inf
p∈D

ϕv(p) ⩽ ε.

This essentially matches the complexity of the box-constrained Newton method
mentioned above, which is currently the state-of-the-art. There is a small difference,
in that our complexity has N(π)R0 in the logarithm, rather than the potential
gap ϕv(I) − infq∈Mϕv(q); these are related since ϕv is N(π)-Lipschitz. The

7This function differs from the Kempf–Ness function Fv : G → R, g ↦→ log∥g · v∥ defined
in Chapter 2. Note that 1

2ϕv(g∗g) = Fv(g). This changes certain estimates by factors of 2. The
reason for the change in notation is that after identifying K\G with M with via Kg ↦→ g∗g,
working with ϕv is more pleasant.
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approach we take to obtain this result is to use the barrier on M which arises
from Corollary 7.3.2 and Theorem 7.3.3, and to show that ϕv is compatible with
the squared distance function, which is enough to implement the path-following
method, as explained earlier. It would be very interesting to find a suitable barrier
for this problem with a smaller barrier parameter (or prove that no such barrier
exists).

7.5. Application II: Minimum-enclosing ball problem
on PD(n)

Next we consider the minimum enclosing ball (MEB) problem: given distinct
points p1, . . . ,pm ∈ M, find p ∈ M such that R(p) := maxi d(p,pi) is minimal.
WhenM = Rn is Euclidean space, this is a well-studied problem in computational
geometry. There, it can be formulated as a second-order cone problem, to which
interior-point methods are applicable (see, e.g., [KMY04]).

WhenM is a Hadamard manifold, the distance to a point is convex, and hence
the MEB problem is a convex optimization problem. In particular, for hyperbolic
spaceM = Hn, there has been previous work on the MEB problem [AN13; NH15].
The only algorithm with explicit complexity bounds that we are aware of is due to
Nielsen and Hadjeres [NH15]. If R∗ is the minimal radius of an MEB and δ > 0, then
they can find a point p ∈ Hn such that maxi d(p,pi) ⩽ (1 + δ)R∗ within O(1/δ2)
iterations of an algorithm, each of which is simple to implement.

To find MEBs using interior-point methods, it is sufficient to have a barrier
for the epigraph of the squared distance. In particular, the barrier constructed
using Theorems 7.3.1 and 7.3.3 can be used to solve this problem on PD(n), and
we prove the following result in Theorem 10.2.5:

Theorem 7.5.1 (Minimum enclosing ball). Let p1, . . . ,pm ∈ PD(n) bem ⩾ 3 points,
and set R0 = maxi≠j d(pi,pj). Let R(p) = maxi d(p,pi), set R∗ = infp∈M R(p), and
let ε > 0. Then with O((m + 1)R2

0) iterations of a damped Newton method and

O

(︄√︂
1 +m(R2

0 + 1) log

(︄
m(R2

0 + 1)
ε

)︄)︄
iterations of the path-following method, one can find pε ∈ PD(n) such that

R(pε) − R∗ ⩽ ε.

A similar result can be obtained on arbitrary Hadamard symmetric spaces. We
also note that the optimal radius R∗ satisfies R0 ⩽ 2R∗ (Lemma 10.2.2), so that
the above also yields a multiplicative error guarantee. Compared to the results
of [NH15], we have a logarithmic dependence on the precision ε, but a linear
dependence on R0 (as opposed to no dependence).
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7.6. Application III: Geometric median on hyperbolic
space

Our last application is the geometric median problem. In the Euclidean setting this is
also known as the Fermat–Weber problem [CLM+16]. It is formally defined as follows:
given points p1, . . . ,pm ∈ M, not all contained in a single geodesic, find p0 ∈ M
such that

p0 ∈ argmin
p∈Hn

s(p) :=
m∑︂
j=1
d(p,pj).

The objective function s is convex on Hadamard manifolds M. In contrast
with the geometric mean (or barycenter) problem, which is to find the minimizer
of

∑︁m
j=1 d(p,pj)2, finding the geometric median is non-trivial even on M = Rn.

The first and one of the best-known algorithms for this problem on Euclidean space
is Weiszfeld’s algorithm [Wei37], which is a simple iterative procedure based on
solving the first-order optimality condition grad(s)p =

∑︁m
j=1(p − pj)/d(p,pj) = 0

for p, while treating the d(p,pj) as constants. Unfortunately, the update rule is
not well-defined when p is one of the pj’s (which can be fixed, see e.g. [Ost78]),
and it may converge very slowly in general. In [XY97] it was observed that one
can also apply interior-point methods, by viewing the geometric median problem
as a second-order cone program. More recent work [CLM+16] has shown that a
specialized long-step interior-point method is capable of solving the geometric
median problem onRn in nearly-linear time, and we refer the reader to their paper
for a broader literature review. Weiszfeld’s approach has been generalized to the
Riemannian setting [FVJ09]. A sub-gradient approach [Yan10] can find a point
with squared distance to the minimizer of s at most ε inO(1/ε) iterations; however,
in the negatively curved setting, it suffers from an exponential dependence on the
quantity R0 = maxi≠j d(pi,pj).

We can solve the geometric median problem on hyperbolic space Hn by using
our interior-point framework and our barrier for the epigraph of the distance
constructed using Theorem 7.3.4, which serve as analogs of the second-order cone
and the associated barrier. In Theorem 10.3.5 we prove:

Theorem 7.6.1 (Geometric median). Let p1, . . . ,pm ∈ Hn bem ⩾ 3 points, not all on
one geodesic, and setR0 = maxi≠j d(pi,pj). Define s : Hn→ R by s(p) =

∑︁m
j=1 d(p,pj),

and let ε > 0. Then with O((m + 1)R2
0) iterations of a damped Newton method and

O

(︄√︂
m(R2

0 + 1) log

(︄
mR0(R2

0 + 1)
ε

)︄)︄
iterations of the path-following method, one can find pε ∈ Hn such that

s(pε) − inf
q∈Hn

s(q) ⩽ ε.

For not too small ε, the cost is dominated by the damped Newton method,
which we use to find a good starting point for the path-following method. We
leave it as an open problem as to whether this can be avoided. Furthermore, the
above applies only to Hn rather than to PD(n): it relies on the barrier constructed
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using Theorem 7.3.4, which uses a non-trivial strengthening of the self-concordance
estimates for the squared distance. We expect that such a strengthening can also be
obtained more generally, and this would immediately generalize the algorithmic
result from Theorem 7.6.1 to these spaces; we also leave this as a problem for future
work.

7.7. Outlook
We summarize the results in this section and mention some future directions.
We extend the basic theory of interior-point methods to manifolds, and show
that the developed framework is capable of capturing interesting geodesically
convex optimization problems. In particular, we define a suitable version of self-
concordance on Riemannian manifolds, and show that it gives the same guarantees
for Newton’s method as in the Euclidean setting. This is used to analyze a path-
following method for the optimization of compatible objectives over domains
for which one has a self-concordant barrier. We exhibit non-trivial examples
of self-concordant functions, namely squared distance functions on PD(n), and
more generally symmetric spaces with non-positive curvature, and construct
related self-concordant barriers. The framework is able to capture the optimization
of Kempf–Ness functions, a problem which has connections to many areas of
mathematics and computer science, leading to algorithms with state-of-the-art
complexity guarantees. It also applies to computing the geometric median on
hyperbolic space, for which we give an algorithm capable of finding high-precision
solutions. This demonstrates the power of the framework, and we believe that it
encompasses many more problems.

Our work highlights known challenges and suggests new directions:

• It is natural to search for self-concordant barriers for the aforementioned
applications which have better barrier parameters. Alternatively, is it possible
to prove lower bounds that show that the constructions given in our work
are essentially optimal?

• In Euclidean convex optimization, there are universal constructions of self-
concordant barriers, cf. [NN94; Hil14; Fox15; BE19; Che23]. Can one
find such a construction for manifolds? We describe a concrete proposal.
Let D ⊆ M be a compact convex subset of a Hadamard manifold M, with
non-empty interior. Denote by CM∞ the cone over the boundary at infinity
ofM [Hir22a]. Its elements can be identified with the geodesic rays γ emanat-
ing from a fixed base point and hence determine Busemann functions bγ as
in Eq. (10.1.6). Define F∗ : CM∞→ R by F∗(γ) = log

∫
D

exp(−bγ(q))dvol(q).
Then the inverse Legendre–Fenchel conjugate F : D → R of F∗, given by
F(p) = supγ∈CM∞ −bγ(p) − F∗(γ), is a natural candidate for a barrier for D.
Indeed, for Euclidean spaceM = Rn it reduces precisely to the entropic barrier
of Bubeck and Eldan [BE19].

• From the perspective of interior-point methods, we currently only treat
the main stage, which minimizes an objective given a starting point that is
well-centered with respect to the barrier F. Can one give a general procedure
for finding such a starting point from an arbitrary feasible point p ∈ D? In the
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Euclidean setting, this is achieved by applying the path-following method
with the linear objective f := − ⟨grad(F)p, ·⟩ in reverse, starting at t = 1. This is
sensible as p is exactly a minimizer of Ft = tf+F at t = 1. Busemann functions
generalize linear functions to Hadamard manifolds, hence is natural to instead
use f = bγ with γ the geodesic ray starting at p ∈M with direction grad(F)p.
When f is compatible with F (as we show in Section 10.1 for specific f and F),
then one can use the same time steps as for the main stage, and switch to the
main stage as soon as λF,α ⩽

1
3 . One method for lower bounding the t for

which this happens is as follows: if F is µ-strongly convex and f is ν-smooth,
then λF,α(q) is at most λFt,α(q)

√︁
1 + tν/µ + t∥dfq∥∗F,q,α/α, and ∥dfq∥∗F,q,α

can be bounded (for instance) using Lipschitzness of f and strong convexity
of F. We leave a more careful analysis of this idea to future work. We note
that in the Euclidean setting, the complexity is often bounded in terms of
the (a)symmetry of domain D with respect to the point p, see Section 4.3
and [NN94, Eq. (3.2.24)] for details, but such a bound does not seem to
generalize to the Riemannian setting.

• It would be interesting to understand whether there is a suitable notion
of primal-dual methods in the Riemannian setting, or a notion of duality
which interacts well with self-concordance. While there exists a version of
Legendre–Fenchel duality for Hadamard manifoldsM, where the dual space
is CM∞, the cone over the boundary at infinity of M discussed above, the
conjugate of a convex function need not be convex [Hir22a]. Other proposals
such as [BHS+21] require a stronger notion of convexity.
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the framework

In this chapter we generalize the Euclidean (self-concordance based) interior-
point method framework to the setting of Riemannian manifolds. In Section 8.1
we define self-concordance and show that it yields guarantees for Newton’s
method that are familiar from the Euclidean setting. In Section 8.2 we turn to
self-concordant barriers, define a notion of compatibility of an objective with a
self-concordant barrier, and show that for these objectives one can give a implement
a path-following method.

8.1. Self-concordance and Newton’s method
In this section we generalize the notion of self-concordance and the corresponding
analysis of Newton’s method from the Euclidean setting to the Riemannian setting,
and we comment on complications incurred by curvature. For expositions of
the Euclidean theory of self-concordance and interior-point methods we refer
to [NN94; Nes18; Ren01]. Throughout this section we assume thatM is a connected
and geodesically complete Riemannian manifold.

8.1.1. Self-concordance
Let f : D→ R be a convex function defined on an open convex subsetD ⊆M. Then
the Hessian is positive semidefinite, by Eq. (6.5.2), hence induces a (semi-)norm at
each point. The rate of change of the Hessian is captured by the third covariant
derivative, ∇3f = ∇(∇(∇f)) = ∇(∇2f). A function is called self-concordant if the
latter can be bounded in terms of the former, as follows:

Definition 8.1.1 (Self-concordance). Let f : D→ R be a convex function defined
on an open convex subset D ⊆M, and let a > 0. We say that f is α-self-concordant
if, for all p ∈ D and for all u, v,w ∈ TpM, we have

|(∇3f)p(u, v,w)| ⩽ 2√
α

√︂
(∇2f)p(u,u)

√︂
(∇2f)p(v, v)

√︂
(∇2f)p(w,w), (8.1.1)

It is called strongly α-self-concordant if is not just convex but closed convex, that is,
if its epigraph (6.5.1) is a closed subset ofM ×R.

Here we follow the conventions of [NN94]. To interpret the definition, let us
for a convex function f, a point p in its domain, and α > 0 define the positive

This chapter is adapted from [HNW23].
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semidefinite bilinear form and seminorm

⟨v,w⟩f,p,α =
(∇2f)p(v,w)

α
and ∥u∥f,p,α =

√︃
(∇2f)p(u,u)

α
. (8.1.2)

When the Hessian is positive definite (as is the case, e.g., when f is strongly convex),
these endowM with a new Riemannian metric. In convex optimization, ⟨·, ·⟩f,p,α
is called the “local inner product” and ∥·∥f,p,α the “local norm”, but we will
refrain from using this terminology as it is ambiguous in the Riemannian setting.
For α = 1, we will usually abbreviate ⟨·, ·⟩f,p := ⟨·, ·⟩f,p,1 and ∥·∥f,p := ∥·∥f,p,1. We
can now rewrite Eq. (8.1.1) as follows:

|(∇3f)p(u, v,w)| ⩽ 2α∥u∥f,p,α∥v∥f,p,α∥w∥f,p,α. (8.1.3)

Thus self-concordance can be interpreted as a boundedness of the third covariant
derivatives at each point with respect to the seminorms defined by the Hessian.

We record some basic properties. Recall that self-concordant functions are
defined on an open and convex domain, by definition.

Lemma 8.1.2. (i) Let f be a (strongly) α-self-concordant function and let c > 0. Then
cf is (strongly) cα-self-concordant.

(ii) Let fk : Dk → R be αk-self-concordant functions for k = 1, 2, and suppose D :=
D1 ∩ D2 is non-empty. Then f := f1 + f2 : D → R is α-self-concordant, with
α := min(α1,α2). If the functions fk are strongly αk-self-concordant, then f is
strongly α-self-concordant.

(iii) Let fk : Dk → R be α-self-concordant functions for k = 1, 2. Then the function
f : D1 ×D2 → R defined by f(p1,p2) := f1(p1) + f2(p2) is α-self-concordant. If
both functions fk are strongly α-self-concordant, then so is f.

Property (i) follows from the definition, and (iii) follows from (ii). Before we
prove (ii), we give a simpler characterization of self-concordance. As the Hessian
is symmetric, third covariant derivatives are symmetric in the last two arguments.
This can also be seen explicity from the following formula for the third covariant
derivative ∇3f, which follows from Eq. (6.2.1) and holds for any three vector fields
X, Y, Z:

(∇3f)(X, Y,Z) = X
(︂
(∇2f)(Y,Z)

)︂
− (∇2f)(∇XY,Z) − (∇2f)(Y,∇XZ). (8.1.4)

This leads to the following simplification:

Lemma 8.1.3. A convex function f : D→ R defined on an open convex subsetD ⊆M is
α-self-concordant if, and only if, for all p ∈M and u, v ∈ TpM, we have

|(∇3f)p(u, v, v)| ⩽ 2√
α

√︂
(∇2f)p(u,u) (∇2f)p(v, v) (8.1.5)

or, equivalently,

|(∇3f)p(u, v, v)| ⩽ 2α∥u∥f,p,α∥v∥2f,p,α. (8.1.6)
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However, third covariant derivatives are not symmetric when M is a curved
manifold, as follows from the Ricci identity [Lee18, Thm. 7.14]. To see this, we
combine Eqs. (6.4.1) and (8.1.4) to see that for any three vector fields X, Y, Z:

(∇3f)(X, Y,Z) = X(Y(Zf)) − X((∇YZ)f) − (∇XY)(Zf) + (∇∇XYZ)f
− Y((∇XZ)f) + (∇Y(∇XZ))f.

Using symmetry of the Levi-Civita connection, one finds that

(∇3f)(X, Y,Z) − (∇3f)(Y,X,Z) = −(R(X, Y)Z)f = − ⟨R(X, Y)Z, grad(f)⟩ (8.1.7)

Accordingly, the third covariant derivative is in general not symmetric. Indeed,
the asymmetry is precisely related to the nonvanishing of the Riemann curvature
tensor!

Due to this asymmetry, to establish self-concordance, we have to show Eq. (8.1.5)
for possibly different u, v ∈ TpM, whereas we could assume u = v in the Euclidean
case; see Section 8.1.2 for more details. The following proof of Lemma 8.1.2(ii) is a
generalization of [Nes18, Thm. 5.1.1] to our setting.

Proof of Lemma 8.1.2(ii). For p ∈ D = D1 ∩D2 and u, v ∈ TpM, we have

|(∇3f)p(u, v, v)|
2
√︁
(∇2f)p(u,u)(∇2f)p(v, v)

⩽
|(∇3f1)p(u, v, v)| + |(∇3f2)p(u, v, v)|

2
√︁
(∇2f1)p(u,u) + (∇2f2)p(u,u)((∇2f1)p(v, v) + (∇f2)p(v, v))

⩽
x1ω1/

√
α1 + x2ω2/

√
α2√︂

x2
1 + x

2
2(ω1 +ω2)

, (8.1.8)

where we let xi :=
√︁
(∇2fi)p(u,u) and ωi := (∇2fi)p(v, v) for i = 1, 2, and for

the last estimate we used αi-self-concordance of fi. We now upper bound the
quantity in Eq. (8.1.8). Observing invariance under the change (x1, x2,ω1,ω2) →
(sx1, sx2, tω1, tω2) for s, t > 0, we may consider the following optimization prob-
lem:

maximize ω1x1/
√
α1 +ω2x2/

√
α2

s.t. x2
1 + x

2
2 = 1, ω1 +ω2 = 1,

x1, x2,ω1,ω2 ⩾ 0.

First we fixωi, and maximize over the choice of xi. This is a linear maximization
over the intersection of the unit circle with the positive orthant, with objective
given by (ω1/

√
α1,ω2/

√
α2), which is itself in the positive orthant. Therefore the

maximum is attained at

(x1, x2) =
(ω1/
√
α1,ω2/

√
α2)√︂

ω2
1/α1 +ω2

2/α2

,

where the value of the objective is
√︂
ω2

1/α1 +ω2
2/α2. This reduces the problem to

maximize
√︂
ω2

1/α1 +ω2
2/α2 s.t. ω1 +ω2 = 1, ω1,ω2 ⩾ 0.
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By convexity of the objective, the maximum is attained at (ω1,ω2) = (1, 0)
or (ω1,ω2) = (0, 1). Therefore Eq. (8.1.8) is at most max(1/√α1, 1/√α2), and f is α-
self-concordant for α = min(α1,α2). The claim that f is strongly α-self-concordant
whenever the fi are stronglyαi-self-concordant then follows from Lemma 6.5.2. □

We now state a key property that is required for the analysis of Newton’s method
of self-concordant functions. It quantifies the change of the Hessian or local norm
as a function of the distance, measured with respect to the norm (8.1.2), providing
a finitary version of Definition 8.1.1, generalizing an important property (Def-
inition 4.2.1) from the Euclidean setting. Then the following result is a direct
translation of the Euclidean argument in [NN94, Thm. 2.1.1] along with the notion
of self-concordance from Definition 8.1.1.

Theorem 8.1.4 (Stability of Hessians). Let f : D→ R be an α-self-concordant function
defined on an open convex subset D ⊆ M, and let p ∈ D. Let u ∈ TpM be such that
r := ∥u∥f,p,α < 1. If q := Expp(u) ∈ D, then we have the following estimate: for
all v ∈ TpM,

(1 − r)2 (∇2f)p(v, v) ⩽ (∇2f)q(τγ,1v, τγ,1v) ⩽
1

(1 − r)2
(∇2f)p(v, v), (8.1.9)

or, equivalently,

(1 − r)2 (∇2f)p ⪯ τ∗γ,1(∇
2f)q ⪯

1
(1 − r)2

(∇2f)p,

where τγ,1 denotes the parallel transport along the geodesic γ(t) := Expp(tu) from p to q.

Proof. Since the domain is convex, we know that γ(t) = Expp(tu) ∈ D for all t ∈
[0, 1]. Consider the following two functions:

ϕ : [0, 1] → R, ϕ(t) = (∇2f)γ(t)(τγ,tv, τγ,tv),
ψ : [0, 1] → R, ψ(t) = (∇2f)γ(t)(τγ,tu, τγ,tu).

Using Eq. (6.3.1), with T = ∇2f and using that γ̇(t) = τγ,tu, we have

ϕ̇(t) =
(︂
∇γ̇(t)(∇2f)

)︂
(τγ,tv, τγ,tv) = (∇3f)(τγ,tu, τγ,tv, τγ,tv).

Hence, using α-self-concordance as in Eq. (8.1.1),

|ϕ̇(t)| ⩽ 2√
α

√︁
ψ(t)ϕ(t). (8.1.10)

Similarly,

ψ̇(t) =
(︂
∇γ̇(t)(∇2f)

)︂
(τγ,tu, τγ,tu) = (∇3f)(τγ,tu, τγ,tu, τγ,tu).

and hence using only α-self-concordance along the geodesic γ, as in Eq. (8.1.13),
we find that

|ψ̇(t)| ⩽ 2√
α
ψ(t)3/2. (8.1.11)
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With these estimates in place we can proceed as in the proof of [NN94, Thm. 2.1.1].
By Grönwall’s inequality, there are two cases: either ψ vanishes identically on the
interval [0, 1], or it is everwhere positive. In the former case, Eq. (8.1.10) implies
that ϕ is constant and hence ϕ(1) = ϕ(0), which in turn implies the claim. In the
latter case, we can write Eq. (8.1.11) as|︁|︁|︁∂tψ(t)−1/2

|︁|︁|︁ = 1
2
|ψ̇(t)|
ψ(t)3/2

⩽
1√
α

, (8.1.12)

from which it follows that

ψ(t)−1/2 ⩾ ψ(0)−1/2 − t√
α

=
1√

α∥u∥f,p,α
− t√

α
=

1 − rt
r
√
α

and hence, since r < 1, √︁
ψ(t) ⩽ r

√
α

1 − rt .

Thus Eq. (8.1.10) implies

|ϕ̇(t)| ⩽ 2r
1 − rt ϕ(t).

Similarly to the above, either ϕ vanishes identically on [0, 1], in which case there is
nothing to prove, or it is everywhere positive, in which case we have|︁|︁∂t logϕ(t)

|︁|︁ ⩽ 2r
1 − rt

and hence |︁|︁|︁|︁log ϕ(t)
ϕ(0)

|︁|︁|︁|︁ ⩽ 2 log 1
1 − rt .

For t = 1 this yields the desired inequality. □

8.1.2. Self-concordance along geodesics
When M = Rn is a Euclidean space, then the third derivative is symmetric in
all three arguments, and standard results on trilinear forms [Ban38] imply that
the above is equivalent to

|︁|︁∂3
t=0f(p + tv)

|︁|︁ = |(∇3f)p(v, v, v)]| ⩽ 2α∥v∥3
f,p,α for all

p, v ∈ Rn, which shows that self-concordance is equivalent to self-concordance along
the geodesics of Euclidean space. This characterization is highly useful for showing
that functions are self-concordant. The richness of the family of self-concordant
functions is a key reason for the wide applicability of interior-point methods [NN94;
Hil14; Fox15; BE19; Che23].

This notion can also be generalized naturally to the Riemannian setting:

Definition 8.1.5 (Self-concordance along geodesics). Let f : D→ R be a convex
function defined on an open convex subset D ⊆M, and let α > 0. We say that f is
α-self-concordant along geodesics if, for all p ∈ D and for all v ∈ TpM, we have|︁|︁|︁∂3

t=0f(Expp(tv))
|︁|︁|︁ = |(∇3f)p(v, v, v)]| ⩽

2√
α

(︂
(∇2f)p(v, v)

)︂3/2
(8.1.13)
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or, equivalently,|︁|︁|︁∂3
t=0f(Expp(tv))

|︁|︁|︁ = |(∇3f)p(v, v, v)]| ⩽ 2α∥v∥3f,p,α. (8.1.14)

It is called strongly α-self-concordant along geodesics if is not just convex but closed
convex, that is, if its epigraph (6.5.1) is a closed subset ofM ×R.

In other words, f is (strongly) α-self-concordant along geodesics if and only if for
every geodesic γ : R→M, the function f◦γ : I→ R is (strongly)α-self-concordant
on I := γ−1(D). There is also a version of Lemma 8.1.2 as a direct consequence of
the Euclidean result.

Definition 8.1.5 had been proposed in [Ji07; JMJ07] as a suitable notion of self-
concordance in the Riemannian setting. Clearly, any (strongly) self-concordant
function is also (strongly) self-concordant along geodesics. However, since third
covariant derivatives are not symmetric in all arguments when M is a curved
manifold, as we saw in Eq. (8.1.7), self-concordance along geodesics need not
imply self-concordance in the stronger sense of Definition 8.1.1, in contrast to
what was suggested in [JMJ07, Eq. (3) and Prop. 1]. While self-concordance
along geodesics already allows lifting several useful results from the Euclidean
theory, it is the stronger notion of Definition 8.1.1 that is required to prove the
fundamental Theorem 8.1.4, which underpins the analysis of the Newton method
in the quadratic convergence regime in Theorem 8.1.16. We give non-trivial
examples of self-concordant functions on curved spaces in Chapters 9 and 10.

In the remainder of this subsection we discuss a number of useful results for
functions that are self-concordant along geodesics. These follow directly from
the Euclidean theory. While some of these were already proved in [Ji07; JMJ07],
we give all proofs to keep the exposition self-contained. We start with a version
of [Nes18, Thm. 5.1.5].

Proposition 8.1.6 (Stability of second derivative along geodesic). Let f : D→ R be
α-self-concordant along geodesics, withD ⊆M open and convex, and let p ∈ D. Consider
any geodesic γ(t) = Expp(tu) such that γ(1) ∈ D, and set r := ∥u∥f,p,α. Then the
α-self-concordant function g(t) := f(γ(t)) for t ∈ [0, 1] satisfies the lower bound

g̈(t) ⩾ g̈(0)
(1 + tr)2

=
αr2

(1 + tr)2
, (8.1.15)

and if rt < 1 also the upper bound

g̈(t) ⩽ g̈(0)
(1 − tr)2

=
αr2

(1 − tr)2
. (8.1.16)

Proof. As in the proof of Theorem 8.1.4, we consider the function

ψ : [0, 1] → R, ψ(t) = g̈(t),

and find from Eq. (8.1.11) that it either vanishes identically on [0, 1], in which case
the claim holds trivially, or it is everywhere positive, in which case Eq. (8.1.12)
holds, namely for all t ∈ [0, 1], |︁|︁|︁∂tψ(t)−1/2

|︁|︁|︁ ⩽ 1√
α

.
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Accordingly,

ψ(0)−1/2(1 − tr) = ψ(0)−1/2 − t√
α
⩽ ψ(t)−1/2 ⩽ ψ(0)−1/2 + t√

α
= ψ(0)−1/2(1 + tr),

which implies both bounds. □

The lower bound strengthens the one in Eq. (8.1.9) in the special case that v = u.
The upper bound implies that any function that is strongly self-concordant along
geodesics must contain a certain region in its domain. We first define the region
and then state the result.

Definition 8.1.7 (Dikin ellipsoid). Let f : D→ R be a convex function defined on
an open convex subset D ⊆ M, and let α > 0. Then the (open) Dikin ellipsoid of
radius r > 0 at p ∈M is

B◦f,p,α(r) =
{︂
Expp(u) : u ∈ TpM, ∥u∥f,p,α < r

}︂
.

For α = 1, we abbreviate B◦
f,p := B◦

f,p,1.

The following result is easily generalized from the Euclidean setting. The proof
is essentially the same as in [NN94, Thm. 2.1.1].

Corollary 8.1.8 (Dikin inclusion). Let f : D→ R be strongly α-self-concordant along
geodesics, defined on an open convex subsetD ⊆M. Then B◦

f,p,α(1) ⊆ D for every p ∈ D.

Proof. Take any v ∈ TpM such that r := ∥v∥f,p,α < 1. Let σ be the supremum of
those s ⩾ 0 such that γ(s) := Expp(sv) ∈ D. Since p ∈ D and D is open, we know
that σ > 0, and since D is convex, we know that γ(s) ∈ D for all s ∈ [0,σ).

We need to show that γ(1) ∈ D and claim that in fact σ > 1/r > 1 (with 1/0 = ∞).
For sake of finding a contradiction, assume that this is not so, i.e., that σ ⩽ 1/r.
For every s ∈ [0,σ) we can apply Proposition 8.1.6 with u := sv, which satisfies
∥u∥f,p,α = sr < σr ⩽ 1. Then the upper bound in Eq. (8.1.16) gives

g̈(s) ⩽ 1
(1 − sr)2

g̈(0),

where g(s) = f(γ(s)). Accordingly, the function g has bounded derivative on [0,σ),
thus it is itself bounded on this interval, say g(s) ⩽ L for some L ∈ R. As f is
strongly self-concordant, the level set {q ∈ D : f(q) ⩽ L} is closed inM, and hence
it must contain γ(σ) = lims↑σ γ(s). But D is open, so this in turn implies there
must also exist some t > σ such that γ(t) ∈ D, contradicting the definition of σ. □

In other words, for any p ∈ D and u ∈ TpM such that ∥u∥f,p,α < 1 it is automati-
cally true that Expp(u) ∈ D, so we do not have to assume this in Theorem 8.1.4
and Proposition 8.1.6.

The above also implies that a strongly-self-concordant function can only have a
degenerate Hessian if its domain contains a geodesic.

Corollary 8.1.9 (Domain). If a strongly α-self-concordant function f : D→ R contains
no (infinite) geodesic in its domain, then (∇2f)p is positive definite for all p ∈ D. In
particular, this is the case ifM is a Hadamard manifold and the domain is bounded.
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Proof. If (∇2f)p(u,u) = 0 for some p ∈ D and u ∈ TpM, then Expp(Ru) ⊆ B◦f,p,α(1).
Thus Corollary 8.1.8 shows that D contains the geodesic γ(t) = Expp(tu) for
t ∈ R. □

The following results bound a self-concordant function in terms of its linear
approximation at some arbitrary point, in terms of the quantity

ρ : (−∞, 1) → R, ρ(r) = −r − log(1 − r), (8.1.17)

which is ρ(r) = 1
2r

2 + O(r3) for small r. The first result lifts [Nes18, Thm. 5.1.8]
to the geodesic setting and follows directly by integrating the lower bound in
Proposition 8.1.6.
Corollary 8.1.10 (Lower bound). Let f : D→ R be α-self-concordant along geodesics,
defined on an open convex subset D ⊆M, and let p ∈ D. Then, for every u ∈ TpM such
that q := Expp(u) ∈ D, we have

dfq(τγ,tu) − dfp(u) ⩾
αtr2

1 + tr (8.1.18)

where r := ∥u∥f,p,α and τγ,t denotes the parallel transport along the geodesic γ(t) :=
Expp(tu) from p to q, and

f(q) ⩾ f(p) + dfp(u) + αρ(−r).
Proof. By Proposition 8.1.6, we see that g(t) := f(Expp(tu)) satisfies

g̈(t) ⩾ αr2

(1 + tr)2

for all t ∈ [0, 1]. By integrating,

ġ(t) − ġ(0) ⩾
∫ t

0

αr2

(1 + sr)2
ds =

αtr2

1 + tr .

Since ġ(0) = dfp(u) and ġ(1) = dfq(τγ,1u), this proves the first bound. One more
integral yields

g(1) − g(0) − ġ(0) ⩾
∫ 1

0

αsr2

1 + srds = α
(︁
r − log(1 + r)

)︁
= αρ(−r). □

The second result generalizes [Nes18, Thm. 5.1.9] to the geodesic setting and
follows by similarly integrating the upper bound in Proposition 8.1.6.
Corollary 8.1.11 (Upper bound). Let f : D→ R be α-self-concordant along geodesics,
defined on an open convex subset D ⊆M, and let p ∈ D. Then, for every u ∈ TpM such
that q := Expp(u) ∈ D and r := ∥u∥f,p,α < 1, we have

dfq(τγ,tu) − dfp(u) ⩽
αtr2

1 − rt ,

where τγ,t denotes the parallel transport along the geodesic γ(t) = Expp(tu) from p to q,
and

f(q) ⩽ f(p) + dfp(u) + αρ(r).
If f is strongly α-self-concordant along geodesics, then the requirement that q ∈ D is
automatic (by Corollary 8.1.8).
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Proof. Similarly to the proof of Corollary 8.1.10, we can apply Proposition 8.1.6 to
see that the function g(t) := f(Expp(tu)) satisfies

g̈(t) ⩽ αr2

(1 − tr)2

for all t ∈ [0, 1]. By integration,

ġ(t) − ġ(0) ⩽
∫ t

0

αr2

(1 − sr)2
ds =

αtr2

1 − tr

and

g(1) − g(0) − ġ(0) ⩽
∫ 1

0

αsr2

1 − srds = α
(︁
−r − log(1 − r)

)︁
= αρ(r). □

8.1.3. Newton’s method
We are now ready to give an analysis of Newton’s method for self-concordant
functions. In particular, as in the Euclidean case, we are able to provide quadratic
guarantees on the changes in the so-called Newton decrement (Theorem 8.1.16).
This key result requires self-concordance. Afterwards we also recall some useful
results due to [Ji07; JMJ07] which only rely on self-concordance along geodesics.

Recall Newton’s method (cf. [Udr94, §7.5]): given a convex function f and a
point p in its domain, consider its local quadratic approximation

f(Expp(v)) ≈ f(p) + dfp(v) +
1
2(∇

2f)p(v, v)

and minimize the right-hand side over all v ∈ TpM. If (∇2f)p is non-degenerate
and hence positive definite, as we will assume for convenience, there is a unique
minimizer called the Newton step.

Definition 8.1.12 (Newton step and Newton iterate). Let f : D→ R be a convex
function defined on an open convex set D ⊆M, and let p ∈ D be a point such that
(∇2f)p is positive definite. Then we define the Newton step of f at p as the unique
vector nf,p ∈ TpM such that

(∇2f)p(nf,p, ·) = −dfp (8.1.19)

and the Newton iterate of f at p is defined as

pf,+ := Expp(nf,p) ∈M,

which need not be in D. We can also write

nf,p = −Hess(f)−1
p grad(f)p and pf,+ = Expp(−Hess(f)−1

p grad(f)p).

in terms of the gradient vector and Hessian operator (see Section 6.4).

The gap between the function value and the minimum of the quadratic approxi-
mation is

1
2(∇

2f)p(nf,p,nf,p) =
α

2 ∥nf,p∥2f,p,α =
α

2 λf,α(p)2,

where λf,α is the so-called Newton decrement, which we define next.
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Definition 8.1.13 (Newton decrement). Let f : D→ R be a convex function defined
on an open convex set D ⊆ M, let p ∈ D be a point such that (∇2f)p is positive
definite, and let α > 0. Then we define the Newton decrement of f at p by

λf,α(p) := ∥nf,p∥f,p,α

= 1
α ∥dfp∥

∗
f,p,α = max

0≠v∈TpM

|dfp(v)|
α∥v∥f,p,α

= max
0≠v∈TpM

|dfp(v)|√︁
α(∇2f)p(v, v)

,

where ∥ω∥∗
f,p,α := max0≠v∈TpM

|ω(v)|
∥v∥f,p,α

is the dual norm of ω ∈ T ∗pM induced
by ∥·∥f,p,α. That is,1

λf,α(p) = min
{︁
λ ⩾ 0 : dfp ⊗ dfp ⪯ λ2α (∇2f)p

}︁
(8.1.20)

= min{λ ⩾ 0 : −dfp(u) −
1
2(∇

2f)p(u,u) ⩽ λ
2α

2 ∀u ∈ TpM}. (8.1.21)

For α = 1, we abbreviate λf := λf,1 and ∥·∥∗
f,p := ∥·∥∗

f,p,1.

The Newton decrement is invariant under rescaling f in the sense that λf,α =

λcf,cα for any constant c > 0 (cf. Lemma 8.1.2). When (∇2f)p is degenerate,
the Newton decrement can still be defined as λf,α(p) = inf{c ⩾ 0 : |dfp(v)| ⩽
αc∥v∥f,p,α ∀v ∈ TpM}, which has the same interpretation as explained above; but
we will mostly not need this.

Just like in the Euclidean case the Newton decrement provides a certificate for
the existence of minimizers and the function gap. This essentially follows from the
Euclidean argument [Nes18, Thm. 5.1.13].

Proposition 8.1.14 (Existence of minimizers). Let f : D → R be α-self-concordant
along geodesics, defined on an open convex subset D ⊆ M. If p ∈ D is such that
λf,α(p) < 1, then f is bounded from below: we have

f∗ := inf
q∈D

f(q) ⩾ f(p) − αρ(λf,α(p)), (8.1.22)

where ρ is the quantity defined in Eq. (8.1.17). If in addition f is strongly α-self-concordant
along geodesics and (∇2f)p is positive definite, then the function attains its minimum at
some p∗ ∈ D.

Proof. We abbreviate λ := λf,α(p) and r := ∥u∥f,p,α. For every q = Expp(u) ∈ D,
we have using Corollary 8.1.10 and the definition of the Newton decrement the
lower bound

f(q) − f(p) ⩾ dfp(u) + αρ(−r) ⩾ −αrλ + αρ(−r) = αδ(r), (8.1.23)

where

δ(r) = r(1 − λ) − log(1 + r).

If λ < 1, δ(r) is minimized at r = λ/(1 − λ), and we obtain

f(q) − f(p) ⩾ α
(︁
λ + log(1 − λ)

)︁
= −αρ(λ).

1To see the second equality, replace u by tu for t ∈ R, and maximize over t.
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This implies Eq. (8.1.22).
On the other hand, δ(r) → ∞ as r→∞, so Eq. (8.1.23) shows that the level set
{q ∈ D : f(q) ⩽ f(p)} is contained in a Dikin ellipsoid of some suitable radius. If
we assume that (∇2f)p is positive definite then Dikin ellipsoids are bounded. Thus
if f is also α-strongly self-concordant along geodesics then Lemma 6.5.1 (iii) shows
that f attains its minimum at some p∗ ∈ D. □

The minimizer in Proposition 8.1.14 is unique assuming strict convexity, as
follows, e.g., if ∇2f is positive definite throughout the domain. The Newton
decrement also certifies closeness to minimizers if they exist:

Lemma 8.1.15. Let f : D→ R be α-self-concordant along geodesics, defined on an open
convex subset D ⊆ M, and let p ∈ D be such that λf,α(p) < 1. If f attains a minimum
at p∗ = Expp(u) for u ∈ TpM, then

∥u∥f,p,α ⩽
λf,α(p)

1 − λf,α(p)
.

Proof. Consider the geodesicγ(t) = Expp(tu) fromp top∗. Then by Corollary 8.1.10,
we have

αr2

1 + r ⩽ dfp∗(τγ,1u) − dfp(u) = −dfp(u) ⩽ |dfp(u)| ⩽ αrλf,α(p),

where r := ∥u∥f,p,α; the equality follows because dfp∗ = 0 because p∗ is a minimizer
of f. Thus we have

r

1 + r ⩽ λf,α(p)

and for λf,α(p) < 1 this implies the desired bound. □

The following theorem is key to the analysis of Newton’s method for self-
concordant functions. It bounds the Newton decrement after one Newton step
quadratically in terms of the original Newton decrement. This requires self-
concordance in the sense of Definition 8.1.1, rather than the weaker notion along
geodesics, as its proof involves comparing the length of the new Newton step
transported along the geodesics given by the previous Newton step, i.e., there
are two natural directions. The proof adapts the Euclidean argument in [Ren01,
Thm. 2.2.4].

Theorem 8.1.16. Let f : D → R be a strongly α-self-concordant function defined on
an open convex set D ⊆ M, with positive definite Hessian. Let p ∈ D be a point such
that λf,α(p) < 1. Then the Newton iterate remains in the domain, i.e., pf,+ ∈ D, and
moreover

λf,α(pf,+) ⩽
(︃
λf,α(p)

1 − λf,α(p)

)︃2
.

Proof. We abbreviate the Newton step, iterate, and increment by np := nf,p, p+ :=
pf,+, and λ := λf,α(p), respectively. Corollary 8.1.8 along with the definitions shows
that p+ ∈ D. Then the entire geodesic segment γ(t) := Expp(tnp) for t ∈ [0, 1] is
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contained in the domain D. We now prove the desired estimate, starting with
Theorem 8.1.4, which gives the upper bound

λf,α(p+) = max
w∈Tp+M

|dfp+(w)|
α∥w∥f,p+,α

= max
v∈TpM

|dfp+(τγ,1v)|
α∥τγ,1v∥f,p+,α

⩽
1

1 − λ max
v∈TpM

|dfp+(τγ,1v)|
α∥v∥f,p,α

, (8.1.24)

where τγ,1 denotes parallel transport along the geodesic γ from p to p+. Next, we
observe that by the fundamental theorem of calculus, Eq. (6.3.1), and Eq. (8.1.19),
for all v ∈ TpM,

dfp+(τγ,1v) = dfp+(τγ,1v) − dfp(v) + dfp(v)

=

∫ 1

0
∂tdfγ(t)(τγ,tv)dt + dfp(v)

=

∫ 1

0
(∇γ̇(t)df)γ(t)(τγ,tv)dt + dfp(v)

=

∫ 1

0
(∇2f)γ(t)(τγ,tnp, τγ,tv)dt + dfp(v)

=

∫ 1

0
[(∇2f)γ(t)(τγ,tnp, τγ,tv) − (∇2f)p(np, v)]dt

= β(np, v), (8.1.25)

where we have introduced the symmetric bilinear form

β : TpM × TpM→ R, β(u, v) =
∫ 1

0

[︁
(∇2f)γ(t)(τγ,tu, τγ,tv) − (∇2f)p(u, v)

]︁
dt.

By Theorem 8.1.4 and using ∥tnp∥f,p,α = tλ, we have, for all v ∈ TpM,[︁
(1 − tλ)2 − 1

]︁
(∇2f)p(v, v) ⩽ (∇2f)γ(t)(τγ,tv, τγ,tv) − (∇2f)p(v, v)

⩽

[︃
1

(1 − tλ)2
− 1

]︃
(∇2f)p(v, v).

By integrating the lower and upper bounds from t = 0 to t = 1,

−
(︃
λ − λ

2

3

)︃
(∇2f)p(v, v) ⩽ β(v, v) ⩽

(︃
λ

1 − λ

)︃
(∇2f)p(v, v).

One may verify that max{λ − λ2/3, λ/(1 − λ)} = λ/(1 − λ) as λ < 1. Together with
the Cauchy-Schwarz inequality, this implies that for all u, v ∈ TpM,

|β(u, v)| ⩽ λ

1 − λ

√︂
(∇2f)p(u,u)

√︂
(∇2f)p(v, v) =

αλ

1 − λ ∥u∥f,p,α∥v∥f,p,α.

Together with Eqs. (8.1.24) and (8.1.25), we obtain the upper bound

λf,α(p+) ⩽
1

1 − λ max
v∈TpM

|β(np, v)|
α∥v∥f,p,α

⩽
λ

(1 − λ)2 ∥np∥f,p,α =
λ2

(1 − λ)2 . □
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Theorem 8.1.16 implies that the Newton method converges quadratically for
sufficiently small λ. For example, suppose that λ ⩽ λ∗ := 1 − 1√

2
. Then we have(︃

λ

1 − λ

)︃2
⩽

(︃
λ

1 − λ∗

)︃2
= 2λ2 ⩽ λ∗, (8.1.26)

meaning the Newton decrement decreases quadratically and stays below λ∗, so we
can iterate. This implies the following result (cf. [NN94, Thm. 2.2.3]):

Theorem 8.1.17 (Quadratic convergence of the Newton method). Let f : D→ R be
a strongly α-self-concordant function defined on an open convex set D ⊆M, with positive
definite Hessian. Let p0 ∈ D be a point such that λf,α(p0) ⩽ λ∗ := 1 − 1/

√
2 ≈ 0.293.

Then the Newton iterations
pt+1 := Exppt

(nf,pt)
are well-defined for all t ∈ N (i.e., each pt ∈ D) and we have

λf,α(pt) ⩽
1
2(2λf,α(p0))2

t

⩽
1
2(2λ∗)

2t .

In particular, O(log log α
ε ) Newton iterations suffice to find a point pt such that f(pt) ⩽

f∗ + ε, for ε < α/e.

Proof. We abbreviate λt := λf,α(pt). By Theorem 8.1.16 and Eq. (8.1.26), one can
see inductively that pt ∈ D is well-defined for all t ∈ N and that we have λt ⩽ λ∗
and

2λt ⩽ (2λt−1)2 ⩽ . . . ⩽ (2λ0)2
t

⩽ (2λ∗)2
t ,

as claimed. This also implies the last statement, since to achieve f(pt) ⩽ f∗ + ε
it suffices to have ρ(λt) ⩽ ε/α, by Proposition 8.1.14, and we have ρ(λt) ⩽ λ2

t for
λt ⩽ λ∗. □

What if we have a starting point such that the Newton decrement does not
guarantee quadratic convergence? In this case it is well-known that one can employ
a damped Newton method, with a step size that ensures that one stays inside the
Dikin ellipsoid (and hence in the domain) at each step. This works just the same
in the Riemannian setting and only requires self-concordance along geodesics
(cf. [Nes18, Thm. 5.1.15]):

Theorem 8.1.18 (Damped Newton method). Let f : D → R be strongly α-self-
concordant along geodesics, defined on an open convex set D ⊆M, with positive definite
Hessian. Let p0 ∈ D be an arbitrary starting point. Then the damped Newton iterations

pt+1 := Exppt
(ut) where ut := 1

1 + λf,α(pt)
nf,pt

are well-defined for all t ∈ N (i.e., each pt ∈ D) and we have

f(pt+1) ⩽ f(pt) − αρ(−λt),

where ρ is the quantity defined in Eq. (8.1.17). In particular, if f is bounded from below
and we set f∗ := infp∈D f(p), then O((f(p0) − f∗)/α) damped Newton iterations suffice to
find a point pt such that λf,α(pt) ⩽ λ∗ (or any other constant).
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Proof. We abbreviate λt := λf,α(pt). Using Corollary 8.1.11 one can see inductively
that r := ∥ut∥f,p,α = λt/(1 + λt) < 1 and pt ∈ D is well-defined for all t ∈ N.
Moreover,

f(pt+1) ⩽ f(pt) + dfpt(ut) + αρ(r)
= f(pt) − (∇2f)p(nf,pt ,ut) + αρ(r)

= f(pt) − α
(︃
λ2
t

1 + λt
− ρ(r)

)︃
= f(pt) − α

(︁
λt − log(1 + λt)

)︁
= f(pt) − αρ(−λt). □

In particular, Theorem 8.1.18 and Corollary 8.1.8 have the following structural
consequence.

Corollary 8.1.19. Let f : D→ R be strongly α-self-concordant along geodesics, defined
on an open convex set D ⊆ M, with positive definite Hessian. Then f is bounded from
below if and only if it attains its minimum (necessarily at a unique minimizer, by strict
convexity).

By combining Theorems 8.1.17 and 8.1.18, we see that we can approximately
minimize any strongly α-self-concordant function with positive definite Hessian
by first using damped Newton steps from an arbitrary starting point p0 until
we arrive at point with Newton decrement ⩽ λ∗; then we are in the quadratic
convergence regime and we can take ordinary Newton steps until we arrive at a
point pt with ρ(λf,α(pt)) ⩽ ε/α, so that pt is an ε-approximate minimizer. This
requires O((f(p0) − f∗)/α + log log(α/ε)) Newton iterations.

8.2. Barriers, compatibility, and the path-following
method

The methods developed in Section 8.1 are sufficient to optimize strongly self-
concordant functions. However, it is difficult to guarantee that one starts in the
quadratic convergence regime for Newton’s method, and the damped Newton
method has a worst-case complexity which depends on the gap in function
value. Moreover, most convex optimization problems do not take the form of
a minimization of a strongly self-concordant function over its natural domain.
Rather, one is given a convex objective f and a domain D and wants to minimize
the former over the latter.

In this section, we show how to circumvent these two issues, assuming one has
a self-concordant barrier for the domain over which one optimizes. To this end, we
generalize the analysis of so-called path-following (interior-point) methods [NN94]
from the Euclidean to the Riemannian setting. We treat not only the case of
geodesically linear objectives, but the more general class of objectives that are
compatible with the given self-concordant barrier. This will be useful for the
applications discussed in Chapter 10. Throughout this section we assume thatM
is a connected and geodesically complete Riemannian manifold.
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8.2.1. Self-concordant barriers
We first define the notion of a self-concordant barrier. The estimates in this section
only require the self-concordance to be along geodesics, and we make explicit
whenever this is the case. However, the path-following method presented in
Section 8.2.3 requires the stronger notion.

Definition 8.2.1 (Barrier). Let D ⊆M be an open and convex subset, and let θ ⩾ 0.
We say that a function F : D→ R is a non-degenerate strongly self-concordant barrier
with parameter θ, or in short a θ-barrier, if F is a strongly 1-self-concordant function
with positive definite Hessian such that λF(p) ⩽

√
θ for all p ∈ D, with λF = λF,1

the Newton decrement (Definition 8.1.13). We say that F is a θ-barrier along geodesics
if it is only strongly 1-self-concordant along geodesics.

The parameter of a barrier plays an important role in the complexity analysis of
the path-following method that we discuss in Section 8.2.3. The following lemma
follows readily from the definition:

Lemma 8.2.2. Let F1 : D1 → R be a θ1-barrier and let F2 : D2 → R be a θ2-barrier. Then
F1 + F2 is a (θ1 + θ2)-barrier for D := D1 ∩D2, assuming D is non-empty.

Next, we prove an important inequality which involves the barrier parameter.
To state the result, we define a Riemannian version of the so-called Minkowski
function(al) or gauge function. It measures the inverse distance from a point to the
boundary of the domain.

Definition 8.2.3 (Minkowski functional). Let D ⊆ M be an open convex subset.
For p ∈ D, we define the Minkowski functional by

πD,p : TpM→ R⩾0, πD,p(u) = inf
{︂
s ⩾ 0 : Expp

(︁ 1
su

)︁
∈ D

}︂
.

This is well-defined since D is open and hence πD,p(u) < ∞ for every u ∈
TpM. Note that if s := πD,p(u) = 0, then the entire infinite geodesic ray γ(t) =
Expp(tu) is contained in the domain, while if s > 0 then Expp( 1su) is a point in
its boundary ∂D = D \D. Moreover, if u ∈ TpM is such that Expp(u) ∈ D, then
πp(u) ⩽ 1.

Then we have the following result, which can be deduced directly from its Eu-
clidean version [NN94, §2.3.2]. We provide a self-contained proof for convenience.

Proposition 8.2.4. Let D ⊆ M be open and convex, and let F : D→ R be a θ-barrier
along geodesics. Then one has, for all p ∈ D and u ∈ TpM,

dFp(u) ⩽ θπD,p(u).

In particular, if q = Expp(u) ∈ D then

dFp(u) ⩽ θ.

Proof. The second statement follows from the first by the preceding discussion.
To prove the first, let p ∈ D and u ∈ TpM. If dFp(u) ⩽ 0 then there is nothing to
prove, so we assume that dFp(u) > 0. Define

g(t) := F(Expp(tu)).
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Theng is well-defined on the interval I = [0,πD,p(u)−1), where we interpret 0−1 = ∞.
By definition of the Newton decrement and recalling that g̈(t) > 0 as F has positive
definite Hessian, we have

(ġ(t))2
g̈(t) ⩽ λ

2
F(p) = θ.

Since we assumed that ġ(0) = dFp(u) > 0, we find that θ > 0, as well as ġ(t) > 0
for all t ∈ I, by convexity. Accordingly, we can write the above as

∂t

(︃
1
ġ(t)

)︃
= − g̈(t)
(ġ(t))2 ⩽ −

1
θ

,

which implies that

1
ġ(t) =

1
ġ(0) +

∫ t

0
∂t

(︃
1
ġ(t)

)︃
dt ⩽

1
ġ(0) −

t

θ
,

and hence

ġ(t) ⩾ 1
1

ġ(0) −
t
θ

=
θġ(0)

θ − tġ(0) .

As the right-hand side diverges as t approaches θ/ġ(0), we must have t < θ/ġ(0)
for all t ∈ I. Hence

πD,p(u)−1 ⩽
θ

ġ(0) ,

which is the desired bound. □

As a consequence, non-trivial barriers must have positive parameter:

Corollary 8.2.5. LetD ⊆M be open and convex, and let F : D→ R be a θ-barrier along
geodesics with θ = 0. Then F is constant and D =M.

Proof. Proposition 8.2.4 shows that dF = 0, hence F is locally constant and ∇2F = 0.
Because F is strongly self-concordant, we may apply Corollary 8.1.8 to conclude
that Expp(TpM) ⊆ D and hence D = M, since M is connected and geodesically
complete. □

The minimizer of a barrier, which if it exists is necessarily unique (recall that
barriers have positive definite Hessians by definition), plays a special role in the
theory.

Definition 8.2.6 (Analytic center). LetD ⊆M be open and convex, and let F : D→
R be a θ-barrier along geodesics. If F attains its minimum, then the unique
minimizer is called the analytic center of D.

Recall that a barrier attains its minimum if and only if it is bounded from below
(Corollary 8.1.19). The following result shows that the domain is necessarily
enclosed in a Dikin ellipsoid about the analytic center, with radius given by the
barrier’s parameter. It adapts the Euclidean argument (cf. [Nes18, Thm. 5.3.9],
[NN94, Prop. 2.3.2 (iii)]) to the Riemannian setting.
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Proposition 8.2.7 (Enclosing Dikin ellipsoid). Let D ⊆M be open and convex, and
let F : D→ R be a θ-barrier along geodesics. If θ > 0 and F is bounded from below, with
analytic center p∗ ∈ D, then

D ⊆ B◦F,p∗(2θ + 1),

where B◦
F,p∗ = B

◦
F,p∗,1 denotes the Dikin ellipsoid (Definition 8.1.7). That is, the domain is

contained in the Dikin ellipsoid with radius 2θ + 1 about p∗.

Proof. Let u ∈ Tp∗M be such that ∥u∥F,p∗ = 1, and let γ(t) := Expp∗
(tu). By

Corollary 8.1.8, we know that B◦
F,p∗(1) ⊆ D, hence g(t) := F(γ(t)) is well-defined

for t ∈ [0, 1).
To show that D ⊆ B◦

F,p∗(2θ + 1), by convexity of D it suffices to show that
γ(1 + 2θ) ∉ D. From Eq. (8.1.18) in Corollary 8.1.10 and p∗ being a minimizer of F,
it follows that, for t ∈ [0, 1),

dFγ(t)(τγ,tu) = dFγ(t)(τγ,tu) − dFp∗(u) = ġ(t) − ġ(0) ⩾
t

1 + t .

Proposition 8.2.4 on the other hand implies that for

dFγ(t)(τγ,tu) ⩽ θπD,γ(t)(τγ,tu).

Together, we obtain that, for every t ∈ [0, 1),

θπD,γ(t)(τγ,tu) ⩾
t

1 + t .

By the definition of the Minkowski functional, for every s ∈ [0,πD,γ(t)(τγ,t(u))),
we have

γ
(︁
t + 1

s

)︁
= Expp∗

(︁ (︁
t + 1

s

)︁
u
)︁
= Expγ(t)

(︁ 1
sτγ,tu

)︁
∉ D.

Therefore, for every t ∈ [0, 1) and s ∈ [0, t
θ(1+t)), we have

γ
(︁
t + 1

s

)︁
∉ D.

Letting t→ 1 and s→ 1/(2θ) gives that γ(1 + 2θ) ∉ D, sinceM \D is closed. □

8.2.2. Compatibility
Given a barrier F, for which convex functions f is it the case that tf + F is self-
concordant for all t ⩾ 0, with parameter independent of t? This is clearly the case
if f is (affine) linear or quadratic in the sense that the third covariant derivative ∇3f
vanishes. We now define the more general notion of compatibility, which suffices
for this, as shown in Proposition 8.2.10 below.

Definition 8.2.8 (Compatibility). Let D ⊆M be open and convex, let f, F : D→ R

be convex functions. For β1,β2 ⩾ 0, we say that f is (β1,β2)-compatible with F if for
all p ∈ D and u, v ∈ TpM, one has

|(∇3f)p(u, v, v)| ⩽ 2β1

√︂
(∇2F)p(u,u)(∇2f)p(v, v)

+ 2β2

√︂
(∇2F)p(v, v)

√︂
(∇2f)p(u,u)

√︂
(∇2f)p(v, v).

(8.2.1)
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For β ⩾ 0, we say that f is β-compatible with F along geodesics if for all p ∈ D
and v ∈ TpM,

|(∇3f)p(v, v, v)| ⩽ 2β
√︂
(∇2F)p(v, v)(∇2f)p(v, v). (8.2.2)

Clearly, if f is a linear or a convex quadratic function, in the sense that its second
or third covariant derivative vanishes, then it is clearly automatically compatible
with any convex F. Moreover, any α-self-concordant function is (β1,β2)-compatible
with itself, for β1 + β2 = 1/

√
α. As we show in Proposition 8.2.10, given a barrier F

for a domain D and a convex objective function f, compatibility guarantees that
tf + F is self-concordant for all t ⩾ 0, with a parameter independent of t, and
hence one can use the path-following method presented in Section 8.2.3 below to
optimize f over D. We apply this theory in Chapter 10.

Compatibility along geodesics reduces to the well-known Euclidean notion,
see [NN94, Def. 3.2.1] or [Nes18, Def. 5.4.2]. In these works it is also explained
how to generalize the notion of compatibility to vector-valued functions f, which is
useful for constructing new barriers out of old ones; see [NN94, §5.1.2] or [Nes18,
§5.4.6] for details. We do not provide such a generalization here. Clearly, if f is
(β1,β2)-compatible with F then it is also β-compatible with F along geodesics for
β := β1 +β2. Yet the latter does not imply the former, even in the Euclidean setting.

We may equivalently write Eqs. (8.2.1) and (8.2.2) as follows in terms of the
seminorms ∥·∥g,p = ∥·∥g,p,1 induced by the inner products ⟨·, ·⟩g,p = ⟨·, ·⟩g,p,1
defined in Eq. (8.1.2):

|(∇3f)p(u, v, v)| ⩽ 2β1∥u∥F,p∥v∥2f,p + 2β2∥v∥F,p∥u∥f,p∥v∥f,p (8.2.3)

and

|(∇3f)p(v, v, v)| ⩽ 2β∥v∥F,p∥v∥2f,p. (8.2.4)

We now state some basic properties of compatibility. The following result holds
analogously for compatibility along geodesics.

Lemma 8.2.9. Let D ⊆M be open and convex, F : D→ R a convex function, and β ∈
R2
⩾0.

(i) Let f : D→ R be a convex function that is β-compatible with F and let c ⩾ 0. Then
cf is β-compatible with F.

(ii) Let f1, f2 : D→ R be two convex functions that are each β-compatible with F. Then
their sum f1 + f2 is β-compatible with F.

Proof. Property (i) is clear from the definition, as both sides of Eq. (8.2.1) are
positively homogeneous in f. To prove property (ii), we note that for every p ∈ D
and u, v ∈ TpM,

|(∇3(f1 + f2))p(u, v, v)| ⩽ |(∇3f1)p(u, v, v)| + |(∇3f2)p(u, v, v)|
⩽ 2β1

√︁
(∇2F)p(u,u)(∇2f1)p(v, v) + 2β1

√︁
(∇2F)p(u,u)(∇2f2)p(v, v)

+ 2β2
√︁
(∇2F)p(v, v)

(︂√︁
(∇2f1)p(u,u)

√︁
(∇2f1)p(v, v) +

√︁
(∇2f2)p(u,u)

√︁
(∇2f2)p(v, v)

)︂
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⩽ 2β1

√︂
(∇2F)p(u,u)(∇2f1)p(v, v) + 2β1

√︂
(∇2F)p(u,u)(∇2f2)p(v, v)

+ 2β2

√︂
(∇2F)p(v, v)

√︂
(∇2f1)p(u,u) + (∇2f2)p(u,u)

√︂
(∇2f1)p(v, v) + (∇2f2)p(v, v)

= 2β1

√︂
(∇2F)p(u,u)(∇2(f1 + f2))p(v, v)

+ 2β2

√︂
(∇2F)p(v, v)

√︂
(∇2(f1 + f2))p(u,u)

√︂
(∇2(f1 + f2))p(v, v).

The first inequality holds by compatibility of f1 and of f2 with F, and the second
inequality uses the Cauchy-Schwarz inequality. □

We now show that if a convex function f is compatible with a self-concordant
function F (e.g., a barrier), then tf + F is self-concordant for every t ⩾ 0, with a self-
concordance constant that is independent of t. We emphasize that it is not necessary
for f itself to be self-concordant. The proof is inspired by [NN94, Prop. 3.2.2] in
the Euclidean setting. The result holds analogously if we use compatibility and
self-concordance along geodesics in the hypothesis and conclusion.

Proposition 8.2.10. Let D ⊆ M be open and convex and let f, F : D → R be convex
functions. Suppose that f is (β1,β2)-compatible with F and F is 1-self-concordant.
Then tf + F : D→ R is α-self-concordant for every t ⩾ 0, with

α :=
⎧⎪⎪⎨⎪⎪⎩

4(β2
2−(β1−1)2)

β2
2(β

2
2+4β1)

if β2
2 > 2 max{β1(β1 − 1), 1 − β1},

1
max{β2

1,1} otherwise.

If in addition F is strongly 1-self-concordant and f has a closed convex extension, then
tf + F : D→ R is strongly α-self-concordant for every t ⩾ 0.

Proof. We abbreviate Ft := tf+ F. Clearly, Ft is convex for every t ⩾ 0, so it remains
to prove the self-concordance estimate. For any p ∈ D and u, v ∈ TpM, using
Eqs. (8.1.6) and (8.2.3),

|(∇3Ft)p(u, v, v)|
⩽ t|(∇3f)p(u, v, v)| + |(∇3F)p(u, v, v)|
⩽ 2tβ1∥u∥F,p∥v∥2f,p + 2tβ2∥v∥F,p∥u∥f,p∥v∥f,p + 2∥u∥F,p∥v∥2F,p

= 2
(︂√
t∥u∥f,p

(︂√
tβ2∥v∥F,p∥v∥f,p

)︂
+ ∥u∥F,p

(︂
tβ1∥v∥2f,p + ∥v∥

2
F,p

)︂)︂
⩽ 2

√︂
t∥u∥2

f,p + ∥u∥
2
F,p

√︃(︂√
tβ2∥v∥F,p∥v∥f,p

)︂2
+

(︂
tβ1∥v∥2f,p + ∥v∥

2
F,p

)︂2

= 2∥u∥Ft,p

√︃
tβ2

2∥v∥2F,p∥v∥
2
f,p +

(︂
tβ1∥v∥2f,p + ∥v∥

2
F,p

)︂2

using the Cauchy-Schwarz inequality in the second-to-last step. To show that Ft
is α-self-concordant, by Eq. (8.1.5) it therefore suffices to show that (note we use
∥·∥g,p,1 rather than ∥·∥g,p,α!)√︃

tβ2
2∥v∥2F,p∥v∥

2
f,p +

(︂
tβ1∥v∥2f,p + ∥v∥

2
F,p

)︂2
⩽

1√
α
∥v∥2Ft,p. (8.2.5)
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Without loss of generality, we can assume that ∥v∥2
Ft,p = 1. Writing x := ∥v∥2

f,p and
y := ∥v∥2

F,p, we see that Eq. (8.2.5) holds provided we can prove that

β2
2txy + (β1tx + y)2 ⩽

1
α

(8.2.6)

for all x,y ⩾ 0 subject to the constraint tx + y = 1. Eliminating t and x using this
constraint, the left-hand side can be written as

q(y) := β2
2(1 − y)y + (β1(1 − y) + y)2

=

(︂
(1 − β1)2 − β2

2

)︂
y2 +

(︂
2β1 − 2β2

1 + β
2
2

)︂
y + β2

1,

so we wish to show that q(y) ⩽ 1/α for all y ∈ [0, 1]. Note that q(y) is a quadratic
polynomial. We distinguish two cases:

If (1 − β1)2 < β2
2, then q is strictly concave and attains its maximum on R at

y∗ =
2β1 − 2β2

1 + β
2
2

2
(︁
β2

2 − (1 − β1)2
)︁ .

Note that y∗ ∈ (0, 1) if and only if

0 < 2β1 − 2β2
1 + β

2
2 < 2

(︂
β2

2 − (1 − β1)2
)︂
,

which is equivalent to

β2
2 > 2 max{β1(β1 − 1), 1 − β1}.

If y∗ ∈ (0, 1), then the maximum of q(y) on [0, 1] is given by

q(y∗) =
(︁
2β1 − 2β2

1 + β
2
2
)︁2

4
(︁
β2

2 − (1 − β1)2
)︁ + β2

1 =
β4

2 + 4β1β
2
2

4
(︁
β2

2 − (1 − β1)2
)︁ ,

while otherwise it is attained at the boundary, where q(0) = β2
1 and q(1) = 1.

If (1 − β1)2 ⩾ β2
2, then q(y) is convex and hence attains its maximum always at

the boundary. Summarizing both cases, we find that

max
y∈[0,1]

q(y) =
⎧⎪⎨⎪⎩

β4
2+4β1β

2
2

4(β2
2−(1−β1)2) if (β1 − 1)2 < β2

2 and β2
2 > 2 max{β1(β1 − 1), 1 − β1},

max{β2
1, 1} otherwise.

The condition of the first case is equivalent to

β2
2 > 2 max{β1(β1 − 1), 1 − β1},

and hence we have confirmed Eq. (8.2.6). Thus we have proved that Ft = tf+F is anα-
self-concordant function onD. Finally, the last claim follows from Lemma 6.5.2 □

Finally, we construct a self-concordant barrier for the epigraph of any function
compatible with a barrier for its domain. This result generalizes the Euclidean
result [Nes18, Thm. 5.3.5], which constructs a self-concordant barrier for the open
epigraph

E◦f := {(p, t) ∈ D ×R : f(p) < t} (8.2.7)

of a self-concordant barrier. As before, it holds analogously if we use the notions
along geodesics in the hypothesis and conclusion.
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Theorem 8.2.11 (Barriers for epigraphs). Let D ⊆ M be open and convex and let
f, F : D→ R be convex functions. Suppose that f is (β1,β2)-compatible with F and F is
1-self-concordant. Then, the function

G : E◦f→ R, G(p, t) = − log(t − f(p)) + F(p)

defined on the open epigraph E◦
f
, see Eq. (8.2.7), is convex and α-self-concordant, with

α−1 := max
{︁
1 + β2

1,β1 + 1
2β

2
2, 2

3β
2
2
}︁

. (8.2.8)

Furthermore, for every (p, t) ∈ E◦
f

one has

λG,α(p, t)2 =
λG(p, t)2

α
⩽

1 + λF(p)2
α

. (8.2.9)

If in addition F is strongly 1-self-concordant and f has a closed convex extension, then G is
strongly α-self-concordant. In particular, if F is a θ-barrier forD and f has a closed convex
extension, then G/α is a (1 + θ)/α-barrier for E◦

f
.

Proof. We identify v ∈ T(p,t)E
◦
f
≅ TpD ⊕ R and write v = (vp, vt), with vp ∈ TpD

and vt ∈ R. Then the differential of G is given by

dG(p,t)(v) = −
1

t − f(p)
(︁
vt − dfp(vp)

)︁
+ dFp(vp) (8.2.10)

and the Hessian of G by

(∇2G)(p,t)(v, v) (8.2.11)

=
1

(t − f(p))2
(︁
vt − dfp(vp)

)︁2

⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
=:A2

v

+ 1
t − f(p)(∇

2f)p(vp, vp)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
=:B2

v

+ (∇2F)p(vp, vp)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
=:C2

v

.

The underbraced terms are all non-negative as t > f(p) and both f and F are convex,
hence we can write them as squares of real numbers Av,Bv,Cv. This also shows
that G is convex. We now prove that G is self-concordant. The third covariant
derivative can be computed as follows: for all u, v ∈ T(p,t)E

◦
f
, we have

(∇3G)(p,t)(u, v, v) = − 2
(t − f(p))3

(︁
ut − dfp(up)

)︁ (︁
vt − dfp(vp)

)︁2

− 2
(t − f(p))2

(︁
vt − dfp(vp)

)︁
(∇2f)p(up, vp)

− 1
(t − f(p))2

(︁
ut − dfp(up)

)︁
(∇2f)p(vp, vp)

+ 1
t − f(p)(∇

3f)p(up, vp, vp) + (∇3F)p(up, vp, vp)

= −2AuA
2
v − 2Av

1
t − f(p)(∇

2f)p(up, vp) −AuB
2
v

+ 1
t − f(p)(∇

3f)p(up, vp, vp) + (∇3F)p(up, vp, vp).

189



8. Interior-point methods on manifolds: the framework

Now, we have

1
t − f(p)(∇

2f)p(up, vp) ⩽ BuBv

by the Cauchy-Schwarz inequality,

1
t − f(p)

|︁|︁(∇3f)p(up, vp, vp)
|︁|︁ ⩽ 2

t − f(p)
(︂
β1∥u∥F,p∥v∥2f,p + β2∥v∥F,p∥u∥f,p∥v∥f,p

)︂
= 2

(︂
β1B

2
vCu + β2BuBvCv

)︂
by compatibility of fwith F as in Eq. (8.2.3), and finally|︁|︁(∇3F)p(up, vp, vp)

|︁|︁ ⩽ 2CuC
2
v

by 1-self-concordance of F (Eq. (8.1.5)). Combining these estimates, we can upper
bound the third covariant derivative of G in absolute value as|︁|︁(∇3G)(p,t)(u, v, v)

|︁|︁
⩽ 2AuA

2
v + 2AvBuBv +AuB

2
v + 2

(︂
β1B

2
vCu + β2BuBvCv

)︂
+ 2CuC

2
v

= Au(2A2
v + B2

v) + Bu(2AvBv + 2β2BvCv) + Cu(2β1B
2
v + 2C2

v)

⩽

√︂
A2

u + B2
u + C2

u

√︂
(2A2

v + B2
v)2 + (2AvBv + 2β2BvCv)2 + (2β1B

2
v + 2C2

v)2

⩽ 2
√︂
(∇2G)(p,t)(u,u)

√︂
max

{︁
1 + β2

1,β1 + 1
2β

2
2, 2

3β
2
2
}︁
(∇2G)(p,t)(v, v)

=
2√
α

√︂
(∇2G)(p,t)(u,u) (∇2G)(p,t)(v, v),

where the last inequality holds due to 2xy ⩽ x2 + y2, as in

1
4
[︁
(2A2

v + B2
v)2 + (2AvBv + 2β2BvCv)2 + (2β1B

2
v + 2C2

v)2
]︁

= A4
v +

(︂
1
4 + β

2
1

)︂
B4
v + C4

v + 2A2
vB

2
v + 2

(︂
β1 + 1

2β
2
2

)︂
B2
vC

2
v + 2β2AvB

2
vCv

= A4
v +

(︂
1
4 + β

2
1

)︂
B4
v + C4

v + 2A2
vB

2
v + 2

(︂
β1 + 1

2β
2
2

)︂
B2
vC

2
v + 2

(︂√
3

2 B
2
v

)︂ (︂
2√
3
β2AvCv

)︂
⩽ A4

v +
(︂

1
4 + β

2
1

)︂
B4
v + C4

v + 2A2
vB

2
v + 2

(︂
β1 + 1

2β
2
2

)︂
B2
vC

2
v + 3

4B
4
v + 4

3β
2
2A

2
vC

2
v

= A4
v +

(︂
1 + β2

1

)︂
B4
v + C4

v + 2A2
vB

2
v + 2

(︂
β1 + 1

2β
2
2

)︂
B2
vC

2
v + 22

3β
2
2A

2
vC

2
v

⩽ max
{︁
1 + β2

1,β1 + 1
2β

2
2, 2

3β
2
2
}︁ (︂
A2

v + B2
v + C2

v

)︂2
.

We conclude that G is indeed α-self-concordant with α as in Eq. (8.2.8).
Next, we prove the bound on the differential. Using Eq. (8.2.10) and with Av,Bv

as in Eq. (8.2.11), we have

|dG(p,t)(v)| ⩽ Av + |dFp(vp)| ⩽ Av + λF(p)Cv

⩽
√︁

1 + λF(p)2
√︂
A2

v + C2
v ⩽

√︁
1 + λF(p)2

√︂
(∇2G)(p,t)(v, v),
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by definition of the Newton decrement and the Cauchy-Schwarz inequality. Thus
we find that

λG,α(p, t) ⩽
√︃

1 + λF(p)2
α

.

which establishes Eq. (8.2.9).
Finally, if F is strongly 1-self-concordant, hence closed convex on D, and if f has

a closed convex extension then it is easy to see that G is closed convex on E◦
f
, using

that (s, t) ↦→ − log(t − s) is closed convex on {(s, t) ∈ R2 : s < t}. □

In particular, we can apply this construction to any self-concordant function:

Corollary 8.2.12. LetD ⊆M be open and convex and let f : D→ R be 1-self-concordant.
Then g(p, t) = − log(t − f(p)) + f(p) is a convex and 1-self-concordant function on the
open epigraph E◦

f
of f, see Eq. (8.2.7). It satisfies λg(p, t) ⩽

√︁
1 + λf(p)2 for all (p, t) ∈ E◦

f
.

If f is strongly self-concordant, so is g. In particular, if f is a θ-barrier, g is a (1+θ)-barrier
for E◦

f
.

To end this section, we provide a variant of the above barrier for level sets of a
convex function which does not use the notion of compatibility, but has a parameter
that depends on the variation of the function. For a convex function f : M→ R

and η ∈ R for which there is p ∈Mwith f(p) < η, the open level set ℒ◦
f,η ⊆M is

defined by
ℒ◦f,η = {p ∈M | f(p) < η}. (8.2.12)

Define the logarithmic barrier Fη : ℒ◦
f,η→ R by

Fη(p) = − log(η − f(p)) (p ∈ ℒ◦f,η). (8.2.13)

The logarithmic barrier is convex and has bounded Newton decrements as follows.

Lemma 8.2.13. The function F = Fη defined in Eq. (8.2.13) is smooth, closed convex, and
satisfies

dFp(u)2 ⩽ (∇2F)p(u,u) (u ∈ TpM, p ∈ ℒ◦f,η). (8.2.14)

Proof. Letω(p) := η − f(p) > 0. Then we have

dFp(u) =
dfp(u)
ω(p) , (∇2F)p(u,u) =

(∇2f)p(u,u)
ω(p) +

dfp(u)2
ω(p)2 . (8.2.15)

Then by convexity of f, (∇2F)p(u,u) ⩾ 0 and hence F is convex, and satisfies
(∇2F)p(u,u) ⩾ dFp(u)2.

The closedness of F is seen as follows: Consider a sequence (pk, zk) in the
epigraph of F, that converges to (p∞, z∞) ∈ M ×R. Note that f is smooth on M,
and hence so is F on ℒ◦

f,η. By continuity of f, ℒ◦
f,η is open, hence disjoint from

its boundary in M. Therefore any boundary point q of ℒ◦
f,η satisfies f(q) ⩾ η.

Therefore, it is impossible for p∞ to belong to the boundary of ℒ◦
f,η: that would

imply f(p∞) ⩾ η, which would imply z∞ ⩾ ∞. Hence p∞ ∈ ℒ◦f,η, and F(z∞) =
limk→∞ F(pk) ⩽ limk→∞ zk = z∞. □
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If an α-self-concordant function F satisfies Eq. (8.2.14), then F/α is an α-barrier.
The following is an extension of [Nes18, Thm. 5.1.4] to our setting; the result below
is originally due to H. Hirai [Hir22b]:

Theorem 8.2.14 (Barriers for level sets). Suppose that f : M→ R is α-self-concordant.
Then Fη : ℒ◦

f,η→ R is α′-self-concordant for

α′ =
4(η − f∗)/α + 1
(2(η − f∗)/α + 1)2 (8.2.16)

where f∗ := infx∈M f(x). In particular, Fη/α′ is an O((η − f∗)/α)-barrier for ℒ◦
f,η.

When only considering self-concordance along geodesics, the constant α′ can be
taken as α/((η − f∗) + α), which is exactly what is proven in [Nes18, Thm. 5.1.4].
For self-concordance, however, a little modification is required, which leads to a
weaker constant.

Proof. Our starting point is Eq. (8.2.15), where we recall thatω(p) = η− f(p). Since
dfp(u)2 = (dfp ⊗ dfp)(u,u), and (∇v(df ⊗ df))p(u,u) = ((∇vdf)p ⊗ dfp + dfp ⊗
(∇vdf)p)(u,u) = 2dfp(u)(∇2f)p(u, v), the covariant derivative of ∇2F is given by
(suppressing p’s for convenience)

∇3F(v,u,u) = ∇
3f(v,u,u)
ω

+ df(v)∇
2f(u,u)
ω2 + 2df(u)∇2f(u, v)

ω2 + 2df(v)df(u)2
ω3 .

(8.2.17)
Hence we have

|∇3F(v,u,u)| ⩽ 2
√︁
∇2f(v, v)∇2f(u,u)
√
αω

+ |df(v)|∇
2f(u,u)

ω2

+ 2|df(u)|
√︁
∇2f(v, v)

√︁
∇2f(u,u)

ω2 + 2|df(v)|df(u)2
ω3 .

Define τ1, τ, ξ1, ξ by

τ1 :=
√︁
∇2f(v, v)/ω, τ :=

√︁
∇2f(u,u)/ω, ξ1 := |df(v)|/ω, ξ := |df(u)|/ω.

Then we have

|∇3F(v,u,u)|
2
√︁
∇2F(v, v)∇2F(u,u)

⩽
(1/
√
α)ω1/2τ1τ

2 + (1/2)ξ1τ
2 + ξτ1τ + ξ1ξ

2

(τ2
1 + ξ

2
1)1/2(τ2 + ξ2)

. (8.2.18)

We bound the right-hand side as follows. By homogeneity, we may consider the
optimization problem:

maximize (1/
√
α)ω1/2τ1τ

2 + (1/2)ξ1τ
2 + ξτ1τ + ξ1ξ

2 s.t. τ2
1 + ξ

2
1 = 1, τ2 + ξ2 = 1.

For fixed (τ, ξ), optimizing with respect to (τ1, ξ1) is a linear optimization over the
unit circle, and the optimum is attained at

((1/
√
α)ω1/2τ2 + ξτ, (1/2)τ2 + ξ2)√︁

((1/
√
α)ω1/2τ2 + ξτ)2 + ((1/2)τ2 + ξ2)2

.
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Then the problem reduces to

maximize
√︂
((1/
√
α)ω1/2τ2 + ξτ)2 + ((1/2)τ2 + ξ2)2 s.t. τ2 + ξ2 = 1.

This optimization problem can be solved using the method of Lagrange multipliers.
For convenience set c =

√︁
ω/α, and define q(τ, ξ) = (

√︁
ω/ατ2 + ξτ)2 + (τ2/2 + ξ2)2.

The system of equations

∂τq(τ, ξ) = µτ, ∂ξq(τ, ξ) = µξ, τ2 + ξ2 = 1, µ ∈ R
has six solutions (τ, ξ,µ), given by

(0,±1, 4), 1√
4c2 + 1

(2c, 1, 16c4 + 16c2 + 4), 1√
4c2 + 1

(−2c,−1, 16c4 + 16c2 + 4),

1√
4c2 + 9

(3,−2c, 16c2 + 9), 1√
4c2 + 9

(−3, 2c, 16c2 + 9)

and the largest value attained of q(τ, ξ) attained at any of these points is (2c2 +
1)2/(4c2 + 1). Therefore, the right-hand side of Eq. (8.2.18) is at most√︄

(2(ω/α) + 1)2
4(ω/α) + 1

.

In other words, this gives that α′ = (4(ω/α) + 1)/(2(ω/α) + 1)2 is a suitable self-
concordance constant at p. Taking the maximum over p ∈ ℒ◦

f,η yields the choice
of α′ in Eq. (8.2.16). □

8.2.3. Path-following method
We now discuss a path-following method for objectives which are compatible
with a barrier. To this end, we consider the approach of [NN94, Ch. 3]. Their
Euclidean framework is rather general, and deals with self-concordant families. We
specialize to self-concordant families generated by a barrier, and generalize the
corresponding path-following method to the Riemannian setting. The goal is to
minimize a convex objective function f over an open convex domain D, that is, to
find p ∈ D such that f(p) ≈ infq∈D f(q). The running assumption we shall make is
that we have a barrier F for the domain D such that the function

Ft := tf + F : D→ R

is α-self-concordant for all t ⩾ 0, with a parameter α that is independent of t. One
way to guarantee this is to assume that f is compatible with F, as shown before in
Proposition 8.2.10.

The basic idea of the path-following method is as follows (as explained previously
in Chapter 4). The algorithm keeps track of two pieces of data, a point p in the
domainD and a time parameter t. The initial data to the algorithm is specified by a
point p−1 ∈ D such that λF,α(p−1) is small. We then choose a time parameter t0 > 0
such that we are in the quadratic convergence regime for Newton’s method
for Ft0 as determined by Theorem 8.1.17, say λFt0 ,α(p−1) < λ∗ = 1 − 1/

√
2. Such

initial data can be obtained for instance by using the damped Newton method of
Theorem 8.1.18, or in the Euclidean setting by a similar (reverse) path-following
method. We then iterate the following procedure for k = 0, 1, 2, . . . :
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(i) Update pk−1 to pk ∈ D by taking one Newton step with respect to Ftk , so
that λFtk

,α(pk+1) becomes smaller.

(ii) Increase tk to some tk+1 by a constant factor, such that λFtk+1 ,α(pk) < λ∗ still
holds.

Throughout the algorithm, pk will be an approximate minimizer of Ftk . One can
also show that if tk is large enough, approximate minimizers of Ftk are approximate
minimizers of f.

We first determine by what factor one can increase t while keeping the Newton
decrement below some threshold. The following result is a translation of [NN94,
Thm. 3.1.1] to our setting. Note that here, we do not assume that tf + F is
self-concordant.

Lemma 8.2.15. Let D ⊆ M be open and convex, let F : D → R be a θ-barrier along
geodesics, and let f : D → R be a convex function. Furthermore, let t, t′,α, c > 0 and
p ∈ D be such that (︄

1 +
√
θ

c
√
α

)︄|︁|︁|︁|︁log t
′

t

|︁|︁|︁|︁ ⩽ 1 − λFt,α(p)
c

.

Then λFt,α(p) ⩽ c implies that λFt′ ,α(p) ⩽ c.
Proof. Let p ∈ D. Throughout the proof, all derivatives of functions defined onM
will be taken at the point p, hence we shall omit the subscript. We will assume
that t′ ⩾ t, but the proof for t′ ⩽ t is analogous. For every 0 ≠ u ∈ TpM, define a
function ϕu : [t, t′] → R by

ϕu(s) =
dFs(u)√︁
∇2Fs(u,u)

.

To prove the lemma, it suffices to show that |ϕu(t′)| ⩽ c
√
α for allu ≠ 0. Sinceϕ−u =

−ϕu, we may assume without loss of generality that ϕu(t′) ⩾ 0. We first compute
the derivative of ϕu:

∂sϕu(s) =
df(u)√︁
∇2Fs(u,u)

− 1
2
dFs(u) · ∇2f(u,u)
(∇2Fs(u,u))3/2

=
1
s
ϕu(s) −

1
s

dF(u)√︁
∇2Fs(u,u)

− 1
2
dFs(u) · ∇2f(u,u)
(∇2Fs(u,u))3/2

=
1
2sϕu(s) −

1
s

dF(u)√︁
∇2Fs(u,u)

+ 1
2s
dFs(u) · ∇2F(u,u)
(∇2Fs(u,u))3/2

=
1
2sϕu(s)

(︃
1 + ∇

2F(u,u)
∇2Fs(u,u)

)︃
− 1
s

dF(u)√︁
∇2Fs(u,u)

.

Let t0 be the largest s ∈ [t, t′] such that ϕu(t0) = 0; if such an s does not exist, then
set t0 = t. Let t∗ ∈ [t0, t′] be such that ϕu(t∗) is maximal over this interval, and
set ϕ∗u = ϕu(t∗). Then,

ϕ∗u = ϕu(t0) +
∫ t∗

t0

∂sϕ(s)ds
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⩽ ϕu(t0) +
∫ t∗

t0

[︄
1
2sϕu(s)

(︃
1 + ∇

2F(u,u)
∇2Fs(u,u)

)︃
+ 1
s

|dF(u)|√︁
∇2Fs(u,u)

]︄
ds

⩽ |ϕu(t0)| +
∫ t∗

t0

[︃
1
s
ϕu(s) +

1
s

√
θ

]︃
ds

⩽ |ϕu(t)| + (ϕ∗u +
√
θ) log t

∗

t0
;

the second inequality follows since ∇2Fs ⩾ ∇2F as f is convex and using that F
is a θ-barrier; the last inequality is ensured by our choice of t0. Using |ϕu(t)| ⩽√
αλFt,α(p), we obtain

ϕ∗u

(︃
1 − log t

∗

t0

)︃
⩽
√
αλFt,α(p) +

√
θ log t

∗

t0
, (8.2.19)

On the other hand, since t ⩽ t0 ⩽ t∗ ⩽ t′, our assumption implies that(︄
1 +
√
θ

c
√
α

)︄
log t

∗

t0
⩽

(︄
1 +
√
θ

c
√
α

)︄|︁|︁|︁|︁log t
′

t

|︁|︁|︁|︁ ⩽ 1 − λFt,α(p)
c

,

or equivalently

√
αλFt,α(p) +

√
θ log t

∗

t0
⩽ c
√
α

(︃
1 − log t

∗

t0

)︃
. (8.2.20)

Combining Eqs. (8.2.19) and (8.2.20) givesϕ∗u ⩽ c
√
α, implying that |ϕu(t′)| ⩽ c

√
α

as desired. □

We now show that for large t > 0, approximate minimizers of Ft correspond
to approximate minimizers of f. The proposition and proof we give below are
adapted from [NN94, Prop. 3.2.4].

Proposition 8.2.16. Let D ⊆M be open and convex, let F : D→ R be a θ-barrier along
geodesics for D, and let f : D→ R be a smooth convex function which has a closed convex
extension. For some fixed t > 0, suppose that Ft := tf + F is α-self-concordant along
geodesics for some α > 0 and that it is bounded from below. Then for every p ∈ D such
that λFt,α(p) < 1

3 , we have

f(p) − inf
q∈D

f(q) ⩽ 2θ + αρ(λFt,α(p))
t

,

where we recall from Eq. (8.1.17) that ρ(r) = −r − log(1 − r).
Proof. By Lemma 6.5.2, Ft is closed convex and hence strongly α-self-concordant
along geodesics. Because its Hessian is positive definite and we have λFt,α(p) < 1,
Proposition 8.1.14 implies that Ft attains its minimum at a unique minimizer pt,∗ ∈
D and moreover

Ft(p) − Ft(pt,∗) ⩽ αρ(λFt,α(p)). (8.2.21)
Furthermore, Lemma 8.1.15 shows that if u ∈ TpM is such that Expp(u) = pt,∗,
then

∥u∥Ft,p,α ⩽
λFt,α(p)

1 − λFt,α(p)
<

1
2
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where the last inequality follows from λFt,α(p) < 1
3 . Using Corollary 8.1.11, we

obtain that
Exppt,∗

(v) = Expp(2u) ∈ D,

where v = τγ,1u is the parallel transport of u from p to pt,∗ along the geodesic
γ(t) := Expp(tu). By Proposition 8.2.4, it follows that

dFpt,∗(v) ⩽ θ

and hence, using convexity of F and Exppt,∗
(v) = p,

F(pt,∗) − F(p) ⩽ −dFpt,∗(−v) = dFpt,∗(v) ⩽ θ. (8.2.22)

Together, Eqs. (8.2.21) and (8.2.22) then show that

f(p) = Ft(p) − F(p)
t

⩽
Ft(pt,∗) + αρ(λFt,α(p)) − F(p)

t

= f(pt,∗) +
F(pt,∗) − F(p) + αρ(λFt,α(p))

t

⩽ f(pt,∗) +
θ + αρ(λFt,α(p))

t
. (8.2.23)

We will now give an upper bound on f(pt,∗)−f(q) for every q ∈ D. Let v ∈ Tpt,∗M

be such that Exppt,∗
(v) = q. Using the convexity of f, the fact that pt,∗ is a minimizer

of Ft, and Proposition 8.2.4 (in this order) gives

f(pt,∗) − f(q) ⩽ −dfpt,∗(v) =
dFpt,∗(v)

t
⩽
θ

t
.

Combining this with Eq. (8.2.23) and optimizing over q ∈ D gives the desired
bound. □

We now come to the main result of this section, giving a path-following method
which converges to a minimizer of the objective, generalizing [NN94, Prop. 3.2.4]
to our setting.

Theorem 8.2.17. Let D ⊆M be an open, convex, and bounded domain. Let F : D→ R

be a θ-barrier for D, and let f : D → R be a smooth convex function with a closed
convex extension. Let α > 0 be such that Ft := tf + F is α-self-concordant for all t ⩾ 0.

Choose 1 > λ(1) > λ(2) > 0 such that
(︂

λ(1)

1−λ(1)

)︂2
⩽ λ(2) < 1

3 ; a suitable choice is given by
λ(1) = 1

4 , λ(2) = 1
9 . Finally, let p ∈ D be given such that λF,α(p) < λ(1), and assume that p

is not a minimizer of f. Define a sequence of time parameters

t0 =

√
αλ(1) − λF(p)
∥dfp∥∗F,p

, tℓ = t0 · exp

(︄
ℓ
λ(1) − λ(2)

λ(1) +
√︁
θ/α

)︄
for ℓ = 0, 1, 2, . . . ,

and a sequence of points

p−1 = p, pℓ = (pℓ−1)Ftℓ
,+ for ℓ = 0, 1, 2, . . . .
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i.e., pℓ is the Newton iterate of pℓ−1 with respect to Ftℓ . Then this sequence is well-defined,
in the sense that pℓ ∈ D for all ℓ ⩾ 0, and it satisfies

f(pℓ) − inf
q∈D

f(q) ⩽ 2(θ + α)
tℓ

=
2(θ + α)∥dfp∥∗F,p√
αλ(1) − λF(p)

exp

(︄
−ℓ · λ

(1) − λ(2)

λ(1) +
√︁
θ/α

)︄
.

Proof. By the assumptions on f and strong self-concordance of F, we see from
Lemma 6.5.2 that Ft is strongly α-self-concordant onD for all t ⩾ 0. We shall prove
by induction on ℓ that for every ℓ ⩾ 0, we have pℓ ∈ D and

λFtℓ
,α(pℓ−1) ⩽ λ(1), λFtℓ

,α(pℓ) ⩽ λ(2).

Let us first check that λFt0 ,α(p−1) = λFt0 ,α(p) ⩽ λ(1). For every u ≠ 0, we have

|d(Ft0)p(u)| ⩽ t0 |dfp(u)| + |dFp(u)|

= (
√
αλ(1) − λF(p))

|dfp(u)|
∥dfp∥∗F,p

+ |dFp(u)|

⩽ (
√
αλ(1) − λF(p))∥u∥F,p + ∥dFp∥∗F,p∥u∥F,p

=
√
αλ(1)∥u∥F,p

⩽
√
αλ(1)∥u∥Ft0 ,p,

hence ∥d(Ft0)p∥∗Ft0 ,p ⩽
√
αλ(1), which is equivalent to λFt0 ,α(p) ⩽ λ(1). Next,

if λFtℓ
,α(pℓ−1) ⩽ λ(1) for some ℓ ⩾ 0, then by applying Theorem 8.1.16, we find that

the Newton iterate pℓ is in D and satisfies

λFtℓ
,α(pℓ) ⩽

(︃
λ(1)

1 − λ(1)

)︃2

⩽ λ(2).

Lastly, it remains to verify that if λFtℓ
,α(pℓ) ⩽ λ(2) for some ℓ ⩾ 0, then λFtℓ+1 ,α(pℓ) ⩽

λ(1). The tℓ are chosen exactly so that(︄
1 +

√
θ

λ(1)
√
α

)︄ |︁|︁|︁|︁log tℓ

tℓ+1

|︁|︁|︁|︁ = (︄
1 +

√
θ

λ(1)
√
α

)︄ (︄
λ(1) − λ(2)

λ(1) +
√︁
θ/α

)︄
= 1 − λ

(2)

λ(1)
.

We conclude that λFtℓ+1 ,α(p) ⩽ λ(1) by Lemma 8.2.15. Lastly, the bound on f(pl) −
infq∈D f(q) follows from Proposition 8.2.16, where we use that λ(2) < 1

3 and ρ(13) ≈
0.072 ⩽ 2. □

We end with a simple but useful lemma to upper bound the quantity ∥dfp∥∗F,p.

Lemma 8.2.18. Let p ∈ D, and f, F : D→ R be such that f is convex and F is strongly
1-self-concordant on D. Then

∥dfp∥∗F,p ⩽ sup
q∈D

f(q) − f(p) ⩽ sup
q∈D

f(q) − inf
q∈D

f(q).
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Proof. By Corollary 8.1.8, the Dikin ellipsoid B := B◦
F,p(1) of radius 1 is contained

in D. Then the convexity of f gives

∥dfp∥∗F,p = sup
u∈TpM

∥u∥F,p<1

|dfp(u)| = sup
u∈TpM

∥u∥F,p<1

dfp(u)

⩽ sup
u∈TpM

∥u∥F,p<1

f(Expp(u)) − f(p) = sup
q∈B

f(q) − f(p),

which is at most supq∈D f(q) − f(p) as B ⊆ D. □

198



9. Self-concordance of the squared
distance in non-positive curvature

In this chapter we discuss self-concordance of the squared distance function to
a point. In Section 9.1 we recall some useful formulas that apply to arbitrary
Hadamard manifolds. In Section 9.2 we focus on the space PD(n) of positive-
definite complex n × n matrices and prove that the distance squared to any
point is self-concordant. This relies on explicit computations of higher covariant
derivatives. Next, in Section 9.3 we use these same formulas to deduce stronger
self-concordance estimates in the case of hyperbolic space Hn, and use these
to construct a barrier for the distance function rather than its square; all this
generalizes readily to the model spaces of arbitrary constant negative curvature.

9.1. Hadamard manifolds
LetM be a Hadamard manifold, i.e., a simply-connected geodesically-complete
Riemannian manifold with non-positive sectional curvature (cf. Section 6.3).
Fix p0 ∈ M and consider the function that computes the squared distance to the
point p0, that is,

f : M→ R, f(p) = d(p,p0)2.

Then it is known that f is 2-strongly convex (which follows from variational
principles for the energy of a curve, cf. [Lee18, Thm. 10.22]). In fact, this is a
defining property of the more general class of CAT(0)-spaces, see Theorem 6.2.2
and [BH13]. It will also be useful to consider the distance to p0,

g : M→ R, g(p) = d(p,p0),

which is still convex. The following lemma summarizes well-known properties of
these functions.

Lemma 9.1.1. Let M be a Hadamard manifold, let p0 ∈ M, and define f,g : M → R

by f(p) = d(p,p0)2 and g(p) = d(p,p0). Then f is 2-strongly convex and g is convex.
For every p ≠ p0, g is smooth at p, and the differentials and Hessians satisfy

dfp = 2g(p)dgp = −2 ⟨Exp−1
p (p0), ·⟩p , (9.1.1)

∇2f = 2g∇2g + 2dg ⊗ dg ⪰ 2dg ⊗ dg =
df ⊗ df

2f . (9.1.2)

Proof. The strong convexity of f and convexity ofghold on any CAT(0)-space [BH13,
Cor. II.2.5]. Whenever p ≠ p0, f(p) ≠ 0 and hence g =

√
f is smooth at p. By the

This chapter is adapted from [HNW23].
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9. Self-concordance of the squared distance in non-positive curvature

chain rule, df = 2gdg. To compute these, note that g is 1-Lipschitz by the triangle
inequality, so |dgp(u)| ⩽ ∥u∥p for all u ∈ TpM. But since the geodesic from p in
the direction Exp−1

p (p0) has constant speed and reaches p0 at time 1, it follows that

dgp(Exp−1
p (p0)) = −g(p).

As ∥Exp−1
p (p0)∥p = g(p), an application of the Cauchy–Schwarz inequality

g(p) = |dgp(Exp−1
p (p0))| = |⟨(gradg)p, Exp−1

p (p0)⟩|
⩽ ∥(gradg)p∥p∥Exp−1

p (p0)∥p ⩽ ∥Exp−1
p (p0)∥p

holds with equality. It follows that (gradg)p = −g(p)−1Exp−1
p (p0) and dgp =

−g(p)−1 ⟨Exp−1
p (p0), ·⟩, anddfp = −2 ⟨Exp−1

p (p0), ·⟩p. We finally derive the formulas
for the Hessians. Applying the product rule to df = 2gdg yields

(∇2f)p = 2g(p)(∇2g)p + 2dgp ⊗ dgp,

The lower bound in Eq. (9.1.2) follows since (∇2g)p ⪰ 0, as a consequence of the
convexity of g. □

Corollary 9.1.2. The Newton decrement of f(p) = d(p,p0)2 is given by λf(p) =√
2d(p,p0).

Proof. Recall the variational characterization of the Newton decrement (Eq. (8.1.20)):

λf(p) = min
{︁
λ ⩾ 0 : dfp ⊗ dfp ⪯ λ2 (∇2f)p

}︁
.

Thus, λf ⩽
√

2f by Eq. (9.1.2). As g is linear in the direction Exp−1
p (p0), its Hessian

vanishes in this direction and so we in fact have equality, by the first equality in
Eq. (9.1.2). □

We use Lemma 9.1.1 to prove the following result, which is used later to prove
Theorem 9.3.7.

Lemma 9.1.3. Let Ψ : M ×R ×R>0 → R be the function defined by

Ψ(p,R,S) = R − S−1d(p,p0)2.

Then Ψ is concave, with Hessian given by

∇2Ψ = −
2
(︁
S−1gdS − dg

)︁⊗2 +
(︁
∇2f − 2dg ⊗ dg

)︁
S

⪯ 0,

where f,g are as in Lemma 9.1.1, dS is the differential of the projection (p,R,S) ↦→ S, and
we write dg for the differential of (p,R,S) ↦→ g(p) by a slight abuse of notation. Moreover,
for u = (up,uR,uS) and w = (wp,wR,wS) tangent vectors at (p,R,S), one has

∇3Ψ(w,u,u) = −2uS
S
∇2Ψ(w,u) − wS

S
∇2Ψ(u,u) − 1

S
∇3f(wp,up,up).
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9.2. Positive definite matrices

Proof. Clearly,
dΨ = dR + S−2f dS − S−1 df.

Since ∇dR ≡ 0 ≡ ∇dS, this yields

∇2Ψ = −2S−3f dS ⊗ dS + S−2 df ⊗ dS + S−2 dS ⊗ df − S−1∇2f. (9.1.3)

We now use Eqs. (9.1.1) and (9.1.2) to rewrite the above as

∇2Ψ = −2S−3g2 dS ⊗ dS + 2S−2g (dg ⊗ dS + dS ⊗ dg) − S−1(2g∇2g + 2dg ⊗ dg)
= −2S−1(S−1gdS − dg)⊗2 − 2S−1g∇2g.

Taking one more derivative in Eq. (9.1.3), we obtain

∇3Ψ(w,u,u) = 6S−4f dS(w)dS(u)2 − 2S−3df(w)dS(u)2 − 4S−3dS(w)df(u)dS(u)
+ 2S−2∇2f(w,u)dS(u) + S−2dS(w)∇2f(u,u) − S−1∇3f(w,u,u)
= −2S−1dS(u) ∇2Ψ(w,u) − S−1dS(w) ∇2Ψ(u,u) − S−1∇3f(w,u,u). □

Corollary 9.1.4. Let D = {(p,R,S) ∈ M × R>0 × R>0 : RS − f(p) > 0}. Then the
function F : D→ R defined by F(p,R,S) = − log(R − S−1d(p,p0)2) is convex.

9.2. Positive definite matrices
In this section, we specialize to the space PD(n) = PD(n,C) of positive definite
Hermitian n × nmatrices, which is a Hadamard manifold when endowed with a
well-known Riemannian metric. We collect a number of well-known results from
the literature and then derive explicit formulas for the higher derivatives of the
squared distance on this space by using techniques from matrix analysis. The main
result of this section is Theorem 9.2.11, where we show that the squared distance
is self-concordant on PD(n). As explained in the introduction, this implies that
the squared distance is self-concordant on arbitrary Hadamard symmetric spaces.

We will often use notation of the form h(P)where h : R>0 → R is some scalar-
valued function, which refers to the Hermitian matrix obtained by expanding P
in an eigenbasis and applying h to its eigenvalues. Examples include but are not
limited to expressions of the form Pt with t ∈ R, P + λ = P + λI where λ ∈ R,
log(P), et cetera.

We think of PD(n) as an open submanifold of the n × n Hermitian matrices
Herm(n) ⊆ Cn×n, so that we can identify TPPD(n) ≅ Herm(n) at any P ∈ PD(n).
Concretely, X ∈ Herm(n) corresponds to the tangent vector of the curve t ↦→
P + Xt = P1/2(I + tP−1/2XP−1/2)P1/2 at t = 0. These curves would be geodesics if
we equipped PD(n)with the Euclidean metric inherited from Herm(n). Instead,
we introduce the following Riemannian metric on PD(n):

⟨X, Y⟩P := Tr
[︂
(P−1/2XP−1/2)(P−1/2YP−1/2)

]︂
= Tr

[︁
P−1XP−1Y

]︁
(9.2.1)

for X, Y ∈ TPPD(n). This is real-valued as the Hilbert-Schmidt inner product of
two Hermitian matrices. Interestingly, ⟨·, ·⟩P is also the Euclidean Hessian of the
function P ↦→ − log det(P), which is a Euclidean self-concordant barrier for PD(n).
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9. Self-concordance of the squared distance in non-positive curvature

It is immediate from the definition that for every P ∈ PD(n), the bĳection
Q ↦→ P1/2QP1/2 is a Riemannian isometry of PD(n), meaning it preserves inner
products between tangent vectors. Then it also preserves the distance between any
two points: for any P,Q,Q′ ∈ PD(n), we have

d(Q,Q′) = d(P1/2QP1/2,P1/2Q′P1/2).
Therefore, if one is interested in properties of squared distance f(P) = d(P,P0)2,
one may choose P0 = Iwithout loss of generality. This will be convenient for our
purposes.

We now give explicit formulas for the geodesics on PD(n). For any P ∈ PD(n),
the exponential map at P reads

ExpP(X) = P1/2eP
−1/2XP−1/2

P1/2 (9.2.2)

and hence the geodesics through P take the form

P(t) = ExpP(tX) = P1/2etP
−1/2XP−1/2

P1/2.

In particular, the geodesics through P = I are of the form ExpI(tX) = etX. From the
description of the exponential map above it follows that ExpP : TPPD(n) → PD(n)
is a smooth bĳection for all P, with smooth inverse given by

Exp−1
P (Q) = P

1/2 log(P−1/2QP−1/2)P1/2.

By the Hopf–Rinow theorem, there exists a length-minimizing geodesic, which is
unique by the bĳectivity of the exponential map; hence the distance induced by
the Riemannian metric is

d(P,Q) = ∥log(P−1/2QP−1/2)∥HS = ∥log(Q−1/2PQ−1/2)∥HS.

where ∥·∥HS denotes the Hilbert–Schmidt (Frobenius) norm, because d(P,Q) =
∥Exp−1

P (Q)∥P.
The geodesics on PD(n) can be naturally described using the operator geometric

mean, which is defined for P,Q = PD(n) and t ∈ [0, 1] to be

P#tQ := P1/2(P−1/2QP−1/2)tP1/2.

The above formula for the geodesics through P shows that this is equal to
ExpP(tExp−1

P (Q)), and so it is the “time-t”-geodesic-midpoint between P and
Q.

One can also explicitly describe the parallel transport along geodesics. For P,Q ∈
PD(n), the parallel transport of X ∈ TPPD(n) along the unique geodesic from P to
Q is given by1

τP→Q(X) = P1/2(P−1/2QP−1/2)1/2P−1/2XP−1/2(P−1/2QP−1/2)1/2P1/2. (9.2.3)
1One way of proving Eq. (9.2.3) is as follows [Sak96, Lem. IV.6.2]: for every P ∈ PD(n), the geodesic

inversion map sP : PD(n) → PD(n) given by sP(Q) = ExpP(−Exp−1
P (Q)) = PQ−1P is an isometry

(more generally, the maps Q ↦→ Q−1 and Q ↦→ AQA∗ are isometries for every A ∈ GL(n,C)).
Let P0,P1 ∈ PD(n), and let γ : R→M be the unique geodesic such that γ(0) = P0 and γ(1) = P1.
Then sP0(γ(t)) = γ(−t) and sP1(γ(t)) = γ(1 − t). If Xt is a parallel vector field along γ, then
so is d(sP0)(X−t), as sP0 is an isometry; but d(sP0)P0 = −ITP0 PD(n), and so d(sP0)(X−t) = −Xt

by the uniqueness of parallel vector fields. Similarly, d(sγ(1/2))(X1/2−t) = −X1/2+t, and so
d(sγ(1/2) ◦ sP0)(X0) = X1 = τP0→P1(X0). Expanding the definition of sγ(1/2) ◦ sP0 (also called
a transvection), it is easy to see that its derivative is exactly the right-hand side in Eq. (9.2.3).
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9.2. Positive definite matrices

This may be conveniently restated as

τP→ExpP(tY)(X) = P
1/2(e t

2P
−1/2YP−1/2)P−1/2XP−1/2(e t

2P
−1/2YP−1/2)P1/2 (9.2.4)

which for the geodesics emanating from the identity specializes to

τI→etZ(X) = e t
2ZXe

t
2Z,

i.e.,

τI→Q(X) = Q1/2XQ1/2.

Now consider a function f : PD(n) → R. It follows from the previous considera-
tions and the discussion in Section 6.3 that the third derivative at I ∈ PD(n) can be
computed as follows for X,Z ∈ TIPD(n):

(∇3f)I(Z,X,X) = ∂t=0(∇2f)expI(tZ)(τI→expI(tZ)(X), τI→expI(tZ)(X))
= ∂t=0(∇2f)etZ(e t

2ZXe
t
2Z, e

t
2ZXe

t
2Z).

Although we will not need it explicitly, one can also use the above to determine
the covariant derivative of a general vector field. More precisely, the covariant
derivative ∇XY, where X ∈ TPPD(n) and Y(t) is a vector field defined along the
curve P(t) = ExpP(tX), is given by

∇XY = ∂t=0τP(t)→P(Y(t)).

For P = I, we have

∇XY = ∂t=0τetX→I(Y(t)) = ∂t=0e
− t

2XY(t)e− t
2X = Ẏ(0) − 1

2{X, Y(0)}

where we write {X, Y} = XY + YX for the anticommutator of X and Y.
Lastly, we have an explicit expression for the Riemann curvature tensor on PD(n).

The fact that the curvature tensor is of this form follows from [Hel79, Thm. IV.4.2],
and the prefactor of 1

4 can be deduced from the fact that SPD(2,C) is a model space
for constant curvature −1

2 (the prefactor appears because we work directly with
positive-definite matrices, rather than the quotient GLn(C)/U(n)). Alternatively,
one may consult the self-contained explicit proof available in [DP15]:

Lemma 9.2.1. The Riemann curvature (1, 3)-tensor at P ∈ PD(n) is given by

R(X, Y)Z = −1
4[[P

−1/2XP−1/2,P−1/2YP−1/2],P−1/2ZP−1/2]

for every X, Y,Z ∈ TPPD(n). In particular, the curvature tensor is parallel along any
geodesic.

This last property may be more succinctly stated as follows: if one thinks of R as
a (0, 4)-tensor, then ∇R ≡ 0. Therefore PD(n) is a locally symmetric space, see [Lee18,
Thm. 10.19], and because it is simply connected, it is also a globally symmetric space.
A simple computation using the above lemma shows that PD(n) has sectional
curvatures bounded by an n-independent constant with our normalization of the
metric:
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9. Self-concordance of the squared distance in non-positive curvature

Lemma 9.2.2. The space PD(n) has all sectional curvatures in [−1
2 , 0].

Proof. LetX, Y ∈ TIPD(n) = Herm(n)have ∥X∥I = ∥Y∥I = 1 and ⟨X, Y⟩I = Tr[XY] =
0. Assume without loss of generality that Y is diagonal. Then

⟨R(X, Y)Y,X⟩ = −1
4

n∑︂
i,j=1
|Xij |2(Yjj − Yii)2.

This is clearly at most 0, and
n∑︂

i,j=1
|Xij |2(Yjj−Yii)2 ⩽ 2

n∑︂
i,j=1, i≠j

|Xij |2(Y2
jj+Y

2
ii) ⩽ 2

n∑︂
i,j=1
|Xij |2∥Y∥2I = 2∥X∥2I∥Y∥

2
I = 2,

so K(X, Y) ⩾ −1
2 . □

We now turn to the task of computing higher derivatives of the squared distance
on PD(n). Recall from Section 9.2 that the distance between P,Q ∈ PD(n) is given
by d(P,Q)2 = ∥log(P−1/2QP−1/2)∥2HS. To differentiate this, we use the following
integral expression for the operator logarithm: for Q ∈ PD(n), one has

log(Q) =
∫ ∞

0

(︃
1

I + λ −
1

Q + λ

)︃
dλ, (9.2.5)

where Q + λ is shorthand for Q + λI, and 1
Q+λ = (Q + λ)−1. The advantage

of this expression is that it is an integral of rational functions of Q, which is
straightforward to differentiate using the Leibniz integral rule and the following
rule for differentiating matrix inverses: if t ↦→ Qt ∈ PD(n) is a smooth curve
defined on an open interval containing 0, then

∂t=0(Q−1
t ) = −Q−1

0 (∂t=0Qt)Q−1
0 , (9.2.6)

as can be seen from differentiating the identity QtQ
−1
t = I.

We now use this integral representation to compute derivatives of the squared
distance. For convenience, we consider only the squared distance to the identity
I ∈ PD(n), but this is without loss of generality; to compute the derivatives of
d(·,P)2 for P ∈ PD(n), one may use the fact that Q ↦→ P1/2QP1/2 is an isometry
sending I to P. First, we record the formula for the first derivative.

Proposition 9.2.3. Let f(Q) = d(Q, I)2 = ∥log(Q)∥2HS. Then for U ∈ TQPD(n),

dfQ(U) = 2 Tr[Q−1 log(Q)U] = 2 ⟨Q1/2 log(Q)Q1/2,U⟩Q ,

where ⟨·, ·⟩Q is the Riemannian metric in PD(n) defined in Eq. (9.2.1).

Proof. Let Qt = ExpQ(tU) be the geodesic through Q in the direction U. Then by
Eq. (9.2.2), we have

Qt = Q
1/2etQ

−1/2UQ−1/2
Q1/2,

and so

∂t=0f(Qt) = ∂t=0∥log(Qt)∥2HS = 2 Tr[log(Q) · ∂t=0 log(Qt)].
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To evaluate ∂t=0 log(Qt), we use Eq. (9.2.5) and Eq. (9.2.6) to obtain

∂t=0 log(Qt) = ∂t=0

∫ ∞
0

(︃
1

I + λ −
1

Qt + λ

)︃
dλ =

∫ ∞
0

1
Q + λU

1
Q + λ dλ.

Therefore

∂t=0f(Qt) = 2 Tr
[︃
log(Q) ·

∫ ∞
0

1
Q + λU

1
Q + λ dλ

]︃
= 2 Tr

[︁
Q−1 log(Q) · U

]︁
,

where we used cyclicity of the trace and
∫∞

0
1

(q+λ)2 dλ = q−1. □

Remark 9.2.4. In the above proof, one may also use the curve t ↦→ Q + tU instead of the
geodesic, because they agree in first order: it holds that∂t=0(Q+tU) = U = ∂t=0ExpQ(tU),
and hence first derivatives of functions are not affected. However, for the second derivative,
(∇2f)P(U,U) = ∂2

t=0f(ExpQ(tU)) and ∂2
t=0f(Q + tU) are generally distinct; a simple

example is given by the function f(P) = Tr[P], differentiating at Q = I.

Remark 9.2.5. One may observe that

−Q1/2 log(Q)Q1/2 = Exp−1
Q (I)

so that dfQ(U) = −2 ⟨Exp−1
Q (I),U⟩Q, which also follows from Lemma 9.1.1.

In the next theorem, we compute the higher covariant derivatives of the squared
distance. We write {A,B} := AB + BA for the anticommutator of two matrices.

Theorem 9.2.6. Let f(Q) = d(Q, I)2, and U,W ∈ TQPD(n). Set Ũ = Q−1/2UQ−1/2

and W̃ = Q−1/2WQ−1/2. Then the second derivative of f satisfies

(∇2f)Q(U,U) =
∫ ∞

0
dλTr

[︃
1

Q + λU
1

Q + λ{Q
−1,U}

]︃
=

∫ ∞
0
dλTr

[︃
1

Q + λŨ
1

Q + λ{Q, Ũ}
]︃

,

and the third derivative is given by

(∇3f)Q(W,U,U)

=

∫ ∞
0
dλTr

[︂ 1
Q + λŨ

1
Q + λ(ŨW̃Q +QW̃Ũ)

− 1
Q + λ(Ũ

Q

Q + λW̃ + W̃
Q

Q + λŨ)
1

Q + λ{Ũ,Q}
]︂
.

Proof. For the second derivative, we use the identity (∇2fQ)(U,U) = ∂2
t=0f(Qt)

where Qt = ExpQ(tU). From Proposition 9.2.3 it follows that

∂tf(Qt) = 2 Tr
[︁
Q−1

t log(Qt)(∂tQt)
]︁

.

As Qt = ExpQ(tU) = Q1/2etQ
−1/2UQ−1/2

Q1/2, we have

∂tQt = UQ
−1/2etQ

−1/2UQ−1/2
Q1/2, ∂2

t=0Qt = UQ
−1U,
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9. Self-concordance of the squared distance in non-positive curvature

which together with Eq. (9.2.6) leads to

1
2∂

2
t=0f(Qt)

= Tr
[︁
(−Q−1UQ−1 log(Q)U) +Q−1(∂t=0 log(Qt))U +Q−1 log(Q)(∂2

t=0Qt)
]︁

= Tr
[︃
Q−1

∫ ∞
0

1
Q + λU

1
Q + λ dλU

]︃
=

∫ ∞
0

Tr
[︃

1
Q + λU

1
Q + λUQ

−1
]︃
dλ.

To replace the last UQ−1 by 1
2{U,Q−1}, note that

Tr[(Q + λ)−1U(Q + λ)−1UQ−1] = Tr[(Q + λ)−1UQ−1(Q + λ)−1U]
= Tr[(Q + λ)−1U(Q + λ)−1Q−1U]

where we first used cyclicity and next that Q−1 and (Q + λ)−1 commute. Using the
definition Ũ = Q−1/2UQ−1/2 yields the statement in the lemma.

We now turn to the third derivative. Let U,W ∈ TQPD(n), set Qt = ExpQ(tW)
and let Ut = τQ→Qt(U), explicitly given in Eq. (9.2.4):

Ut = τQ→Qt(U) = Q1/2(e t
2Q
−1/2WQ−1/2)Q−1/2UQ−1/2(e t

2Q
−1/2WQ−1/2)Q1/2.

The two basic derivatives that we need are

∂t=0Ut =
1
2(WQ

−1U +UQ−1W), ∂t=0Qt =W.

This yields, again using Eq. (9.2.6),

(∇3f)Q(W,U,U) = ∂t=0(∇2f)Qt(Ut,Ut)

= ∂t=0

∫ ∞
0

Tr
[︃

1
Qt + λ

Ut
1

Qt + λ
{Q−1

t ,Ut}
]︃
dλ

=

∫ ∞
0

Tr
[︃
− 1
Q + λW

1
Q + λU

1
Q + λ{Q

−1,U}
]︃

+ 1
2 Tr

[︃
1

Q + λ(WQ
−1U +UQ−1W) 1

Q + λ{Q
−1,U}

]︃
+ Tr

[︃
− 1
Q + λU

1
Q + λW

1
Q + λ{Q

−1,U}
]︃

+ Tr
[︃

1
Q + λU

1
Q + λ{−Q

−1WQ−1,U}
]︃

+ 1
2 Tr

[︃
1

Q + λU
1

Q + λ{Q
−1,WQ−1U +UQ−1W}

]︃
dλ

=

∫ ∞
0

Tr
[︂ 1
Q + λU

1
Q + λWQ

−1UQ−1 + 1
Q + λUQ

−1W
1

Q + λUQ
−1

− 1
Q + λ(W

1
Q + λU +U

1
Q + λW)

1
Q + λ{Q

−1,U}
]︂
dλ.

SubstitutingW = Q1/2W̃Q1/2 and U = Q1/2ŨQ1/2 yields the theorem. □
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We now explicitly compute the integral expressions in Theorem 9.2.6 in terms
of the entries of the matrices Ũ and W̃. We assume without loss of generality
that Q = diag(q1, . . . ,qn) by considering the expression in an eigenbasis of Q.
Furthermore, we shall assume that all qi are distinct; expressions at generalQmay
be obtained by taking limits, but the inequalities we will derive automatically hold
for all Q by continuity. Let us start with the second derivative. Take U ∈ Herm(n).
Then for Ũ = Q−1/2UQ−1/2 we have

(∇2f)Q(U,U) =
∫ ∞

0
dλTr

[︃
1

Q + λŨ
1

Q + λ{Ũ,Q}
]︃

=
∑︂
k,l

∫ ∞
0
dλ

1
qk + λ

Ũkl
1

ql + λ
Ũlk(qk + ql)

= 2
∑︂
k

|Ũkk |2 +
∑︂
k≠l

|Ũkl |2
(qk + ql) log(qk/ql)

qk − ql
. (9.2.7)

where we evaluated the integral using the identities∫ ∞
0

1
(x + λ)2 dλ =

1
x

,
∫ ∞

0

1
(x + λ)(y + λ) dλ =

log(x/y)
x − y (9.2.8)

for distinct x,y > 0. We now evaluate the third derivative in a similar manner. The
only new difficulty is in performing the integration with respect to λ, for which we
record the following lemma.

Lemma 9.2.7. For distinct x,y, z > 0, one has∫ ∞
0

1
(x + λ)(y + λ)(z + λ)dλ

=
z(log(x) − log(y)) + y(log(z) − log(x)) + x(log(y) − log(z))

(x − y)(y − z)(x − z) .

Proof. One can deduce from a partial fraction decomposition that

(x − y)(y − z)(x − z)
(x + λ)(y + λ)(z + λ) =

y − z
x + λ +

z − x
y + λ +

x − y
z + λ ,

and the latter integrates to

−
∫ ∞

0

y − z
x + λ +

z − x
y + λ +

x − y
z + λ dλ =

∫ ∞
0
(y − z)

(︃
1

1 + λ −
1

x + λ

)︃
dλ

+
∫ ∞

0
(z − x)

(︃
1

1 + λ −
1

y + λ

)︃
dλ

+
∫ ∞

0
(x − y)

(︃
1

1 + λ −
1

z + λ

)︃
dλ

= (y − z) log(x) + (z − x) log(y) + (x − y) log(z).□

For convenience we will use the following notation. Define H : R2
>0 → R by

H(x,y) =
(x + y) log(x/y)

x − y , (9.2.9)
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9. Self-concordance of the squared distance in non-positive curvature

if x,y > 0 are distinct, and

H(x, x) = 2. (9.2.10)

Next, we define T : R3
>0 → R by

T (x,y, z) = x + y
x − y

(︃
x + z
x − z log(x/z) − y + z

y − z log(y/z)
)︃

, (9.2.11)

for distinct x,y, z > 0. Then T extends to a continuous function on R3
>0, such that

T (x, x, z) =
2x2 − 2z2 − 4xz log(x/z)

(x − z)2 ,

T (x,y, x) =
2x2 − 2y2 − (x + y)2 log(x/y)

(x − y)2 ,

T (x, x, x) = 0.

(9.2.12)

Furthermore, T (x,y, z) = T (y, x, z), T (x−1,y−1, z−1) = −T (x,y, z), and for every c > 0
we have T (cx, cy, cz) = T (x,y, z).

Proposition 9.2.8. Let f(Q) = d(Q, I)2 and U,W ∈ TQPD(n). Then for Q =

diag(q1, . . . ,qn), and Ũ = Q−1/2UQ−1/2, W̃ = Q−1/2WQ−1/2, one has

(∇2f)Q(U,U) =
n∑︂

k,l=1
|Ũkl |2H(qk,ql), (9.2.13)

(∇3f)Q(W,U,U) =
n∑︂

k,l,m=1
W̃klŨlmŨmkT (qk,ql,qm)

where H : R2
>0 → R and T : R3

>0 → R are defined in Eqs. (9.2.9) to (9.2.12), and the
subscripts refer to the respective matrix entries.

Proof. The formula for the Hessian of f was already derived in Eq. (9.2.7). For the
third derivative, one can evaluate the trace in Theorem 9.2.6 as

Tr
[︁
W̃Q(Q + λ)−1Ũ(Q + λ)−1Ũ

]︁
=

∑︂
k,l,m

W̃kl
ql

ql + λ
Ũlm

1
qm + λ

Ũmk,

Tr
[︁
W̃Ũ(Q + λ)−1Ũ(Q + λ)−1Q

]︁
=

∑︂
k,l,m

W̃klŨlm
1

qm + λ
Ũmk

qk

qk + λ
,

and

Tr
[︁
W̃(Q + λ)−1{Ũ,Q}(Q + λ)−1Ũ(Q + λ)−1Q

]︁
=

∑︂
k,l,m

W̃klŨlmŨmk
qk(ql + qm)

(ql + λ)(qm + λ)(qk + λ)

Tr
[︁
W̃Q(Q + λ)−1Ũ(Q + λ)−1{Ũ,Q}(Q + λ)−1]︁

=
∑︂
k,l,m

W̃klŨlmŨmk
ql(qk + qm)

(ql + λ)(qm + λ)(qk + λ)
,
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so that the third derivative satisfies

(∇3f)Q(W,U,U) =
∫ ∞

0
dλ

∑︂
k,l,m

W̃klŨlmŨmk

(︂ qk

(qk + λ)(qm + λ)
(︁
1 − ql + qm

ql + λ
)︁

+ ql

(ql + λ)(qm + λ)
(︁
1 − qk + qm

qk + λ
)︁ )︂

.

Using Eq. (9.2.8) and Lemma 9.2.7, the klm-term of this sum integrates to (inter-
preting expressions as limits whenever not all qk,ql,qm are distinct)

qk log(qk/qm)
qk − qm

+
ql log(ql/qm)
ql − qm

−
(qk(ql + qm) + ql(qk + qm))(qm log(qk/ql) + ql log(qm/qk) + qk log(ql/qm))

(qk − ql)(ql − qm)(qk − qm)
,

which, as a short calculation reveals, is equal to

qk + ql
qk − ql

(︃
qk + qm
qk − qm

log(qk/qm) −
ql + qm
ql − qm

log(ql/qm)
)︃
= T (qk,ql,qm),

yielding the desired expression for the third derivative. □

We note here that Proposition 9.2.8 can be used to verify that the squared
distance is 2-strongly convex, which is a general property of Hadamard manifolds
as mentioned before. Indeed, ∥U∥Q = ∥Ũ∥HS by definition of the Riemannian
metric, so one has to show that (∇2f)Q(U,U) ⩾ 2∥Ũ∥2HS. In view of Eq. (9.2.13),
it suffices to prove that H(x,y) ⩾ 2. This follows directly from the logarithmic-
arithmetic mean inequality: for every x,y > 0, one has

x − y
log(x) − log(y) ⩽

x + y
2 , (9.2.14)

where the quantity (x − y)/(log(x) − log(y)) is known as the logarithmic mean of x
and y (it is defined as xwhen x = y). It is known to be inbetween the geometric
and arithmetic mean of x and y [Car72]. A short proof of Eq. (9.2.14) is as
follows. Assume without loss of generality that x < y; then the lower bound of the
Hermite–Hadamard inequality applied to the function z ↦→ 1/z yields

log(y) − log(x)
y − x =

1
y − x

∫ y

x

1
z
dz ⩾

(︂x + y
2

)︂−1
.

One can also reverse this strategy: PD(n) is a Hadamard manifold, hence the
squared distance is 2-strongly convex, which in turn implies the logarithmic-
arithmetic mean inequality. It would be interesting to understand whether there is
a more direct relation between the logarithmic-arithmetic mean inequality and
the 2-strong-convexity of the squared distance, for instance via midpoint-strong-
convexity considerations.

We now study the coefficients appearing in Proposition 9.2.8 to show that
the squared distance is self-concordant on PD(n). Let a = log(qk/qm) and b =

log(ql/qm). Then

T (qk,ql,qm) = coth((a − b)/2) (a coth(a/2) − b coth(b/2)) ,
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9. Self-concordance of the squared distance in non-positive curvature

whereas the square root of the product of the coefficients of |W̃kl |2, |Ũlm |2, and
|Ũmk |2 in ∇2f is√︁
H(qk,ql)H(ql,qm)H(qk,qm) =

√︁
ab(a − b) coth(a/2) coth(b/2) coth((a − b)/2).

Lemma 9.2.9. The constant C =
√

2 is such that for all a,b ∈ R, one has

|coth((a − b)/2) (a coth(a/2) − b coth(b/2))|
⩽ C

√︁
ab(a − b) coth(a/2) coth(b/2) coth((a − b)/2).

As a consequence, for all x,y, z > 0, we have

|T (x,y, z)| ⩽ C
√︁
H(x,y)H(y, z)H(x, z). (9.2.15)

Remark 9.2.10. We conjecture, based on numerical evidence, that the optimal constant
in the above inequality is C = 1/

√
2. Let A(x,y) = (x + y)/2 and G(x,y) = √xy be the

arithmetic and geometric mean, respectively. The inequality for C = 1/
√

2 is equivalent to
the following “reverse arithmetic-geometric mean inequality”: for all a,b ∈ R,

A(a2 coth(a)2,b2 coth(b)2)
G(a2 coth(a)2,b2 coth(b)2) ⩽ 1 + (a − b) tanh(a − b)

2 .

Proof of Lemma 9.2.9. Consider h(x) = x coth(x/2). Then h is 1-Lipschitz: its
derivative is given by

∂xh(x) =
sinh(x) − x
cosh(x) − 1

.

It is clear that |sinh(x) − x| ⩽ cosh(x) − 1: for x ⩾ 0, the difference is cosh(x) − 1 −
(sinh(x)−x) = x+e−x−1, which is convex and has zero derivative at x = 0, where it
evaluates to 0. For x ⩽ 0, the difference is cosh(x) − 1+ sinh(x) − x = ex − x− 1 ⩾ 0.

We rewrite the left- and right-hand sides of the inequality:

coth((a − b)/2) (a coth(a/2) − b coth(b/2)) = h(a − b)(h(a) − h(b))
a − b

and √︁
ab(a − b) coth(a/2) coth(b/2) coth((a − b)/2) =

√︁
h(a)h(b)h(a − b).

Therefore it suffices to prove that|︁|︁|︁|︁h(a) − h(b)a − b

|︁|︁|︁|︁ ⩽ C√︄
h(a)h(b)
h(a − b) .

Because h is 1-Lipschitz, the left-hand side is at most 1.
We now claim that the following lower and upper bounds on h hold: h(x) ⩾

1 + |x|2 , and h(x) ⩽ 2 + |x|. The upper bound follows from h being 1-Lipschitz
and h(0) = 2. For the lower bound, we restrict to x ⩾ 0, in which case it
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suffices to prove x cosh(x/2) ⩾ (1 + x/2) sinh(x/2). This is simple: we have the
estimate x cosh(x/2) ⩾ 2 sinh(x/2) (by a power series comparison for x cosh(x)
and sinh(x)), as well as x cosh(x/2) ⩾ x sinh(x/2) since cosh(x/2) ⩾ sinh(x/2).
Therefore x cosh(x/2) is greater than their average.

We now finish up the argument: we have

h(a)h(b)
h(a − b) ⩾

1 + |a|+|b|2 + |ab|4
2 + |a| + |b| ⩾

1
2,

so we conclude that

C

√︄
h(a)h(b)
h(a − b) ⩾

C√
2
⩾ 1 ⩾ h(a) − h(b)

a − b .

holds for C =
√

2. □

This directly implies that the squared distance is self-concordant (with an n-
independent constant), hence also proving Theorem 7.3.1.

Theorem 9.2.11. Let C ⩾ 0 be such that the inequality in Lemma 9.2.9 holds. Then
the function f : PD(n) → R defined by f(Q) = d(Q, I)2 satisfies for Q ∈ PD(n)
and U,W ∈ TQPD(n) the inequality|︁|︁(∇3f)Q(W,U,U)

|︁|︁ ⩽ C√︂
(∇2f)Q(W,W) (∇2f)Q(U,U)

In particular, from the choice C =
√

2 it follows that f is 2-self-concordant.

Proof. By Eq. (9.2.15) and consecutive applications of Cauchy–Schwarz, we have|︁|︁(∇3f)Q(W,U,U)
|︁|︁

⩽
∑︂
k,l,m
|W̃klŨlmŨmk | |T (qk,ql,qm)|

⩽ C
∑︂
k,l,m
|W̃klŨlmŨmk |

√︁
H(qk,ql)H(ql,qm)H(qk,qm)

⩽ C

√︄∑︂
k,l
|W̃kl |2H(qk,ql)

√︄∑︂
k,l

(︂∑︂
m

|ŨlmŨmk |
√︁
H(ql,qm)H(qk,qm)

)︂2

⩽ C

√︄∑︂
k,l
|W̃kl |2H(qk,ql)

√︄∑︂
k,l

(︂∑︂
m

|Ũlm |2H(ql,qm)
)︂ (︂∑︂

m

|Ũmk |2H(qk,qm)
)︂

= C

√︄∑︂
k,l
|W̃kl |2H(qk,ql)

√︄(︂∑︂
l,m
|Ũlm |2H(ql,qm)

)︂2

= C

√︂
(∇2f)Q(W,W)(∇2f)Q(U,U). □

One can use this to construct a strongly self-concordant function on the open
epigraph of the squared distance using Theorem 8.2.11, hence also proving
Theorem 7.3.3. By imposing an additional upper bound on the value of the
squared distance one can use this to construct a barrier for the epigraph, albeit with
a distance-dependent barrier parameter; see Chapter 10 for similar constructions.
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9. Self-concordance of the squared distance in non-positive curvature

9.3. Constant negative curvature
In this section, we prove that the squared distance on n-dimensional hyperbolic
space Hn is self-concordant with a larger self-concordance parameter, and other
refinements of the self-concordance estimate. We use this to construct a barrier for
the epigraph of the (squared) distance in Theorem 9.3.7, which is useful for our
applications in Chapter 10. Instead of dealing just with Hn, we consider the model
spaces Mn

−κ with constant sectional curvature −κ < 0 (we recall that Hn is Mn
−1).

The main result of this section is the following.
Theorem 9.3.1. Let n ⩾ 2, κ > 0, setM =Mn

−κ, let p0 ∈M, and consider f,g : M→ R

defined by f(p) = d(p,p0)2 and g(p) = d(p,p0). One has the following estimates:

(i) |(∇3f)p(w,u,u)| ⩽
√︁

κ
2
√︁
(∇2f)p(w,w)(∇2f)p(u,u), so f is 8

κ -self-concordant, and
this constant cannot be improved.

(ii) |(∇3f)p(u,u,u)| ⩽
√︂

8κ
27 ((∇2f)p(u,u))3/2, so f is 27

2κ -self-concordant along geodesics,
and this constant cannot be improved.

(iii) |(∇3f)p(w,u,u)|
⩽ 2ζ
√
κ|dgp(w)|((∇2f)p(u,u) − 2dgp(u)2)

+ 2
√
κ|dgp(u)|

√︂
(∇2f)p(u,u) − 2dgp(u)2

√︂
(∇2f)p(w,w) − 2dgp(w)2

⩽ 2ζ
√
κ∥w∥p(∇2f)p(u,u) + 2

√
κ∥u∥p

√︂
(∇2f)p(u,u)

√︂
(∇2f)p(w,w),

where ζ = supx∈R |sinh(x)−1 − x−1 | ⩽ 1
2 .

The fact that f is 27/(2κ)-self-concordant along geodesics was shown in [Ji07]; the
optimality of this bound and the 8/κ-self-concordance are due to H. Hirai [Hir22b]
(with a weaker self-concordance estimate appearing in [NW23]).

By Lemmas 6.2.3 and 8.1.2 it suffices to prove the above estimates forM =Mn
−1

and then to appropriately rescale the estimate when the curvature changes. The
estimate in (iii) is a refinement of self-concordance for f (albeit with different
constants), because 2∥W∥2

Q
⩽ ∥W∥2

f,Q by the 2-strong-convexity of f (and in the
presence of curvature, these norms can differ by a factor that scales with the
distance to the base point and the curvature). The estimate also implies that, in the
terminology of Section 8.2.2, the squared distance is compatible with every strongly
convex function, which is relevant for computing geometric means on Mn

−κ as
discussed in Section 10.4. The presence of the “correction terms” −2dgp(u)2 and
similar for w will also be useful for proving Theorem 9.3.7, which we use later for
the purpose of computing geometric medians.

Before starting with the proof of Theorem 9.3.1, we provide estimates on some
single-variable functions which we use.
Lemma 9.3.2. (i) DefineΦ : R→ R by

Φ(x) := ∂x(x coth(x)) = coth(x) + x − x coth(x)2, x ≠ 0, (9.3.1)

and Φ(0) = 0. Then Φ is smooth, and for x ∈ R⩾0, it holds that

0 ⩽ Φ(x) ⩽ min(x, 1), (9.3.2)

and limx→∞Φ(x) = 1.
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(ii) It holds that

ζ := sup
x∈R⩾0

Φ(x)
2x coth(x) = sup

x∈R

|︁|︁|︁|︁ 1
sinh(x) −

1
x

|︁|︁|︁|︁ < 1
2. (9.3.3)

We note here that numerical evaluation suggests the value of ζ is approximately
0.23536, which is slightly smaller than 1

3
√

2
≈ 0.23570.

Proof. We first prove (i). By sinh(x) = x+(1/3!)x3+ · · · and cosh(x) = 1+(1/2!)x2+
· · · , and by the identities cosh(x)2 − sinh(x)2 = 1, 2 cosh(x) sinh(x) = sinh(2x), and
2 sinh(x)2 = cosh(2x) − 1, it holds that

Φ(x) = cosh(x)
sinh(x) +x(1−coth(x)2) = sinh(x) cosh(x) − x

sinh(x)2 =
sinh(2x) − 2x
cosh(2x) − 1

=
(2x)3/3! + · · ·
(2x)2/2! + · · · .

From this, we deduce that Φ(x) ⩾ 0 for x ⩾ 0, and

lim
x→0

Φ(x) = 0 = Φ(0).

Therefore Φ is continuous at 0. The above argument shows that Φ is a ratio of the
analytic functions sinh(2x) − 2x and cosh(2x) − 1, and the continuity at 0 shows
thatΦ has no singularity at 0, which is the only zero of cosh(2x) − 1; henceΦmust
in fact be smooth on R.

We now show thatΦ(x) ⩽ min(x, 1) for x ⩾ 0. We have

lim
x→0

x coth(x) = lim
x→0

x(1 + x2/2! + · · · )
x + x3/3! + · · · = 1.

By ∂x(x coth x) = Φ(x) ⩾ 0 for x ⩾ 0, we have

x coth(x) ⩾ 1.

This implies that Φ is nondecreasing, since

∂xΦ(x) =
2(x coth(x) − 1)

sinh(x)2 ⩾ 0.

Thus we have

sup
x∈[0,∞)

Φ(x) = lim
x→∞

Φ(x) = lim
x→∞

coth x − x/sinh2 x = 1.

Lastly, Φ(x) ⩽ x follows from

x −Φ(x) = coth(x) (x coth(x) − 1) ⩾ 0.

We now prove (ii). Observe that limx→0 sinh(x)−1 − x−1 = 0 by two applications
of L’Hôpital’s rule, so sinh(x)−1 − x−1 has a continuous extension to all of R. A
similar argument shows that coth(x) − x−1 can be continuously extended to x = 0
with value 0. For both inequalities it suffices to treat the case x > 0. The
inequality |sinh(x)−1 − x−1 | ⩽ 1

2 is equivalent to

|x − sinh(x)| = sinh(x) − x ⩽ x sinh(x)
2 .
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9. Self-concordance of the squared distance in non-positive curvature

We have equality for x = 0, and

∂x(sinh(x) − x) = cosh(x) − 1, ∂x sinh(x) = sinh(x) + x cosh(x)

agree for x = 0 as well. Differentiating once more yields

∂2
x(sinh(x) − x) = sinh(x), ∂2

x(x sinh(x)) = 2 cosh(x) + x sinh(x).

Clearly, 1
2(2 cosh(x) + x sinh(x)) ⩾ cosh(x) ⩾ sinh(x), and so we have proven

ζ ⩽ 1
2 . □

Although there are several models ofMn
−κ in which explicit computations can

be performed (such as SPD(2,C), which isM3
−1/2), for proving Theorem 9.3.1, we

take a “model-free" approach based on Jacobi fields. For a geodesic γ : [0, l] →M,
a Jacobi field along γ is a vector field X = (X(t))t∈[0,l] along γ, where X(t) ∈ Tγ(t)M
satisfies the Jacobi equation:2

∇γ̇(t)∇γ̇(t)X(t) + R(X(t), γ̇(t))γ̇(t) = 0, t ∈ [0, l]. (9.3.4)

This is a linear differential equation. Therefore, the solution X(t) is uniquely
determined by the initial valuesX(0),∇γ̇(0)X(0), or by its boundary valuesX(0),X(l).
Jacobi fields are relevant to the task of differentiating the squared distance because
they arise variation fields of geodesics: the distance d(p0,p) is the minimal length
of a geodesic between p0 and p, and varying p leads to a family of geodesics. More
precisely, one has the following classical result:

Lemma 9.3.3 (see [Sak96, p.35, 36]). Let α : [0, l] × (−ε, ε) →M be a smooth map such
that the curve t ↦→ α(t, s) is a geodesic for each s ∈ (−ε, ε). Then dα(t, 0)( ∂∂s) is a Jacobi
field along geodesic t ↦→ α(t, 0).

It can also be shown that every Jacobi field (along a geodesic on a compact
interval) arises in this way [Lee18, Prop. 10.4], but we will not need this fact. The
derivative and the Hessian of p ↦→ f(p) = d(p,p0)2 can be determined using Jacobi
fields as follows.

Lemma 9.3.4 (see [Sak96, p.108–110]). Let p,p0 ∈M be distinct points, let γ : [0, l] →
M be the unique unit-speed geodesic with γ(0) = p0, γ(l) = p, and l := g(p) = d(p,p0).
For u ∈ TpM, it holds that:

(i) dgp(u) = ⟨γ̇(l),u⟩p,

(ii) dfp(u) = 2l⟨γ̇(l),u⟩p, and

(iii) (∇2f)p(u,u) = 2l ⟨∇γ̇(l)X(l),u⟩p, where X is the Jacobi field along γ under the
boundary condition

X(0) = 0, X(l) = u.
2The meaning of ∇γ̇(t) here is slightly different from its previous meaning: instead of acting on

tensor fields on an open subset ofM, it acts on tensor fields along the curve γ. The two notions
agree whenever X(t) is locally the restriction of a vector field onM, see [Lee18, Ch. 4] for more
information.
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9.3. Constant negative curvature

Note that (i) and (ii) are reformulations of Eq. (9.1.1), and in light of Eq. (9.1.2),
(iii) is essentially a claim about (∇2g)p.

We shall use the following fact about spaces of constant curvature −κ [Sak96,
Lem. II.3.3]: their Riemann curvature tensor R satisfies

R(X, Y)Z = −κ(⟨Y,Z⟩X − ⟨X,Z⟩Y), (9.3.5)

where we recall that ⟨·, ·⟩ is the Riemannian metric. This allows one to explicitly
write down the solutions of the Jacobi equation, as given in the following lemma.
While this, and explicit expressions for the Hessian of the (squared) distance are
well-known (see e.g. [Sak96, p. 136, p. 154] or [Lee18, Prop. 10.12, Prop. 11.3]), we
provide a proof for completeness.

Lemma 9.3.5. Let p,p0 ∈M = Hn with p ≠ p0, and let γ : [0, l] →M be the unit-speed
geodesic fromp0 topwith l := g(p) = d(p,p0). Letu ∈ TpM and decomposeu = u⊤+u⊥
such that u⊤ = ⟨u, γ̇(l)⟩p γ̇(l) is the part of u parallel to γ̇(l), and u⊥ orthogonal to γ̇, i.e.,
⟨u⊥, γ̇(l)⟩p = 0. Then the unique Jacobi field X(t) along γ with X(0) = 0 and X(l) = u
satisfies

X(t) = t
l
τγ,t−lu

⊤ + sinh(t)
sinh(l) τγ,t−lu

⊥,

where τγ,t−l : Tγ(l)M→ Tγ(t)M is the parallel transport along γ.

Proof. It is clear that X(l) = u and X(0) = 0. Therefore it remains to check that X is
a Jacobi field: we have

∇γ̇(t)X(t) =
1
l
τγ,t−lu

⊤ + cosh(t)
sinh(l) τγ,t−lu

⊥

and
∇γ̇(t)∇γ̇(t)X(t) =

sinh(t)
sinh(l)τγ,t−lu

⊥.

From Eq. (9.3.5) it follows that

R(X(t), γ̇(t))γ̇(t) = −[X(t) − ⟨X(t), γ̇(t)⟩γ(t) γ̇(t)].

Therefore

∇γ̇(t)∇γ̇(t)X(t) + R(X(t), γ̇(t))γ̇(t) =
sinh(t)
sinh(l)τγ,t−lu

⊥ − X(t) + ⟨X(t), γ̇(t)⟩γ(t) γ̇(t)

= −t
l
τγ,t−lu

⊤ + ⟨X(t), γ̇(t)⟩γ(t) γ̇(t)

= −t
l
⟨u, γ̇(l)⟩p γ̇(t) + ⟨X(t), γ̇(t)⟩γ(t) γ̇(t)

= 0,

where the penultimate equality follows fromu⊤ = ⟨u, γ̇(l)⟩γ(l) γ̇(l) and τγ,t−lγ̇(l) =
γ̇(t), and the last equality follows from τγ,t−l being an isometry and ⟨u, γ̇(l)⟩ =
⟨u⊤, γ̇(l)⟩. □

Using this description of the Jacobi fields leads to the following description of
the Hessian, and the third covariant derivative of the squared distance.
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9. Self-concordance of the squared distance in non-positive curvature

Proposition 9.3.6. Let p,p0 ∈ M = Hn with p ≠ p0 and let γ : [0, l] → M be the
unique geodesic from p0 to p with l := g(p) = d(p,p0). Then f(p) = d(p,p0)2 satisfies

(∇2f)p(u,u) = 2(l coth l)
(︂
⟨u,u⟩p − ⟨u, γ̇(l)⟩2p

)︂
+ ⟨u, γ̇(l)⟩2p, (9.3.6)

(∇3f)p(w,u,u) = 2Φ(l)⟨w, γ̇(l)⟩p
(︂
⟨u,u⟩p − ⟨u, γ̇(l)⟩2p

)︂
+ 4 (l −Φ(l)) ⟨u, γ̇(l)⟩p

(︁
⟨w, γ̇(l)⟩p⟨u, γ̇(l)⟩p − ⟨u,w⟩p

)︁
. (9.3.7)

Proof. By Lemma 9.3.5, the Jacobi field X(t) along γ with X(0) = 0 and X(l) = u
satisfies

X(t) = t
l
τγ,t−lu

⊤ + sinh(t)
sinh(l)τγ,t−lu

⊥

where u = u⊤ + u⊥ is a decomposition with u⊤ = ⟨u, γ̇(l)⟩p γ̇(l) parallel and u⊥ =

u − u⊤ orthogonal to γ̇(l), respectively. Therefore

∇γ̇(l)X(l) =
1
l
u⊤ + cosh(l)

sinh(l)u
⊥ =

1
l
⟨u, γ̇(l)⟩p γ̇(l) +

cosh(l)
sinh(l) (u − u

⊤) (9.3.8)

Now apply Lemma 9.3.4(iii) to obtain Eq. (9.3.6).
Consider the geodesic s ↦→ c(s) := Expp(sw). Let γs : [0, l] →M be the geodesic

from p to c(s) (not necessarily parametrized by the arc-length). For s ∈ (−ϵ, ϵ),
let ls := d(c(s),p0) and us := τc,su. Applying Eq. (9.3.6) to the reparametrized
geodesic t ↦→ γs((l/ls)t) (t ∈ [0, ls]), we obtain

(∇2f)c(s)(us,us) = 2(ls coth(ls))⟨us,us⟩ + 2 (1 − ls coth(ls)) (l/ls)2⟨us, γ̇s(l)⟩2.
(9.3.9)

By Eq. (6.3.1), the covariant derivative (∇3f)p(w,u,u) is obtained by computing
the s-derivative of Eq. (9.3.9) at s = 0. We use that

∂s=0ls = ⟨γ̇(l),w⟩, ∂s=0⟨us,us⟩ = 0, ∂s=0⟨us, γ̇s(l)⟩ = ⟨u, ∇ċ(s)γ̇s(l)
|︁|︁
s=0⟩,

where the first equality follows from Lemma 9.3.4(i), and the other two follow
from X⟨Y,Z⟩ = ⟨∇XY,Z⟩ + ⟨Y,∇XZ⟩ and ∇ċ(s)us = 0. Hence we have

(∇3f)p(w,u,u) = 2Φ(l)⟨γ̇(l),w⟩⟨u,u⟩ + 2 (−Φ(l) − 2/l + 2 coth l) ⟨γ̇(l),w⟩⟨u, γ̇(l)⟩2

+ 4 (1 − l coth l) ⟨u, γ̇(l)⟩⟨u, ∇ċ(s)γ̇s(l)
|︁|︁
s=0⟩

= 2Φ(l)⟨γ̇(l),w⟩(⟨u,u⟩ − ⟨u, γ̇(l)⟩2)
+ 4 (1 − l coth l) ⟨u, γ̇(l)⟩ [⟨u, ∇ċ(s)γ̇s(l)

|︁|︁
s=0⟩ − ⟨w, γ̇(l)⟩⟨u, γ̇(l)⟩/l].

(9.3.10)

To compute ∇ċ(s)γ̇s(l)|s=0, consider the (smooth) map α : [0, l] × (−ϵ, ϵ) =M given
by (t, s) ↦→ γs(t). Let ∂α

∂s (t, s) := dα(t,s)( ∂∂t) and ∂α
∂t (t, s) := dα(t,s)( ∂∂s). Then

∇ċ(s)γ̇s(l)
|︁|︁
s=0 = ∇∂α

∂s

∂α
∂t (l, 0) = ∇∂α

∂t

∂α
∂s (l, 0), since ∇∂α

∂s

∂α
∂t = ∇∂α

∂t

∂α
∂s + [∂α∂s , ∂α∂t ]

and [∂α∂s , ∂α∂t ] = dα([ ∂∂s , ∂
∂t]) = 0; see [Sak96, Lem. II.2.2] or [Lee18, Lem. 6.2].

By Lemma 9.3.3, Y(t) := ∂α
∂s (t, 0) is a Jacobi field along the geodesic γ, and satisfies

Y(0) = 0 and Y(l) = w. Therefore Eq. (9.3.8) yields

∇ċ(s)γ̇s(l)
|︁|︁
s=0 = ∇γ̇(l)Y(l) =

1
l
γ̇(l)⟨w, γ̇(l)⟩ + coth(l)(w − γ̇(l)⟨w, γ̇(l)⟩).

By substituting this into Eq. (9.3.10), we obtain Eq. (9.3.13). □
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9.3. Constant negative curvature

We are now ready to prove Theorem 9.3.1. The arguments below are due to H.
Hirai [Hir22b].

Proof of Theorem 9.3.1. We first restrict to the case κ = −1. We are going to bound

σp(u,w) :=
|(∇3f)p(w,u,u)|√︁

(∇2f)p(w,w)(∇2f)p(u,u)
, u, v ∈ TpM \ {0}.

From d(p,p0) = l, it holds that ∥γ̇(l)∥ = 1. We can also assume that ∥u∥p = ∥w∥p =

1. Therefore, u, v, γ̇(l) can be assumed to be unit vectors in R3, and represented
in the spherical coordinate system as γ̇(l) = (0, 0, 1), u = (sin θ, 0, cos θ), w =

(sinφ cosα, sinφ sinα, cosφ) for θ,φ ∈ [0,π] and α ∈ [0, 2π]. By Proposition 9.3.6,
we have

(∇2f)p(w,w) = 2 cos2φ + 2l coth l sin2φ, (9.3.11)
(∇2f)p(u,u) = 2 cos2 θ + 2l coth l sin2 θ, (9.3.12)

(∇3f)p(w,u,u) = 2Φ(l) cosφ sin2 θ + 4 (l −Φ(l)) cos θ sinφ sin θ(− cosα).
(9.3.13)

By Lemma 9.3.2(i) the quantities Φ(l), l −Φ(l), sin(θ), and sin(φ) in Eq. (9.3.13)
are all non-negative. Thus

|(∇3f)p(w,u,u)| ⩽ 2Φ(l)|cos(φ)| sin(θ)2 + 4 (l −Φ(l)) sin(φ) sin(θ)|cos(θ)|.
(9.3.14)

For C := l coth(l) ⩾ 1, observe that

max
ϕ∈[0,π]

|cosϕ|√︁
cos2ϕ + C sin2ϕ

= 1, max
ϕ∈[0,π]

sinϕ√︁
cos2ϕ + C sin2ϕ

=
1√
C

,

max
θ∈[0,π]

sin θ|cos θ|
cos2 θ + C sin2 θ

= max
θ∈[0,π]

|tan θ|
1 + C tan2 θ

= max
z∈[0,∞)

z

1 + Cz2 =
1

2
√
C

.

Therefore

σp(u,w) ⩽ max
φ,θ∈[0,π]

2Φ(l)|cosφ| sin2 θ + 4(l −Φ(l)) sinφ sin θ|cos θ|√︁
2 cos2φ + 2C sin2φ

(︁
2 cos2 θ + 2C sin2 θ

)︁
⩽
Φ(l)√

2C
+ l −Φ(l)√

2C
=

tanh(l)√
2
⩽

1√
2

.

This shows the 8-self-concordance of f onMn
−1.

We now show that this estimate is tight. Choose φ = π/2, tan2 θ = 1/C, and
α ∈ {0,π}. From Eq. (9.3.13) we have

σp(u,w) = 2(l −Φ(l))|cos(θ)| sin(θ)√
2C(cos(θ)2 + C sin(θ)2)

=
l −Φ(l)√

2C
=
(l −Φ(l)) tanh(l)√

2l
=
l coth(l) − 1√

2l
.

For l→∞, it holds that σp(u,w) → 1/
√

2, and so the estimate σp(u,w) ⩽ 1/
√

2 is
tight. This completes the proof of (i). Note the choice of α guarantees that we are
essentially working with u,w, γ̇(l) ∈ R2, so the argument is still valid for n = 2.
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9. Self-concordance of the squared distance in non-positive curvature

For (ii), we consider the case of u = w; then φ = θ and α = 0. From Eq. (9.3.13),
we have

(∇3f)p(u,u,u) = 2(−2l + 3Φ(l)) cos θ sin2 θ. (9.3.15)
Then we have

sup
u∈TpM

σp(u,u) = max
θ∈[0,π/2]

|2l − 3Φ(l)| tan2 θ√
2(1 + C tan2 θ)3/2

= max
z∈[0,∞)

|2l − 3Φ(l)|z√
2(1 + Cz)3/2

=

√︃
2
27
|2l − 3(coth l + l − l coth2 l)|

C
=

√︃
2

27 |−3/l − tanh l + 3 coth l|,

where the maximum of z/(1 + Cz)3/2 is attained at z = 2/C = 2(tanh l)/l. The
supremum of the last quantity is attained at l → ∞, and equals

√︁
2/27. This

implies (ii), i.e., that f is 27/2-self-concordant along geodesics, and that this bound
is tight.

Finally we show (iii). Again, we may assume ∥w∥p = ∥u∥p = 1, and we use the
above spherical coordinates. By Eqs. (9.3.11) and (9.3.12) and Lemma 9.3.4(i), we
have

|sin θ| =
√︃
(∇2f)p(u,u) − 2dgp(u)2

2l coth l , |sinφ| =
√︃
(∇2f)p(w,w) − 2dgp(w)2

2l coth l .

By substituting these into Eq. (9.3.13) and usingdgp(u) = cos θ anddgp(w) = cosφ
we obtain

(∇3f)p(w,u,u)

⩽
Φ(l)
l coth l |dgp(w)|((∇

2f)p(u,u) − 2dgp(u)2)

+ 2(l −Φ(l))
l coth l |dgp(u)|

√︂
(∇2f)p(w,w) − 2dgp(w)2

√︂
(∇2f)p(u,u) − 2dgp(u)2

⩽ 2ζ((∇2f)p(u,u) − 2dgp(u)2)

+ 2
√︂
(∇2f)p(w,w) − 2dgp(w)2

√︂
(∇2f)p(u,u) − 2dgp(u)2,

where we used Lemma 9.3.2 for the second inequality. This implies (iii) for κ = 1.
Finally, the statements for Mn

−κ follow from Lemmas 6.2.3 and 8.1.2. Note
for part (iii) that rescaling the Riemannian metric on Mn

−1 by a factor 1/κ yields
sectional curvature κ, and rescales the distance g by a factor 1/

√
κ, so to compensate

one must use the prefactors 2ζ
√
κ and 2

√
κ. □

We now use Theorem 9.3.1 to prove the following theorem, which for κ = 1
yields Theorem 7.3.4:

Theorem 9.3.7. Let κ > 0, M = Mn
−κ, p0 ∈ M, and define f : M → R by f(p) =

d(p,p0)2. Define an open convex set D ⊆M ×R>0 ×R>0 by

D = {(p,R,S) ∈M ×R>0 ×R>0 : RS − f(p) > 0},

and define a function F : D→ R by

F(p,R,S) = − log(RS − f(p)) + κ f(p)

Then F is convex and strongly 1
2 -self-concordant. Furthermore, λF, 1

2
(p,R,S)2 ⩽ 4+4κf(p).
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9.3. Constant negative curvature

Proof. Recall from Corollary 9.1.4 that F is convex. Let u = (up,uR,uS) and
w = (wp,wR,wS) be tangent vectors at (p,R,S) ∈ D. Throughout the rest of this
proof, we suppress the base point (p,R,S) for derivatives. Set

Ψ(p,R,S) = R − S−1d(p,p0)2.

Instead of immediately taking F as stated, we leave the prefactor of f as a quantityξ >
0 to be chosen later. The derivative of F = − logΨ − logS + ξ f is given by

dF(u) = − 1
Ψ
dΨ(u) − uS

S
+ ξdf(up).

DefineAu = dΨ(u)/Ψ,Bu =
√︁
−∇2Ψ(u,u)/Ψ,Cu = S−1uS andDu =

√︁
ξ∇2f(up,up).

We recall from Lemma 9.1.3 that Ψ is concave, so that Bu is well-defined. The
Hessian of F is then given by

∇2F(u,u) = 1
Ψ2 (dΨ(u))

2⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
=A2

u

− 1
Ψ
∇2Ψ(u,u)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
=B2

u

+ 1
S2u

2
S⏞⏟⏟⏞

=C2
u

+ ξ∇2f(up,up)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
=D2

u

. (9.3.16)

For convenience we also write Buw = −∇2Ψ(u,w). The third derivative of F is
given by

∇3F(w,u,u) (9.3.17)

= − 2 1
Ψ3 (dΨ(w)) (dΨ(u))

2 + 2 1
Ψ2 (dΨ(u)) (∇

2Ψ(w,u)) + 1
Ψ2dΨ(w) (∇

2Ψ(u,u))

− 1
Ψ
∇3Ψ(w,u,u) − 2 1

S3wSu
2
S + ξ∇

3f(wp,up,up)

= − 2AwA
2
u − 2AuBuw −AwB

2
u − 2CwC

2
u −

1
Ψ
∇3Ψ(w,u,u) + ξ∇3f(wp,up,up).

(9.3.18)

It is easy to see that the first four terms in Eq. (9.3.18) are bounded by a constant mul-
tiple of

√︁
∇2F(w,w)∇2F(u,u), and similar for the last term (by α-self-concordance

of f). The term ∇3Ψ(w,u,u)/Ψ requires more effort. Recall from Lemma 9.1.3, if
g = d(p,p0) =

√
f, then

∇2Ψ = −S−1(2(S−1gdS − dg)⊗2 + (∇2f − 2dg ⊗ dg))),

and the third derivative satisfies

∇3Ψ(w,u,u) = −2S−1uS∇2Ψ(w,u) − S−1wS∇2Ψ(u,u) − S−1∇3f(wp,up,up).

Therefore

∇3F(w,u,u)

= −2AwA
2
u − 2Bwu(Au + Cu) − B2

u(Aw + Cw) − 2CwC
2
u + (

1
ΨS
+ ξ)∇3f

= −2Aw(A2
u −

1
2B

2
u) − 2Bwu(Au + Cu) − 2Cw(

1
2B

2
u + C2

u) + (
1
ΨS
+ ξ)∇3f.
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9. Self-concordance of the squared distance in non-positive curvature

We now use the bound from Theorem 9.3.1(iii) and the 2-strong-convexity of f:|︁|︁|︁|︁∇3f(wp,up,up)
SΨ

|︁|︁|︁|︁
⩽
|dg(wp)| · |∇2f(up,up) − 2(dg(up))2 |

SΨ
· C1

+
|dg(up)| ·

√︁
∇2f(up,up) − 2(dg(up))2 ·

√︁
∇2f(wp,wp) − 2(dg(wp))2

SΨ
· C2

⩽
1√
2

√︂
∇2f(wp,wp)B2

u · C1 +
1√
2

√︂
∇2f(up,up)BuBw · C2

whereC1 = 2ζ
√
κ andC2 = 2

√
κ, and ζ ⩽ 1

2 is defined in Lemma 9.3.2. Furthermore,
f is α-self-concordant with α = 8/κ (cf. Theorem 9.3.1(i)). The triangle inequality
gives

|∇3F(w,u,u)|

⩽ 2|Aw(A2
u −

1
2B

2
u)| + 2|Bwu | |Au + Cu | + 2|Cw(

1
2B

2
u + C2

u)|

+
√︂
∇2f(wp,wp)(

C1√
2
B2
u +

2ξ√
α
∇2f(up,up)) +

C2√
2
|Bw | |Bu |

√︂
∇2f(up,up)

= 2|Aw(A2
u −

1
2B

2
u)| + 2|Bwu | |Au + Cu | + 2|Cw(

1
2B

2
u + C2

u)|

+Dw

|︁|︁|︁|︁ C1√
2ξ
B2
u +

2√
αξ
D2

u

|︁|︁|︁|︁ + |BwBu |
C2√
2ξ
Du

⩽ 2|Aw(A2
u −

1
2B

2
u)| + 2|Bw | |Bu |(|Au + Cu | +

C2

2
√

2ξ
Du) + 2|Cw(

1
2B

2
u + C2

u)|

+Dw

|︁|︁|︁|︁ C1√
2ξ
B2
u +

2√
αξ
D2

u

|︁|︁|︁|︁
⩽ 2

√︂
A2

w + B2
w + C2

w +D2
w

√
L,

where we applied |Buw | ⩽ |Bu | |Bw | to get the penultimate inequality, Cauchy–
Schwarz to get the last inequality, and L is defined as

L = (A2
u −

1
2B

2
u)2 + |Bu |2(|Au + Cu | +

C2

2
√

2ξ
Du)2 + (

1
2B

2
u + C2

u)2 +
|︁|︁|︁|︁ C1

2
√

2ξ
B2
u +

1√
αξ
D2

u

|︁|︁|︁|︁2.

We now show that L ⩽ 2(∇2F(u,u))2 for the choice ξ = κ. First, we use that C1 =

2ζ
√
κ, C2 = 2

√
κ and α = 8/κ. Therefore L is

L = (A2
u −

1
2B

2
u)2 + |Bu |2(|Au + Cu | +

√︃
κ

2ξDu)2 + (
1
2B

2
u + C2

u)2 +
|︁|︁|︁|︁ζ√κ√2ξ

B2
u +

√︃
κ

8ξD
2
u

|︁|︁|︁|︁2
= A4

u −A2
uB

2
u +

1
4B

4
u + |Bu |2(|Au + Cu |2 +

√︃
2κ
ξ
|Au + Cu |Du +

κ

2ξD
2
u)

+ 1
4B

4
u + B2

uC
2
u + C4

u +
ζ2κ

2ξ B
4
u +

ζκ

2ξB
2
uD

2
u +

κ

8ξD
4
u
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9.3. Constant negative curvature

= A4
u + B4

u

(︃
1
2 +

ζ2κ

2ξ

)︃
+ C4

u +
κ

8ξD
4
u

+ 2B2
u |Au | |Cu | + 2B2

uC
2
u +

√︃
2κ
ξ
B2
u |Au + Cu |Du +

κ

2ξ(1 + ζ)B
2
uD

2
u.

As ζ ⩽ 1
2 , we have ζ2 ⩽ 1

4 . Therefore the choice ξ = κ ensures that

L ⩽ A4
u +

5
8B

4
u + C4

u +
1
8D

4
u

+ 2B2
u |Au | |Cu | + 2B2

uC
2
u +
√

2B2
u |Au + Cu |Du +

3
4B

2
uD

2
u

⩽ A4
u +

5
8B

4
u + C4

u +
1
8D

4
u

+ 1
2B

4
u + 2A2

uC
2
u +
√

2
2 B

2
u(A2

u + C2
u + 2D2

u) +
3
4B

2
uD

2
u

⩽
9
8(∇

2F(u,u))2 ⩽ 2(∇2F(u,u))2

as ∇2F(u,u) = A2
u + B2

u + C2
u +D2

u. To conclude, we have shown that

|∇3F(w,u,u)| ⩽ 2
√

2
√︁
∇2F(w,w) ∇2F(u,u)

and F is 1
2 -self-concordant.3

We now verify the bound on the Newton decrement. For u = (up,uR,uS) ∈
T(p,R,S)D such that ∇2F(u,u) ≠ 0 and up ≠ 0, we have

|dF(u)| = |−Au − Cu + ξdf(up)| ⩽
√︂
A2

u + C2
u +D2

u

√︄
1 + 1 +

ξ2 |df(up)|2

D2
u

,

and
ξ2 |df(up)|2

D2
u

=
ξ2 |df(up)|2
ξ∇2f(up,up)

⩽ ξ λf(p)2 = 2ξ f(p)

by Corollary 9.1.2. Since we chose ξ = κ, this shows that λF,1/2(p,R,S)2 ⩽
2(2 + 2κf(p)). □

3Bounding L by (∇2F(u,u))2 would lead to 1-self-concordance of F, but it is not clear whether
there is a choice of ξ > 0 such that F is 1-self-concordant and its Newton decrement is not too
adversely affected.
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10. Interior-point methods for
non-commutative scaling and
geometric problems

In this chapter, we discuss applications of our interior-point method framework.
In Section 10.1 we show that the framework can be used to solve non-commutative
optimization and scaling problems. In Sections 10.2 to 10.4, we use the previously
constructed barriers for the epigraph of the squared distance on Hadamard
symmetric spaces and the epigraph of the distance on the model spaces for constant
negative sectional curvature to the natural geometric problems of computing
minimum enclosing balls, geometric medians, and Riemannian barycenters. To
achieve the above, we build on the results of Section 8.2 and Chapter 9.

10.1. Non-commutative optimization and scaling
problems

In this section we show that the problem of minimizing log-norm or Kempf–Ness
functions, as discussed in Section 7.4, can be solved using our interior-point
methods. This leads to also naturally leads to algorithms for scaling problems, as
explained in Section 2.6.

We briefly recap the general setup for the norm minimization problem and
refer to Chapter 2 or [BFG+19] for more detail. Throughout this section we
let G ⊆ GL(n,C) be a connected algebraic Lie group which is symmetric, i.e.,
g∗ ∈ G for every g ∈ G. We also fix π : G → GL(V) to be a finite-dimensional
rational complex representation of G. Let K = G ∩ U(n), which is a maximal
compact subgroup of G, and assume that V is endowed with a K-invariant inner
product ⟨·|·⟩.1 For a non-zero vector 0 ≠ v ∈ V , the goal is to minimize ∥π(g)v∥2 =

⟨v|π(g)∗π(g)|v⟩ = ⟨v|π(g∗g)|v⟩ over g ∈ G, where we used that π(g)∗ = π(g∗).2
Therefore, this is equivalent to minimizing ⟨v|π(p)|v⟩ over p ∈ M = {g∗g : g ∈
G} = G ∩ PD(n) ⊆ PD(n). We capture this in the following definition:3

This chapter is adapted from [HNW23].
1Following Dirac notation, we will also write ⟨v|A|w⟩ := ⟨v|Aw⟩ for vectors v,w ∈ v and

operators A on V .
2Because K acts unitarily and the Lie algebra representation Π = dπI is complex linear, one

has Π(X∗) = Π(X)∗ for X ∈ Lie(G). By the polar decomposition (Theorem 2.2.16) every g ∈ G
is a product g = k exp(H) with k ∈ K and H ∈ iLie(K), so π(g)∗ = (π(k) exp(Π(H)))∗ =

exp(Π(H))π(k)−1 = exp(Π(H))π(k−1) = π(g∗) (cf. [BFG+19; Hir22a]).
3Alternatively, because of the K-invariance, g ↦→ ∥π(g)v∥2 descends to a map on the quotient K\G.

This space is naturally isometric to M via the map Kg ↦→ g∗g: for G = GL(n,C) one can
prove this using the polar decomposition, which generalizes to the Cartan decomposition for
reductive G. As such, this is the same as Definition 10.1.1.
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10. Interior-point methods for non-commutative scaling and geometric problems

Definition 10.1.1. LetM = {g∗g : g ∈ G} = G∩PD(n) ⊆ PD(n). For 0 ≠ v ∈ V , the
function ϕv : M→ R is defined by

ϕv : M→ R, ϕv(p) = log ⟨v|π(p)|v⟩. (10.1.1)

For the special case where G = GL(n,C), V = Cn and π is the identity map, we
write

fv : PD(n) → R, fv(P) = log ⟨v|P |v⟩ . (10.1.2)

We note thatM is a convex subset of PD(n) [BH13, Thm. 10.58, Lem. 10.59], so
the geodesics inM are precisely the geodesics in PD(n) which lie completely in G.
Thus the tangent space TIM consists of those Hermitian matrices H ∈ Herm(n) =
TIPD(n)which also are in Lie(G) := TIG, the Lie algebra of G. For G = GL(n,C),
we simply have that TIM = Herm(n).

Because K acts unitarily, π restricts to a map M→ PD(V), and one can verify
that it sends geodesics to geodesics (i.e., it is geodesically affine). At the identity, we
have the explicit description

π
(︁
ExpI(tH)

)︁
= ExpI(tΠ(H))

forH ∈ TIM andΠ : Lie(G) → End(V) = Lie(GL(V)) is given by the derivative of π,
i.e., Π = dπI. The linear map Π is also known as the Lie algebra homomorphism
induced by π. Therefore,ϕv is the composition of the geodesically affine mapM→
PD(V), p ↦→ π(p), and the map PD(V) → R given by P ↦→ log ⟨v|P |v⟩, i.e., the
function for the definining representation of GL(V). To establish bounds on the
derivatives of ϕv, it therefore suffices to prove bounds on the derivatives of fv, and
to translate the results via Π.

Below, we prove the well-known fact that ϕv is convex onM (see, e.g., Proposi-
tion 2.6.6 or [BFG+19]). As explained above it suffices to prove this for the special
case where G = GL(n,C) and V = Cn, with π : G→ GL(V) given by the identity
map.

Proposition 10.1.2. For 0 ≠ v ∈ Cn, the Hessian of the function fv : PD(n) → R

defined in Eq. (10.1.2) satisfies for every P ∈ PD(n) and U ∈ TPPD(n) the identity

(∇2fv)P(U,U) =
⟨ṽ| (Ũ − ⟨ṽ|Ũ|ṽ⟩⟨ṽ|ṽ⟩ I)

2 |ṽ⟩
⟨ṽ|ṽ⟩ ,

where we use the notation ṽ = P1/2v and Ũ = P−1/2UP−1/2. As a consequence, for every
representation π : G→ GL(V) and v ∈ V , ϕv is convex.

Proof. We compute the Hessian of f := fv. First off, we have

∂tf(ExpP(tU)) = ∂t log ⟨v|ExpP(tU)|v⟩ =
⟨ṽ|ŨetŨ |ṽ⟩
⟨ṽ|etŨ |ṽ⟩

.

The second derivative is given by

∂2
t=0f(ExpP(tU)) =

⟨ṽ|Ũ2 |ṽ⟩ ⟨ṽ|ṽ⟩ − ⟨ṽ|Ũ|ṽ⟩2

⟨ṽ|ṽ⟩2
=
⟨ṽ| (Ũ − ⟨ṽ|Ũ|ṽ⟩⟨ṽ|ṽ⟩ I)

2 |ṽ⟩
⟨ṽ|ṽ⟩ ,

hence is non-negative. □
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10.1. Non-commutative optimization and scaling problems

The expression for the first- and second derivatives can be understood in terms
of the expectation and variance of corresponding random variables, as pointed
out in [BFG+19].4 This will be useful for bounding the third derivative. Define a
linear map Φv : Cn×n→ C by

Φv(A) =
⟨v|A|v⟩
⟨v|v⟩ . (10.1.3)

ThenΦv is what is known as a completely positive and unital map.5 Such a map is to
be interpreted as taking the expectation with respect to a random variable, where
the random variable is now specified by a complex matrix. One can define the
covariance between two matrices A,B ∈ Cn×n as

Covv(A,B) = Φv(A∗B) −Φv(A)∗Φv(B). (10.1.4)

The variance of A is defined accordingly as Varv(A) = Covv(A,A). With this
notation, we can more succinctly write

(∇2fv)P(U,U) = Varṽ(Ũ),
where ṽ = P1/2v and Ũ = P−1/2UP−1/2 as before. Then the third derivative can be
computed as follows.
Proposition 10.1.3. Let 0 ≠ v ∈ Cn and let fv : PD(n) → R be as defined in Eq. (10.1.2).
Then for every U,W ∈ TIPD(n) = Herm(n), its third derivative satisfies

(∇3fv)I(W,U,U)

=
⟨v|{W,U2}|v⟩

2 ⟨v|v⟩ − ⟨v|U
2 |v⟩⟨v|W |v⟩
⟨v|v⟩2

− ⟨v|U|v⟩⟨v|{W,U}|v⟩
⟨v|v⟩2

+ 2 ⟨v|U|v⟩2⟨v|W |v⟩
⟨v|v⟩3

= Re
(︂
Cov(W,U2 − 2Φ(U)U)

)︂
.

Proof. To compute the third derivative of f := fv at I ∈ PD(n), note that

∂t=0(∇2f)ExpI(tW)(τI→ExpI(tW)U, τI→ExpI(tW)U)

= ∂t=0

(︄
⟨v| e t

2WU2e
t
2W |v⟩

⟨v|etW |v⟩
− ⟨v|e

t
2WUe

t
2W |v⟩2

⟨v|etW |v⟩2

)︄
=
⟨v|{W,U2}|v⟩

2 ⟨v|v⟩ − ⟨v|U
2 |v⟩⟨v|W |v⟩
⟨v|v⟩2

− ⟨v|U|v⟩⟨v|{W,U}|v⟩
⟨v|v⟩2

+ 2 ⟨v|U|v⟩2⟨v|W |v⟩
⟨v|v⟩3

.

Using the mapΦ and the associated covariance defined in Eqs. (10.1.3) and (10.1.4),
we may rewrite the above more succinctly as

(∇3f)I(W,U,U) = 1
2Φ({W,U2}) −Φ(U2)Φ(W) −Φ(U)Φ({W,U}) + 2Φ(U)2Φ(W)

=
1
2(Cov(W,U2) + Cov(U2,W)) −Φ(U)(Cov(U,W) + Cov(W,U))

= Re
(︂
Cov(W,U2 − 2Φ(U)U)

)︂
. □

4Similarly, the higher derivatives along geodesics can be related to higher cumulants, see [BFG+19,
Rem. 3.16].

5This means that Φv(I) = 1, and the complete positivity refers to the fact that for every n′ ⩾ 1,
the map Φv ⊗ ICn′×n′ : Cn×n ⊗ Cn′×n′ → Cn′×n′ sends positive-semidefinite operators to
positive-semidefinite operators.
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10. Interior-point methods for non-commutative scaling and geometric problems

Remark 10.1.4. The functions fv are not necessarily self-concordant, even along geodesics.
To see this, consider v = 1√

2
(e1 − e2) and for z ∈ R the matrix Uz ∈ Herm(2) given by

Uz =

[︃
1 z

z 0

]︃
.

Then
(∇2fv)I(Uz,Uz) =

1
4, (∇3fv)I(Uz,Uz,Uz) =

z

2,

so |(∇3fv)I(Uz,Uz,Uz)| can be arbitrarily large compared to (∇2fv)I(Uz,Uz)3/2.

Although self-concordance does not hold, we do have the following bound on
its third derivative, which implies that it is compatible (in the sense of Section 8.2.2)
with any strongly convex function. This generalizes [BFG+19, Prop. 3.15] beyond
the caseW = U.

Theorem 10.1.5. Let 0 ≠ v ∈ Cn and let fv : PD(n) → R be as defined in Eq. (10.1.2).
For every P ∈ PD(n) and U,W ∈ TPPD(n) = Herm(n), one has the estimate|︁|︁(∇3fv)P(W,U,U)

|︁|︁ ⩽ 4∥Ũ∥∞
√︁
(∇2fv)P(W,W)

√︁
(∇2fv)P(U,U)

⩽ 4∥U∥P
√︁
(∇2fv)P(W,W)

√︁
(∇2fv)P(U,U)

= 4∥U∥P∥W∥fv,P∥U∥fv,P.

where Ũ = P−1/2UP−1/2, and ∥·∥∞ is the spectral norm.

Proof. We prove the statement for P = I, and set f := fv. Writing Var(A) =
Cov(A,A), an operator version of the Cauchy–Schwarz inequality [BD00] yields|︁|︁(∇3f)I(W,U,U)

|︁|︁2 ⩽ |︁|︁Cov(W,U2 − 2Φ(U)U)
|︁|︁2 ⩽ Var(W)Var(U2 − 2Φ(U)U).

Using that for every A,B ∈ Cn×n,

Var(A + B) = Var(A) + Var(B) + Cov(A,B) + Cov(B,A) ⩽ 2(Var(A) + Var(B)),

one can deduce for Hermitian A that

Var(U2 − 2Φ(U)U) ⩽ 2 Var(U(U −Φ(U))) + 2 Var(Φ(U)U)
⩽ 2∥U2∥∞Var(U −Φ(U)) + 2Φ(U)2 Var(U)
⩽ 4∥U∥2∞Var(U)

where the second inequality follows from

Var(U(U −Φ(U))) ⩽ Φ((U −Φ(U))UU(U −Φ(U)))

=
⟨v|(U −Φ(U))UU(U −Φ(U))|v⟩

⟨v|v⟩

⩽ 2∥U2∥∞
⟨v|(U −Φ(U))2 |v⟩

⟨v|v⟩
= 2∥U2∥∞Var(U −Φ(U)).

The theorem now follows from the observation that (∇2f)I(U,U) = Var(U−Φ(U)) =
Var(U). □

226



10.1. Non-commutative optimization and scaling problems

Corollary 10.1.6. For 0 ≠ v ∈ V , ϕv defined in Eq. (10.1.1) satisfies for all p ∈ M
and u,w ∈ TpM the inequality|︁|︁(∇3ϕv)p(w,u,u)

|︁|︁ ⩽ 4∥dπp(u)∥π(p)
√︂
(∇2ϕv)p(w,w)

√︂
(∇2ϕv)p(u,u).

The quantity ∥dπp(u)∥π(p) can be understood by observing that

dπp(u) = ∂t=0π(Expp(tu)) = ∂t=0π
(︂
p1/2etp

−1/2up−1/2
p1/2

)︂
= π(p1/2)Π(p−1/2up−1/2)π(p1/2).

Therefore ∥dπp(u)∥π(p) = ∥Π(p−1/2up−1/2)∥I. For convenience, we write N(π) =
∥Π∥ for the operator norm of Π : Lie(G) → End(V). This quantity is known as the
weight norm of π in [BFG+19], as it is determined as the largest norm of any highest
weight appearing in the decomposition of the representation π into irreducible
components, see Section 2.6 for details. Then the above computation shows that
the operator norm of dpπ with respect to ∥·∥p and ∥·∥π(p) is exactly the weight
norm N(π).

Corollary 10.1.7. LetN(π) = ∥Π∥ the weight norm of π. Then for 0 ≠ v ∈ V , ϕv defined
in Eq. (10.1.1) satisfies for all p ∈M and u,w ∈ TpM the inequality|︁|︁(∇3ϕv)p(w,u,u)

|︁|︁ ⩽ 4N(π) ∥u∥p
√︂
(∇2ϕv)p(w,w)

√︂
(∇2ϕv)p(u,u).

We now apply the above to obtain an algorithmic result for optimizing ϕv over
balls of fixed radius. Recall from Theorem 9.2.11 that h(p) = 1

2d(p, I)2 is 1-self-
concordant on PD(n). Therefore, the same holds on M. It directly follows from
Theorem 8.2.11 that one can construct a strongly self-concordant function on its
open epigraph, as h is (0, 1)-compatible with itself:

Proposition 10.1.8. Let h : M → R be defined by h(p) = 1
2d(p, I)2. Let S0 > 0 and

consider D = {p ∈M : h(p) < S0}. Then the function F : D→ R defined by

F(p) = − log(S0 − h(p)) + h(p)

is a self-concordant barrier for D with barrier parameter θ = 1 + S0.

The claim that it has barrier parameter at most 1 + S0 follows from λF(p)2 ⩽ 1 +
λh(p)2 and Corollary 9.1.2. Since h is 1-strongly convex, we see that the functionϕv

is (0, 2N(π))-compatible with F in the sense of Definition 8.2.8. Therefore by
Proposition 8.2.10, for every t ⩾ 0, the function Ft := tϕv + F is α-self-concordant,
where α is given by

α =

{︄
4N(π)2−1

4N(π)4 if 2N(π)2 > 1,
1 otherwise.

(10.1.5)

Lastly, we can exactly give the analytic center of F: one easily verifies that it is given
by p = I. We obtain the following algorithmic result.
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10. Interior-point methods for non-commutative scaling and geometric problems

Theorem 10.1.9. For 0 ≠ v ∈ V , let ϕv : M→ R be the function defined in Eq. (10.1.1).
Let α ⩾ 0 be as in Eq. (10.1.5). Then for every S0 > 0, using(︄

9
5 +

36
5

√︃
1 + S0
α

)︄
log

(︃
8(1 + S0 + α)√

αε

)︃
iterations of the path-following method, one can compute a point Pε ∈M such that

ϕv(pε) − inf
p∈D

ϕv(p) ⩽ ε.

Proof. Set λ(1) = 1
4 and λ(2) = 1

9 . Let pi be the sequence of points defined in
Theorem 8.2.17 with these choices of λ(i). These satisfy

ϕv(pi) − inf
p∈D

ϕv(p) ⩽
2(1 + S0 + α)∥dϕv∥∗F,p√

αλ(1)
exp

(︄
−i λ(1) − λ(2)

λ(1) +
√︁
(1 + S0)/α

)︄
where we used that the barrier parameter θ of F is 1+ S0. The norm ∥d(ϕv)p∥∗F,p is
at most N(π), because F is strongly 1-convex and d(ϕv)p is N(π)-Lipschitz: fv is
easily checked to be 1-Lipschitz, and π isN(π)-Lipschitz. Therefore we just need
to ensure that

i
λ(1) − λ(2)

λ(1) +
√︁
(1 + S0)/α

⩾ log
(︃

2(1 + S0 + α)√
αλ(1)ε

)︃
,

which amounts to

i ⩾
λ(1) +

√︁
(1 + S0)/α

λ(1) − λ(2)
log

(︂2(1 + S0 + α)√
αλ(1)ε

)︂
=

9
5

(︂
1 + 4

√︃
1 + S0
α

)︂
log

(︂8(1 + S0 + α)√
αε

)︂
.
□

Corollary 10.1.10. For 0 ≠ v ∈ V , let ϕv be the function defined in Eq. (10.1.1). Then
for every ε > 0 and R0 > 0, an ε-approximate minimizer of ϕv over a ball of radius R0
around I ∈M ⊆ PD(n) can be found using

O

(︃
(1 + R0)(1 +N(π)) log

(︃
R0N(π)
ε

)︃)︃
iterations of the path-following method.

By the non-commutative duality theorem (Theorem 2.6.7), this also implies
that the scaling problem (Problem 2.6.4) can be solved with precision ε > 0
with a complexity depending polynomially on R, N(π), log(1/ε), and log(1/γ(π)),
where γ(π) is the weight margin of the representation.

We briefly comment on the geometric meaning of the functions ϕv. For the
purpose of optimization, it is natural to consider whether there exists an ana-
logue of (non-constant) linear functions on Rn. This is generally not the case;
in fact, if M is a complete Riemannian manifold with a non-constant smooth
function h : M→ R such that ∇2h = 0, thenM is isometric to a productM′ ×R,
such that after this identification, h is some multiple of the projection onto the
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second coordinate [Inn82].6 There does exist another useful generalization, namely
the class of Busemann functions; see [BH13, p. II.8] for general background. These
may be defined on any Hadamard manifold M (and also more generally) as
follows [Hir22a]: for a (not necessarily unit-speed) geodesic γ : R→Mwith γ̇ ≠ 0,
define bγ : M→ R by

bγ(p) := ∥γ̇(0)∥
(︂

lim
t→∞

d(p,γ(t/∥γ̇(0)∥)) − t
)︂
. (10.1.6)

This limit is well-defined and the resulting function turns out to be convex, and
in the specific case of M = Rn, reduces to an arbitrary (suitably normalized)
affine function. For M = PD(n), whenever γ converges to a rational point at
infinity, the Busemann function is a multiple of the ϕv associated with a highest
weight vector for an irreducible representation of GL(n). This follows, e.g., by
comparing [Hir22a, Lem. 2.34] and [FW20, Thm. 5.7]. The functions fv for v ∈ Cn

with ∥v∥ = 1, considered as a vector in the defining representation of GL(n),
correspond to those γ for which γ̇(0) is −vv∗, which may also be deduced from
e.g. [BH13, Prop. 10.69].

10.2. The minimum enclosing ball problem
In this section we show to apply the results of Section 8.2 and Chapter 9 to various
geometric problems, all of which involve the distance function or its square.

We first study the minimum enclosing ball problem (MEB) on a manifold M:
givenm ⩾ 3 distinct points p1,p2, . . . ,pm inM, find the smallest ball containing
all of them. More formally, finding the MEB amounts to solving the following
nonsmooth optimization problem:

minimize R s.t. (p,R) ∈M ×R, d(p,pi) ⩽ R (i = 1, 2, . . . ,m). (10.2.1)

In the case of Euclidean space M = Rn, MEB is a well-studied problem in
computational geometry, and can be formulated as a second-order cone program
to which an interior-point method is applicable; see e.g. [KMY04].

Nielsen and Hadjeres [NH15] addressed this problem for a hyperbolic spaceM.
We shall assume thatM is a complete convex submanifold of PD(n), but we note
that similar results may be obtained for products of (rescalings of) these spaces,
hence for all Hadamard symmetric spaces as explained in Section 7.3. To apply
our framework, we reformulate Eq. (10.2.1) as a convex optimization problem over
the following bounded domain.

Lemma 10.2.1. Set S0 = maxi≠j d(pi,pj)2. Let D ⊆M ×R be defined by

D = {(p,S) ∈M ×R | d(p,pi)2 < S < 2S0 (i = 1, 2, . . . ,m)}. (10.2.2)

Then D is convex, open, bounded and non-empty, as (pj, 3
2S0) ∈ D for every j = 1, . . . ,m.

6For Hadamard M, this may be deduced as follows: ∇2h = 0 implies that ∥dh∥ is a constant
function onM. Since h is non-constant, ∥dh∥ is nonzero. The gradient flow of h is by isometries,
without fixed points. If z : M → M denotes the map given by following the gradient flow
for time 1, then d(z(p),p) is also constant as a function of p ∈ M, and the subgroup of the
isometries of M generated by z acts properly by semi-simple isometries on M, in the sense
of [BH13, Def. I.8.2, Def. II.6.1]. Hence by [BH13, Thm. 7.1],M splits as a productM′ ×R.

229



10. Interior-point methods for non-commutative scaling and geometric problems

Proof. Since D is the intersection of open epigraphs of squared distance functions
and an open halfspace defined by S < 2S0, it is open and convex. The boundedness
of D is clear, as is the containment (pj, 3

2S0) ∈ D for every j = 1, . . . ,m. □

Clearly, the optimal radius of a MEB is at most R0 := maxi≠j d(pi,pj) =
√
S0. It

is also at least half of that:

Lemma 10.2.2. Let R∗ be the optimum of Eq. (10.2.1) and R0 = maxi≠j d(pi,pj).
Then 2R∗ ⩾ R0.

Proof. For every p ∈M, we have

d(pi,pj) ⩽ d(pi,p) + d(p,pj) ⩽ 2 max
k
d(pk,p).

Minimizing the right-hand side with respect to p ∈ M yields d(pi,pj) ⩽ 2R∗ for
every i, j; maximizing over i ≠ j gives the desired bound. □

Replacing the objective function R by R2 = S, finding the MEB is equivalent to
solving

minimize S s.t. (p,S) ∈ D. (10.2.3)

As a natural application of our results, we obtain a self-concordant barrier for D.

Proposition 10.2.3. Let D be as in Lemma 10.2.1. Define G : D→ R by

G(p,S) = − log(2S0 − S) +
m∑︂
i=1

(︃
− log(S − d(p,pi)2) +

1
2d(p,pi)2

)︃
.

Then G is a self-concordant barrier for D, with barrier parameter θ = 1 +m(1 + 2S0).

Proof. Let Fi(p,S) := − log(S − d(p,pi)2) + 1
2d(p,pi)2. By Corollary 7.3.2 and The-

orem 7.3.3, Fi is is 1-self-concordant. Furthermore, it satisfies λFi(p,S)2 ⩽
1 + d(p,pi)2 ⩽ 1 + 2S0. As − log(2S0 − S) is 1-self-concordant, so is G. The
Newton decrement of G then satisfies λG(p,S)2 ⩽ 1 +m(1 + 2S0). Hence G is a
self-concordant barrier with the claimed parameter. □

To initialize the path-following method, we use the damped Newton method
from Theorem 8.1.18. To estimate its iteration complexity, we need a lower bound
on G.

Lemma 10.2.4. For every (p,S) ∈ D, we have

G(p,S) ⩾ −(1 +m) log(2S0).

Proof. Since x ↦→ − log(x) is decreasing, d(p,pi)2 ⩾ 0 and S > 0, we have G(p,S) ⩾
− log(2S0) −m log(2S0) = −(1 +m) log(2S0). □

The main result of this section is then the following.
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Theorem 10.2.5. Let p1,p2, . . . ,pm ∈M, and let R∗ denote the radius of the minimum
enclosing ball for these points. Set R0 = maxi≠j d(pi,pj). For ε > 0, with O(mR2

0)
iterations of a damped Newton method and

O

(︄√︂
1 +m(R2

0 + 1) log

(︄
m(R2

0 + 1)
ε

)︄)︄
iterations of the path-following method, one can find (pε,Rε) ∈M×R such thatRε ⩽ R∗+ε,
and the ball with center pε and radius Rε includes p1,p2, . . . ,pm.

Proof. Set λ(1) = 1
4 , λ(2) = 1

9 . The damped Newton method of Theorem 8.1.18 with
starting point (pj, 3

2S0) yields a point (q,S)with λG(q,S) ⩽ 1
2λ
(1) within the order

of

G(pj, 3
2S0) − inf(p,S)∈DG(p,S)

1
2λ
(1)

⩽
− log(S0/2) +

∑︁m
i=1(− log(3S0/2 − d(pj,pi)2) + d(pj,pi)2/2) + (1 +m) log(2S0)

1
2λ
(1)

⩽
− log(S0/2) −m log(S0/2) + (m/2)S0 + (1 +m) log(2S0)

1
2λ
(1)

=
(1 +m) log 4 + (m/2)S0

1
2λ
(1)

iterations. Consider the path-following method in Theorem 8.2.17 from the initial
point (q,S), with objective s : D→ R defined by (p,S) ↦→ S. Since this is a linear
map, t s +G is 1-self-concordant for all t > 0. The starting time t0 is given by

t0 =
λ(1) − λG(q,S)
∥ds(q,S)∥∗G,(q,S)

⩾
λ(1) − λG(q,S)

2S0
,

where ∥ds(q,S)∥∗G,(q,S) is bounded by 2S0 by Lemma 8.2.18. Thus the path-following
method yields a sequence of points (ql,Sl) such that

Sl − R2
∗ ⩽

8S0(θ + 1)
λ(1)

exp
(︃
−l λ

(1) − λ(2)

λ(1) +
√
θ

)︃
,

where θ = 1+m(1+ 2S0) is the barrier parameter ofG and we used λ(q,S) ⩽ λ(1)/2.
For ε′ > 0, after

l ⩾
1
4 +
√
θ

1
4 − 1

9
log

(︃
32(θ + 1)

ε′

)︃
iterations, we have

Sl − R2
∗ ⩽ ε

′S0.
For Rl =

√
Sl, it holds that

Rl − R∗ ⩽ ε′S0/(Rl + R∗) ⩽ ε′S0/2R∗ ⩽ ε′S0/R0,

where the last inequality follows from Lemma 10.2.2. Therefore, choosing ε′ =
εR0/S0 = ε/R0 yields the desired estimate. □
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10.3. The geometric median on model spaces
In this section we show how to apply the methods from Section 8.2 to compute
geometric medians on the model spacesMn

−κ for constant sectional curvature −κ,
where κ > 0. For now, we shall work with generalM; later, we restrict to the model
spaces because it is there that we have a barrier for the epigraph of the distance
function (cf. Theorem 9.3.7). Recall from the introduction that the geometric median
problem is as follows: givenm ⩾ 3 points p1, . . . ,pm ∈M, not all contained in a
single geodesic, find p0 ∈M such that

p0 ∈ argmin
p∈M

s(p) :=
m∑︂
i=1
d(p,pi). (10.3.1)

This is a convex optimization objective, as the distance to a point is convex by
Lemma 9.1.1. Let us first construct define a suitable domain to optimize over.

Lemma 10.3.1. Set R0 = maxi≠j d(pi,pj). Let D ⊆M ×R be defined by

D = {(p,R) ∈M ×Rm : R2
i > d(p,pi)2, 2R0 > Ri > 0}.

Then D is convex, open, and non-empty: for every j ∈ [m], we have (pj, 3
2R0 1) ∈ D,

where 1 ∈ Rm is the all-ones vector.

Proof. The convexity of D follows from the convexity of the distance function, see
Lemma 9.1.1. The fact that D is open is obvious. Lastly, the given points are in D
because

d(pj,pi) ⩽ R0 <
3
2R0. □

Lemma 10.3.2. Define c : M ×Rm→ R by c(p,R) =
∑︁m

i=1 Ri, and let s : M→ R be
as in Eq. (10.3.1). Then

inf
(p,R)∈D

c(p,R) = inf
p∈M

s(p)

The proof relies on the fact that the geometric median of p1, . . . ,pm is contained
in the convex hull of these points, for which we essentially follow the argument
given in [Yan10, Prop. 2.4], where this fact is proven for more general distributions
(rather than just discrete distributions).

Proof. First, we observe that for fixed (p,R) ∈ D,

inf
R′:(p,R′)∈D

c(p,R′) =
m∑︂
i=1
d(p,pi) = s(p).

Thus it suffices to prove that if p0 ∈ argminp∈M s(p), then there exists some R ∈ Rm

such that (p0,R) ∈ D. We claim that any such p0 is in the convex hull of the pj.
From this claim one immediately deduces that (p0,R) ∈ D for R = 3

2R01, since by
Lemma 10.3.1, D is convex and (pj, 3

2R01) ∈ D for every j ∈ [m].
We now establish the claim by proving its contrapositive. Suppose p is not in the

convex hullC of the points p1, . . . ,pm, and let q be the projection of p ontoC, which
is automatically distinct from p. We use the notion of Alexandrov angle, which
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for three points a,b, c ∈Mwith a ≠ b, c is defined as the unique ∠a(b, c) ∈ [0,π]
such that

cos ∠a(b, c) =
⟨Exp−1

a (b), Exp−1
a (c)⟩a

d(a,b)d(a, c) .

Suppose first that q = pj for some j ∈ [m]. Then ∠p(q,pj) = 0. On the other
hand, if q ≠ pj, by [BH13, Prop. II.2.4], we have ∠q(p,pj) ⩾ π/2. On a Hadamard
manifold, the angles of a triangle add to at most π, hence ∠p(q,pj) ⩽ π/2. Since
we havem ⩾ 3, there must exist at least two j such that q ≠ pj. Furthermore, for at
least one such j, the inequality must be strict: if the inequality is not strict then we
must have ∠pj(q,p) = 0, so p,q,pj all lie on a single geodesic. Since p is distinct
from all pj, s is differentiable at p, and it follows from Lemma 9.1.1 that

grad(s)p = −
m∑︂
j=1

Exp−1
p (pj)

d(p,pj)
.

Since we have shown that ∠p(q,pj) ⩽ π/2 for every j ∈ [m], with strict inequality
for at least one j, we have

⟨grad(s)p, Exp−1
p (q)⟩p = −d(p,q)

m∑︂
j=1

cos ∠p(q,pj) < 0

because d(p,q) ≠ 0. In particular, grad(s)p ≠ 0 and p is not a minimizer of s. □

We now construct a barrier for the domain D. From here onwards, we assume
thatM =Mn

−κ with κ > 0.

Proposition 10.3.3. Let D be as in Lemma 10.3.1. Define G : D→ R by

G(p,R) =
m∑︂
i=1

(︂
− log(2R0 − Ri) − 2 log(R2

i − d(p,pi)2) + 2κd(p,pi)2
)︂

.

Then G is a self-concordant barrier for D, with barrier parameter θ = 5m + 16mκR2
0.

Proof. Let Ψ(r) = − log(2R0 − r) and recall from Theorem 9.3.7 that Fi(p,R,S) =
− log(RS−d(p,pi)2) + κd(p,pi)2 is strongly 1

2 -self-concordant. Using Lemma 8.1.2
and the strong 1-self-concordance of − log(2R0 − R), we deduce that G is strongly
1-self-concordant. Then for every (p,R) ∈ D, we have

d((p,R), (p1,R0))2 = d(p,p1)2 + |R−R0 |2 ⩽ 2R2 − 2R0R+R2
0 ⩽ 8R2

0 − 4R2
0 +R2

0 = 5R2
0.

where d on the left-hand side refers to the distance onM ×R. Furthermore, for
every (p,R) ∈ D, the bound on λFi,1/2(p,R,S) = λ2Fi,1(p,R,S) from Theorem 9.3.7
implies that

λG(p,R)2 ⩽
m∑︂
i=1
λΨ(Ri)2+λ2

2Fi,1(p,R,R) ⩽ m+
m∑︂
i=1
(4+4κd(p,pi)2) ⩽ 5m+16mκR2

0.

Therefore G is a self-concordant barrier with barrier parameter θ = 5m + 16mκR2
0.
□
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We now consider how to initialize the path-following method for the objective

c(p,R) =
m∑︂
i=1
Ri,

which is such that tc+G is 1-self-concordant for every t ⩾ 0, because c is linear. To
apply Theorem 8.2.17, we need to find a point (q,S) ∈ D such that λG(q,S) < λ(1).7
We can do this using the damped Newton method from Theorem 8.1.18. To bound
the number of iterations, we must bound the potential gap of G.

Lemma 10.3.4. For every (p,R) ∈ D, we have

G(p,R) ⩾ −m log(32R5
0).

Proof. The functionx ↦→ − log(x) is decreasing. BecauseRi > 0 for every i ∈ [m], we
have − log(2R0 − Ri) ⩾ − log(2R0). Similarly, because Ri < 2R0 and d(p,pi) ⩾ 0 for
every i ∈ [m], each − log(R2

i
−d(p,pi)2) term is at least − log(4R2

0). HenceG(p,R) ⩾
−m log(2R0) − 2m log(4R2

0) = −m log(32R5
0), concluding the proof. □

We now prove the main result of this section.

Theorem 10.3.5. Let p1, . . . ,pm ∈ Mn
−κ with κ > 0 be m ⩾ 3 points, not all on one

geodesic, and set R0 = maxi≠j d(pi,pj). Define s(p) =
∑︁m

j=1 d(p,pj), and let ε > 0.
Then with O((m + 1)κR2

0) iterations of a damped Newton method and

O

(︄√︂
m(κR2

0 + 1) log

(︄
mR0(κR2

0 + 1)
ε

)︄)︄
iterations of the path-following method, one can find pε ∈Mn

−κ such that

s(pε) − inf
q∈M

s(q) ⩽ ε.

Proof. Set λ(1) = 1
4 , λ(2) = 1

9 . The damped Newton method of Theorem 8.1.18 with
starting point (pj, 3

2R01) yields a point (q,S) with λG(q,S) ⩽ 1
2λ
(1) within the order

of

G(pj, 3
2R01) − inf(p,R)∈DG(p,R)

1
2λ
(1)

⩽
G(pj, 3

2R01) +m log(32R5
0)

1
2λ
(1)

=
−m log(R0

2 ) − 2
∑︁m

i=1 log(94R2
0 − d(pj,pi)2) +m log(32R5

0) + 2κ
∑︁m

i=1 d(pj,pi)2
1
2λ
(1)

⩽
−m log(R0

2 ) − 2
∑︁m

i=1 log(54R2
0) +m log(32R5

0) + 8κmR2
0

1
2λ
(1)

7For fixed q, it is easy to determine the optimal S, by explicitly solving the first-order optimality
conditions.
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=
m log(1024

25 ) + 8mκR2
0

1
2λ
(1)

iterations. A suitable choice of starting time for the path-following method from
Theorem 8.2.17 is then

t0 =
λ(1) − λG(q,S)
∥dc(q,S)∥∗G,(q,S)

.

It remains to be shown that this is not too small. We give an upper bound
on ∥dc(q,S)∥∗G,(q,S). The domain D is constructed so that c(p,R) ⩽ 2mR0 for
every (p,R) ∈ D, and c(q,S) ⩾ 0. It follows by Lemma 8.2.18 that

∥dc(q,S)∥∗G,(q,S) ⩽ 2mR0,

and so t0 ⩾ (λ(1) − λG(q,S))/(2mR0). Therefore, initializing the algorithm from
Theorem 8.2.17 with initial point (q,S) and the above t0 yields a sequence of
points (ql,Sl) such that

c(ql,Sl) − inf
(p,R)∈D

c(p,R) ⩽ 4mR0(θ + 1)
λ(1)

exp
(︃
−l λ

(1) − λ(2)

λ(1) +
√
θ

)︃
where θ is the barrier parameter ofG, and we used that λ(1)−λG(q,S) is at least 1

2λ
(1).

Rewriting the above and using Lemma 10.3.2 shows that

s(ql) − inf
q∈M

s(q) ⩽ c(ql,Sl) − inf
(q,R)∈D

c(q,R) ⩽ ε

whenever

l ⩾
1
4 +
√
θ

1
4 − 1

9
log

(︃
4mR0(θ + 1)

ε

)︃
.

The theorem now follows from filling in θ = 5m + 16mκR2
0. □

10.4. The Riemannian barycenter
We end this section by briefly commenting on the problem of finding the Rieman-
nian barycenter, first introduced by Cartan, and sometimes also called the Fréchet
or Karcher mean, see e.g. [Afs11] for some historical context on this topic. It is
defined as follows: given points p1, . . . ,pm ∈M, find p0 ∈M

p0 ∈ argmin
p∈M

f(p) :=
m∑︂
i=1
d(p,pi)2.

The point p0 is known as the barycenter of p1, . . . ,pm, and is unique on Hadamard
manifolds by strong convexity of f. It is trivial to find p0 whenM = Rn is Euclidean
space, as it is given by p0 = 1

m

∑︁m
i=1 pi. Furthermore, the solution is unique on any

Hadamard manifold, as the squared distance is 2-strongly convex, and hence f is 2m-
strongly convex. Even for hyperbolic space it is not clear whether one can give a
closed-form solution to the above problem. However, ifM has sectional curvatures
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in [−κ, 0], then f isO(m
√
κR/tanh(R

√
κ))-smooth atpwithR = maxj d(p,pj), which

follows from standard variational arguments [Lee18, Prop. 10.12, Thm. 10.22],
hence the function f is well-conditioned. Therefore a standard gradient descent
method gives an algorithm which converges relatively quickly; one can find
an ε-approximate minimizer of f in O(

√
κR0 log([f(p) − infq f(q)]/ε)/tanh(

√
κR0))

iterations, where R0 is some a priori bound on size of the domain one restricts
to, and p is the starting point. This can be deduced easily from Proposition 6.5.4,
which gives guarantees for gradient descent for well-conditioned convex functions.
We note that one could also apply more sophisticated first-order methods such as
accelerated gradient descent to this problem, see [AS20].

It is natural to determine what complexity our interior-point methods give for
this problem. In the setting ofM =Mn

−κ, we can (up to logarithmic factors) recover
the above iteration complexity. We restrict the above optimization problem to a
ball of radius R1 = maxj≠1 d(p1,pj) around the point p1, and use the barrier F(p) =
− log(R2

1 − d(p,p1)2) + κd(p,p1)2, which has barrier parameter 1 +O(κR2
1). Then,

observe that by Theorem 9.3.1(iii) and Lemma 8.2.9, f is (
√

2ζ
√
κ,
√

2κ)-compatible
with any squared distance function, as each of the d(p,pi)2’s is. As a consequence, f
is (
√

2ζ,
√

2)-compatible with F, and tf+F isO(1)-self-concordant for every t ⩾ 1 by
Proposition 8.2.10. The path-following method, initialized with starting point p1
(which is the analytic center of F), then yields an ε-approximate minimizer of f
within O((1 +

√
κR1) log(mκR1/ε)) iterations. While this specific choice of barrier

may seem odd, it has the advantage that we know its analytic center to be p1,
so it is easy to initialize the path-following method. This shows again that it is
useful to have a general path-following method capable of dealing with compatible
objectives, rather than just linear ones: if one included a barrier term for the
epigraph of every d(p,pi)2, then it would both be harder to find the analytic center
(for initialization), and the barrier parameter would scale withm. We note that a
similar approach works on PD(n) if one suitably generalized Theorem 9.3.1(iii).
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11. An introduction to quantum
algorithms and lower bounds

The purpose of this chapter is to provide a brief introduction to quantum algorithms
and quantum lower bounds. We also collect some well-known results that are
used in the later chapters. We shall generally be brief, and defer to the many
excellent sources on quantum computing for more structured discussions of this
topic, among which are [NC02; Wol22; Chi22].

11.1. Quantum computing
To understand the most common (theoretical) model for quantum computation, it
is useful to contrast it with a similar classical model of computation. Although the
typical formal definition of a classical computer uses Turing machines, generalizing
this to a quantum setting is not as straightforward or easy to work with [Deu85;
Deu89]; one particular issue is the unphysical nature of a tape head whose location
is in superposition.

Instead, one can use a different classical starting point. A classical computer can
be alternatively described as a device which has a memory, represented by some
bit string x ∈ {0, 1}N, and which performs certain basic operations in succession.
A standard choice of basic operations consists of the AND-, OR- and NOT-gates:
these can be specified to take their inputs from the memory x at locations i, j (or
a single index in the case of NOT), and to write their output to some location i.
The final output of the computation is then a bit (or sequence of bits) stored in a
prespecified location in the memory.

To go from the above classical model to a quantum model of computation, one
can then proceed as follows [Deu89; Yao93]. First, the memory x ∈ {0, 1}N is
replaced by an N-qubit pure state |ψ⟩ ∈ (C2)⊗N, which is a unit vector with respect
to the usual Hilbert–Schmidt inner product, i.e., ⟨ψ|ψ⟩ = ∥|ψ⟩∥2 = 1. Such a state
can be viewed as a superposition of the standard basis states |x⟩ ∈ (C2)⊗N ≅ C2N

labelled by x ∈ {0, 1}N.
Next, one has to find a suitable extension of the basic gates. The linearity of the

Schrödinger equation, which governs the time-evolution of a quantum state subject
to some Hamiltonian, suggests that if U : (C2)⊗N → (C2)⊗N is a basic operation,
thenU should be linear. Since an operation should also leave the memory in a pure
state again, the basic operations necessarily have to be unitary, i.e., UU∗ = U∗U = I.
Consequently, quantum operations are necessarily reversible. Furthermore, every
reversible classical gate yields a permutation of the basis states, and hence can be
extended to a unitary operation. In particular, the AND- and OR-gates do not

This chapter is partially adapted from [AGL+21; GN22; AGN23].
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11. An introduction to quantum algorithms and lower bounds

directly generalize to the quantum setting, since they are not bĳections (as they are
maps {0, 1}2 → {0, 1}).

A standard choice of universal gate set for quantum computing consists of
the one-qubit Hadamard gate H, the one-qubit T gate, and the two-qubit CNOT
(controlled-NOT) gate [Chi22; Wol22]. These are specified by the following:

H =
1√
2

[︃
1 1
1 −1

]︃
, T =

[︃
1 0
0 eiπ/4

]︃
, CNOT |b1⟩ |b2⟩ = |b1⟩ |b2 ⊕ b1⟩ ,

where b1,b2 ∈ {0, 1}. The resulting operations on N-qubit state |ψ⟩ are then
applying these gates to any qubit (or two qubits in the case of CNOT) of choice, and
to act on the other qubits with the identity. The universality of the gate set then
means that the subgroup of U((C2)⊗N) generated by these operations is dense.1

Beyond the manipulation of the state of the quantum computer, one has to be
able to provide inputs and outputs. We assume that the quantum computer is
initialized in the state |0⟩. The input for a computation can be encoded as part of a
circuit (e.g., a sequence of NOT-gates at the start of the circuit), or using a special
additional unitary operator, implementing a quantum query to the input. This
usually comes in the form of a unitary operator that may be applied (as well as its
inverse) with some prescibed behavior, without specifying how it is implemented
in terms of standard gates. A common example is quantum query access to a
bit string x ∈ {0, 1}N (or equivalently a Boolean function f : [N] → {0, 1}): one is
allowed to apply the unitary Ux on CN ⊗ C2 defined by

Ux |i⟩ |b⟩ = |i⟩ |b ⊕ xi⟩ , i ∈ [N], b ∈ {0, 1}.

The output, on the other hand, is quite different from the classical situation.
At the end of the circuit, the state |ψ⟩ is measured, and we assume for simplicity
that this is a standard basis measurement. This means that the output will be a bit
string x ∈ {0, 1}N, such that x occurs with probability |⟨x|ψ⟩|2. Note that these
probabilities add up to 1 because ψ has norm 1. This is a specific instance of Born’s
rule: if a quantum system is in a stateρ = |ψ⟩ ⟨ψ|, and one has a collection of positive-
semidefinite operators P1, . . . ,Pm such that

∑︁
i Pi = I, then the measurement

corresponding to this shows outcome i ∈ [m]with probability Tr[Piρ].
It is by now well-known that certain tasks can be performed faster on a quantum

computer than (known) on a classical computer. Two particularly famous examples
are Shor’s polynomial-time algorithm for factoring integers [Sho94], and Grover’s
algorithm for unstructured database search [Gro96]. The latter is particularly
important for us, and informally the result is as follows: given quantum query
access to a bit string x ∈ {0, 1}N with exactly one index i ∈ [N] such that xi = 1,
one can find this i with probability ⩾ 2/3 using O(

√
N) queries to x, and ˜︁O(√N)

other gates.2 Grover’s algorithm for unstructured search has been generalized to
that of amplitude amplification [BHMT02]; a related algorithm is amplitude estimation.
We make use of these on a regular basis in the other chapters.

Although not used in the rest of this thesis, we mention several more modern
algorithmic techniques. A particularly important one is the Harrow–Hassidim–
Lloyd (HHL) algorithm [HHL09], which gives an exponential speedup for (sparse)

1If one is only allowed to use the H-, CNOT− and S = T 2-gates, then the resulting subgroup is
finite and known as the Clifford group, see e.g. [NC02, Thm. 10.6].

2The number of gates here can be optimized further, see [AW17].
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Subroutine AmpEst(U,M)
Input: Access to controlled versions of unitary U ∈ U(2q) and its inverse, an

integerM ⩾ 1.
Output: Real number ã ∈ [0, 1].
Analysis: Theorem 11.2.2

linear system solving. This was improved through the introduction of variable-time
amplitude amplificiation by Ambainis [Amb10]. Another is the use of quantum
walks generalizing classical random walks, see e.g. [Amb07; Sze04]. These two
admit a common generalization, namely that of the quantum singular value transform
which has seen wide applications, see [GSLW19] and the references therein.

11.2. Common subroutines
In this section we summarize the external results that we build upon, and in some
cases give a quick proof of an aspect of the result that is not mentioned explicitly
in the original source.

11.2.1. Amplitude amplification and estimation
The following result can be derived from [BHMT02] (or [AR20] if one wants to
avoid the quantum Fourier transform):

Theorem 11.2.1 (Amplitude amplification [BHMT02]). Let U ∈ C2q×2q be a unitary
that creates a state

|ψ⟩ = U |0q⟩ =
√
a |ϕ1⟩ |1⟩ +

√
1 − a |ϕ0⟩ |0⟩

with a > 0, and we know a lower bound a ⩾ a′ > 0. Then there is a quantum algorithm V ,
implemented using O(1/

√
a′) applications of U and U†, and ˜︁O(q/√a′) other elementary

operations, such that

V |0q⟩ =
√
b |ϕ0⟩ |0⟩ +

√
1 − b |ϕ1⟩ |1⟩ , for some b ∈ [1/2, 1].

Theorem 11.2.2 (Amplitude estimation [BHMT02, Thm. 12]). Let U ∈ C2q×2q be a
unitary that creates a state

|ψ⟩ = U |0q⟩ =
√
a |ϕ1⟩ |1⟩ +

√
1 − a |ϕ0⟩ |0⟩ .

There is a quantum algorithm AmpEst that, with probability ⩾ 8
π2 , outputs an ã ∈ [0, 1]

such that

|a − ã| ⩽ 2π
√︁
a(1 − a)
M

+ π
2

M2

using M applications of controlled-U and M applications of controlled-U†. If M is a
power of 2, the algorithm uses O(qM) additional quantum gates, and the computation of
the sine-squared function of the normalized phase.

241
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Subroutine GroverCertainty(U, k0)
Input: Quantum oracle Ux to access x ∈ {0, 1}N, an integer k0 ⩾ 1.
Output: An index i ∈ [N].
Guarantee: If |x| = k0, then xi = 1 with certainty.
Analysis: Theorem 11.2.3

Proof. This follows from the formulation in [BHMT02] by setting k = 1 and
implementing the reflection through |0q⟩ using O(q) gates, which needs to be
performedM times. IfM is a power of 2 we can implement the quantum Fourier
transform on m = log2(M) qubits using m Hadamard gates, and the QFT and
its inverse need only be performed once; therefore, this cost is absorbed in the
big-O. □

We note that the above formulation of AmpEst outputs a real number ã whereas
we require a fixed-point encoded number for future uses. However, it suffices to
use fixed-point arithmetic using O(log(M)) bits; after all, the guarantee of AmpEst
only gives a precision of 1/poly(M).

11.2.2. Variations of Grover search
We also need a version of amplitude amplification (Theorem 11.2.1) where the
success probability is 1 if one knows the amplitude of the “good” part of the
state exactly. In a nutshell, the algorithm with success probability 1 is the usual
amplitude amplification algorithm applied not toU but toU followed by a rotation
of the last qubit to slightly reduce the amplitude a to ā. Carefully choosing ā
ensures that the success probability is exactly 1 after an integer number of rounds
of amplitude amplification. This requires having access to gates which implement
rotation by arbitrary angles, not just angles of the form π/2m for some integerm.
We specialize the statement of this result to the search setting but remark that
this works more generally for amplitude amplification. For exactlyN/4 marked
elements this observation was first made in [BBHT98].

Theorem 11.2.3 ([BHMT02, Thm. 4]). Let x ∈ {0, 1}N with |x| = k ⩾ 1. Then there
is a quantum algorithm GroverCertainty that takes as input a quantum oracle Ux to
access x and an integer k0 ∈ [N], and that outputs an index i ∈ [N], such that xi = 1 with
certainty if k0 = k, and uses O(

√︁
N/k0) quantum queries to x, and O(

√︁
N/k0 log(N))

additional gates.

One can use the above to find all k indices i ∈ [N] such that xi = 1, with
probability 1, using O(

√
Nk) queries and ˜︁O(√Nk3/2) gates. We give a precise

statement and implementation of this in Lemma 12.3.2.
The other version of Grover that we need is the following, which is originally

due to [BBHT98, Thm. 3], but we use a slightly different version from [BHMT02,
Thm. 3]:

Theorem 11.2.4. Let x ∈ {0, 1}N with |x| = k, where k is not necessarily known. Then
there is a quantum algorithm GroverExpectation that takes as input a quantum oracle
Ux to access x, and if k ⩾ 1, outputs an index i ∈ [N] such that xi = 1. The number of
quantum queries to x that it uses is a random variable Q, such that, if k ⩾ 1, then
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Subroutine GroverExpectation(Ux)
Input: Quantum oracle Ux to access x ∈ {0, 1}N.
Output: An index i ∈ [N].
Guarantee: If |x| ⩾ 1, then xi = 1 with certainty.
Analysis: Theorem 11.2.4

Subroutine Grover2/3(Ux,klb)
Input: Quantum oracle Ux to access x ∈ {0, 1}N and a lower bound klb on

|x|.
Output: An index i ∈ [N].
Guarantee: If |x| ⩾ 1, then with probability ⩾ 2/3, xi = 1.
Analysis: Lemma 11.2.5

E[Q] = O
(︂√︁
N/k

)︂
,

and if |x| = 0, then Q = ∞ (i.e., the algorithm runs forever). The number of additional
gates used is O(Q log(N)). The index i which is output is uniformly random among all
such indices, and independent of the value of Q.

Lemma 11.2.5. Let x ∈ {0, 1}N. Then there is a quantum algorithm Grover2/3 that
takes as input a quantum oracle Ux to access x and a lower bound klb ⩾ 1 on |x|. With
probability ⩾ 2/3, it outputs an index i ∈ [N] such that xi = 1. It uses O(

√︁
N/klb)

quantum queries to x, and O(
√︁
N/klb log(N)) additional gates.

Proof. The algorithm GroverExpectation finds an index i such that xi = 1. Its
number of applications of controlled-Ux is a random variableQ and the number of
additional gates is O(Q · log(N)). By Theorem 11.2.4 we have E[Q] = O(

√︁
N/|x|).

Markov’s inequality shows that if we terminate GroverExpectation after at most
C
√︁
N/|x| quantum queries for a suitable constant C > 0, then it finds an index

i such that xi = 1 with probability at least 2/3. The procedure Grover2/3 uses
the lower bound klb on |x| to decide when to terminate GroverExpectation. For
the same constant C > 0 as before, it terminates after at most C

√︁
N/klb quantum

queries. Since C
√︁
N/klb ⩾ C

√︁
N/|x|, the success probability of Grover2/3 is also at

least 2/3. □

Let us make some remarks about the complexity of finding a single marked
element. First, to find such an element with certainty one can essentially remove
the log(N) factor in the gate complexity: O(

√
N log(log∗(N))) gates suffice [AW17].

Second, by cleverly combining GroverCertainty and Grover2/3, one can find a
marked element (among an unknown number of solutions) with probability ⩾ 1−ρ
using

√︁
N log(1/ρ) quantum queries [BCWZ99]. This shows that the standard way

of boosting the success probability of Grover2/3 is not optimal.
Using GroverExpectation as a subroutine, one can find the index of a minimum

(or maximum) of a function [N] → R in roughly
√
N time. More generally, for a

totally ordered finite set S, one can find a maximal element:
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Subroutine ApproxCount(Ux, ε, ρ)
Input: Quantum oracle Ux to access x ∈ {0, 1}N, rational number ε > 0 such

that 1
3N < ε ⩽ 1, failure probability ρ > 0.

Output: Integer k̃ ∈ {0, . . . ,N}.
Guarantee: If |x| = k ⩾ 1, with probability ⩾ 1 − ρ, |k̃ − k| ⩽ εk, and if k = 0

then k̃ = 0 with certainty.
Analysis: Theorem 11.2.7

Theorem 11.2.6 (Quantum max/min-finding [DHHM06]). Let S = {s1, . . . , sN} be
a finite set of size |S| = N, endowed with a total order ⩽. Suppose we have a unitary U⩽
acting on CN ⊗ CN ⊗ C2 such that

U⩽ |i⟩ |j⟩ |b⟩ = |i⟩ |j⟩ |b ⊕ (si ⩽ sj)⟩ .

Then there exists a quantum algorithm that finds, with probability ⩾ 2/3, an index i ∈ [N]
such that s ⩽ si for all s ∈ S, using O(

√
N) queries to U⩽ and ˜︁O(√N) other gates.

11.2.3. Approximate counting and summation
Next, we recall a well-known result on approximate counting.

Theorem 11.2.7 ([BHMT02, Thm. 18]). Let x ∈ {0, 1}N and write |x| = k. Let
1

3N < ε ⩽ 1. Then there is a quantum algorithm that, with probability at least 2/3, that
outputs an estimate k̃ such that |k̃ − k| ⩽ εk
using an expected number of

Θ

(︄√︃
N

⌊εk⌋ + 1
+

√︁
k(N − k)
⌊εk⌋ + 1

)︄
quantum queries to x. If k = 0, then the algorithm outputs k̃ = 0 with certainty, using
Θ(
√
N) quantum queries to x. In both cases, the algorithm uses a number of gates which

is O(log(N)) times the number of quantum queries. To boost the success probability to
1− ρ, repeat the procedureO(log(1/ρ)) many times and output the median of the returned
values.

We often use the special case ε = 1/2 of the above theorem, hence we record it
here for future use. (Note that the proof of Theorem 11.2.7 given in [BHMT02] in
fact starts by obtaining a constant factor approximation of |x|.)

Corollary 11.2.8. Let x ∈ {0, 1}N and write |x| = k. Then there is a quantum algorithm
that outputs a kest such that, with probability ⩾ 1−ρ, we have k/2 ⩽ kest ⩽ 3k/2, and uses
O(

√︁
N/(k + 1) log(1/ρ)) quantum queries and O(

√︁
N/(k + 1) log(1/ρ) log(N)) gates.

We now discuss known extensions of the above results on counting the Hamming
weight of a bit string to the problem of mean estimation: given a vector v ∈ [0, 1]N,
one is interested in approximating v̄ = 1

N

∑︁N
i=1 vi. This was first studied in [Gro97]

and later in [Gro98] where in the latter it was shown that one can find an additive

244



11.3. Lower bound techniques

ε-approximation of v̄ using ˜︁O(1/ε) quantum queries to a unitary that prepares a
state encoding the entries of v in its amplitudes, and a similar number of additional
gates (also dependent on N). Using amplitude amplification techniques one can
reduce the query dependence to O(1/ε)with O(log(N)/ε) additional gates. This
result may be easily recovered from Theorem 11.2.2 withM = Θ(1/ε), applied to a
unitary preparing

1√
N

N∑︂
i=1
|i⟩ (

√︁
1 − vi |0⟩ +

√
vi |1⟩).

It is well-known that when one has quantum oracle access to fixed point represen-
tations of the entries of v (cf. Definition 12.2.2), rather than just a state encoding its
entries in the amplitudes, one can give an algorithm whose complexity depends
only on N and δ, with guarantees as given below.

Theorem 11.2.9. Let v ∈ [0, 1]N be a vector with each entry vi encoded in (0,b)-fixed-point
format, and letUv be a unitary implementing binary oracle access to v (cf. Definition 12.2.2).
Let ρ ∈ (0, 1). Then with O(

√
N
δ log(1/ρ)) applications of controlled-Uv, controlled-U†v,

and a polylogarithmic gate overhead, one can find with probability ⩾ 1− ρ a multiplicative
δ-approximation of 1

N

∑︁
i vi.

We shall give an improvement over this in Chapter 12.

11.3. Lower bound techniques
An important property of the theory of quantum query algorithms is that it is
possible to prove interesting query lower bounds, precisely because sometimes one
can obtain algorithms with a query complexity smaller than the natural input size.
For instance, in case of Grover’s algorithm for unstructured search on a bit string
of size N, one can prove that its query complexity of O(

√
N) is asymptotically

optimal [BBBV97]. Although various tools are now available for proving quantum
query lower bounds (see e.g. [BBBV97; BBC+01; AMRR11; Bel23]), we shall only
use one in the rest of this thesis: a version of Ambainis’ adversary bound [Amb02].
We record the (complicated) statement here:

Lemma 11.3.1 ([Amb02, Thm. 6.1]). Let f : A ⊆ ΣN→ B be a function of N variables,
which takes values in some finite set B. Let X, Y ⊆ A be two sets of inputs such that
f(x) ≠ f(y) if x ∈ X and y ∈ Y. Let R ⊆ X × Y be nonempty, and suppose that it satisfies:

• For every x ∈ X, there exist at leastmX different y ∈ Y such that (x,y) ∈ R.

• For every y ∈ Y, there exist at leastmY different x ∈ X such that (x,y) ∈ R.

Let ℓx,i be the number of y ∈ Y such that (x,y) ∈ R and xi ≠ yi, and similarly for ℓy,i.
Let ℓmax = maxi∈[N]max(x,y)∈R,xi≠yi

ℓx,iℓy,i. Then any algorithm that computes f with
success probability ⩾ 2/3 usesΩ

(︂√︂
mXmY

ℓmax

)︂
quantum queries to the input.

Intuitively, the goal is to choose relation R in the theorem is chosen such that
the related inputs in X and Y are hard to distinguish using a single query. At
leastmXmY pairs of (x,y) need to be distinguished from one another. For a fixed
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input x ∈ X, ℓx,i is the number of related inputs in Y that can be distinguished by
querying the i-th component of x. Therefore ℓmax gives a quantitative interpretation
of the “maximum distinguishing power” of a single query.

We remark here that the adversary method can be generalized to (negatively)
weighted versions (whereas the above has a combinatorial flavor), and that such
generalizations in fact even characterize the quantum query complexity of a function.
We refer to [Wol22] for more information.
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12. Basic quantum subroutines,
improved

In this chapter we consider two problems. The first problem is to find all marked
indices of a given bit string. We give a quantum algorithm that has optimal query
complexity and only polylogarithmic overhead in the gate complexity, in the setting
where one only has a small quantum memory; previous approaches either had
logarithmic overhead in the query complexity or a polynomial overhead in the
gate complexity.

The second problem is to compute a multiplicative approximation of a sum of
non-negative numbers, given quantum query access to binary descriptions of these
numbers. For this problem, we give a quantum algorithm that has a quadratically
better dependence on the approximation error than the best previously known
approach.

We first provide a more detailed introduction in Section 12.1. In Section 12.2
we set our notation and define the input model. In Section 12.3 we provide our
algorithm for searching for multiple marked elements. Lastly, in Section 12.4, we
give our summation algorithm.

12.1. Introduction

12.1.1. Finding multiple marked elements in a list
Grover’s famous search algorithm [Gro96] can be used to find a marked element
in a list quadratically faster than possible classically. Formally it can be used to
solve the following problem: given a bit string x ∈ {0, 1}N, x ≠ 0, find an index
i ∈ [N] such that xi = 1.

In this work we consider the problem of finding all indices i ∈ [N] for which
xi = 1. We give a query-optimal quantum algorithm with polylogarithmic gate
overhead in the setting where one has a small quantum memory. We explain below
why this last assumption makes the problem non-trivial. This improves over the
previous state-of-the-art: previous algorithms were either query-optimal but with
a polynomial gate overhead, or had a polylogarithmic gate overhead but also a
logarithmic overhead in the query count.

A well-known query-optimal algorithm for the problem is as follows [GW02,
Lem. 2]. Let k be the Hamming weight |x| :=

∑︁N
i=1 xi of x. For ease of exposition,

suppose the algorithm knows k. (For our results we will work with weaker
assumptions such as knowing only an upper bound on k, or an estimate of it, see
Section 12.3. We also ignore failure probabilities in this part of the introduction.)
A variant of Grover’s algorithm [BBHT98] can find a single marked element

This chapter is adapted from [AGN23].
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using O(
√︁
N/k) quantum queries and O(

√︁
N/k log(N)) additional single- and

two-qubit gates. One can then find all kmarked elements using

O
(︂√︁
N/k +

√︁
N/(k − 1) + . . . +

√
N

)︂
= O

(︂√
Nk

)︂
quantum queries to x. The above complexity is obtained as follows. Suppose we
have already found a set J ⊆ [N] of marked elements. Then to find a new marked
element, we replace x by the string z ∈ {0, 1}N defined as

zi =

{︄
xi if i ∉ J,
0 otherwise.

A quantum query to z can be made using a single quantum query to x and quantum
query to J (which on input |i⟩ |b⟩ for i ∈ [N],b ∈ {0, 1} returns |i⟩ |b ⊕ δi∈J⟩ where
δi∈J ∈ {0, 1} is one iff i ∈ J). In particular, if J can be stored in a quantum memory
(i.e. queried and updated in unit time), then the query complexity will beO(

√
Nk)

and the time complexity is ˜︁O(√Nk). We refer the interested reader to [GLM08]
and [CHI+18, Sec. 5] for a discussion of quantum memory and its (dis)advantages.

However, when we cannot store J in a quantum memory, a naive implementation
of the quantum queries to J is expensive in terms of gate complexity: if |J| = s, then
one can use O(s log(N)) quantum gates to implement a single query to J.1 Since
the size of J grows to k, the total gate complexity of finding all marked elements
will scale as ˜︁O(√Nk3/2), which is a factor k larger than the query complexity. We
show that this factor of k in the gate complexity can be avoided: we give an
algorithm that finds, with large probability, all k indices using the optimal number
of quantum queries to x,O(

√
Nk), while incurring only a polylogarithmic overhead

in the gate complexity, in the case where we only have a small quantum memory.
We state a simplified version of our main result below; for the full version, see
Theorem 12.3.9 and the corresponding algorithm GroverMultipleFast.

Theorem 12.1.1. Let x ∈ {0, 1}N with |x| = k ⩾ 2, and let ρ ∈ (0, 1) be such
that ρ = Ω(1/poly(k)). Then we can find, with probability ⩾ 1 − ρ, all k indices i ∈ [N]
for which xi = 1 usingO(

√
Nk) quantum queries andO(

√
Nk log(k)3 log(N)) additional

gates.

We mention that by a simple coupon-collector argument one can already achieve
both query- and gate-complexity

√
Nkpolylog(N, 1/ρ), see Proposition 12.3.7. Our

algorithm completely removes the polylog(N) factors in the query complexity
and moreover has a much improved dependence on log(1/ρ): one can achieve
ρ = 1/poly(k) without increasing the number of quantum queries made by the
algorithm. In the same spirit, we mention that previous work had already shown
that simply boosting a constant success probability is not optimal for finding a
single marked element: one can do so with probability ⩾ 1 − ρ using

√︁
N log(1/ρ)

quantum queries [BCWZ99].
In a nutshell, our algorithm is a hybrid between the quantum coupon-collector

and the query-optimal algorithm described above. First, we use the coupon
1We ignore here the cost of maintaining a classical data structure for J, but comment on this again

later.
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collection strategy to find t marked indices 1 ⩽ i1 < · · · < it ⩽ n, for t roughly
k/log(k)2. A basic property of this strategy is that the resulting indices {i1, . . . , it}
yield a uniformly random subset of size t of the marked indices in x. Next, for
every j ∈ [t + 1], we use the query-optimal algorithm to find all remaining marked
elements in the interval (ij−1, ij) ⊆ [n], where we write i0 = 0 and it+1 = n+1. With
high probability over the found indices {i1, . . . , it}, each of the intervals (ij−1, ij)
contains few remaining marked indices, which reduces the effect of the high
gate-complexity overhead of the query-optimal search algorithm.

12.1.2. Improved quantum summing algorithm
Given quantum query access to a binary description of v ∈ [0, 1]N, how difficult is
it to obtain, with probability ⩾ 1 − ρ, a (1 ± δ)-multiplicative approximation2 of
the sum s =

∑︁N
i=1 vi? We provide an algorithm to do so whose complexity can

be tuned by choosing a parameter p ∈ (0, 1); one special case of our second main
result is as follows, see Theorem 12.4.3 for the full version. In the version below
we have made very mild assumptions on the failure probability ρ and precision δ,
which essentially correspond to the regime in which one makes at most O(N)
quantum queries.

Theorem 12.1.2 (Informal version of Theorem 12.4.3). Let v ∈ [0, 1]N. Let ρ, δ ∈ (0, 1)
be such that log(1/ρ)/δ = O(N). Then we can find, with probability ⩾ 1 − ρ, a (1 ± δ)-
multiplicative approximation of

∑︁N
i=1 vi using

O

(︄√︃
N

δ
log(1/ρ)

)︄
(12.1.1)

quantum queries to binary descriptions of the entries of v, and a gate complexity which is
larger by a factor polylogarithmic in N, 1/δ and 1/ρ.

In a nutshell, our algorithm first finds all indices of “large enough” entries of
the v using GroverMultipleFast and sums the corresponding elements classically.
It then rescales the remaining “small enough” elements and uses amplitude
estimation [BHMT02] to approximate their sum. To determine what “large enough”
means, we use a recent quantum quantile estimation procedure from [Ham21].
Choosing the quantile carefully controls both the number of elements that need
to be found in the first stage, as well as the size of the elements that remain to be
summed in the second stage. Note that it is the above version of Grover’s algorithm
that allows us to obtain a query complexity with only a

√︁
log(1/ρ)-dependence,

and without additional polylogarithmic factors in N and δ. Indeed, the fact that
the number of quantum queries required to find multiple marked elements does
not depend on log(1/ρ) (for ρ not too small) allows us to balance the complexities
of the two stages.

The problem we consider can be viewed as a special case of the mean estimation
problem, or as a generalization of the approximate counting problem for binary
strings x ∈ {0, 1}N. We briefly discuss how our results compare to prior work on
those problems.

2Here we use the convention that a (1±δ)-(1±δ)-multiplicative approximation of a real number s ⩾ 0
is a real number s̃ ⩾ 0 for which (1 − δ)s ⩽ s̃ ⩽ (1 + δ)s.
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Mean estimation algorithms. After multiplying the vi by a factor 1
N , we can

interpret the problem of finding a (1 ± δ)-multiplicative approximation of the sum
s =

∑︁N
i=1 vi as the problem of obtaining a (1 ± δ)-multiplicative approximation of

the mean µ = 1
N

∑︁N
i=1 vi of the random variable that, for each i ∈ [N], takes value

vi with probability 1/N. Quantum algorithms for the mean estimation problem
date back to the work of Grover [Gro97; Gro98]. A careful application of maximum
finding and quantum amplitude estimation yields such an approximation ofµ, with
probability ⩾ 1 − ρ, using O(

√
N
δ log(1/ρ)) quantum queries and polylogarithmic

gate overhead, see Theorem 11.2.9. We improve the dependence on δ from 1/δ to
1/
√
δ.

We remark that faster mean estimation algorithms have been developed for
example for random variables with a small variance σ2. Indeed, the current state
of the art obtains a (1 ± δ)-multiplicative approximation, with probability ⩾ 1 − ρ,
using ˜︁O(( σδµ + 1√

δµ
) log(1/ρ)) quantum queries in expectation [Ham21; KO23].3

For comparison, we mention that σ ⩽
√︁
µ(1 − µ) always holds, and when given

binary access to the vi, one may additionally assume (after maximum-finding and
rescaling) that µ ∈ [1/n, 1].

Approximate counting algorithms. As mentioned above, our algorithm improves
the error-dependence for mean estimation (for random variables with small
support). It therefore makes sense to compare our upper bound with the well-
known lower bound for the approximate counting problem for binary strings
x ∈ {0, 1}N. We first recall a precise statement. Let x ∈ {0, 1}N and k = |x|,
and Ux a unitary implementing quantum oracle access to x. Then for an integer
∆ > 0, any quantum algorithm which, with probability ⩾ 2/3, computes an
additive ∆-approximation of k uses at leastΩ(

√︁
N/∆ +

√︁
k(N − k)/∆) applications

of controlled-Ux [NW99, Thm. 1.10 and 1.11]. A matching upper bound is given
in [BHMT02, Thm. 18], see Theorem 11.2.7 for a precise formulation. We can
compare the complexity of our algorithm by converting multiplicative error into
additive error, i.e., to achieve an additive error of εwe take δ = ε/k (or ε divided
by a suitable multiplicative approximation of k). Then the key point is that if one
considers Eq. (12.1.1) for ε ⩽ ∆ and k ⩾ 1, then√︃

Nk

ε
⩾

√︃
Nk

∆
⩾

√︃
1
2
N

∆
+ 1

2
k(N − k)

∆
⩾

1
2

(︄√︃
N

∆
+

√︁
k(N − k)
∆

)︄
where the last inequality follows from concavity of the square-root function
and ∆ ⩾ 1. In other words, for all parameters N,k,∆, the complexity of our
algorithm is at least as large as the lower bound on approximate counting. In
particular, when ∆ is large, our bound is suboptimal for quantum counting. This
is no surprise given that our algorithm finds all “large” elements, which in the
counting setting would amount to finding all ones. On the other hand, when ∆ is
a small constant, the approximate counting lower bound shows that our upper

3In [Ham21, Proposition 6.4], a matching (up to log-factors) lower bound is shown for Bernoulli
random variables. We remark that our algorithm does not break that lower bound since we
parameterize the problem differently: the complexity of our algorithm depends also on the size
of the support of the distribution.
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bound is essentially tight. We leave it as an open problem whether one can obtain
a quantum algorithm for approximate summing of vectors v ∈ [0, 1]N that matches
the approximate counting complexity when applied to v ∈ {0, 1}N for the entire
range of parameters N,k,∆.

12.2. Preliminaries

12.2.1. Notation and assumptions
Throughout this section, we will assume that N = 2n ⩾ 1 for some n ⩾ 1. We
identifyCN withC2n by |j⟩ ↦→ |j1 . . . jn⟩, where (j1, . . . , jn) ∈ {0, 1}n is the standard
binary encoding of j − 1 ∈ {0, . . . , 2n − 1}. We write log2 for the logarithm with
base 2 and ln for the natural logarithm. For a bit string x ∈ {0, 1}N we write
|x| =

∑︁
i∈[N] xi. Throughout we will use k to denote the Hamming weight of x,

i.e, |x| = k, and we write kest,klb,kub for various bounds on k: kest will denote an
integer such that k/2 ⩽ kest ⩽ 3k/2, and klb and kub are lower- and upper bounds
on k respectively.

12.2.2. Computational model
We express the cost of a quantum algorithm in terms of the number of one- and
two-qubit gates it uses. Note that in particular we allow single-qubit rotations
with arbitrary real angles. In Section 12.3, the angle will always be determined
by classical data. On the other hand, in Section 12.4, we use only angles of the
form π/2m and carefully count the number of used gates. The reason for the
slightly different approach in the latter situation is that the total angle to be used
will be in superposition (i.e., depend on a binary description in another register).
In the query setting, we separately count the number of quantum queries the
algorithm makes, which means (controlled) applications of the query unitary or its
inverse. We will use the following types of quantum queries to access either N-bit
strings x ∈ {0, 1}N or N-dimensional vectors v ∈ [0, 1]N (specified in fixed-point
format).

Definition 12.2.1. A unitary Ux ∈ U(CN ⊗ C2) is said to implement quantum
oracle access to an N-bit string x ∈ {0, 1}N if it acts as

Ux |i⟩ |b⟩ = |i⟩ |b ⊕ xi⟩
for all i ∈ [N] and b ∈ {0, 1}.

Definition 12.2.2. A unitary Uv ∈ U(CN ⊗ C2b) is said to implement quantum
oracle access to (0,b)-fixed-point representations of v ∈ [0, 1]N if it acts as

Uv |i⟩ |0b⟩ = |i⟩ |vi⟩
for all i ∈ [N], where |vi⟩ = |(vi)1 . . . (vi)b⟩ satisfies

∑︁b
j=1(vi)j2−j = vi.

In both cases we allow the unitary to act on additional workspace registers,
which we omit for notational convenience.

We additionally use a classical data structure to maintain sorted lists that
supports both insertion and look-up in a time that scales logarithmically with the
size of the list, see for example [Knu98, Sec. 6.2.3] or [CLRS22, Ch. 13].
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12.3. Fast Grover search for multiple items, without
quantum memory

In this section we give a version of Grover’s search algorithm for the problem
of, given a string x ∈ {0, 1}N, finding all k indices i ∈ [N] such that xi = 1.
For ρ ∈ (0, 1) with ρ = Ω(1/poly(k)), our algorithm finds all such indices with
probability ⩾ 1 − ρ, and uses O(

√
Nk) quantum queries and ˜︁O(√Nk) single- and

two-qubit gates. The contribution here is that the query complexity is optimal and
the time complexity is only polylogarithmically worse than the query complexity,
without using a QRAM.

12.3.1. Deterministic Grover for multiple elements
We first recall the well-known result [GW02, Lem. 2], that it is possible to find all
solutions with probability 1 using O(

√
Nk) quantum queries, which is optimal,

but suffers from a too-high gate complexity in terms of k. The algorithm is
given in GroverCertaintyMultiple. We first define for each j ∈ [N] a gate Cj,
referred to as the “control-on-j-NOT”-gate, and describe how to implement it with
a standard gate-set. The point of this gate is that if one has quantum oracle access
Ux to x ∈ {0, 1}N, then CjUx implements quantum oracle access to the bit string
y ∈ {0, 1}N which agrees with x on all indices, except on the j-th index, where the
bit is flipped.

Lemma 12.3.1. Let N = 2n. For j ∈ [N] define the “control-on-j-NOT”-gate Cj ∈
U(CN ⊗ C2) by

Cj |i⟩ |b⟩ =
{︄
|i⟩ |b ⊕ 1⟩ if i = j,
|i⟩ |b⟩ otherwise.

(12.3.1)

Then the Cj-gate can be implemented withO(n) standard gates and n− 1 ancillary qubits.

Proof. Let |j⟩ = |j1 . . . jn⟩ be the binary encoding of j − 1. Then:

(i) For each l ∈ [n] such that jl = 0, apply a NOT gate on the l-th qubit of the
index register.

(ii) Apply a NOT-gate to the output register containing b, controlled on all n
qubits of the index register. This can be implemented using O(n) Toffoli
gates, one CNOT gate, and n − 1 ancilla qubits, see [NC02, Fig. 4.10].

(iii) Apply the NOT gates from the first step again. □

Lemma 12.3.2. Let x ∈ {0, 1}N, Ux a quantum oracle to access x, and kub ⩾ 1. If
|x| = k ⩽ kub, then GroverCertaintyMultiple(Ux, kub) finds, with probability 1, all
k indices i such that xi = 1. The algorithm uses

O
(︂√︁
Nkub

)︂
applications of Ux, and

O
(︂√︁
Nkub(k + 1) log(N)

)︂
additional non-query gates.
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Subroutine GroverCertaintyMultiple(Ux, kub)
Input: Quantum oracle Ux to access x ∈ {0, 1}N, an integer kub ⩾ 1.
Output: Classical list of indices J ⊆ [N].
Guarantee: If |x| ⩽ kub, then for every j ∈ [N], j ∈ J if and only if xj = 1.
Analysis: Lemma 12.3.2

1 Jkub ← ∅;
2 UJkub

← Ux;
3 m← kub;
4 whilem > 0 do
5 use GroverCertainty(UJm ,m) to find a j ∈ [N] \ Jm;
6 if xj = 1 then
7 Jm−1 ← Jm ∪ {j};
8 UJm−1 ← CjUJm , where Cj is defined in Lemma 12.3.1;
9 else

10 Jm−1 ← Jm;
11 UJm−1 ← UJm ;
12 end if
13 m← m − 1;
14 end while
15 return J0;

Proof. We first establish correctness of GroverCertaintyMultiple. Form ∈ [kub],
let Jm ⊆ [N] be the index set and UJm the unitary in the algorithm at the m-th
step. Then by the definition of Cj, UJm implements oracle access to the bit string
ym which agrees with x on [N] \ Jm, and is zero on the indices in Jm (whereas
xj = 1 for j ∈ Jm). Clearly j ∈ J0 implies that xj = 1. It remains to show that in kub
iterations we find all marked elements. To do so, observe that there can be at most
kub − k iterations in which one fails to find a new j ∈ [N] such that xj = 1: indeed,
as soon as this happens, we havem = |ym |, and every iteration afterwards we find
a new index with certainty by the guarantees of GroverCertainty.

In total, this procedure uses
∑︁kub

m=1O(
√︁
N/m) = O(

√
Nkub) applications of

Ux. The number of auxiliary gates for a single query in the m-th iteration is
O(|Jm | · log(N)), and GroverCertainty itself uses an additional O(

√︁
N/m log(N))

additional gates. Therefore the total number of gates in them-th iteration is

O
(︂√︁
N/m · |Jm | · log(N) +

√︁
N/m log(N)

)︂
= O

(︂√︁
N/m(k + 1) log(N)

)︂
Summing this over all iterations yields a total gate complexity of O(

√
Nkub(k +

1) log(N)). □

12.3.2. Coupon collecting Grover
We next give another simple version of Grover which can be used to find a large
fraction of the marked elements in a time-efficient manner, but does not yield
a query-optimal bound when the fraction is close to 1. The algorithm is given
in GroverCoupon, and is analyzed in Proposition 12.3.7.
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The algorithm is simple: the idea is to repeatedly call Grover2/3 to sample marked
elements. The analysis is based on the observation that the required number
of calls to Grover2/3 is a sum of geometrically distributed random variables:
for 1 ⩽ i ⩽ t, the number of calls to obtain the i-th distinct marked element is
a geometrically distributed random variable with success probability p′

i
⩾ 2

3pi,
where pi = (k − i + 1)/k is the probability of observing a new element after
i − 1 distinct elements have been found. This is because Grover2/3 succeeds
with probability ⩾ 2/3, and the fact that if Grover2/3 successfully finds a marked
element, then it is uniformly random among the marked elements. The number of
calls can then by bounded using a general tail bound on sums of geometrically
distributed random variables given in [Jan18, Thm. 2.3] (see Lemma 12.3.4).

The analysis is based on tail bounds of sums of geometrically distributed random
variables. These tail bounds in turn are stated in terms of the harmonic numbers,
for which we recall some basic properties in the following lemma.

Lemma 12.3.3. The k-th harmonic number Hk is defined by Hk =
∑︁k

j=1
1
j , and we shall

use the convention H0 = 0. For k ⩾ 1 it satisfies

Hk − γ − ln(k) ∈
[︃

1
2(k + 1) ,

1
2k

]︃
,

where γ ≈ 0.577 is the Euler–Mascheroni constant. Furthermore, for 0 ⩽ t < k, this
implies

Hk −Hk−t ⩽ ln
(︃
k

k − t

)︃
+ 2k − t + 1

2k(k − t + 1) ,

which in turn for t ⩽ k/2 < k implies

Hk −Hk−t ⩽
2(t + 1)
k

.

Proof. The bounds onHk−γ− ln(k) are well-known, see [You91] for an elementary
proof. For the estimate on Hk −Hk−t we have

Hk −Hk−t ⩽ ln(k) − ln(k − t) + 1
2k +

1
2(k − t + 1) = ln

(︃
k

k − t

)︃
+ 2k − t + 1

2k(k − t + 1) .

Furthermore, if t ⩽ k/2 < k, then

ln
(︂
1 + t

k − t
)︂
+ 2k − t + 1

2k(k − t + 1) ⩽
2t
k
+ 2k + 1

2k(k/2 + 1) ⩽
2t
k
+ 2
k
=

2(t + 1)
k

. □

We use the following tail bound for geometrically distributed variables.

Lemma 12.3.4 ([Jan18, Thm. 2.3]). For i ∈ [n] assume Xi ∼ Geo(pi) for pi ∈ (0, 1].
Let X =

∑︁
i∈[n] Xi and write µ = E[X], p∗ = mini∈[n] pi. Then for any λ ⩾ 1 we have

Pr[X ⩾ λµ] ⩽ λ−1(1 − p∗)(λ−1−ln(λ))µ.

Corollary 12.3.5. For i ∈ [n] assume Xi ∼ Geo(pi) for pi ∈ (0, 1]. Let X =
∑︁

i∈[n] Xi

and write µ = E[X], p∗ = mini∈[n] pi. Let ρ ∈ (0, 1). Then Pr[X ⩾ T ] ⩽ ρ whenever

T ⩾ 2 ln(2)µ + 2 ln(1/ρ)
ln(1/(1 − p∗))

.
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Proof. We apply Lemma 12.3.4 with λ ⩾ 1 to obtain

Pr[X ⩾ λµ] ⩽ λ−1(1 − p∗)(λ−1−ln(λ))µ ⩽ (1 − p∗)(λ−1−ln(λ))µ.

By the first-order characterization of convexity of λ ↦→ λ − 1 − ln(λ) at λ = 2, we
have

λ − 1 − ln(λ) ⩾
(︃
1 − 1

2

)︃
(λ − 2) + 2 − 1 − ln(2) = 1

2λ − ln(2).

Therefore

Pr[X ⩾ λµ] ⩽ eln(1−p∗)(λ/2−ln(2))µ,

and so to ensure that this is at most ρ, it suffices to take

λµ ⩾ 2 ln(2)µ + 2 ln(ρ)
ln(1 − p∗)

.

Note that such λ also satisfies λ ⩾ 1, because 2 ln(2) ⩾ 1 and ln(ρ)/ln(1 − p∗) ⩾ 0.
Therefore we have shown that Pr[X ⩾ T ] ⩽ ρwhenever T ⩾ 2 ln(2)µ+ 2 ln(ρ)

ln(1−p∗) . □

Applying the above tail bound with pi ⩾ 2
3(k − i + 1)/k yields the following

lemma.

Lemma 12.3.6. Let 1 ⩽ t ⩽ k ⩽ N and subset I ⊆ [N] of size k, and let ρ ∈ (0, 1).
Consider a procedure in which at each step with probability ⩾ 2/3, one obtains a uniformly
random sample from I. The outputs of

r ⩾ 3 ln(2)k(Hk −Hk−t) +
2 ln(1/ρ)

ln(3k/(k + 2(t − 1))) =: Rt,k,ρ

repetitions of this procedure suffice to, with probability ⩾ 1 − ρ, obtain t distinct samples
from I.

We briefly emphasize the value of this lemma. For general t ⩽ k, we can
use the simple bound ln(k/(t − 1)) ⩾ ln(k/(k − 1)) ⩾ 1/k and the estimate Hk −
Hk−t ≈ ln(k/(k − t)), to obtain that r ∈ Ω(k log(k) + k ln(1/ρ)) = Ω(k log(k/ρ))
samples suffice. By contrast, an application of Markov’s inequality only yields
a sample complexity upper bound of O(k log(k) log(1/ρ)). In later applications
(cf. Theorem 12.3.9), we apply this with t at most k/2, in which case we can give
tighter estimates. Indeed, the factor 1/ln(3k/(k+2(t−1))) is then at most a constant
and Hk − Hk−t ⩽

2(t+1)
k by Lemma 12.3.3, and thus r ∈ Ω(t + ln(1/ρ)) samples

suffice. Therefore the bound is an improvement over the sample complexity
ofΩ(t ln(1/ρ)) one would obtain from a simple application of Markov’s inequality
– in particular, one can now “for free” choose ρ to be exponentially small in t (and
similar above).

By using Grover2/3 to obtain the samples required for Lemma 12.3.6, we obtain
the following algorithmic result.

Proposition 12.3.7. Let x ∈ {0, 1}N with |x| = k unknown, let R ⩾ 1, let klb ⩾ 1 be
such that klb ⩽ k, let t ⩾ 1, and ρ ∈ (0, 1). Assume 1 ⩽ t ⩽ k. Then GroverCoupon
called with a quantum oracle Ux to access x, and additional inputs R, klb, and t, uses
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Subroutine GroverCoupon(Ux, R, klb, t)
Input: Quantum oracle Ux to access x ∈ {0, 1}N, an integer R ⩾ 1, an

integer klb such that klb ⩽ |x|, an integer t ⩾ 1 such that 1 ⩽ t ⩽ |x|.
Output: Classical sorted list of indices J ⊆ [N].
Guarantee: If R ⩾ Rt,k,ρ = 3 ln(2)k(Hk −Hk−t) + 2 ln(1/ρ)

ln(3k/(k+2(t−1)) , then, with
probability ⩾ 1 − ρ, we have |J| = t and xj = 1 for all j ∈ J.

Analysis: Proposition 12.3.7
1 J← ∅;
2 for r = 1, . . . ,R do
3 use Grover2/3 with arguments (Ux, klb) to find a j ∈ [N] such that xj = 1

with probability ⩾ 2/3 ;
4 if j ∉ J and xj = 1 then
5 add j to J;
6 end if
7 if |J| = t then
8 return J ;
9 end if

10 end for
11 return J;

O(
√︁
N/klb r) quantum queries to x and O(

√︁
N/klb r log(N)) additional quantum gates.

Here, r is a random variable such that r ⩽ R with certainty, and with probability ⩾ 1 − ρ,
one has

r ⩽ Rt,k,ρ = 3 ln(2)k(Hk −Hk−t) + 2 ln(1/ρ)
ln(3k/(k + 2(t − 1)) .

If R ⩾ Rt,k,ρ, then with probability ⩾ 1 − ρ, it finds a set of t distinct marked elements,
uniformly at random from the set of all sets of k marked elements.

Proof. We first analyze the complexity of GroverCoupon. Let r ∈ [R] be the
number of times the algorithm repeats Line 3 through Line 8. By Lemma 11.2.5,
the application of Grover2/3 in Line 3 uses O(

√︁
N/klb) quantum queries and

O(
√︁
N/klb log(N)) additional gates. With one additional query we can verify if the

index j ∈ [N] that is returned by Grover2/3 is such that xj = 1. If indeed xj = 1,
then we add j to J. As mentioned in Section 12.2.2, we can insert an element in the
sorted list J in (classical) time O(log(N)). We can verify Line 7 in time O(log(N))
by maintaining a counter for |J|. The above shows that GroverCoupon indeed uses
O(

√︁
N/klb r) quantum queries and O(

√︁
N/klb r log(N)) additional quantum gates.

We now establish correctness. By construction r ⩽ Rwith certainty. Lemma 11.2.5
shows that, with probability ⩾ 2/3, the index returned by Grover2/3 in Line 3
is a uniformly random marked element. Hence Lemma 12.3.6 shows that after
obtaining

Rt,k,ρ = 3 ln(2)k(Hk −Hk−t) +
2 ln(1/ρ)

ln(3k/(k + 2(t − 1)))
such indices, we have obtained t distinct indices with probability at least 1 − ρ.
In other words, if R ⩾ Rt,k,ρ, then, with probability at least 1 − ρ, GroverCoupon
terminates at Line 8 with a sorted list J ⊆ [N] of t distinct marked indices. □
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12.3.3. Grover for multiple elements, fast
In this section we improve the complexity of finding all marked indices by
combining the two previously discussed algorithms, GroverCoupon and Grover-
CertaintyMultiple. The structure of our algorithm, GroverMultipleFast, is as
follows. As before, suppose we are given query access to an x ∈ {0, 1}N. Let
the (unknown) number of marked indices be k ⩾ 1, i.e., k = |x|. We first use
GroverCoupon to find a (large) fraction of the marked elements. That is, we find
a uniformly random subset J0 ⊆ [N] of τk marked elements, where 0 < τ < 1 is
a parameter we can use to tune the complexity of the algorithm. This subset J0
partitions [N] into intervals. We then use GroverCertaintyMultiple to find all
marked indices in each interval separately.

The following lemma upper bounds the probability that when we draw a set
S ⊆ [k] of size t uniformly at random, there exists an interval of length ⩾ ℓ in the
set [k] \ S. In the analysis of GroverMultipleFast (see Theorem 12.3.9), we will
use this bound to control the number of elements that are in between any two
elements of the previously sampled indices J0.
Lemma 12.3.8. Let S ⊆ [k] be a uniformly random t-element set, and let 1 ⩽ ℓ ⩽
k − t. The probability that [k] \ S contains a contiguous subset I of length ⩾ ℓ, i.e.,
I = {a,a + 1, . . . ,a + ℓ − 1} for 1 ⩽ a ⩽ k − ℓ + 1, is at most (k − ℓ + 1)(1 − t

k)ℓ.
Proof. The probability that [k] \ S contains a contiguous subset I of length at least ℓ
is the same as the probability that it contains a contiguous subset of length exactly
ℓ. This is in turn given by

Pr[∃a ∈ {1, . . . ,k − ℓ + 1} : {a, . . . ,a + ℓ − 1} ∩ S = ∅].
By a union bound, this is at most

k−ℓ+1∑︂
a=1

Pr[{a, . . . ,a + ℓ − 1} ∩ S = ∅].

By uniform randomness of S, each of these probabilities is the same, and given by

Pr[{a, . . . ,a + ℓ − 1} ∩ S = ∅] =
(︁k−ℓ

t

)︁(︁k
t

)︁ =
(k − t)(k − t − 1) · · · (k − t − l + 1)

k(k − 1) · · · (k − l + 1) .

This is at most (1− t/k)ℓ, and we conclude that the probability that [k] \ S contains
a contiguous subset I of at least ℓ is at most (k − ℓ + 1)(1 − t

k)ℓ. □

Theorem 12.3.9. Let x ∈ {0, 1}N with |x| = k ⩾ 2, and assume one knows kest ⩾ 1 such
that k/2 ⩽ kest ⩽ 3k/2. Let 0 < ρ < 1 and 6 ⩽ λ ⩽ kest be such that t := ⌈kest/λ⌉ ⩾
log2(6kest/ρ). Then

O

(︃√
Nk

(︃
1 + 1√

λ
log(k/ρλ)

)︃)︃
quantum queries to x suffice to, with probability ⩾ 1 − ρ, find all k indices i s.t. xi = 1.
The algorithm uses an additional

O
(︂√
Nkλ log(k/ρ) log(N)

)︂
non-query gates.
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Subroutine GroverMultipleFast(Ux, kest, ρ, λ)
Input: Quantum oracle Ux to access x ∈ {0, 1}N, an integer kest ⩾ 1 such

that |x|/2 ⩽ kest ⩽ 3|x|/2, a failure probability ρ > 0, threshold
parameter λ ∈ [6,kest].

Output: Classical list of indices J ⊆ [N].
Guarantee: If λ and ρ are such that log2(6kest/ρ) ⩽ ⌈kest/λ⌉, then, with

probability ⩾ 1 − ρ, we have |J| = |x| and xj = 1 for all j ∈ J.
Analysis: Theorem 12.3.9

1 J← ∅;
2 t← ⌈k/λ⌉;
3 R← 6 ln(2)(t + 1) + 2 ln(1/ρ) ln(3/2);
4 use GroverCoupon(Ux,R, 2

3kest, t) to find, with probability ⩾ 1 − ρ/3, a
sorted list J0 ⊆ [N]with xj = 1 for all j ∈ J0, |J0 | = t;

5 set J← J0 and write J0 = {a1 < a2 < · · · < at};
6 set a0 = 0 and at+1 = N + 1;
7 for i = 0, . . . , t do
8 If ai+1 = ai + 1, continue with next loop; otherwise, let

bi = 2⌈log2(ai+1−1−ai)⌉ ;
9 construct from Ux an oracle Uy which implements access to the bit string

y ∈ {0, 1}bi given by yj = xai+j if ai + j < ai+1, and 0 otherwise;
10 (kj)est ← ApproxCount(Uy, 1

2 , ρ
3(t+1) );

11 use GroverCertaintyMultiple(Uy, 2(kj)est) to find all j ∈ (ai,ai+1) such
that xj = 1, and add these to J;

12 end for
13 return J;

We remark here that GroverMultipleFast takes a multiplicative estimate kest
of k as additional input, which can be found with O(

√︁
N/k log(1/ρ)) quantum

queries and O(
√︁
N/k log(1/ρ) log(N)) additional gates; see Corollary 11.2.8. Both

of these costs are dominated by that of finding the actual elements. The above
theorem also includes a parameter λ that allows for a trade-off between query
complexity and gate complexity. Before we provide the proof of Theorem 12.3.9,
let us highlight the two extremal cases that follow from taking λ either as large as
useful or as small as possible.

Corollary 12.3.10. Let x ∈ {0, 1}N with |x| = k ⩾ 2. Assume one knows kest such that
k/2 ⩽ kest ⩽ 3k/2. Let 1 > ρ > 0. Then we can find, with probability ⩾ 1 − ρ, all k
indices i for which xi = 1 using either:

• O(
√
Nk) quantum queries and time complexityO(

√
Nkmin{log3(k/ρ),k} log(N)),

via Theorem 12.3.9 with λ = min{kest/log2(6kest/ρ), log2
2(kest/ρ)},4 or,

• O(
√
Nk log(k/ρ)) quantum queries and time complexityO(

√
Nk log(k/ρ) log(N)),

via Theorem 12.3.9 with λ = 6.
4Strictly speaking, this choice of λ could be smaller than 6, but in that case GroverCertainty-
Multiple already has the stated complexity.
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Proof of Theorem 12.3.9. Let t = ⌈kest/λ⌉. Note that because λ ⩾ 6 and kest ⩽ 3k/2,
we have t ⩽ k/2. Therefore we can find t of the solutions using the procedure of
Proposition 12.3.7 with probability ⩾ 1 − ρ/3, using

O

(︄√︃
N

k
(t + log(1/ρ))

)︄
= O

(︄√︃
N

k

(︃
k

λ
+ log(1/ρ)

)︃)︄
(12.3.2)

queries and

O

(︄√︃
N

k

(︃
k

λ
+ log(1/ρ)

)︃
log(N)

)︄
(12.3.3)

gates. We remark here that these upper bounds hold because t ⩽ k/2 < k.
Indeed, under that assumption on t and k we have k(Hk − Hk−t) ⩽ 2(t + 1)
by Lemma 12.3.3, and moreover the factor 1/ln(3k/(k + 2(t − 1))) is Θ(1) (it lies
between 1/ln(3) and 1/ln(3/2)). This shows that calling GroverCoupon with
R = 6 ln(2)(t + 1) + 2 ln(1/ρ) ln(3/2) ∈ Θ(t + log(1/ρ)) has the desired behaviour.

Let a1 < a2 < · · · < at denote the found indices for which xaj = 1 and
define the intervals I0 = {1, . . . ,a1 − 1}, It = {at + 1, . . . ,N}, and, for j ∈ [t − 1],
Ij = {aj + 1, . . . ,aj+1 − 1}. We use kj to denote the (unknown) number of marked
elements in Ij, so in particular

∑︁t
j=0 kj ⩽ k − t. Then by Lemma 12.3.8, the

probability that there is a kj larger than ℓ := k
t (log2(k) + log2(3/ρ)) is at most

(k − ℓ + 1)
(︂
1 − t

k

)︂ℓ
⩽ 2log2(k)

(︂
1 − t

k

)︂ k
t (log2(k)+log2(3/ρ))

⩽ k

(︃
1
2

)︃ log2(k)+log2(3/ρ)
= ρ/3.

Here we used that ℓ ⩾ 1, (1 − t
k)k/t ⩽ 1

e ⩽
1
2 , and log2(k) + log2(3/ρ) ⩾ 0.5 For the

rest of the argument we may thus assume that there is no interval with more than
ℓ not-yet-found marked elements.

In the next step of our algorithm we search for all marked elements in each
interval. To do so for the jth interval, we search over the elements from [2⌈log2(|Ij |)⌉]
marking an element i ∈ [2⌈log2(|Ij |)⌉] if xi+aj = 1 and i ⩽ |Ij | (letting a0 = 0).
One can implement this unitary using O(1) quantum queries and O(log(N))
gates (to implement the addition and comparison). For each interval, we first
compute an estimate (kj)est of kj that satisfies kj/2 ⩽ (kj)est ⩽ 3kj/2 using
Corollary 11.2.8, with success probability ⩾ 1 − ρ/(3(t + 1)). The associated
query cost isO(

√︁
|Ij |/(kj + 1) log(t/ρ)), and it usesO(

√︁
|Ij |/(kj + 1) log(t/ρ) log(N))

additional gates. Then Lemma 12.3.2 shows that we can find all marked elements
in the j-th interval with probability 1 using O(

√︁
|Ij | (kj)est) quantum queries and

O(
√︁
|Ij | (kj)3/2est log(N)) additional gates. By a union bound, with probability ⩾

1 − ρ/3, all (kj)est are correct, and this step has a total query complexity of

O

(︄
t∑︂

j=0

√︂
|Ij |kj +

√︂
|Ij | log(t/ρ)

)︄
= O

(︂√
Nk +

√
Nt log(t/ρ)

)︂
5Note also that ℓ ⩽ k because t ⩾ log2(6kest/ρ) ⩾ log2(3k/ρ) by assumption; if ℓ > k, then the

probability of having an interval of length ⩾ ℓ is of course 0, and in this regime one may just as
well run GroverCertaintyMultiple on the whole string (and have zero failure probability).
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= O

(︃√
Nk(1 +

log(k/ρλ)
√
λ
)
)︃
, (12.3.4)

where the first step uses Cauchy–Schwarz for both terms (reading
√︁
|Ij | as

√︁
|Ij | · 1

for the second term) and
∑︁t

j=0 |Ij | ⩽ N,
∑︁t

j=0 kj = k. To analyze the gate complexity
of this step, we first bound

∑︁t
j=0 k

3
j
. We have ∥k2∥∞ ⩽ ℓ2 = O(λ2 log2(3k/ρ))where

k is the vector with entries kj and k2 is the entrywise square of k. As we also
have ∥k∥1 ⩽ k we get

∑︁t
j=0 k

3
j
= ⟨k,k2⟩ ⩽ ∥k∥1∥k2∥∞ = O(kℓ2). Then the gate

complexity of the final search steps becomes:

O

(︄(︄
t∑︂

j=0

√︂
|Ij |k3

j
+

t∑︂
j=0

√︂
|Ij | log(t/ρ)

)︄
log(N)

)︄
= O

⎛⎜⎝
√
N

⎛⎜⎝
⌜⃓⎷ t∑︂

j=0
k3
j
+
√
t log(t/ρ)⎞⎟⎠ log(N)⎞⎟⎠

= O
(︂√
N

(︂√
kℓ + 1 +

√
t log(t/ρ)

)︂
log(N)

)︂
= O

(︂√
N

(︂√
kλ log(k/ρ) +

√︁
k/λ log(k/ρλ)

)︂
log(N)

)︂
= O

(︂√
Nk

(︂
λ log(k/ρ) +

√︁
1/λ log(k/ρλ)

)︂
log(N)

)︂
= O

(︂√
Nkλ log(k/ρ) log(N)

)︂
, (12.3.5)

where we again used Cauchy–Schwarz in the first step, and the total error proba-
bility is bounded by ρ/3 + ρ/3 + (t + 1) · ρ

3(t+1) = ρ.
To conclude, the upper bound on the total query complexity follows by combining

Eqs. (12.3.2) and (12.3.4):

O

(︄ √︃
N

k

(︃
k

λ
+ log(1/ρ)

)︃
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

sample t elements

+
√
Nk

(︃
1 + 1√

λ
log(k/ρλ)

)︃
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

find remaining elements

)︄

= O

(︄
√
Nk

(︃
1 + 1√

λ
log(k/ρλ)

)︃
+

√︃
N

k
log(1/ρ)

)︄
= O

(︃√
Nk

(︃
1 + 1√

λ
log(k/ρλ)

)︃)︃
.

Here the first equality uses that
√︂

N
k

k
λ ⩽
√
Nk since λ ⩾ 1. The second equal-

ity follows since log2(1/ρ) ⩽ log2(6kest/ρ) and, by assumption, log2(6kest/ρ) ⩽
⌈kest/λ⌉ = t ⩽ k. A similar argument using Eqs. (12.3.3) and (12.3.5) and λ ⩾ 1,
establishes the desired gate complexity:

O

(︄√︃
N

k

(︃
k

λ
+ log(1/ρ)

)︃
log(N)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

sample t elements

+
√
Nkλ log(k/ρ) log(N)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
find remaining elements

)︄

= O

(︄
√
Nk

(︃
1
λ
+ λ log(k/ρ)

)︃
log(N) +

√︃
N

k
log(1/ρ) log(N)

)︄
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= O
(︂√
Nkλ log(k/ρ) log(N)

)︂
. □

12.4. Improved query complexity for approximate
summation

In this section, we provide an algorithm ApproxSum, which given quantum query
access to a binary description of v ∈ [0, 1]N, in the sense of Definition 12.2.2, finds a
(1 ± δ)-multiplicative approximation of s =

∑︁N
i=1 vi with probability ⩾ 1 − ρ using

O

(︄√︃
N

δ
log(1/ρ)

)︄
(12.4.1)

quantum queries and a similar gate complexity (with only a polylogarithmic
overhead). In the above (12.4.1) we have made very mild assumptions on the value
of ρ and δ; a precise statement is given in Theorem 12.4.3. The algorithm is given
in ApproxSum. By slightly perturbing the entries of v, we may assume without
loss of generality that all entries of v are distinct; we shall make this assumption
throughout this section, and have made this assumption in the description of the
algorithm as well.

We briefly explain the overall strategy. Recall from the proof of Theorem 11.2.7
that it is useful to preprocess the vector v by using quantum maximum finding to
find vmax = maxi∈[N] vi, and then to use amplitude estimation on the vector w =

v/vmax. We take this approach slightly further: we first find the largest k entries
z1, . . . , zk of v, where k = Θ(pN) for p ∈ (0, 1), and sum their values classically.
Let z̃ be the smallest value among the z1, . . . , zk.6 For the next part, we treat the
corresponding entries of v as zero: checking whether one exceeds the threshold z̃
is a binary comparison, hence can be done in superposition without explicitly
using their indices, and so with one query to v we can implement quantum oracle
access to the vector w ∈ [0, 1]N defined by

wi =

{︄
vi

z̃ if vi < z̃
0 else.

This has the effect of amplifying the small elements in v at no extra cost. We then
use amplitude estimation to compute

∑︁N
i=1wi with additive precision O(δs/z̃)

(without knowing s). This yields an additive δs-approximation of
∑︁N

i=1 vi (i.e., a
(1 ± δ)-multiplicative approximation), where we use that

N∑︂
i=1
vi =

k∑︂
i=1
zi + z̃

N∑︂
i=1
wi

To balance the costs of these two stages we need to carefully choose z̃. We do so by
estimating the p-th quantile of the vector. We first give an algorithm ApproxSum

6We actually first compute a good value of z̃ using a quantile estimation subroutine [Ham21,
Thm. 3.4] and then find all the zj’s. Alternatively, one could use [DHHM06, Thm. 3.4] to find
all Θ(pN) largest elements directly, but our approach has the advantage of being able to use the
better ρ-dependence of our version of Grover search.
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Subroutine ApproxSum(Uv, δ, p, λ, ρ)
Input: Quantum query access Uv to (0,b)-fixed point representations

of v ∈ [0, 1]N, δ ∈ (0, 1), p ∈ (0, 1), λ ⩾ 6, failure probability ρ > 0.
Output: A real number s̃.
Guarantee: With probability ⩾ 1 − ρ, s̃ is a (1 ± δ)-multiplicative

approximation of s.
Analysis: Theorem 12.4.3

1 use Theorem 12.4.2 to compute z̃ ∈ [0, 1] such that with
probability ⩾ 1 − ρ/4, Q(p) ⩽ z̃ ⩽ Q(cp), where c < 1 is a universal
constant and Q is defined in Eq. (12.4.2);

2 let x ∈ {0, 1}N be defined by xi = 1 if vi ⩾ z̃ and xi = 0 otherwise;
3 let Ux implement quantum query access to x by applying Uv, comparing

to z̃, and uncomputing Uv;
4 compute estimate kest of k = |x| satisfying k

2 ⩽ kest ⩽
3k
2 with

probability ⩾ 1 − ρ/4 using Corollary 11.2.8;
5 use GroverMultipleFast(Ux,kest, ρ/4, λ) to find all indices i1, . . . , ik such

that xij = 1;
6 if z̃ = 0 then
7 return

∑︁k
j=1 vij ;

8 else
9 construct unitary Uw for query access to w ∈ [0, 1]N where wi = 0 if

vi ⩾ z̃ and wi = vi/z̃ otherwise;
10 let U be a unitary such that U |0⟩ = |ψ⟩ given by

|ψ⟩ = 1√
N

∑︂
i

|i⟩ (
√
w̃i |1⟩ +

√︁
1 − w̃i |0⟩)

where αi is a ⌈log2(4N/δ)⌉-bit approximation of arcsin(√wi), and√
w̃i = sin(αi);

11 use AmpEst(U,M)withM = ⌈12π
√︁
δ2pc⌉, increased to the next power

of 2 if necessary, with c < 1 from Theorem 12.4.2, to compute
ã ≈

∑︁
i w̃i/N, and repeat O(log(1/ρ)) times and take the mean of the

outputs to achieve success probability ⩾ 1 − ρ/4;
12 return

∑︁k
j=1 vij +Nz̃ã;

13 end if

whose complexity depends on the quantile p and then give a suitable choice for p
that allows us to obtain (12.4.1), see Theorem 12.4.3 and Corollary 12.4.4.

We use the following lemma to derive a bound on the required precision for
certain arithmetic operations.

Lemma 12.4.1 ([BHMT02, Lem. 7]). If a = sin2(θa) and ã = sin2(θ̃a) for θa, θ̃a ∈
[0, 2π], then |θ̃a − θa | ⩽ δ implies |ã − a| ⩽ 2δ

√︁
a(1 − a) + δ2.

For the quantile estimation, we use a subroutine from [Ham21]. Let v ∈ [0, 1]N.
Then for p ∈ (0, 1), we define the p-quantile Q(p) ∈ [0, 1] by

Q(p) = sup{z ∈ [0, 1] : |{i ∈ [N] : vi ⩾ z}| ⩾ pN}. (12.4.2)
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In words, Q(p) is the largest value z ∈ [0, 1] such that there are at least pN entries
of vwhich are larger than z. The subroutine we invoke allows one to produce an
estimate for Q(p), in the following sense:

Theorem 12.4.2 ([Ham21, Thm. 3.4]). There exists a universal constant c ∈ (0, 1) such
that the following holds: Let v ∈ [0, 1]N and let Uv be a unitary implementing quantum
oracle access to v. Then O(log(1/ρ)/√p) applications of controlled-Uv and controlled-U†v
suffice to find, with probability ⩾ 1 − ρ, a value z̃ such that Q(p) ⩽ z̃ ⩽ Q(cp). The
algorithm uses an additional O((log(1/ρ)/√p)b log(b) log(N)) gates.

The actual access model for which the above theorem holds is more general, but
we have instantiated it for our setting. The gate complexity overhead follows from
having to implement their access model using ours, which involves arithmetic
and comparisons on the fixed point representations we use, and the fact that
the underlying technique is amplitude amplification. We now get to the main
theorem of this section, which proves the correctness of ApproxSum and analyzes
its complexity.

Theorem 12.4.3. Let v ∈ [0, 1]N, let Uv be a unitary implementing quantum query
access to (0,b)-fixed point representations of v, and let δ ∈ (0, 1). Let p, ρ ∈ (0, 1) and
choose 6 ⩽ λ ⩽ min{cpN/log2(pN/ρ), log2(cpN/ρ)2}. Then ApproxSum computes,
with probability ⩾ 1 − ρ, a (1 ± δ)-multiplicative approximation of s =

∑︁N
i=1 vi. It uses

O

(︄
log(1/ρ)
√
p
+

√︃
N

Np + 1 log(1/ρ) +N√p
(︃
1 + 1√

λ
log(Np/λρ))

)︃
+ 1
δ
√
p

log(1/ρ)
)︄

quantum queries, and the number of additional gates is bounded by

O

(︄
log(1/ρ)
√
p

b log(b) log(N) +
√︃

N

Np + 1 log(1/ρ) log(N)

+N√pλ log(pN/ρ) log(N) + 1
δ
√
p
b log(b) log(N/δ) log2 log(N/δ) log(1/ρ)

)︄
.

Before we give the proof, we discuss two useful regimes for p and λ:

Corollary 12.4.4. Let v ∈ [0, 1]N, let Uv be a unitary implementing quantum oracle
access to (0,b)-fixed point representations of v, and let δ ∈ (0, 1). Then we can find, with
probability ⩾ 1 − ρ, a (1 ± δ)-multiplicative approximation of s =

∑︁N
i=1 vi, using:

• O(
√︁
N log(1/ρ)/δ) quantum queries, when p = Θ(log(1/ρ)/(δN)) < 1 and we

choose λ = min{cpN/log2(6pN/ρ)), log2(cpN/ρ)2} ⩾ 6, and using
O(

√︁
N/δpoly(log(1/ρ),b, log(N), log(1/δ))) additional gates, or

• O(
√︁
N/δ log(1/ρ)) quantum queries whenp = Θ(1/(δN)) < 1 and we choose λ = 6,

and using
√︁
N/δ poly(log(1/ρ),b, log(N), log(1/δ)) additional gates.

Proof of Theorem 12.4.3. We assume without loss of generality that all the entries
of v are distinct. If this is not the case, one can perturb the i-th entry of v by i2−ℓ
for some sufficiently large ℓ = Ω(log(N) + b), where we recall that b is the number
of bits describing vi, and discarding these trailing bits from the output value s̃.

263



12. Basic quantum subroutines, improved

We use Theorem 12.4.2 to find a value z̃ such that the number of elements of v
that are at least as large as z̃, is at most pN and at least cpN. The number of
quantum queries is

O

(︃
log(1/ρ)
√
p

)︃
,

and the number of additional gates used is

O

(︃
log(1/ρ)
√
p

b log(b) log(N)
)︃
.

Let k = |{i ∈ [N] : vi ⩾ z̃}|. By the assumption that the vi are all distinct,
cpN ⩽ k ⩽ pN. We next compute a (1± 1

2)-multiplicative approximation of k using
Corollary 11.2.8. This uses

O
(︂√︁
N/(k + 1) log(1/ρ)

)︂
quantum queries and

O
(︂√︁
N/(k + 1) log(1/ρ) log(N)

)︂
additional gates. The next step is to find all k such elements using GroverMultiple-
Fast (Theorem 12.3.9). This uses

O

(︃√
Nk

(︃
1 + 1√

λ
log(k/(λρ))

)︃)︃
quantum queries and

O
(︂√
Nkλ log(k/ρ) log(N)

)︂
additional gates.

Let z1, . . . , zk be the entries of v that are ⩾ z̃. Then

N∑︂
i=1
vi =

k∑︂
j=1
zj + z̃

N∑︂
i=1
wi

where

wi =

{︄
vi

z̃ if vi < z̃
0 otherwise.

As we have found all the zj’s, we can compute their sum exactly; therefore,
to determine a (1 ± δ)-multiplicative approximation of s, we must produce an
additive δs-approximation of z̃

∑︁N
i=1wi. Let ε := δs; note that we do not know s as

we do not know δ. Then we have to approximate 1
N

∑︁N
i=1wi with precision ε/(Nz̃).

For this, we use amplitude estimation as follows. First, one can implement query
access to Uw by using two quantum queries to v and O(b log(b)) non-query gates,
by querying an entry, comparing the entry to z̃, and conditional on the comparison
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12.4. Improved query complexity for approximate summation

uncomputing the query, and lastly performing the division by z̃. From this, we
can construct a unitary Uwith U |0⟩ = |ψ⟩ satisfying

|ψ⟩ = 1√
N

∑︂
i

|i⟩
(︂√
w̃i |1⟩ +

√︁
1 − w̃i |0⟩

)︂
,

where w̃i is close towi. One can implement such a unitary as follows. First, set up
a uniform superposition over the index register using O(log(N)) gates. Use Uw

to load binary descriptions of the entries of w. Calculate a ⌈log2(4N/δ)⌉-bit
approximation αi of arcsin(√wi) using O(log(bN/δ) log2 log(bN/δ)) gates [BZ11,
Ch. 4]. Then conditionally rotate the last qubit from 0 to 1 over angles π/4, π/8,
et cetera, depending on the bits of αi. Lastly, we uncompute αi and Uw to
return work registers to the zero state, and we have obtained the desired state |ψ⟩,
where

√
w̃i = sin(αi). We now show that w̃i = sin(αi)2 is close to wi, and hence

a := 1
N

N∑︂
i=1
w̃i = ∥|ψ1⟩∥2

is close to 1
N

∑︁N
i=1wi. Lemma 12.4.1 shows that if |αi − arcsin(√wi)| ⩽ ξ, then

|w̃i −wi | = |sin2(αi) −wi | ⩽ 2ξ
√︁
wi(1 −wi) + ξ2 ⩽ ξ + ξ2.

Since αi is a ⌈log2(4N/δ)⌉-bit approximation of arcsin(√wi), we may apply the
above with ξ = δ/(4N) for every i ∈ [N]. Because s ⩾ z̃, δ = ε/s ⩽ ε/z̃, and δ ⩽ 1,
so the total error satisfies

|a − 1
N

N∑︂
i=1
wi | ⩽

1
N

N∑︂
i=1
|w̃i −wi | = ξ + ξ2 ⩽

δ

4N +
δ2

16N2 ⩽
ε

2Nz̃ .

Next, we use this to derive an upper bound on a:

a ⩽
ε

2Nz̃ +
1
N

N∑︂
i=1
wi =

ε

2Nz̃ +
1
N

∑︂
i:vi<z̃

vi

z̃
⩽

2s
Nz̃

,

where the last inequality uses ε = δs ⩽ s and
∑︁

i:vi<z̃ vi ⩽ s. Therefore, us-
ing AmpEstwithM applications of U yields a number ã ∈ [0, 1]with

|ã − a| ⩽ 2π
√︁
a(1 − a)
M

+ π
2

M2 ⩽ 2π
√︁

2s/(Nz̃)
M

+ π
2

M2

by Theorem 11.2.2. We now determine an appropriate number of roundsM to be
used for amplitude estimation. We will chooseM such that |ã − a| ⩽ 1

2ε/(Nz̃); if
we do so, then by the triangle inequality |ã − 1

N

∑︁N
i=1wi | ⩽ ε/(Nz̃). The claim is

that anyM ⩾ 12π
√︁
Nz̃/(εδ) suffices, as then

2π
√︁

2s/(z̃N)
M

⩽
2π
√

2
12π

√︁
s/(Nz̃)√︁
Nz̃/(εδ)

=

√
2

6
ε

Nz̃
⩽

1
4
ε

Nz̃
,

265



12. Basic quantum subroutines, improved

and, using δ ⩽ 1,
π2

M2 ⩽
εδ

144Nz̃ ⩽
1
4
ε

Nz̃
.

Even though we do not know ε, by choosing p carefully, we can enforce upper
bounds on z̃ and give a safe choice for M. We use that the number of entries k
which are at least z̃ satisfies k ⩾ cpN, so that

cpN z̃ ⩽
∑︂

i:vj⩾z̃

vj ⩽ s,

i.e., z̃ ⩽ s/(cpN). Therefore it suffices to takeM = 12π/
√︁
δ2pc, as this satisfies

M = 12π
√︃

1
δ2pc

= 12π
√︃

s

δεpc
⩾ 12π

√︃
Nz̃

δε
,

This guarantees that |ã− 1
N

∑︁N
i=1wi | ⩽ ε/(Nz̃), and the output value s̃ =

∑︁k
j=1 zj+

Nz̃ã satisfies
|s̃ − s| ⩽ ε = δs.

The number of quantum queries used for this step is thereforeO(M) = O(1/(δ√p)),
and the number of additional gates used is O(Mb log(b) log(N/δ) log2 log(N/δ)).
To amplify the success probability to 1− ρ, we repeat the above procedure log(1/ρ)
many times and output the median of the individual estimates. The query- and
gate complexity of the entire algorithm follow by combining those of the four parts:
the quantile estimation, the approximate counting, Grover search for finding all
large elements, and amplitude estimation for approximating the sum of the small
elements. □
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13. Matrix scaling and matrix
balancing

In this chapter, we provide a detailed introduction to the matrix scaling and
matrix balancing problems, and the classical- and quantum state of the art for
algorithms for solving these problems. It also serves as an overview of the results
for Chapters 14 to 17.

13.1. Introduction

13.1.1. Matrix scaling and matrix balancing
Matrix scaling is a basic linear-algebraic problem with many applications. A scaling
of an n×nmatrix A with non-negative entries is a matrix B = XAY where X and Y
are positive diagonal matrices.1 In other words, we multiply the i-th row with Xii

and the j-th column with Yjj. We say A is exactly scalable to marginals r ∈ Rn
>0 and

c ∈ Rn
>0 if there exist X and Y such that the vector r(B) = (

∑︁n
j=1 Bij)i∈[n] of row

sums of the scaled matrix B equals r, and its vector c(B) of column sums equals c.
We are given matrix A and target marginals r ∈ Rn

>0 and c ∈ Rn
>0, and the goal is to

find X and Y that yield those target marginals. One typical example would be if r
and c are the all-1 vectors, which means we want B = XAY to be doubly stochastic:
the rows and columns of B would then be probability distributions.

In many cases it suffices to find approximate scalings. Different applications use
different notions of approximation. We could for instance require r(B) to be ε-close
to r in ℓ1-norm or ℓ2-norm, or in relative entropy (Kullback-Leibler divergence), for
some parameter ε of our choice, and similarly require c(B) to be close to c.

A related problem is matrix balancing. Here we do not prescribe desired marginals,
but the goal is to find a diagonal X such that the row and column marginals of
B = XAX−1 are close to each other. Again, different quantitative notions of closeness
r(B) ≈ c(B) are possible.

An important application, used in theory as well as in practical linear-algebra
software (e.g. LAPACK [ABB+99] and MATLAB [Mat]), is in improving the
numerical stability of linear-system solving. Suppose we are given matrix A and
vector b, and we want to find a solution to the linear system Av = b. Note that
v is a solution iff Bv′ = b′ for v′ = Xv and b′ = Xb. An appropriately balanced
matrix B will typically be more numerically stable than the original A, so solving
the linear system Bv′ = b′ and then computing v = X−1v′, is often a better way to
solve the linear system Av = b than directly computing A−1b.

This chapter is adapted from [AGL+21; GN22].
1We assume A is square for simplicity, but everything can straightforwardly be extended to

non-square matrices.
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13. Matrix scaling and matrix balancing

Matrix scaling and balancing have surprisingly many and wide-ranging appli-
cations. Matrix scaling was introduced by Kruithof for Dutch telephone traffic
computation [Kru37], and has also been used in other areas of economics [Sto64].
In theoretical computer science it has been used for instance to approximate
the permanent of a given matrix [LSW00], and for approximating optimal trans-
port distances [ANR17]. In mathematics, it has been used as a common tool in
practical linear algebra computations [LG04; Bra10; PC11; OCPB16], but also in
statistics [Sin64], optimization [RS89], and for strengthening the Sylvester-Gallai
theorem [BDWY11]. Matrix balancing has a similarly wide variety of applications,
including pre-conditioning to make practical matrix computations more stable
(as mentioned above), and approximating the min-mean-cycle in a weighted
graph [AP22]. Many more applications of matrix scaling and balancing are
mentioned in [LSW00; Ide16; GO18].

13.1.2. State of the art of classical algorithms
State of the art

Historically, research on matrix scaling and matrix balancing (and generalizations
such as operator scaling) has focused on finding ε-ℓ2-scalings. More recently
also algorithms for finding ε-ℓ1-scalings have been extensively studied, due to
their close connection with permanents and finding perfect matchings in bipartite
graphs [LSW00; CK21], and because the ℓ1-distance is an important error measure
for statistical problems such as computing the optimal transport distance between
distributions [Cut13; ANR17], even already for constant ε. By the Cauchy-Schwarz
inequality, an (ε/

√
n)-ℓ2-scaling for A is also an ε-ℓ1-scaling, but often more direct

arguments can be given for the complexity of finding an ε-ℓ1-scaling.
Below in Table 13.1 we tabulate the best known algorithms for finding ε-scalings

in ℓ1-norm for entrywise-positive matrices and general entrywise non-negative
matrices, and we expand on this table later on.2 For the well-definedness of the
algorithms, we will always assume the n × n input matrix A has at least one
non-zero entry in every row and column, and every entry of the target marginals
r, c is non-zero. In addition, we assume A is asymptotically scalable: for every ε > 0,
there exist X and Y such that

∥r(B) − r∥1 + ∥c(B) − c∥1 ⩽ ε, (13.1.1)

where B = XAY . A sufficient condition for this is that the matrix is entrywise-
positive [Sin67]. As is standard in the matrix scaling literature, we will henceforth
assume that A is asymptotically (r, c)-scalable: for every ε > 0, there exist x,y such
that A(x,y) satisfies Eq. (13.1.1). This depends only on the support of A [RS89,
Thm. 3], and is the case if and only if (r, c) is in the convex hull of the points
(ei,ej) ∈ R2n such that Aij > 0, where the ei are the standard basis vectors for
Rn. We will also always assume that the smallest non-zero entry of each of A, r

2For entrywise-positive matrices, the second-order methods (i.e., those that use the Hessian, not
just the gradient) theoretically outperform the classical first-order methods in any parameter
regime. However, they depend on highly non-trivial results for graph sparsification and
Laplacian system solving which are relatively complicated to implement in practice, in contrast
to the eminently practical Sinkhorn and Osborne algorithms.
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13.1. Introduction

and c is at least 1/poly(n). To state the complexity results, let m be the number
of non-zero entries in A, assume

∑︁n
i,j=1Aij = 1, assume that its non-zero entries

lie in [µ, 1], and ∥r∥1 = ∥c∥1 = 1 (so a uniform marginal would be 1/n). We will
assume ε ∈ (0, 1).3 The input numbers to the algorithm are all assumed to be
rational, with bit size bounded by polylog(n), unless specified otherwise.

Time complexity References and remarks

General
non-

negative

˜︁O(m/ε2) Sinkhorn, via KL [CK21]4˜︁O(mn/(h1/3ε2/3)) first-order, via ℓ2 [ALOW17]˜︁O(m log(κ)) box-constrained, via ℓ2 [CMTV17]˜︁O(m1.5) interior-point method, via ℓ2 [CMTV17]˜︁O(m1+o(1)) [CKL+22; BCK+23], ε-dependence not explicit
˜︁O(

√
mn/ε3) Sinkhorn, quantum, Corollary 14.1.9

˜︁O(
√
mn log(κ)1.5/ε) box-constrained, quantum, Corollary 15.2.9

Entrywise
positive

˜︁O(n2/ε) Sinkhorn, [DGK18], ℓ2 from [KK93; KLRS07]˜︁O(n2/ε2) Sinkhorn, via KL [ANR17; CK21]˜︁O(n2) box-constrained, via ℓ2 [ALOW17; CMTV17]
˜︁O(n1.5/ε2) Sinkhorn, quantum, Corollary 14.2.6
˜︁O(n1.5/ε) box-constrained, quantum, Corollary 15.2.10

Table 13.1.: State-of-the-art time complexity of first- and second-order methods
for finding an ε-ℓ1-scaling to arbitrary marginals. The boldface lines
are our results, and are the only quantum algorithms for scaling that
we are aware of. Here h is the smallest integer such that hr and hc
are integer vectors;m is an upper bound on the number of non-zero
entries of A; κ represents the ratio between the largest and the smallest
entries of the optimal scalings X and Y , which can be exponential in n.
Many referenced results originally use a different error model (e.g., ℓ2
or Kullback-Leibler divergence), which we convert to guarantees in the
ℓ1-norm for comparison. Here the ˜︁O-notation hides polylogarithmic
factors in n, 1/ε and 1/µ.

For matrix balancing, we say that a matrix A is ε-ℓ1-balanced if

∥r(A) − c(A)∥1 ⩽ ε
n∑︂

i,j=1
Aij, (13.1.2)

and the goal of the (ℓ1-)matrix balancing problem is to find a positive diagonal
matrix X such that B = XAX−1 is ε-ℓ1-balanced.

We tabulate the best-known results for matrix balancing in Table 13.2, and we
expand on the methods below.

3For ℓ1-scaling, ℓ1-balancing and squared-Hellinger-balancing, the problem becomes trivial as
soon as ε ⩾ 2.

4Their proofs work only for input matrices that are exactly scalable. However, with our potential
gap bound (Theorem 14.1.1) we can generalize their analysis to work for arbitrary asymptotically-
scalable matrices.
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Error ε Time complexity References and remarks

ℓ1

˜︁O(mmin(d, 1/ε)/ε) random Osborne [AP23]˜︁O(m log(κ)) box-constrained, via ℓ2 [CMTV17]˜︁O(m1.5) interior-point method, via ℓ2 [CMTV17]
˜︁O(

√
mn/ε3) random Osborne, quantum, Theorem 14.4.6

ℓ2
˜︁O(m + n/ε2) random Osborne [ORY17]
˜︁O(

√
mn log(κ)1.5/ε) box-constrained, quantum, Corollary 15.3.8

Table 13.2.: State-of-the-art time complexity of first- and second-order methods for
finding an ε-ℓ1- or ℓ2-balancing. The boldface lines are our results, and
the only quantum algorithms for scaling that we are aware of. Here κ
represents the ratio between the largest and the smallest entries of
the optimal scalings X and Y , which can be exponential in n, and d
is the diameter of the directed graph with the same support as the
matrix (in the classical setting, one can efficiently reduce to balancing
the graph’s strongly connected components, hence d is finite). Note
that the results from [CMTV17] have a polylogarithmic dependence
on 1/ε, hence naturally apply to the ℓ2-setting as well. Here the ˜︁O(·)
hides polylogarithmic factors in n, 1/ε and 1/µ.

First-order methods: Sinkhorn and Osborne

Given the importance of good matrix scalings and balancings, how efficiently can
we actually find them? For concreteness, let us first focus on scaling. Note that
left-multiplying A with a diagonal matrix X corresponds to multiplying the i-th
row of A with Xii. Hence it is very easy to get the desired row sums: just compute
all row sums ri(A) of A and define X by Xii = ri/ri(A), then XA has exactly the
right row sums. Subsequently, it is easy to get the desired column sums: just right-
multiply the current matrix XA with diagonal matrix Y where Yjj = cj/cj(XA),
then XAY will have the right column sums. The problem with this approach is,
of course, that the second step is likely to undo the good work of the first step,
changing the row sums away from the desired values; it is not at all obvious how
to simultaneously get the row sums and column sums right. Nevertheless, the
approach of alternating row-normalizations with column-normalizations turns
out to work. This alternating algorithm is known as Sinkhorn’s algorithm [Sin64],
and has actually been (re)discovered independently in several different contexts.

It is known that the iterates in the Sinkhorn algorithm converge to an (r, c)-scaled
matrix whenever A is asymptotically (r, c)-scalable; for the doubly stochastic case,
this was shown in [SK67]. The convergence rate of Sinkhorn’s algorithm is known
in various settings, and we give a brief overview of the (classical) time complexity
of finding an ε-ℓ1-scaling, noting that a single iteration can be implemented in time˜︁O(m). When A is entrywise positive then one can scale in time ˜︁O(n2/ε) [DGK18];
in the ℓ2-setting for uniform target marginals a similar result can be found in [KK93;
KLRS07]. In the general setting where A has at most m ⩽ n2 non-zero entries
the complexity becomes ˜︁O(m/ε2) (for arbitrary target marginals (r, c)); a proof
may be found in [ANR17] for the entrywise-positive case, in [CK21] for exactly
scalable matrices (i.e., where the problem can be solved for ε = 0) and essentially
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the same proof with a folklore potential bound (Theorem 14.1.1) yields the result
for asymptotically scalable matrices.

For matrix balancing there is a similar method known as Osborne’s algo-
rithm [Osb60; PR69]. In each iteration this chooses a row index i and defines
Xii such that the i-th row sum and the i-th column sum become equal. Again,
because each iteration can undo the good work of earlier iterations it is not at
all obvious that this converges to a balancing of A. Remarkably, even though
Osborne’s algorithm was proposed more than six decades ago and is widely used
in linear algebra software, an explicit bound on its convergence rate has only been
proven recently [SS15; ORY17]! It is known to produce an ε-ℓ1-balancing in time˜︁O(m/ε2)when in each iteration the update is chosen randomly [AP23]. In [ORY17]
it was shown that a weighted random variant of Osborne’s algorithm produces
an ε-ℓ2-balancing in time ˜︁O(m + n/ε2).

Second-order methods: box-constrained Newton methods

While simple, the Sinkhorn algorithm is by no means the fastest when the parame-
ter ε is small. The classical state-of-the-art algorithms are based on second-order
methods such as (traditional) interior-point methods or so-called box-constrained
Newton methods [CMTV17; ALOW17], the latter of which we describe in more
detail below. We note that these algorithms depend on fast algorithms for graph
sparsification and Laplacian system solving, so are rather complicated compared to
Sinkhorn’s algorithm. The box-constrained Newton methods can find ε-ℓ1-scaling
vectors in time ˜︁O(mR∞), where the ˜︁O hides polylogarithmic factors in n and 1/ε,
and R∞ is a certain diameter bound (made precise later in the introduction). Such
a result also applies to matrix balancing. For entrywise-positive matrices, R∞ is of
size ˜︁O(1), and in general it is known to be ˜︁O(n) [ALOW17, Lem. 3.3]. Alternatively,
the interior-point method of [CMTV17] has a time complexity of ˜︁O(m3/2), which is
better than the box-constrained Newton method for general inputs, but worse for
entrywise-positive matrices. Our second quantum algorithm for matrix scaling
(and balancing) is based on these classical box-constrained Newton methods and
therefore we describe them in more detail below.

Many classical algorithms for the matrix scaling problem can be viewed from
the perspective of convex optimization. For example, one can solve the matrix
scaling problem by minimizing the convex (potential) function

f(x,y) =
n∑︂

i,j=1
Aije

xi+yj − ⟨r, x⟩ − ⟨c,y⟩, (13.1.3)

where ⟨·, ·⟩ denotes the standard inner product on Rn. Note that the partial
derivative of this f w.r.t. the variable xi is

∑︁n
j=1Aije

xi+yj − ri = ri(XAY) − ri, and
the partial derivative w.r.t. yj is cj(XAY) − cj. A minimizer x,y of f will have
the property that all these 2n partial derivatives are equal to 0, which means
XAY is exactly scaled! Accordingly, (approximate) scalings can be obtained by
finding (approximate) minimizers using methods from convex optimization. In
fact, Sinkhorn’s original algorithm can be interpreted as block coordinate descent
on this f, and Osborne’s algorithm can similarly be derived by slightly modifying f.
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13. Matrix scaling and matrix balancing

(To see this equivalence one has to change variables and set X = diag(ex) and
Y = diag(ey).) Sinkhorn’s method is thus a first-order method.

Below we give a sketch of a second-order method, the box-constrained Newton
method, that we use later to obtain an improved poly(1/ε)-dependence, see
Section 15.1 for details. The algorithm aims to minimize the (highly structured)
convex potential function f from Eq. (13.1.3). A natural iterative method for
minimizing convex functions f is to minimize in each iteration i the quadratic
Taylor expansion 1

2x
T (Hess f(x(i)))x + xT∇f(x(i)) + f(x(i)) of the function at the

current iterate. A box-constrained method constrains the minimization of the
quadratic Taylor expansion to those x that lie in an ℓ∞-ball of radius c around the
current iterate (hence the adjective “box-constrained”):

x(i) = argmin
∥x−x(i)∥∞⩽c

1
2x

T (Hess f(x(i)))x + xT∇f(x(i)).

This is guaranteed to decrease a convex function fwhenever it is second-order robust,
i.e., whenever the Hessian of f at a point is a good multiplicative approximation
of the Hessian at every other point in a constant-radius ℓ∞-ball. One can show
that the steps taken decrease the potential gap by a multiplicative factor which
depends on the distance to the minimizer.

One then observes that the function f from Eq. (13.1.3) is second-order robust.
Moreover, its Hessian has an exceptionally nice structure: it is given by

Hess f(x,y) =
[︃
diag(r(A(x,y))) A(x,y)

A(x,y)T diag(c(A(x,y)))

]︃
,

which is similar to a Laplacian matrix. This means that the key subroutine in this
method (approximately) minimizes quadratic forms 1

2z
THz + zTb over ℓ∞-balls,

where H is a Laplacian matrix; without the ℓ∞-constraint, this amounts to solving
the Laplacian system Hz = b. Such a subroutine can be implemented for the
more general class of symmetric diagonally-dominant matrices (with non-positive
off-diagonal entries) on a classical computer in (almost) linear time in the number
of non-zero entries of H [CMTV17]. For technical reasons, one has to add a
regularization term to f, and the regularized potential instead has a symmetric
diagonally-dominant Hessian structure.

We give two sets of contributions in this paper: new quantum algorithms
for scaling and balancing, and new quantum lower bounds showing that our
algorithms are not too far from optimal. We start with the algorithms.

13.1.3. Contribution 1: quantum algorithms for matrix scaling and
balancing

Because a classical scaling algorithm has to look at each non-zero matrix entry (at
least with large probability), it is clear thatΩ(m) is a lower bound on the classical
query complexity. This would beΩ(n2) in the case of a dense or even entrywise-
positive matrix A. As can be seen from Table 13.1, the best classical algorithms
also achieve thism lower bound up to small factors, with various dependencies on
ε. The same is true for matrix balancing (Table 13.2): Ω(m) queries are necessary,
and this is achievable in different ways, with different dependencies on ε and/or
other parameters.
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Quantum speedups for Sinkhorn and Osborne

We first give quantum algorithms for scaling and balancing that beat the best-
possible classical algorithms if ε ∈ (0, 1) is relatively large (e.g., a small constant):

Theorem (Quantum upper bound for scaling, informal statement; see Corol-
lary 14.1.9). There is a quantum algorithm that (with probability ⩾ 2/3) finds an
ε-ℓ1-scaling for an asymptotically-scalable n × n matrix A with m non-zero entries to
desired positive marginals r and c in time ˜︁O(√mn/ε3).

If A is entrywise positive (which impliesm = n2), then the upper bound can be
improved to ˜︁O(n1.5/ε2) (see Corollary 14.2.6).

Our scaling algorithms first achieve closeness measured in terms of the relative
entropy, and then use Pinsker’s inequality (∥p − q∥21 = O(D(p∥q))) to convert this
to an upper bound on the ℓ1-error.

Theorem (Quantum upper bound for balancing, informal statement; see The-
orem 14.4.6). There is a quantum algorithm that (with probability ⩾ 2/3) finds an
ε-ℓ1-balancing for an asymptotically-balanceable n × n matrix A withm non-zero entries
in time ˜︁O(√mn/ε3).

Our algorithm actually achieves closeness in squared Hellinger distance, which
we have converted to ℓ1-distance for the above statement.

Note that compared to the classical algorithms we have polynomially better
dependence on n andm, at the expense of a worse dependence on ε. There have
recently been a number of new quantum algorithms with a similar tradeoff: they
are better than classical in terms of the main size parameter but worse in terms of
the precision parameter. Examples are the quantum algorithms for solving linear
and semidefinite programs [BS17; AGGW20; BKL+19; AG19] and for boosting of
weak learning algorithms [AM20; RHR+21; IdW23].

Conceptually our algorithms are quite simple: we implement the Sinkhorn and
Osborne algorithms but replace the exact computation of each row and column
sum by quantum amplitude estimation. For this computation, we use the results
of Chapter 12: we can approximate the sum of n numbers up to some small
multiplicative error δ (with high probability) at the expense of roughly

√︁
n/δ

queries to those numbers, and a similar number of other operations.
Our analysis is based on a potential argument (for Sinkhorn we use the above-

mentioned potential f from Eq. (13.1.3)). The approximation errors δ cause us to
make less progress in each iteration compared to an “exact” version of Sinkhorn
or Osborne. If δ is too large then we may even make backwards progress, while if
δ is very small there is no quantum speed-up! We show that there is a choice of δ
for which the negative contribution due to the approximation errors is of the same
order as the progress in the “exact” version, and that choice also results in a speed-
up. We should caution, however, that it is quite complicated to actually implement
this idea precisely and to keep track of and control the various approximation
errors and failure probabilities induced by the quantum estimation algorithms, as
well as by the fact that we cannot represent the numbers involved with infinite
precision.5

5This issue of precision is sometimes swept under the rug in classical research on scaling
algorithms.
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Quantum speedups for box-constrained Newton methods

Recall from Section 13.1.2 that the box-constrained Newton method for matrix scal-
ing heavily depended on graph sparsification and Laplacian system solving. Given
the recent quantum algorithm for these problems by Apers and de Wolf [AW22],
one may hope to obtain a quantum speed-up for the box-constrained Newton
method. We show that one can indeed achieve this by first using the quantum
algorithm for graph sparsification, and then using the classical method for the
minimization procedure. We note, however, that in order to achieve a quantum
speed-up in terms ofm and n, we incur a polynomial dependence in the time com-
plexity on the precision with which we can approximate H and b (as opposed to
only a polylogarithmic dependence classically). Such a speed-up with respect to one
parameter (dimension) at the cost of a slowdown with respect to another (precision)
is more common in recent quantum algorithms for optimization problems and
typically requires a more careful analysis of the impact of approximation errors.
Interestingly, for the classical box-constrained Newton method, the minimization
subroutine is the bottleneck, whereas in our quantum algorithm, the cost of a
single iteration is dominated by the time it takes to approximate the vector b.
Using similar techniques as in the quantum versions of Sinkhorn, one can obtain
an approximation of b with ℓ1-error at most δ ∥A(x,y)∥1, in time roughly

√︁
mn/δ.

To obtain an efficient quantum algorithm we therefore need to control ∥A(x,y)∥1
throughout the run of the algorithm. We do so efficiently by testing in each
iteration whether the 1-norm of A(x,y) is too large; if it is, then we divide the
matrix by 2 (by shifting x by an appropriate multiple of the all-ones vector), which
reduces the potential.

We have the following results for scaling and balancing.

Theorem (Quantum second-order upper bound for scaling, informal statement;
see Corollary 15.2.9). There is a quantum algorithm that (with probability ⩾ 2/3) finds
an ε-ℓ1-scaling for an asymptotically-scalable n × n matrix A withm non-zero entries to
desired positive marginals r and c with ∥r∥1 = 1 = ∥c∥1 in time ˜︁O(R1.5

∞
√
mn/ε), where

R∞ is a diameter bound.

Theorem (Quantum second-order upper bound for balancing, informal statement;
see Corollary 15.3.8). There is a quantum algorithm that (with probability ⩾ 2/3) finds
an ε-ℓ2-balancing for an asymptotically-balanceable n × n matrix A with m non-zero
entries in time ˜︁O(R1.5

∞
√
mn/ε), where R∞ is a diameter bound.

Again, the above scaling algorithm for actually gives a guarantee with respect
to relative entropy. Unfortunately, in the balancing setting, we do not get a
good guarantee in terms of squared Hellinger distance or ℓ1-norm (as is the case
for Osborne’s algorithm); instead, the natural error bound one obtains is for
an ℓ∞-version of the squared Hellinger distance, namely maxℓ(

√
rℓ −
√
cℓ)2.

For the special case of entrywise-positive matricesA, one can prove a polylogarith-
mic upper bound on R∞, which then disappears in the ˜︁O(·) (see Corollaries 15.2.10
and 15.3.8). In this case one finds an ε-ℓ2-scaling or balancing in time ˜︁O(n1.5/ε),
whereas classical methods take time ˜︁O(n2) (using the box-constrained method
from [CMTV17]).
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13.1.4. Contribution 2: quantum lower bounds for matrix scaling
and balancing

A natural question is to what extent our quantum upper bounds for scaling and
balancing can be improved further. Our second set of contributions looks at the
limitations of quantum algorithms.

Quantum lower bounds for scaling and balancing in the constant-ε regime

Since the output for matrix scaling has length roughly n, there is an obvious lower
bound of n even for quantum algorithms. An ˜︁O(n)-time quantum algorithm
would, however, still be an improvement over our best quantum algorithms, and it
would be a quadratic speed-up over the best possible classical algorithm. We dash
this hope here by showing that our algorithm is essentially optimal for constant ε,
even for the special case of A that is exactly scalable to uniform marginals:

Theorem (Quantum lower bound for scaling with constant ε, see Corollary 16.2.3).
There exists a constant ε > 0 such that every quantum algorithm that (with probability
⩾ 2/3) finds an ε-ℓ1-scaling for given n × n matrix A that is exactly scalable to uniform
marginals and hasm potentially non-zero entries, has to makeΩ(

√
mn) queries to A.

Our proof constructs a set of instances A which hide a bit string in a permutation,
it shows how approximate scalings of such an A allow one to recover (most of)
the bit string, and then uses the adversary method [Amb02] to lower bound the
number of quantum queries to the matrix needed to find that information. In
particular, we show that for a permutation σ ∈ Sn and z ∈ {±1}n, learning a large
constant fraction of the entries of z takes Ω(n

√
n) queries to the entries of the

“signed permutation matrix” Pσ,z whose (σ(i), i)-th entry is zi and all other entries
are zero.

A similar strategy yields a quantum query lower bound for matrix balancing
with constant ε:

Theorem (Quantum lower bound for balancing with constant ε, see Theorem 16.3.3).
There exists a constant ε > 0 such that every quantum algorithm that (with probability
⩾ 2/3) finds an ε-ℓ1-balancing for given n × n matrix A that hasm potentially non-zero
entries and ∥A∥1 = 1, has to makeΩ(

√
mn) queries to A.

We note that proving this lower bound for balancing is somewhat more delicate
compared to the lower bound for scaling: when a block-diagonal matrix is ε-ℓ1-
balanced, that does not imply that each of the individual block is ε-ℓ1-balanced; if
one of the blocks has very large sum of entries and is perfectly balanced, while
the other blocks are imbalanced, the full matrix will be ε-ℓ1-balanced without the
individual blocks being balanced.

Stronger quantum lower bounds for scaling and balancing in the small-ε regime

Is it possible to get a polylogarithmic dependence on ε while still retaining a
polynomial speedup in terms of n andm? We show this is not the case by proving
the following theorem:
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Theorem (Quantum lower bound for scaling with small ε, informal statement;
see Theorem 17.5.2 and Corollary 17.5.3). Every quantum matrix-scaling algorithm
that (with probability ⩾ exp(−n)) finds scaling vectors for given entrywise-positive
n × n-matrix A with ℓ2-error 1/(n2

√
lnn) makes at leastΩ(n2) queries to A. This even

holds for uniform targets and matrices with smallest entryΩ(1/n2). In the general setting
ofm ⩽ n2 non-zero entries the lower bound becomes ˜︁Ω(m).

The proof of this lower bound is based on a reduction from deciding whether bit
strings have Hamming weight n/2 + 1 or n/2 − 1. Specifically, given k bit strings
z1, . . . , zk ∈ {±1}n for k = Θ(n), each with Hamming weight |zi | = n/2+ ai where
ai ∈ {±1}, we show that any matrix scaling algorithm can be used to determine
all the ai. One can show that every quantum algorithm that computes all the
ai’s needs to makeΩ(nk) quantum queries to the bit string z1, . . . , zk, even if the
algorithm has only exponentially small (in k) success probability: to determine a
single ai with success probability at least 2/3, one needs to makeΩ(n) quantum
queries to the bit string zi [BBC+01; NW99; Amb02], and one can use the strong
direct product theorem of Lee and Roland [LR13] to prove the lower bound for
computing all k ai’s simultaneously, even with only exponentially small success
probability.

To convert the problem of computing the ai to an instance of matrix scaling, one
constructs a 2k × nmatrix A whose first k rows are (roughly) given by the vectors
1 + zi/b for some b ⩾ 2, and whose last k rows are given by 1 − zi/b. For such an
A, the column sums are all 2k, and the row sums are determined by the ai. If the
matrix A′ obtained by a single Sinkhorn step from A (i.e., rescaling all the rows)
were exactly column scaled, then the optimal scaling factors encode the ai. We
show that, if one randomly (independently for each i) permutes the zi beforehand,
this is approximately the case: the column sums of this A′ will be close to the
desired column sums with high probability, and hence the first step of Sinkhorn
gives approximately optimal scaling factors (which encode the ai). Then, we give
a lower bound on the strong convexity parameter of the potential f, to show that
all sufficiently precise minimizers of f also encode the ai. In other words, from
sufficiently precise scaling factors, we can recover the ai, yielding the reduction to
matrix scaling, and consequently a lower bound for the matrix scaling problem.

A similar strategy gives a quantum query lower bound for matrix balancing in
the small-ε regime. We state it here informally for polynomially small ℓ1-error ε,
whereas the detailed bound (Theorem 17.6.5) assumes a specific ℓ2-error (which
we can easily convert to ℓ1).

Theorem (Quantum lower bound for balancing with small ε, see Theorem 17.6.5).
Every quantum algorithm that (with probability ⩾ exp(−n)) finds an ε-ℓ1-balancing for
polynomially small ε for given n × n matrix A that has m potentially non-zero entries
and ∥A∥1 = 1, has to makeΩ(m) queries to A.

We additionally study the problem of computing an ε-ℓ1-approximation of
the vector of row sums of an ℓ1-normalized n × n matrix A. This is a common
subroutine for matrix scaling algorithms; for instance, the gradient of the potential
function f from Eq. (13.1.3) that we optimize for the upper bound can be determined
from the row and column sums by subtracting the desired row and column sums,
so the complexity of this subroutine directly relates to the complexity of each
iteration in our algorithm. We give the following lower bound for this problem.
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Theorem (Informal, see Theorem 17.7.1). For ε ∈ [1/n, 1/2], every quantum algorithm
that computes an ε-ℓ1-approximation of r(A) for a given matrix A ∈ [0, 1]n×n with
∥A∥1 = 1, takesΩ(n1.5/

√
ε) queries to A.

Instead of reducing toΘ(n) independent instances of the majority problem (as in
the lower bound for high-precision matrix scaling and balancing sketched above),
we reduce to Θ(n) independent instances of the problem of deciding whether a
bit-string z ∈ {±1}n has Hamming weight 1/δ ± 1.

13.2. Preliminaries

13.2.1. Notation and conventions

We abbreviate R⩾0 = [0,∞) and write [n] = {1, . . . ,n}. We use log2 to denote the
logarithm with base 2 and ln to denote the natural logarithm with base e. We
use 1S to denote the indicator function of a set S (typically a probabilistic event).
When necessary, we use fixed-point format where numbers are represented using
b1 leading bits, b2 trailing bits, and one bit to denote the sign. That is, a number
a written in (b1,b2)-fixed-point format is a number of the form a = ±

∑︁b1−1
i=−b2

ai2i
where ai ∈ {0, 1} for all i. For a ∈ R and δ > 0, a δ-additive approximation of a is a
number â ∈ [a+ δ,a− δ]. For a > 0 and δ > 0, a (1± δ)-multiplicative approximation
of a is a number ã ∈ [(1 − δ)a, (1 + δ)a].

We write vectors x and matrices A in boldface, but their entries xi and Aij are
written in regular face. We denote by Rn the n-dimensional Euclidean space by
and Rn×n be the vector space of real n × nmatrices. By convention we use 1 for
the all-1 vector and 0 for the all-0 vector. For a matrix A ∈ Rn×n, let Aℓ• ∈ Rn

be the vector corresponding to the ℓ-th row of A and A•ℓ ∈ Rn be the vector
corresponding to the ℓ-th column of A. We say x and A are entrywise non-negative if
all of their entries are greater or equal to 0; and we say x and A are entrywise-positive
if all of their entries are strictly greater than 0. We denote by Rn

⩾0 the cone of all
n-dimensional entrywise non-negative vectors and by Rn×n

⩾0 the cone of all n × n
entrywise non-negative matrices.

We use the standard definition of big-O notation as the set of functions satisfying
a given growth bound. We write polylog(n) = ⋃︁∞

i=0O(ln
i(n)). We use the big-˜︁O

notation to hide polylogarithmic factors in the variables appearing within the
parentheses.

For a bit string z ∈ {0, 1}n (or z ∈ {±1}n), the Hamming weight |z| is defined
as the number of i ∈ [n] such that zi = 1. We use xmax and xmin to denote the
largest and smallest entry of x, respectively. For a matrix A ∈ Rn×n, we define
the ℓp-norm by viewing the matrix as a vector in Rn2 , e.g., ∥A∥1 =

∑︁n
i,j=1 |Aij |; in

particular, ∥A∥p should not be confused with the Schatten p-norm.
We apply functions to vectors entry-wise, for example we abbreviate

√
x =

(√xi)i∈[n] ∈ Rn
⩾0 for x ∈ Rn

⩾0 and ex = (exi)i∈[n] ∈ Rn for x ∈ Rn.
We write A(x,y) for the matrix whose (i, j)-th entry is Aije

xi+yj , where A is
an n × nmatrix and x,y ∈ Rn. We also abbreviate A(x) = A(x,−x) in the context
of matrix balancing.
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13.2.2. Distance measures
We will be interested in the relative entropy or Kullback-Leibler divergence (used in
the analysis of the Sinkhorn algorithm) and Hellinger distance (used in the analysis
of the Osborne algorithm) between non-negative vectors.

To define the former, we use the function ρ : R⩾0 × R>0 → [0,∞] given by
ρ(a∥b) = b − a + a ln a

b (with the usual conventions, in particular 0 ln 0 = 0). The
relative entropy or Kullback-Leibler divergenceD : Rn

⩾0 ×Rn
>0 → [0,∞] is then defined

as

D(a∥b) =
n∑︂
i=1
ρ(ai∥bi).

When a and b are probability distributions, this reduces to the familiar formula
D(a∥b) =

∑︁n
i=1 ai ln ai

bi
, but we will also consider unnormalized b. In this case

we still have the following version of Pinsker’s inequality:

Lemma 13.2.1 (Generalized Pinsker). Let a,b ∈ Rn
⩾0 and assume ∥a∥1 = 1 and

bℓ > 0 for all ℓ ∈ [n]. Define the function w : (−1,∞) → R by w(β) = β − ln(1 + β).
Then

D(a∥b) ⩾ w(∥a − b∥1).

For β ∈ [0, 1], we have the estimate w(β) ⩾ β2/4, while for β ⩾ 1 we have w(β) ⩾
(1 − ln 2)β. In particular, if ∥a − b∥1 ⩽ 1, then D(a∥b) ⩾ ∥a − b∥21/4.

Note that we do not require b to be a probability distribution. The proof we give
is heavily inspired by [KLRS07], which gave a lower bound on a relative entropy
in terms of an ℓ2-distance. We start with a lemma that verifies the properties of the
function w.

Lemma 13.2.2. Let w : (−1,∞) → R be the function defined in Lemma 13.2.1. Then for
β ∈ [0, 1], we have w(β) ⩾ β2/4. Furthermore, for β ⩾ 1, we have w(β) ⩾ (1 − ln 2)β.

Proof. Set g(β) = β2/4. We have w′(β) = 1 − 1/(1 + β) and g′(β) = 2β/4. On [0, 1],
we have

(1 + β)w′(β) = 1 + β − 1 ⩾ β(1 + β)/2 = (1 + β)g′(β)

and w(0) = g(0), so we see that w(β) ⩾ g(β) = β2/4 on [0, 1]. For the last claim,
note that w(1) = 1 + ln 2 and w′(1) = 1

2 > (1 − ln 2), so by convexity of wwe have
w(β) ⩾ (1 − ln 2)β for any β ∈ (−1,∞). □

Next we prove the main inequality that will imply the generalized Pinsker
inequality.

Lemma 13.2.3. Let a,d ∈ Rn be vectors such that ∥a∥1 = 1, a has positive entries, and
dℓ > −aℓ for every ℓ ∈ [n]. Then

n∑︂
ℓ=1
dℓ − aℓ ln

(︃
1 + dℓ

aℓ

)︃
⩾ ∥d∥1 − ln(1 + ∥d∥1).

278



13.2. Preliminaries

Proof. The proof consists of two parts. First, we show that for any a,d ∈ R with
a > 0 and d > −a, we have

d − a ln
(︃
1 + d

a

)︃
⩾ |d| − a ln

(︃
1 + |d|

a

)︃
. (13.2.1)

Clearly this holds with equality if d ⩾ 0, so assume d < 0. The function

g(β) = −2β − a ln
(︃
1 − β

a

)︃
+ a ln

(︃
1 + β

a

)︃
satisfies g(0) = 0 and g′(β) ⩾ 0 on [0,a), so g(β) ⩾ 0 on [0,a). Setting β = −d
yields

2d − a ln
(︃
1 + d

a

)︃
+ a ln

(︃
1 − d

a

)︃
⩾ 0

for d < 0, as desired.
To finish the proof, we use Eq. (13.2.1) and see that

n∑︂
ℓ=1
dℓ − aℓ ln

(︃
1 + dℓ

aℓ

)︃
⩾

n∑︂
ℓ=1
|dℓ | − aℓ ln

(︃
1 + |dℓ |

aℓ

)︃
= ∥d∥1 −

n∑︂
ℓ=1
aℓ ln

(︃
1 + |dℓ |

aℓ

)︃
.

Since the function t ↦→ ln(1 + t) is concave and ∥a∥1 = 1 and aℓ > 0, we see that
n∑︂
ℓ=1
aℓ ln

(︃
1 + |dℓ |

aℓ

)︃
⩽ ln

(︄
1 +

n∑︂
ℓ=1
aℓ ·
|dℓ |
aℓ

)︄
= ln(1 + ∥d∥1)

and the desired result follows. □

Proof of Lemma 13.2.1. By continuity, we may assume without loss of generality
that a has positive entries. Recall that

D(a∥b) =
n∑︂
ℓ=1
bℓ − aℓ + aℓ ln(aℓ

bℓ
)

=

n∑︂
ℓ=1
(bℓ − aℓ) − aℓ ln

(︃
bℓ − aℓ
aℓ

+ 1
)︃

.

Set d = b − a, so that dℓ = bℓ − aℓ > −aℓ for every ℓ ∈ [n]. Therefore, we may
apply Lemma 13.2.3 to a and d to get

D(a∥b) ⩾ w(∥b − a∥1).

The claimed bounds on the function w follow from Lemma 13.2.3. □

Next, we define the (unnormalized) Hellinger distance of vectors a,b ∈ Rn
⩾0 by

H(a,b) = ∥
√
a −
√
b∥2. (13.2.2)

This also satisfies a lower bound in terms of the ℓ1-distance:
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Lemma 13.2.4 (Lower bound on Hellinger distance). Let a,b ∈ Rn
⩾0 with at least

one of the two vectors being non-zero. Then

H(a,b)2 ⩾
∥a − b∥21

2(∥a∥1 + ∥b∥1)
.

Proof. Note that we have

∥a − b∥21 =

(︂ n∑︂
ℓ=1
|aℓ − bℓ |

)︂2

=

(︂ n∑︂
ℓ=1

|︁|︁|︁√aℓ −√︁
bℓ

|︁|︁|︁ · |︁|︁|︁√aℓ +√︁
bℓ

|︁|︁|︁)︂2

⩽
∥︁∥︁∥︁√a − √b∥︁∥︁∥︁2

2
·
∥︁∥︁∥︁√a + √b∥︁∥︁∥︁2

2

where we used the Cauchy–Schwarz inequality in the last step. The bound then
follows from

∥
√
a +
√
b∥22 =

n∑︂
ℓ=1
(√aℓ +

√︁
bℓ)2 ⩽ 2

n∑︂
ℓ=1
(aℓ + bℓ) = 2(∥a∥1 + ∥b∥1).

where the inequality follows from the arithmetic-geometric mean inequality. □

13.2.3. Matrix scaling and balancing
Throughout we use r, c ∈ Rn

>0 for the desired row and column marginals. Unam-
biguously, we also use r : Rn×n→ Rn and c : Rn×n→ Rn as the functions that
send an n × n-matrix to its row resp. column marginal. That is, r(A) is the vector
whose i-th entry equals ri(A) =

∑︁n
j=1Aij, and c(A) is the vector whose j-th entry

is cj(A) =
∑︁n

i=1Aij.
We denote by A(x,y) = (Aije

xi+yj)i,j∈[n] the result of rescaling the rows of a
matrix A by ex and the columns by ey. We say that a matrix A ∈ Rn×n

⩾0 is exactly
scalable to some (r, c) ∈ Rn

>0 ×Rn
>0 if there exist x,y ∈ Rn such that

r(A(x,y)) = r and c(A(x,y)) = c.

We say A is ε-ℓp-scalable to (r, c) for some ε > 0 and p ⩾ 1 if there are x,y ∈ Rn

such that
∥r(A(x,y)) − r∥p ⩽ ε and ∥c(A(x,y)) − c∥p ⩽ ε.

Finally, A ∈ Rn×n
⩾0 is called asymptotically scalable to (r, c) if it is ε-ℓ1-scalable to

(r, c) for all ε > 0.
In the matrix-balancing setting we require y = −x, and the marginals are

compared to each other. Thus we abbreviate A(x) = A(x,−x), and we say that
an entrywise non-negative matrix A ∈ Rn×n

⩾0 is exactly balanceable if there exists a
vector x ∈ Rn such that

r(A(x)) = c(A(x)).
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We say A ∈ Rn×n
⩾0 is ε-ℓp-balanceable for some ε > 0 and p ⩾ 1 if there exists an

x ∈ Rn such that
∥r(A(x)) − c(A(x))∥p

∥A(x)∥1
⩽ ε.

We say A ∈ Rn×n
⩾0 is asymptotically balanceable if it is ε-ℓ1-balanceable for all ε > 0.

We can now formally state the computational problems associated with matrix
scaling and balancing formally.

Problem 13.2.5 (ε-ℓp-scaling). Given a matrix A ∈ Rn×n
⩾0 and r, c ∈ Rn

>0 with ∥r∥1 =

∥c∥1 = 1, find x,y ∈ Rn such that

∥r(A(x,y)) − r∥p ⩽ ε and ∥c(A(x,y)) − c∥p ⩽ ε.

One can use the generalized Pinsker’s inequality (Lemma 13.2.1) to upper bound
ℓ1-distance by relative entropy, and it turns out that our algorithm is most naturally
analyzed with the error measured by the relative entropy. which is then at the
end converted into an ℓ1-error as a corollary. Accordingly, we also consider the
following problem:

Problem 13.2.6 (ε-relative-entropy-scaling). Given a matrixA ∈ Rn×n
⩾0 and r, c ∈ Rn

>0
with ∥r∥1 = ∥c∥1 = 1, find x,y ∈ Rn such that

D(r∥r(A(x,y))) ⩽ ε and D(c∥c(A(x,y))) ⩽ ε.

Finally, the matrix balancing problem is defined in a similar fashion, in ℓp and
squared Hellinger distance (see Eq. (13.2.2)).

Problem 13.2.7 (ε-ℓp-balancing). Given p ⩾ 1 and an n × n matrix A ∈ Rn×n
⩾0 , find

x ∈ Rn such that
∥r(A(x)) − c(A(x))∥p

∥A(x)∥1
⩽ ε. (13.2.3)

Problem 13.2.8 (ε-H2-balancing). Given an n × n matrix A ∈ Rn×n
⩾0 , find x ∈ Rn

such that
H2(r(A(x)), c(A(x)))

∥A(x)∥1
⩽ ε. (13.2.4)

Assumptions on the instances

We will always make the following assumptions, which are standard in the literature.
For the matrix scaling problem we will assume that A is asymptotically scalable
to r, c. Similarly, in the matrix balancing problem we will always assume that it
is asymptotically balanceable. The entries of A (and r, v for the scaling problem)
will be represented by rational numbers whose denominator and numerator can
be represented using polylog(n) bits.

Moreover, we will always assume for convenience that the matrix A has at least
one non-zero entry in every row and in every column. We furthermore assume
that ∥A∥1 ⩽ 1 and that the non-zero entries of A are at least some µ > 0.6 In

6If such a bound µ > 0 is unknown, it can be found (with high probability) with O(
√
m) queries

and similar time complexity using quantum minimum-finding (Theorem 11.2.6), wherem is the
number of possibly non-zero entries of A, see Section 13.2.4. Similarly, one can enforce ∥A∥1 ⩽ 1
with high probability by first estimating ∥A∥1 up to a constant factor and then dividing every
entry by this a constant times this number.
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the matrix scaling problem we will further assume the target marginals r, c are
entrywise positive, with ∥r∥1 = ∥c∥1 = 1, while in the matrix balancing problem
we assume that the diagonal entries of A are zero.7

13.2.4. Data structures and computational model
Input model

Here we describe how our quantum algorithms can access the entries of the input
matrix A. For classical algorithms the access model is the same, though of course
classical algorithms cannot make queries in superposition.

We assume sparse black-box access to the elements of A via lists of the potentially
non-zero entries for each row and each column, as follows. We assume in the
i-th row there are sr

i
potentially non-zero entries (the algorithm doesn’t know

their locations nor their values in advance), and in the j-th column there are
sc
j

potentially non-zero entries, where
∑︁n

i=1 s
r
i
=

∑︁n
j=1 s

c
j
= m. If our lists only

contain the non-zero entries of the matrix thenm would be the total number of
non-zero entries in A, but our current set-up is a bit more flexible, allowing these
lists to also contain some 0-entries. We will for simplicity assume these positive
integers sr1 , . . . , srn, sc1 , . . . , scn are known to the algorithm (either given explicitly
as part of the input, or via query access), though they could also be computed
efficiently by binary search as explained below.

The unitaries Orow
I

and Ocol
I

allow us to find the indices of potentially non-zero
elements of rows and columns of A. Specifically:

Orow
I |i⟩ |k⟩ |b⟩ = |i⟩ |k⟩ |b + j(i,k)⟩ for i,k,b ∈ [n],
Ocol

I |k⟩ |j⟩ |b⟩ = |k⟩ |j⟩ |b + i(j,k)⟩ for j,k,b ∈ [n],

where j(i,k) ∈ [n] is the position of the k-th potentially non-zero element of row i

and similarly i(j,k) ∈ [n] is the position of the k-th potentially non-zero element
of column j. The addition in the last register is modulo n (with the outcome in [n]
rather than in {0, . . . ,n − 1}). If k > sr

i
then we define j(i,k) = 0, so if Orow

I
maps

|i⟩ |k⟩ |b⟩ to itself, then we learn that k > sr
i

(this is what allows us to learn sr
i

ourselves efficiently via binary search). We do the same for the columns.
We furthermore assume access to binary representations of the numerators

and denominators of entries of A and r, c in the usual way: we have unitaries
OA,Or,Oc that return the numerators and denominators of the entries of A, r, c.
For i, j ∈ [n], and b a string of the same number of bits as used for denominator
and numerator, we have8

OA |i⟩ |j⟩ |b⟩ = |i⟩ |j⟩ |b ⊕ (Aden
ij ,Anum

ij )⟩
Or |i⟩ |b⟩ = |i⟩ |b ⊕ (rden

i , rnum
i )⟩

Oc |j⟩ |b⟩ = |j⟩ |b ⊕ (cden
j , cnum

j )⟩
7This is without loss of generality for the following reason: If A is an arbitrary matrix and
B denotes the matrix with the same off-diagonal entries, but zero diagonal entries, then
r(A(x)) − c(A(x)) = r(B(x)) − c(B(x)) for any x ∈ Rn, while ∥A(x)∥1 ⩾ ∥B(x)∥1. It follows that
if Eq. (13.2.3) holds for B, then it also holds for A.

8Our algorithms only require classical query access toOr andOc, no quantum queries are needed
here.
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We use rational inputs so that uniform marginals can be represented exactly, as well
as for the sake of consistency with the classical literature. Moreover, converting
from fixed-point inputs to rational inputs is a trivial task. However, we note that
inside some of our algorithms it will be useful to use fixed-point format as defined
in Section 13.2.1.

Computational model

Our computational model is of a classical computer (say, a Random Access
Machine for concreteness) that, in addition to its classical computations, can
invoke a quantum computer. The classical computer can write to a classical-write
quantum-read memory (“QCRAM”), and send a description of a quantum circuit
that consists of one- and two-qubit gates from some fixed discrete universal gate
set,9 queries to the input oracles, and queries to the QCRAM to the quantum
computer. The quantum computer runs the circuit, measures the full final state in
the computational basis, and returns the measurement outcome to the classical
computer. We will use the QCRAM to store the scaling vectors x,y at any point
in time in our iterative algorithms and hence will need enough QCRAM to store
these 2n numbers up to sufficient precision (the required precision is analyzed
later, in the body of the paper). The QCRAM can be queried by the quantum
computer in the same way as the above unitaries Or and Oc.

The cost of the quantum subroutines will be measured by the total number of
queries to A and the QCRAM, plus the number of one- and two-qubit gates. The
cost of the classical computer will be measured by its number of elementary steps.
This includes the cost of writing down the descriptions of the quantum circuits
that the classical machine subcontracts to the quantum machine; in our algorithms
these will be relatively simple, like versions of Grover’s algorithm and amplitude
estimation, and hence can be written down with at most a logarithmic overhead
over their number of gates. The total cost (or “time complexity”) of our algorithms
is the sum of their classical and quantum costs.

13.3. Quantum subroutines for matrix scaling and
balancing

In this section we build upon the approximate summation subroutine from Sec-
tion 12.4 to build other subroutines for our algorithms for matrix scaling and
balancing. In particular, we implement a subroutine for computing log-sum-
exp quantities in Section 13.3.1 and subroutines for testing scalings and balanc-
ings in Section 13.3.2. We also recall a result on quantum graph sparsification
from [AW22] in Section 13.3.3. These subroutines will be used in Chapters 14 and 15
for our algorithms for matrix scaling and balancing. Detailed implementations of
the subroutines are delayed until Section 13.3.4.

9For concreteness assume our gate set contains the Hadamard gate, T -gate, Controlled-NOT, and
2-qubit controlled rotations over angles 2π/2s for positive integers s (these controlled rotations
are used in the circuit for the quantum Fourier transform (QFT), which we invoke later in the
paper).
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Subroutine LogSumExp(a, r,y, δ,b1,b2,η,µ)
Input: Query access to rational a ∈ [0, 1]n, rational r ∈ (0, 1], query access

to y ∈ Rn encoded in (b1,b2)-fixed-point format, precision δ ∈ (0, 1],
failure probability η ∈ (0, 1], lower bound µ > 0 on the non-zero
entries of a.

Output: A number x encoded in (b1,b2)-fixed-point format.
Guarantee: If b1 ⩾ ⌈log2(|ln(

∑︁n
j=1 aje

yj/r)|)⌉ and b2 ⩾ ⌈log2(1/δ)⌉, then
with probability at least 1 − η, x is a δ-additive approximation of
ln(

∑︁n
j=1 aje

yj/r).

We recall the main result from Section 12.4: given quantum query access to a
vector v ∈ [0, 1]n, the goal is to compute an s̃ ⩾ 0 such that (1 − δ)s ⩽ s̃ ⩽ (1 + δ)s̃,
where s =

∑︁n
i=1 vi. If δ = Ω(1/n), then this can be done using ˜︁O(√︁n/δ) quantum

queries and a similar time complexity. We show that this subroutine can also be
used to provide additive approximations of ln

∑︁n
i=1 e

yi for y ∈ Rn, with only a
polynomial dependence on the bit complexity of the yi. These subroutines can
also be used to test whether a matrix is approximately scaled or balanced (in a way
that is essentially optimal by Theorem 17.7.1).

The ApproxSum can be easily used to implement a subroutine which computes
an ℓ1-approximation of the vector of row (or column) marginals of a non-negative
matrix, with the following guarantees.

Corollary 13.3.1. Let δ,η > 0, sparse oracle access to A ∈ [0, 1]n×n with m pos-
sibly non-zero entries, accessible in (0,b)-fixed-point format. Then there exists an
algorithm ApproxMarginals which given access to A, b, δ, η outputs with probabil-
ity ⩾ 1− η a vector r̃ ∈ [0, 1]n such that ∥r̃− r(A)∥1 ⩽ δ∥A∥1. It usesO(

√︁
mn
δ log( 1

η))
quantum queries and O(

√︁
mn
δ log( 1

η)poly(b, log(n), log(1/δ))) other gates.

Proof. Use ApproxSum to compute for each i ∈ [n] an approximation r̃i of ri
such that |r̃i − ri(A)| ⩽ δ ri(A). Summing these estimates yields the desired
inequality ∥r̃ − r(A)∥1 ⩽ δ∥A∥1. The cost of a call to ApproxSum scales with the
number of possibly non-zero elements si in row i as

√
si; hence the total cost scales

with
∑︁n

i=1
√
si ⩽

√︁
n
∑︁n

i=1 si =
√
mn. □

13.3.1. Quantum LogSumExp
We next discuss the log-sum-exp function LSE(y1, . . . ,yn) = ln(

∑︁n
i=1 e

yi), which
is a basic primitive used in a wide variety of contexts, for example as a smooth
approximation of the maximum function in machine learning. We will be interested
in a very slight generalization, namely ln(

∑︁n
i=1 aie

yi/r), which we shall also refer
to as ‘LogSumExp’ and which arises naturally, e.g., in geometric programming;
for us, it captures the row or column sums of rescaled or rebalanced matrices.
The following theorem states our result for computing additive approximations to
LogSumExp.

Theorem 13.3.2 (Approximate LogSumExp). There is a quantum algorithm that
implements the subroutine LogSumExp using O(

√︁
n
δ log( 1

η)) queries and ˜︁O(√︁n
δ log( 1

η))
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Subroutine TestScaling(A, r, c, x,y, δ,b1,b2,η,µ)
Input: Query access to rational A ∈ [0, 1]n×n with ∥A∥1 ⩽ 1, rational

r, c ∈ (0, 1]n with ∥r∥1 = ∥c∥1 = 1, query access to x,y ∈ Rn

encoded in (b1,b2)-fixed-point format, precision δ ∈ (0, 1], desired
failure probability η ∈ [0, 1], lower bound µ > 0 on the non-zero
entries of A.

Output: True or False.
Guarantee: If b1 ⩾ log2(|ln(

∑︁n
j=1Aℓje

yj/rℓ)|) and
b1 ⩾ log2(|ln(

∑︁n
i=1Aiℓe

xi/cℓ)|) for all ℓ ∈ [n], and if also
b2 ⩾ ⌈log2(1/δ)⌉, then with failure probability ⩽ η the output is
True if bothD(r∥r(A(x,y))) andD(c∥c(A(x,y))) are ⩽ δ, and it
is False if either is ⩾ 2δ.

other gates. The ˜︁O-notation hides polynomial factors in b1, b2, and the encoding length
of a, as well as polylogarithmic factors in n, 1/δ, 1/µ, 1/r.

It is clear that a multiplicative approximation of
∑︁n

i=1 vi where vi = aie
yi/r

yields an additive approximation of ln(
∑︁n

i=1 aie
yi/r). However, one obstacle is that

one cannot simply compute all exponentials to sufficient precision and use exact
or approximate summation on the result. Indeed, in general one would even need
space exponential in the bitsize of yi to represent eyi to constant precision. Instead,
we compute a multiplicative estimate of the sum

∑︁n
j=1wj where wj =

aj

aj∗
eyj−yj∗

for some j∗ ∈ [n]. This approach is widely used in practice in classical computing
(see e.g. [AP23]). For our implementation of LogSumExp, we choose j∗ as an
index j ∈ [n] for which ajeyj is maximal, which we find using quantum max-
finding (Theorem 11.2.6). Note that comparisons between such numbers can also
be implemented efficiently. This ensures that all the relative quantities wj are
in [0, 1]. Then we can use ApproxSum(Corollary 12.4.4) to compute an estimate of
their sum, and use the identity ln(

∑︁n
j=1wi) = ln(

∑︁n
j=1 aje

yj/r)+ ln(r)− ln(aj∗)−yj∗
to compute the desired log-sum-exp. We implement everything such that the
fixed-point format (b1,b2) for both the input and output of the queries is the same,
avoiding the need to change the encoding format in every iteration of the algorithm.
We prove Theorem 13.3.2 in Line 3, paying special attention to the bit-complexity
required by each operation.

13.3.2. Quantum subroutines for testing scalings and balancings
As a consequence of Theorem 13.3.2, we can also test whether a rescaled matrix
has desired marginals up to some precision as measured in relative entropy, as
described in the subroutine TestScaling. We prove Theorem 13.3.3 in Line 11.
Theorem 13.3.3 (TestScaling). The subroutine TestScaling can be implemented using
one call to a subroutine for obtaining a multiplicative estimate of the sum of all matrix
entries and 2n calls to LogSumExp. Accordingly, there is a quantum algorithm that
implements TestScaling using ˜︁O(√︁mn/δ log(1/η)) queries and other gates, where the˜︁O(·) hides polynomial factors in b1 and b2, and polylogarithmic factors in n,m, and δ.

A similar result for ℓ1-scaling can be directly obtained from Corollary 13.3.1.
For matrix balancing, we can implement a similar subroutine TestBalancing
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13. Matrix scaling and matrix balancing

which tests whether a matrix is approximately balanced in squared Hellinger
distance, with guarantees as follows. The proof is given in Line 11. Note that
similarly as in TestScaling, testing can only be done approximately, and should
be interpreted as outputting True when the squared Hellinger distance is ⩽ δ, and
outputting False when the squared Hellinger distance is ⩾ 2δ.

Proposition 13.3.4 (TestBalancing). Let A ∈ [0, 1]n×n be a rational matrix with zeroes
on the diagonal, each row and column containing at least one non-zero element and
all non-zero entries at least µ > 0. Let δ,η ∈ (0, 1) be rational numbers. Then there
exists an algorithm TestBalancing that when given query access to x ∈ Rn encoded
in (b1,b2)-fixed-point-format and η, δ as input, determines with success probability ⩾ 1−η
whether A(x) is δ-H2-balanced, and uses ˜︁O(√︁mn/δ log(1/η)) queries and other gates,
where the ˜︁O(·) hides polynomial factors in b1 and b2, and polylogarithmic factors in n,m,
and δ.

13.3.3. Quantum graph sparsification
The last ingredient we require is a result about quantum graph sparsification
from [AW22]. Consider an undirected graph G = (V ,E,w) with vertex set V = [n]
and nonnegative edge-weights given by w : E → R⩾0. The Laplacian LG of G is
the n × n matrix LG =

∑︁
(u,v)∈Ew(u, v)(eu − ev)(eu − ev)T . This matrix has the

weighted degrees du =
∑︁

v:(u,v)∈Ew(u, v) of the graph on its diagonal entries, and
the negated weights −w(u, v) on its off-diagonal entries. A graph H = (V ,E′,w′)
with E′ ⊆ E is called an ε-spectral sparsifier of G, if the Laplacians of G and H are
close in the following sense: for every x ∈ Rn it holds that

(1 − ε)x†LGx ⩽ x†LHx ⩽ (1 + ε)x†LGx. (13.3.1)

Alternatively, we can rewrite this as (1 − ε)LG ⪯ LH ⪯ (1 + ε)LG, where A ⪯ B
denotes that B −A is positive semidefinite.

Theorem 13.3.5 (Quantum algorithm for graph sparsification [AW22]). For every
ε > 0 there exists a quantum algorithm that, given adjacency-list access to a weighted and
undirected graph G with n vertices andm edges, outputs (with success probability ⩾ 2/3)
an ε-spectral sparsifier H of G with ˜︁O(n/ε2) edges, using ˜︁O(√mn/ε) queries and other
elementary operations. The algorithm uses O(logn) qubits and a QRAM of ˜︁O(√mn/ε)
bits.

Note that the algorithm outputs a classical description of the sparse graphH, for
instance as a list of the remaining ˜︁O(n/ε2) edges and their new weights. [AW22]
also show that their algorithm is optimal in terms of m, n, and ε >

√︁
n/m, up

to polylogarithmic factors. In contrast, The classical complexity of finding an
ε-spectral sparsifier is ˜︁O(m log(1/ε)).

13.3.4. Detailed implementations
In this subsection we give detailed proofs of the results on approximate summing
described in this section. We will take for granted the fact that there exist arithmetic
circuits for computing ratios, exponentials, logarithms, and trigonometric functions,
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with the following property: for all inputs encoded in (b1,b2)-fixed-point format
for which the number to be computed can be encoded in (b3,b4)-fixed-point format
with additive error at most 2−b4 , the output of the circuit is such an additive
approximation. Furthermore, these circuits have size at most polynomial in b1, b2,
b3, and b4. For exponentials and logarithms, one may achieve this (for instance)
by using repeated squaring and Taylor series approximations; see e.g. [BZ11]. This
assumption also implies that given a rational number, encoded by its numerator
and denominator, we can efficiently compute a fixed-point representation of this
rational number to any desired additive precision (by treating the numerator and
denominator as fixed-point numbers and computing their ratio), as long as the
number of leading bits for the output format is chosen to be sufficiently large.

We first describe a classical algorithm, RelativeEntryAdditiveApprox in Algo-
rithm 13.1, that efficiently computes the ratio of two numbers of the form aey up
to a certain precision.

Algorithm 13.1: RelativeEntryAdditiveApprox(a1,a2,y1,y2,b,b1,b2, c,d)
Input: Non-negative numbers a1,a2 ∈ [0, 1 − 2−b] encoded in (0,b)

fixed-point format, numbers y1,y2 ∈ R encoded in (b1,b2)
fixed-point format, natural numbers c,d

Output: A non-negative number in (d, c)-fixed-point format.
Analysis: Lemma 13.3.6

1 if a2 = 0 then
2 return 2d − 2−c;
3 end if
4 if a1 = 0 then
5 return 0;
6 end if
7 compute ∆← y1 − y2;
8 if ∆ > b + d then
9 return 2d − 2−c;

10 else if ∆ < −b − c then
11 return 0;
12 else
13 compute estimate α ⩾ 0 of e∆ encoded in (2(b + d),b + c + 3) fixed-point

format;
14 compute estimate β ⩾ 0 of a1/a2 encoded in (b, 2(b + d) + c + 3)

fixed-point format;
15 compute γ′ = α · β exactly encoded in (3b + 2d, 3b + 2d + 2c + 6)

fixed-point format;
16 let γ be the result of rounding min{γ′, 2d − 2−c} to the nearest integer

multiple of 2−c;
17 return γ;
18 end if

Lemma 13.3.6. Let y1,y2 ∈ R be two numbers encoded in (b1,b2)-fixed-point format,
and let a1,a2 ∈ [0, 1− 2−b] be non-negative numbers encoded in (0,b)-fixed-point format.
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Furthermore, let c,d ⩾ 1 be natural numbers. Then Algorithm 13.1 with these inputs
returns a non-negative number γ ∈ [0, 2d − 2−c] encoded in (d, c)-fixed-point format,
such that

|γ −min{a1
a2
ey1−y2 , 2d − 2−c}| ⩽ 2−c.

Here we use the convention that a1/a2 = ∞ whenever a1 ≠ 0 = a2. The algorithm
terminates in time polynomial in b,b1,b2, c,d.

Proof. We use the same notation as in the algorithm. The cases where a2 = 0 or
a1 = 0 are clear. Otherwise, if ∆ = y1 − y2 > b + d then

a1
a2
e∆ >

a1
a2
eb+d ⩾ 2−beb+d > 2d

so min{e∆a1/a2, 2d − 2−c} = 2d − 2−c, and returning this value is a correct output.
Similarly, if ∆ < −b − c, then

a1
a2
e∆ <

a1
a2
e−b−c <

a1
a2

2−b−c ⩽ 2−c

so 0 is a 2−c-additive approximation of e∆a1/a2. For the final and most interesting
case, note that e∆ < 22(b+d) and a1

a2
⩽ 2b, so it suffices to use 2(b+d) and b leading

bits to ensure that we include the first possibly non-trivial binary digit of e∆ and
a1/a2, respectively. Due to our choice of the number of trailing bits, α and β satisfy

|α − e∆ | ⩽ 2−b−c−3, |β − a1
a2
| ⩽ 2−2(b+d)−c−3,

and as a consequence we see that

γ′ = α · β ⩽ a1
a2
e∆ + 2−b−c−3a1

a2
+ 2−2(b+d)−c−3e∆ + 2−(3b+2d+2c+6)

⩽
a1
a2
e∆ + 2−c−3 + 2−c−3 + 2−c−3

⩽
a1
a2
e∆ + 2−c−1

where we used a1
a2
⩽ 2b and e∆ ⩽ 22(b+d) in the second inequality. Similarly, we

obtain the lower bound

γ′ = α · β ⩾ a1
a2
e∆ − 2−b−c−3a1

a2
− 2−2(b+d)−c−3e∆ − 2−(3b+2d+2c+6)

⩾
a1
a2
e∆ − 2−c−3 − 2−c−3 − 2−4b−2c−6

⩾
a1
a2
e∆ − 2−c−1

again using a1
a2
⩽ 2b and e∆ ⩽ 22(b+d) in the second inequality. The quantity γ′ =

α ·β can be computed exactly using 3(b+d) leading bits and 3b+2d+2c+6 trailing
bits, and is guaranteed to be a 2−c−1-additive approximation of e∆a1/a2. Therefore,
min{γ′, 2d − 2−c} is a 2−c−1-additive approximation of min{e∆a1/a2, 2d − 2−c},
and rounding to the nearest integer multiple of 2−c incurs an additional additive
error of at most 2−c−1, so |γ −min{e∆a1/a2, 2d − 2−c}| ⩽ 2−c. □
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As a corollary we obtain another algorithm, GreaterOrEqual in Algorithm 13.2,
which allows us to compare two numbers of the form aey. Note that the com-
parisons cannot be exact, since we cannot compute these numbers explicitly. We
therefore allow our algorithm to return an “incorrect” result if two numbers of
this form are (multiplicatively) close, which suffices for the purposes of our later
algorithms.

Algorithm 13.2: GreaterOrEqual(a1,a2,y1,y2,b,b1,b2, c)
Input: Access to non-negative numbers a1,a2 ∈ [0, 1 − 2−b]with entries

encoded in (0,b) fixed-point format, numbers y1,y2 ∈ R encoded in
(b1,b2) fixed-point format, a natural number c ⩾ 1

Output: A boolean.
Analysis: Corollary 13.3.7

1 if (a1,y1) = (a2,y2) then return True;
2 γ← RelativeEntryAdditiveApprox (a1,a2,y1,y2,b,b1,b2, c, 1) encoded

in (1, c) fixed-point format;
3 return True if γ ⩾ 1; and False if γ < 1;

Corollary 13.3.7. Algorithm 13.2 returns True whenever ey1−y2a1/a2 ⩾ 1 + 2−c or
(a1,y1) = (a2,y2), and False if ey1−y2a1/a2 ⩽ 1 − 2−c, and runs in time polynomial in
b,b1,b2, c. Here we use the convention that a1/a2 = ∞ whenever a1 ≠ 0 = a2.

Proof of Theorem 13.3.2

In this section we analyze a quantum implementation of LogSumExp, and prove
Theorem 13.3.2. The following lemma about converting rational numbers to
fixed-point format will be useful.

Lemma 13.3.8. Let a ∈ [0, 1]n with smallest non-zero entry at least µ > 0, and let
r ∈ R be such that µ < r ⩽ 1. For δ > 0, let b = ⌈log2(1/(δµ)) + 2⌉ and let âj be a
(0,b)-fixed-point encoding of aj. Then for every y ∈ Rn we have|︁|︁|︁|︁|︁ln

(︄
n∑︂
j=1
âje

yj

)︄
− ln

(︄
n∑︂
j=1
aje

yj

)︄|︁|︁|︁|︁|︁ ⩽ δ4.

Proof. We show that the converting a from rational to fixed-point format by
rounding up to the nearest integer multiple of 2−b does not change the logarithm
of the sum of ajeyj by much. For every j ∈ [n], the fixed-point encoding âj of aj
is guaranteed to be a δµ

8 -additive approximation of aj, which is zero if and only
if aj = 0. Since the non-zero entries of a are lower bounded by µ, we know that
âj is a (1 ± δ

8 )-multiplicative approximation of aj for every j ∈ [n]. In particular,
this shows that

∑︁n
j=1 âje

yj is a (1 ± δ
8 )-multiplicative approximation of

∑︁n
j=1 aje

yj .
This multiplicative error implies the following additive error|︁|︁|︁|︁|︁ln

(︄
n∑︂
j=1
âje

yj

)︄
− ln

(︄
n∑︂
j=1
aje

yj

)︄|︁|︁|︁|︁|︁ ⩽ ln(1 + δ8) ⩽
δ

4

where the last inequality uses the bound |ln(1 + z)| ⩽ 2|z| for z ∈ [−1/2, 1/2]. □
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13. Matrix scaling and matrix balancing

Next we discuss our quantum implementation of LogSumExp, which is given in
Algorithm 13.3, and prove Theorem 13.3.2, which we restate for convenience.

Algorithm 13.3: Quantum implementation of LogSumExp(a, r,y, δ,b1,b2,η,µ)
Input: Query access to rational a ∈ [0, 1]n, rational r ∈ (0, 1], query access

to y ∈ Rn encoded in (b1,b2)-fixed-point format, precision δ ∈ (0, 1],
failure probability η ∈ (0, 1], lower bound µ > 0 on the non-zero
entries of a.

Output: A number x encoded in (b1,b2)-fixed-point format.
Analysis: Theorem 13.3.2

1 set b = ⌈log2(1/(δµ)) + 2⌉ and replace the query access to a by a unitary
which maps j to aj, encoded in (0,b) fixed-point format;

2 replace r by the encoding of r in (0, ⌈log2(1/(rδ)) + 2⌉) fixed-point format;
3 set δ′ = δ/2;
4 set c = ⌈log2(n/δ′)⌉ + 6;
5 find with quantum max-finding (Theorem 11.2.6) a j∗ such that
eyj−yj∗aj/aj∗ ⩽ 3/2 for all j ∈ [n], using
GreaterOrEqual(ai,aj,yi,yj,b,b1,b2, 1) for comparison, with failure
probability η/2;

6 let Uv give query access to the vector v with entries
vj =

1
2 RelativeEntryAdditiveApprox(aj,aj∗ ,yj,yj∗ ,b,b1,b2, c, 1);

7 use ApproxSum (Corollary 12.4.4) with Uv to compute S′ =
∑︁n

j=1 vj in
(⌈log2(n)⌉ + 1, c + 1) fixed-point format, with λ = 6, failure probability η/2
and multiplicative error δ′/32;

8 compute estimate α ⩾ 0 of ln(2S′) in (⌈log2(log2(n) + 2)⌉, ⌈log2(1/δ′) + 3⌉)
fixed-point format;

9 compute estimate β of ln(r) in (2⌈|log2 r|⌉, ⌈log2(1/δ′) + 3⌉) fixed-point
format;

10 compute estimate γ of ln(aj∗) in (⌈log2(ln(1/µ) + 1)⌉, ⌈log2(1/δ′) + 3⌉)
fixed-point format;

11 return yj∗ + γ + α − β in (b1,b2) fixed-point format;

Theorem 13.3.2 (Approximate LogSumExp). There is a quantum algorithm that
implements the subroutine LogSumExp using O(

√︁
n
δ log( 1

η)) queries and ˜︁O(√︁n
δ log( 1

η))
other gates. The ˜︁O-notation hides polynomial factors in b1, b2, and the encoding length
of a, as well as polylogarithmic factors in n, 1/δ, 1/µ, 1/r.
Proof. We analyze Algorithm 13.3. The details for rounding the input vector a
to fixed-point format are dealt with in Lemma 13.3.8, from now on we assume
that each aj is encoded in (0,b)-fixed-point format. Assume an index j∗ as stated
in Line 5 of the algorithm is indeed found. For each j ∈ [n], let ξj be what
would be the classical result of the j-th call to RelativeEntryAdditiveApprox on
Line 6 in Algorithm 13.3. Note that in the algorithm, such calls are not made
individually but in superposition by ApproxSum; however, the ξj are well-defined,
as RelativeEntryAdditiveApprox is a deterministic subroutine. Then for all
j ∈ [n], ξj satisfies

|ξj − eyj−yj∗aj/aj∗ | ⩽
δ′

64n , (13.3.2)
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13.3. Quantum subroutines for matrix scaling and balancing

as c ⩾ log2(n/δ′) + 6 and eyj−yj∗aj/aj∗ ⩽ 21 − 2−c. For convenience, we write
χj = e

yj−yj∗aj/aj∗ . The number S′ returned by quantum approximate summing
satisfies

S′ ∈
[︃
1 − δ

′

32, 1 + δ
′

32

]︃
·

n∑︂
j=1

1
2ξj,

so in particular, 2S′ satisfies

2S′ ∈
[︄(︃

1 − δ
′

32

)︃ n∑︂
j=1

(︃
χj −

δ′

64n

)︃
,
(︃
1 + δ

′

32

)︃ n∑︂
j=1

(︃
χj +

δ′

64n

)︃]︄
by Eq. (13.3.2). Note that

∑︁n
j=1(χj − δ′/(64n)) is non-negative, since every χj is

non-negative, χj∗ ⩾ 1 and δ′ ⩽ 1. This implies that

ln(2S′) ⩾ ln
(︃
1 − δ

′

32

)︃
+ ln

(︄
n∑︂
j=1

(︃
χj −

δ′

64n

)︃)︄
⩾ − δ

′

16 + ln

(︄
n∑︂
j=1
χj

)︄
+ ln

(︄
1 − δ′

64
∑︁n

j=1 χj

)︄
⩾ − δ

′

16 + ln

(︄
n∑︂
j=1
χj

)︄
+ ln

(︃
1 − δ

′

64

)︃
⩾ − δ

′

16 + ln

(︄
n∑︂
j=1
χj

)︄
− δ

′

32

where we have used
∑︁n

j=1 χj ⩾ χj∗ = 1 in the second inequality, and ln(1− z) ⩾ −2z
for z ∈ [0, 1/2] in the first and third inequality. A similar computation shows that

ln(2S′) ⩽ ln

(︄
n∑︂
j=1
χj

)︄
+ δ

′

16 +
δ′

32.

To summarize, this shows that|︁|︁|︁|︁|︁ln(2S′) − ln

(︄
n∑︂
j=1
χj

)︄|︁|︁|︁|︁|︁ ⩽ δ′16 +
δ′

32.

Next, since α ⩾ 0 is an estimate of ln(2S′) with ⌈log2(1/δ′) + 3⌉ bits of precision,
we get |︁|︁|︁|︁|︁α − ln

(︄
n∑︂
j=1
χj

)︄|︁|︁|︁|︁|︁ ⩽ |α − ln(2S′)| + δ
′

8 ⩽
δ′

4 .

As we also have
|β − ln(r)| ⩽ δ

′

8 , |γ − ln(aj∗)| ⩽
δ′

8 ,

we get |︁|︁|︁|︁|︁β − (yj∗ + γ + α) − ln

(︄
r/

n∑︂
j=1
aje

yj

)︄|︁|︁|︁|︁|︁ ⩽ δ′2 .
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13. Matrix scaling and matrix balancing

Truncating the quantity β − (yj∗ + γ + α) to b2 ⩾ ⌈log2(1/δ′)⌉ bits introduces an
additional error of at most δ′

2 , so the returned result is a δ′-additive approximation
of ln(

∑︁n
j=1 aje

yj/r).
For the time complexity statement, note that the expensive operations are

finding the maximum of the ξj and approximating the sum of the ξj. The
maximum-finding subroutine returns a correct j∗ with failure probability at most
η in time ˜︁O(√n log( 1

η)), see Theorem 11.2.6. Approximating the sum can be
done in time ˜︁O(√︁n

δ log( 1
η)) by Corollary 12.4.4. The other (arithmetic) operations

can be implemented in time polynomial in b1,b2,b, the encoding length of
a, and polylogarithmic in n, 1/η, 1/µ, 1/δ and 1/r, yielding the desired time
complexity. □

Proof of Theorem 13.3.3

In this subsection, we describe how to implement the subroutine TestScaling, see
Algorithm 13.4.

Algorithm 13.4: Implementation of TestScaling(A, r, c, x,y, δ,b1,b2,η,µ)
Input: Query access to rational A ∈ [0, 1]n×n with ∥A∥1 ⩽ 1, rational

r, c ∈ (0, 1]n with ∥r∥1 = ∥c∥1 = 1, query access to x,y ∈ Rn

encoded in (b1,b2)-fixed-point format, precision δ ∈ (0, 1], desired
failure probability η ∈ [0, 1], lower bound µ > 0 on the non-zero
entries of A.

Output: True or False.
Analysis: Theorem 13.3.3

1 Compute
γ ∈ [(1 − δ/80)min{∥A(x,y)∥1, 20}, (1 + δ/80)min{∥A(x,y)∥1, 20}]with
success probability ⩾ 1 − η/2; // See Lemma 13.3.9.

2 if γ ⩾ 10 then
3 return False;
4 end if
5 for ℓ ∈ [n] do
6 Compute aℓ = −xℓ − LogSumExp(Aℓ•, rℓ,y, δ/4,b1,b2 + 2,η/4n,µ);

// on success, aℓ is a δ
4 -additive approx. of ln(rℓ/rℓ(A(x,y)))

7 Compute bℓ = −yℓ − LogSumExp(A•ℓ, cℓ, x, δ/4,b1,b2 + 2,η/4n,µ);
// on success, bℓ is a δ

4 -additive approx. of ln(cℓ/cℓ(A(x,y)))
8 end for
9 return True if γ − 1 +

∑︁n
ℓ=1 rℓaℓ ⩽ 3δ/2 and γ − 1 +

∑︁n
ℓ=1 cℓbℓ ⩽ 3δ/2,

otherwise False;

The first step of TestScaling (Line 1) checks whether ∥A(x,y)∥1 is at most
a constant (here chosen to be 20); we discuss its quantum implementation in
Lemma 13.3.9. (A classical implementation would require time ˜︁O(m).) In the
remainder of the algorithm we use our quantum implementation of LogSumExp.

Lemma 13.3.9. Let A ∈ [0, 1]n×n with ∥A∥1 ⩽ 1 andm non-zero rational entries, each
at least µ > 0. Assume one is given quantum query access to A and (b1,b2)-fixed-point
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13.3. Quantum subroutines for matrix scaling and balancing

representations of x,y ∈ Rn. Then there exists a quantum algorithm which computes a
multiplicative (1 ± δ)-approximation of min{∥A(x,y)∥1, 20}, with success probability
⩾ 2/3, using ˜︁O(√︁m

δ ) queries and a similar number of other operations, where the ˜︁O(·)
hides polylogarithmic factors in n, 1/δ, and polynomial factors in b1,b2 and the encoding
length of the entries of A.

Proof. We first compute the location of the largest entry ν > 0 of the matrix
A(x,y) using the subroutine GreaterOrEqual. Quantumly, this can be done in
time ˜︁O(√m) with quantum maximum-finding Theorem 11.2.6, using Relative-
EntryAdditiveApprox for comparisons.

We then proceed as in the implementation of LogSumExp; we use Relative-
EntryAdditiveApprox and approximate summing. This gives us anO(δ)-additive
approximation of ln(∥A(x,y)∥1/ν) + ln(ν) = ln(∥A(x,y)∥1). We can use this to
determine whether ∥A(x,y)∥1 is at most 20 or at least 15. In the latter case we
can use the O(δ)-additive approximation of ln(∥A(x,y)∥1) to give a multiplicative
(1 ± δ)-approximation of min{∥A(x,y)∥1, 20}. In the former case, we can effi-
ciently exponentiate an O(δ)-additive approximation of ln(∥A(x,y)∥1) to obtain a
multiplicative approximation of ∥A(x,y)∥1 since we have an upper bound on its
value.

Note that the above has avoided computing the largest entry ν in A(x,y)
explicitly. This is important since ν may be exponentially large in n. We can,
however, compute ln(ν) efficiently since it is the logarithm of an entry of A plus
the corresponding coordinates of x and y.

Finally, note that (by Lemma 13.3.6 and Corollary 12.4.4) the multiplicative
(1 ± O(δ))-approximation of ∥A(x,y)∥1/ν can be computed in time ˜︁O(√︁m/δ)
quantumly. □

We now analyze Algorithm 13.4 to prove Theorem 13.3.3, restated here for
convenience.

Theorem 13.3.3 (TestScaling). The subroutine TestScaling can be implemented using
one call to a subroutine for obtaining a multiplicative estimate of the sum of all matrix
entries and 2n calls to LogSumExp. Accordingly, there is a quantum algorithm that
implements TestScaling using ˜︁O(√︁mn/δ log(1/η)) queries and other gates, where the˜︁O(·) hides polynomial factors in b1 and b2, and polylogarithmic factors in n,m, and δ.

Proof. First observe that the choices of b1 and b2 are assumed to be such that the
assumptions for every call to LogSumExp are satisfied. We use Lemma 13.3.9 to
implement Line 1 with success probability ⩾ 1 − η/2 so that γ is a (1 ± δ/80)-
multiplicative approximation of min{∥A(x,y)∥1, 20}. Next, note that each call to
LogSumExp succeeds with probability at least 1− η

4n , so the probability of everything
succeeding is at least 1 − η by a union bound. Recall that

D(r∥r(A(x,y))) =
n∑︂
i=1
ρ(ri∥ri(A(x,y))) =

n∑︂
i=1
(ri(A(x,y)) − ri + ri ln( ri

ri(A(x,y))))

= ∥A(x,y)∥1 − 1 +
n∑︂
i=1
ri ln

(︃
ri

ri(A(x,y))

)︃
.
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Therefore, we may estimateD(r∥r(A(x,y))) to additive precision δ/2 by estimating
∥A(x,y)∥1 and

∑︁n
i=1 ri ln( ri

ri(A(x,y))) to additive precision δ/4. Since ∥A(x,y)∥1 ⩽
20, obtaining a (1 ± δ/80)-multiplicative approximation of ∥A(x,y)∥1 suffices to
estimate it up to an additive error δ/4. We can now distinguish two cases:

(i) If γ > 10 ⩾ 5/(1 − δ/80), then we can conclude that (x,y) does not form a
δ-relative-entropy-scaling of A to (r, c). Indeed, a generalized version of
Pinsker’s inequality provided in Lemma 13.2.1 shows that if ∥r(A(x,y))∥1 ⩾ 5,
then D(r∥r(A(x,y))) ⩾ (1 − ln 2) · 4 > 1 ⩾ δ.10

(ii) If γ ⩽ 10, then ∥A(x,y)∥1 ⩽ 10(1 + δ/80) ⩽ 15 and a multiplicative (1 ±
δ/80)-approximation of ∥A(x,y)∥1 thus forms an additive 15δ/80 ⩽ δ/4-
approximation of ∥A(x,y)∥1.

Finally, to estimate the last term, note that an additive δ/4-approximation of
ln(ri(A(x,y))/ri) (the output of LogSumExp) for each i ∈ [n] leads to an approx-
imation of

∑︁n
i=1 ri ln( ri

ri(A(x,y))) with additive error at most
∑︁n

i=1 riδ/4 = δ/4.
Therefore, the quantity γ − 1 +

∑︁n
ℓ=1 rℓaℓ computed in TestScaling is a δ/2-

additive approximation of D(r∥r(A(x,y))). If D(r∥r(A(x,y))) ⩽ δ, then the
approximation is at most 3δ/2, and the condition evaluates to True. Similarly, if
D(r∥r(A(x,y))) ⩾ 2δ, then the approximation is at least 3δ/2, and the condition
evaluates to False. Note that if the approximation is exactly 3δ/2, then either
return value is acceptable. We can compute a δ/2-additive approximation of
D(c∥c(A(x,y))) in the same manner, showing that our implementation satisfies
the requirements.

Finally, for the time complexity of TestScaling, note that each call to LogSumExp
takes time ˜︁O(√︁sℓ/δ) where sℓ is the number of potentially non-zero entries of the
ℓ-th row or column (and we suppress a polylogarithmic dependence on n). Since
we call LogSumExp once for each row and column and the square-root is a concave
function, we thus obtain a time complexity of ˜︁O(√︁mn/δ) for TestScaling. □

A similar proof argument leads to the following proposition.

Proposition 13.3.4 (TestBalancing). Let A ∈ [0, 1]n×n be a rational matrix with zeroes
on the diagonal, each row and column containing at least one non-zero element and
all non-zero entries at least µ > 0. Let δ,η ∈ (0, 1) be rational numbers. Then there
exists an algorithm TestBalancing that when given query access to x ∈ Rn encoded
in (b1,b2)-fixed-point-format and η, δ as input, determines with success probability ⩾ 1−η
whether A(x) is δ-H2-balanced, and uses ˜︁O(√︁mn/δ log(1/η)) queries and other gates,
where the ˜︁O(·) hides polynomial factors in b1 and b2, and polylogarithmic factors in n,m,
and δ.

Proof. The only change compared to TestScaling is understanding the error one
occurs in estimating the squared Hellinger distance via (1 ± ε)-multiplicative
10Note that naively applying Pinsker’s inequality implies that whenever D(r∥r(A(x,y))) ⩽ δ then

also ∥r − r(A(x,y))∥1 = O(
√
δ), which would indeed imply that ∥r(A(x,y))∥1 = O(1) for all

δ ⩽ 1. However, we may only apply Pinsker’s inequality to probability distributions, which
r(A(x,y)) need not be. In Lemma 13.2.1 we show a generalized version of Pinsker’s inequality
that says thatD(r∥r(A(x,y))) ⩾ ∥r − r(A(x,y))∥1 − ln(1 + ∥r − r(A(x,y))∥1) (the latter is lower
bounded by ∥·∥21/4 on [0, 1] and by (1 − ln 2)∥·∥1 on [1,∞)).
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estimates r̃i, c̃i of the i-th row- and column marginals of A(x), and deducing a
suitable ε. Observe that

H(r, c)2 =
∑︂
i

(√ri −
√
ci)2

=
∑︂
i

ri + ci − 2
√
rici

⩽
∑︂
i

r̃i/(1 − ε) + c̃i/(1 − ε) − 2
√
r̃ic̃i(1 + ε)

=
∑︂
i

(︂
(r̃i + c̃i) − 2

√
r̃ic̃i

)︂
/(1 − ε) − 2

√
r̃ic̃i(1 + ε − 1/(1 − ε))

⩽
∑︂
i

(︂
(r̃i + c̃i) − 2

√
r̃ic̃i

)︂
/(1 − ε) − 2(r̃i + c̃i)(1 + ε − 1/(1 − ε)).

For ε ⩽ 1
2 one has the estimate −(1 + ε − 1/(1 − ε)) ⩽ ε, and so we get H(r, c)2 ⩽

H(r̃, c̃)2/(1 − ε) + 2ε(∥r̃∥1 + ∥c̃∥1). This estimate implies that we can guar-
antee H(r, c)2 ⩽ δ∥A(x)∥1 by computing H(r̃, c̃)2, ∥r̃∥1 and ∥c̃∥1 and verify-
ing that H(r̃, c̃)2/(1 − ε) + 2ε(∥r̃∥1 + ∥c̃∥1) ⩽ δ∥A(x)∥1, for which it suffices to
take ε = Θ(δ). Similarly, ε = Θ(δ) and an argument as above will also suffice to
establish an inequality of the form H(r, c)2 ⩾ δ∥A(x)∥1, i.e., this method allows
one to certify that the matrix is far from balanced. □
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14. Quantum Sinkhorn and Osborne
algorithms

In this chapter we present quantum algorithms for matrix scaling and balancing
that are based on the well-known and natural Sinkhorn and Osborne algorithms.
They can be thought of as first-order alternating minimization algorithms. In
Section 14.1 we start by discussing a quantum version of Sinkhorn’s algorithm
for matrix scaling, which we analyze in detail. We then describe two important
variations: In Section 14.2, we give an improved analysis which shows that fewer
iterations are required when scaling matrices that are entrywise positive, and
in Section 14.3, we describe a quantum version of a randomized variant of the
Sinkhorn algorithm, which has been of recent interest given its good performance
in practice (but is more difficult to analyze in the quantum setting). Finally, in
Section 14.4 we discuss a quantum version of a randomized variant of the Osborne
algorithm for matrix balancing by drawing on similar ideas.

14.1. Quantum Sinkhorn algorithm
In this section we state Algorithm 14.1, a variant of the well-known Sinkhorn
algorithm, and provide its analysis. The objective of Sinkhorn’s algorithm is to
find scaling vectors x,y ∈ Rn such that the matrix A(x,y) = (Aije

xi+yj)i,j∈[n] has
row and column marginals r and c, respectively. It does so in an iterative way.
Starting from the rational matrix A ∈ [0, 1]n×n, it finds a vector x such that the row
marginals of (Aije

xi) are r, and then it finds a y such that the column marginals of
A(x,y) are c. The second step may have changed the row marginals, so we repeat
the procedure. We can view this as updating the coordinates of x and y one at a
time, starting from the all-0 vectors. To update the row scaling vectors, we wish to
find x′ = x +∆ such that

r(A(x′,y)) = r.

Expanding the above equation yields

e∆ℓ · rℓ(A(x,y)) = rℓ,

for ℓ ∈ [n]. Since we assume every row and column contains at least one non-zero
entry, the above equation has a unique solution, resulting in the following formula:

x′ℓ = xℓ + ∆ℓ = xℓ + ln
(︃

rℓ

rℓ(A(x,y))

)︃
= ln

(︄
rℓ∑︁n

j=1Aℓjeyj

)︄
. (14.1.1)

This chapter is adapted from [AGL+21].
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Analogously, we can achieve that c(A(x,y′)) = c if we instead update y′ = y +∆,
where

y′ℓ = yℓ + ∆ℓ = yℓ + ln
(︃

cℓ

cℓ(A(x,y))

)︃
= ln

(︃
cℓ∑︁n

i=1Aiℓexi

)︃
. (14.1.2)

We use the term “one Sinkhorn iteration” to refer to the process of updating all n
row scaling vectors, or updating all n column scaling vectors.

We study a version of Sinkhorn’s algorithm where, instead of computing row and
column marginals in each iteration exactly, we use a multiplicative approximation
of the marginals to compute δ-additive approximations of Eqs. (14.1.1) and (14.1.2).
In the classical literature, the approximation errors can be chosen to be very small,
since the cost per iteration scales as polylog(1/δ), and hence that error is essentially
a minor technical detail. In the quantum setting, we can obtain a better dependence
in terms of n at the cost of allowing for a poly(1/δ)-dependence. Therefore, in the
analysis below we pay particular attention to the required precision δ. We state
the Sinkhorn algorithm in terms of the two subroutines described in Section 13.3.
For both subroutines we provided both classical and quantum implementations.
For the analysis of Algorithm 14.1, we only use the guarantees of the subroutines
as stated, and do not refer to their actual implementation.

The first subroutine we use is LogSumExp, which is used to update the scaling
vectors. In odd iterations we update the row scaling vector x according to
Eq. (14.1.1), while in even iterations we update the column scaling factors y
according to Eq. (14.1.2) – in both cases with additive precision δ assuming the
subroutine does not fail. The second subroutine is TestScaling, which tests
whether scaling vectors (x,y) yield a relative entropy scaling of the desired
precision. Both of these subroutines have a precision parameter and an upper
bound on their failure probability. Note that allowing for the possibility of failure
is essential since the quantum implementation of the subroutines is inherently
probabilistic.

The Sinkhorn algorithm thus has a number of tunable parameters. We provide an
upper bound T on the number of Sinkhorn iterations to be performed, and a choice
of fixed-point format (b1,b2), which is used for storing each entry of the scaling
vectors (x,y). Apart from that, we use two precision parameters δ, δ′ ∈ (0, 1), one
for each subroutine used in the algorithm, and a failure probability η ∈ [0, 1] for
each individual subroutine call. In Proposition 14.1.7 we show how to choose these
parameters for Algorithm 14.1 such that the output (x,y) ∈ Rn ×Rn forms an
ε-relative-entropy-scaling of A to (r, c) with probability at least 2/3. The resulting
time complexity for running the algorithm with these parameters gives us our
main result of this section, Theorem 14.1.8, where we use results from Section 13.3
for the cost of implementing LogSumExp and TestScaling. Note that the error as
measured in relative entropy can be converted to ℓ1-error using (a generalization
of) Pinsker’s inequality (cf. Lemma 13.2.1).
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Algorithm 14.1: Full Sinkhorn with finite precision and failure probability
Input: Query access to A ∈ [0, 1]n×n with ∥A∥1 ⩽ 1 and non-zero entries at

least µ > 0, target marginals r, c ∈ (0, 1]n with ∥r∥1 = ∥c∥1 = 1,
iteration count T ∈ N, bit counts b1,b2 ∈ N, estimation
precision 0 < δ < 1, test precision 0 < δ′ < 1 and subroutine failure
probability η ∈ [0, 1]

Output: Vectors x,y ∈ Rn with entries encoded in (b1,b2) fixed-point
format

Analysis: Theorems 14.1.8 and 14.2.5 and Corollaries 14.1.9 and 14.2.6
1 x(0),y(0)← 0; // entries in (b1,b2) fixed-point format

2 for t← 1, 2, . . . , T do
3 if t is odd then
4 for ℓ← 1, 2, . . . ,n do
5 x

(t)
ℓ
← −LogSumExp(Aℓ•, rℓ,y(t−1), δ,b1,b2,η,µ);

6 end for
7 y(t)← y(t−1);
8 else if t is even then
9 for ℓ← 1, 2, . . . ,n do

10 y
(t)
ℓ
← −LogSumExp(A•ℓ, cℓ, x(t−1), δ,b1,b2,η,µ);

11 end for
12 x(t)← x(t−1);
13 end if
14 if TestScaling(A, r, c, x(t),y(t), δ′,b1,b2,η,µ) then
15 return (x(t),y(t));
16 end if
17 end for
18 return (x(T ),y(T ));

14.1.1. The potential for matrix scaling
The analysis will be based on a potential argument, using the following convex
function (already mentioned in the introduction) as potential:

f(x,y) =
n∑︂

i,j=1
Aije

xi+yj −
n∑︂
i=1
rixi −

n∑︂
j=1
cjyj.

This potential function is often used in the context of matrix scaling, as its gradient
is precisely the difference between the current and the desired marginals (as we
mentioned in Section 13.1). Many of the more sophisticated algorithms for matrix
scaling also try to minimize this function directly, see Chapter 15. For our purposes,
we first state a bound on the potential gap f(0, 0) − infx,y∈Rn f(x,y), proven by
relating it to the (shifted) Kempf–Ness function as in Chapters 2 and 5. For matrices
A that are exactly (r, c)-scalable, this bound is well-known (see e.g. [KLRS07; CK21]),
but to the best of our knowledge, it has not yet appeared in the literature when A
is only assumed to be asymptotically scalable to (r, c).

299



14. Quantum Sinkhorn and Osborne algorithms

Theorem 14.1.1. Let A ∈ Rn×n
⩾0 be a non-zero matrix with non-negative entries, and let

r, c ∈ Rn
⩾0 such that ∥r∥1 = ∥c∥1 = 1. Then the following statements are equivalent:

(i) The function f : Rn ×Rn→ R given by

f(x,y) =
n∑︂

i,j=1
Aije

xi+yj − ⟨r, x⟩ − ⟨c,y⟩

is bounded from below.

(ii) The function F : Rn ×Rn→ R given by

F(x,y) = ln
(︂ n∑︂
i,j=1

Aije
xi+yj

)︂
− ⟨r, x⟩ − ⟨c,y⟩

is bounded from below.

(iii) The matrix A is asymptotically (r, c)-scalable.

(iv) The point (r, c) is in the convex hull of the set

Ω = {ωij = (ei,ej) : Aij > 0} ⊆ Rn ×Rn.

Furthermore, if any of these conditions hold, then

f(0, 0) − inf
x,y∈Rn

f(x,y) ⩽ ∥A∥1 − 1 + ln(1/µ) (14.1.3)

where µ is the smallest non-zero entry of A.

Proof. The equivalence of (ii), (iii) and (iv) follows directly from Proposition 5.1.2.
It remains to establish the equivalence between (i) and (ii), and Eq. (14.1.3).

First, we claim that for any x,y ∈ Rn, we have the equality

min
t∈R

f(x + t1,y) = 1 + F(x,y).

Consider the function g : R→ R given by g(t) = f(x + t1,y). Then

g(t) =
n∑︂

i,j=1
Aije

xi+yj+t − ⟨r, x⟩ − t⟨r, 1⟩ − ⟨c,y⟩

=

(︄
n∑︂

i,j=1
Aije

xi+yj

)︄
et − ⟨r, x⟩ − ⟨c,y⟩ − t

since ⟨r, 1⟩ = ∥r∥1 = 1. From this expression, it is clear that g(t) is strictly convex,
and attains its minimum at t∗ ∈ R such that

g′(t∗) =
(︄

n∑︂
i,j=1

Aije
xi+yj

)︄
et
∗ − 1 = 0,
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i.e.,

t∗ = − ln

(︄
n∑︂

i,j=1
Aije

xi+yj

)︄
.

Consequently, we see that

min
t∈R

g(t) = g(t∗) = 1 − ⟨r, x⟩ − ⟨c,y⟩ + ln

(︄
n∑︂

i,j=1
Aije

xi+yj

)︄
= 1 + F(x,y)

as desired.
To establish the potential bound, we observe that

f(0, 0) − inf
(x,y)

f(x,y) = ∥A∥1 − inf
(x,y)
(1 + F(x,y))

= ∥A∥1 − 1 − inf
(x,y)

F(x,y)

⩽ ∥A∥1 − 1 − ln(µ)
= ∥A∥1 − 1 + ln(1/µ),

where the first equality follows from the above claim and the inequality follows
from Proposition 5.1.2. □

14.1.2. Bounding the number of iterations
One can show that, for a Sinkhorn iteration in which we update the rows exactly,
i.e., x̂ℓ = ln(rℓ/

∑︁n
j=1Aℓje

yj) for ℓ ∈ [n], the potential decreases by exactly the
relative entropy:

f(x,y) − f(x̂,y) = D(r∥r(A(x,y))), (14.1.4)

and similarly for exact column updates. The next lemma generalizes this to allow
for error in the update; it shows that we can lower bound the decrease of the
potential function in every iteration in terms of the relative entropy between the
target marginal and the current marginal, under the assumption that every call to
the subroutine LogSumExp succeeds.

Lemma 14.1.2. Let A ∈ Rn×n
⩾0 , let x,y ∈ Rn, let δ ∈ [0, 1], and let x̂ ∈ Rn be a vector

such that for every ℓ ∈ [n], we have |x̂ℓ − ln(rℓ/
∑︁n

j=1Aℓje
yj)| ⩽ δ. Then

f(x,y) − f(x̂,y) ⩾ D
(︁
r
∥︁∥︁r(A(x,y))

)︁
− 2δ.

A similar statement holds for an update of y (using c instead of r in the relative entropy).

Proof. We first note that we have the equalities

f(x,y) − f(x̂,y) =
n∑︂

ℓ,j=1
Aℓje

xℓ+yj −
n∑︂

ℓ,j=1
Aℓje

x̂ℓ+yj −
n∑︂
i=1
ri · (xi − x̂i)

=

n∑︂
ℓ=1
(rℓ(A(x,y)) − rℓ(A(x̂,y)) − rℓ · (xℓ − x̂ℓ))
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Denote zℓ = x̂ℓ − ln(rℓ/
∑︁n

j=1Aℓje
yj), so that |zℓ | ⩽ δ. Note that

rℓ(A(x̂,y)) = ex̂ℓ

n∑︂
j=1
Aℓje

yj = rℓe
zℓ .

Furthermore, we also have

xℓ − x̂ℓ = ln( 1
rℓ

n∑︂
j=1
Aℓ,je

xℓ+yj) − zℓ = − ln( rℓ
rℓ(A(x,y))) − zℓ.

Therefore we can rewrite

rℓ(A(x,y)) − rℓ(A(x̂,y)) − rℓ · (xℓ− x̂ℓ) = rℓ(A(x,y)) − rℓ(ezℓ − zℓ) + rℓ ln( rℓ
rℓ(A(x,y))).

For z ∈ [−1, 1] one can easily show that ez − z ⩽ 1 + 2|z|, and so

rℓ(A(x,y)) − rℓ(ezℓ − zℓ) + rℓ ln( rℓ
rℓ(A(x,y)))

⩾ rℓ(A(x,y)) − rℓ − 2rℓ |zℓ | + rℓ ln( rℓ
rℓ(A(x,y)))

= ρ(rℓ∥rℓ(A(x,y))) − 2rℓ |zℓ |,

so that we may conclude

f(x,y) − f(x̂,y) ⩾ D(r∥r(A(x,y))) − 2
n∑︂
ℓ=1
rℓ |zℓ | ⩾ D(r∥r(A(x,y))) − 2δ

since |zℓ | ⩽ δ for every ℓ ∈ [n], and ∥r∥1 = 1. □

14.1.3. Controlling the bit complexity
The previous lemma showed that updating the scaling vectors with additive
precision δ suffices to make progress in minimizing the potential function f, as long
as we are still far away from the desired marginals (in relative entropy distance). As
we wish to store the entries of x and y with additive precision δ > 0 using a (b1,b2)
fixed-point format, we need b2 ⩾ ⌈log2(1/δ)⌉. The guarantees of LogSumExp and
TestScaling assert that this choice of b2 is also sufficient. Lemma 14.1.4 shows
how large we need to take b1 to ensure that the requirements of LogSumExp and
TestScaling are satisfied in any particular iteration.

Remark 14.1.3. Note that the algorithm returns as soon as TestScaling returns True,
or after T iterations. However, for the sake of simplifying the analysis, we always assume
that x(t) and y(t) are defined for t = 0, . . . , T .

Lemma 14.1.4 (Bounding the scalings). LetA ∈ [0, 1]n×n with ∥A∥1 ⩽ 1 and non-zero
entries at least µ > 0. Let T ⩾ 1 and δ ∈ [0, 1]. Denote σ = max(|ln rmin |, |ln cmin |). Let
b2 = ⌈log2(1/δ)⌉ and choose b1 = ⌈log2(T ) + log2(ln( 1

µ) + 1 + σ)⌉. If for all t ∈ [T ] the
subroutine LogSumExp succeeds, then for all t ∈ [T ] and ℓ ∈ [n] we have|︁|︁|︁|︁|︁|︁ln ⎛⎜⎝ rℓ∑︁n

j=1Aℓje
y
(t)
j

⎞⎟⎠
|︁|︁|︁|︁|︁|︁ ⩽ 2b1 ,

|︁|︁|︁|︁|︁ln
(︄

cℓ∑︁n
i=1Aiℓe

x
(t)
i

)︄|︁|︁|︁|︁|︁ ⩽ 2b1
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and

∥(x(t),y(t))∥∞ ⩽ t
(︃
ln

(︃
1
µ

)︃
+ δ + σ

)︃
⩽ t

(︃
ln

(︃
1
µ

)︃
+ 1 + σ

)︃
.

Proof. We prove the norm bound by induction and the other claim as we go along.
The norm bound clearly holds at time t = 0. Now assume it holds at time t.
Assume that t + 1 is odd, so that we update the rows in iteration t + 1 (the case
when t + 1 is even follows similarly). For each ℓ ∈ [n], we bound x(t+1)

ℓ
. Note that,

by assumption, we have

δ ⩾

|︁|︁|︁|︁|︁|︁x(t+1)
ℓ
− ln ⎛⎜⎝ rℓ∑︁n

j=1Aℓje
y
(t)
j

⎞⎟⎠
|︁|︁|︁|︁|︁|︁ =

|︁|︁|︁|︁|︁x(t+1)
ℓ
− ln(rℓ) + ln

(︄
n∑︂
j=1
Aℓje

y
(t)
j

)︄|︁|︁|︁|︁|︁. (14.1.5)

Observe that

− ln

(︄
n∑︂
j=1
Aℓje

y
(t)
j

)︄
⩾ − ln

(︄
n∑︂
j=1
Aℓje

∥y(t)∥∞

)︄
= −∥y(t)∥∞ − ln

(︄
n∑︂
j=1
Aℓj

)︄
⩾ −∥y(t)∥∞,

where the last inequality uses
∑︁n

j=1Aℓj ⩽ ∥A∥1 ⩽ 1. Similarly, for the upper
bound, we have

− ln

(︄
n∑︂
j=1
Aℓje

y
(t)
j

)︄
⩽ − ln

(︄
n∑︂
j=1
Aℓje

−∥y(t)∥∞

)︄
⩽ ∥y(t)∥∞ − ln(µ)

where we used that all non-zero entries of A are at least µ, and every row contains
at least one non-zero entry. Note that these bounds together with the choice of b1
and the inductive assumption on ∥x(t)∥∞ and ∥y(t)∥∞ imply the first claim.

If we use these estimates in Eq. (14.1.5), we obtain

ln(rℓ) − ∥y(t)∥∞ − δ ⩽ x
(t+1)
ℓ

⩽ ∥y(t)∥∞ + ln(rℓ) + ln
(︃

1
µ

)︃
+ δ.

Since µ ⩽ 1 and rℓ ⩽ 1, this implies

|x(t+1)
ℓ
| ⩽ ∥y(t)∥∞ + ln

(︃
1
µ

)︃
+ |ln(rℓ)| + δ.

This shows that ∥x(t+1)∥∞ ⩽ ∥y(t)∥∞ + ln( 1
µ) + |ln(rmin)| + δ. The case that we

updated the columns in the (t+ 1)-st iteration is treated completely similarly. Thus,
we conclude that

∥(x(t+1),y(t+1))∥∞ ⩽ ∥(x(t),y(t))∥∞ + ln
(︃

1
µ

)︃
+ σ + δ.

By the induction hypothesis and δ ⩽ 1, the desired upper bound holds at time
t + 1, and it suffices to use b1 bits in any iteration to meet the requirements of
LogSumExp. □

303



14. Quantum Sinkhorn and Osborne algorithms

14.1.4. Analysis of quantum Sinkhorn
To formally analyze the expected progress it will be convenient to define the
following events.

Definition 14.1.5 (Important events). For t = 1, . . . , T , we define the following
events:

• Let St denote the event that all n calls to LogSumExp succeed in the t-th
iteration.

• Define S to be the intersection of the events St, i.e., S = ∩T
t=1St.

To give some intuition, we show below that the event S is the ‘good’ event where
a row-update makes the relative entropy between r and the updated row-marginals
at most δ (and similarly for the columns). We only use Lemma 14.1.6 in Section 14.2.

Lemma 14.1.6. If S holds and δ ⩽ 1, then the following holds for all t ∈ [T ]:

• If t is odd, then D(r∥r(A(x(t),y(t)))) ⩽ δ.

• If t is even, then D(c∥c(A(x(t),y(t)))) ⩽ δ.

Proof. If St holds and t is odd, then|︁|︁|︁|︁|︁|︁x(t)ℓ − ln ⎛⎜⎝ rℓ∑︁n
j=1Aℓje

y
(t−1)
j

⎞⎟⎠
|︁|︁|︁|︁|︁|︁ ⩽ δ

for all ℓ ∈ [n], while y(t) = y(t−1). Accordingly,

rℓ(A(x(t),y(t)))) = ex
(t)
ℓ

n∑︂
j=1
Aℓje

y
(t)
j ∈ [e−δrℓ, eδrℓ].

Since

ρ(rℓ∥rℓez) = rℓez − rℓ + rℓ ln
(︃
rℓ

rℓez

)︃
= rℓ (ez − 1 − z) ⩽ rℓ |z|

for any |z| ⩽ 1, we obtain

D(r∥r(A(x(t),y(t)))) =
n∑︂
ℓ=1
ρ(rℓ∥rℓ(A(x(t),y(t)))) ⩽

n∑︂
ℓ=1
rℓδ = δ,

again using ∥r∥1 = 1. A similar computation yields the result for even t. □

We can combine Theorem 14.1.1 and Lemma 14.1.2 to show Algorithm 14.1
returns, with high probability, an ε-relative-entropy-scaling to (r, c) by choosing
δ = O(ε).
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Proposition 14.1.7. Let A ∈ [0, 1]n×n with ∥A∥1 ⩽ 1 and non-zero entries at least
µ > 0 and let r, c ∈ (0, 1]n with ∥r∥1 = ∥c∥1 = 1. Assume A is asymptotically scalable
to (r, c). For ε ∈ (0, 1], choose

T =

⌈︃
8
ε

ln
(︃

1
µ

)︃⌉︃
+ 1,

δ = ε
16 , δ′ = ε

2 , η = 1
3(n+1)T , b2 = ⌈log2( 1δ)⌉, and b1 = ⌈log2(T ) + log2(ln( 1

µ) + σ + 1)⌉,
where σ = max(|ln rmin |, |ln cmin |). Then, Algorithm 14.1 with these parameters returns
a pair (x,y) such that D(r∥r(A(x,y))) ⩽ ε and D(c∥c(A(x,y))) ⩽ ε with probability
⩾ 2/3.

Proof. The choice of η is such that with probability at least 1 − (n + 1)Tη = 2/3,
the event S holds (i.e., all calls to LogSumExp succeed) and all calls to TestScaling
succeed. Assume this is the case. If there exists an iteration t ∈ [T ] for which
TestScaling outputs True, then we have obtained a 2δ′-relative-entropy-scaling of
A to (r, c), which is an ε-relative-entropy-scaling by the choice of δ′. We now bound
the number of iterations in which TestScaling can output False, i.e., the number
of iterations in which (x,y) is not a δ′-relative-entropy-scaling of A. Suppose that
τ ∈ [T ] is the last iteration such that TestScaling outputs False. By Theorem 14.1.1,
we have

f0 − fτ ⩽ ln
(︃

1
µ

)︃
,

which is positive since µ ⩽ 1. We now lower bound the left-hand side by a
telescoping sum: using Lemma 14.1.2 (and implicitly Lemma 14.1.4) we obtain

f0 − fτ =

τ∑︂
t=1
(ft−1 − ft) ⩾ 2τδ = ετ8

It follows that τ ⩽ 8 ln( 1
µ)/ε < T , so TestScaling must output True in the T -th

iteration at the latest. This concludes the proof. □

With the performance guarantees provided by Theorems 13.3.2 and 13.3.3 for
quantum implementations of LogSumExp and TestScaling, we can state the time
complexity of computing an ε-relative-entropy-scaling of A to marginals (r, c). We
now prove the main theorem of this section, already stated earlier and repeated
here for convenience.

Theorem 14.1.8. Let A ∈ [0, 1]n×n be a rational matrix with ∥A∥1 ⩽ 1 andm non-zero
entries, each at least µ > 0, let r, c ∈ (0, 1]n with ∥r∥1 = ∥c∥1 = 1, and let ε ∈ (0, 1].
Assume A is asymptotically scalable to (r, c). Then there exists a quantum algorithm
(Algorithm 14.1 with parameters chosen as in Proposition 14.1.7) that, given sparse query
access to A, with probability ⩾ 2/3, computes (x,y) ∈ Rn × Rn such that A(x,y) is
ε-relative-entropy-scaled to (r, c), for a total time complexity of ˜︁O(√mn/ε1.5).

Proof. We show that Algorithm 14.1 with parameters chosen as in Proposition 14.1.7
has the stated time complexity. Note that the cost of computing these parameters
from the input will be dominated by the runtime of the algorithm. Proposition 14.1.7
shows that Algorithm 14.1 runs for at most O(ln(1/µ)/ε) iterations. Next we show
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the time complexity per iteration is ˜︁O(√︁mn/ε), which implies the claimed total
time complexity of ˜︁O(√mn/ε1.5).

Theorem 13.3.2 shows that invoking LogSumExp with precision δ = Θ(ε) on
a row containing s potentially non-zero entries incurs a cost of order ˜︁O(√︁s/ε),
where we suppress a polylogarithmic dependence on n. Since in one iteration
of Algorithm 14.1 we apply LogSumExp once to each row or once to each column,
using Cauchy–Schwarz the total cost of the calls to LogSumExp in one iteration is

˜︁O(︄
n∑︂
i=1

√︂
sr
i
/ε +

n∑︂
j=1

√︂
sc
j
/ε

)︄
⊆ ˜︁O(︂√︁

mn/ε
)︂
,

where we recall that sr
i

and sc
j

are the numbers of potentially non-zero entries
in the i-th row and j-th column of A, respectively, and m is the total number
of potentially non-zero entries in A (i.e.,

∑︁n
i=1 s

r
i
= m =

∑︁n
j=1 s

c
j
). Similarly,

Theorem 13.3.3 shows invoking TestScaling with precision δ′ = Θ(ε) incurs a
cost of order ˜︁O(√︁mn/ε). Finally we observe that compiling the quantum circuits
(and preparing their inputs) for the calls to LogSumExp and TestScaling can be
done with at most a polylogarithmic overhead. □

Note that the dependency on ln(1/µ) is suppressed by the ˜︁O(·), since we assume
that the numerator and denominator of any rational number in the input is bounded
above by a polynomial in n. Using a generalization of Pinsker’s inequality (cf.
Lemma 13.2.1), an ε-relative-entropy-scaling is a O(

√
ε)-ℓ1-scaling, which implies

the following:

Corollary 14.1.9. Let A ∈ [0, 1]n×n be a rational matrix with ∥A∥1 ⩽ 1 andm non-zero
entries, each at least µ > 0, let r, c ∈ (0, 1]n with ∥r∥1 = ∥c∥1 = 1, and let ε ∈ (0, 1].
Assume A is asymptotically scalable to (r, c). Then there exists a quantum algorithm that,
given sparse query access to A, with probability ⩾ 2/3, computes (x,y) ∈ Rn ×Rn such
that A(x,y) is ε-ℓ1-scaled to (r, c), at a total time complexity of ˜︁O(√mn/ε3).

In Chapter 16 we show that the complexity in terms of n and m is tight (up to
logarithmic factors): Ω(

√
mn) queries to the input are needed to solve the scaling

problem for constant ℓ1-error (by Pinsker’s inequality, the same lower bound is
then implied for relative-entropy scaling as well).

14.2. Improved analysis for entrywise-positive matrices
We now show that if the matrix A is entrywise positive, then the number of
iterations to obtain an ε-relative-entropy-scaling reduces from ˜︁O(1/ε) to ˜︁O(1/√ε),
leading to a quantum algorithm with time complexity ˜︁O(n1.5/ε). This also implies
that one can find an ε-ℓ1-scaling in time ˜︁O(n1.5/ε2). These results, which are
stated as Theorem 14.2.5 and Corollary 14.2.6, improve over Theorem 14.1.8
and Corollary 14.1.9. In this section, ˜︁O(·) always suppresses polylogarithmic
factors in n and 1/ε.

The argument follows [KLRS07], where a similar result was proved for ℓ2-scaling,
and [DGK18] where it is extended to ℓ1-scaling (but implicitly by bounding the
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relative entropy, as we do below). Our contribution is to show that their analyses
are robust with respect to only using estimates of marginals, and observing that
it extends to the relative-entropy setting. The key idea is the following: for
entrywise-positive matrices, the scaling vectors x,y produced by the Sinkhorn
algorithm each have variation norm (xmax − xmin) bounded by a constant, whereas
for arbitrary matrices we can only show a bound that is linear in the number of
iterations (Lemma 14.1.4). We state it below in Lemma 14.2.1. This is a variant
of [KLRS07, Lem. 6.2] This is also the only part of the improved analysis which
requires entrywise positivity of A.
Lemma 14.2.1. Let 0 < µ < ν ⩽ 1 and assume A ∈ [µ,ν]n×n and r ∈ Rn

>0 strictly
positive. Let y ∈ Rn, let δ ⩾ 0, and let x′ ∈ Rn be such that |x′

ℓ
− ln(rℓ/

∑︁n
j=1Aℓje

yj)| ⩽
δ for all ℓ ∈ [n]. Then

x′max − x′min ⩽ 2δ + ln ν
µ
+ ln rmax

rmin
.

An analogous statement holds for the column-scaling vectors after a column update. As a
consequence, if (x∗,y∗) ∈ Rn ×Rn is such that A(x∗,y∗) is exactly (r, c)-scaled, then

x∗max − x∗min ⩽ ln ν
µ
+ ln rmax

rmin
, y∗max − y∗min ⩽ ln ν

µ
+ ln cmax

cmin
.

In other words, the variation in the row-scaling vectors after a δ-approximate
Sinkhorn update is bounded above by 2δ plus a quantity depending only on A
and r.

Proof. For any ℓ ∈ [n], we have |x′
ℓ
− ln(rℓ/

∑︁n
j=1Aℓje

yj)| ⩽ δ. By using the upper
and lower bound on the entries of A, we obtain

ln

(︄
rmax

µ
∑︁n

j=1 e
yj

)︄
+ δ ⩾ ln

(︄
rℓ∑︁n

j=1Aℓjeyj

)︄
+ δ

⩾ x′ℓ ⩾ ln

(︄
rℓ∑︁n

j=1Aℓjeyj

)︄
− δ ⩾ ln

(︄
rmin

ν
∑︁n

j=1 e
yj

)︄
− δ.

Therefore, for any k, ℓ ∈ [n], we obtain

x′k − x′ℓ ⩽ ln

(︄
rmax

µ
∑︁n

j=1 e
yj

)︄
+ δ − ln

(︄
rmin

ν
∑︁n

j=1 e
yj

)︄
+ δ = 2δ + ln rmax

rmin
+ ln ν

µ

as desired.
Assume now that (x∗,y∗) exactly scale A to (r, c). Then an exact full Sinkhorn

update does not change the scaling vectors, so it holds that x∗
ℓ
= ln(rℓ/

∑︁n
j=1Aℓje

y∗
j)

for all ℓ ∈ [n]. We may thus apply the above obtained bound with δ = 0, which
provides the desired bound on the variation norm of x∗. The bound on the variation
norm of y∗ is proved completely analogously. □

Note that the above proof fails if A does not have full support; one can still
attempt to use an upper and lower bound on the non-zero entries of A, but the
support in the k-th and ℓ-th rows generally differ, so the corresponding (logarithms
of) sums of column-scaling vectors do not necessarily cancel.

The convexity of the potential f can then be used, along with the previous fact, to
determine a potential bound which becomes better as the scaling error goes down.
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Lemma 14.2.2. Let (x,y) ∈ Rn ×Rn and δ ∈ [0, 1/2] be such that

|yℓ − ln(cℓ/
n∑︂
i=1
Aiℓe

xi)| ⩽ δ.

Then, for any (x̃, ỹ) ∈ Rn ×Rn,

f(x,y) − f(x̃, ỹ) ⩽ δ + (∥r(A(x,y)) − r∥1 + 2δ) (xmax − xmin + x̃max − x̃min).

This lemma can be viewed as a robust version (i.e., it allows for finite precision
in the Sinkhorn updates) of [DGK18, Lem. 2] and [KLRS07, Lem. 6.1, Lem. 6.2]
(in the ℓ2-setting). We first prove Lemma 14.2.2 for δ = 0, yielding an ℓ1-analog of
[KLRS07, Lem. 6.1].

Lemma 14.2.3. Let A ∈ Rn×n
⩾0 and let (x,y), (x̃, ỹ) ∈ Rn ×Rn. If (x,y) is such that

c(A(x,y)) = c, then

f(x,y) − f(x̃, ỹ) ⩽ ∥r(A(x,y)) − r∥1(xmax − xmin + x̃max − x̃min).

A similar statement holds if r(A(x,y)) = r.

Proof. We have

gradx f(x,y) = r(A(x,y)) − r,
grady f(x,y) = c(A(x,y)) − c,

so in particular, if c(A(x,y)) = c, then grady f(x,y) = 0. Now, by convexity of f,
we have

f(x,y) + ⟨gradx f(x,y), x̃ − x⟩ ⩽ f(x̃, ỹ),
which we rearrange as

f(x,y) − f(x̃, ỹ) ⩽ ⟨gradx f(x,y), x − x̃⟩ = ⟨r(A(x,y)) − r, x − x̃⟩. (14.2.1)

Since c(A(x,y)) = c and ∥c∥1 = 1, we have ∥A(x,y)∥1 = 1 and ∥r(A(x,y))∥1 = 1
as well. In particular,

⟨r(A(x,y)) − r, 1⟩ = 0.

Set z = x − ⟨x,1⟩
n 1 and z̃ = x̃ − ⟨x̃,1⟩

n 1. Then, using Eq. (14.2.1),

f(x,y) − f(x̃, ỹ) ⩽ ⟨r(A(x,y)) − r, x − x̃⟩
= ⟨r(A(x,y)) − r, z − z̃⟩
⩽ ∥r(A(x,y)) − r∥1 (∥z∥∞ + ∥z̃∥∞)
⩽ ∥r(A(x,y)) − r∥1(zmax − zmin + z̃max − z̃min)
= ∥r(A(x,y)) − r∥1(xmax − xmin + x̃max − x̃min)

as desired. The last inequality holds because the entries of z and of z̃ sum to
zero. □

To deal with updates with finite precision, we adapt Lemma 14.2.3 to the case
where c(A(x,y)) and c are only approximately equal.
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Proof of Lemma 14.2.2. Let y′ be the vector defined by

y′ℓ = ln
(︃

cℓ∑︁n
i=1Aiℓexi

)︃
,

i.e., y′ is the vector of column-scaling vectors after an exact Sinkhorn column
update starting from (x,y). Then

f(x,y) − f(x,y′) = D(c∥c(A(x,y))) ⩽ δ, (14.2.2)

where the first inequality is Eq. (14.1.4) and the second inequality follows from the
assumption on y (see proof of Lemma 14.1.6; the event St corresponds precisely to
the assumption on y).

Furthermore, c(A(x,y′)) = c, so we may apply Lemma 14.2.3 with (x,y′) and
(x̃, ỹ) to obtain

f(x,y′) − f(x̃, ỹ) ⩽ ∥r(A(x,y′)) − r∥1(xmax − xmin + x̃max − x̃min). (14.2.3)

Since y′
ℓ
− yℓ ∈ [−δ, δ] for every ℓ ∈ [n], for every i, j ∈ [n]we have

Aije
xi+yj ∈ [e−δAije

xi+y′j , eδAije
xi+y′j].

Since δ ⩽ 1/2, we can use the estimates e−δ ⩾ 1 − 2δ and eδ ⩽ 1 + 2δ, which imply
that

rℓ(A(x,y)) ∈ [(1 − 2δ)rℓ(A(x,y′)), (1 + 2δ)rℓ(A(x,y′))]
for every ℓ ∈ [n]. By the triangle inequality we get

∥r(A(x,y′)) − r∥1 ⩽ ∥r(A(x,y′)) − r(A(x,y))∥1 + ∥r(A(x,y)) − r∥1
⩽ 2δ∥r(A(x,y′))∥1 + ∥r(A(x,y)) − r∥1
= 2δ + ∥r(A(x,y)) − r∥1.

where the last equality holds since ∥r(A(x,y′))∥1 = ∥c(A(x,y′))∥1 = ∥c∥1 = 1. If
we plug this into Eq. (14.2.3) then together with Eq. (14.2.2) the proof is complete. □

Together, Lemmas 14.2.1 and 14.2.2 yield the following adaptive bound on the
potential gap for iterations produced by the Sinkhorn algorithm.

Corollary 14.2.4 (Adaptive potential gap bound). Let A ∈ [µ,ν]n×n, let t ⩾ 1, and
let x(t) and y(t) be as in Algorithm 14.1, and assume no call to LogSumExp has failed. If t
is even, then we have

f(x(t),y(t)) − f∗ ⩽ δ + 2
(︂
∥r(A(x(t),y(t)) − r∥1 + 2δ

)︂ (︃
δ + ln rmax

rmin
+ ln ν

µ

)︃
,

where f∗ = minx,y f(x,y). A similar statement holds if t is odd.

Proof. It is well-known that any entrywise-positive matrix is exactly scalable to
arbitrary strictly positive (r, c). Thus, there exists (x∗,y∗) such that A(x∗,y∗) is
exactly (r, c)-scaled. This implies that ∇f(x∗,y∗) = 0 and thus f(x∗,y∗) = f∗. By
Lemma 14.2.1, we have x∗max − x∗min ⩽ ln rmax

rmin
+ ln ν

µ . Furthermore, as we assume
no call to LogSumExp fails, we also have, by the same Lemma 14.2.1,

x
(t)
max − x(t)min ⩽ 2δ + ln rmax

rmin
+ ln ν

µ
.

The result now follows from applying Lemma 14.2.2 and a simple estimate. □
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Note that Corollary 14.2.4 is stated in terms of the ℓ1-distance, which we can
further upper bound in terms of the relative entropy using Pinsker’s inequality.
In this way, one can show that once A is ε-relative-entropy-scaled for ε ⩽ 1, it
takes ˜︁O(1/√ε) full Sinkhorn iterations to obtain an ε/2-relative-entropy-scaling.
Obtaining an O(1)-relative-entropy-scaling takes a constant number of Sinkhorn
iterations, and from there onwards it suffices to halve the scaling error at most
log2(1/ε) times, where the number of iterations required to halve the scaling error
increases by a factor

√
2 every time. Carefully keeping track of the total number of

iterations then gives a total iteration count of ˜︁O(1/√ε):
Theorem 14.2.5. Let 0 < µ < ν ⩽ 1, let A ∈ [µ,ν]n×n with ∥A∥1 ⩽ 1, and let
r, c ∈ (0, 1]n with ∥r∥1 = ∥c∥1 = 1. For ε ∈ (0, 1], choose

T =

⌈︃
32 ln(1/µ) + log2(2/ε)(1 + 34C)

√
ε

⌉︃
,

δ = ε/64, δ′ = ε/2, η = 1/(3(n + 1)T ), b1 = ⌈log2(T ) + log2(ln( 1
µ) + 1 + σ)⌉,

b2 = ⌈log2(1/δ)⌉, where C = δ + ln(rmax/rmin) + ln(cmax/cmin) + ln(ν/µ) and σ =

max{|ln rmin |, |ln cmin |}. Then, Algorithm 14.1 with these parameters returns a pair
(x,y) such that, with probability ⩾ 2/3, A(x,y) is ε-relative-entropy-scaled to (r, c). The
resulting quantum algorithm has time complexity ˜︁O(n1.5/ε1.5).

Proof. Observe first that we have chosen b1,b2 such that the guarantees of
LogSumExp and TestScaling are satisfied at any iteration (cf. Lemma 14.1.4).
Throughout the proof, we assume that all calls to LogSumExp and to TestScaling
made by Algorithm 14.1 succeed, which by the choice of η happens with probability
⩾ 2/3. As always, we write f∗ = infx,y f(x,y), and we abbreviate ft = f(x(t),y(t)),
r(t) = r(A(x(t),y(t))), and c(t) = c(A(x(t),y(t))) for the potential and the row and
column marginals after the t-th iteration.

The strategy is as follows. For t ⩾ 0, define εt = D(r∥r(t)) if t is even, and
εt = D(c∥c(t)) if t is odd. By Lemma 14.1.6, the other of the two relative entropies
is at most δ for every t ⩾ 1, and so it suffices to bound the time until εt is
sufficiently small. We will first bound the number of iterations until εt ⩽ 1 − ln 2,
and subsequently bound the number of iterations required for εt to halve.

We first argue that there exists anN ⩽ 32 ln(1/µ) such that εN ⩽ 1−ln 2. Suppose
for contradiction that this is not the case. Then for t = 0, . . . , ⌊32 ln(1/µ)⌋, we have
εt > 1 − ln 2 ⩾ 1/4, and by Theorem 14.1.1 and Lemma 14.1.2, we see that

ln(1/µ) ⩾ f0 − f∗ ⩾ f0 − f⌊32 ln(1/µ)⌋+1 =

⌊32 ln(1/µ)⌋∑︂
t=0

(ft − ft+1) ⩾
⌊32 ln(1/µ)⌋∑︂

t=0
(εt − 2δ)

> (⌊32 ln(1/µ)⌋ + 1) ((1 − ln 2) − 2δ) ⩾ 32 ln(1/µ) · 1
16 = 2 ln(1/µ)

where we used 2δ ⩽ 1/32. This is the desired contradiction.
We now bound the halving time. Let t ⩾ 1 be such that εt ⩽ 1 − ln 2, and define

Nt = inf{τ ⩾ 0 : εt+τ ⩽ εt/2}. (14.2.4)

310



14.2. Improved analysis for entrywise-positive matrices

For τ = 0, . . . ,Nt − 1, we have εt+τ > εt/2, and so

ft − f∗ ⩾ ft − fNt ⩾
Nt−1∑︂
τ=0
(ft+τ − ft+τ+1) ⩾

Nt−1∑︂
τ=0
(εt+τ − 2δ) ⩾ Nt

(︂εt
2 − 2δ

)︂
.

again by Theorem 14.1.1 and Lemma 14.1.2. Therefore, so long as εt > 4δ, we
obtain

Nt ⩽
ft − f∗
εt/2 − 2δ

. (14.2.5)

We first prove a bound onNt assuming 8δ ⩽ εt ⩽ 1− ln 2. For t even, Lemma 13.2.1
then implies that ∥r− r(t)∥1 ⩽ 1 (since εt = D(r∥r(t)) ⩽ 1− ln 2, while the function
w(α) is strictly larger than 1 − ln 2 for α > 1) and hence D(r∥r(t)) ⩾ ∥r − r(t)∥21/4,
so

Nt ⩽
ft − f∗
εt/2 − 2δ

⩽
δ + 2

(︂
∥r(t) − r∥1 + 2δ

)︂
C

εt/2 − 2δ

⩽
δ + 4

(︁√
εt + δ

)︁
C

εt/2 − 2δ

=
2δ(1 + 4C) + 8

√
εtC

εt − 4δ

⩽
(εt/4)(1 + 4C) + 8

√
εtC

εt/2
=

1 + 4C
2 + 16C√

εt
,

where the first inequality is Eq. (14.2.5), the second follows from Corollary 14.2.4,
and in the last inequality we assume that εt ⩾ 8δ. The same inequality holds for
t odd, with an analogous proof. Thus, we have proved that, for any t such that
8δ ⩽ εt ⩽ 1 − ln 2,

Nt ⩽
1 + 4C

2 + 16C√
εt

. (14.2.6)

We now combine the preceding to verify that the desired number of iterations
suffices for Algorithm 14.1 to return an ε-relative-entropy-scaling. For s ⩾ 0, define

hs = min
{︃
t ⩾ 0 : εt ⩽

1 − ln 2
2s

}︃
.

We proved above that h0 ⩽ 32 ln(1/µ). Clearly, the sequence hs is non-decreasing.
Let

S = min
{︃
s ⩾ 0 : 1 − ln 2

2s ⩽ 32δ = δ′
}︃

.

Note that the algorithm will necessarily return within the first hS iterations with
an ε-relative-entropy-scaling. Indeed, either TestScaling returns True during one
of the first hS − 1 iterations, or it must return True in the hS-th iteration, since then
εhS ⩽ δ

′ (and the other relative entropy is always at most δ ⩽ δ′). Thus it suffices
to bound hS. For any 0 ⩽ s < S, if hs+1 > hs we have εhs > 1−ln 2

2s+1 > 16δ > 8δ, so

hs+1 − hs ⩽ Nhs ⩽
1 + 4C

2 + 16C√
εhs

<
1 + 4C

2 + 2s/2 16
√

2C√
1 − ln 2

(14.2.7)
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where the first inequality holds by definition of Nt in Eq. (14.2.4) and the second
inequality is Eq. (14.2.6); the latter is applicable since 8δ ⩽ εhs ⩽ 1 − ln 2. Clearly
Eq. (14.2.7) also holds if hs+1 = hs. Thus we can upper bound the total number of
iterations required by

hS = h0 +
S−1∑︂
s=0
(hs+1 − hs)

< 32 ln(1/µ) +
S−1∑︂
s=0

(︃
1 + 4C

2 + 2s/2 16
√

2C√
1 − ln 2

)︃
⩽ 32 ln(1/µ) + S

(︃
1 + 4C

2 + 2(S−1)/2 16
√

2C√
1 − ln 2

)︃
⩽ 32 ln(1/µ) + S

(︄
1 + 4C

2 +
√︁

2(1 − ln 2)
√
δ′ ·
√

2
16
√

2C√
1 − ln 2

)︄
⩽ 32 ln(1/µ) + log2

(︁
2(1 − ln 2)/δ′

)︁ (︃
1 + 4C

2 + 32C√
2δ′

)︃
⩽ 32 ln(1/µ) + log2

(︁
2/ε

)︁ (︃
1
2 + 2C + 32C√

ε

)︃
⩽

32 ln(1/µ) + log2
(︁
2/ε

)︁
(1 + 34C)

√
ε

,

where we used that 2S < 2(1 − ln 2)/δ′ by definition of S (noting that S ⩾ 1), as
well as δ′ = ε/2 and ε ⩽ 1. □

Corollary 14.2.6. Let µ > 0, let A ∈ [µ, 1]n×n be a rational matrix with ∥A∥1 ⩽ 1,
let r, c ∈ (0, 1]n with ∥r∥1 = ∥c∥1 = 1, and let ε ∈ (0, 1]. Then there exists a
quantum algorithm that, given sparse query access to A, with probability ⩾ 2/3, computes
(x,y) ∈ Rn ×Rn such that A(x,y) is ε-ℓ1-scaled to (r, c), at a total time complexity of˜︁O(n1.5/ε2).

14.3. Randomized quantum Sinkhorn algorithm
In this section we discuss a randomized version of the Sinkhorn algorithm, and
sketch its analysis. Classically, this randomized version is of interest due to its
good performance in practice (asymptotically the complexity is not better than
the usual Sinkhorn algorithm). It is therefore natural to ask if it admits a similar
quantum speedup. In this section we give an affirmative answer.

The algorithm is stated in Algorithm 14.2.1 It differs from the ordinary Sinkhorn
algorithm in that, rather than updating all rows or all columns in each iteration, it
selects a random row or column in each iteration, and only updates this row or
column. Because rows and columns havem/n non-zero entries on average, this
results in an expected quantum time complexity of ˜︁O(√︁m/(nε)) per iteration, where

1Note that Algorithm 14.2 returns x(τ−1) and y(τ−1) and could therefore stop after τ iterations.
However, for the sake of simplifying the analysis, we always continue for T iterations.
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ε > 0 is the desired precision (measured in relative entropy). Furthermore, we show
that ˜︁O(n/ε) iterations suffice to obtain an ε-ℓ1-scaling with probability ⩾ 2/3. Note
that we do not necessarily alternate between choosing rows or columns. Suitable
choices of parameters for Algorithm 14.2 are given in Theorem 14.3.4, along with
the corresponding guarantees and the resulting quantum time complexity.

The analysis of the randomized Sinkhorn algorithm is somewhat more involved
because we are no longer able to test whether the matrix is ε-scaled at every
iteration. Indeed, this test has a quantum time complexity of roughly

√︁
mn/ε and

would therefore lead to a complexity of roughly
√︁
mn/ε ·n/ε, which is worse than

guaranteed by the classical Sinkhorn algorithm! Similarly, naively maintaining
all marginals in a data structure is prohibitively expensive. Therefore, while the
algorithm is running, we do not know whether the potential is still decreasing
every iteration, and may lose progress during subsequent iterations. However,
we can show that for any probability p > 0 and subsequent appropriate choices
of parameters (in particular for large enough T ), a 1 − p fraction of the produced
iterates (x(t),y(t)) yield an ε-relative-entropy-scaling. This implies that a uniformly
random choice of stopping iteration yields an ε-relative-entropy-scaling with
probability 1 − p.

Algorithm 14.2: Randomized Sinkhorn with finite precision and failure
probability
Input: Query access to A ∈ [0, 1]n×n with ∥A∥1 ⩽ 1 and non-zero entries at

least µ > 0, target marginals r, c ∈ [0, 1]n with ∥r∥1 = ∥c∥1 = 1,
iteration count T ⩾ 0, bit counts b1,b2 ⩾ 0, precision δ ∈ (0, 1) and
subroutine failure probability η ∈ [0, 1]

Output: Vectors x,y ∈ Rn with entries encoded in (b1,b2) fixed-point
format

Analysis: Theorem 14.3.4
1 x(0),y(0)← 0;
2 for t← 1, 2, . . . , T do
3 Pick β ∈ {0, 1} uniformly at random;
4 Pick ℓ ∈ [n] uniformly at random;
5 if β = 0 then
6 x(t)← x(t−1); y(t)← y(t−1);
7 x

(t)
ℓ
← LogSumExp(Aℓ•, rℓ,y(t−1), δ,b1,b2,η,µ);

8 else
9 y(t)← y(t−1); x(t)← x(t−1);

10 y
(t)
ℓ
← LogSumExp(A•ℓ, cℓ, x(t−1), δ,b1,b2,η,µ);

11 end if
12 end for
13 Pick τ ∈ [T ] uniformly at random;
14 return (x(τ−1),y(τ−1));

The following lemma bounds the progress of a row or column update (if we
ignore the effects of the truncation) in terms of the quantity ρ(a∥b) = b−a+a ln a

b
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defined in Section 13.2.2.

Lemma 14.3.1. Let A ∈ Rn×n
⩾0 and x,y ∈ Rn, let δ ∈ [0, 1] and ℓ ∈ [n], and let x̂ ∈ Rn

be a vector such that |x̂ℓ − ln(rℓ/
∑︁n

j=1Aℓje
yj)| ⩽ δ, and for every k ≠ ℓ, x̂k = xk. Then

f(x,y) − f(x̂,y) ⩾ ρ
(︁
rℓ

∥︁∥︁rℓ(A(x,y))
)︁
− 2δrℓ.

A similar statement holds for an update of yℓ (using cℓ rather than rℓ).

The lemma plays a similar role as Lemma 14.1.2 and its proof is completely
analogous. We can use the lemma to lower bound the expected progress in each
iteration in terms of the relative entropy D(a∥b) =

∑︁n
ℓ=1 ρ(aℓ∥bℓ), since the latter

is directly related to the expectation of ρ(aℓ∥bℓ) for uniformly random ℓ ∈ [n]. To
formally analyze the expected progress it will be useful to define the following
events.

Definition 14.3.2. For t = 1, . . . , T , we define the following events:

• Let Gt denote the event that D(r∥r(A(t−1))) ⩽ ε and D(c∥c(A(t−1))) ⩽ ε.

• Let St denote the event that the call to LogSumExp on line 7 succeeds (if β = 0
in this iteration) or that the call to LogSumExp on line 10 succeeds (if β = 1 in
this iteration).

• Define S to be the intersection of the events St, i.e., S = ∩T
t=1St.

Let us also abbreviate ft = f(x(t),y(t)). Then we have the following key lemma
which bounds the expected progress in terms of the probability of Gt.

Lemma 14.3.3. Assume Pr[St] ⩾ 1 − η for t ∈ [T ]. Then, for any t ∈ [T ], we have

E[(ft−1 − ft)1S] ⩾
ε

2n Pr[Gt] − εηT −
2δ
n

.

Proof. In this proof we use that for independent random variables X, Y and any
function h(x,y)we have

E[h(X, Y)] =
∑︂
y∈Y

Pr[Y = y]E[h(X,y)]. (14.3.1)

For t ∈ [T ], let β(t) be the random choice of row versus column scaling made on
Line 3, and let ℓ(t) ∈ [n] be the random index chosen on Line 4. Then, Lemma 14.3.1
shows that if S holds then we have

ft−1 − ft ⩾ ρ(Mt∥mt) − 2δMt, where (Mt,mt) =
{︄
(rℓ(t) , rℓ(t)(A(t−1))) if β(t) = 0,
(cℓ(t) , cℓ(t)(A(t−1))) if β(t) = 1.

(14.3.2)

We define Rt = min{ρ(Mt∥mt), ε} − 2δMt. Then the above implies

E[(ft−1 − ft)1S] ⩾ E[Rt1S].
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We may expand this lower bound as

E[Rt1S] = E[Rt] −E[Rt1S] = E[Rt1Gt
] +E[Rt1Gt] −E[Rt1S]. (14.3.3)

To lower bound the first term, recall that (β(t), ℓ(t)) are drawn independently from
A(t−1), while the event Gt only depends on A(t−1) (and hence is independent from
(β(t), ℓ(t))). Therefore, using Eq. (14.3.1) we can lower bound

E[Rt1Gt
]

= E[(min{ρ(Mt∥mt), ε} − 2δMt)1Gt
]

=
1

2nE

[︄
n∑︂
ℓ=1
(min{ρ(rℓ∥rℓ(A(t−1))), ε} +min{ρ(cℓ∥cℓ(A(t−1))), ε} − 2δ(rℓ + cℓ))1Gt

]︄
=

1
2nE

[︄
n∑︂
ℓ=1
(min{ρ(rℓ∥rℓ(A(t−1))), ε} +min{ρ(cℓ∥cℓ(A(t−1))), ε})1

Gt

]︄
− 1

2nE[4δ1Gt
]

⩾
1

2nE

[︄
min

{︄
n∑︂
ℓ=1
ρ(rℓ∥rℓ(A(t−1))) + ρ(cℓ∥cℓ(A(t−1))), ε

}︄
1
Gt

]︄
− 2δ
n

Pr[Gt]

=
1

2nE
[︂
min

{︂
D(r∥r(A(t−1))) +D(c∥c(A(t−1))), ε

}︂
1
Gt

]︂
− 2δ
n

Pr[Gt]

=
1

2nE
[︂
ε1

Gt

]︂
− 2δ
n

Pr[Gt] =
(︃
ε

2n −
2δ
n

)︃
Pr[Gt]

where we first used the inequality
∑︁n

ℓ=1 min{ai,b} ⩾ min{
∑︁n

ℓ=1 ai,b}, which
holds for any real numbers a1, . . . ,an ∈ R and b ⩾ 0, and we then used that
D(r∥r(A(t−1))) +D(c∥c(A(t−1))) ⩾ εwhenever Gt does not hold.

To lower bound E[Rt1Gt], note that we also have the bound Rt ⩾ −2δMt as
min{ρ(Mt∥mt), ε} is non-negative, so again using independence of (β(t), ℓ(t)) from
Gt, we obtain

E[Rt1Gt] ⩾ −
2δ
n

Pr[Gt] =
2δ
n

Pr[Gt] −
2δ
n

.

Lastly, to upper bound E[Rt1S], note that Rt ⩽ ε, so

E[Rt1S] ⩽ εPr[S] ⩽ εηT

where the last step follows from the union bound. Combining the bounds in
Eq. (14.3.3) then yields the desired bound. □

Lemma 14.1.4 shows how large we need to take b1 to ensure that all components
of (x(t),y(t)) are in the interval [−2b1 , 2b1].2

Finally, we can combine Theorem 14.1.1 and Lemma 14.3.3 to show that Algo-
rithm 14.2 returns an ε-relative-entropy-scaling (with probability ⩾ 1 − p). This is
also an O(

√
ε)-ℓ1-scaling by Pinsker’s inequality.

2Technically, Lemma 14.1.4 is about updating all entries of either x or y in each iteration, however
its proof shows that the same bound also applies if we update only a single coordinate per
iteration.
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Theorem 14.3.4. Let A ∈ [0, 1]n×n be a matrix whose non-zero entries are at least µ > 0
and ∥A∥1 ⩽ 1. Assume that A is asymptotically scalable to (r, c). Let p ∈ (0, 1] and
ε ∈ (0, 1]. Choose

T =

⌈︃
6n
εp

ln( 1
µ)

⌉︃
,

δ =
εp
12 , η =

p
6nT , b2 = ⌈log2(1/δ)⌉, and b1 = ⌈log2(T ) + log2(ln( 1

µ) + 1 + σ)⌉, where
σ = max(|ln rmin |, |ln cmin |). Then, Algorithm 14.2 with these parameters and given
sparse query access to A, with probability ⩾ 1 − p, returns a pair (x,y) such that
A(x,y) is ε-relative-entropy-scaled to (r, c), for an expected quantum time complexity of˜︁O(√mn/(εp)1.5).

Before we prove Theorem 14.3.4 we make the following two small remarks
about its formulation. First, for a constant success probability (say 2/3), the time
complexity “on expectation” can be converted to a worst-case time complexity
using Markov’s inequality. Second, while the number of iterations T scales
inverse-polynomially with the failure probability p, one can obtain a logarithmic
scaling with the failure probability in the following way: take O(ln(1/p)) many
independent runs of Algorithm 14.2 with p = 1/3 and use TestScaling on the
outputs. With probability 1−p one of the outputs will provide an ε-relative-entropy
scaling.

Proof of Theorem 14.3.4. By Theorem 14.1.1, we have

E[(f0 − fT )1S] ⩽ E[ln( 1
µ)1S] = ln( 1

µ)Pr[S] ⩽ ln( 1
µ). (14.3.4)

using µ ⩽ 1. We now lower bound the left-hand side by a telescoping sum, using
Lemma 14.3.3,

E[(f0 − fT )1S] =
T∑︂
t=1
E[(ft−1 − ft)1S]

⩾
T∑︂
t=1

(︃
ε

2n Pr[Gt] − εηT −
2δ
n

)︃
= T

(︃
ε

2n − εηT −
2δ
n

)︃
− ε

2n

T∑︂
t=1

Pr[Gt].

Together with Eq. (14.3.4), we obtain for uniformly random τ ∈ [T ] the bound

Pr[Gτ] =
1
T

T∑︂
t=1

Pr[Gt] ⩾ 1 − 2nηT − 4δ
ε
−

2n
ε ln( 1

µ)
T

(14.3.5)

= 1 −
(︄
2n · p

6n(6nεp ln( 1
µ))
· 6n
εp

ln( 1
µ)

)︄
−

(︃
4εp
12ε

)︃
−

(︄ 2n
ε ln( 1

µ)
6n
εp ln( 1

µ)

)︄
= 1 − p.

Since we return (x(τ−1),y(τ−1)) for τ ∈ [T ] independently and uniformly at random,
Pr[Gτ] is the success probability of our algorithm and the first equality in Eq. (14.3.5)
holds. This shows the output of Algorithm 14.2 satisfies the guarantees of the
theorem.
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Finally, the time complexity of Algorithm 14.2 follows from Theorem 13.3.2 and
an application of Jensen’s inequality (using concavity of the square root function).
Indeed, the complexity of applying LogSumExp to a row or column with s possibly
non-zero entries is ˜︁O(√︁s/δ) quantumly, and hence the expected time complexity
per application of LogSumExp is ˜︁O(√︁m/(nδ)) quantumly. The total expected time
complexity then follows from linearity of expectation and the bound on the number
of iterations T . □

14.4. Randomized quantum Osborne algorithm
In this section we present an algorithm for the matrix-balancing problem (Prob-
lem 13.2.7). The algorithm that we analyze is a quantum version of Osborne’s
algorithm with random updates [Osb60]; the latter was very recently analyzed in
the classical setting by Altschuler and Parrilo [AP23].

The goal of balancing a matrix A ∈ Rn×n
⩾0 is to find a vector x ∈ Rn such that

the matrix A(x) = A(x,−x) has (approximately) equal row and column sums. As
explained in Section 13.2.3, we assume without loss of generality that the diagonal
entries of A are zero; and we also assume that every row and every column of A
contains at least one non-zero entry.

Osborne’s algorithm is an alternating iterative algorithm for matrix balancing
that proceeds similarly to Sinkhorn’s algorithm for matrix scaling. The idea is to
focus on an individual coordinate at a time. That is, given an index ℓ ∈ [n], we
would like to update x to x′ = x + ∆ℓeℓ, where ∆ℓ is chosen such that

rℓ(A(x′)) = cℓ(A(x′)).

Expanding the above equation and using Aℓℓ = 0 yields

e∆ℓ · rℓ(A(x)) = e−∆ℓ · cℓ(A(x)).

Since we assume every row and column contains at least one non-zero entry, the
above equation has a unique solution, given by

∆ℓ = ln ⎛⎜⎝
√︄
cℓ(A(x))
rℓ(A(x))

⎞⎟⎠ . (14.4.1)

Note that the updates of multiple coordinates cannot be done simultaneously,
since each xℓ can potentially affect all row and column marginals at the same time.
This is in contrast with the Sinkhorn algorithm for matrix scaling, where all row
scalings or all column scalings can be updated at the same time. Therefore a
choice must be made as to which index to update at each iteration. Altschuler and
Parrilo [AP23] analyze several such choices, including greedy, random and cyclic
variants. The greedy and random variants have better guaranteed performance
than the cyclic variant. However, to implement the greedy version, one has to
maintain an auxiliary data structure which contains all current row and column
marginals, which can be updated after each iteration with a cost of order O(n).
Therefore, even though we can accelerate each iteration with quantum approximate
counting to become sublinear in n, the greedy iterations would still incur at least a
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cost of order n for the updates. So instead, we focus on a randomized variant of
Osborne’s algorithm.

The analysis in the quantum setting is more complicated than in the classical case.
The basic argument follows similar lines to the one given in [AP23] (a potential
argument like for matrix scaling, but with the relative entropy replaced by the
Hellinger distance). However, in the classical setting, one can increase the precision
of individual updates at a very small cost, and one does not have to deal with the
possibility of making backwards progress. In the quantum setting, in contrast, we
do not have this luxury: we cannot test whether the matrix is ε-H2-balanced each
iteration, and the relatively high imprecision of the updates can cause subsequent
iterations to destroy this property. This situation is similar to the one discussed
in Section 14.3 for the randomized Sinkhorn algorithm, and we adapt the ideas
developed in that section in the analysis here.

Algorithm 14.3: Random Osborne with finite precision and failure proba-
bility
Input: Query access to A ∈ [0, 1]n×n and non-zero entries at least µ > 0,

iteration count T ⩾ 0, bit counts b1,b2 ⩾ 0, update precision δ ∈ (0, 1)
and subroutine failure probability η ∈ [0, 1]

Output: Vector x ∈ Rn with entries encoded in (b1,b2) fixed-point format
Analysis: Theorem 14.4.6

1 x(0)← 0; // entries in (b1,b2) fixed-point format

2 for t← 1, 2, . . . , T do
3 Pick ℓ ∈ [n] uniformly at random;
4 x(t)← x(t−1);
5 x

(t)
ℓ
← 1

2 LogSumExp (Aℓ•, 1,−x(t−1), δ,b1,b2,η/2,µ)−
6 1

2 LogSumExp (A•ℓ, 1, x(t−1), δ,b1,b2,η/2,µ);
7 end for
8 Pick τ ∈ [T ] uniformly at random;
9 return (x(τ),y(τ));

Our randomized version of Osborne’s algorithm is given in Algorithm 14.3. It
allows for an additive error δ in computing the update as compared to Eq. (14.4.1).
To see that for δ = 0 the update in Algorithm 14.3 is exactly the same as in
Eq. (14.4.1), one can rewrite

xℓ + ∆ℓ = xℓ + ln ⎛⎜⎝
√︄
cℓ(A(x))
rℓ(A(x))

⎞⎟⎠
= xℓ + ln

(︄√︄∑︁n
i=1Aiℓexi−xℓ∑︁n
j=1Aℓjexℓ−xj

)︄
=

1
2

(︄
ln

(︄
1∑︁n

j=1Aℓje−xj

)︄
− ln

(︃
1∑︁n

i=1Aiℓexi

)︃)︄
.

In each iteration of Algorithm 14.3, the two calls to the LogSumExp subroutine
compute the two logarithms to additive precision δ. Hence each iteration computes
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an approximation to the ideal Osborne update with additive precision δ (assuming
no errors).

To analyze Algorithm 14.3, we consider the convex potential f : Rn→ R given
by

f(x) =
n∑︂

i,j=1
Aije

xi−xj = ∥A(x)∥1, (14.4.2)

in analogy with the potential for the analysis of matrix scaling. Let f∗ be the
infimum of f(x).

We first state a lower bound on the potential.

Lemma 14.4.1. If A ∈ Rn×n
⩾0 is asymptotically balanceable and its non-zero entries are at

least µ > 0, then f∗ ⩾ µ.

This can be deduced immediately from Proposition 5.1.2. The next lemma then
gives a lower bound on the progress made by an approximate Osborne update.

Lemma 14.4.2. Let ℓ ∈ [n] be an index, x ∈ Rn be a vector, δ ∈ [0, 1], and let x′ be the
vector with x′

k
= xk for k ≠ ℓ and|︁|︁|︁|︁|︁|︁x′ℓ − ⎛⎜⎝xℓ + ln ⎛⎜⎝

√︄
cℓ(A(x))
rℓ(A(x))

⎞⎟⎠⎞⎟⎠
|︁|︁|︁|︁|︁|︁ ⩽ δ, (14.4.3)

i.e., x′ is a δ-additive approximation of the Osborne update of x for the ℓ-th index. Then

f(x) − f(x′) ⩾
(︂√︁
rℓ(A(x)) −

√︁
cℓ(A(x))

)︂2
− 2δ

√︁
rℓ(A(x))cℓ(A(x)).

Proof. Note that A(x′) and A(x) have the same entries outside of the ℓ-th row and
column. Expanding the definition and recalling that Aℓℓ = 0 gives

f(x) − f(x′) = rℓ(A(x)) + cℓ(A(x)) − rℓ(A(x′)) − cℓ(A(x′)).

For convenience, write z = x′
ℓ
− xℓ − ln(

√︁
cℓ(A(x))/rℓ(A(x))) ∈ [−δ, δ]. Then

rℓ(A(x′)) = ex
′
ℓ
−xℓ · rℓ(A(x)) = ez ·

√︁
rℓ(A(x))cℓ(A(x)),

cℓ(A(x′)) = exℓ−x′ℓ · cℓ(A(x)) = e−z ·
√︁
rℓ(A(x))cℓ(A(x)).

Since |z| ⩽ |δ| ⩽ 1, we have the estimate ez + e−z ⩽ 2 + 2|z| ⩽ 2 + 2δ, which yields

f(x) − f(x′) ⩾ rℓ(A(x)) + cℓ(A(x)) − (2 + 2δ)
√︁
rℓ(A(x))cℓ(A(x))

as desired. □

As a corollary, we obtain the following relation between approximate minimizers
of f and balancings:

Corollary 14.4.3. LetA ∈ Rn×n
⩾0 be asymptotically balanceable, let ξ > 0, and assume x ∈

Rn is such that f(x) − f∗ ⩽ ξf(x). Then A(x) is nξ-H2-balanced, and 2
√
ξ-ℓ2-balanced.
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Proof. Averaging over the choice of ℓ ∈ [n] in Lemma 14.4.2 yields

ξ∥A(x)∥1 ⩾ f(x) − f∗ ⩾
1
n

n∑︂
ℓ=1

(︂√︁
rℓ(A(x)) −

√︁
cℓ(A(x))

)︂2
=

1
n
H2(r(A(x)), c(A(x))).

This shows that A(x) is nξ-H2-balanced. Similarly, taking the average with respect
to the weights wℓ = (

√︁
rℓ(A(x)) +

√︁
cℓ(A(x)))2 ⩽ 2(rℓ(A(x)) + cℓ(A(x))) yields

ξ∥A(x)∥1 ⩾ f(x) − f∗ ⩾

∑︁n
ℓ=1wℓ

(︂√︁
rℓ(A(x)) −

√︁
cℓ(A(x))

)︂2

∑︁n
ℓ=1wℓ

=

∑︁n
ℓ=1(rℓ(A(x)) − cℓ(A(x)))2∑︁n

ℓ=1wℓ

⩾
∥r(A(x)) − c(A(x))∥22

4∥A(x)∥1
,

showing that A(x) is 2
√
ξ-ℓ2-balanced. □

Remark 14.4.4. One can show that A(x) is 2
√
ξ-ℓ2-balanced when ln f(x) − ln f∗ ⩽ ξ,

which is a weaker assumption (since ln z ⩾ 1 − 1
z for z = f(x)/f∗ ⩾ 1). This may be

deduced from the fact that ln f(x) is a 2-smooth convex function with gradient (r(A(x)) −
c(A(x)))/∥A(x)∥1, see the proof of Theorem 14.1.1.

The following lemma gives a suitable choice for the parameter b1 which en-
sures correct functioning of the algorithm, i.e., ensures that the requirements of
LogSumExp are always satisfied.

Lemma 14.4.5. Let x(0) = 0 and T ∈ N. Suppose that for all t ∈ [T ], x(t) is a δ-additive
approximation of an Osborne update for x(t−1) as in Eq. (14.4.3). Then we have the
following bound for all t ⩽ T ,

∥x(t)∥∞ ⩽ t ·
(︃

1
2 ln(∥A∥1/µ) + δ

)︃
. (14.4.4)

Then choosing b1 = ⌈log2(maxℓ{|ln(rℓ(A))|, |ln(cℓ(A))|} + T · (ln(∥A∥1/µ)/2 + 1))⌉,
guarantees that 2b1 ⩾ |ln(

∑︁n
j=1Aℓje

−x(t)
j )| and 2b1 ⩾ |ln(

∑︁n
i=1Aiℓe

x
(t)
i )| for any ℓ ∈ [n]

and t ⩽ T .

Proof. We show that if x is any vector, then any vector x′ obtained by a δ-additive
approximate Osborne update of x satisfies

∥x′∥∞ ⩽ ∥x∥∞ +
1
2 ln(∥A∥1/µ) + δ. (14.4.5)

Suppose x′ is obtained by updating the ℓ-th index of x, i.e.,|︁|︁|︁|︁|︁|︁x′ℓ − ⎛⎜⎝xℓ + ln

√︄
cℓ(A(x))
rℓ(A(x))

⎞⎟⎠
|︁|︁|︁|︁|︁|︁ ⩽ δ.
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Then observe that

xℓ + ln

√︄
cℓ(A(x))
rℓ(A(x))

= xℓ + ln

√︄∑︁n
i=1Aiℓexi−xℓ∑︁n
j=1Aℓjexℓ−xj

= ln

√︄ ∑︁n
i=1Aiℓexi∑︁n
j=1Aℓje−xj

.

Since we have√︃
µ

∥A∥1
· e−∥x∥∞ ⩽

√︄ ∑︁n
i=1Aiℓexi∑︁n
j=1Aℓje−xj

⩽

√︃
∥A∥1
µ
· e∥x∥∞ ,

the updated coordinate x′
ℓ

satisfies

|x′ℓ | ⩽ ∥x∥∞ +
1
2 ln(∥A∥1/µ) + δ.

Since all other coordinates of x′ and x agree and ∥A∥1 ⩾ µ, the same upper bound
holds for ∥x′∥∞. Thus we have proved Eq. (14.4.5), and Eq. (14.4.4) now follows by
induction.

As a consequence of Eq. (14.4.4), for every t ⩽ T and ℓ ∈ [n], we have that|︁|︁|︁|︁|︁ln
(︄

n∑︂
j=1
Aℓje

−x(t)
j

)︄
− ln(rℓ(A))

|︁|︁|︁|︁|︁ ⩽ ∥x(t)∥∞ ⩽ t · (︃1
2 ln(∥A∥1/µ) + δ

)︃
,|︁|︁|︁|︁|︁ln

(︄
n∑︂
i=1
Aiℓe

x
(t)
i

)︄
− ln(cℓ(A))

|︁|︁|︁|︁|︁ ⩽ ∥x(t)∥∞ ⩽ t · (︃1
2 ln(∥A∥1/µ) + δ

)︃
.

This implies the second statement. □

Following a similar proof strategy as in Section 14.3, we show that Algorithm 14.3
finds approximate balancings in a certain number of iterations. For the time
complexity we use the quantum implementation of the LogSumExp subroutine
from Section 13.3.

Theorem 14.4.6. Let A ∈ [0, 1]n×n be a rational matrix with diagonal entries zero, each
row and column containing at least one non-zero element and all non-zero entries at least
µ > 0. Assume A is asymptotically balanceable, and let ε ∈ (0, 1] and p ∈ (0, 1]. Choose

T =

⌈︃
3n ln(∥A∥1/µ)

pε

⌉︃
,

as well as δ = pε/6, η = pε/(3nT ), b1 = ⌈log2(σ + T · (ln(∥A∥1/µ)/2 + 1))⌉, where
σ = maxℓ{|ln(rℓ(A))|, |ln(cℓ(A))|}, and b2 = ⌈log2(1/δ)⌉. Then Algorithm 14.3 with
these parameters returns a vector x such that A(x) is ε-H2-balanced with probability at
least 1 − p. The time complexity is ˜︁O(√mn/(p1.5ε1.5)) on expectation where m is the
number of non-zero entries of A.

Proof. We proceed in analogy with the analysis of randomized Sinkhorn. Let St
denote the event that both calls to LogSumExp in the t-th iteration of Algorithm 14.3
succeed, and let S be the intersection of all these events for t ∈ [T ]. Then Pr[St] ⩽ η,
since two calls are made and each call fails with probability at most η/2, and also
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Pr[S] ⩽ ηT by the union bound. LetGt be the event that A(x(t−1)) is ε-H2-balanced,
and let ℓ(t) be the choice of index in the t-th iteration. For convenience, we
abbreviate F(x) = ln f(x), Ft = ln ft = ln f(x(t)), A(t) = A(x(t)), ϕt = rℓ(t)(A(t−1)),
and ψt = cℓ(t)(A(t−1)). Lemma 14.4.2 implies that if S holds, then

ft−1 − ft ⩾
(︂√︁
ϕt −

√︁
ψt

)︂2
− 2δ

√︁
ϕtψt.

Dividing by ft−1 and rearranging yields

ft

ft−1
⩽ 1 − 1

ft−1

(︂√︁
ϕt −

√︁
ψt

)︂2
+ 2δ
ft−1

√︁
ϕtψt.

The quantity on the right-hand side is positive since ft−1 ⩾ ϕt+ψt > (
√
ϕt−
√
ψt)2

(the first inequality uses that A has zero diagonal) and ϕt,ψt are both positive, so
taking logarithms and using the estimate ln(1 + z) ⩽ z gives

Ft − Ft−1 ⩽
1
ft−1

(︃
2δ

√︁
ϕtψt −

(︂√︁
ϕt −

√︁
ψt

)︂2
)︃

.

Define a random variable Rt by

Rt =
1
ft−1

(︃(︂√︁
ϕt −

√︁
ψt

)︂2
− 2δ

√︁
ϕtψt

)︃
.

Then the above estimates yield

E[(Ft−1 − Ft)1S] ⩾ E[Rt1S]. (14.4.6)

We now expand the right-hand side as

E[Rt1S] = E[Rt1Gt] +E[Rt1Gt
] −E[Rt1S], (14.4.7)

and bound the terms individually. The first term in Eq. (14.4.7) can be bounded as

E[Rt1Gt] ⩾ E
[︃
− 2δ
ft−1

√︁
ϕtψt1Gt

]︃
⩾ −E

[︃
δ

ft−1
(ϕt +ψt)1Gt

]︃
= −δE

[︄
rℓ(t)(A(t−1)) + cℓ(t)(A(t−1))

∥A(t−1)∥1
1Gt

]︄
= −δE

[︄
1
n

n∑︂
ℓ=1

rℓ(A(t−1)) + cℓ(A(t−1))
∥A(t−1)∥1

1Gt

]︄
= −2δ

n
Pr[Gt],

where the first inequality is obtained by discarding a positive term, the second fol-
lows from the arithmetic-geometric mean inequality, and the second to last equality
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follows from the independence of ℓ(t) and A(t−1), which allows us to first aver-
age over ℓ(t) and then over A(t−1), using that

∑︁n
ℓ=1 rℓ(A(t−1)) =

∑︁n
ℓ=1 cℓ(A(t−1)) =

∥A(t−1)∥1.
For the second term of Eq. (14.4.7), we bound

E[Rt1Gt
] ⩾ E

[︂ 1
ft−1

(︂√︁
ϕt −

√︁
ψt

)︂2
1
Gt

]︂
− 2δ
n

Pr[Gt]

= E

[︄ (︂√︂
rℓ(t)(A(t−1)) −

√︂
cℓ(t)(A(t−1))

)︂2

∥A(t−1)∥1
1
Gt

]︄
− 2δ
n

Pr[Gt]

= E

[︄
1
n

n∑︂
ℓ=1

(︃√︂
rℓ(A(t−1)) −

√︂
cℓ(A(t−1))

)︃2

∥A(t−1)∥1
1
Gt

]︄
− 2δ
n

Pr[Gt]

= E

[︄
1
n

∥︁∥︁∥︁∥︁√︂r(A(t−1)) −
√︂
c(A(t−1))

∥︁∥︁∥︁∥︁2

2

∥A(t−1)∥1
1
Gt

]︄
− 2δ
n

Pr[Gt]

⩾
ε

n
Pr[Gt] −

2δ
n

Pr[Gt],

where the first inequality is derived as in the lower bound for E[Rt1Gt], the
second equality holds by independence of ℓ(t) from A(t−1), the second inequality is
Lemma 13.2.4 (the lower bound on the Hellinger distance), and the last inequality
holds since A(t−1) is not ε-H2-balanced in the event Gt.

Lastly, to lower bound E[Rt1S] in Eq. (14.4.7), note that

Rt ⩽

(︁√
ϕt −

√
ψt

)︁2

ft−1
⩽
ϕt +ψt

ft−1
=
rℓ(t)(A(t−1)) + cℓ(t)(A(t−1))

∥A(t−1)∥1
⩽ 1,

where in the last inequality we use that Aℓ(t)ℓ(t) = 0. Therefore, we obtain

E[Rt1S] ⩽ Pr[S] ⩽ ηT .

Using Eq. (14.4.6) and the three bounds just derived, we have

E[(Ft−1 − Ft)1S] ⩾ E[Rt1S] = E[Rt1Gt] +E[Rt1Gt
] −E[Rt1S]

⩾ −2δ
n

Pr[Gt] +
ε

n
Pr[Gt] −

2δ
n

Pr[Gt] − ηT

=
ε

n
Pr[Gt] −

2δ
n
− ηT .

Since we also have F0 − FT ⩽ ln(∥A∥1) − ln(µ) = ln(∥A∥1/µ) by Lemma 14.4.1, we
can finish up the argument in exactly the same manner as for Theorem 14.3.4.
Indeed, we have a telescoping sum

ln(∥A∥1/µ) ⩾ E[(F0 − FT )1S] =
T∑︂
t=1
E[(Ft−1 − Ft)1S]
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⩾
ε

n

T∑︂
t=1

Pr[Gt] − T
(︃

2δ
n
+ ηT

)︃
.

In other words, we have

T∑︂
t=1

Pr[Gt] ⩽
1
ε

(︂
n ln(∥A∥1/µ) + 2δT + ηnT 2

)︂
.

Since the choice of stopping time τ ∈ [T ] is uniformly random, we have

Pr[Gτ] =
1
T

T∑︂
t=1

Pr[Gt] ⩽
1
Tε

(︂
n ln(∥A∥1/µ) + 2δT + ηnT 2

)︂
=
n ln(∥A∥1/µ)

Tε
+ 2δ
ε
+ ηnT

ε
⩽ p,

where the last inequality follows from the choice of parameters. In other words,
when we take the stopping time τ ∈ [T ] uniformly random, the probability that
x(τ−1) provides an ε-H2-balancing is at least 1 − p.

The claimed time complexity follows by multiplying the number of iterations T
with the cost of LogSumExpwith δ = pε/6, which is ˜︁O(√︁n/δ log(1/η)) as detailed
in Theorem 13.3.2. □

As in the matrix-scaling setting, one can convert the “on expectation” time com-
plexity to a worst-case guarantee, and improve the dependence on the failure prob-
ability from inverse polynomial to logarithmic by repeating and testing whether the
output yields a balanced matrix. (One can implement a procedure TestBalancing
similar to TestScaling to test whether A(x) is ε-H2-balanced, with success proba-
bility 1 − η, for a quantum cost of ˜︁O(√︁mn/ε log(1/η)), see Proposition 13.3.4.) By
using Lemma 13.2.4 to convert the guarantee in squared Hellinger distance to ℓ1,
we obtain the following corollary.

Corollary 14.4.7. Let A ∈ [0, 1]n×n be a rational matrix with all zeroes on the diagonal,
each row and column containing at least one non-zero element and all non-zero entries at
least µ > 0. Assume A is asymptotically balanceable, and let ε ∈ (0, 1] and p ∈ (0, 1].
Then there exists a quantum algorithm that, given sparse query access to A, returns a
vector x such that A(x) is ε-ℓ1-balanced with probability at least 1−p. The time complexity
is ˜︁O(√mn/(p1.5ε3)) on expectation wherem is the number of non-zero entries of A.

The Osborne and Sinkhorn algorithms are special cases of a more general
algorithm for a more general problem (see, e.g., [CMTV17; BLNW20] for details
and motivations). Suppose one is given a matrix A ∈ Rn×n

⩾0 and a vector d ∈ Rn,
and one wishes to find x such that

rℓ(A(x)) − cℓ(A(x)) = dℓ

for each ℓ ∈ [n]. That is, one prescribes the differences between the row and column
sums. One can again solve this for individual ℓ ∈ [n], by expanding the above
equation and solving for xℓ. It is clear that the case d = 0 amounts to the matrix
balancing problem and the procedure just described is the Osborne algorithm. On
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the other hand, the matrix scaling problem for B ∈ Rn×n
⩾0 and targets r, c ∈ Rn

>0
can be modeled by the above problem for the choices

A =

[︃
0 B
0 0

]︃
, d = (r,−c) ∈ R2n,

so that the first n constraints yield the desired constraints on the row marginals,
and the last n yield the desired constraints on the column marginals. Note that
the support of this matrix A is such that we may simultaneously update the first
n coordinates (or the last n coordinates) since their updates are independent.
This leads to the Sinkhorn algorithm. More generally, if G is the directed graph
with vertex set [n] and adjacency defined by the support of A, then any subset
of vertices which form an independent set in G can be updated simultaneously
(cf. [AP23, Sec. 2.5 & App. B]). In general, one can give an explicit expression for
the updates, and analyze the progress via the potential x ↦→ ∥A(x)∥1 − ⟨d, x⟩. This
potential generalizes the ones we used for matrix scaling and matrix balancing (up
to a change of sign for the last n variables in the former case), and it admits similar
potential bounds and lower bounds on the progress as derived above. However,
the details of carrying out such an analysis are less clear. We do note here that the
second-order methods in Chapter 15 should work as they do for matrix scaling
and balancing (in particular we expect little difficulty for classical algorithms), but
leave a detailed analysis to future work.
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15. Quantum box-constrained Newton
methods

In this chapter, we show how to obtain a quantum speed-up based on the box-
constrained Newton method for matrix scaling and balancing from [CMTV17],
with the main result being Theorems 15.2.8 and 15.3.7, and its consequences for
matrix scaling given in Corollaries 15.2.9 and 15.2.10 and for balancing given in
Corollary 15.3.8. The time complexity of both algorithms depends on a diameter
bound R∞ for approximate solutions. This diameter bound can be a constant for
some special cases, e.g. for entrywise-positive matrices in matrix scaling. This
allows us to achieve better quantum speed-ups for such instances as compared to
the first-order methods of Chapter 14.

In Section 15.1, we first recall some of the concepts that are used in the algorithm,
including the definition of second-order robust convex functions, the notion of a
k-oracle, and a theorem regarding efficient (classical) implementation of a k-oracle
for the class of symmetric diagonally-dominant matrices with non-positive off-
diagonal entries. We then show that for a second-order robust function g : Rn→ R

and a given x ∈ Rn such that the sublevel set {x′ : g(x′) ⩽ g(x)} is bounded, one
can use a k-oracle and approximations to the gradient and Hessian of g to find
a vector x′ such that the potential gap g(x′) − g(x∗) is smaller than g(x) − g(x∗)
where x∗ is a minimizer of g. This result extends [CMTV17, Thm. 3.4] to a setting
where one can only obtain rough approximations of the gradient and Hessian of g.
Next, in Section 15.2 and Section 15.3 respectively, we then show that this strategy
applies to regularized versions f̃ of the potential f for matrix scaling (Eq. (13.1.3))
and balancing (Eq. (14.4.2)). The Hessian of the potential function is closely related
to graph Laplacians and symmetric diagonally-dominant matrices, which allows
us to apply the recent quantum algorithm for graph sparsification (Theorem 13.3.5)
to approximate the Hessian of f̃. As for the gradients, we can approximate them
in ℓ1-norm using Corollary 13.3.1 (after accounting for the rescaling or rebalancing
determined by x).

15.1. Minimizing second-order robust convex functions
In what follows we will minimize a convex function (potential) that satisfies a
certain regularity condition: its Hessian can be approximated well on an ℓ∞-norm
ball.

Definition 15.1.1 ([CMTV17, Def. 3.1]). A convex function g : Rn → R is called
second-order robust with respect to ℓ∞ if for any x,y ∈ Rn with ∥x − y∥∞ ⩽ 1,

1
e2 Hessg(x) ⪯ Hessg(y) ⪯ e2 Hessg(x).

This chapter is adapted from [GN22].
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This implies that the local quadratic approximation to g has good quality on a
small ℓ∞-norm ball. It is therefore natural to consider the problem of minimizing a
convex quadratic function over an ℓ∞-norm ball. We will use the following notion.

Definition 15.1.2 (k-oracle). An algorithm 𝒜 is called a k-oracle for a class of
matricesℳ ⊆ Rn×n if for input (H,b) with H ∈ ℳ, b ∈ Rn, it returns a vector
x ∈ Rn such that ∥x∥∞ ⩽ k and

1
2x

THx + ⟨b, x⟩ ⩽ 1
2 · min
∥z∥∞⩽1

(12z
THz + ⟨b, z⟩). (15.1.1)

Definition 15.1.3 (SDD matrix). A matrix A ∈ Rn×n is called symmetric diagonally-
dominant if it is symmetric, and for every i ∈ [n], one has Aii ⩾

∑︁
j≠i |Aij |.

In [CMTV17] it is shown how to efficiently implement an O(log(n))-oracle for
any SDD matrix H whose off-diagonal entries are non-positive. Their algorithm
uses an efficient construction of a vertex sparsifier chain of H due to [LPS15; KLP+16].

Theorem 15.1.4 ([CMTV17, Thm. 5.11]). Given a classical description of an SDD matrix
H ∈ Rn×n with ˜︁O(m) non-zero entries, such that Hij ⩽ 0 for i ≠ j, and a classical vector
b ∈ Rn, we can find in time Õ(m) a vector x ∈ Rn such that ∥x∥∞ = O(logn) and

1
2x

THx + ⟨b, x⟩ ⩽ 1
2 · min
∥z∥∞⩽1

(12z
THz + ⟨b, z⟩).

A k-oracle 𝒜 gives rise to an iterative method for minimizing a second-order
robust function g: starting from x0 ∈ Rn, we define a sequence x(0), x(1), x(2), . . . by

x(i+1) = x(i) + 1
k
∆i, ∆i = 𝒜

(︃
e2

k2Hi,
1
k
bi

)︃
where Hi is an approximate Hessian at x(i), and bi is an approximate gradient at
x(i). The following theorem, which is an adaptation of [CMTV17, Thm. 3.4], lower
bounds the progress made in each iteration.

Theorem 15.1.5. Let g : Rn→ R be a second-order robust function with respect to ℓ∞,
let x ∈ Rn be a starting point, and suppose x∗ is a minimizer of g. Assume that we are
given

(1) a vector b ∈ Rn such that

∥b − gradg(x)∥1 ⩽ δ,

(2) two SDD matrices Hm and Ha with non-positive off-diagonal entries, such that
there exists δa ⩾ 0 and symmetric H′m and H′a satisfying Hessg(x) = H′m +H′a
and

2
3Hm ⪯ H′m ⪯

4
3Hm, ∥Ha −H′a∥1 ⩽ δa.
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Let k = O(logn) be such that there exists a k-oracle 𝒜 for the class of SDD-matrices
with non-positive off-diagonal entries (Theorem 15.1.4). Then for H = Hm +Ha and
∆ = 𝒜

(︂
4e2

3k2H, 1
kb

)︂
, the vector x′ = x + 1

k∆ satisfies

g(x′) − g(x∗) ⩽
(︃
1 − 1

4e4 max(kR∞, 1)

)︃
(g(x) − g(x∗)) + e2δa +

3
2δ,

where R∞ is the ℓ∞-radius of the sublevel set {x′ : g(x′) ⩽ g(x)} about x.

Before giving the proof, we introduce the following notation. For a symmetric
matrix H and b, z ∈ Rn, we denote

Q(H,b, z) = ⟨b, z⟩ + 1
2z

THz.

We will use the following easily-verified properties of Q repeatedly.

Lemma 15.1.6. For symmetric matrices H,H′ and vectors b,b′, z, we have the following
estimates:

(i) If H ⪯ H′, then Q(H,b, z) ⩽ Q(H′,b, z).

(ii) If ∥H −H′∥1 ⩽ δa, then

|Q(H,b, z) −Q(H′,b, z)| ⩽ 1
2δa∥z∥

2
∞.

(iii) We have

|Q(H,b, z) −Q(H,b′, z)| = |⟨b − b′, z⟩| ⩽ ∥b − b′∥1∥z∥∞.

Proof of Theorem 15.1.5. We follow the proof of [CMTV17, Thm. 3.4], and use their
implementation of a k-oracle 𝒜 for k = O(logn), as detailed in Theorem 15.1.4.
That is,𝒜 takes as input an SDD matrixHwith ˜︁O(m) non-zero entries (off-diagonal
entries ⩽ 0) and a vector b, and outputs a vector z such that ∥z∥∞ ⩽ k and

Q(H,b, z) ⩽ 1
2 inf
∥z′∥∞⩽1

Q(H,b, z′).

Then for
x′ = x + 1

k
∆, ∆ = 𝒜

(︃
4e2

3k2H, 1
k
b

)︃
we have

Q

(︃
4e2

3 H,b, 1
k
∆

)︃
= Q

(︃
4e2

3k2H, 1
k
b,∆

)︃
⩽

1
2 inf
∥v∥∞⩽1

Q

(︃
4e2

3k2H, 1
k
b, v

)︃
=

1
2 inf
∥v∥∞⩽1

Q

(︃
4e2

3 H,b, v/k
)︃

=
1
2 inf
∥v∥∞⩽ 1

k

Q

(︃
4e2

3 H,b, v
)︃

.

(15.1.2)
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Note that the second-order robustness ofg implies that for x̃ ∈ Rn with ∥x−x̃∥∞ ⩽ 1,
we have quadratic lower and upper bounds

Q
(︂ 1
e2 Hessg(x), gradg(x), x̃−x

)︂
⩽ g(x̃) −g(x) ⩽ Q

(︂
e2 Hessg(x), gradg(x), x̃−x

)︂
.

(15.1.3)
The remainder of the proof is structured as follows. We first compare quadratics
involving Hessg(x) and ∇g(x) to quadratics involving the approximations H and b
in Eqs. (15.1.4) and (15.1.5). Using these estimates we then obtain a local progress
bound over an ℓ∞-ball of radius 1/k, see Eq. (15.1.6). Finally, we convert this local
bound into a more global estimate.

Using Lemma 15.1.6, the properties of the approximate Hessian and gradient
guarantee that

Q
(︂
e2 Hessg(x), gradg(x), x̃ − x

)︂
⩽ Q

(︂
e2 Hessg(x),b, x̃ − x

)︂
+ δ

= Q
(︂
e2H′m,b, x̃ − x

)︂
+Q

(︂
e2H′a,b, x̃ − x

)︂
− ⟨b, x̃ − x⟩ + δ

⩽ Q

(︃
4e2

3 Hm,b, x̃ − x
)︃
+Q

(︂
e2Ha,b, x̃ − x

)︂
+ e

2

2 δa∥x̃ − x∥
2
∞ − ⟨b, x̃ − x⟩ + δ

⩽ Q

(︃
4e2

3 Hm,b, x̃ − x
)︃
+Q

(︃
4e2

3 Ha,b, x̃ − x
)︃
+ e

2

2 δa∥x̃ − x∥
2
∞ − ⟨b, x̃ − x⟩ + δ

= Q

(︃
4e2

3 H,b, x̃ − x
)︃
+ e

2

2 δa∥x̃ − x∥
2
∞ + δ.

(15.1.4)
Furthermore, we also have the upper bound on the quadratic term:

Q

(︃
4e2

3 H,b, x̃ − x
)︃

= Q

(︃
4e2

3 Hm,b, x̃ − x
)︃
+Q

(︃
4e2

3 Ha,b, x̃ − x
)︃
− ⟨b, x̃ − x⟩

⩽ Q
(︂
2e2H′m,b, x̃ − x

)︂
+Q

(︂
2e2Ha,b, x̃ − x

)︂
− ⟨b, x̃ − x⟩

⩽ Q
(︂
2e2H′m,b, x̃ − x

)︂
+Q

(︂
2e2H′a,b, x̃ − x

)︂
+ e2δa∥x̃ − x∥2∞ − ⟨b, x̃ − x⟩

= Q
(︂
2e2 Hessg(x),b, x̃ − x

)︂
+ e2δa∥x̃ − x∥2∞

⩽ Q
(︂
2e2 Hessg(x), gradg(x), x̃ − x

)︂
+ e2δa∥x̃ − x∥2∞ + δ.

(15.1.5)
Let vL and vU be the minimizers of quadratics over the ℓ∞-ball of radius 1/k:

vL = argmin
∥v∥∞⩽1/k

Q

(︃
1
e2 Hessg(x), gradg(x), v

)︃
,

vU = argmin
∥v∥∞⩽1/k

Q
(︂
2e2 Hessg(x), gradg(x), v

)︂
.
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We can further bound Eq. (15.1.2):

Q

(︃
4e2

3 H,b, 1
k
∆

)︃
⩽

1
2 inf
∥v∥∞⩽1/k

Q

(︃
4e2

3 H,b, v
)︃

⩽
1
2 inf
∥v∥∞⩽1/k

(Q
(︂
2e2 Hessg(x), gradg(x), v

)︂
+ e2δa∥v∥2∞ + δ)

⩽
1
2Q

(︂
2e2 Hessg(x), gradg(x), vU

)︂
+ e

2δa

2k2 +
1
2δ,

where the second inequality uses Eq. (15.1.5), and the norm bounds ∥v∥∞ ⩽ 1/k ⩽ 1
(to apply the inequality). Using the quadratic upper bound from Eq. (15.1.3) on
g(x + 1

k∆) − g(x) and Eq. (15.1.4), this yields

g(x + 1
k
∆) − g(x) ⩽ Q

(︃
e2 Hessg(x), gradg(x), 1

k
∆

)︃
⩽ Q

(︃
4e2

3 H,b, 1
k
∆

)︃
+ e

2

2 δa∥
1
k
∆∥2∞ + δ

⩽
1
2Q

(︂
2e2 Hessg(x), gradg(x), vU

)︂
+ e2δa +

3
2δ,

where the last inequality uses that ∥ 1
k∆∥2∞ ⩽ 1 and e2δa

2k2 + e2δa

2 ⩽ e2δa. We can
then further upper bound the quadratic term using

Q
(︂
2e2 Hessg(x), gradg(x), vU

)︂
⩽ Q

(︂
2e2 Hessg(x), gradg(x), vL

2e4

)︂
=

1
2e4Q

(︃
1
e2 Hessg(x), gradg(x), vL

)︃
,

where the inequality uses vU = argmin∥v∥∞⩽1/kQ(2e2 Hessg(x), gradg(x), v) and
∥vL∥∞ ⩽ 1/k. Collecting estimates, we obtain

g(x + 1
k
∆) − g(x) ⩽ 1

4e4Q

(︃
1
e2 Hessg(x), gradg(x), vL

)︃
+ e2δa +

3
2δ. (15.1.6)

We now convert this to a more global estimate. Let x∗ be a global minimizer of g.
Set y = x + 1

max(kR∞,1)(x
∗ − x), so that ∥y − x∥∞ ⩽ 1

k . For the lower bound

gL(x̃) = g(x) +Q
(︃

1
e2 Hessg(x), gradg(x), x̃ − x

)︃
on g(x̃) we see that gL(x + vL) ⩽ gL(y) ⩽ g(y) since x + vL minimizes gL ⩽ g over
the ℓ∞-ball of radius 1/k around x. By convexity of gwe get

g(y) = g(x + 1
max(kR∞, 1)(x

∗ − x)) ⩽ (1 − 1
max(kR∞, 1))g(x) +

1
max(kR∞, 1)g(x

∗)

so

Q

(︃
1
e2 Hessg(x), gradg(x), vL

)︃
= gL(x + vL) − g(x)

331



15. Quantum box-constrained Newton methods

⩽ g(y) − g(x) ⩽ 1
max(kR∞, 1)(g(x

∗) − g(x)).

Using the estimate in Eq. (15.1.6), this gives

g(x) − g(x + 1
k
∆) ⩾ 1

4e4 max(kR∞, 1)
(g(x) − g(x∗)) − (e2δa +

3
2δ), (15.1.7)

which after rearranging and rewriting x′ = x + 1
k∆ reads

g(x′) − g(x∗) ⩽
(︃
1 − 1

4e4 max(kR∞, 1)

)︃
(g(x) − g(x∗)) + e2δa +

3
2δ. □

15.2. Quantum box-constrained matrix scaling
We show how to combine the box-constrained Newton method and the quantum
Laplacian sparsifier from Theorem 13.3.5 to solve matrix scaling. For this, we
sequentially present: (1) a regularized potential function for matrix scaling, (2)
quantum algorithms for approximating its Hessian and gradient, (3) a quantum
box-constrained matrix scaling algorithm and its analysis. We note that our
algorithm does not just iteratively apply the result of Section 15.1: inbetween
such iterations we must change our scaling vectors to ensure the 1-norm of the
rescaling A(x,y) does not become too large.

15.2.1. A second-order robust potential function for matrix scaling
For a matrix A ∈ Rn×n

⩾0 , a desired error ε > 0, and some number B ⩾ 1, we consider
the regularized potential function f̃(x,y) given by

f̃(x,y) = f(x,y) + ε

neB

(︄∑︂
i

(exi + e−xi) +
∑︂
j

(eyj + e−yj)
)︄

, (15.2.1)

where f(x,y) =
∑︁n

i,j=1Aije
xi+yj − ⟨r, x⟩ − ⟨c,y⟩ is the commonly-used potential

function from Eq. (13.1.3). The regularization term is taken from [CMTV17], but
with a different weight (since we aim for scalings with respect to relative entropy
rather than with respect to ℓ2-distance). The following is then an adaptation of
[CMTV17, Lem. 4.10].

Lemma 15.2.1. Assume A is asymptotically scalable, with ∥A∥1 ⩽ 1, and µ > 0 its
smallest non-zero entry. Let B > 0 and ε > 0 be given. Then the regularized potential f̃
satisfies the following properties:

(i) f̃ is second-order robust with respect to ℓ∞, and its Hessian is SDD;

(ii) we have f(x,y) ⩽ f̃(x,y) for any (x,y);

(iii) for all (x,y) such that f̃(x,y) ⩽ f̃(0, 0), we have ∥(x,y)∥∞ ⩽ B + ln(4n +
(n ln(1/µ)/ε)), and

(iv) for any (xε,yε) such that f(xε,yε) ⩽ f∗+ε and ∥xε,yε∥∞ ⩽ B, one has f̃(xε,yε) ⩽
f∗ + 5ε. In particular, if such a (xε,yε) exists, then |f∗ − f̃∗ | ⩽ 5ε.
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Proof. The first point is easy to verify, as is the second point (the regularization
term is always positive). For the third point, suppose we have a (x,y) such that
f̃(x,y) ⩽ f̃(0). Then

ε

neB

(︄∑︂
i

(exi + e−xi) +
∑︂
j

(eyj + e−yj)
)︄
⩽ f(0, 0)−f(x,y)+ ε

neB
·4n ⩽ ln(1/µ)+ 4ε

eB
,

(15.2.2)
where the last inequality follows from the potential bound f(0, 0) − f∗ ⩽ ln(1/µ)
(Theorem 14.1.1), which depends on ∥A∥1 ⩽ 1; in general the upper bound is
∥A∥1 − 1 + ln(1/µ)). Since each of the regularization terms is positive, we may
restrict ourselves to a single term and see that

exi + e−xi ⩽
neB ln(1/µ)

ε
+ 4n,

from which we may deduce

|xi | ⩽ ln
(︃
eBn ln(1/µ)

ε
+ 4n

)︃
= B+ ln

(︃
n ln(1/µ)

ε
+ 4n
eB

)︃
⩽ B+ ln

(︃
n ln(1/µ)

ε
+ 4n

)︃
,

where the last inequality uses eB ⩾ 1 (recall B > 0). The same upper bound holds
for |yj |.

For the last point, note that if xε = (x1, . . . , xn), then exi + e−xi ⩽ 2eB and
similarly for yi, so

f̃(xε,yε) ⩽ f(xε,yε) +
ε

neB
· 4neB = f(xε,yε) + 4ε ⩽ f∗ + 5ε.

If such a zε exists, then

f∗ ⩽ f̃
∗
⩽ f̃(xε,yε) ⩽ f∗ + 5ε. □

15.2.2. Quantum algorithms for approximating the Hessian and
gradient for scaling

In order to use Theorem 15.1.5 to minimize f̃, we need to show how to approximate
both the gradient and Hessian of f̃. We first consider the Hessian of f̃, which can
be written as the sum of the Hessian of f and the Hessian of the regularizer f̃ − f.
We have

Hess f(x,y) =
[︃
diag(r(A(x,y))) A(x,y)

A(x,y)T diag(c(A(x,y)))

]︃
,

Hess(f̃ − f)(x,y) = ε

neB

[︃
diag(ex + e−x) 0

0 diag(ey + e−y)

]︃
.

(15.2.3)

Note that computing Hess f̃(x,y) up to high precision can be done using ˜︁O(m)
classical queries to A, x, and y. Below we show how to obtain a sparse approxi-
mation of Hess f̃(x,y) using only ˜︁O(√mn) quantum queries. We will do so in the
sense of condition (2) of Theorem 15.1.5 where we take H′m to be a (high-precision)
additive approximation of Hess f(x,y), and H′a = Hess f̃(x,y) −H′m.
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We first obtain a multiplicative spectral approximation of (a high-precision
additive approximation of) Hess f(x,y). In order to do so we use its structure: it is
similar to a Laplacian matrix. This allows us to use the recent quantum Laplacian
sparsifier of Apers and de Wolf (Theorem 13.3.5).

Lemma 15.2.2. Given quantum query access to x,y and sparse quantum query access to
A, such that ∥A(x,y)∥1 ⩽ C, we can compute an SDD matrix Hm with ˜︁O(n) non-zero
entries, each off-diagonal entry non-negative, such that there exist symmetric H′m and
H′a,f satisfying H′m +H′a,f = Hess f(x,y), and

0.9Hm ⪯ H′m ⪯ 1.1Hm, ∥H′a,f∥1 ⩽ δa,

in time ˜︁O(√mnpolylog(C/δa)).

Proof. The key observation is that Hess f(x,y) satisfies

H =

[︃
I 0
0 −I

]︃
Hess f(x,y)

[︃
I 0
0 −I

]︃
=

[︃
diag(r(A(x,y))) −A(x,y)
−A(x,y)T diag(c(A(x,y)))

]︃
,

which is the Laplacian of the bipartite graph whose bipartite adjacency matrix
is given by A(x,y). Any off-diagonal entry of H can be computed with additive
error δa/2(2m + 2n) using a single query to A, to x and to y: the (i, j)-th entry of
A(x,y) is Aije

xi+yj , which is at most C (since ∥A(x,y)∥1 ⩽ C by assumption), so
we can compute exi+yj to sufficient precision (⌈log2(C/µ)⌉ +O(1) leading bits and
⌈log2(2(2m + 2n)/δa)⌉ +O(1) trailing bits) and multiply it with Aij. We can do
this in such a way that if Aij = 0, then the resulting entry is 0, and such that the
approximation of Aije

xi+yj is always non-negative.
LetH′ be the matrix whose off-diagonal entries are given by these approximations

of the corresponding entries of H, and whose diagonal entries are such that H′
is Laplacian. Then ∥H′ − H∥1 ⩽ δa by the chosen precision for the additive
approximation. Furthermore, as described before, a single query to off-diagonal
entries of H′ can be implemented using a single query to A, x and y. We may
then use Theorem 13.3.5 to sparsify H′, which uses ˜︁O(√mn) queries to the off-
diagonal entries of H′ and outputs a 0.1-spectral sparsification H̃ of H′ that has˜︁O(n) non-zero entries. Note that every non-zero entry of H̃ was already non-zero
in H′ because it is the Laplacian of a reweighted subgraph of the graph described
by H′; hence any non-zero off-diagonal entry in H̃ is contained in either the upper
right or lower left n × n block, and each such entry is non-positive. Then the
matrix Hm = diag(I,−I)H̃diag(I,−I) satisfies the conclusion in the lemma, with
H′m = diag(I,−I)H′ diag(I,−I) and H′a,f = diag(I,−I)(H −H′)diag(I,−I). □

We now show how to compute an additive approximation of the Hessian of the
regularization term in f̃.

Lemma 15.2.3. Given quantum query access to x,y with ∥x∥∞, ∥y∥∞ ⩽ B + ln(4n +
(n ln(1/µ)/ε)), we can compute a non-negative diagonal matrix Ha,f̃ that satisfies
∥Ha,f̃ −Hess(f̃ − f)(x,y)∥1 ⩽ δa, in time ˜︁O(n log(1/δaµ)polylog(ε)).
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Proof. Recall that Hess(f̃ − f)(x,y) is a diagonal matrix whose entries are of the
form ε

neB (exi + e−xi) or ε
neB (eyi + e−yi). Note that by assumption on the ℓ∞-norms

of x and y, all diagonal entries are upper bounded by

2 ε

neB
eB+ln(4n+(n ln(1/µ)/ε)) = 8ε + 2 ln(1/µ).

Hence, it suffices to compute each diagonal entry using ⌈log2(8ε + 2 ln(1/µ))⌉
leading bits and ⌈log2(1/nδa)⌉ trailing bits. We can do so efficiently by using the
identity

ε

neB
(exi + e−xi) = ε

n
(exi−B + e−xi−B)

and the analogous one for yi. □

Theorem 15.2.4. Given quantum query access to x,y with ∥x∥∞, ∥y∥∞ ⩽ B + ln(4n +
(n ln(1/µ)/ε)), and sparse quantum query access to A, if ∥A(x,y)∥1 ⩽ C, then we can
compute (classical descriptions of) an SDD matrix Hm with ˜︁O(n) non-zero entries, with
all of the off-diagonal entries non-negative, and a non-negative diagonal matrix Ha such
that there exist symmetric H′m, H′a with H′m +H′a = Hess f̃(x,y) and

0.9Hm ⪯ H′m ⪯ 1.1Hm, ∥Ha −H′a∥1 ⩽ δa

in quantum time ˜︁O(√mnpolylog(C/µδa)).
Proof. Let Hm be the matrix obtained from Lemma 15.2.2, and let Ha be the matrix
Ha,f̃ obtained from Lemma 15.2.3, with precisionδa/2. ThenHm andHa satisfy the
desired properties, with H′m as in Lemma 15.2.2, and H′a = H′a,f+Hess(f̃− f)(x,y)
with H′a,f as in Lemma 15.2.2. □

Now we compute a good approximation of the gradient of f̃, which is given by

grad f̃(x,y) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1(A(x,y)) − r1
...

rn(A(x,y)) − rn
c1(A(x,y)) − c1

...
cn(A(x,y)) − cn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ ε

neB

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ex1 − e−x1

...
exn − e−xn

ey1 − e−y1

...
eyn − e−yn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

We can use quantum approximate summing to compute the row and column
marginals with multiplicative error 1 ± δ, which translates into additive error
δ · ri(A(x,y)) or similar for the column sums. This yields an ℓ1-error in the vector
of row or column sums which scales with ∥A(x,y)∥1; see Corollary 13.3.1 for
details. The part of the gradient coming from the regularization term is dealt with
similarly as in Lemma 15.2.3.

Lemma 15.2.5. Given quantum query access to (b1,b2)-fixed-point representations of
x,y ∈ Rn and sparse quantum query access to rational A ∈ [0, 1]n×n, if ∥A(x,y)∥1 ⩽ C,
we can find a classical description of a vector b ∈ Rn such that

∥b − grad f̃(x,y)∥1 ⩽ δ · C

in quantum time ˜︁O(√︁mn/δ · polylog(C/µ)), where the ˜︁O(·) hides polynomial factors
in b1,b2 and the encoding length of A, and polylogarithmic factors in n and 1/δ.
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15.2.3. Quantum box-constrained matrix scaling
Combining the quantum algorithms for Hessian and gradient estimation (Theo-
rem 15.2.4 and Lemma 15.2.5) with the general framework of optimizing second-
order robust functions (Theorem 15.1.5), we can obtain a quantum algorithm for
matrix scaling that is based on classical box-constrained Newton methods. See
Algorithm 15.1 for its formal definition.

Before analyzing the algorithm, we show that throughout our algorithm,
∥A(x,y)∥1 is bounded above by a constant; if ∥A(x,y)∥1 is too large, we can
change the overall scaling of the matrix and decrease the regularized potential (so
in particular, we stay in the sublevel set of the regularized potential).

Lemma 15.2.6. Let x,y be such that f̃(x,y) ⩽ f̃(0, 0), and assume ∥A(x,y)∥1 ⩾ C′
where C′ > 1. Let x′ = x − ln(γ)1 where 1 ⩽ γ ⩽ C′. Then

f̃(x′,y) − f̃(x,y) ⩽ ( 1
γ
− 1)C′ + ln(γ) + (γ − 1)

(︃
ln(1/µ) + 4ε

eB

)︃
Proof. We have

f̃(x′,y) − f̃(x,y)

= ( 1
γ
− 1)∥A(x,y)∥1 + ⟨r, ln(γ)1⟩ + ε

neB

(︄∑︂
i

(exi−ln(γ) − exi + e−xi+ln(γ) − e−xi)
)︄

= ( 1
γ
− 1)∥A(x,y)∥1 + ln(γ) + ε

neB
( 1
γ
− 1)

(︄∑︂
i

exi

)︄
+ ε

neB
(γ − 1)(

∑︂
i

e−xi)

⩽ ( 1
γ
− 1)∥A(x,y)∥1 + ln(γ) + 0 + ε

neB
(γ − 1)(

∑︂
i

e−xi)

⩽ ( 1
γ
− 1)C′ + ln(γ) + (γ − 1)(ln(1/µ) + 4ε

eB
)

where for the last inequality we use ∥A(x,y)∥1 ⩾ C′ for the first term and Eq. (15.2.2)
for the last term. □

An appropriate choice of C′ and γ makes the bound in the above lemma
non-positive.

Corollary 15.2.7. Let ε ⩽ 1 and µ ⩽ 1, set γ = 2 and C′ = 2(ln(2/µ) + 4ε/eB). Then,
if ∥A(x,y)∥1 ⩾ C′ and f̃(x,y) ⩽ f̃(0, 0), we have f̃(x′,y) ⩽ f̃(x,y).

Now we are ready to analyze Algorithm 15.1.

Theorem 15.2.8. Let A ∈ [0, 1]n×n with m non-zero entries, r, c ∈ Rn
>0 such that

∥r∥1 = 1 = ∥c∥1, and assume A is asymptotically (r, c)-scalable. Let ε > 0, let B ⩾ 1,
and assume there exist (xε,yε) such that ∥(xε,yε)∥∞ ⩽ B and f(xε,yε) − f∗ ⩽ ε.
Furthermore, let𝒜 be the O(log(n))-oracle of Theorem 15.1.4. Then Algorithm 15.1 with
these parameters outputs, with probability ⩾ 2/3, vectors x,y such that f(x,y) − f∗ ⩽ 6ε
and runs in quantum time ˜︁O(B1.5

√︁
mn/ε).
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Algorithm 15.1: Quantum box-constrained Newton method for matrix
scaling
Input: Query access to A ∈ [0, 1]n×n with ∥A∥1 ⩽ 1 and smallest non-zero

entry µ > 0, error ε > 0, targets r, c ∈ Rn
>0 with ∥r∥1 = 1 = ∥c∥1,

diameter bound B ⩾ 1, classical k-oracle𝒜 for SDD matrices with
non-negative off-diagonal entries

Output: Vectors x,y ∈ Rn with ∥(x,y)∥∞ ⩽ B + ln(4n + (n ln(1/µ)/ε))
Analysis: Theorem 15.2.8 and Corollaries 15.2.9 and 15.2.10

1 set T = ⌈4e4 max(k(B + ln(4n + (n ln(1/µ)/ε))), 1) · ln
(︂

ln(1/µ)+4ε/eB

ε/2

)︂
⌉;

2 set C′ = 2⌈ln(2/µ) + 8ε/eB⌉;
3 set ε′ = ⌊ε/8e4 max(k(B + ln(4n + (n ln(1/µ)/ε))), 1)⌋;
4 store x(0),y(0) = 0 ∈ Rn in QCRAM;
5 for i = 0, . . . , T − 1 do
6 compute Hm, Ha s.t. Hm +Ha ≈ Hess f̃(x(i),y(i)) as in Theorem 15.2.4

with δa = ε′/2e2;
7 compute b ≈ grad f̃(x(i),y(i)) as in Lemma 15.2.5 at x(i),y(i) with

δ = ε′/3;
8 compute ∆ = 𝒜( 4e2

3k2 · (Hm +Ha), bk );
9 compute (x(i+1),y(i+1)) = (x(i),y(i)) + 1

k∆ and store in QCRAM;
10 set flag = true;
11 while flag do
12 Compute C′/2-additive approximation γ of ∥A(x(i+1),y(i+1))∥1;
13 if γ ⩽ 3C′/2 then
14 set flag = false;
15 end if
16 else
17 update x(i+1)← x(i+1) − ln(2)1 in QCRAM;
18 end if
19 end while
20 end for
21 return (x,y) = (x(T ),y(T ));

Proof. In every iteration, the matrices Hm,Ha and the vector b are such that they
satisfy the requirements of Theorem 15.1.5, hence

f̃(x(i+1),y(i+1)) − f̃∗ ⩽
(︃
1 − 1

4e4 max(kR∞, 1)

)︃
(f̃(x(i),y(i)) − f̃∗) + e2δa +

3δ
2

where R∞ ⩽ B + ln(4n + (n ln(1/µ)/ε))) is the ℓ∞-radius of the sublevel set {(x,y) :
f̃(x,y) ⩽ f̃(0, 0)} about (0, 0), whose upper bound follows from Lemma 15.2.1.
From here on, we write M = 4e4 max(kR∞, 1). The choice of δa and δ in the
algorithm is such that e2δa + 3δ/2 ⩽ ε

2M , hence we can also bound the progress by

f̃(x(i+1),y(i+1)) − f̃∗ ⩽
(︃
1 − 1

M

)︃
(f̃(x(i),y(i)) − f̃∗) + ε

2M .

337



15. Quantum box-constrained Newton methods

Corollary 15.2.7 shows that if ∥A(x(i+1),y(i+1))∥1 is larger than C′, then we can
shift x by − ln(2)1, this halves ∥A(x(i+1),y(i+1))∥1 and does not increase the regular-
ized potential. Repeating this roughly log2(∥A(x(i+1),y(i+1))∥1/C′)many times1 re-
duces ∥A(x(i+1),y(i+1))∥1 to at mostC = 2C′. Determining when to stop this process
requires a procedure to distinguish between the cases ∥A(x(i+1),y(i+1))∥1 ⩽ C′ and
∥A(x(i+1),y(i+1))∥1 ⩾ 2C′ (if in between C′ and 2C′ either continuing or stopping is
fine). Such a procedure can be implemented by computing a C′/2-additive approx-
imation of ∥A(x(i+1),y(i+1))∥1, which can be done using ˜︁O(√mnpolylog(C′/µ))
quantum queries (Lemma 13.3.9). Therefore, throughout the algorithm we may
assume that ∥A(x(i+1),y(i+1))∥1 ⩽ 2C′ = C.

It remains to show that f̃(x(T ),y(T )) − f̃∗ ⩽ ε for our choice of T . Note that we
have

f̃(x(T ),y(T )) − f̃∗ ⩽ (1 − 1
M
)T (f̃(0, 0) − f̃∗) +

T−1∑︂
i=0
(1 − 1

M
)T−i−1 · ε2M

⩽ (1 − 1
M
)T (f̃(0, 0) − f̃∗) + (1 − (1 − 1

M
)T ) · ε2

⩽ (1 − 1
M
)T (f(0, 0) − f∗ + 2ε

eB
) + ε2

⩽ (1 − 1
M
)T (ln(1/µ) + 2ε

eB
) + ε2

⩽ ε

where the third inequality uses f̃∗ ⩾ f∗ and f̃(0, 0) = f(0, 0) + 4ε/eB (Lemma 15.2.1),
and in the last inequality we use

T =

⌈︃
4e4 max(k(B + ln(4n + (n ln(1/µ)/ε))), 1) · ln

(︃
ln(1/µ) + 4ε/eB

ε/2

)︃⌉︃
⩾

⌈︃
M · ln

(︃
ln(1/µ) + 4ε/eB

ε/2

)︃⌉︃
⩾

1
ln(1 − 1

M)
· ln

(︄
ε/2

ln(1/µ) + 4ε
eB

)︄
.

This implies that

f(x(T ),y(T )) − f∗ ⩽ f̃(x(T ),y(T )) − f̃∗ + 5ε ⩽ 6ε,

where we crucially use the last point of Lemma 15.2.1 and the assumption that
there exist (xε,yε)with ∥(xε,yε)∥∞ ⩽ Bwhich ε-minimize f.

Finally we bound the time complexity of Algorithm 15.1. For each of the quoted
results, we use the choice C = 2C′ = ˜︁O(ln(n) + ε). In each of the T iterations we
compute:

(i) approximations Hm, Ha of Hess f̃(x(i),y(i)) in time ˜︁O(√mnpolylog(1/ε))
(Theorem 15.2.4, using that C, 1/µ are at most poly(n)),

1Which is an almost constant number of times: in a single update of the box-constrained method,
we take steps of size at most 1 in ℓ∞-norm, so individual entries can only grow by a factor e2 in
a single iteration, and the holds same for ∥A(x,y)∥1.
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(ii) an ε′/3-ℓ1-approximation of ∇f̃(x(i),y(i)) in time ˜︁O(√︁mn/ε′) = ˜︁O(√︁Bmn/ε)
(Lemma 15.2.5)

(iii) an update ∆ in time ˜︁O(n) using one call to the k = O(log(n))-oracle on
SDD-matrices with ˜︁O(n) non-zero entries (Theorem 15.1.4)

(iv) at most O(1)many times (using the fact that in Line 9 the 1-norm changes
by at most a constant factor since ∥ 1

k∆∥∞ ⩽ 1) an O(ln(1/µ) + ε)-additive
approximation of ∥A(x(i),y(i))∥1 in time ˜︁O(√mn) (Lemma 13.3.9).

Note that the second contribution dominates the others, resulting in an overall
time complexity ˜︁O(B1.5

√︁
mn/ε). □

The above theorem assumes that a bound B on the ℓ∞-norm of an ε-minimizer of
f is known. For the purpose of matrix scaling, one can circumvent this assumption
by running the algorithm for successive powers of 2 (i.e.,B = 1,B = 2,B = 4,. . .) and
testing after each run whether the output provides an ε-relative-entropy-scaling or
not. Verifying whether given x,y provide an ε-relative-entropy-scaling of A can
be done in time ˜︁O(√︁mn/ε) (see Theorem 13.3.3). Note that this gives an algorithm
for ε-relative-entropy-scaling whose complexity depends on a diameter bound
for ε-minimizers of f, rather than a diameter bound for ε-relative-entropy-scaling
vectors. Furthermore, such an iterative doubling approach does not work for the
task of finding an ε-minimizer of f, as we do not know how to test this property
efficiently.

As a consequence of Theorem 15.2.8 and Lemma 14.1.2, we deduce the following
result.

Corollary 15.2.9. For asymptotically-scalable matrices A ∈ Rn×n
⩾0 with m non-zero

entries, there is a quantum algorithm that finds ε-relative-entropy-scaling vectors (x,y) of
A to target marginals r, c ∈ Rn

>0 with ∥r∥1 = 1 = ∥c∥1 in time ˜︁O(R1.5
∞

√︁
mn/ε), where

R∞ is such that there exists an ε-approximate minimizer (xε,yε) of f with

R∞ = ∥(xε,yε)∥∞ + ln(4n + (n ln(1/µ)/ε)).

We can use Pinsker’s inequality (Lemma 13.2.1) to convert the above to a result
about ℓ1-scaling, yielding a ε-ℓ1-scaling in time ˜︁O(R1.5

∞
√
mn/ε). Note that the

relevant radius bound R∞ is that of an O(ε2)-approximate minimizer of f instead
of an O(ε)-approximate minimizer.

For the general case mentioned above, we do not have good (i.e., polylogarithmic)
bounds on the parameter R∞. We do have such bounds when A is entrywise
positive: it is well-known (and easy to show2) that such anA can be exactly scaled to

2From the inequality Aije
xi+yj ⩽ 1/n one gets the upper bounds xi + yj ⩽ ln(1/nµ) for every i, j.

To obtain a variation norm bound forx andy, note that for every fixed i, there is at least one ji such
that Aijie

xi+yji ⩾ 1/n2 (because the row sums are 1/n). Therefore xi + yji ⩾ ln(1/n2ν) where
ν is the largest entry ofA, and xi′−xi = (xi′+yji)−(xi+yji) ⩽ ln(1/nµ)− ln(1/n2ν) = ln(nν/µ)
for every i, i′. This is an upper bound on the variation norm of x, and one can derive the same
bound for that of y. By translating x,y by appropriate multiples of the all-ones vector we can
assume x1 = 0. Then the variation-norm bound also bounds the ℓ∞-norm of x. To then get
an ℓ∞-bound on y, recall that for at least one j, one has x1 + yj = yj ⩾ ln(1/n2ν) ⩾ 0 and still
yj = x1 + yj ⩽ ln(1/nµ), so ∥y∥∞ ⩽ ln(1/nµ) + ln(nν/µ) = ln(ν/µ2).
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uniform marginals with scaling vectors (x,y) such that ∥(x,y)∥∞ = O(log(∥A∥1/µ))
([KK96, Lem. 1], [CMTV17, Lem. 4.11]). In particular, this implies that there exists
a minimizer (x∗,y∗) of fwith ∥(x∗,y∗)∥∞ = O(log(∥A∥1/µ)) = ˜︁O(1) and therefore
we have the following corollary.

Corollary 15.2.10. For entrywise-positive matrices A, there is a quantum algorithm
that finds an ε-relative-entropy-scaling of A to uniform marginals in time ˜︁O(n1.5/

√
ε).

Similarly, it finds an ε-ℓ1-scaling of A to uniform marginals in time ˜︁O(n1.5/ε).

15.2.4. Optimality of the choice of parameters.
A natural question is whether the current choice of approximation precision in
every iteration is essentially optimal: when the potential gap is large, the loss in
potential decrease due to imprecision in the gradient estimation is less relevant.
Therefore one may hope that a more dynamic choice of precision yields a better
complexity. We show that this is not the case: using the same precision in every
iteration is essentially optimal.

To formalize the argument, we proceed as follows. Let zi = f̃(x(i),y(i)) − f̃
∗ be

the regularized potential gap in the i-th iteration. Then the zi satisfy constraints of
the following form:

zi+1 ⩽ (1 − γ)zi + δi,
where γ = 1

4e4 max(kR∞,1) and δi is a parameter that determines the accuracy with
which we approximate the gradient and Hessian in each iteration. In the algorithm
we used the choice δi = e2δa + 3δ

2 , independently of i. Since the complexity in
each iteration scales as 1/

√
δi as a function of δi, a natural question is whether one

can obtain a better overall complexity by letting δi depend on i. In the following
lemma we show this is not the case.

Lemma 15.2.11. Let z0 > 0, ε > 0 and 0 < γ ⩽ 1/2 be given. Then, for any N ⩾ 1 and
any choice of sequence of δ0, . . . , δN−1 > 0 such that the sequence defined by

zi+1 = (1 − γ) zi + δi, 0 ⩽ i ⩽ N − 1

satisfies zN ⩽ ε, one must have

N−1∑︂
i=0

1√
δi
⩾

1
γ3/2√ε

(︂
1 − (ε/z0)1/3

)︂3/2
.

Proof. Observe that we have the explicit expression

zN = (1 − γ)Nz0 +
N−1∑︂
i=0
(1 − γ)N−i−1δi.

As every term in this sum is positive, we must have (1−γ)Nz0 < ε if zN ⩽ ε (where
we have strict inequality sinceN ⩾ 1 and therefore the sum is not empty). Now fix
N such that (1 − γ)Nz0 < ε, and define the Lagrangian L(δ0, . . . , δN−1; λ) by

L(δ0, . . . , δN−1; λ) =
N−1∑︂
i=0

1√
δi
+ λ

(︄
(1 − γ)Nz0 +

N−1∑︂
i=0
(1 − γ)N−i−1δi − ε

)︄
.
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Observe that the Lagrangian is convex in the δi and that the constraint zN ⩽ ε is
linear in the δi, and can be made strict for a very small choice of δi. This shows
that the Karush–Kuhn–Tucker conditions are satisfied, so that

∑︁N−1
i=0 1/

√
δi is

minimized subject to the constraint zN ⩽ ε if and only if gradL(δ0, . . . , δN−1; λ) = 0
for some λ ⩾ 0. This gradient vanishes if and only if

−1
2

1
δ

3/2
i

+λ · (1 − γ)N−i−1
= 0, 0 ⩽ i ⩽ N−1, ε = (1−γ)Nz0+

N−1∑︂
i=0
(1−γ)N−i−1δi.

For fixed λ > 0 this means that the optimal choice of δi is

δi = (2λ)−2/3
(︂
(1 − γ)−2/3

)︂N−i−1
= cλ((1 − γ)−2/3)N−i−1

where cλ := (2λ)−2/3. The constraint zN = ε then allows us to express cλ in terms
of ε, γ, and z0:

ε − (1 − γ)Nz0 = cλ

N−1∑︂
i=0
((1 − γ)1/3)N−i−1 = cλ ·

1 − (1 − γ)N/3
1 − (1 − γ)1/3

.

This leads to an associated cost of
N−1∑︂
i=0

1√
δi

=
1√
cλ
· 1 − (1 − γ)N/3

1 − (1 − γ)1/3
=

(︃
1 − (1 − γ)N/3
1 − (1 − γ)1/3

)︃3/2
· 1√︁
ε − (1 − γ)Nz0

.

As γ ⩽ 1 we have 1 − (1 − γ)1/3 ⩽ γ, and because (1 − γ)Nz0 < ε, we have

1 − (1 − γ)N/3 > 1 − (ε/z0)1/3

and the cost satisfies
N−1∑︂
i=0

1√
δi
⩾

(︃
1 − (ε/z0)1/3

γ

)︃3/2
· 1√︁
ε − (1 − γ)Nz0

⩾
1

γ3/2√ε

(︂
1 − (ε/z0)1/3

)︂3/2
. □

15.3. Quantum box-constrained matrix balancing
We can use the same techniques to tackle the matrix balancing problem. Again,
we present in the following order: (1) a regularized potential function for matrix
balancing, (2) quantum algorithms for approximating the Hessian and gradient,
and (3) a quantum box-constrained matrix balancing algorithm and its analysis.
There is a non-trivial technical difference between this analysis and that for scaling:
we are looking for multiplicative minimizers of the potential function f (as defined
in Section 14.4), rather than additive minimizers, in light of Corollary 14.4.3.
Instead, one could also consider running the box-constrained Newton method
for (a regularized version of) the logarithmic potential log f, but its Hessian is no
longer symmetric diagonally-dominant (although it is still second-order robust).
Naively, this would also affect the required precision for the gradient of f in each
iteration; to circumvent this, we appeal to the natural multiplicative nature of our
quantum summing and hence gradient estimation routine (see Lemma 15.3.6).
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15. Quantum box-constrained Newton methods

15.3.1. A second-order robust potential function for matrix
balancing

Given a matrix A ∈ Rn×n
⩾0 with smallest non-zero entry µ and zero diagonal, a

desired error ε > 0, and some number B > 0, we consider the regularized potential
function f̃(x) given by

f̃(x) = f(x) + µε

neB

(︄∑︂
i

(exi + e−xi)
)︄

, (15.3.1)

where f(x) = ∥A(x)∥1 =
∑︁n

i,j=1Aije
xi−xj is the commonly-used potential function

for analyzing algorithms for matrix balancing (see Section 14.4), and we have regu-
larized the potential similarly as in [CMTV17]. Note that compared to Section 15.2,
there is an additional factor µ in the regularization term, and µ is a lower bound
on f∗ = infx∈Rn f(x) when A is asymptotically balanceable (Lemma 14.4.1). The
following is an adaptation of [CMTV17, Lem. 4.23].

Lemma 15.3.1. Let A ∈ Rn×n
⩾0 be asymptotically balanceable. Let ε > 0 and B > 0 be

given. Then

(i) f̃ is second-order robust with respect to ℓ∞ and its Hessian is SDD,

(ii) f(x) ⩽ f̃(x) for all x ∈ Rn,

(iii) for all x ∈ Rn such that f̃(x) ⩽ f̃(0), we have ∥x∥∞ ⩽ B+ ln(n(∥A∥1−µ)µε + 2n), and

(iv) for any xε such that f(xε) ⩽ (1 + ε)f∗ and ∥xε∥∞ ⩽ B, we have f̃(xε) ⩽ (1 + 3ε)f∗.
In particular, if such a xε exists, we have |f∗ − f̃∗ | ⩽ 3εf∗.

Proof. The first two items are again easy to verify. For the third, let x ∈ Rn be such
that f̃(x) ⩽ f̃(0). Then

µε

neB

(︄
n∑︂
i=1
exi + e−xi

)︄
⩽ f(0) − f(x) + 2µε

eB
⩽ ∥A∥1 − µ +

2µε
eB

,

where the last inequality uses the fact that f(0) = ∥A∥1 and f(x) ⩾ f∗ ⩾ µ

(Lemma 14.4.1). Thus we have exi + e−xi ⩽ neB(∥A∥1−µ)
µε + 2n for every i ∈ [n] and

it follows that

|xi | ⩽ ln
(︃
neB(∥A∥1 − µ)

µε
+ 2n

)︃
⩽ B + ln

(︃
n(∥A∥1 − µ)

µε
+ 2n

)︃
.

For the last item, note that if ∥xε∥∞ ⩽ B, we have exi + e−xi ⩽ 2eB. Thus

f̃(xε) ⩽ f(xε) + 2µε ⩽ f∗ + 3εf∗. □
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15.3. Quantum box-constrained matrix balancing

15.3.2. Quantum algorithms for approximating the Hessian and
gradient for balancing

In order to use Theorem 15.1.5 to minimize f̃(x), we need to show how to approxi-
mate both the gradient and Hessian of f̃(x). Before that, we state a simple lemma
on computing a multiplicative appproximation to ∥A(x)∥1, used to determine the
arithmetic precision for the next steps:

Lemma 15.3.2. Let A ∈ [0, 1]n×n be a rational matrix withm possibly non-zero entries,
and assume A is asymptotically balanceable with smallest non-zero entry µ > 0. Given
quantum query access to (b1,b2)-fixed-point representations of x ∈ Rn, sparse quantum
query access to A ∈ [0, 1]n×n, and rational η > 0, we can find with probability at
least 1 − η a real number C ⩾ 0 such that C ⩽ min(1, ∥A(x)∥1) ⩽ 2C in quantum time˜︁O(√m), where the ˜︁O(·) hides polynomial factors in b1,b2 and the encoding length of A,
and polylogarithmic factors in n.

Proof. Use LogSumExp(A, 1, x1T − 1xT , 1
4 , b′1, b′2, η, µ) to compute an additive 1

4-
approximation of ln(∥A(x)∥1), where the b′

i
⩾ bi are large enough to represent

values in [ln(µ), 1]. Here we think of A and x1T − 1xT as vectors of length n2

where A has m possibly non-zero entries. We can then exponentiate this value,
returning 1 if ln(∥A(x)∥1) ⩾ 0. An additive 1

4-approximation of the logarithm is
also precise enough to obtainC ⩾ 0 withC ⩽ ∥A(x)∥1 ⩽ 2C. Note that ∥A(x)∥1 ⩾ µ
since A is asymptotically balanceable, so there the result can be represented with
small bit complexity. □

It is convenient to use LogSumExp here since we are dealing with A(x) rather
than A itself, and the exponentials in the entries are carefully dealt with in
LogSumExp, but in principle one could also rely on ApproxSum.

Next, we consider the Hessian of f̃(x), which can be written as the sum of the
Hessian of f and the Hessian of the regularizer f̃ − f:

Hess f(x) = diag(r(A(x)) + c(A(x))) − (A(x) +A(x)T ),
Hess(f̃ − f)(x) = µε

neB
diag(ex + e−x).

(15.3.2)

Computing Hess f̃(x) up to high precision can be done using ˜︁O(m) classical queries
to A and x. Below we show how to obtain a sparse approximation of Hess f̃(x)
using only ˜︁O(√mn) quantum queries.

Lemma 15.3.3. Given quantum query access to x and sparse quantum query access to
A, such that ∥A(x)∥1 ⩽ C, we can compute an SDD matrix Hm with ˜︁O(n) non-zero
entries, each off-diagonal entry non-negative, such that there exist symmetric H′m and
H′a,f satisfying H′m +H′a,f = Hess f(x), and

0.9Hm ⪯ H′m ⪯ 1.1Hm, ∥H′a,f∥1 ⩽ δa,

in time ˜︁O(√mnpolylog(C/δa)).
We omit the proof, as it is exactly as in the matrix scaling case (Lemma 15.2.2),

with the only change that the Hessian Hess f(x) is already Laplacian (the off-
diagonal entries have the correct sign).

Now we show how to compute an additive approximation of grad2 f̃.
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15. Quantum box-constrained Newton methods

Lemma 15.3.4. Given quantum query access to x with ∥x∥∞ ⩽ B + ln(n(∥A∥1−µ)µε + 2n),
we can compute a non-negative diagonal matrix Ha,f̃ that satisfies ∥Ha,f̃−f − grad2(f̃ −
f)(x)∥ ⩽ δa in time ˜︁O(n log(1/δa)polylog(ε)).
Proof. Note that grad2(f̃ − f)(x) is diagonal with entries upper bounded by

2µε
neB

eB+ln(n(∥A∥1−µ)µε +2n)
= 2(∥A∥1 − µ) + 4µε.

We can compute each entry separately by querying x. More precisely, we obtain
Ha,f̃−f by computing each entry using ⌈log2(2(∥A∥1 − µ) + 4µε)⌉ leading bits and
⌈log2(1/nδa)⌉ trailing bits. The chosen parameters make sure that ∥Ha,f̃−f −
grad2(f̃ − f)(x)∥ ⩽ δa. □

Combining these two lemmas gives a quantum algorithm for approximating
grad2 f̃.

Theorem 15.3.5. Given quantum query access to x with ∥x∥∞ ⩽ B+ ln(n(∥A∥1−µ)µε +2n),
and sparse quantum query access to A, if ∥A(x)∥1 ⩽ C, then we can compute (classical
descriptions of) an SDD matrix Hm with ˜︁O(n) non-zero entries, with all of the off-
diagonal entries non-negative, and a non-negative diagonal matrix Ha such that there
exist symmetric H′m, H′a with H′m +H′a = Hess f̃(x) and

0.9Hm ⪯ H′m ⪯ 1.1Hm, ∥Ha −H′a∥1 ⩽ δa
in quantum time ˜︁O(√mnpolylog(C/δa)).
Proof. Let Hm be the matrix obtained from Lemma 15.3.3, and let Ha be the matrix
Ha,f̃−f obtained from Lemma 15.3.4, both computed with additive error δa/2.
Then Hm and Ha satisfy the desired properties, with H′m as in Lemma 15.3.3, and
H′a = H′a,f +Hess(f̃ − f)(x,y)with H′a,f as in Lemma 15.3.3. □

Next, we show how to efficiently compute grad f̃, which is given by

grad f̃(x) = r(A(x)) − c(A(x)) + µε

neB

⎡⎢⎢⎢⎢⎣
ex1 − e−x1

...
exn − e−xn

⎤⎥⎥⎥⎥⎦ .

We approximate the row sums and column sums up to a multiplicative error (1±δ),
using quantum approximate summing (more precisely, Corollary 13.3.1). The
gradient of the regularization term can be dealt with similarly as in Lemma 15.3.4.
This results in the following:
Lemma 15.3.6. Let C > 0 be given. Given quantum query access to (b1,b2)-fixed-point
representations of x ∈ Rn and sparse quantum query access to rational A ∈ [0, 1]n×n, if
∥A(x)∥1 ⩽ C, we can find a classical description of a vector b ∈ Rn such that

∥b − grad f̃(x)∥1 ⩽ δ∥A(x)∥1
in quantum time ˜︁O(√︁mn/δ polylog(C)), where the ˜︁O(·) hides polynomial factors inb1,b2
and the encoding length of A, and polylogarithmic factors in n and 1/δ.

We note here that the upper bound being of the form δ∥A(x)∥1 (as opposed
to δC) is important in the analysis of the box-constrained Newton method, see The-
orem 15.3.7.
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15.3.3. Quantum box-constrained matrix balancing
We now combine the quantum algorithms for Hessian and gradient estimation
(Theorem 15.3.5 and Lemma 15.3.6) with the general framework for optimizing
second-order robust functions (Theorem 15.1.5), obtaining a quantum algorithm
for matrix balancing that is based on classical box-constrained Newton methods.
See Algorithm 15.2 for its formal definition. Its analysis is as follows.

Algorithm 15.2: Quantum box-constrained Newton method for matrix
balancing
Input: Query access to A ∈ [0, 1]n×n with ∥A∥1 ⩽ 1 and smallest non-zero

entry µ > 0, error ε > 0, diameter bound B ⩾ 1, classical k-oracle𝒜
for SDD matrices with non-negative off-diagonal entries.

Output: A vector x ∈ Rn with ∥x∥∞ ⩽ B + ln(n(1−µ)µε + 2n).
Analysis: Theorem 15.3.7 and Corollaries 15.3.8 and 15.3.9

1 set T =

⌈︂
8e4 max

(︂
k
(︂
B + ln

(︂
n(1−µ)

µε + 2n
)︂)︂

, 1
)︂

ln
(︂

1−µ+2µε/eB

µε

)︂⌉︂
;

2 set C = 1 + 2ε/eB;
3 set ε′ = ⌊ε/8e4 max(k(B + ln(n(1−µ)µε + 2n)), 1)⌋;
4 store x(0) = 0 ∈ Rn in QCRAM;
5 for i = 0, . . . , T − 1 do
6 compute C′ ⩾ 0 such that C′ ⩽ ∥A(x)∥1 ⩽ 2C′ using Lemma 15.3.2;
7 compute Hm, Ha s.t. Hm +Ha ≈ Hess f̃(x(i)) as in Theorem 15.3.5 with

δa = ε′C′/2e2;
8 compute b with ∥b − grad f̃(x(i))∥ ⩽ δ∥A(x(i))∥1 as in Lemma 15.3.6 at

x(i) with δ = ε′/3;
9 compute ∆ = 𝒜( 4e2

3k2 · (Hm +Ha), bk );
10 compute x(i+1) = x(i) + 1

k∆ and store in QCRAM;
11 end for
12 return x = x(T );

Theorem 15.3.7. Let A ∈ [0, 1]n×n be a rational matrix whose non-zero entries are at
least µ > 0, with only zeros on the diagonal and each row and column containing at least
one non-zero element. We assume A is asymptotically balanceable and ∥A∥1 ⩽ 1. Let
ε ∈ (0, 1], B ⩾ 1, and assume there exists xε such that ∥xε∥∞ ⩽ B and f(xε) ⩽ (1 + ε)f∗.
Furthermore, let𝒜 be the O(log(n))-oracle of Theorem 15.1.4. Then Algorithm 15.2 with
these parameters outputs, with probability ⩾ 2/3, a classical description of a vector x ∈ Rn

such that f(x) ⩽ (1 + 5ε + 6ε2)f∗ and runs in quantum time ˜︁O(B1.5
√︁
mn/ε).

Proof. In every iteration, the matrices Hm,Ha and the vector b are such that they
satisfy the requirements of Theorem 15.1.5, hence

f̃(x(i+1)) − f̃∗ ⩽
(︃
1 − 1

4e4 max(kR∞, 1)

)︃
(f̃(x(i)) − f̃∗) + e2δa +

3δ
2

where R∞ ⩽ B + ln(n(∥A∥1−µ)µε + 2n) is the ℓ∞-radius of the sublevel set {(x,y) :
f̃(x,y) ⩽ f̃(0, 0)} about (0, 0), where the upper bound follows from Lemma 15.2.1.
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From here on, we write M = 4e4 max(kR∞, 1). The choice of δa and δ in the
algorithm is such that e2δa + 3δ/2 ⩽ ε∥A(x)∥1

2M , hence we can also bound the
progress by

f̃(x(i+1)) − f̃∗ ⩽
(︃
1 − 1

M

)︃
(f̃(x(i)) − f̃∗) + εf(x

(i))
2M

=

(︃
1 − 1

M

)︃
(f̃(x(i)) − f̃∗) + ε(f(x

(i)) − f̃∗)
2M + εf̃

∗

2M

⩽

(︃
1 − 2 − ε

2M

)︃
(f̃(x(i)) − f̃∗) + εf̃

∗

2M

⩽

(︃
1 − 1

2M

)︃
(f̃(x(i)) − f̃∗) + εf̃

∗

2M

We show that f̃(x(T )) − f̃∗ ⩽ εf∗ for our choice of T . Note that we have

f̃(x(T )) − f̃∗ ⩽ (1 − 1
2M)

T (f̃(0) − f̃∗) +
T−1∑︂
i=0
(1 − 1

2M)
T−i−1 · εf̃

∗

2M

⩽ (1 − 1
2M)

T (f̃(0) − f̃∗) + (1 − (1 − 1
2M)

T ) · εf̃∗

⩽ (1 − 1
2M)

T (f(0) − f∗ + 2µε
eB
) + εf̃∗

⩽ (1 − 1
2M)

T (1 − µ + 2µε
eB
) + εf̃∗

⩽ 2εf̃∗

where in the third inequality we use f̃(0) = f(0) + 2µε/eB and f∗ ⩽ f̃∗, in the
fourth inequality we use the potential gap bound (Lemma 14.4.1), and in the last
inequality we use

T =

⌈︃
8e4 max

(︃
k

(︃
B + ln

(︃
n(1 − µ)
µε

+ 2n
)︃)︃

, 1
)︃

ln
(︃

1 − µ + 2µε/eB
µε

)︃⌉︃
⩾

⌈︃
2M ln

(︃
1 − µ + 2µε/eB

µε

)︃⌉︃
⩾

1
ln(1 − 1

2M)
· ln

(︄
µε

1 − µ + 2µε

eB

)︄
,

and again the inequality µ ⩽ f∗ ⩽ f̃∗ (Lemma 14.4.1).
This implies that

f(x(T )) − f∗ ⩽ f̃(x(T )) − f̃∗ + f̃∗ − f∗ ⩽ 2εf̃∗ + 3εf∗ ⩽ 2ε(f∗ + 3εf∗) + 3εf∗ = (5 + 6ε)εf∗,

where we crucially use the last point of Lemma 15.3.1 twice, which is justified by
the assumption that there exists xε with ∥xε∥∞ ⩽ Bwith f(xε) ⩽ (1 + ε)f∗.

Before bounding the time complexity of Algorithm 15.1, we show that throughout
the algorithm, ∥A(x(i))∥1 ⩽ f̃(0) ⩽ 1 + 2ε/eB for any i ∈ [T ] with f̃(x(i)) − f̃∗ > ε.
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Note that ∥A(x)∥1 ⩽ f̃(x) for any x. Since in every iteration, Hm, Ha and b satisfies
the requirements of Theorem 15.1.5, we know that

f̃(x(i)) − f̃(x(i+1)) ⩾ 1
M
(f̃(x(i)) − f̃∗) − ε

2M ,

where the right hand side is nonnegative if f̃(x(i))− f̃∗ ⩾ ε/2. In other words, as long
as f̃(x(i)) − f̃∗ > ε, f̃(x(i)) > f̃(x(i+1)) and we have ∥A(x(i+1))∥1 ⩽ f̃(x(i+1)) ⩽ f̃(0).

Now, in each of the T iterations we compute:

(i) a C′ ⩾ 0 such that C′ ⩽ ∥A(x)∥1 ⩽ 2C′ using Lemma 15.3.2 in time ˜︁O(√m),
(ii) Hm, Ha as in Theorem 15.3.5 with δa = ε′C′/2e2 of Hess f̃(x(i)) in time˜︁O(√mnpolylog(1/ε)) (using that ∥A(x)∥1 ⩽ C = 1 + 2ε/eB, 1/µ are at most

poly(n)),

(iii) an ε′∥A(x)∥1/3-ℓ1-approximation of∇f̃(x(i)) in time ˜︁O(√︁mn/ε′) = ˜︁O(√︁Bmn/ε)
(Lemma 15.3.6),

(iv) an update ∆ in time ˜︁O(n) using one call to the k = O(log(n))-oracle on
SDD-matrices with ˜︁O(n) non-zero entries (Theorem 15.1.4).

Note that the second contribution dominates the others, resulting in an overall
time complexity ˜︁O(B1.5

√︁
mn/ε). □

Combining the above with Corollary 14.4.3 yields the following result.
Corollary 15.3.8. For asymptotically-balanceable matrices A ∈ Rn×n

⩾0 withm non-zero
entries, one can find a O(ε)-ℓ2-balancing vector x of A in time ˜︁O(R1.5

∞
√
mn/ε), where R∞

is such that there exists x ∈ Rn with f(x) ⩽ (1 + ε2)f∗ and

R∞ = ∥xε∥∞ + ln(2n + (n(1 − µ)/µε)).
Unfortunately, a potential gap f(x) − f∗ ⩽ εf∗ only guarantees that the rescaled

matrix A′ = A(x) satisfies maxi(
√︁
ri(A′) −

√︁
ci(A′))2 ⩽ ε. Therefore, the squared

Hellinger distance H2(r(A′), c(A′)) could be nε in the worst case, with an asso-
ciated quantum time complexity of ˜︁O(R1.5

∞
√︁
mn/ε). For comparison, Osborne’s

algorithm yields an ε-H2-balancing of A in quantum time ˜︁O(√mn/ε1.5) (see The-
orem 14.4.6). However, for achieving closeness in ℓ2-distance, if R∞ is not too
large, the second-order method outperforms the classical weighted randomized
variant of Osborne [ORY17], which takes time ˜︁O(m + n/ε2), and our quantum
variant Osborne’s algorithm: to obtain an ε-ℓ2-balancing from the latter takes
time ˜︁O(√mn/ε3), using Lemma 13.2.4 and that the ℓ2-norm is smaller than the ℓ1-
norm.

Similar to matrix scaling, in general we do not have good (i.e., polylogarithmic)
bounds on the parameter R∞. For the general case, R∞ is ˜︁O(n). The bound can be
improved if the underlying graph G whose (weighted) adjacency matrix is A is
strongly connected: If the diameter of G is d, then R∞ is ˜︁O(d) [CMTV17, Lemma
4.24]. For entrywise-positive A, the diameter is 1, hence we obtain the following
corollary.
Corollary 15.3.9. For entrywise-positive matrices A, one can find an ε-ℓ2-balancing of A
in time ˜︁O(n1.5/ε).
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16. Quantum query lower bounds:
constant precision

In this chapter we will prove anΩ(
√
mn) lower bound on the query complexity of

quantum algorithms for Θ(1)-ℓ1-scaling n × nmatrices withm non-zero entries to
the uniform marginals (1/n, 1/n), as well as forΘ(1)-ℓ1-balancing. We will do so by
showing anΩ(n

√
s) lower bound on instances with s potentially non-zero entries

per row and column (note that with m = ns, we have n
√
s =
√
mn). The lower

bounds for both problems are shown by a reduction to (partially) learning a string
hidden in a permutation, a problem we define and prove a query lower bound for
in Section 16.1. The lower bound for matrix scaling is proven in Section 16.2, and
the lower bound for matrix balancing is shown in Section 16.3.

16.1. Partially learning a string hidden in a permutation
We first prove a query lower bound for the problem of learning a string hidden in
a permutation matrix. Here we are given query access to a matrix Pσ,z which is an
n×npermutation matrix corresponding to a permutationσ, except that the 1 entries
have been replaced with the entries of some vector z ∈ {−1, 1}n. In particular,
denoting Pσ for the permutation matrix corresponding to σ, Pσ,z = Pσ diag(z)
so that the ith column of Pσ,z contains zi in the σ(i)th row, i.e., (Pσ,z)σ(i)i = zi.
Informally, the goal is to recover a constant fraction (close to 1) of the entries of z
correctly.

As we will show, this problem requiresΩ(n
√
n) quantum queries to the entries

of a dense matrix for Pσ,z to solve, orΩ(n
√
s) quantum queries to an s-sparse input.

We follow a similar proof structure as in the Ω(
√
n)-query lower bound given

in [Amb02] for finding σ−1(1) for a permutation σ ∈ Sn, and the Ω(n
√
n)-query

lower bound for graph connectivity given in [DHHM06]. We first prove the lower
bound for fully recovering z, and then show that recovering a constant fraction of
the elements of z is just as hard.

To obtain bounds for the s-sparse setting, we limit our permutations to products
of n/s permutations on s elements. More precisely, if n is a multiple of s, then we
shall work with ann/s-tuple σ = (σ1, . . . ,σn/s) ∈ S×n/ss of permutations of Ss. This
may be identified with the permutation σ ∈ Sn given by σ(as + b) = as + σa+1(b)
for a ∈ {0, . . . ,n/s − 1} and b ∈ [s]. Equivalently, σ ∈ Sn is determined by Pσ

being the block-diagonal matrix consisting of the s×s blocks Pσj for j ∈ [n/s]. This
also means that dense access to Pσ is equivalent to s-sparse access (we assume s is
known to the algorithm). We now formally define the problem.

This chapter is adapted from [AGL+21].
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Definition 16.1.1 (The (s,n)-string hidden in a permutation problem). Let n, s ⩾ 1
be integers such that n is a multiple of s. An instance of the (s,n)-string hidden in a
permutation problem is a tuple (σ, z)where σ ∈ S×n/ss is ann/s-tuple of permutations
of [s], and a bit string z ∈ {−1, 1}n. The input is accessible via dense queries
to Pσ,z = Pσ diag(z). For λ ∈ (0, 1), we say that a bit string z̃ ∈ {−1, 1}n is a (1 − λ)-
solution to the (s,n)-string hidden in a permutation problem if z̃i = zi for at
least (1 − λ)n indices i ∈ [n], and we say that z̃ is a full solution if z̃ = z.

Next, we recall the exact version of the adversary bound that we rely on:

Lemma 11.3.1 ([Amb02, Thm. 6.1]). Let f : A ⊆ ΣN→ B be a function of N variables,
which takes values in some finite set B. Let X, Y ⊆ A be two sets of inputs such that
f(x) ≠ f(y) if x ∈ X and y ∈ Y. Let R ⊆ X × Y be nonempty, and suppose that it satisfies:

• For every x ∈ X, there exist at leastmX different y ∈ Y such that (x,y) ∈ R.

• For every y ∈ Y, there exist at leastmY different x ∈ X such that (x,y) ∈ R.

Let ℓx,i be the number of y ∈ Y such that (x,y) ∈ R and xi ≠ yi, and similarly for ℓy,i.
Let ℓmax = maxi∈[N]max(x,y)∈R,xi≠yi

ℓx,iℓy,i. Then any algorithm that computes f with
success probability ⩾ 2/3 usesΩ

(︂√︂
mXmY

ℓmax

)︂
quantum queries to the input.

Proposition 16.1.2. Let s ⩾ 2 and let n be a positive multiple of s. Then any quantum
algorithm which for every instance (σ, z) of the (s,n)-string hidden in a permutation
problem fully recovers z with success probability at least 2/3 makes at least Ω(n

√
s)

quantum queries to Pσ,z.

Proof. For ease of notation we will assume that n is even, but the proof also holds
for odd n with minimal tweaks. We will use Lemma 11.3.1 with the following
choices: let Σ = {−1, 0, 1}, let A ⊆ Σn2 be the set of all matrices of the form Pσ,z

where σ ∈ S×n/ss and z ∈ {−1, 1}n, let B = {−1, 1}n, and let f : A → B be the
function given by f(Pσ,z) = z. This map is well-defined: z can be recovered
from Pσ,z by computing its column sums. With this setup, it is clear that the
adversary bound yields a lower bound on the number of quantum queries made
to the entries of Pσ,z for computing f, i.e., recovering z. We let X be the set
of all inputs (σ, z) where |z| = n/2, and Y be the set of all inputs (π,w) where
|w| = n/2 − 1. Here we write |z| for the number of 1’s in the string z.

We define the relation R ⊆ X × Y as consisting of those ((σ, z), (π,w)) ∈ X × Y for
which there exist distinct i, i′ ∈ [n] such that

• π can be obtained from σ by swapping the function values for i, i′, i.e.,
π = σ ◦ (i i′).

• zi = 1 and wi = −1, and zj = wj for j ∈ [n]with j ≠ i.

Note that i, i′ are automatically in the same block of s elements, as otherwise
either π or σ is not in S×n/ss . This operation corresponds to swapping columns of
Pσ to get Pπ. Furthermore, for any ((σ, z), (π,w)) ∈ R, the tuple (i, i′) is uniquely
determined.

We now compute the quantities appearing in Lemma 11.3.1. For a given (σ, z) ∈ X,
the numbermX of y ∈ Y such that (x,y) ∈ R is (n/2) · (s − 1) = Ω(ns): we can pick
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16.1. Partially learning a string hidden in a permutation

the index i among any of the n/2 columns of Pσ,z containing a 1, and then have
s − 1 choices for i′ left. Similarly, we havemY = (n/2 + 1) · (s − 1) = Ω(ns).

We now consider the distinguishing power of a single query, that is, we compute
ℓmax. Informally, the key observation is that the relation R is such that if a query
to the (j, i)-entry of the matrix distinguishes two inputs, then on precisely one of
the two inputs the query returns 0. The (j, i)-query returns 0 on input (σ, z) (in
either X or Y) if and only if σ(i) ≠ j. For a neighbor that we can distinguish with
the (j, i)-query we thus need to swap the function values for i and σ−1(j), and this
leaves us with at most a constant number of neighbors (with respect to R) that we
can distinguish (the only remaining freedom is in changing one bit of the bit string).
On the other hand, if the (j, i)-query returns a non-zero outcome on input (σ, z),
then it hasO(s) neighbors that we can distinguish with the (j, i)-query: we need to
swap the ith column with any other column in the same block of s elements (and
flip the bit associated with one of the two columns).

We now make this formal. Consider a query to the (j, i)-th element of the matrix
and a pair ((σ, z), (π,w)) ∈ R. We can distinguish two cases: σ(i) ≠ j and σ(i) = j.

• If σ(i) ≠ j, then the (j, i)-query on (σ, z) results in a 0. All (π′,w′) ∈ Y that
can be distinguished from (σ, z) by the (j, i)-query must have π′(i) = j (since
otherwise the query returns 0), and if (π′,w′) is also in relation to (σ, z)
this means π′ = σ ◦ (i σ−1(j)). There are at most two such (π′,w′) (since π′
is now determined, and w′ must be obtained from z by flipping a bit in
the i-th or σ−1(j)-th position) and thus ℓ(σ,z),(j,i) ⩽ 2. To compute ℓ(π,w),(j,i)
we now use that, by the preceding argument, π(i) = j. Then, if the (j, i)-query
distinguishes (π,w) from (σ′, z′) ∈ Xwith ((σ′, z′), (π,w)) ∈ R, we must have
σ′(i) ≠ j and thus π = σ′ ◦ (i i′) for some i′ distinct from i but in the same
block of s elements. Since the relation also requiresw to equal v except at the
positions i and i′, this gives ℓ(π,w),(j,i) ⩽ 4(s − 1).

• If σ(i) = j, then the (j, i)-query on (σ, z) results in either a 1 or −1. Since
((σ, z), (π,w)) ∈ R, this means π(i) ≠ j. We can thus proceed as in the
previous case but with the roles of (σ, z) and (π,w) reversed. We then obtain
ℓ(σ,z),(j,i) ∈ O(s) and ℓ(π,w),(j,i) ∈ O(1).

In both cases we have ℓ(σ,z),(j,i)ℓ(π,w),(j,i) ∈ O(s) and thus ℓmax ∈ O(s). Hence the
number of queries made is

Ω

(︃√︃
mXmY

ℓmax

)︃
= Ω

(︄√︃
n2s2

s

)︄
= Ω(n

√
s). □

We now show that learning only a constant fraction of the entries of z correctly
still requiresΩ(n

√
s) quantum queries.

Theorem 16.1.3. There exists a constant λ ∈ (0, 1) such that the following holds: Let
s ⩾ 2 and let n be a positive multiple of s. Then any quantum algorithm which for every
instance (σ, z) of the (s,n)-string hidden in a permutation problem recovers (1− λ)n of the
entries of z with success probability at least 2/3, makes at leastΩ(n

√
s) quantum queries

to Pσ,z.

351
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Proof. Let N,S ∈ N and c1 ∈ R>0 be the constants from the big-Ω notation in
Proposition 16.1.2, i.e., for any n > N and s > S, at least c1n

√
s quantum queries to

an s-sparse input are required to fully recover zwith success probability at least
2/3.

Let A,B ∈ N and c2 ∈ R>0 be the constants from Lemma 12.3.2 such that
deterministic Grover search for multiple elements over a search space of size a > A,
with at most b > Bmarked elements, uses at most c2

√
ab queries to find all marked

elements with probability 1.
Let λ = min{ 1

3 , c2
1

4c2
2
}. Let 𝒜 be an algorithm that uses at most T queries to an

s-sparse input for the input Pσ,z and outputs a string z̃ that (with probability ⩾ 2/3)
agrees with z for Pσ,z on all but ⩽ λn elements. Searching for the elements where
these strings do not agree can be done by Grover searching through all ns possible
non-zero positions in the matrix, and marking those (j, i)where (Pσ,z)ji ≠ 0 and
(Pσ,z)ji ≠ z̃i. There are at most λn such elements, so we can find all of them using
c2
√
ns λn = c2n

√
λs queries to P. We can now flip the erroneous bits in z̃ to fully

recover z. Therefore z can be identified exactly with failure probability at most 1/3
using T + c2n

√
λs queries. It follows from Proposition 16.1.2 that (if n > N, s > S,

ns > A, and λn > B)
T + c2n

√
λs ⩾ c1n

√
s.

For our specific choice of λ, this implies

T ⩾ c1n
√
s − c2n

√
λs

⩾ c1n
√
s − c2

√︄
c2

1

4c2
2
n
√
s

= c1n
√
s/2. □

16.2. Lower bound for matrix scaling
To obtain a query lower bound for matrix scaling, we will reduce the problem of
learning the string hidden in a permutation to the matrix scaling problem. For an
instance (σ, z), this is achieved by replacing each non-zero entry of the permutation
matrix Pσ by one of two 2 × 2 gadget matrices, depending on the value of the bit
string z associated with that column (and each 0-entry is replaced by the 2× 2 all-0
matrix). These gadget matrices are chosen such that we can recover z from the
row-scaling vectors x of an Θ(1)-ℓ1-scaling to uniform marginals.

We will use the following gadget matrices:

B1 =

[︃ 1
6

1
6

1
3

1
3

]︃
, B−1 =

[︃ 1
3

1
3

1
6

1
6

]︃
,

Lemma 16.2.1. The matrices B1,B−1 ∈ { 1
3 , 1

6}2×2 are entrywise positive, with entries
summing to one, and they are exactly scalable to uniform marginals. Let i ∈ {1,−1}, and
suppose (x,y) ∈ R2 ×R2 are 1

8 -ℓ1-scaling vectors for Bi to the uniform marginals (12 , 1
2).

Then i = sign(x1 − x2) and |x1 − x2 | > 0.18. Moreover, ((x2, x1),y) are 1
8-ℓ1-scaling

vectors for B−i to uniform marginals.
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16.2. Lower bound for matrix scaling

In other words, the matrices can be distinguished just by learning the row-scaling vectors,
and they have the same set of possible row-scaling vectors.

Proof. Since one matrix is obtained by swapping the rows of the other, the last
claim is immediate, and it suffices to prove the remaining claims for B1. First, we
note that B1 is exactly scalable, since[︃ 3

4 0
0 3

2

]︃ [︃ 1
6

1
6

1
3

1
3

]︃ [︃
1 0
0 1

]︃
=

[︃ 1
4

1
4

1
4

1
4

]︃
has uniform marginals. Now suppose that (x,y) is an 1

8 -ℓ1-scaling of B1 to uniform
marginals. By the requirement on the row marginals, we have(︃

1
6e

y1 + 1
6e

y2

)︃
ex1 ⩾

1
2 −

1
8 and

(︃
1
3e

y1 + 1
3e

y2

)︃
ex2 ⩽

1
2 +

1
8.

By dividing the first inequality by the second one we get

1
2 ·
ex1

ex2
⩾

3
5,

and so
x1 − x2 ⩾ ln 6

5 > 0.18. □

We now prove the query lower bound for matrix scaling. This lower bound also
holds if we allow the algorithm to know the set of vectors y that can occur in an
ε-ℓ1-scaling (x,y) of the matrix (in fact, y = 0 is always a solution).

Theorem 16.2.2. There exists a constant ε ∈ (0, 1) such that any quantum algorithm
which, given s-sparse access to an n × n-matrix which is exactly scalable to uniform
marginals and with entries summing to one, returns an ε-ℓ1-scaling with probability
⩾ 2/3, requiresΩ(n

√
s) quantum queries.

Proof. Without loss of generality we may assume s is a positive multiple of 8 and n
is a multiple of s. Let ε = λ

16 ∈ Θ(1), where λ is the constant from Theorem 16.1.3.
Assume there is a T -query quantum algorithm 𝒜 that solves the ε-ℓ1-scaling
problem with success probability ⩾ 2/3. We will construct an algorithm for
recovering a 1 − λ fraction of the a string hidden in a permutation in Sn/2, given
s/2-sparse query access to the corresponding n/2×n/2 string-hiding permutation
matrix P ∈ {−1, 0, 1}n/2×n/2.

Let Q ∈ Rn×n be a n/2 × n/2 block-matrix with the following 2 × 2 blocks:

• If Pij = 0 then the (i, j)-block in Q is the 2 × 2 all-0 matrix.

• If Pij ∈ {1,−1} then the (i, j)-block in Q is the matrix BPij from Lemma 16.2.1.

Finally, let R = 2
nQ. Then R is an n × nmatrix that has entries summing to one,

and it is exactly scalable to uniform marginals. Note that s-sparse query access for
R can be constructed using O(1) queries to an s/2-sparse input for P.

By applying𝒜 to R we obtain ε-ℓ1-scaling vectors (x,y). Let x(i) ∈ R2 (resp. y(j))
denote the restriction of x (resp. y) to the two coordinates corresponding to the
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i-th row (resp. the j-th column) of P. We can compute the ℓ1-error of the row and
column marginals in terms of the 2 × 2-blocks 2

nBPij corresponding to Pij ≠ 0.
Accordingly, we obtain

∑︂
(i,j):Pij≠0

∥︁∥︁∥︁∥︁r (︃
ex
(i) 2
n
BPije

y(j)
)︃
− 1
n

∥︁∥︁∥︁∥︁
1
⩽ ε and

∑︂
(i,j):Pij≠0

∥︁∥︁∥︁∥︁c (︃
ex
(i) 2
n
BPije

y(j)
)︃
− 1
n

∥︁∥︁∥︁∥︁
1
⩽ ε,

and hence ∑︂
(i,j):Pij≠1

∥︁∥︁∥︁∥︁r(ex(i)BPije
y(j)) − 1

2

∥︁∥︁∥︁∥︁
1
+

∥︁∥︁∥︁∥︁c(ex(i)BPije
y(j)) − 1

2

∥︁∥︁∥︁∥︁
1
⩽ εn.

This implies that for all but εn
1/8 = λn/2 of these blocks, the corresponding (x(i),y(j))

are 1
8-ℓ1-scaling vectors for BPij . By Lemma 16.2.1, we can therefore correctly

identify Pij from x(j) for (1− λ)n/2 rows, and hence we learn the bits of the hidden
string for those i.

Since this identifies (1− λ)n/2 of the n/2 hidden bits, and because the algorithm
has failure probability at most 1/3, it follows from Theorem 16.1.3 that the number
of queries T isΩ(n

√
s). □

Corollary 16.2.3. There exists a constant ε ∈ (0, 1) such that any quantum algorithm
which, given sparse query access an n × n-matrix that is exactly scalable to uniform
marginals and hasm potentially non-zero entries which sum to 1, returns an ε-ℓ1-scaling
with probability ⩾ 2/3, requiresΩ(

√
mn) quantum queries to the matrix.

16.3. Lower bound for matrix balancing
To obtain a query lower bound for matrix balancing we will follow the same
strategy as in Section 16.2. We consider an instance of the (s,n)-bit string hidden in
a permutation problem as in Definition 16.1.1, and create from it a matrix 3n × 3n-
matrix B with Θ(ns) possibly non-zero entries, such that if B(x) is ε-ℓ1-balanced
one can recover a large constant fraction of the bits zj from x. The matrix B is
constructed using the following gadget matrices:

B1 =

⎡⎢⎢⎢⎢⎣
0 0 1
0 0 2
2 1 0

⎤⎥⎥⎥⎥⎦ , B−1 =

⎡⎢⎢⎢⎢⎣
0 0 2
0 0 1
1 2 0

⎤⎥⎥⎥⎥⎦ . (16.3.1)

Lemma 16.3.1. The matrices B1, B−1 ∈ {0, 1, 2}3×3 are exactly balanceable. For
i ∈ {−1, 1}, let x ∈ R3 be such that Bi(x) is ε-ℓ∞-balanced for ε = 1/100. Then i =
sign(x1 − x2) and |x1 − x2 | ⩾ 1

2 .

Proof. We start by showing that these matrices are exactly balanceable. For B1, let
x1 = ln(

√
2), x2 = − ln(

√
2) and x3 = 0, Then

ediag(x)B1e
−diag(x) =

⎡⎢⎢⎢⎢⎣
0 0 ex1−x3

0 0 2ex2−x3

2ex3−x1 ex3−x2 0

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
0 0

√
2

0 0
√

2√
2
√

2 0

⎤⎥⎥⎥⎥⎦ , (16.3.2)
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and similar for B−1.
Now let x be such that B1(x) is ε-ℓ∞-balanced, for some ε that we pick later. Let

a = ex3−x1 and b = ex2−x3 , so

B1(x) =
⎡⎢⎢⎢⎢⎣

0 0 1/a
0 0 2b

2a 1/b 0

⎤⎥⎥⎥⎥⎦ .

We are interested in giving a lower bound on ln(1/(ab)), as this equals x1 − x2. To
do so we first bound ∥B1(x)∥1 from above. Observe first that

∥B1(x)∥1 = 2a + 2b + 1
a
+ 1
b
⩽ 2(max{2a, 1/a} +max{2b, 1/b}).

If B1(x) is ε-ℓ∞-balanced, then in particular we must have

max{2a, 1/a} −
√

2 ⩽
|︁|︁|︁|︁2a − 1

a

|︁|︁|︁|︁ ⩽ ε∥B1(x)∥1 ⩽ 2ε(max{2a, 1/a} +max{2b, 1/b}),

max{2b, 1/b} −
√

2 ⩽
|︁|︁|︁|︁2b − 1

b

|︁|︁|︁|︁ ⩽ ε∥B1(x)∥1 ⩽ 2ε(max{2a, 1/a} +max{2b, 1/b}).

since
|︁|︁2a − 1

a

|︁|︁ = |c1(B1(x)) − r1(B1(x))| and similar for b. Note that the bound
max{2a, 1/a} −

√
2 ⩽ |2a− 1/a| follows from a simple case distinction: if a ⩾ 1/

√
2

then 0 ⩽ max{2a, 1/a} −
√

2 = 2a −
√

2 ⩽ 2a − 1/a, and a similar argument if
a ⩽ 1/

√
2. This gives

max{2a, 1/a} ⩽ 2ε
1 − 2ε max{2b, 1/b} +

√
2

1 − 2ε ,

max{2b, 1/b} ⩽ 2ε
1 − 2ε max{2a, 1/a} +

√
2

1 − 2ε .

Therefore (︃
1 − 4ε2

(1 − 2ε)2

)︃
max{2a, 1/a} ⩽ 2

√
2ε

(1 − 2ε)2 +
√

2
1 − 2ε ,

which simplifies to

1 − 4ε
(1 − 2ε)2 max{2a, 1/a} ⩽ 2

√
2ε +
√

2(1 − 2ε)
(1 − 2ε)2 =

√
2

(1 − 2ε)2

so max{2a, 1/a} ⩽
√

2/(1 − 4ε) which is upper bounded by 2
√

2 when ε < 1/8.
The same bound holds on max{2b, 1/b}, so ∥B1(x)∥1 ⩽ 8

√
2 when ε < 1/8.

Now we are ready to lower bound ln(1/(ab)) = x1 − x2. If B1(x) is ε-ℓ∞-balanced
for ε < 1/8, then |cj(B1(x)) − rj(B1(x))| ⩽ ε∥B1(x)∥ for j = 1, 2 yields

2a ⩽ 1/a + ε∥B1(x)∥1 ⩽ 1/a + 8
√

2ε,

2b ⩽ 1/b + ε∥B1(x)∥1 ⩽ 1/b + 8
√

2ε,
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16. Quantum query lower bounds: constant precision

where we used the previously established bound ∥B1(x)∥1 ⩽ 8
√

2. Multiplying the
first inequality by a, the second by b, and solving both in terms of these factors
gives

a ⩽ 2
√

2ε +
√︃

1
2 + 8ε2,

b ⩽ 2
√

2ε +
√︃

1
2 + 8ε2,

and hence
1
ab
⩾

1

(2
√

2ε +
√︂

1
2 + 8ε2)2

Note that the right hand side increases as ε decreases. It can easily be verified that
for ε = 1/100 the right hand side is larger than

√
e (and hence for all smaller ε as

well), and hence
x1 − x2 ⩾

1
2.

With a similar argument we find that for B−1 we have x1 − x2 ⩽ −1
2 . □

Before we proceed with the main lower bound argument, we prove a simple
inequality which we later use to relate ε-ℓ1-balancings of a block-diagonal matrix
to the quality of the balancing of the individual blocks. This is more complicated
than in the matrix scaling setting because the definition of B being ε-ℓ1-balanced
is ∥r(B) − c(B)∥1 ⩽ ε∥B∥1, which does not imply the same bound for individual
blocks; indeed, one of the blocks could be very unbalanced and have large 1-norm,
which improves the relative quality of the other blocks.

Lemma 16.3.2. For any x ∈ Rn, the matrices Bi defined in Eq. (16.3.1) satisfy

∥r(Bi(x)) − c(Bi(x))∥1 ⩾ ∥Bi(x)∥1 − 4
√

2.

In fact, the bound is true with the right-hand side multiplied by a factor 2, but
the argument is more complicated. Note that this bound is also tight for the choice
x = x∗, and that we do not assume that Bi(x) is ε-balanced for any ε > 0.

Proof. Clearly it suffices to show the inequality for B1. We first observe that for
any c > 0, one has |︁|︁|︁|︁2c − 1

c

|︁|︁|︁|︁ − (︃
2c + 1

c

)︃
⩾ −2
√

2.

Indeed, if c ⩾ 1√
2
, then|︁|︁|︁|︁2c − 1
c

|︁|︁|︁|︁ − (︃
2c + 1

c

)︃
= 2c − 1

c
−

(︃
2c + 1

c

)︃
= −2

c
⩾ −2
√

2 (16.3.3)

where the last inequality holds because c ⩾ 1√
2
. The case for c ⩽ 1√

2
is similar.

From this inequality it follows that

∥r(B1(x)) − c(B1(x))∥ − ∥B1(x)∥1
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16.3. Lower bound for matrix balancing

= |ex1−x3 − 2ex3−x1 | + |2ex2−x3 − ex3−x2 | + |r3(B1(x)) − c3(B1(x))|
− (ex1−x3 + 2ex3−x1 + 2ex2−x3 + ex3−x2)
⩾ −4
√

2

where we applied Eq. (16.3.3) with c = ex3−x1 and c = ex2−x3 , and |r3(B1(x)) −
c3(B1(x))| ⩾ 0. □

Theorem 16.3.3. Let s > 2 and let n ⩾ s. There exists a constant ε ∈ (0, 1) such that any
quantum algorithm which, given s-sparse query access to an n × n-matrix with entries
summing to one that can be balanced exactly, returns an ε-ℓ1-balancing with probability
⩾ 2/3, requiresΩ(n

√
s) quantum queries to the input.

Proof. Without loss of generality we may assume that n is a multiple of s; if this
is not the case, then we may round down n to a multiple n′ of s, prove the lower
bound for n′, and direct sum the hard n′ × n′ instances with a sparse exactly
balanced matrix with sufficiently small entries to obtain a hard n × n instance.
Note that the block must have sufficiently small entries because their size affects
the relative quality of the hard instance.

We now show how to reduce the problem of finding a (s,n)-string hidden
in a permutation (Definition 16.1.1) to a balancing instance. Let σ ∈ S×n/ss and
z ∈ {−1, 1}n, and let Pσ be the permutation matrix of σ when viewed as a
permutation of [n]. We define a 3n × 3n-matrix B as follows. We start from the

matrix A =

[︃
0 PT

σ

Pσ 0

]︃
. For every j ∈ [n], if zj = 1, we replace the (j,σ(j) + n)-th

entry of A by the vector
[︃
1
2

]︃
, and the (σ(j) + n, j)-th entry by the vector

[︁
2 1

]︁
.

If zj = −1, we replace the (j,σ(j) + n)-th entry of A by the vector
[︃
2
1

]︃
, and the

(σ(j) + n, j)-th entry by the vector
[︁
1 2

]︁
. Lastly, we replace zero entries by a zero

matrix of an appropriate size, depending on whether it is in the top-left block
(2 × 2), top-right (2 × 1), bottom-left (1 × 2) or bottom-right (1 × 1). In other words,
we have constructed B so that the 3 × 3 submatrix given by selecting the 2j − 1, 2j
and σ(j) + n’th row and 2j − 1, 2j and σ(j) + n’th column is exactly Bzj , and the
rest of the entries are 0. We shall refer to this submatrix as Bj from here onwards.
Furthermore, it is clear that one can implement query access to B using a constant
number of queries to Pσ,z. We now show that from an appropriate rebalancing
of B, one can recover the zj’s. Let x ∈ R3n be such that B(x) is ε-ℓ1-balanced, for
some ε > 0 that we choose later. In other words, we have

∥r(B(x)) − c(B(x))∥1 ⩽ ε∥B(x)∥1.

The left- and right-hand side split as the sum of the 1-norms of each of the blocks,
hence for x|j = (x2j−1, x2j, xσ(j)+n)we have

n∑︂
j=1
∥r(Bj(x|j)) − c(Bj(x|j))∥1 − ε∥Bj(x|j)∥1 ⩽ 0.

We now turn this into a statement about most indices j ∈ [n]. Consider a
sum

∑︁n
j=1 sj ⩽ 0 where sj ⩾ −c for some c ⩾ 0. Then for a given a > 0, at
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16. Quantum query lower bounds: constant precision

most ka = nc/(a + c) j’s can satisfy sj ⩾ a, for otherwise
∑︁n

j=1 sj > aka − (n −
ka)c = ka(a + c) − nc = 0 would be positive. We can apply this with c = 4

√
2ε

by Lemma 16.3.2, and with a = c(1 − λ)/λ where λ ∈ (0, 1) is as in Theorem 16.1.3.
This gives ka = nc/(a+c) ⩽ λn, so sj = ∥r(Bj(x|j))−c(Bj(x|j))∥1−ε∥Bj(x|j)∥1 ⩽ a
for at least (1 − λ)n j’s. Since a = c(1 − λ)/λ, we get ∥r(Bj(x|j)) − c(Bj(x|j))∥1 −
ε∥Bj(x|j)∥1 ⩽ 4

√
2ε(1 − λ)/λ, hence ∥r(Bj(x|j)) − c(Bj(x|j))∥1 ⩽ 4

√
2ε(1 − λ)/λ +

ε∥Bj(x|j)∥. Now we use that ∥Bj(x|j)∥ ⩾ 4
√

2, which holds because the exact
balancing has norm 4

√
2 (Eq. (16.3.2)), and the (logarithm of) the 1-norm forms a

convex potential for the balancing problem (Section 15.3). Therefore we obtain

∥r(Bj(x|j)) − c(Bj(x|j))∥1 ⩽
ε

λ
∥Bj(x|j)∥ (16.3.4)

for at least (1 − λ)n of the j’s. For ε = λ
300 , Eq. (16.3.4) implies that for every

such j, Bj(x|j) is 1/300-ℓ1-balanced, hence 1/100-ℓ∞-balanced, and we can recover
the corresponding zj’s as sign(x2j−1 − x2j) by Lemma 16.3.1. By Theorem 16.1.3,
recovering a 1−λ fraction of the zj’s requiresΩ(n

√
s) queries to Pσ,z, hence finding

an ε0-ℓ1-balancing for B must also use Ω(n
√
s) queries (as we can implement

queries B with 2 queries to Pσ,z). □

As a consequence of Lemma 13.2.4, we also obtain a lower bound for balancing
with constant squared Hellinger distance:

Corollary 16.3.4. Let s > 2 and let n ⩾ s. There exists a constant ε ∈ (0, 1) There exists
a constant ε ∈ (0, 1) such that any quantum algorithm which, given s-sparse query access
to an n × n-matrix with entries summing to one that can be balanced exactly, returns an
ε-H2-balancing with probability ⩾ 2/3, requiresΩ(n

√
s) quantum queries to the input.
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17. Quantum query lower bounds:
high precision

In this chapter we prove three lower bounds: an ˜︁Ω(m)-lower bound for 1/poly(n)-
ℓ2-scaling n × nmatrices with at mostm non-zero entries, anΩ(n2)-lower bound
for 1/poly(n)-ℓ2-balancing n × n matrices, and for ε ∈ [1/n, 1/2] an Ω(n1.5/

√
ε)-

lower bound for ε-ℓ1-approximation of the row-sum vector of a normalized n × n
matrix (with non-negative entries). The proofs for all the first two lower bounds
are based on a reduction from the lower bound given below in Section 17.1.
In Section 17.2 we construct the associated instances for matrix scaling, and in
Section 17.3 we analyze their column marginals after a single iteration of the
Sinkhorn algorithm. Afterwards, in Section 17.4 we show that these column
marginals are close enough to the target marginals for the reduction to matrix
scaling to work, and in Section 17.5 we put the ingredients together, with the main
theorem being Theorem 17.5.2. In Section 17.6 we provide a lower bound for
matrix balancing, Theorem 17.6.4, by creating a set of hard instances that form the
analogue of the set of instances used for the matrix scaling lower bound. Finally, in
Section 17.7 we prove a stronger lower bound than Theorem 17.1.1 for computing
approximations to the row marginals.

17.1. The basic lower bound
The lower bound we reduce from is the following:

Theorem 17.1.1. Let n be even, τ ∈ [1/n, 1/2] such that nτ is an integer, and let
k ⩾ 1 be an integer. Given k binary strings z1, . . . , zk ∈ {±1}n, where zi has Hamming
weight n/2+aiτn for ai ∈ {−1, 1}, computing with probability ⩾ exp(−k/100) a string
ã ∈ {−1, 1}k that agrees with a in ⩾ 99% of the positions requires Ω(k/τ) quantum
queries.

Proof. Let 𝒟 = {z ∈ {±1}n : |z| = n/2 + τn or |z| = n/2 − τn} and define the
partial Boolean function f : 𝒟 → {±1} as

f(z) =
{︄

1 if |z| = n/2 + τn
−1 if |z| = n/2 − τn.

It is known that computing f with success probability at least 2/3 takes Θ(1/τ)
quantum queries to z [NW99, Cor. 1.2], i.e., the bounded-error quantum query
complexity Q1/3(f) is Θ(1/τ).

We now proceed with bounding the query complexity of computing 99% of the
entries of f(k) : 𝒟k→ {±1}k defined by f(k)(z1, . . . , zk) = (f(z1), . . . , f(zk)). We will

This chapter is adapted from [GN22].
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17. Quantum query lower bounds: high precision

make use of the general adversary bound Adv±(f) [HLŠ07] which is known to satisfy
Adv±(f) = Θ(Q1/3(f)) [LMR+11, Thm. 1.1]. The strong direct product theorem of
Lee and Roland [LR13, Thm. 5.4] says that for every 0 ⩽ ρ < 1, µ ∈ [1+

√
ρ

2 , 1] and
integers k,K, every quantum algorithm that outputs a bit string ã ∈ {±1}k, and
makes T quantum queries to the bit strings z1, . . . , zk with

T ⩽
kρ

K(1 − ρ)Adv±(f)

has the property that ã agrees with f(k)(z1, . . . , zk) on at least a µ-fraction of the
entries with probability at most exp(k( 1

K −D(µ∥
1+√ρ

2 ))).1 Here D(µ∥ 1+√ρ
2 ) is the

Kullback–Leibler divergence between the distributions (µ, 1 − µ) and (1+
√
ρ

2 , 1−√ρ
2 ).

For µ = 0.99, ρ = 0.1 and K = 3, one has 1
K − D(µ∥

1+√ρ
2 ) ≈ −0.03 ⩽ −1/100.

Therefore, the strong direct product theorem shows that computing 99% of the
entries of f(k)(z1, . . . , zk) = a correctly, with success probability at least exp(−k/100),
takesΩ(kAdv±(f)) = Ω(kQ1/3(f)) = Ω(k/τ) quantum queries. □

We will use this lower bound with k = n/2 and τ = 1/n. The following intuition
is useful to keep in mind. For a fixed b ⩾ 2, define the 2k × n matrix A whose
(2i − 1)-th row equals 1 + zi/b and whose (2i)-th row equals 1 − zi/b. Then A has
the property that the row-marginals encode the Hamming weights of the zi, and
are all very close to n. (This implies that the first row-rescaling step of Sinkhorn’s
algorithm encodes the ai.) Moreover, the column-marginals are exactly uniform.
Hence, one may hope that all sufficiently precise scalings of A to uniform targets
have scaling factors that are close to those given by the first row-rescaling step of
Sinkhorn’s algorithm (and hence learn most of the ai).

Below we formalize this approach. We show that if one randomly permutes
the coordinates of each zi (independently over i), then with high probability,
all ε-scalings of the resulting matrix Aσ are close to the first step of Sinkhorn’s
algorithm; here we need to choose b sufficiently large (∼

√︁
ln(n)) and ε sufficiently

small (∼ 1
n2b

). The section is organized as follows. In Section 17.2 we formally
define our matrix scaling instances and we analyse the first row-rescaling step of
Sinkhorn’s algorithm. In Section 17.3 we show that after the row-rescaling step,
with high probability (over the choice of permutations), the column-marginals
are close to uniform. In Sections 17.4 and 17.5 we use the strong convexity of
the potential f from Eq. (13.1.3) to show that if the above event holds, then all
approximate minimizers of f can be used to solve the counting problem.

17.2. Definition of the scaling instances and analysis of
row marginals

Let n ⩾ 4 be even. Let k = n/2 and let z1, . . . , zk ∈ {±1}n have Hamming
weight |zi | = |{j : zi

j
= 1}| = n/2 + ai for ai ∈ {±1}. Sample uniformly random

permutations σ1, . . . ,σk ∈ Sn and define wi by wi
j
= zi(σi)−1(j). Let b ⩾ 2 be some

1In [LR13] the upper bound on T is stated in terms of Adv∗(F) where F = (δf(x),f(y))x,y∈𝒟 is the
Gram matrix of f. For Boolean functions f one has Adv∗(F) = Adv±(f) [LMR+11, Thm. 3.4].
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number depending on n, and consider the 2k × n matrix Aσ whose entries are

Aσ
2i−1,j = 1 + wi

j

b and Aσ
2i,j = 1 − wi

j

b . Then each column sum cj(Aσ) is 2k, and the
row sums of Aσ are given by

r2i−1(Aσ) = n + 1
b

n∑︂
j=1
wi

j = n +
2
b
ai, r2i(Aσ) = n − 2

b
ai.

Let

X2i−1 =
1

2k ·
1

n + 2
bai

and X2i =
1

2k ·
1

n − 2
bai

for all i ∈ [k] (17.2.1)

be the row scaling factors obtained from a single Sinkhorn step. We first observe
that the difference between x2i−1 := ln(X2i−1) and x2i := ln(X2i) permits to recover
ai.

Lemma 17.2.1. For the specific row-scaling factors X for Aσ given in (17.2.1), for every
i ∈ [k] it holds that

|ln(X2i−1/X2i)| ⩾
4
nb

,

and sign(ln(X2i/X2i−1)) = ai.
Proof. Observe that (nb > 2 and therefore)

|ln(X2i−1/X2i)| =
|︁|︁|︁|︁|︁ln

(︄
n + 2

b

n − 2
b

)︄|︁|︁|︁|︁|︁ = ln
(︃
nb + 2
nb − 2

)︃
⩾

4
nb

. □

17.3. Concentration of column marginals
We first give an explicit expression for the jth column marginal of XAσ where X is
given in (17.2.1).

Lemma 17.3.1. The matrix XAσ has column sums

cj(XAσ) = 1
2k(n2 − 4/b2)

(︄
2kn − 4

b2

k∑︂
i=1
wi

jai

)︄
for j ∈ [n].

Proof. We have

cj(XAσ) =
k∑︂
i=1

(︄
1 +wi

j
/b

2k(n + 2ai/b)
+

1 −wi
j
/b

2k(n − 2ai/b)

)︄
=

1
2k(n2 − 4/b2)

k∑︂
i=1

(︂
(1 +wi

j/b)(n − 2ai/b) + (1 −wi
j/b)(n + 2ai/b)

)︂
=

1
2k(n2 − 4/b2)

k∑︂
i=1

(︄
2n −

4wi
j
ai

b2

)︄
=

1
2k(n2 − 4/b2)

(︄
2kn − 4

b2

k∑︂
i=1
wi

jai

)︄
. □
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We now show that with high probability (over the choice of permutations) the
column marginals are close to uniform. To do so, we first compute the expectation
of

∑︁k
i=1w

i
j
ai (Corollary 17.3.3). This quantity allows us to obtain the desired

concentration of the column marginals via Hoeffding’s inequality (Lemma 17.3.4).

Lemma 17.3.2. Let I = {i ∈ [k] : ai = 1} and Ic = [k] \ I. Define random variablesWj,
Wc

j
by

Wj =
∑︂
i∈I
wi

j, Wc
j =

∑︂
i∈Ic

wi
j.

Then E[Wj] = 2|I|
n and E[Wc

j
] = −2|Ic |

n .

Proof. Observe that each wi
j

is 1 with probability 1
2 +

ai

n because σi is chosen
uniformly randomly from Sn, and is −1 with probability 1

2 −
ai

n . Therefore
E[wi

j
] = 2ai

n . By linearity of expectation, the result follows. □

Corollary 17.3.3. We have

E

[︄
k∑︂
i=1
wi

jai

]︄
= E[Wj] −E[Wc

j ] =
2(|I| + |Ic |)

n
=

2k
n

.

Lemma 17.3.4. For t ⩾ 0 and j ∈ [n], with probability at least 1 − 2e−t2/2, we have|︁|︁|︁|︁cj(XAσ) − 1
n

|︁|︁|︁|︁ = O(︃
t

b2n2
√
k

)︃
.

Proof. Observe first that|︁|︁|︁|︁cj(XAσ) − 1
n

|︁|︁|︁|︁ = |︁|︁|︁|︁|︁ 1
2k(n2 − 4/b2)

(︄
2kn − 4

b2

k∑︂
i=1
wi

jai

)︄
− 1
n

|︁|︁|︁|︁|︁
=

1
2kn(n2 − 4/b2)

|︁|︁|︁|︁|︁n
(︄
2kn − 4

b2

k∑︂
i=1
wi

jai

)︄
− 2k(n2 − 4

b2 )
|︁|︁|︁|︁|︁

=
1

2kn(n2 − 4/b2)

|︁|︁|︁|︁|︁8kb2 −
4n
b2

k∑︂
i=1
wi

jai

|︁|︁|︁|︁|︁
=

4
2kn(n2 − 4/b2)b2

|︁|︁|︁|︁|︁2k − n k∑︂
i=1
wi

jai

|︁|︁|︁|︁|︁.
For fixed j and distinct i, i′ ∈ [k],wi

j
andwi′

j
are independently distributed random

variables because σi and σi
′ are independent. Therefore, Vj := Wj − Wc

j
=∑︁k

i=1w
i
j
ai is a sum of k independent random variables, with each aiwi

j
∈ [−1, 1],

and Hoeffding’s inequality yields for any t ⩾ 0 that

Pr[|Vj −E[Vj]| ⩾ t ·
√
k] ⩽ 2 exp(−t2/2).
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Assuming that |Vj −E[Vj]| ⩽ t
√
k, we have|︁|︁|︁|︁|︁2k − n k∑︂

i=1
aiw

i
j

|︁|︁|︁|︁|︁ = n|︁|︁E[Vj] − Vj|︁|︁ ⩽ nt√k.

With this estimate, we see that|︁|︁|︁|︁cj(XAσ) − 1
n

|︁|︁|︁|︁ ⩽ 4
2kn(n2 − 4/b2)b2 · nt

√
k =

2t
b2(n2 − 4/b2)

√
k

. □

Corollary 17.3.5. For any t ⩾ 0, with probability ⩾ 1 − 2ne−t2/2, we have∥︁∥︁∥︁∥︁c(XAσ) − 1
n

∥︁∥︁∥︁∥︁
2
⩽

2
√
nt

b2(n2 − 4/b2)
√
k
= O

(︂ t

b2n2

)︂
.

17.4. Strong convexity properties of the potential
For a λ-strongly convex function f, the set {z : ∥∇f(z)∥2 ⩽ ε} has a diameter that is
bounded by a function of λ (we make this well-known fact precise in Lemma 17.4.3).
We show that our potential is strongly convex when viewed as a function from (a
suitable subset of) the linear subspace V = {(x,y) ∈ Rn×Rn : ⟨(x,y), (1n,−1n)⟩ =
0} toR (note that f is invariant under translation by multiples of (1n,−1n)). We use
this to show that whenever ∥grad f(x,y)∥2 is small, (x,y) is close to the minimizer
of f on V . It is easy to verify that Corollary 17.3.5 in fact gives an upper bound
on the norm of the gradient at (ln(X), 0) (with X as in (17.2.1)). This implies that
(ln(X), 0) is close to the minimizer of f on V , and by the triangle inequality, is also
close to any other (x,y) for which ∥grad f(x,y)∥2 is small. In the rest of this section
we make the above precise.

In Lemma 17.4.1 we show that the Hessian of f restricted to V has smallest
eigenvalue at least n · µ(x,y) where µ(x,y) is the smallest entry appearing in
(Aije

xi+yj)i,j. In Lemma 17.4.2 we show that µ(x∗,y∗) = Θ(1/n2). This implies
that µ(x,y) = Θ(1/n2) for all (x,y) that are a constant distance away from (x∗,y∗)
in the ℓ∞-norm, in other words, f is Θ(1/n)-strongly convex around its minimizer.
Lemma 17.4.5 summarizes these lemmas: it gives a quantitative bound on the
distance to a minimizer, in terms of the gradient.
Lemma 17.4.1. Let A ∈ Rn×n

⩾0 with ∥A∥1 = 1 and let f : V ⊂ Rn ×Rn → R be the
potential for this matrix as given in (13.1.3), where V is the orthogonal complement of
(1n,−1n). Then Hess f(x,y) ⪰ µ(x,y) · n · PV where PV is the projection onto V and
µ(x,y) is the smallest entry appearing in A(x,y). In particular, f is strictly convex on V .
Proof. The Hessian of the potential f(x,y) =

∑︁n
i,j=1Aije

xi+yj − ⟨r, x⟩ − ⟨c,y⟩ is
given by

Hess f(x,y) =
[︃
diag(r(A(x,y)) A(x,y)

A(x,y)T diag(c(A(x,y)))

]︃
.

We give a lower bound on the non-zero eigenvalues of the Hessian as follows.
Conjugating the Hessian with the 2n×2nmatrix diag(I,−I) preserves the spectrum
and yields the matrix [︃

diag(r(A(x,y)) −A(x,y)
−A(x,y)T diag(c(A(x,y)))

]︃
.
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One can recognize this as a weighted Laplacian of a complete bipartite graph. We
denote by µ(x,y) the smallest entry of A(x,y) and we use J for the n × n all-ones
matrix. Then[︃
diag(r(A(x,y)) −A(x,y)
−A(x,y)T diag(c(A(x,y)))

]︃
⪰

[︃
nµ(x,y)I −µ(x,y)J
−µ(x,y)J nµ(x,y)I

]︃
= µ(x,y)

[︃
nI −J
−J nI

]︃
,

where the PSD inequality follows because the difference of the terms is the
weighted Laplacian of the bipartite graph with weighted bipartite adjacency matrix
A(x,y) − µ(x,y)J, which has non-negative entries. Now observe that the last

term
[︃
nI −J
−J nI

]︃
is the (unweighted) Laplacian of the complete bipartite graph Kn,n,

whose spectrum is 2n, n, 0 with multiplicities 1, 2n − 2 and 1 respectively. The
zero eigenvalue corresponds to the all-ones vector of length 2n and it is easy
to see that indeed (1,−1) also lies in the kernel of Hess f(x,y). This shows that
the non-zero eigenvalues of Hess f(x,y) are at least n · µ(x,y), and that it has a
one-dimensional eigenspace corresponding to 0, spanned by the vector (1,−1).
Hence, Hess f(x,y) ⪰ µ(x,y) · n · PV . □

We now bound the smallest entry of the rescaled matrix. The main tool for this
is Lemma 14.2.1.

Lemma 17.4.2. Let A ∈ [µ,ν]n×n be an entrywise-positive matrix with ∥A∥1 = 1
and let f : V ⊂ Rn × Rn → R be the potential for this matrix as given in (13.1.3),
where V is the orthogonal complement of (1n,−1n). Let (x∗,y∗) ∈ V be the unique
minimizer of f in V . Then µ(x∗,y∗) ⩾ 1

n2

(︁µ
ν

)︁3. Moreover, for any (x,y) ∈ V we have
µ(x,y) ⩾ µ(x∗,y∗)e−2∥(x,y)−(x∗,y∗)∥∞ .

Proof. By Lemma 17.4.1 f is strictly convex on V . We also know that A is exactly
scalable. Hence f has a unique minimizer (x∗,y∗). By Lemma 14.2.1 we know
that the variation norms of x∗ and y∗ are bounded by ln(ν/µ). Hence, for every
i, i′, j, j′ ∈ [n]we have|︁|︁|︁|︁|︁ln

(︄
e
x∗
i
+y∗

j

e
x∗
i′+y

∗
j′

)︄|︁|︁|︁|︁|︁ ⩽ |x∗i − x∗i′ | + |y∗j − y∗j′ | = 2 ln(ν/µ).

Therefore, the ratio between entries of A(x∗,y∗) is bounded:|︁|︁|︁|︁ A(x∗,y∗)ijA(x∗,y∗)i′j′

|︁|︁|︁|︁ ⩽ |︁|︁|︁|︁ Aij

Ai′j′

|︁|︁|︁|︁ |︁|︁|︁|︁|︁
(︄
e
x∗
i
+y∗

j

e
x∗
i′+y

∗
j′

)︄|︁|︁|︁|︁|︁ ⩽ νµe2 ln(ν/µ) =

(︃
ν

µ

)︃3
.

Since the sum of the entries of A(x∗,y∗) equals 1, this implies that the smallest
entry of A(x∗,y∗) is at least µ(x∗,y∗) ⩾ 1

n2

(︁µ
ν

)︁3. Finally, for any (x,y) ∈ V and any
i, j ∈ [n]we have

Aije
xi+yj ⩾ Aije

x∗
i
+y∗

j
−2∥(x,y)−(x∗,y∗)∥∞

which shows µ(x,y) ⩾ µ(x∗,y∗)e−2∥(x,y)−(x∗,y∗)∥∞ . □

Finally, to obtain a diameter bound for the set of points with a small gradient we
will use the following (well-known) lemma.
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Lemma 17.4.3. Assume g : Rd → R is a C2 convex function such that gradg(0) = 0,
and assume that for all x ∈ Rd with ∥x∥2 ⩽ r, we have Hessg(x) ⪰ λI. Then

∥gradg(x)∥2 ⩾ λmin(∥x∥2, r).

Therefore, to guarantee that ∥x∥2 ⩽ C for C ⩾ 0, it suffices to show that ∥gradg(x)∥2 <
λmin(C, r) (note that the strict inequality is necessary here because it forces min(∥x∥2, r) =
∥x∥2).

Corollary 17.4.4. If Hessg(x) ⪰ λI holds whenever ∥x∥∞ ⩽ r, then for all x,
∥gradg(x)∥2 < λmin(C, r) implies ∥x∥∞ ⩽ C.

Proof of Lemma 17.4.3. Fix x ∈ Rn and consider h : R→ R defined by h(t) = g(tx).
Then h is convex, ∂t=0h(t) = 0 and ∂2

t=sh(t) ⩾ 0 for all s ∈ R. Now assume for
s ∈ R that |s|∥x∥2 ⩽ r. Then

∂2
t=sh(t) = ∂t=s(Dg(tx)[x])

= D2g(sx)[x, x] = xT Hessg(sx)x ⩾ λ∥x∥22.

We use this to further estimate, for s ⩾ 0, that

⟨gradg(sx), x⟩ = ∂t=sh(t) =
∫ s

0
∂2
t=τh(t)dτ

⩾

∫ min(s,r/∥x∥2)

0
∂2
t=τh(t)dτ

⩾

∫ min(s,r/∥x∥2)

0
λ∥x∥22 dτ

= λ∥x∥22 min(s, r/∥x∥2),

where the first inequality follows from the convexity of h. Setting s = 1 and using
the Cauchy–Schwarz inequality gives

∥gradg(x)∥2∥x∥2 ⩾ λ∥x∥22 min(1, r/∥x∥2)

so

∥gradg(x)∥2 ⩾ λ∥x∥2 min(1, r/∥x∥2) = λmin(∥x∥2, r). □

Lemma 17.4.5. Let A ∈ [µ,ν]n×n be an entrywise non-negative matrix with ∥A∥1 = 1
and let f : V ⊂ Rn ×Rn→ R be the potential for this matrix as given in (13.1.3), where
V is the orthogonal complement of (1n,−1n). Let (x∗,y∗) be the unique minimizer of f
in V and let 0 < δ < 1. Let (x,y) ∈ V be such that ∥∇f(x,y)∥2 < δ · 1

n

(︁µ
ν

)︁3
e−2. Then

∥(x,y) − (x∗,y∗)∥∞ ⩽ δ.
Proof. Lemma 17.4.1 shows that Hess f(x,y) ⪰ n · µ(x,y) · PV , where PV is the
orthogonal projector on V . Lemma 17.4.2 shows that

µ(x,y) ⩾ µ(x∗,y∗)e−2∥(x,y)−(x∗,y∗)∥∞ ⩾
1
n2

(︂µ
ν

)︂3
e−2∥(x,y)−(x∗,y∗)∥∞ .

Hence, for (x,y)with ∥(x,y)−(x∗,y∗)∥∞ ⩽ 1, we have Hess f(x,y) ⪰ 1
n

(︁µ
ν

)︁3
e−2 ·PV .

It then follows from Corollary 17.4.4 that if ∥∇f(x,y)∥2 < δ · 1
n

(︁µ
ν

)︁3
e−2, then

∥(x,y) − (x∗,y∗)∥∞ ⩽ δ. □
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Observe that for Aσ the ratio between its largest and smallest entry is b+1
b−1 ⩽ 3.

This gives the following corollary.

Corollary 17.4.6. Let Aσ be as in Section 17.2 and let f be the associated potential. Let
(x∗,y∗) be the unique exact scaling of Aσ in V . If (x,y) ∈ V is such that ∥∇f(x,y)∥2 <

δ
27ne2 , then ∥(x,y) − (x∗,y∗)∥∞ ⩽ δ.

17.5. Concluding the lower bound for matrix scaling
Let (x̄, ȳ) ∈ V be the unique vector such that (x̄, ȳ)−(x,y) is a multiple of (1n,−1n),
where (x,y) are the scaling vectors of the first step of Sinkhorn. By choosing t and
b appropriately we obtain, with high probability over the choice of permutations,
a bound on the distance between (x̄, ȳ) and the unique scaling vectors (x∗,y∗) ∈ V
of an exact scaling of Aσ. This allows us to conclude that, with high probability,
all sufficiently precise scalings of Aσ encode the Hamming weights ai.

Corollary 17.5.1. There exists a constant C > 0 such that for b = C
√

lnn the following
holds. With probability ⩾ 2/3 (over the choice of σ) we have for the exact scaling vectors
(x∗,y∗) ∈ V of Aσ that

ai = sign(x∗2i − x∗2i−1) for all i.

Furthermore, there exists a constant C′ > 0 such that for any (x′,y′) that yield a (C′/n2b)-
ℓ2-scaling ofAσ, ai can be recovered from x′ as ai = sign(x2i−x2i−1) = sign(x′2i−x′2i−1).

Proof. Applying Corollary 17.3.5 with t = 10
√

lnn shows that with probability at
least 2/3 we have ∥grad f(x̄, ȳ)∥2 = ∥grad f(x,y)∥2 = t

b
2
√
n

b(n2−4/b2)
√
k

. Hence, there
exists a constant C > 0 such that for b = Ct we have

∥grad f(x̄, ȳ)∥2 ⩽
1
nb

1
27ne2 .

Corollary 17.4.6 then implies that ∥(x̄, ȳ)−(x∗,y∗)∥∞ ⩽ 1
nb and hence |(x∗2i−1−x

∗
2i)−

(x2i−1 − x2i)| ⩽ 2
nb . Together with Lemma 17.2.1 (which shows that |x2i−1 − x2i | ⩾

4
nb ) this means that ai = sign(x∗2i − x∗2i−1). Moreover, |x∗2i−1 − x

∗
2i | ⩾

2
nb .

Now consider approximate scalings of Aσ. Without loss of generality we
may assume that the (x′,y′) that yield a ( 1

2nb
1

27ne2 )-ℓ2-scaling of Aσ belong to V
(otherwise we shift it by an appropriate multiple of (1n,−1n)). Then, again due
to Corollary 17.4.6, we obtain that ∥(x′,y′) − (x∗,y∗)∥∞ ⩽ 1

2nb ⩽
1
4 |x∗2i−1 − x

∗
2i | and

hence |(x′2i−1−x
′
2i)−(x∗2i−1−x

∗
2i)| ⩽

1
2 |x∗2i−1−x

∗
2i |which means that sign(x′2i−x′2i−1) =

sign(x∗2i−1 − x
∗
2i) = ai. □

Theorem 17.5.2. There exists a constant C > 0 such that every matrix scaling algorithm
that, with probability ⩾ 3

2 exp(−n/100), finds scalings for n × n-matrices with ℓ2-error
C/(n2

√
lnn) must make at leastΩ(n2) queries to the matrix. This even holds for uniform

targets and entrywise-positive matrices with smallest entryΩ(1/n2).

Proof. We construct a set of hard instances as in Section 17.2. Let n ⩾ 4 be even.
Let k = n/2 and let z1, . . . , zk ∈ {±1}n have Hamming weight |zi | = |{j : zi

j
= 1}| =
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n/2 + ai for ai ∈ {±1}. By Theorem 17.1.1, finding at least 99% of the ai’s with
probability ⩾ exp(−n/100) takesΩ(n2)-queries to the zi

j
. One can recover the ai’s

with probability ⩾ 2/3 as follows. First, sample the σ1, . . . ,σn/2 uniformly from
Sn. A single query to Aσ takes a single query to some wi, which takes a single
query to zi. Using Corollary 17.5.1, there exists a constant C > 0 such that, with
probability ⩾ 2/3, any scaling of Aσ with ℓ2-error C/(n2

√
lnn) recovers all ai’s.

Therefore any matrix scaling algorithm finding such a scaling with probability
⩾ exp(−n/100) allows us to find all ai’s with probability ⩾ exp(−n/100). □

Corollary 17.5.3. There exist constantsC0,C1 > 0 such that any matrix scaling algorithm
that, with probability ⩾ exp(−C0n/ln(n)), finds scalings for n×n-matrices with at most
m non-zero entries and ℓ2-error C1/(m

√︁
ln(m/n)) must make at least ˜︁Ω(m) queries to

the matrix. This even holds for uniform targets and matrices with smallest non-zero entry
Ω(1/m).

Proof. We construct a set of sparse hard instances by taking direct sums of the
hard instances used in the proof of Theorem 17.5.2. Concretely, let s ⩾ 4 be
even and assume that n is a multiple of s. Let Aσ1

1 , . . . ,Aσn/s
n/s ∈ [0, 1]s×s be n/s

independently drawn hard instances from the set constructed in the proof of
Theorem 17.5.2. We use this to create a sparse instance A = s

n ⊕
n/s
i=1 Aσi

i
. Note that

∥A∥1 = 1 and each row of A has exactly s non-zero entries (which meansm = ns).
Let (x,y) be an ε-ℓ2-scaling of A to uniform marginals. Then we have

ε2 ⩾ ∥ 1
n
−r(A(x,y))∥22 =

n/s∑︂
i=1
∥ 1
n
− s
n
Aσi

i
(x|i,y|i)∥22 =

n/s∑︂
i=1
( s
n
)2∥1/s−Aσi

i
(x|i,y|i)∥22

where (x|i,y|i) is the restriction of (x,y) to the coordinates corresponding to the
ith block. In particular, for each i ∈ [n/s], the pair (x|i,y|i) forms an εn

s -ℓ2-scaling
of Aσi

i
to marginals 1/s. Hence, for ε = C/(ns

√︁
ln(s))we recover for each block a

scaling with ℓ2-error C/(s2
√︁

ln(s)). For each block this allows us, with probability
⩾ 2/3 over the choice of σi, to compute the Hamming weights of the associated
bit strings. Hence, for a suitably large constant c0, using c0 ln(n) successful runs
of the scaling algorithm with independently drawn choices of the σi’s allows us
to compute the Hamming weights of all n bit strings with probability at least
2/3. The probability that all the runs of the scaling algorithm are successful is
at least (exp(−C0n/ln(n)))c0 ln(n) = exp(−C0c0n) ⩾ 3

2 exp(−n/100), where the last
inequality determines the choice of C0. Hence, we compute the Hamming weights
of all n bit strings with probability at least exp(−n/100) and by Theorem 17.1.1
this requires at leastΩ(ns) quantum queries to the bit strings. □

17.6. Lower bound for matrix balancing
We now show how to obtain anΩ(m) quantum query lower bound for ε-ℓ2-matrix
balancing for ε = C/m for a suitably small constant C > 0. We first show how to do
so in the dense case where the support of the matrix equals the complete bipartite
graph Kn,n. Our lower bound is again based on a reduction to the problem of
counting Hamming weights of bit strings, i.e., it is based on the lower bound
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shown in Theorem 17.1.1. More concretely, let n ⩾ 2 be even, set k = n/2, and let
z1, . . . , zk ∈ {±1}n be bit strings of length n with the Hamming weight of zj equal
to n

2 + aj for aj ∈ {±1}. We construct a single matrix balancing instance of size
2n× 2n that has the property that all balancing-factors x that provide a sufficiently
balanced matrix encode the bits a1, . . .ak. Let A be the n-by-n matrix that, for
j ∈ [k], contains the vector 1 + zj/2 on the 2j − 1th row and 1 − zj/2 on the 2jth
row. All column-marginals of A are equal to n. Moreover r2j−1(A) = n + aj and
r2j(A) = n − aj for each j ∈ [k]. We now consider the matrix balancing instance
given by B where

B :=
[︃

0 A

2 · 1n×n −AT 0

]︃
. (17.6.1)

Note that the bottom-left block corresponds to the transpose of the matrix that is
obtained in a similar manner as A starting from the negated bit strings −z1, . . . ,−zk.
We thus have the following equalities for each j ∈ [k]:

r2j−1(B) = c2j(B) = r2j−1(A) = n + aj,
r2j(B) = c2j−1(B) = r2j(A) = n − aj,

rn+2j−1(B) = rn+2j(B) = cn+2j−1(B) = cn+2j(B) = n.

We first show that B can be exactly balanced by factors X1, . . . ,X2n that moreover
encode the bits a1, . . . ,ak. For i ∈ [n] define Xi =

√︁
ci(B)/ri(B). Then for j ∈ [k]

we have
X2j−1 = X−1

2j =

√︃
n − aj
n + aj

. (17.6.2)

Clearly X2j and X2j−1 encode aj. Then for X∗ = diag(X1, . . . ,Xn, 1, . . . , 1) (thus
Xn+i = 1) andC = X∗BX∗−1, one has ri(C) = ci(C) for every i ∈ [n] by construction.
We show that in fact C is exactly balanced.

Proposition 17.6.1. The matrix C = X∗BX∗−1 is exactly balanced.

Proof. Observe first that

C =

[︃
0 XA

(2 · 1n×n −AT )X−1 0

]︃
where we use the notation X = diag(X1, . . . ,Xn). Note that X1, . . . ,Xn are defined
in such a way that the first n rows and columns are exactly balanced (because
of the bipartite structure of B, balancing the ith marginals does not affect the
i′th marginals for i, i′ ∈ [n]). It remains to verify that rn+i(C) = cn+i(C) for each
i ∈ [n]. Note that for i ∈ [n], we have cn+i(C) = ci(XA) and

rn+i(C) = ri((2 · 1n×n −AT )X−1)
= ci(X−1(2 · 1n×n −A))

where the last equality is obtained by transposing. We expand

ci(XA) =
k∑︂
j=1
(1 +

z
j
i

2 )X2j−1 + (1 −
z
j
i

2 )X2j,
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ci(X−1(2 · 1n×n −A)) =
k∑︂
j=1
(1 −

z
j
i

2 )X
−1
2j−1 + (1 −

z
j
i

2 )X
−1
2j .

Using the relation X2j = X
−1
2j−1 from Eq. (17.6.2), we thus obtain

rn+i(C) = ci(X−1(2 · 1n×n −A)) = ci(XA) = cn+i(C).

This shows that C is exactly balanced. □

We now show that any vector x ∈ V := {x ∈ R2n : ⟨x, 1n⟩ = 0} for which B(x) is
ε-ℓ2-balanced is close to x∗ := ln(X∗), for ε small enough. To do so, we consider the
two convex functions

f(x) =
2n∑︂

i,j=1
Bije

xi−xj ,

F(x) = log(f(x)).
(17.6.3)

Their gradients are ∇f(x) = r(B(x)) − c(B(x)) and ∇F(x) = ∇f(x)
f(x) , and therefore x∗

is a minimizer of both f and F. Moreover, if B(x) is ε-ℓ2-balanced, then we have

∥∇F(x)∥2 =
∥r(B(x)) − c(B(x))∥2

∥B(x)∥1
⩽ ε.

We show that for the matrix balancing instances defined in Eq. (17.6.1), F is
moreover strongly convex around its minimizer x∗.

Proposition 17.6.2. Let F(x) = ln(
∑︁

i,j Bije
xi−xj) for a matrix B as in Eq. (17.6.1). Let

x∗ = ln(X∗) be its minimizer. Then, for all x with ∥x − x∗∥2 ⩽ 1/100, we have

Hess F(x) ⪰ c · nΠV

where ΠV is the projector on the complement of the all-ones vector and 0 < c < 1 is a
constant. Moreover, for such x one has ∥ grad f(x)∥2 ⩽ n

25 and n
2ΠV ⪯ Hess f(x) ⪯

4nΠV .

Proof. We have

Hess F(x) = Hess f(x)
f(x) − 1

f(x)2∇f(x)∇f(x)
T

=
diag(r(B(x)) + c(B(x))) − B(x) − B(x)T

∥B(x)∥1
− d(B(x))d(B(x))T

∥B(x)∥21

where we define d(B(x)) := r(B(x)) − c(B(x)) and we use

Hess f(x) = diag(r(B(x)) + c(B(x))) − B(x) − B(x)T .

To obtain a lower bound on the non-zero eigenvalues of Hess F(x)we bound the
three quantities ∥B(x)∥1, Hess f(x), and ∥∇f(x)∥2 separately.
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First note that for all x ∈ R2n with ∥x−x∗∥∞ ⩽ 1/100 we have e−2/100 ⩽
B(x)i,j
B(x∗)i,j

⩽

e2/100 for all i, j ∈ [2n]. In particular ∥B(x)∥1 lies within a constant factor of
∥B(x∗)∥1. We moreover have ∥B(x∗)∥1 = Θ(n2).

We now consider the Hessian of f. It can be viewed as the Laplacian of a graph
on 2n vertices with edge weights defined by B(x) + B(x)T . Given the structure of
the matrices B, the edges with strictly positive weight correspond to the complete
bipartite graph Kn,n. We bound the Hessian of f using the smallest and largest
edge weight. More precisely, let wmin and wmax be, respectively, lower and upper
bounds on edge weights of Hess f(x), then

wminℒ(Kn,n) ⪯ Hess f(x) ⪯ wmaxℒ(Kn,n),

where ℒ(Kn,n) is the Laplacian of the unweighted complete bipartite graph Kn,n
(which has spectrum 2n,n, 0 with multiplicities 1, 2n − 2, 1). In particular, at x∗,

the non-zero entries of B(x∗) are at least (1 − 1
2)

√︂
n−1
n+1 and at most (1 + 1

2)
√︂

n+1
n−1 .

This makes the edge weights at least wmin =

√︂
n−1
n+1 and at most wmax = 3

√︂
n+1
n−1 .

Similarly, for all x that satisfy ∥x − x∗∥∞ ⩽ 1/100 the edge weights are all Θ(1)
(since the entries of B(x) lie within a constant factor of those of B(x∗)). We thus
have the following bounds on Hess f(x): for all x that satisfy ∥x − x∗∥∞ ⩽ 1/100,
we have

n

2ΠV ⪯ Hess f(x) ⪯ 4nΠV .

We finally use the above upper bound on the Hessian of f to upper bound the
norm of ∇f(x). To do so, we require not only a bound on the ℓ∞-norm of x − x∗ but
also on its ℓ2-norm. More precisely, the above bound implies that ∥ grad f(x)∥2 ⩽ n

25
whenever ∥x − x∗∥2 ⩽ 1/100. To see this, observe that

∥grad f(x)∥22 = ⟨grad f(x), grad f(x)⟩

=

∫ 1

0
⟨grad f(x), Hess f(tx + (1 − t)x∗)(x − x∗)⟩ dt

⩽ ∥grad f(x)∥2∥x − x∗∥2
∫ 1

0
∥Hess f(tx + (1 − t)x∗)∥op dt

⩽ ∥grad f(x)∥2∥x − x∗∥2 · 4n

so ∥grad f(x)∥2 ⩽ 4n
100 whenever ∥x − x∗∥2 ⩽ 1

100 .
Combining the above three bounds we obtain that the smallest non-zero eigen-

value of Hess F(x) is at least

n/2
cn2 −

n2

(cn2)2 = Ω(1/n)

whenever ∥x − x∗∥2 ⩽ 1
100 . Moreover, for such x the Hessian Hess F(x) has only a

single eigenvalue equal to zero (corresponding to the all-ones eigenvector). □

The strong convexity of F around the minimizer implies a lower bound on
∥∇F(x)∥2 for x ∈ V that are far from x∗, via Lemma 17.4.3. In other words, we
obtain an upper bound on the distance ∥x − x∗∥2 for all x ∈ V for which B(x) is
approximately balanced.
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17.6. Lower bound for matrix balancing

Proposition 17.6.3. Let n ⩾ 2 be even, k = n/2, and z1, . . . , zk ∈ {±1}n with Hamming
weight n/2 + aj for aj ∈ {±1}. Let B ∈ R2n×2n be the corresponding matrix defined
in Eq. (17.6.1). Then for any x ∈ V such that exBe−x is C

n2 -ℓ2-balanced, we have
sign(x2j−1) = aj for all j ∈ [k]. Here C > 0 is a constant.

Proof. The strong convexity of F around x∗ = ln(X∗) shown in Proposition 17.6.2
gives, by Lemma 17.4.3, the following lower bound on the norm of the gradient

∥∇F(x)∥2 ⩾
c

n
min{∥x − x∗∥2, 1/100}

for a suitable constant c > 0 and x ∈ V . In particular, for vectors x ∈ V that provide
an ε-ℓ2-balancing, we obtain

ε ⩾ ∥∇F(x)∥2 ⩾
c

n
min{∥x − x∗∥2, 1/100}.

For ε < c/(100n) this shows that ∥x − x∗∥2 ⩽ εn/c and thus also ∥x − x∗∥∞ ⩽ εn/c.
Recall that for i ∈ [n] we have | ln(Xi)| = ln(

√︂
n+1
n−1) and thus | ln(Xi)| > c′

n for a
suitable constant c′ and n large enough. Hence, for ε = c′c

2n2 we have ∥x − x∗∥∞ ⩽
c′c
2n2

n
c = c′

2n and thus for j ∈ [k]we have sign(x2j) = sign(ln(X∗2j)) = aj. □

Theorem 17.6.4. There exists a constant C > 0 such that any matrix balancing algorithm
that, with probability ⩾ exp(−n/100), finds balancings for n × n-matrices that have
Ω(n2) non-zero entries with ℓ2-error C

n2 must make at leastΩ(n2) queries to the matrix.
This even holds for matrices for which the ratio between largest and smallest entry is a
constant, and whose support equals the complete bipartite graph Kn/2,n/2.

Proof. We use the set of balancing instances defined in Eq. (17.6.1). By Theo-
rem 17.1.1, finding at least 99% of the ai’s with probability ⩾ exp(−n/100) takes
Ω(n2) queries to the zi

j
and thusΩ(n2) queries to B. Proposition 17.6.3 shows that

there exists a constantC > 0 such that every x ∈ V for which B(x) is C
n2 -ℓ2-balanced,

allows one to recover all ai correctly. Finding such a vector x ∈ V thus requires
Ω(n2) queries to B. □

We finally show how to extend the above result to sparse instances B that have
s non-zero entries per row and column. Letting m = ns be the total number of
non-zero entries in such instances, we show anΩ(m)-query lower bound for high
enough precision.

Theorem 17.6.5. There exists a constant C > 0 such that any matrix balancing algorithm
that, with probability ⩾ exp(−n/100), finds balancings for n × n-matrices that havem
non-zero entries with ℓ2-error C

m must make at least Ω(m) queries to the matrix. This
even holds for matrices for which the ratio between largest and smallest entry is a constant,
and which have exactly s ⩾ 4 non-zero entries per row and column.

Proof. We consider k = n/s many s × s matrices A1, . . . ,Ak where each Ai is
associated to an s/2-tuple of s-bit strings as before. Construct Bi from Ai as before
and define B = ⊕i∈[k]Bi. Then B ∈ R2n×2n. We first show FB(x) = log(∥B(x)∥1) is
strongly convex around its minimizer x∗ when restricted to the linear subspace
⊕i∈kVs, where where Vs := {y ∈ R2s | ⟨y, 12s⟩ = 0}. Let us use x|i to denote the
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17. Quantum query lower bounds: high precision

vector x restricted to the coordinates corresponding to the ith block. We will use
the two potentials defined in Eq. (17.6.3) for each of the blocks, we denote them
using fBi and FBi . We have the following two identities:

∇fB(x) = ⊕i∈[k]∇fBi(x|i),
Hess fB(x) = ⊕i∈[k]Hess fBi(x|i).

Let x∗ := ⊕i∈[k]x∗ |i with x∗ |i the minimizer of FBi . When ∥x − x∗∥2 ⩽ 1/100 we
have ∥x|i − x∗ |i∥2 ⩽ 1/100 for each i ∈ [k]. Hence, by Proposition 17.6.2, for such
x we have ∥ grad fBi(x|i)∥2 ⩽ s

25 and s
2ΠVs ⪯ Hess fBi(x|i) ⪯ 4sΠVs . In particular,

for such x we have
∥∇fB(x)∥22 ⩽ ks2/252.

For all x with ∥x − x∗∥∞ ⩽ 1/100, one has ∥B(x)∥1 ∈ [e−2/100, e2/100]∥B(x∗)∥1 and
∥B(x∗)∥1 = Θ(ks2) = Θ(m). Hence, for FB we have

Hess FB(x) =
⊕i∈[k]Hess fBi(x|i)

∥B(x)∥1
− ∇fB(x)∇fB(x)

T

∥B(x)∥21

⪰
⊕i∈[k] s2ΠVs

∥B(x)∥1
−

ks2

252 In

∥B(x)∥21
which implies that the smallest non-zero eigenvalue of Hess FB(x) is at least

s/2
∥B(x)∥1

− ks2

25∥B(x)∥21
=
∥B(x)∥1s/2 − ks2/252

∥B(x)∥21
= Ω( 1

ks
) = Ω(1/n)

where we use that ∥B(x)∥1 ∈ [12ks2, 4ks2] and n = ks. Indeed, to compute the
1-norm of B(x), observe that all its 2ks2 non-zero entries take values in [1/4, 2]
since

min
i,j
Bije

xi−xj ⩾ e−2/100 min
i,j
Bije

x∗
i
−x∗

j = e−2/100 1
2

√︃
s − 1
s + 1 ⩾ 1/4

and similarly

max
i,j

Bije
xi−xj ⩽ e2/100 max

i,j
Bije

x∗
i
−x∗

j = e2/100(1 + 1
2)

√︃
s + 1
s − 1 ⩽ 2.

We then proceed as in the proof of Proposition 17.6.3. We may assume x ∈
⊕i∈[k]Vs. Then, by Lemma 17.4.3, for vectors x ∈ ⊕i∈[k]Vs that provide an ε-ℓ2-
balancing, we obtain

ε ⩾ ∥∇F(x)∥2 ⩾
c

n
min{∥x − x∗∥2, 1/100}.

For ε < c/(100n) this shows that ∥x − x∗∥2 ⩽ εn/c and thus also ∥x − x∗∥∞ ⩽ εn/c.
Recall that for i ∈ [n] we have | ln(Xi)| = ln(

√︂
s+1
s−1) and thus | ln(Xi)| > c′

s for a
suitable constant c′ and s large enough. Hence, for ε = c′c

2ns we have ∥x − x∗∥∞ ⩽
c′c
2ns

n
c = c′

2s and thus for j ∈ [ks/2] we have sign(x2j) = sign(ln(X∗2j)) = aj. An
ε-ℓ2-balancing thus allows us to recover the Hamming weight of the ks/2 many
s-bit strings. By Theorem 17.1.1 this requiresΩ(ks2) = Ω(m) queries to B. □
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17.7. Lower bound for computing the row marginals

Remark 17.6.6. A natural question is whether one can improve the poly(1/ε)-dependence
of our sublinear matrix scaling and matrix balancing algorithms. Theorems 17.5.2
and 17.6.5 and Corollary 17.5.3 show that a ˜︁O(√mn/εc) time quantum algorithm for
either the ε-ℓ2-scaling problem or the ε-ℓ2-balancing problem requires c ⩾ 1/4 − o(1). For
example, Corollary 17.5.3 shows that an C

m log(m/n) -ℓ
2-scaling requires ˜︁Ω(m) queries and

thus (m log(m/n))c ⩾ m√
mnpolylog(n) . Takingm = Θ(n2), this implies c ⩾ 1/4 − o(1).

For ε-ℓ2-balancing one similarly, via Theorem 17.6.5, obtains c ⩾ 1/4 − o(1).

17.7. Lower bound for computing the row marginals
In this section we show that computing an ε-ℓ1-approximation of the row (or
column marginals) of an entrywise-positive n × nmatrix with 1-norm at most 1
takes Ω(n1.5/

√
ε) queries to its entries (for ε = Ω(1/n)). This complements the

upper bounds of Corollaries 12.4.4 and 13.3.1. as a consequence, the same lower
bound holds for computing an approximation of the gradient of the common
(convex) potential functions used for matrix scaling and balancing – among which
are the potentials we use in Chapters 14 and 15 – takes as many queries. Although
the bound does not imply that testing whether a matrix is ε-ℓ1-scaled takes at least
Ω(n1.5/

√
ε) queries, it gives reasonable evidence that this should be the case.

Theorem 17.7.1. Let s,n ⩾ 1 be integers, let A ∈ {0, 1}n×s, and let 1 < k < s. Then
there is a δ = Ω(1/k) such that Ω

(︂
n
√︁
s/δ

)︂
quantum queries to a dense oracle for A

are required in general to (with probability at least exp(−n/100)) find a r̃ such that
∥r̃ − r(A)∥1 ⩽ δ∥A∥1.

Proof. Without loss of generality we shall assume that n is even. Let x ∈ {0, 1}n
be a bit string with |x| = n/2, and let z1, . . . , zn ∈ {0, 1}s be bit strings with |zi | =
k + (−1)xi . Let A ∈ {0, 1}n×s be the matrix whose i-th row is given by zi.
Then ∥A∥1 = nk by construction.

As ri(A) = |zi |, learning ri suffices to learn xi. Doing so for a single i re-
quires Ω(

√
sk) quantum queries by [NW99, Cor. 1.2]. We now apply the strong

direct product theorem of Lee and Roland [LR13, Thm. 5.4]. Let𝒟 = {z ∈ {0, 1}s :
|z| = k− 1 or k+ 1}, and define the partial Boolean function f : 𝒟 → {±1} by f(z) =
|z| − k. Let f(n) : 𝒟n → {±1}k be defined by f(n)(z1, . . . , zn) = (f(z1), . . . , f(zn)).
Then by the strong direct product theorem, every quantum algorithm that
with probability ⩾ exp(−n/100) computes a bit string ã ∈ {±1}n which agrees
with f(n)(z1, . . . , zn) in at least 99% of their entries, must use at least Ω(n

√
sk)

queries (passing through the general adversary quantity as in the proof of Theo-
rem 17.1.1). In other words, for λ = 0.01, learning a (1 − λ)-fraction of the xi’s with
probability ⩾ exp(−n/100) requiresΩ(n

√
sk) quantum queries to A.

It remains to show that there is a δ = Ω(1/k) such that solving computing a δ∥A∥1-
ℓ1-approximation r̃ of r(A) suffices to solve this problem. Observe that such an
approximation satisfies that at most δnk indices i ∈ [n] satisfy |r̃i − ri(A)| ⩾ 1,
by virtue of ∥A∥1 = nk. Therefore for n − δnk rows, we would learn xi. In other
words, whenever δk ⩽ λ, computing such a r̃ requiresΩ(n

√
sk) quantum queries

to A. □
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17. Quantum query lower bounds: high precision

The above argument can also be adapted to yield instancesAwhich are entrywise
positive. To achieve this, consider instead the matrix whose (i, j)-th entry is 1

2(ks+zij).
Then the row sums ri are 1

2 · ks · s+ 1
2(k+ (−1)xi) = k+ (−1)xi

2 instead, and the matrix
still has sum of entries equal to nk. Therefore picking δ to be half of what it was
previously suffices for this matrix.

Note that this lower bound is strictly better than Theorem 17.1.1, since n
√︁
s/δ =

Ω(n/δ) by δ = Ω(1/s). It would be interesting to use this lower bound to
interpolate between the lower bounds for matrix scaling and balancing in the high-
and constant-precision regimes.
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Abstract
This thesis is concerned with a class of computational problems known as scaling
problems. These problems appear naturally in diverse areas of mathematics,
theoretical computer science and physics. Despite a surge in interest and progress
in recent years, only special cases are known to be efficiently solvable. In fact, the
current methods are fundamentally incapable of giving efficient algorithms. The
goal of this thesis is to investigate new algorithmic approaches to scaling problems,
as well as expanding their domain of applicability.

In Part I, we focus on structural properties of scaling problems. These structural
properties can be understood through classical results from geometric invariant
theory, a field of study concerned with actions of algebraic groups on spaces with
algebro-geometric structure. We identify a new application of this theory to tensor
networks in quantum many-body physics. Projected entangled pair states (PEPS)
are useful Ansätze for ground states of many-body Hamiltonians, as they can
naturally be made to have the same locality structure as the Hamiltonians. The local
data defining PEPS has a gauge degree of freedom, and having a canonical form
for this local data is desirable from both a physical and numerical point of view.
We define the minimal canonical form for PEPS in any dimension as the solution
to a certain scaling problem, and establish its excellent theoretical properties. In
particular, two tensors have a common minimal canonical form if and only if
they are gauge equivalent (up to taking limits), and this is the case if and only
if they define the same quantum state for any geometry. Moreover, we provide
rigorous algorithms for computing the minimal canonical form, circumventing
known undecidability results for PEPS on grids.

In Part II, we develop interior-point methods (IPMs) for scaling problems. The
IPM framework is an extremely succesful tool in modern convex optimization,
providing efficient algorithms for a wide range of optimization problems. It
was previously (implicitly) known that they could be used to solve a subclass
of scaling problems, namely commutative scaling problems. However, general
scaling problems are non-commutative and correspond to optimization problems on
symmetric spaces of non-positive curvature, whereas the standard IPM framework only
operates on domains in flat (Euclidean) spaces. We generalize the IPM framework
to the setting where the domain has curvature, and show that this generalization
is capable of capturing scaling problems, as well as other natural geometric
problems. The complexity of the resulting algorithm for scaling problems matches
the previous state of the art, and does not obviously suffer from the same geometric
obstructions.

Lastly, in Part III, we turn towards quantum computation. This is a model
of computation which relies on quantum mechanical effects, and is known to
be able to surpass the power of classical computation in many (but certainly
not all) contexts. We contribute to this field in the following way. We provide
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improvements over the previous state of the art for two basic problems: the first is
for finding all marked elements in a list, and the second is for approximating the
sum of a list of non-negative numbers. Next, we turn to quantum algorithms for
matrix scaling and matrix balancing. We show that several classical algorithms
for these problems can be sped up quantumly, trading a lower dependence on
the input size for a higher dependence on the desired precision. We also study
the limitations of quantum algorithms for these problems. We prove quantum
lower bounds for solving these problems with constant precision, showing that
our algorithms are essentially optimal in this regime. In the high-precision regime,
we also show one must query essentially the entire input, ruling out speedups
over the classical state of the art.
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Samenvatting

Het hoofdonderwerp van dit proefschrift is herschalingsproblemen. Dit is een
klasse van computationele problemen die natuurlĳk opduiken in de wiskunde,
de theoretische computerwetenschappen en de natuurkunde. Desondanks een
grote hoeveelheid recente werken over dit onderwerp, weten we nog niet hoe deze
problemen in het algemeen efficiënt opgelost kunnen worden. Het doel van dit
proefschrift is om nieuwe algoritmes te ontwikkelen voor herschalingsproblemen,
en het domein van toepassingen te verbreden.

In Deel I ligt de focus op structurele eigenschappen van herschalingsproblemen.
Deze eigenschappen kunnen begrepen worden met behulp van klassieke resultaten
uit de theorie van meetkundige invarianten, wat zich bezig houdt met acties
van algebraïsche groepen op ruimtes met een algebro-geometrische structuur.
Wĳ identificeren een nieuwe toepassing van deze theorie op tensornetwerken
in de context van kwantummechanische veel-deeltjes-fysica. Geprojecteerde
verstrengeld-paar toestanden (PEPS) fungeren als “goede gok” voor grondstaten
van Hamiltonianen voor veel-deeltjes systemen, omdat ze op natuurlĳke wĳze
dezelfde lokaliteitsstructuur kunnen omvatten. De lokale data van PEPS is niet
uniek, en het hebben van een canonieke representatie is zowel fysisch als numeriek
nuttig. Wĳ definiëren de minimale canonieke vorm voor PEPS in arbitraire fysieke
dimensies, als oplossingen voor een herschalingsprobleem, en gebruiken de
achterliggende theorie om de structurele eigenschappen te bestuderen. In het
bĳzonder hebben twee tensors een gemene minimale canonieke vorm, dan en
slechts dan als ze equivalent zĳn onder ĳktransformaties, en dit is het geval dan
en slechts dan als ze altĳd dezelfde kwantumtoestand voortbrengen. Ook geven
we algoritmes met rigoreuze beloftes voor het vinden van de minimale canonieke
vorm, waarmee eerdere onbeslisbaarheidsresultaten omzeild kunnen worden.

In Deel II ontwikkelen we inwendige-punts methodes voor het oplossen van
herschalingsproblemen. De theorie van inwendige-punts methodes is uitermate
succesvol in de moderne convexe optimalisatie, en geeft efficiente algoritmes
voor een groot scala aan optimalisatieproblemen. Het was hiervoor (impliciet)
bekend dat een subklasse van herschalingsproblemen, namelĳk de commutatieve,
hiermee efficiënt opgelost kan worden. Algemene herschalingsproblemen zĳn
daarentegen helaas niet commutatief, en corresponderen met optimalisatieproble-
men op symmetrische ruimtes met niet-positieve kromming (in het commutatieve
geval is er geen kromming), terwĳl standaard inwendige-punts methodes alleen
op ongekromde ruimtes werken. Wĳ generaliseren inwendige-punts methodes
naar gekromde ruimtes, en laten zien dat deze generalisatie ons in staat stelt
om herschalingsproblemen op te lossen met een complexiteit die de beste eerder
bekende resultaten evenaart. Daarnaast zĳn deze nieuwe methodes niet duidelĳk
ontvankelĳk voor dezelfde meetkundige obstructies tot het vinden van efficiënte
algoritmes, in tegenstelling tot eerder werk.

Ten laatste gaan we in Deel III in op het gebruik van kwantumcomputers voor
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het oplossen van herschalingsproblemen. Dit is een computationeel model dat
gebruik maakt van kwantummechanische effecten, en waarvan bekend is dat
het in staat is om voorbĳ te gaan aan de kracht van klassieke computers in veel
contexten (maar zeker niet alle). De bĳdrage van dit proefschrift is hier als volgt.
Ten eerste geven we verbeteringen voor twee subroutines: het vinden van alle
gemarkeerde elementen in een lĳst, en het schatten van een som van niet-negatieve
getallen. Daarna keren we terug naar twee herschalingsproblemen, namelĳk
matrix herschaling en matrix balancering; voor het oplossen hiervan gebruiken we
de eerder genoemde subroutines. We laten zien dat, afhankelĳk van de gewenste
precisie, deze problemen op een kwantumcomputer sneller opgelost kunnen
worden dan mogelĳk is met een klassieke computer. Ook laten we zien dat onze
kwantumalgoritmes in bepaalde regimes optimaal zĳn, en dat het niet mogelĳk
om hoge-precisie oplossingen sneller te vinden dan mogelĳk met een klassieke
computer.
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