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ABSTRACT

Each round in Differential Private Stochastic Gradient Descent (DPSGD) transmits a sum of clipped
gradients obfuscated with Gaussian noise to a central server which uses this to update a global model
which often represents a deep neural network. Since the clipped gradients are computed separately,
which we call Individual Clipping (IC), deep neural networks like resnet-18 cannot use Batch
Normalization Layers (BNL) which is a crucial component in deep neural networks for achieving a
high accuracy. To utilize BNL, we introduce Batch Clipping (BC) where, instead of clipping single
gradients as in the orginal DPSGD, we average and clip batches of gradients. Moreover, the model
entries of different layers have different sensitivities to the added Gaussian noise. Therefore, Adaptive
Layerwise Clipping methods (ALC), where each layer has its own adaptively finetuned clipping
constant, have been introduced and studied, but so far without rigorous DP proofs. In this paper, we
propose a new ALC and provide rigorous DP proofs for both BC and ALC. Experiments show that
our modified DPSGD with BC and ALC for CIFAR-10 with resnet-18 converges while DPSGD with
IC and ALC does not.

1 Introduction

Differential Private Stochastic Gradient Descent (DPSGD) [1] combines Stochastic Gradient Decent (SGD) [19] and
Differential Privacy (DP)[8] to train deep neural networks privately. It has been widely studied since its introduction.

In each round of DPSGD a mini-batch of m samples ξi1 , . . . , ξim from a larger data set d = {ξi}Ni=1 of N samples is
randomly subsampled:

{i1, . . . , im} ← Samplem(N). (1)
The global model w is updated by first computing gradients ∇wf(w; ξij ) for each sample ξij given loss function f .
Each gradient is clipped by using a clipping operation [x]C = x/max{1, ∥x∥/C} where C denotes a fixed clipping
constant. The clipped gradients are aggregated in a sum after which a noise vector n drawn from a Gaussian distribution*

N (0, (2CσI)2) is added. The resulting "noised and clipped" update U is transmitted to a central server where it is
∗ these authors contributed equally.

*I is the identity correlation matrix of the multivariate Gaussian distribution. The factor 2 is due to sampling exactly m data
points every round; by using a Poisson process to probabilistically sample ξ ∈ d such that in expectation the mini-batch has size
m removes the factor 2 and leads to better DP. This is implemented in [18]. In order to simplify our exposition we work with
deterministic sampling and keep the factor 2.
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averaged over the size m of the used mini-batch and multiplied by a step-size µ before subtracting it from the global
model:

U := n+

m∑
j=1

[∇wf(w; ξij )]C and w := w − η

m
U. (2)

In DPSGD, σ translates to a DP guarantee and is chosen carefully by the designer to balance DP and the accuracy of
the final global model.

The global model is represented by a weight vector w which can be written as a concatenation (w1| . . . |wL) where wh

corresponds to the h-th layer in the neural network which is being trained. DPSGD uses a fixed clipping constant C for
clipping gradients

∇wf(w; ξij ) = (∇w1
f(w; ξij )| . . . |∇wL

f(w; ξij )).

In expectation the norms ∥∇wh
f(w; ξij )∥ of different layers h in a deep neural network model vary layer by layer. This

makes different layers have different sensitivity to the added Gaussian noise. For this reason, [20, 21, 22] proposed†

Adaptive Layerwise Clipping (ALC) which tunes the added Gaussian noise with respect to the (sensitivity of the) layer.
Each layer of the model has its own customized clipping constant based on estimating the expectation of the gradient
norms of each layer by sampling a given small public dataset Dpub. We notice that [20, 21, 22] have not provided
rigorous DP proofs for ALC. In this paper we prove DP guarantees for ALC and we enhance the ALC method of [22]
for improved test accuracy.

Besides the enhanced ACL, we introduce Batch Clipping (BC) where (2) is replaced by

U := n+

 1

m

m∑
j=1

∇wf(w; ξij )


C

and w := w − ηU. (3)

BC allows us to first compute an average of a batch of gradients before clipping, as opposed to (2) which averages a
sum of clipped individual gradients; for this reason we call (2) the Individual Clipping (IC) approach. BC gives us the
ability to properly train Batch Normalization Layers (BNL) [13] in a neural network; in very deep neural networks
the use of BNLs is crucial for achieving high accuracy. The BC and ALC techniques are complimentary and can be
implemented in parallel, also BC and ALC do not require any changes to be made in deep neural networks, i.e., BC
and ALC apply directly without modifications to the neural network that we wish to train. This makes our training
framework with BC and ALC flexible. BC allows us to use resnet-18[11] (which uses BNLs) in our experiments and
have a DP guarantee. DPSGD without BC cannot properly train BNLs, therefore, DPSGD with IC (even with ALC) for
resnet-18 does not converge and leads to poor accuracy, while DPSGD with BC and the enhanced ALC does converge.
In the context of DPSGD we are the first to introduce BC together with proving its DP guarantee; no prior related work
on DPSGD with BC exists.

Our main contribution are:

• We propose an enhanced Adaptive Layerwise Clipping method based on [22]. Our experiments show that
DPSGD with our enhanced ALC converges faster to a higher accuracy.

• We prove and characterize the DP guarantee for ALC by using the f -DP framework [5]. We explain how
layerwise clipping degrades DP and we show how to set the noise parameters of DPSGD without ALC and
DPSGD with ALC so that they have the same DP guarantee and their test accuracy can be fairly compared.

• We introduce and propose to use Batch Clipping during training. We also define General Batch Clipping
(GBC) of which BC and IC are special cases and notice that GBC is compatible with any first order optimizers
in mini-batch mode. BC allows us to implement Batch Normalization Layers which are crucial for attaining
high accuracy for deep neural networks (BNLs cannot be trained properly by the original DPSGD which uses
Individual Clipping).

• For proving differential privacy guarantees it is commonly understood that the privacy argument does not
depend on how the gradients in the clipped values in (2) are computed; the to-be-clipped values may as well
be computed as in (3). This shows that (the original) DPSGD with IC given by (2) and (the new) DPSGD with
BC given by (3) offer the exact same DP guarantee (also if both implement ALC).

• Our experiments show that DPSGD modified by using our enhanced ACL and using BC allows us to train the
deep neural network resnet-18 [11] (which uses BNL) on CIFAR10 [14] while DPSGD with ALC and IC does
not converge. This shows that BC outperforms IC in practice.

†For completeness, per-layer clipping was originally introduced in DP-FEDAVG [16] where a clipping budget is evenly (not
customized) distributed among all layers and a DP guarantee is proven based on the moment accountant from [1].
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Our main conclusion is that ACL and BC are two techniques that provide a better balance between DP and accuracy.
However, our experiments are for small σ which corresponds to weak differential privacy. We still need additional
techniques beyond ALC and BC for training a deep neural network like resnet-18 with CIFAR10 in order to achieve a
practical balance between test accuracy and DP guarantee.

Outline: We first provide the necessary background on f -DP in Section 2. Section 3 introduces BC (and GBC),
layerwise clipping and our ACL, and proves DP guarantees in the f -DP framework. Experiments are in Section 4.
Section 5 concludes our paper.

2 Background on f -DP

DP literature first introduced ϵ-DP [9], later relaxed to (ϵ, δ)-DP [10]. In order to have a better dependency on group
privacy and to improve adaptive composibility, the notion of Concentrated Differential Privacy (CDP) [7] was introduced.
CDP was re-interpreted and relaxed by using Renyi entropy in [2] and its authors followed up with the notion of
zero-CDP (zCDP) in [3]. This notion admits simple interpretable DP guarantees for adaptive composition and group
privacy. After the introduction of ρ-zCDP, Renyi DP (RDP) was introduced by [17]. Combining the ideas that give rise
to the zCDP and RDP definitions leads naturally to the definition of (ρ, ω)-tCDP [4] which relaxes zCDP. All of these
various DP measures have been superseded by f -DP [6]since (1) f -DP can be transformed/translated into divergence
based DP guarantees (but generally not the other way around) and can be translated into (ϵ, δ)-DP, and since (2) f -DP
analyses the underlying core hypothesis testing problem directly and derives a tight (or exact) DP guarantee (for the
adversarial model considered in the proofs of DP guarantees in literature). The f -DP framework is tight and contains
all the information needed to derive other known DP metrics. Below we summarize f -DP and show how to use f -DP to
prove and formulate the DP guarantee of our modified DPSGD algorithm.

We call data sets d = {ξi}Ni=1 and d′ = {ξ′i}Ni=1 neighboring if they differ in one element; without loss of generality
ξi = ξ′i for 1 ≤ i ≤ N−1 and ξN ̸= ξ′N coined the differentiating sample. In DP a mechanismM is a process that takes
either data set d or data set d′ as input and outputs a sequence of observables which the adversary uses to distinguish
which of d or d′ has been used. DPSGD is a mechanism which outputs a sequence of updates U corresponding to each
round, see (2). Below, we adopt the notion and explanation provided in [5] for our short introduction of f -DP. We refer
the reader to [5] for a full description.

Hypothesis Testing: From the attacker’s perspective, it is natural to formulate the problem of distinguishing two
neighboring data sets d and d′ based on the output of a DP mechanismM as a hypothesis testing problem:

versus H0 : the underlying data set is d
H1 : the underlying data set is d′.

We define the Type I and Type II errors by

αϕ = Eo∼M(d)[ϕ(o)] and βϕ = 1− Eo∼M(d′)[ϕ(o)],

where ϕ in [0, 1] denotes the rejection rule which takes the output of the DP mechanism as input. We flip a coin and
reject the null hypothesis with probability ϕ. The optimal trade-off between Type I and Type II errors is given by the
trade-off function

T (M(d),M(d′))(α) = inf
ϕ
{βϕ : αϕ ≤ α},

for α ∈ [0, 1], where the infimum is taken over all measurable rejection rules ϕ. If the two hypothesis are fully
indistinguishable, then this leads to the trade-off function 1− α. We say a function f ∈ [0, 1]→ [0, 1] is a trade-off
function if and only if it is convex, continuous, non-increasing, at least 0, and f(x) ≤ 1− x for x ∈ [0, 1]. We define a
mechanismM to be f -DP if f is a trade-off function and for all neighboring d and d′,

T (M(d),M(d′)) ≥ f.

Gaussian DP: Gaussian DP is defined as a special case of f -DP where f is defined as a trade-off function

Gµ(α) = T (N (0, 1),N (µ, 1))(α) = Φ(Φ−1(1− α)− µ),

for some µ ≥ 0, where Φ is the standard normal cumulative distribution of N (0, 1). Suppose that a mechanism
M(d) computes some function u(d) ∈ Rn and adds Gaussian noise N (0, (cσ)2I), that is, the mechanism outputs
o ∼ u(d) +N (0, (Cσ)2I). Suppose that c denotes the sensitivity of function u(·), that is,

∥u(d)− u(d′)∥ ≤ c
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for neighboring d and d′; the mechanism corresponding to one round update in DPSGD, where Samplem(N) selects
(as one of the m randomly selected indices) the index N of the differentiating sample, has sensitivity c = 2C. After
projecting the observed o onto the line that connects u(d) and u(d′) and after normalizing by dividing by c, we have
that differentiating whether o corresponds to d or d′ is in the best case for the adversary (i.e., ∥u(d) − u(d′)∥ = c)
equivalent to differentiating whether a received output is from N (0, σ2) or from N (1, σ2). Or, equivalently, from
N (0, 1) or from N (1/σ, 1). This is how the Gaussian trade-off function Gσ−1 comes into the picture.

Subsampling: Besides implementing Gaussian noise which bootstraps DP, DPSGD also uses Samplem for subsampling
which amplifies DP. [6] defines a subsampling operator Cm/N and shows that if a mechanismM on data sets of size N
is f -DP, then the subsampled mechanismM◦ Samplem is Cm/N (f)-DP. We have that the mechanism corresponding
to one round in DPSGD is Cm/N (G1/σ)-DP (and this is a tight analysis).

Composition: If DPSGD implements T rounds, then the privacy leakage across rounds composes. [6] defines a
commutative tensor product ⊗ for trade-off functions and shows this can be used to characterize adaptive composibility:
LetMi be the mechanism corresponding to the i-th round with yi ←Mi(aux, d) where aux = (y1, . . . , yi−1) (this
captures adaptivity). IfMi(aux, .) is fi-DP for all aux, then the composed mechanismM, which appliesMi in
sequential order from i = 1 to i = T , is (f1 ⊗ . . .⊗ fT )-DP. This leads to a tight analysis of DPSGD. We have that
DPSGD as introduced in [1] is

Cm/N (G1/σ)
⊗T -DP.

Notice that if DPSGD computes a total of E epochs of gradients, i.e., EN gradient computations in total, then
T = (N/m) · E (since each round computes m gradients). We have

Cm/N (G1/σ)
⊗(N/m)·E-DP. (4)

3 Application f -DP toward a Modified DPSGD

We discuss two main DPSGD modifications. The first is coined Batch Clipping (BC) and the second Layerwise Clipping
(LC) leading to Adaptive LC (ACL).

3.1 Batch Clipping

The presented f -DP analysis is more general in that it holds for (2) where U is not just computed as a noised sum of
clipped gradients but computed as

U := n+

m∑
j=1

[g(w; ξij )]C (5)

for some other fixed function g.

Suppose that we partition data set d of size N into N/s mini-sets of size s each. We use this to define a new data set
ds which has as elements the N/s mini-sets, which we denote as Si, 1 ≤ i ≤ N/s. Data set ds has size N/s and its
samples are mini-sets Si of size s. Each Si contains s data points ξj from d. We apply DPSGD to this new data set ds
for the general (5) where we replace m by k. This yields

U := n+

k∑
j=1

[g(w;Sij )]C . (6)

We call this General Batch Clipping (GBC) since we clip vectors g(w;Sij ) which are computed based on a batch
(mini-set) Sij ⊆ d of data points from d. Notice that in GBC, g can implement any moment based SGD type algorithm
that iteratively scans the data points in Sij .

Applying the f -DP analysis for DPSGD for a data set ds of size N/s with Samplek, see (6), yields
Ck/(N/s)(G1/σ)

⊗T -DP, see Section 2. By setting m = sk, we conclude Cm/N (G1/σ)
⊗T -DP. Notice that if the

modified DPSGD with GBC computes a total of E epochs of gradients, then again T = (N/m) · E since each round
still computes m = sk gradients. For GBC with m = sk we conclude the exact same DP guarantee as the one for (4).

In our experiments we use the special case

g(w;Sij ) =
1

s

∑
ξ∈Si1

∇wf(w; ξ) (7)
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with k = 1 and s = m in GBC (with m = sk). We refer to this as (non-general) Batch Clipping (BC) (since we clip
g(w;Si1) which computes and averages a batch of gradients), see (3). We call the original DPSGD formulation (2)
Individual Clipping (IC) since single/individual gradients are clipped; for completeness, this is the case s = 1 with
k = m in GBC (with m = sk).

3.2 Layerwise Clipping

Layerwise Clipping (LC) [16, 20, 21, 22] splits vectors g = g(w;Si,j) in parts g = (g1| . . . |gL) (i.e., g is equal to the
concatenation of parts g1, . . ., gL) and clip each part gh separately, i.e., we define

[g](C1,...,CL) = ([g1]C1
| . . . |[gL]CL

).

The different gi correspond to the different layers in the neural network. We compute noise n in (6) as the concatenation

n = (n1| . . . |nL) with nh ∼ N (0, (2Chσ)I),

where the different matrices I have sizes that correspond to the number of entries in the various gh.

In order to understand how the DP guarantee is affected, we rewrite (6) as follows:

U := (U1| . . . |UL) where Uh = nh +

k∑
j=1

[gh(w;Sij )]Ch
.

In other words, transmission of U is equal to transmitting Uh, 1 ≤ h ≤ L. Each Uh can be considered as a round
update where we use clipping constant Ch and noise N (0, (2Chσ)I). The f -DP analysis shows that such a round is
G1/σ-DP (see the explanation of Gaussian DP with sensitivity c = 2Ch). We have L such sub-rounds that make up the
whole transmission of U . By composition, we have that this gives G⊗L

1/σ-DP. [6] shows that‡ G⊗L
1/σ = G√

L/σ .

We conclude that in the DP guarantee (4) we need to replace σ by σ/
√
L for the modified DPSGD with BC/IC and

LC. If we want to compare this in a fair way with the modified DPSGD with BC/IC and no LC (we keep the original
gradient clipping approach), then we should use

σ̄ := σ/
√
L

as the privacy parameter σ in the modified DPSGD (as this will result in the same (4) with σ replaced by σ̄ = σ/
√
L).

Clearly, we want to be careful about the number of layers L we can handle since the privacy parameter σ is divided by√
L. We notice that we can group layers together and split vectors g = g(w;Si,j) into a smaller number of parts giving

a smaller L which leads to a better DP guarantee.

3.3 Adaptive LC

The Adaptive LC (ALC) of [22] uses a public dataset Dpub to estimate expectations of the layer gradient norms
∥∇wh

f(w; ξ)∥. These estimates are used as the layerwise clipping constants Ch. For standard SGD without DP, [12]
explains that even if model w converges, the gradient norms of different layers may not decrease throughout the training.
We confirm this in Figure 1, which depicts layer gradient norms of resnet-18 trained without DP over 50 epochs. We
observe that most layer gradient norms only slowly decrease from epoch to epoch. Therefore, most of the Ch in the
ALC of [22] are only slightly adapted from epoch to epoch. This implies that, for such a layer h, the distribution
N (0, (2Chσ)

2I) of the Gaussian noise added to each of the weight entries in layer h does not change much either. This
setup does not allow the designer to optimize the clipping constants C1, . . . , CL to make convergence faster.

We enhance the adaptive clipping strategy of [22]: First, we determine a master clipping constant C for each round. We
do not impose a restriction on how C is chosen, i.e., it can diminish from epoch to epoch or C can be the same constant
for all rounds. In our experiments C is a constant throughout the whole training. Second, we use C to derive clipping
values (C1, C2, ..., CL) for the corresponding round. This has the property that each Ch scales linearly with C.

Given a master clipping constant C at the beginning of each round, we use a public dataset Dpub to derive clipping
constants (C1, C2, ..., CL). The reason for using a public dataset is that we do not need to worry about privacy leakage
revealed by (C1, C2, ..., CL); DP analysis/proofs, where the adversary knows (C1, C2, ..., CL), may proceed as before.
We estimate the expectation e = (e1, . . . , eL) of the layer gradient norms (∥∇w1f(w; ξ)∥, . . . , ∥∇wL

f(w; ξ)∥) over
ξ ∈ Dpub for w = (w1| . . . |wL). We compute the maximum gradient norm among all layers, i.e., M = maxLh=1 eh.
Then, for each layer h we define Ch = C · eh/M . See Section 4.4, Figure 4 shows that our enhanced ALC allows
DPSGD with BC to converge faster to a higher accuracy compared to DPSGD with BC and the original ALC of [22].

‡We can also vary the noise from layer to layer and use σ/ph instead of σ. This leads to Gp1/σ⊗ . . .⊗GpL/σ = G√∑L
h=1

p2
h
/σ

.
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Figure 1: resnet-18 model layerwise gradient norms. We grouped the lines by the layer’s type: "conv" is convolutional
layer, "bn" is the batch normalization layer, "shortcut" is the shortcut connecting non-adjacent two layers, "linear" is the
fully connected layer (in this case this layer corresponds to a softmax layer)

3.4 Sparsification

We notice that the public data set Dpub in adaptive clipping can also be used to find out whether certain weight entries
in w have converged sufficiently. That is, we say a weight entry has converged if, over a large number of recent rounds,
it hoovers around an average with standard deviation corresponding to the added DP noise. As soon as this is the case,
we may fix the weight entry to this average in all future computations/rounds (since this is a form of post processing, no
additional DP leakage occurs). This reduces the number of weight entries over which we need to compute gradients
and each level gets less weight entries as soon as convergence sets in. This allows us to use even smaller clipping
constants per layer (depending on the number of active weight entries in the layers). We leave this optimization as an
open problem.

4 Experiments

4.1 Setup

Data preprocessing: We perform experiments on the CIFAR-10 dataset which consists of 50,000 training examples
and 10,000 test examples, divided into 10 classes, with each example being a 32x32 image with three color channels
(RGB)([14]). In our experiments, we perform data augmentation and data normalization independently. Specifically, for
each training image, we crop a 32× 32 region from it with padding of 4, apply a random horizontal flip to the image,
and then normalize it with

(mean, std) = ((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)).

Next, we divide the CIFAR-10 datasetD into two datasetDpub andDtrain where |Dpub| = 1
10 |D| and |Dtrain| = 9

10 |D|.
As explained in Section 3.3, we estimate the expectation (e1, . . . , eL) of the layer gradient norms
(∥∇w1f(w; ξ)∥, . . . , ∥∇wL

f(w; ξ)∥) over§ ξ ∈ Dpub, where w = (w1| . . . |wL) is the current model. We com-
pute the layerwise clipping constants (C1 = C · e1/M, . . . , CL = C · eL/M) with M = maxLh=1 eh and master
clipping constant C .

We sample the m-sized training data batches with replacement from Dtrain at the beginning of each epoch and feed
them to the machine learning model to train the model.

§We notice that we may not need a large sized Dpub for a good estimate.
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Diminishing Learning Rate and Fixed Master Clipping Constant: We fix the master clipping constant C throughout
the training process and after each epoch we update the learning rate η as

η := η · ηdecay,

where ηdecay is a decaying factor. After each epoch, we re-compute the layerwise clipping constants (C1, C2, . . . , CL)
as explained above. In our experiments, we set ηdecay = 0.9, C = 0.095 and σ = 0.01875.

Model Update: resnet-18 is updated by our modified DPSGD with BC and ALC, i.e., for a batch (mini-set)
{ξi1 , . . . , ξim} we compute

U := n+

 1

m

m∑
j=1

∇wf(w; ξij )


(C1,...,CL)

and w := w − ηU

with n ∼ N (0, (2C1σ)
2I)× . . .×N (0, (2CLσ)

2I).

4.2 Benchmark versus BC

We compare our DPSGD with BC and ALC versus mini-batch SGD without DP, i.e., without clipping and without
adding Gaussian noise. In both cases, we train resnet-18 on the CIFAR-10 dataset.

For mini-batch SGD with diminishing learning rate without DP we experiment with mini-batch sizes m =
(64, 128, 256, 512, 1024) and initial learning rate η = 0.025. The best test accuracy at epochs 20 and 50 is real-
ized by mini-batch size m = 64 and achieves 88.31% and 90.24% (see Figure 2). The results of our DPSGD with
BC and ALC and diminishing learning rate, with fixed master clipping constant C = 0.0095, with standard deviation
σ = 0.01875, and with m = (64, 128, 256, 512, 1024) and initial learning rate η = 0.025 are presented in Figure 3.
We achieve 60% and 67% at epochs 20 and 50 for m = 64.

Figure 2: Test accuracies of mini-batch SGD without DP for different mini-batch sizes m = (64, 128, 256, 512, 1024)

4.3 IC versus BC

We compare our DPSGD with BC and ALC versus DPSGD with IC and the same ALC. The latter is the original
DPSGD [1] combined with ALC. Based on the result from Section 4.2, we choose m = 64 which gives the best
test accuracy for fixed master clipping constant C = 0.0095 and initial learning rate η = 0.025. We report the test
accuracies after E = 50 epochs for σ = 0.01875 in Figure 4. We observe that BC converges while IC does not.

4.4 Zhang’s ALC versus ours

As discussed in Section 3.3, the layerwise clipping constants C1, . . . , CL in [22] may not change from epoch to epoch
because the layer gradient norms of resnet18 do not significantly change throughout the training process as depicted in
Figure 1. We explained that this may hurt the convergence if C1, . . . , CL are not optimized. Based on this observation,
our proposed enhanced ALC implements a master clipping constant C which allows us to optimize layer clipping

7



Figure 3: Test accuracies of DPSGD+BC+ALC vs mini-batch SGD without DP for different mini-batch sizes m =
(64, 128, 256, 512, 1024)

constants C1, . . . , CL. By tuning the initial/fixed master clipping constant C, DPSGD with BC and our enhanced ALC
offers a better performance compared to DPSGD with BC and the ALC method of [22].

We run DPSGD with BC and the our enhanced ALC method with initial learning rate η = 0.025, fixed master clipping
constant C = 0.0095, and m = 64 over 50 epochs for resnet-18 and CIFAR-10. We run DPSGD with BC and the ALC
of [22] with the same learning rate η = 0.025 and m = 64 over 50 epochs for resnet-18 and CIFAR-10. The results are
shown in Figure 4.

Figure 4: Comparison of the test accuracies between our enhanced ALC and the ALC method of [22], both with BC.
Moreover, we run our enhanced ALC in IC mode so that we can also compare BC versus IC. ("Zhang et al." denotes
DPSGD + BC + ALC of [22]; "BC" denotes DPSGD + BC + our enhanced ALC; "IC" denotes DPSGD + IC + our
enhanced ALC)

4.5 Different noises

We study the relationship between the test accuracy and σ for DPSGD with BC and the enhanced ALC with η = 0.025,
m = 64, and C = 0.095 over 10 epochs. The result is depicted in Figure 5 and shows that for convergence resnet-18
needs a relatively small σ and as a consequence can only achieve a weak DP guarantee. This shows that a proper
balance between test accuracy and DP guarantee for very deep neural networks with complex datasets is still an open
problem. Our BC and ALC techniques help towards achieving a practical balance, but more complimentary tricks and
methods are still needed.
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Figure 5: The test accuracy of the modified DPSGD with BC and enhanced ALC for different σ over 10 epochs.

5 Conclusion

We have proposed a new adaptive layerwise clipping method as well as a new batch clipping method for DPSGD. Our
experiments show that DPSGD with BC and new ALC can achieve faster convergence and higher accuracy compared
to DPSGD with IC. We have provided rigorous DP proofs for ALC and BC.

Our experiments are for small σ which leads to weak differential privacy. We still need additional techniques beyond
(optimizing) ALC and BC for training a deep neural network like resnet-18 with CIFAR10 in order to achieve a practical
balance between test accuracy and DP guarantee.

References
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.

Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 308–318. ACM, 2016.

[2] Mark Bun and Thomas Steinke. Concentrated differential privacy: Simplifications, extensions, and lower bounds.
arXiv, 2016.

[3] Mark Bun and Thomas Steinke. Concentrated differential privacy: Simplifications, extensions, and lower bounds.
In Martin Hirt and Adam D. Smith, editors, TCC, volume 9985, pages 635–658, 2016.

[4] Mark Bun, Cynthia Dwork, Guy N. Rothblum, and Thomas Steinke. Composable and versatile privacy via
truncated CDP. In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors, STOC. ACM, 2018.

[5] Jinshuo Dong, Aaron Roth, and Weijie J. Su. Gaussian differential privacy, 2019.

[6] Jinshuo Dong, Aaron Roth, and Weijie Su. Gaussian differential privacy. Journal of the Royal Statistical Society,
2021.

[7] Cynthia Dwork and Guy N Rothblum. Concentrated differential privacy. arXiv preprint arXiv:1603.01887, 2016.

[8] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. Our data, ourselves:
Privacy via distributed noise generation. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 486–503. Springer, 2006.

[9] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in private data
analysis. In Theory of cryptography conference, pages 265–284. Springer, 2006.

[10] Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foundations and Trends®
in Theoretical Computer Science, 9(3–4):211–407, 2014.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition, 2015.

[12] Kai Hu. Revisiting Exploding Gradient: A Ghost That Never Leaves. 2022. URL https://www.andrew.cmu.
edu/user/kaihu/Revisiting_Exploding_Gradient.pdf.

9

https://www.andrew.cmu.edu/user/kaihu/Revisiting_Exploding_Gradient.pdf
https://www.andrew.cmu.edu/user/kaihu/Revisiting_Exploding_Gradient.pdf


[13] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal
covariate shift, 2015.

[14] Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.
[15] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.

Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.
[16] H. Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differentially private recurrent

language models, 2018.
[17] Ilya Mironov. Rényi differential privacy. In 2017 IEEE 30th computer security foundations symposium (CSF),

pages 263–275. IEEE, 2017.
[18] Opacus. Opacus PyTorch library. Available from opacus.ai.
[19] Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of Mathematical Statistics,

22(3):400–407, 1951.
[20] Koen Lennart van der Veen, Ruben Seggers, Peter Bloem, and Giorgio Patrini. Three tools for practical differential

privacy. arXiv preprint arXiv:1812.02890, 2018.
[21] Depeng Xu, Wei Du, and Xintao Wu. Removing disparate impact on model accuracy in differentially private

stochastic gradient descent. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, KDD ’21, page 1924–1932, New York, NY, USA, 2021. Association for Computing Machin-
ery. ISBN 9781450383325. doi: 10.1145/3447548.3467268. URL https://doi.org/10.1145/3447548.
3467268.

[22] Xinyang Zhang, Shouling Ji, and Ting Wang. Differentially private releasing via deep generative model. CoRR,
abs/1801.01594, 2018. URL http://arxiv.org/abs/1801.01594.

10

https://opacus.ai
https://doi.org/10.1145/3447548.3467268
https://doi.org/10.1145/3447548.3467268
http://arxiv.org/abs/1801.01594


A Supplementary Material

As shown in the main paper, the training of resnet-18 for DP-SGD with BC and ALC converges when the added
Gaussian noise is small enough. We suspect that this is related to the size of the networks and the complexity of the
training dataset. In Section A.1, we work with shallow networks and see if the training of shallow networks on CIFAR10
can converge for larger Gaussian noise. In Section A.2 we train a simple network on the simpler dataset MNIST and
investigate whether the Gaussian noise can even be larger. (We remind the reader that the larger the added Gaussian
noise, the better the DP guarantee.) In Section A.3, we give evidence that DPSGD with batch clipping preserves
the merits of using batch normalization layers in convolutional neural networks. To complete the work, Section A.4
compares ALC with Full Gradient Clipping (FGC) showing that ALC outperforms FGC.

A.1 Lightweight Network on a Complex Dataset: convnet with CIFAR10

We conduct the same experiments as for resnet-18 on the CIFAR10 dataset with a lightweight network (convnet) which
consists of 5 layers. The first 4 layers are the combination of a convolutional layer, a batch normalization layer and an
average pooling layer followed by CONV-BN-POOLING order. The last layer is a softmax layer. The convent model
architecture is defined in Table 1.

Operation Layer #Filters Kernel size Stride Padding Output size Activation function
Conv2D 32 3× 3 1× 1 1× 1

16× 16× 3
ReLu

BatchnNorm2d 32× 32
AvgPool2d 2× 2 2× 2

Conv2D 64 3× 3 1× 1 1× 1
8× 8× 32

ReLu
BatchnNorm2d 64× 64

AvgPool2d 2× 2 2× 2

Conv2D 64 3× 3 1× 1 1× 1
4× 4× 64

ReLu
BatchnNorm2d 64× 64

AvgPool2d 2× 2 2× 2

Conv2D 128 3× 3 1× 1 1× 1
1× 1× 128

ReLu
BatchnNorm2d 128× 128

AdaptiveAvgPool2d 1× 1 1× 1

FC2 − − − − 10 softmax

Table 1: convnet model architecture with batch normalization layers

Figure 6: Test accuracy of DP-SGD with BC and ALC for convnet with CIFAR10 with respect to various master
clipping values C and fixed σ = 0.01875.

In our first experiment we choose the noise multiplier σ = 0.01875, batch size m = 1024, diminishing learning rate
η = 0.025 with decay value ηdecay = 0.9. We vary the master clipping value C as shown in Figure 6. For C = 0.9,
we achieve 59.02% test accuracy after 50 epochs, which is less than the 67% test accuracy achieved by the resnet-18
model. We observe that the test accuracy increases significantly for 0 < C ≤ 0.2, is stable with some fluctuations for
0.2 < C < 0.9, and decreases slightly for C > 0.9. We conclude that, for noise multiplier σ = 0.01875, there is a
range of C where we see stable performance in terms of test accuracy.

In our second experiment we want to push the lightweight convnet model to the limit where we choose a relatively
large σ = 0.5 with all other hyper-parameters remaining the same. As shown in figure 7, we only achieve 40.58% test
accuracy for C = 0.1 and we observe that the test accuracy decreases for C > 0.1.
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Figure 7: Test accuracy of DP-SGD with BC and ALC for convnet with CIFAR10 with respect to various master
clipping values C, fixed σ = 0.5 and m = 1024

Figure 8: Test accuracies of mini-batch SGD without DP for different mini-batch sizes m = (64, 128, 256, 512, 1024)

See Figure 8, our third experiment studies mini-batch SGD without DP for convnet with CIFAR10 as our benchmark.
We see that smaller batch sizes yield better accuracy. Specifically, we achieve 80.55% test accuracy for batch size
m = 64 and 61.19% for batch size m = 1024.

This leads us to the fourth experiment, where, by choosing a smaller batch size, we try to increase the test accuracy of
DP-SGD with BC and ALC for convnet and CIFAR10 with σ = 0.5. For example, in Fig 9.a we choose m = 64 and
vary the master clipping constant C to find the value which gives best test accuracy: We achieve 43.42% test accuracy
for C = 0.14. Moreover, we also vary the noise multiplier value σ with fixed master clipping value C = 0.14 to see
whether our model can sustain larger noise. The Figure 9.a shows that the testing accuracy drops ≈ 15% when we
increase σ from 0.01 to 0.2 and decreases ≈ 10% more from σ = 0.2 to σ = 0.6. Therefore, we choose σ = 0.5 for
the next experiments, where we can achieve ≈ 35% testing accuracy and have better DP guarantee than our resnet-18
experiment.

Our final experiment uses DP-SGD with BC and ALC to train convnet with CIFAR10 for different batch sizes
m = (64, 128, 256, 512, 1024); We use master clipping constant C = 0.14, initial learning rate η = 0.025 with decay
rate ηdecay = 0.9, noise multiplier σ = 0.5, and number of epochs E = 50. We compare with mini-batch SGD without
DP with m = 64 in Figure 10. Although the accuracy is hurt badly by the Gaussian noise, the lightweight convnet
model is still able to converge to ≈ 40% test accuracy while the test accuracy for resnet-18 starts to fall below 40% for
σ ≥ 0.2 and only achieves ≈ 20% test accuracy for σ = 0.5.
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(a) Varying C (b) Varying σ

Figure 9: Test accuracy of DP-SGD with BC and ALC for convnet with CIFAR10 with respect to various master
clipping values C and noise multiplier σ with batch size m = 64

Figure 10: Test accuracies of DPSGD+BC+ALC vs mini-batch SGD without DP for different mini-batch sizes
m = (64, 128, 256, 512, 1024)

Our experiments show that the deep resnet-18 network is more sensitive to the added Gaussian noise than the lightweight
convnet network. This observation opens a new research direction where we want to simplify the neural network model
as much as possible for a given dataset type (and corresponding learning task) while maintaining test accuracy and
allowing a large enough σ for a reasonable DP guarantee. We expect (given our experiments) to be able to train simpler
network models with a larger noise multiplier σ and this yields better privacy. The network simplification should not be
too much in that the test accuracy of a trained model with DP noise should still be "good enough."

A.2 Lightweight Network on a Simple Dataset: BN-LeNet-5 with MNIST

We investigate how well our method performs on a simpler dataset compared to CIFAR-10. For this reason we conduct
the same experiments of Section A.1 on the MNIST dataset.

MNIST consists of 60,000 training examples and 10,000 testing examples of handwritten digits [15]. Each example is a
28x28 gray-level image. For training, we use the modified version of LeNet-5 [15], where we add a batch normalization
layer after each convolutional layer. The details of the modified LeNet-5 architecture (BN-LeNet-5) are described in
Table 2. For each training image, we crop a 32× 32 region from it with padding of 4, apply a random horizontal flip to
the image, and then normalize it with

(mean, std) = (0.1307, 0.3081).

As before, we fix the noise multiplier σ = 0.5 and search for a good master clipping constant C. We use DP-SGD with
BC and ALC to train the BN-LeNet-5 model with batch size m = 64, diminishing step size η = 0.025 with decaying
value ηdecay = 0.9 in 50 epochs. See Figure 11, we achieve the best test accuracy 84.80% for C = 0.2.
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Operation Layer #Filters Kernel size Stride Padding Output size Activation function
Conv2D 6 5× 5 1× 1 0 28× 28× 6 tanh

BatchnNorm2d 6× 6
AvgPool2d 2× 2 2× 2 14× 14× 6

Conv2D 16 5× 5 1× 1 0 10× 10× 16 tanh
BatchnNorm2d 16× 16

AvgPool2d 2× 2 2× 2 10× 10× 16

Conv2D 120 5× 5 1× 1 0 5× 5× 120 tanh
BatchnNorm2d 120× 120

FC1 − − − − 84 tanh

FC2 − − − − 10 softmax

Table 2: BN-LeNet-5 model architecture

Figure 11: Test accuracy of DP-SGD with BC and ALC for BN-LeNet-5 with MNIST with respect to various master
clipping values C, fixed σ = 0.5 and m = 64

Given C = 0.2, we push the BN-LeNet-5 model to the limit by choosing a relatively large noise multiplier σ for which
the test accuracy does not drop below 50%. This allows us to see the effect of having a simpler dataset by comparing to
the experiments in Section A.1. We achieve 50.38% test accuracy for σ = 2.5 as shown in Figure 12.b.

(a) Varying C (b) Varying σ

Figure 12: Test accuracy of DP-SGD with BC and ALC for BN-LeNet-5 with MNIST with respect to various noise
multiplier values σ and master clipping values C = 0.2 with batch size m = 64

Let C = 0.2 and σ = 2.5, we train the BN-Lenet-5 model with various batch size m = (64, 128, 256, 512, 1024).
As shown in Figure 12.a, the test accuracy decreases from 50.38% to 45.11% when we increase the batch size from
m = 64 to m = 1024.
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Our main conclusion is that the BN-LeNet-5 model still converges for the large noise multiplier σ = 2.5 when training
on the MNIST dataset. Therefore, the simpler dataset allows us to use more Gaussian noise for differential privacy and
this yields an improved Differential Privacy guarantee.

A.3 Batch clipping and Batch Normalization Layer

The concept of a Batch Normalization Layer (BNL) has been introduced in [13] to improve the training speed and
testing accuracy for convolutional neural networks. Figure 13 shows that indeed for normal training with SGD without
DP batch normalization layers allow a high test accuracy. In this section we investigate how using BNLs helps attaining
a higher test accuracy when using DP-SGD with BC and ALC.

(a) convnet with batch normalization layer (b) convnet without batch normalization layer

Figure 13: Comparison of the test accuracy of training CIFAR10 with and without BNLs for convnet using SGD
without DP.

We compare training convnet 1 with and without BNLs for CIFAR10 by using DP-SGD with BC and ALC. Figure 14
shows that we achieve≈ 5% higher test accuracy for DP-SGD with batch size m = 64, diminishing step size η = 0.025
with decaying value ηdecay = 0.9, master clipping constant C = 0.14, noise multiplier σ = 0.5 and total number of
epochs E = 50.

(a) convnet with batch normalization layer (b) convnet without batch normalization layer

Figure 14: Comparison of the test accuracy of training CIFAR10 with and without BNLs for convnet using DP-SGD
with BC and ALC.

We also run experiments with convnet and resnet18 after removing all BNLs for the set-up in Table 3 (as in Section 4 in
the main body) where we also consider a diminishing master clipping constant with initial value C = 0.095 decaying
with rate Cdecay = 0.9 after each epoch.

Figure 15 is for convnet with IC+ALC (as compared to Figure 14 which is for BC+ALC). After removing batch
normalization layers in the convnet model, the testing accuracy for IC cannot converge to an acceptable value. After
50 epochs, we only achieve 21.12% test accuracy if we train the model with constant step size and constant master
clipping value C for mini-batch size m = 64. This shows that batch clipping outperforms individual clipping for
convnet without BNLs.

Next, we ask ourselves whether batch clipping still outperforms individual clipping for the more complicated model
such resnet18 without BNLs. As shown in Figure 16, we achieve 30% ∼ 40% test accuracy for the various combinations
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Learning Rate η 0.025
Master Clipping value (C) 0.095

Noise multiplier σ 0.01875
Learning rate decay (ηdecay) 0.9

Clipping value decay (Cdecay) 0.9
Batch size (m) [64, 128, 256, 512, 1028]

Epochs (E) 50

Table 3: Hyperparameter settings

(a) css,constant C (b) css,diminishing C

(c) dss,constant C (d) dss,diminishing C

Figure 15: Test accuracy of training CIFAR10 for convnet without BNLs using DP-SGD with IC and ALC. Here, css
and dss denote constant step size and diminishing step size, respectively.

of constant and diminishing step size and master constant, respectively (with the best test accuracy close to 40% for
constant step size and non-decaying master constant). On the other hand, we only achieve 18% ∼ 22% test accuracy
for individual clipping as shown in Figure 17.

A.4 ALC versus FGC

We investigate how ALC compares with Full Gradient Clipping (FGC) under the same Gaussian Noise N(0, (2Cσ)2).
(FGC means that we clip the full gradient and do not separately clip layers as in ALC.) As shown in Figure 18, we
used DP-SGD with BC for 50 epochs in order to train resnet18 with CIFAR10; we use a non-decaying master clipping
constant C = 0.095, noise multiplier σ = 0.01875, mini-batch size m = 64 and diminishing step size η = 0.025 with
ηdecay = 0.9. We achieve 66.66% with ALC and 46.35% with FGC method. This shows evidence that training with
ALC leads to better convergence rate as well as better test accuracy.

However, in the above experiment the privacy budget is not the same for ALC versus FGC: See Section 3.2 in ALC we
have an extra factor

√
L in the DP guarantee, where L is the number of layers in the neural network model. Therefore,

we also run the same experiment for FGC with discounted noise multiplier σ̄ = σ/
√
L = σ/

√
62 so that both ALC and

FGC correspond to the same DP guarantee. The result is shown in Figure 18 and shows that ALC outperforms FGC.
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(a) css,constant C (b) css,diminishing C

(c) dss,constant C (d) dss,diminishing C

Figure 16: Test accuracy of training CIFAR10 for resnet18 without BNLs using DP-SGD with BC and ALC. Here, css
and dss denote constant step size and diminishing step size, respectively.

(a) css,constant C (b) css,diminishing C

(c) dss,constant C (d) dss,diminishing C

Figure 17: Test accuracy of training CIFAR10 for resnet18 without BNLs using DP-SGD with IC and ALC. Here, css
and dss denote constant step size and diminishing step size, respectively.
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(a) Under the same Gaussian noise (b) Discounted noise multiplier

Figure 18: Test accuracy of DP-SGD of resnet18 with CIFAR10 for BC+ALC versus BC+FGC.

B Towards Balancing DP Guarantees and Accuracy

In this paper we have discussed how ALC and BC can bring us closer to balancing DP with accuracy. In particular,
the focus of this paper is on the ALC and BC techniques for improving robustness against added Gaussian noise for
differential privacy. However, we still need additional techniques in order to achieve a practical balance which allows
a reasonable accuracy (say at most 10% or 20% drop) together with a DP guarantee which shows a trade-off curve
reasonably close to the ideal 1− α curve which represents perfect security.

In Section B.1 we show that ALC+BC as discussed in this paper is not yet sufficient on themselves to find a practical
balance: Even though ALC+BC allow us to be significantly more robust against added Gaussian noise for bootstrapping
DP, just using these techniques will not yet make training of even lightweight neural network models with less complex
training datasets sufficiently robust against the required DP noise for good/solid differential privacy.

One direction of tackling this problem is to enhance and/or optimize the ALC+BC techniques. In Section B.2 we offer
suggestions that focus on improving the presented ALC+BC. We leave it to future work to empirically study these
possible improvements and optimizations. And we leave it to future work to find altogether new techniques that are
complimentary and go beyond ALC+BL.

B.1 Lightweight Neural Network Model with Less Complex Training Dataset

We show that even moving to a lightweight neural network with a less complex training data set still requires additional
techniques beyond our BC+ALC and/or improvements of the BC+ALC techniques. We show that BC+ALC as
presented in this paper is on its own not yet sufficient even though they make the gap between DP guarantee and
accuracy significantly smaller:

We notice that Corollary 5.4 in [6] shows that, for c >, if E = (N/m) · c2 →∞, then (4) is asymptotically Gµ-DP
with µ =

√
2 · c · h(σ) for

h(σ) =
√
eσ−2Φ(3σ−1/2) + 3Φ(−σ−1/2)− 2.

By using their interpretation of their result, we may conclude that (4) is approximately G√
2·c·h(σ) for c =

√
Em/N

for concrete large N and relatively small E and m. Including ALC means that we need to substitute σ/
√
L for σ.

For σ = 0.01875, we have h(σ/
√
L) ≈

√
e(σ/

√
L)−2 = eLσ−2/2, i.e., a very very large number leading to no useful

DP guarantee even for large datasets (with large N ). In other words, σ cannot be too small. Even σ = 0.5 with L = 62

for resnet-18 leads to h(σ/
√
L) =

√
e62·4Φ(3 ·

√
62) + 3Φ(−

√
62)− 2 which is prohibitively large for achieving a

good DP guarantee. Figure 5 shows that choosing a larger σ > 0.5 for obtaining a better DP guarantee gives too much
noise resulting in a poor test accuracy of at most 20%, which is unacceptable. We conclude that resnet-18 and CIFAR10
represent a too deep neural network and complex dataset for a good balance between test accuracy and DP guarantee
when using DP-SGD with our BC and ALC improvements. For now, we see that BC and ALC are two steps toward a
better balance (after we are able to achieve convergence where this was not possible before for the original DP-SGD
with IC) and that more techniques are needed for deep neural network models with complex training datasets.

Section A.1 shows experiments for the lightweight convnet model with the complex CIFAR10 dataset which achieves a
better ≈ 40% test accuracy – this demonstrates that a lightweight neural network model is more robust against noise
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and is better suitable for training with DP-SGD with BC and ALC. Section A.2 shows experiments for the lightweight
BN-LeNet-5 model with the simple MNIST dataset which, if restricted to 50% accuracy (for proper comparison with the
40% test accuracy for convnet with CIFAR10), allows a much larger σ = 2.5 resulting in a much improved G0.52-DP
guarantee (h(σ/

√
L) = 1.513 with L = 8; m = 64, N = 9

10 · 60000, E = 50).

A smaller σ = 1.5 (see Figure 12.b in Section A.2) achieves a better balance of ≈ 67% test accuracy with ≈ G1.99-DP
(h(σ/

√
L) = 5.783). For a factor 15 larger dataset we would be able to improve G1.99-DP to the better G0.51-

DP guarantee. We conclude that a more lightweight model and/or less complex (and larger) training dataset can
potentially lead to a better balance between test accuracy and DP guarantee using the proposed BC and ALC techniques.
Nevertheless, we will even want to improve G0.51 to some trade-off function more like G0.01 such that hypothesis
testing indeed resembles a random guess. To date, this remains an open problem – our ALC+BC techniques provide a
step forward, but more complimentary techniques are needed.

B.2 Towards Improving/Optimizing ALC+BC

From an accuracy perspective we see that σ = 1.5 (as mentioned above) or larger σ may be needed even for a more
lightweight network model with a less complex training dataset. For large σ, we notice that a Taylor series expansion
of h(σ) shows a linear dependency on 1/σ. This shows that µ in a Gµ-DP guarantee for ALC scales with

√
L (since,

as discussed before, ALC requires a factor
√
L smaller σ if we want to keep the same Gµ-DP guarantee). The linear

dependency of µ on
√
L is due to the fact that there is no subsampling effect for the separate layers within a gradient

computation; the leakage is directly composed over all the layers for a single gradient computation (without using a
subsampling operator as is done in the general analysis leading to (4)). For this reason, it is advantageous to group
layers that have similar clipping constant and clip the group rather than the individual layers within the group. E.g.,
Figure 1 indicates we may use about 4 groups of layers representing a very small norm, to medium and larger norms.
This reduces L = 62 down to L = 4 for resnet-18. Also, notice that the unexplored sparsification trick mentioned in
Section 3.4 may offer another improvement.

Our discussion shows that as future work, we need to further optimize the promising ALC technique. One tempting
direction is to not use a single training sample ξ for updating all the layer gradients, but to use ξ for a single layer
gradient. So, rather than using a data sample ξ for computing updates for all the layer gradients, we can think of using a
data sample ξ for updating just one of the layer gradients. Together with ξ we choose one of the L layers at random.
In this way we still train all the layers. We notice that this approach means that we have subsampling for each layer
gradient and we do not pay the composition price of

√
L as explained in 3.2. However, one can think of this as L

separate learning tasks, each costing the same amount of training as the original learning task which learn the full
weight vector across all layers at once. This means a composition of L leakages and we again pay the price of

√
L

since G⊗L
µ = G√

L·µ. Or, equivalently, one can argue that we need L times more rounds in order to train the full weight
vector, i.e., a factor L more epochs, hence, the

√
L factor penalty after composing over all the epochs. So, this idea still

does not improve the sought-after balance between DP guarantee and accuracy since we now have proper amplification
from subsampling but at the price of L times more rounds, and this cancels out, that is, no improvement.

Based on the above discussion we would like to somehow only clip the overall full gradient while still keeping the better
robustness against DP noise of ALC which requires layerwise clipping. Suppose that we associate a multiplication
factor mj ≥ 1 to each layer j. We proceed as follows:

1. As before, we first compute the full gradient composed of layer gradients:

∇wf(w; ξ) = (∇w1
f(w; ξ)||....||∇wL

f(w; ξ)).

2. We use the multiplication factors mj , 1 ≤ j ≤ L, to compute

{∇wf(w; ξ)}m1,...,mL
= (m1 · ∇w1

f(w;xi)||....||mL · ∇wL
f(w; ξ)).

3. Now we perform full gradient clipping (FGC) with clipping constant C:

[{∇wf(w; ξ)}m1,...,mL
]C .

We use this in computing formulas (the ah) leading to the noised update U . Notice again that we can use the
IC or BC approach in these formulas.

The differential privacy argument follows the line of thinking of our analysis of BC in Section 3.1. Since we use FGC,
we do not pay the

√
L penalty. This will significantly improve the trade-off function as discussed in Section B.1.
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What about robustness against the added Gaussian DP noise? The server receives a noised update of the form

U = (U1||...||UL).

The server divides by the multiplication factors and computes

(U1/m1||...||UL/mL)

with which the global model is updated. The effect of the proposed trick using multiplication factors mj is that dividing
by the multiplication factors retrieves the original layer gradients – if there is no clipping noise. In this process we
reduce the added Gaussian noise, since the noises are divided by the factor mj ≥ 1. In our ALC we estimate the
expected norm of each layer j denoted by ej . We equate M to the maximum of all ej . We compute layer clipping
constants C · ej/M . In the above approach based on multiplication factors we may define mj = M/ej . Since this will
increase each layer norm to M in expectation, we will want to choose a higher overall clipping constant C in FGC (as
compared¶ to the master clipping constant C used in ALC). We see that the proposed new trick on one hand remains
robust to Gaussian noise added to layers that have a small norm compared to other layers. On the other hand C needs to
be fine-tuned and may be larger than the C of ALC, which means that the overall added noise is larger and makes this
solution less robust. Concluding, we have the original DP guarantee without

√
L penalty, while we make sure that layer

gradients with small norms get multiplied by a large mj so that the effect of the added noise for that layer is not going
to be overpowering. This is also the goal which ALC wants to achieve. We leave it to future work to experiment with
multiplication factors and in this sense optimize over ALC and/or find a better balance between DP guarantee and test
accuracy.

As a final remark, we notice that we do not need to restrict ourselves to using BC, we may use GBC which allows
momentum based update rules. We leave it to future work to find out whether this can lead to more robustness against
added Gaussian DP noise.

¶We can use the same collecting-layers-into-4-groups argument for resnet18 with which we started this section and conclude that
the clipping constant corresponding to the use of multiplication factors is about

√
4 = 2 larger.
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