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Abstract

Cognitive models provide a substantively meaningful quantitative description of latent

cognitive processes. The quantitative formulation of these models supports cumulative

theory building and enables strong empirical tests. However, the non-linearity of these

models and pervasive correlations among model parameters pose special challenges when

applying cognitive models to data. Firstly, estimating cognitive models typically requires

large hierarchical data sets that need to be accommodated by an appropriate statistical

structure within the model. Secondly, statistical inference needs to appropriately account

for model uncertainty to avoid overconfidence and biased parameter estimates. In the

present work we show how these challenges can be addressed through a combination of

Bayesian hierarchical modelling and Bayesian model averaging. To illustrate these

techniques, we apply the popular diffusion decision model to data from a collaborative

selective influence study.

keywords: Diffusion model, Bayes factors, response time data
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Inclusion Bayes Factors for Mixed Hierarchical Diffusion Decision Models

Introduction

Cognitive models provide many advantages over a-theoretical statistical and

psychometric measurement models of psychological data. Moving beyond the merely

descriptive, their parameter estimates support a theoretically motivated account of latent

psychological processes that leverages the cumulative results of previous research (Farrell &

Lewandowsky, 2018; Lee & Wagenmakers, 2014). The way in which these estimates change

as a function of experimental manipulations, and of group and individual differences, is,

therefore, better able to support psychologically meaningful explanations (Tuerlinckx &

Boeck, 2005; van der Maas et al., 2011) as well as to link behavior to other types of data,

such as from the neurosciences (Forstmann & Wagenmakers, 2015). They are intrinsically

more parsimonious than purely descriptive statistical models because their parameters can

be restricted to take on ranges, or to change, in ways that are consistent with their process

interpretations (Heathcote, 2019). Cognitive models can also avoid pitfalls associated with

the many untested assumptions that usually have to be made in purely statistical tests of

psychological explanations. Statistical tests need to operationalize assumptions in terms of

simple observed differences and/or relationships. Cognitive models, on the other hand,

provide a comprehensive account of both manifest and latent processes, and ground the

necessary assumptions either in cumulative research findings or make these assumptions

more easily testable. Finally, because they provide principled explanations, the predictions

of cognitive models are more easily generalized to new situations than those of their purely

statistical counterparts.

One of the leading classes of cognitive models is built on the idea of evidence

accumulation. The popularity of evidence accumulation models derives from their ability

to account simultaneously for response time (RT) and choice data, which are frequently

used in psychology and the cognitive sciences. Reflecting the advantages of the

cognitive-modeling approach, the most widely adopted model of this class, the diffusion
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decision model (Ratcliff, 1978; Ratcliff & McKoon, 2008, DDM: ) has been applied to

numerous areas of research, ranging from lexical (Ratcliff et al., 2004; Wagenmakers et al.,

2008; Yap et al., 2015) and perceptual (Ratcliff, 2002; Smith, Ratcliff, & Sewell, 2014;

Smith et al., 2004) decision making to recognition memory (McKoon & Ratcliff, 1996;

White et al., 2014) and cognitive aging (Ratcliff et al., 2006, 2007). The aim of the present

paper is to develop a coherent approach to estimation and inference for cognitive models

such as the DDM that addresses the particular statistical challenges they present.

Statistical Challenges for Cognitive Modeling

Estimation and inference for cognitive models is difficult because they are usually

highly non-linear, and their parameters are typically highly correlated. The latter

“sloppiness” (a term introduced in mathematical biology, see Apgar et al., 2010;

Gutenkunst et al., 2007) is shared with many models of biological systems that characterize

observed input and outputs in terms of intervening processes that cannot be directly

observed. When “sloppiness” is combined with non-linearity several challenges arise that

can detract from the potential advantages offered by the cognitive modeling approach.

Challenge I: Hierarchical Data Structures. As a first challenge, cognitive

models need to appropriately account for hierarchical data structures. “Sloppiness” and the

pervasive non-linearity mean that successfully fitting cognitive models like the DDM to

individual participants’ data often requires each participant to perform a large number of

trials (Lerche et al., 2016). Because large numbers of trials reduce measurement noise, they

can help remedy problems of identifiability caused by parameter correlations (Kolossa &

Kopp, 2018; Smith & Little, 2018). Unfortunately, simple techniques that average small

amounts of data from each member of a large group of participants to compensate for the

small number of trials per participant can produce misleading results due to non-linearity

(Brown & Heathcote, 2003; Heathcote et al., 2000). This limits the effectiveness of

cognitive modeling in settings such as clinical psychology and neuroscience where it is often
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not practical to obtain many trials from each participant. A further issue is that many

DDM applications rely on a two-step analysis procedure. In a first step, the model is fit to

the data of individual participants and experimental conditions (e.g., Voss & Voss, 2007;

Wagenmakers et al., 2007). In a second step, statistical hypothesis tests are applied to the

individual participants’ parameter estimates using techniques such as analysis of variance

or regression (e.g., Karayanidis et al., 2009; Schmitz & Voss, 2012; Voss et al., 2004; Voss

et al., 2013). This two-step procedure has several major problems.

First, in order to obtain stable parameter estimates, not only must each participant

perform a considerable number of trials overall, but they must also do so in each condition

(Wagenmakers, 2009). Fitting all within-subject conditions simultaneously for each

participant can ameliorate this problem to some degree, at least in parsimonious models

that share parameters across conditions (e.g., Ratcliff, 1978, 2002; Ratcliff et al., 2004;

Ratcliff & McKoon, 2008; Ratcliff et al., 2006, 2007; Smith, Ratcliff, & Sewell, 2014; Smith

et al., 2004; Wagenmakers et al., 2008; Yap et al., 2015). However, major problems remain

with separate fits to each participant. As has been argued repeatedly in the

mixed-modelling literature, failing to treat participants as a random effect can bias

parameter estimates (e.g., Agrestia et al., 2004; Barr et al., 2013; Freeman et al., 2010;

Grilli & Rampichini, 2015). Uncertainty in individual participants’ point estimates is also

ignored in second-step parameter tests (Boehm, Marsman, et al., 2018).

Mixed or hierarchical models, which provide simultaneous estimates for a group of

participants, provide a potential solution to these challenges. They avoid the problems

associated with simple averaging while improving estimation efficiency by shrinking

individual participant estimates toward the central tendency of the group (Evans et al.,

2018; Rouder & Lu, 2005; Rouder et al., 2003; Shiffrin et al., 2008). Bayesian methods

make hierarchical approaches possible for non-linear cognitive models where the evaluation

of high-dimensional integrals required at the group level is otherwise impractical. This has

enabled applications of hierarchical Bayesian DDMs in both clinical psychology
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(Huang-Pollock et al., 2017) and neuroscience (Forstmann et al., 2016; Kühn et al., 2011;

Philiastides, 2006). More generally it has been argued that the hierarchical Bayesian

approach provides the best statistical methodology for cognitive modeling (Lee, 2016). For

the DDM in particular Vandekerckhove et al. (2011) argue that it provides advantages to

both of Cronbach’s (1957) two disciplines of psychology (see also Cronbach, 1975),

underpinning a coherent account of both fixed and random effects for experimentalists

while grounding psychometric measurement models in a substantive theory (see also

Borsboom, 2006). Bayesian approaches are also advantageous for model selection,

providing a comprehensive account of model flexibility that goes beyond simple parameter

counts to address the way in which interactions among parameters are constrained by the

form of the model’s likelihood. Accounting for such “functional-form complexity” (Pitt &

Myung, 2002) is particularly important for cognitive models because strong correlations

between parameters can substantially impact on their flexibility.

Challenge II: Inference Under Model Uncertainty. As a second challenge,

inference for cognitive models needs to appropriately account for model uncertainty. Many

applications of cognitive models aim to identify relationships between cognitive processes

that are represented by model parameters and a manifest variable, such as an experimental

manipulation or individual differences in some observable property. To this end, researchers

specify a set of candidate models, each of which allows a subset of the model parameters to

covary with the manifest variable while constraining all other model parameters to be

equal across levels of the manifest variable. Inference can then proceed by selecting the

model that best accounts for the data. Bayes factors are a classical method for model

selection that appropriately penalizes for model complexity (Heck et al., 2022; Kass &

Raftery, 1995). However, it may be undesirable to base inference on a single model due to

model uncertainty. Because only finite amounts of data are available, the correct model can

never be known with certainty. For example, chance variation in sampling participants and

stimulus materials together with the “sloppiness” of cognitive models can introduce
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spurious covariation between model parameters and the manifest variable. The resulting

uncertainty about the most appropriate model can lead to incorrect conclusions if inference

is only based on a single model. Fortunately, inference can instead be based on a weighted

average of the complete set of candidate models that takes both model complexity and

model uncertainty into account (Hinne et al., 2020; Hoeting et al., 1999).

As well as aiding parameter estimation and interpretation, basing inference on

model combinations has the potential to enhance other virtues of cognitive models. In

simple statistical models, model averaging has been found to improve prediction (e.g.,

Quinn et al., 2017). Model averaging can also have important theoretical implications by

establishing the selective influence of manipulations on cognitive processes (Ashby &

Townsend, 1980; Sternberg, 1969). In many cases, identifying invariances—that is,

determining which processes do not contribute to an observed phenomenon—provides

important theoretical constraints on cognitive models (Rouder et al., 2009). Hence,

methods such as complexity-penalized model averaging that appropriately accommodate

model uncertainty when quantifying the evidence for the absence as well as the presence of

an influence are highly desirable. Consequently, model-averaging techniques are key

enablers for realizing the advantages of cognitive modeling.

These considerations have led to the increasing availability of general-purpose

hierarchical Bayesian estimation and model-selection techniques for the DDM and other

evidence accumulation models (Evans & Annis, 2019; Gronau, Heathcote, et al., 2019;

Gunawan et al., 2020; Heathcote et al., 2019; Vandekerckhove et al., 2011; Wiecki et al.,

2013). In the next section we discuss advantages and disadvantages of these

implementations, with a focus on the DDM. We then propose an alternative set of methods

based on Rouder et al.’s (2012) approach to Bayesian linear mixed models and Gronau,

Heathcote, et al.’s (2019) approach to Bayesian inference. In the remainder of this paper

we implement the framework for the DDM and test its application to Dutilh et al.’s (2019)

data from a blinded collaborative study that challenged analysts to identify selective
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influences of a range of experimental manipulations on evidence-accumulation processes.

We assess the performance of our estimation and inference methods with these data and

with synthetic data generated from parameters estimated from the empirical data. We

conclude by discussing how this approach, and potential extensions, constitutes a

promising framework for providing coherent estimation and inference for cognitive models.

Novelty

Our solution to the two statistical challenges in cognitive modeling combines

different methods from Bayesian statistics. Although the use of some of these methods in

psychology, and cognitive modeling in particular, has been advocated before, our work

uniquely combines and extends these earlier approaches. Moreover, we provide a concrete

example of the practical feasibility of a coherent, fully Bayesian approach to inference and

estimation for a complex and widely used cognitive model.

Our solution to the first challenge embeds the DDM in a Bayesian hierarchical

mixed modeling framework. Although hierarchical Bayesian methods have been advocated

in cognitive modeling in general (e.g., Rouder & Lu, 2005; Rouder et al., 2005; Rouder

et al., 2007), and for the DDM in particular (e.g., Vandekerckhove et al., 2011;

Vandekerckhove, 2014; Wagenmakers, 2009; Wiecki et al., 2013), our approach differs in

two important respects. First, most existing hierarchical implementations of the DDM

ignore the fixed effects structure of experimental conditions (e.g., Hawkins & Heathcote,

2021; Turner et al., 2015; Wiecki et al., 2013), or implement a factor analysis model at the

population level (e.g., Turner et al., 2017). In contrast, we adopt a hierarchical mixed

modeling framework that affords a high level of flexibility in accommodating statistical

structures at the population level, such as mixed effects ANOVAs, ANCOVAs, and

regression models (see section “Fully Hierarchical Implementation of the Full DDM” for a

detailed discussion). Second, we adopt an effect-size parameterization from Bayesian linear

regression for condition and subject effects. This allows us to impose default priors on the
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effect sizes and priors that are strongly informed by the literature on intercept terms.

Thus, in contrast to earlier work (e.g., Vandekerckhove et al., 2011; Vandekerckhove, 2014),

our approach eliminates the need for researchers to develop priors ad hoc for every new

application of the DDM.

Our solution to the second challenge uses Bayesian model averaging (BMA) to

account for model uncertainty. BMA has been advocated for inference and prediction in

various contexts (e.g., Hoeting et al., 1999), including the assessment of replication studies

(Iverson et al., 2010), weather forecasting (Raftery et al., 2005), and hydrology (Höge

et al., 2019). Fragoso et al. (2018) in their review find that the number of publications on

BMA has grown considerably over the past 20 years. However, application in the social

sciences are dominated by the field of economics. The advocacy of BMA in psychology, in

particular, has focused on (linear) statistical models such as structural equation models

(Kaplan, 2021; Kaplan & Lee, 2016; Kaplan & Yavuz, 2020), network analysis, and

ANOVA-type linear models (Hinne et al., 2020). On the other hand, applications to highly

non-linear cognitive models are missing, which is presumably due to the absence of efficient

sampling algorithms and easy-to-use software for hierarchical Bayesian cognitive models in

the past.

In summary, despite the well-known theoretical advantages of hierarchical modeling

and BMA, only the recent advent of efficient sampling algorithms has made it possible to

realize these theoretical advantages for complex, highly non-linear cognitive models. In the

present work we demonstrate how Bayesian hierarchical mixed modeling and BMA can be

combined to obtain a coherent approach for estimation and inference for cognitive models.

Our hope is that this Bayesian framework will in the future enjoy a similar level of

applicability and popularity in cognitive modeling as it has achieved in statistical

applications.
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Models

Diffusion Decision Model (DDM)

The full 7-parameter DDM is illustrated in Figure 1. As currently used in most

applications the DDM is based on three elaborations of the basic Wiener diffusion model

for binary choice first proposed by Stone (1960).

Basic Diffusion Model

The basic diffusion model is the continuous time limit of a random walk process in

which an evidence total starts at a point x0 between two boundaries. Each boundary

corresponds to one of the two response options and we assume without loss of generality

that one boundary is located at 0 and the other boundary is located at a > 0. Evidence

fluctuates from moment to moment as it accrues at a mean rate v due to the effect of

zero-mean Gaussian noise with standard deviation s. Boundaries do not change with time,

and when a boundary is reached the corresponding response is initiated. Stimuli associated

with the upper boundary response have a positive v and stimuli associated with the lower

boundary a negative v. Errors occur when the wrong boundary is reached first due to the

effects of accumulation noise. The observed RT is the sum of a decision component and a

non-decision component. The decision component is the time required for the process to

move from the start point x0 to the boundary, and the non-decision component, t0, is the

total time required to initially encode evidence from the choice stimulus and to produce a

response once a boundary is reached. An increased distance a between the boundaries

represents an increase in response caution. An increase in response caution increases both

decision time—because the evidence total has to travel farther—and accuracy—because

there is a longer time to average out the effects of accumulation noise. Wabersich and

Vandekerckhove (2014) provide an R package to compute the Wiener decision model

distribution functions.

Formally, the basic diffusion model is the solution to the first-passage problem with



DIFFUSION MODEL BAYES FACTORS 12

boundaries located at 0 and a for a stochastic differential equation driven by white noise

(Ratcliff, 1978; Ratcliff & McKoon, 2008),

X(t) = x0 + v(t − t0) + sB(t − t0), t ∈ [t0, ∞). (1)

Here, X(t) is the solution process at time t. The non-decision component of the decision

process is incorporated via the time shift t − t0, so that the process has starting point x0 at

time t = t0. The term v(t − t0) is a deterministic offset from the starting point with slope

given by the drift rate v. The term sB(t − t0) is a time-shifted Brownian motion scaled by

the diffusion coefficient s, which represents a normally distributed stochastic offset with

mean 0 and variance s2(t − t0). The first-passage distribution of the model remains

unchanged if the parameters a, v and x0 are divided by s.1 Therefore, it is commonly

assumed that s = 1.

This Wiener diffusion process produces uni-modal and positively skewed decision

time distribution shapes that are characteristic of empirical RT distributions (see Figure

1). Different series expressions are available for the density of the first-passage time

distribution (see, e.g., Foster & Singmann, 2021; Ratcliff, 1978). A small-time

representation that converges quickly for small values of t is particularly attractive for

applications in psychology (Gondan et al., 2014; Van Zandt et al., 2000). The first-passage

density at the lower bound is:

f−(t; a, v, x0, t0) = 1
a2

√
2π(t − t0)3

e−vx0− 1
2 v2(t−t0)

∞∑
n=−∞

x0+2an
a

e
−

(x0+2an)2

2a2(t−t0) , (2)

1 The invariance of the first-passage distribution under affine transformations can be directly seen from the

full expression for the first-passage density given in Ratcliff (1978), where all terms involving a, v and x0

appear as ratios of s. For an intuitive argument, dividing the term sB(t − t0) in Equation (1) by s changes

the size of the stochastic moment-to-moment fluctuations by a factor 1/s. Therefore, rescaling the

deterministic moment-to-moment fluctuations (i.e., v) as well as the spatial domain of the process (i.e., the

starting point x0 and the boundary separation a) by the same factor yields a stochastic process with the

same first-passage distribution.
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and the density for the upper bound is obtained by reversing the sign of the drift rate v

and replacing x0 by a − x0, that is, f+(t; a, v, x0, t0) = f−(t; a, −v, a − x0, t0).

Full Diffusion Decision Model

Although the basic diffusion model produces the correct shape for a decision time

distribution, it is not by itself a plausible model of binary choice because when responding

is unbiased (i.e., x0 = a/2) correct and error decision-times have identical distributions. In

contrast, participants responding cautiously generally have slower correct than error

responses, whereas when they prioritize speed over accuracy errors can be slower than

correct responses. Building on the work of Laming (1968) and Ratcliff (1978), Ratcliff and

Rouder (1998) pointed out that this pattern could be accommodated by Gaussian

across-trial variability in the rate of accumulation, with mean v and standard deviation sv,

and uniformly distributed across-trial variability in the starting point, with mean x0 and

range sx0 . Rate variability causes slow “stimulus-quality” errors that cannot be entirely

eliminated by increasing a, and starting-point variability causes fast “response-caution”

errors that can be eliminated by increasing a (see Damaso et al., 2020, for further

discussion of these two types of errors in evidence-accumulation models).

The third elaboration, which completes the specification of the full DDM that we

focus on here, is uniform across-trial variability in non-decision time with mean t0 and

range st (Ratcliff & Tuerlinckx, 2002). Although these three elaborations make the DDM a

realistic model of choice RT, the across-trial variability parameters can be hard to estimate

(Boehm, Annis, et al., 2018; Evans et al., 2020; Lerche & Voss, 2016; Lerche et al., 2017;

van Ravenzwaaij & Oberauer, 2009).
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0

x0

a

v

t0

st

sx0

Response Option A

Response Option B

Figure 1

Diffusion Decision Model. The model describes decision making as the accumulation of

noisy evidence to one of two thresholds located at 0 and a that each correspond to one

response option. The evidence signal on a single trial is described as a Wiener process with

diffusion constant 1 and a drift coefficient that is sampled from a normal distribution with

mean v and standard deviation sv. The starting point of the Wiener process on each trial is

sampled from a uniform distribution with mean x0 and range sx0. An additive non-decision

term that is sampled from a uniform distribution with mean t0 and range st0 on each trial

accounts for the time required for sensory encoding and response execution. The core model

parameters a, v, t0, x0 together with the stochastic within-trial variability of the Wiener

process account for the general right-skewed shape of empirical response time distributions

with a long right tail. The across-trial variability parameters sv, st0 , sx0 account for

fine-grained details in the leading edge and the relationship between the means of the

observed correct and error RT distributions.

Taken together, the seven parameters of the full DDM a, v, t0, x0, sv, sx0 , st0 are the

boundary separation, drift rate, non-decision time, starting point, and across-trial

variability in drift rate, starting point, and non-decision time, respectively. In practical

applications it is often convenient to parameterize the model in terms of the relative
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starting point z = x0/a and variability in the relative starting point sz = sx0/a, which is

the parameterization that we will use in the sequel.

The first-passage density of the full DDM at the lower bound is:

f−(t; a, v, x0, t0, sv, sx0 , st0) =
∫ x0+

sx0
2

x0−
sx0
2

∫ t0+
st0
2

t0−
st0
2

1
a2sx0st0

√
2π(t − τ)3(1 + s2

v(t − τ))

× e
s2

vζ2−2vζ−v2(t−τ)
2(1+s2

v(t−τ))
∞∑

n=−∞

(
ζ
a

+ 2n
)

e
−

(ζ+2an)2

2a2(t−τ) dτ dζ.

(3)

As can be seen from the form of the density, whereas across-trial drift variability leads to

an analytic expression, the density with across-trial variability in non-decision time and

start-point requires numerical integration over the uniform non-decision time and

start-point distributions. An efficient implementation of the density and distribution

function is available in an R package (Singmann et al., 2020) based on the C-code of Voss

and Voss (2007) (see also Voss et al., 2015).

Bayesian Implementation of Diffusion Models

Pioneering work on developing a Bayesian implementation of evidence accumulation

models based on the basic diffusion model was conducted by Vandekerckhove et al. (2011).

In their first application fitting data from single participants Vandekerckhove et al.

introduced all three types of across-trial variability as random effects. Their second

application assumed unbiased responding (i.e., z = 1/2) and used a multi-level structure,

with random trial effects on drift rates and non-decision times at the first level. At the

second level there were random participant effects for response caution, a, and for the

mean and across-trial variability parameters for drift rates and non-decision times.

Vandekerckhove et al. (2011) note that their way of introducing across-trial

variability, which they call a hierarchical diffusion model (HDM), is “akin” to the DDM.

However, it is important to acknowledge a key difference: as the number of trials increases

the effect of the assumed form of the across-trial distributions washes out. The upshot is

that the across-trial distribution functions can take on whatever arbitrary form that best
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fits the data, at least in the limit of a large number of trials. Subsequently, Jones and

Dzhafarov (2014) showed that a diffusion process with arbitrary across-trial distributions,

which they call the general diffusion model (gDM), is unfalsifiable because it can fit any

pattern of data. Hence, the HDM becomes equivalent to the gDM as the number of trials

grows. However, leading proponents of the DDM see the fixed forms of the across-trial

variability distributions as key assumptions (Smith, Ratcliff, & McKoon, 2014). Therefore,

a Bayesian implementation of across-trial variability as a random effect does not appear to

be desirable.

A more recent hierarchical Bayesian implementation of the full DDM takes account

of the exact form of across-trial variability but assumes only a group level. In their

hierarchical drift-diffusion model (HDDM)2 Wiecki et al. (2013) chose to implement the

three across-trial variability parameters as fixed effects. They did so because “the influence

of these parameters onto the likelihood is often so small that very large amounts of data

would be required to make meaningful inference at the individual level” (p. 3). Although

this greatly helps Markov chain Monte-Carlo (MCMC) estimation of the model, it seems

plausible that levels of across-trial variability might differ between individuals. It is also

unclear whether high correlations among parameters might not cause biases in estimates of

other parameters when this is the case.

Fully Hierarchical Implementation of the Full DDM

Each of the Bayesian implementations of the diffusion model discussed so far ignores

some important aspects of the (hierarchical) structure of real data. Vandekerckhove et al.

(2011) only implement the basic diffusion model likelihood (Equation (2)). Although they

argue that the three across-trial variability parameters can be introduced as random

2 The terms “drift-diffusion” is commonly used in neuroscience, sometimes referring to the simple Wiener

diffusion model and sometimes to versions with across-trial variability. We adopt Ratcliff and McKoon’s

(2008) “diffusion-decision model” terminology for the version with all three types of within-participant

variability.
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effects, doing so causes considerable problems for MCMC algorithms that are used to

obtain posterior samples (Boehm, Annis, et al., 2018). Moreover, the resulting model is

ill-specified as the distribution of the across-trial parameters is data-dependent and will

thus fit any sufficiently large data set (i.e., the model cannot be falsified). Wiecki et al.

(2013) implement the full DDM likelihood (Equation (3)) but only allow for fixed effects on

the three across-trial variability parameters, which embodies the assumption that these

parameters are the same across individuals. Our hierarchical implementation of the DDM

addresses these shortcomings of earlier implementations by using the full DDM likelihood

together with a complete mixed modeling framework that can flexibly accommodate fixed

and random effects of participants and experimental conditions, as well as being amenable

to extension to general linear models (e.g., ANOVA, ANCOVA, and regression designs). In

addition, we adopt the convention of parameterizing condition and participant effects in

terms of standardized, dimensionless effect sizes. This approach, which was developed in

statistical modeling but has not hitherto been applied to diffusion modeling, allows us to

impose default priors on the effect sizes and supports comparability of results across

studies.

Heathcote et al.’s (2019) Dynamic Models of Choice (DMC) software package

provides R functions for hierarchical Bayesian estimation of a range of

evidence-accumulation models, including the full DDM and simplified versions with one or

more sources of across-trial variability removed. MCMC estimation is achieved with the

Differential Evolution algorithm (ter Braak, 2006; Turner et al., 2013) that is well suited to

models with highly correlated parameters. Hence, across-trial variability parameters can be

estimated as random effects although, as noted by Wiecki et al. (2013), this does require

larger trial numbers, particularly for the starting-point range. HDDM only allows for fixed

truncated normal non-informative priors or informative priors based on Matzke and

Wagenmakers’s (2009) literature review (see Tran et al., 2021, for a more recent update

with similar findings), whereas DMC provides a wide range of prior distribution forms with
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parameters set by the user. DMC also provides a range of model-selection criteria,

including the deviance information criterion (DIC; Spiegelhalter et al., 2002), which is a

hierarchical generalization of the Aikaike information criterion (AIC; Aikaike, 1974), the

Bayesian predictive information criterion (BPIC, Ando, 2007), which is an approximation

of the posterior mean of the expected log-likelihood of the predictive distribution, the

widely applicable information criterion (WAIC; Vehtari et al., 2016), which is an

asymptotic approximation to Bayesian cross-validation, and Bayes factors (Gronau,

Heathcote, et al., 2019), which are the ratio of the marginal likelihood of two candidate

models. The marginal likelihood in DMC is estimated through Warp-III bridge sampling

(Gronau, Wagenmakers, et al., 2019; Meng & Schilling, 2002), which iteratively updates an

estimator of the marginal likelihood based on a proposal distribution whose first three

moments are matched to the posterior distribution.

Hierarchical mixed modeling in DMC

The approach we develop here is built on DMC. We extend DMC’s hierarchical

DDM implementation by a Bayesian hierarchical mixed modeling framework that supports

model selection as well as model-averaging. Our approach to inference is based on inclusion

Bayes factors. For ease of exposition we will discuss this approach for an experiment where

P participants are tested in two experimental conditions. However, we emphasize that the

same principles can be applied to arbitrary study designs that can be accommodated

through linear functions of the cognitive model parameters and covariates. Moreover, we

assume that all model parameters can be transformed to have a normal distribution. While

several DDM parameters are supported only on a bounded interval or the positive real line,

the sampling algorithm in DMC assumes that parameters are supported on the entire real

line. We accommodate this constraint by applying transformations that map the support

of the parameter to the entire real line. For convenience we assume that the transformed

parameter is normally distributed.
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A first consideration in the development of our hierarchical implementation is that

it needs to take random participant effects into account. These describe individual

differences in parameter values, and it seems reasonable that such effects do exist. For

example, if a participant’s evidence accumulation is more efficient than average (i.e., they

have a higher v than other participants) in one condition it seems likely, all other things

being equal, that they would be more efficient in another condition. Similarly, if a

participant was more cautious than average (i.e., they had a higher a) then that would

likely apply across all conditions. However, all hierarchical DDM analyses discussed

previously neglect these individual differences. Let θ be any one DDM parameter. Earlier

analyses assumed that the model parameter θp,c for participant p = 1, . . . , P is sampled

independently in each experimental condition c = 1, 2 from, say a normal distribution with

mean µc and variance σ2

θp,c ∼ N (µc, σ). (4)

Note that in this model specification the effect of the experimental condition is treated as a

fixed effect.

In our hierarchical implementation, we account for individual differences in terms of

additive random participant effects, which induce a positive correlation in parameters over

conditions. Specifically, we assume that the model parameter θp,c for participant

p = 1, . . . , P is sampled from a normal distribution

θp,c ∼ N (µp + µc, σ), (5)

where µp is the additive participant effect. It has been recommended in the linear

mixed-modeling literature (Barr et al., 2013) to use maximal random effects structures

(i.e., including all interactions between fixed and random factors). However, using maximal

random effects can negatively affect statistical power (Matuschek et al., 2017) and will

potentially aggravate existing sampling and sample size issues already posed by the DDM.

We leave the exploration of more elaborate random effects models to future work.
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A second consideration in the development of our hierarchical implementation is the

choice of prior distributions for the random participant effects and fixed condition effects.

A possible approach to this problem might be to base the prior distributions on parameter

estimates obtained in earlier studies. Surveys conducted by Matzke and Wagenmakers

(2009) and Tran et al. (2021) examined published parameter values that were, in the main,

averaged over participants and experimental conditions. Hence, such surveys can provide

priors for the mean DDM parameter values, but do not provide information about

differences between experimental conditions (i.e., fixed condition effects) nor about average

differences between participants (i.e., random participant effects). Moreover, the size of

fixed and random effects will often be context-dependent. In clinical samples, for instance,

DDM parameters will tend to vary more widely between participants than in healthy

controls (e.g., Dillon et al., 2015; Huang-Pollock et al., 2017; Weigard et al., 2018), which

would need to be reflected in wider priors for random participant effects in clinical samples.

Instead of specifying priors for fixed and random effects on an absolute scale, we

adopt Jeffreys’s (1961) recommendation to use standardized effect sizes. Standardized

effect sizes (e.g., the difference between parameters in two conditions divided by a measure

of variability in parameters over participants) are dimensionless quantities for which it is

easier to specify “default” priors (Liang et al., 2008). In order to take advantage of the

available information about mean parameter values, we introduce an intercept term that is

modeled on an absolute scale, and whose prior distribution we base on Matzke and

Wagenmakers’s (2009) survey. That is, we assume that the model parameter θp,c for

participant p = 1, . . . , P is sampled from a distribution

θp,c ∼ N (µθ + σresαp︸ ︷︷ ︸
=µp

+ σresβc︸ ︷︷ ︸
=µc

, σres). (6)

Here, µθ is the intercept for the DDM parameter θ, which we assign an informative prior

based on surveys of published parameter estimates, independent of the priors for the

remaining terms σresαp + σresβc. The random person effect on the absolute scale, µp, is
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now expressed as the product σresαp, where σres is the residual standard deviation3 of the

DDM parameter θ, and αp is the standardized person effect. Taking the product σresαp

scales the dimensionless standardized effect size αp to the absolute scale of the DDM

parameter θ. Similarly, the fixed condition effect on the absolute scale, µc, is expressed as

the product σresβc, where βc is the standardized condition effect. Up to some technical

details that we will deal with later, the standardized effects αp and βc can be thought of as

the deviation from µθ in units of residual standard deviations.

The parameterization of the DDM in terms of dimensionless standarized effect sizes

and an intercept on an absolute scale has two main advantages. First, the estimated effect

sizes can be more readily compared across studies than effects on the absolute scale.

Second, default priors guarantee the consistency of inference across studies. The choice of

prior distributions affects the value of the Bayes factors described in the next section (Kass

& Raftery, 1995), which means that different choices of priors can lead to different

conclusions based on the same data. Assigning default priors to the standardized effect

sizes and basing the prior for the intercept term on surveys of previous studies eliminates

the need to develop priors ad hoc, and thus supports consistent and comparable inference

across studies.

Bayesian Model Averaging for Inference Under Model Uncertainty

Bayesian methods offer a natural way of addressing the second challenge for

cognitive modeling, the need for statistical inference and estimation to appropriately

account for model uncertainty. We begin with a brief summary of Bayesian estimation

theory, which provides the main motivation for the development of our approach to

inference under model uncertainty.

3 Since the mixed effects framework we use here was developed for regression models, we refer to σres as

the “residual standard deviation”. However, as we explain in the section “Model specification”, the DDM

parameters θ only make contact with the data via the DDM likelihood.
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Bayesian estimation theory

Bayesian estimation theory considers the problem of obtaining a guess for the value

of an unknown quantity of interest θ, based on observed data D, which is optimal in a

sense that will be made precise shortly. Uncertainty about the true value of θ is modelled

by assigning a prior distribution π(θ) that describes the a priori plausibility of different

values of θ before any data are observed. An estimator is a map θ̂(D) that provides a guess

of the value θ based on the observed data D. The cost of guessing θ incorrectly is

expressed by a loss function L(θ, θ̂) that depends on the unknown true value of θ and the

the value of the estimator θ̂. A common choice for the loss function is the squared error

L(θ, θ̂) = (θ − θ̂)2. An estimator is called a Bayes estimator if it minimizes the expected

loss under the prior distribution Eπ[L(θ, θ̂)].

Bayesian Model Averaging

Our approach to inference here is based on Bayesian model averaging (BMA), which

results in optimal predictions under squared error loss (and other convex loss functions;

Hoeting et al., 1999). More generally, BMA results in better predictions than any

individual model (Beck et al., 2008; Höge et al., 2019; Iverson et al., 2010; Raftery et al.,

2005; Vehtari & Ojanen, 2012). In particular, our main inferential tool will be inclusion

Bayes factors, which offer a principled solution to the problem of making inferences about

model parameters in the face of model uncertainty (Gronau, Wagenmakers, et al., 2019;

Hinne et al., 2020; Hoeting et al., 1999; Jeffreys, 1961; Jevons, 1874). Inclusion Bayes

factors can be used to combine the information about a parameter of interest across

models, weighing the contribution of each model by its marginal likelihood. The marginal

likelihood includes an implicit penalty for model complexity (Jefferys & Berger, 1992;

Jeffreys, 1939; MacKay, 2003; Myung & Pitt, 1997), which means that inferences based on

inclusion Bayes factors take both model uncertainty and model complexity into account.

As Hinne et al. (2020) point out, basing inferences on the complete set of candidate models
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has several advantages over single-model inference. Weighing the contribution of each

candidate model by its a posteriori plausibility avoids placing too much confidence in any

single model. This also acts as a safeguard against model misspecification. Whereas in

single-model-inference conclusions stand and fall with the winning model, basing inferences

on a set of models means that models that are approximately correct can compensate for

the misspecification of other models. The BMA framework also offers advantages for

parameter estimation. Collecting additional data may change which model has the highest

a posteriori plausibility. If parameter estimates are based on a single winning model,

switching between models can result in sudden changes in parameter estimates. BMA, on

the other hand, bases parameter estimates on a weighted average across candidate models,

which means that parameter estimates will change gradually as more data are collected.

Returning to our setup where a group of P participants is tested in two

experimental conditions, the researcher wants to test the hypothesis that a DDM

parameter θ differs between the two experimental conditions. In most applications only the

four main DDM parameters are of interest: θ ∈ {a, v, z, t0}. Assume that the parameter of

interest is response caution a. The question now arises what assumptions the researcher

should make about the remaining main parameters, v, z, t0. In the BMA approach we

advocate here, instead of committing to a single set of assumptions about the remaining

main parameters, the researcher bases inference on the set of all hierarchical models that

can be specified by letting a subset of the main DDM parameters differ between conditions.

That is, each of the four main DDM parameters can either be free to differ between

experimental conditions, or be fixed to be equal in both conditions. This yields a total of 2

(a differs between conditions vs. a does not differ between conditions) ×2 (v differs

between conditions vs. v does not differ between conditions) ×2 (z differs between

conditions vs. z does not differ between conditions) ×2 (t0 differs between conditions vs. t0

does not differ between conditions) = 16 candidate models H = {H1, . . . , H16}, as

illustrated Table 1. In each model the fixed condition effect for some parameters is zero
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(i.e., µ1 = µ2), which is indicated by a space, whereas the fixed condition effect for the

remaining parameters is allowed to be non-zero (i.e., µ1 ̸= µ2), which is indicated by a “+”.

We denote by H0 = {H1, . . . , H8} the subset of models in which a is equal across conditions

(i.e., the models shown in the first 8 columns of Table 1 with a space in the row for a),

which in psychological terms means that participants’ response caution is the same in both

conditions while any possible combination (represented by the different models) of their

rate of evidence accumulation v, their start point z, and their non-decision time t0 may

differ between conditions. Similarly, we denote by H1 = {H9, . . . , H16} the subset of models

that allow a to differ between conditions (i.e., the models shown in the last 8 columns of

Table 1 with a “+” in the row for a), which in psychological terms means that participants’

response caution may differ between conditions, in addition to any combination of the

remaining three main parameters.

Table 1

Full set of candidate models. Each shows the specification of one candidate model, where a

‘+’ indicates that the fixed condition effect for the DDM parameter is allowed to be

non-zero.

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16

a + + + + + + + +

v + + + + + + + +

z + + + + + + + +

t0 + + + + + + + +

Next, the researcher fits all 16 candidate models to the data D and computes the

marginal likelihood of each. Each model Hk has a likelihood function ℓ(· | Hk, θ) that

depends on a set of parameters with parameter space Θk. The researcher assigns a joint

prior distribution πk to these parameters and computes the marginal likelihood of model
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Hk by integrating over the prior:

p(D | Hk) =
∫

Θk

ℓ(D | Hk, θ)πk(θ) dθ. (7)

Intuitively, the marginal likelihood describes the predictive adequacy for the data of model

Hk, averaged over all possible values of the model’s parameters.

The marginal likelihoods can now be used to compute the inclusion Bayes factor,

which describes the change in the plausibility of a condition effect on a after observing the

data. The researcher assigns a prior probability p(Hk) to each of the candidate models such

that ∑16
k=1 p(Hk) = 1. The prior probabilities describe the plausibility of each model before

observing any data. In the simplest case, the researcher might deem all candidate models

equally plausible a priori and assign prior probability p(Hk) = 1
16 to all models.

Consequently, the prior inclusion odds are given by the prior plausibility of the eight

models in which the fixed condition effect for a is allowed to be non-zero relative to the

prior plausibility of the eight models in which the fixed condition effect for a is zero.

Uniform prior probabilities are appropriate when no prior information is available

(Jeffreys, 1939). However, in the presence of strong prior knowledge one may instead use

non-uniform prior probabilities. For instance, if data from an earlier study with a

comparable setup are available, the posterior model probabilities from that study might be

used as prior probabilities for the present analysis. Moreover, simple models with few

parameters are typically preferable to complex models with many parameters (Wrinch &

Jefferys, 1921). This preference can be accommodated by basing each candidate model’s

prior probability on the number of parameters in that model (Consonni et al., 2018;

Jeffreys, 1939; Wilson et al., 2010).

The plausibility of each model after observing data D is computed via Bayes’ rule.

This yields the posterior probability:

p(Hk | D) = p(Hk)p(D | Hk)∑16
k=1 p(Hk)p(D | Hk)

. (8)

The posterior probability only provides information about the plausibility of a single model
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after the data have been observed. The inclusion Bayes factor describes how the

plausibility of the presence of a condition effect on a, which is expressed by the prior

inclusion odds, changes after observing the data. The inclusion Bayes factor is computed

as:

BFinc a =
∑

Hk∈H1 p(Hk | D)∑
Hl∈H0 p(Hl | D)︸ ︷︷ ︸
Posterior inclusion

odds

/ ∑
Hk∈H1 p(Hk)∑
Hl∈H0 p(Hl)︸ ︷︷ ︸

Prior inclusion
odds

. (9)

BMA is not only applicable to the posterior probability of the candidate models, it

can also be applied to the (marginal) posterior distribution of the model parameter of

interest. To obtain the model-averaged posterior distribution of a parameter, the researcher

first computes under each candidate model the marginal posterior distribution for the

parameter of interest. We denote the parameter of interest by θ̃ with domain Θ̃k, the

marginal posterior distribution is then given by:

p(θ̃k | D, Hk) =
∫

Θk\Θ̃k
ℓ(D | Hk, θ)πk(θ) dθ∫

Θk
ℓ(D | Hk, θ)πk(θ) dθ

, (10)

where Θk \ Θ̃k is the parameter space of the remaining model parameters. The

model-averaged posterior distribution is the weighted average of the posterior distribution

for the parameter of interest under each model, where the weights are given by the

posterior model probabilities:

p̄(θ̃k|D) =
16∑

k=1
p(Hk|D)p(θ̃k|D, Hk). (11)

In particular, the model-averaged posterior distribution can be used to obtain point

estimates for a parameter of interest. If the parameter of interest is θ̃ = a, for instance, a

model-averaged posterior estimate â can be obtained by computing the weighted average of

the posterior mean âk under each model of the 16 models, where the weights are again the

models’ posterior probability:

â =
16∑

k=1
âkp(Hk|D). (12)

A credible interval can be computed based on the quantiles of the model-averaged posterior

distribution.
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In practice, the marginal likelihoods of the models as well as the posterior

distributions of the parameters under each model are not available in closed form. Instead,

posterior samples obtained through MCMC methods are used to approximate the marginal

model likelihoods and the posterior parameter distributions under each candidate model.

In the remainder of this work we will illustrate how the hierarchical mixed modelling and

BMA methods discussed above can be implemented in practice. To this end we will

reanalyse the data from Dutilh et al.’s (2019) study.

Real Data Analysis

We carried out our analysis of Dutilh et al.’s (2019) data in two steps. In a first step

we applied Bayesian model averaging in combination with mixed-effect diffusion modeling

to identify which cognitive processes had been manipulated in each experimental condition

of Dutilh et al.’s study. In the second step of our analysis we conducted a simulation study

to test whether our Bayesian model averaging approach could correctly identify the

putative selective-influence manipulations. We begin by describing our re-analysis of Dutilh

et al.’s data.

Methods

Data

Dutilh et al. (2019) conducted a collaborative blinded selective influence study.

They collected data from twenty students performing a binary

random-dot-motion-direction classification task in which speed-accuracy emphasis

instructions (instruction), frequency of left and right motion directions (bias), and motion

coherence (difficulty) were varied between blocks. The speed-accuracy instructions aimed

to selectively manipulate participants’ response caution. The frequency manipulation

aimed to selectively manipulate participants’ response bias, and the varying motion

coherence aimed to selectively manipulate participants’ rate of information processing.



DIFFUSION MODEL BAYES FACTORS 28

Data from different experimental blocks were subsequently combined to create fourteen

different data sets and collaborators were asked to use evidence-accumulation models to

infer which combination of putative selective-influence had been manipulated between the

experimental blocks that comprised the fourteen data sets. Our analysis was based on this

data after removing trials with RTs less than 0.25s (0.6% of responses, see Smith and

Lilburn (2020) for a similar fast-guess exclusion criterion).

Dutilh et al. (2019) report extensive statistical analyses on their behavioral data,

which we summarize briefly here. A Bayesian ANOVA on the arcsine-transformed accuracy

data showed that participants responded more accurately under accuracy vs. speed

instructions, and in the easy vs. hard condition, while the bias manipulation did not affect

response accuracy. A Bayesian ANOVA on the mean RTs showed that participants

responded faster under speed vs. accuracy instructions, and in the easy vs. hard condition,

while the bias manipulation did not affect mean RTs. Moreover, Dutilh et al. computed the

mean response criterion from signal detection analysis based on the proportions of hits and

false alarms for each data set. A Bayesian ANOVA showed that the response criterion was

affected by the bias manipulation under speed instructions but not under accuracy

instructions. Taken together, their analyses indicated that the experimental manipulations

had the desired effects on participants’ behavior and that the effects of the manipulations

were of sufficient size to be detectable by the DDM.

Table 2 shows the experimental manipulations and descriptive statics for the

fourteen data sets used in Dutilh et al.’s study. Response accuracy was relatively high but

well below ceiling in nearly all data sets, which means that sufficient incorrect responses

were available for the estimation of the DDM parameters. Moreover, the RT quantiles

indicate that RT distributions had the typical right-skewed shape with a long right tail

(i.e., the 10% quantile was much closer to the 50% quantile than the 90% quantile), which

makes the data amenable to modeling with the DDM (Ratcliff & McKoon, 2008).
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Data format for DMC. We used the DMC software package for R (Heathcote

et al., 2019) to fit the mixed-effects DDMs to the data. The DMC functions require all of

the data to be in a long data frame of 7 columns, with each of these columns requiring a

specific aspect of the data, a specific column name, and a specific naming convention for

the data itself. Each row should be the data from a single trial, meaning the total number

of rows in the data frame should be subjects × trials (assuming that all subject completed

the same number of trials).

The columns of the data frame should have the following format. The first column

should be labeled “s”, and be an R data type factor containing the subject numbers for

each participant, reflected as integers labeled from 1 to the total number of participants.

The second column should be labeled “S”, and be a factor containing the stimulus identity

for each trial, reflected by the labels of “s1” for one stimulus and “s2” for the other

stimulus. The third column should be labeled “F”, and be a factor containing the condition

identity for each trial, reflected by the labels of “f1” for one condition and “f2” for the

other condition. The fourth column should be labeled “R”, and be a factor containing the

response identity for each trial, reflected by the labels of “r1” for one response and “r2” for

the other response, where r1/r2 would lead to a correct response for stimulus s1/s2,

respectively. The fifth column should be labeled “RT”, and be numeric values
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Table 2

Descriptive statistics for the 14 data sets from Dutilh et al. (2019).

Data Set Condition Manipulation Mean Accuracy Mean RT Quantile (s)

Difficulty Instruction Bias 0.1 0.5 0.9

1
A hard speed no bias 0.75 0.37 0.49 0.7

B hard speed no bias 0.74 0.38 0.49 0.69

2
A hard speed no bias 0.96 0.48 0.6 0.83

B easy speed no bias 0.74 0.37 0.6 0.69

3
A hard speed no bias 0.86 0.37 0.48 0.63

B hard accuracy no bias 0.86 0.5 0.48 1.15

4
A hard speed no bias 0.74 0.37 0.49 0.69

B hard speed bias 0.85 0.5 0.49 1.13

5
A hard speed no bias 0.95 0.48 0.6 0.84

B easy accuracy no bias 0.74 0.38 0.6 0.69

6
A hard speed no bias 0.84 0.36 0.47 0.62

B easy speed bias 0.86 0.49 0.47 1.05

7
A hard speed no bias 0.74 0.38 0.51 0.69

B hard accuracy bias 0.86 0.5 0.51 1.12

8
A easy speed no bias 0.86 0.5 0.68 1.13

B hard accuracy no bias 0.84 0.36 0.68 0.62

9
A easy speed no bias 0.74 0.37 0.49 0.69

B hard speed bias 0.86 0.37 0.49 0.64

10
A hard accuracy no bias 0.75 0.37 0.49 0.7

B hard speed bias 0.74 0.37 0.49 0.69

11
A easy speed no bias 0.73 0.37 0.49 0.68

B hard accuracy bias 0.86 0.49 0.49 1.04

12
A hard accuracy no bias 0.74 0.38 0.5 0.69

B easy speed bias 0.84 0.36 0.5 0.62

13
A hard speed bias 0.75 0.36 0.49 0.69

B easy accuracy no bias 0.84 0.36 0.49 0.62

14
A hard speed no bias 0.95 0.47 0.59 0.82

B easy accuracy bias 0.75 0.37 0.59 0.69
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corresponding to the response time in seconds for each trial. The sixth and seventh

columns, which should be labeled “Ff1” and “Ff2” respectively, are dummy-coded versions

of the third “F” column used to define the effects. Specifically, the sixth column, “Ff1”,

should have a numeric value of 1 in all cases where the trial is from condition “f1”, and a

numeric value of 0 in all cases where the trial is from the condition “f2”. The seventh

column, “Ff2”, should have a numeric value of 0 in all cases where the trial is from

condition “f1”, and a numeric value of 1 in all cases where the trial is from the condition

“f2”.

Modeling

We applied Bayesian model averaging in combination with mixed-effect diffusion

modeling to identify which cognitive processes had been manipulated in each experimental

condition of Dutilh et al.’s study. Each experimental condition of the study targeted a

subset of the four cognitive processes that are represented by the four core DDM

parameters. We therefore implemented sixteen different hierarchical DDMs (listed in Table

1), one for each possible combination of targeted cognitive processes (including no effect of

any manipulation). These models allowed the DDM parameters that correspond to the

targeted cognitive process to vary between experimental conditions, while all other

parameters were held constant across experimental conditions. We fit these sixteen models

to each of the fourteen data sets, estimated the marginal likelihood of each model, and

computed the posterior inclusion probability for each of the four DDM parameters.

Model specification

We specified our mixed-effect DDMs at two levels. Let C be the number of

experimental conditions, P the number of participants and T the number of trials in each

experimental condition. We denote the joint DDM likelihood of response times and

decisions by DDM(a, v, t0, z, sv, sz, st0) (i.e., we avoid having to differentiate between the

densities f±(a, v, t0, x0, sv, sz, st0) for correct and incorrect responses and use the
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parameterization in terms of the relative starting point z), where the model parameters

a, v, t0, z, sv, sz, st0 are mean boundary separation, drift rate, non-decision time, relative

starting point, and across-trial variability in drift rate, relative starting point, and

non-decision time, respectively.4 At the trial level, we assumed that the response time

RTc,p,t and decision dc,p,t for trial t of participant p performing experimental condition c is

distributed as:

(RTc,p,t, dc,p,t) ∼ DDM(ac,p, vc,p, t0c,p , zc,p, svp , szp , st0). (13)

As can be seen, we assumed that the across-trial parameters sv and sz were constant across

experimental conditions as large amounts of data are required to estimate these parameters

(Boehm, Annis, et al., 2018). Moreover, we set st0 = 0 as obtaining convergence of MCMC

chains for this parameter is notoriously slow.

To specify the participant level of our model, we used a probit-transformed

version—z̃ and s̃z—of the z and sz parameters, respectively, and log-transformed

versions—ã, t̃t0 and s̃v—of the a, t0, and sv parameters, respectively, which have support

on the entire real line. We modeled the seven DDM parameters as being independent

normally distributed and imposed random participant effects. In addition, we assumed

fixed condition effects on the four main DDM parameters, a, v, t0, z, whereas the

across-trial parameters were only assigned a fixed intercept. Although our implementation

supports estimation of non-decision time variability, we set st0 = 0 in all models to reduce

the already considerable computing times for our model fits.

Fixed condition and random participant effects. We followed Rouder et al.

(2012) for the specification of the random and fixed effects parts of the model. If XC is the

(P · T ) × C design matrix for the effect of experimental condition, we computed the

4 The relative starting point parameters are restricted to the unit interval. The mean relative starting

point is z = x0/a, where x0 is the absolute starting point. To ensure that the uniform distribution from

which the absolute starting point is sampled on each trial does not exceed the interval [0, a], its range is

defined as sz × 2 × min{x0, a − x0}.
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(P · T ) × (C − 1) design matrix for the corresponding fixed effect of experimental condition,

X∗
C , using the matrix of orthonormal contrasts QC . That is, we computed X∗

C = XCQC ,

where QC is the matrix of eigenvectors of ΣC = IC − 1
C

JC , IC is the C × C identity matrix,

and JC is the C × C matrix of with all entries equal to 1 (see Equation (13) in Rouder

et al. (2012)). Using the matrix X∗
C instead of the full design matrix XC ensures that the

fixed condition effects sum to zero. For specificity, the experimental design we analyze

below was fully balanced, meaning that every one of the P persons completed T trials in

each of the C = 2 experimental conditions. Then

Σ2 =

 1
2 −1

2

−1
2

1
2

 , and Q2 =

 1√
2

− 1√
2

 . (14)

is the single eigenvector corresponding to the non-zero eigenvalue 1. The full design matrix

is

XC =



1 0

1 0
... ...

0 1

0 1
... ...





block of 2T rows is repeated P times, (15)

and the corresponding design matrix for the fixed effects is

X∗
C = XCQ2 =



1√
2

1√
2
...

− 1√
2

− 1√
2

...



. (16)

The random person effects were modeled using the full design matrix because no constraint

is imposed that the random effects should sum to zero.
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The linear model for the four main DDM parameters was:

θc,p ∼ N (µθ + σres θ((XP )·,c,p · αααθ + (X∗
C)·,c,p · βββθ), σres θ) , (17)

where θ ∈ {ã, v, t̃0, z̃}, (X·)·, c p denotes the row of the design matrix corresponding to

person p in condition c, and αααθ and βββθ denote the vectors of P and C − 1 standardized

effect sizes, respectively. Moreover, µθ denotes the intercept term for the model parameter

vector θ, and σres θ denotes its residual variance. For the two across-trial variability

parameters sz and sv, the participant-level model was:

θp ∼ N (µθ, σres θ) . (18)

Finally, we assumed the priors for the vectors of standardized condition effects had

multivariate Cauchy distributions. That is, the prior distribution for the fixed condition

effects was specified as:

βββθ ∼ CauchyC (000, rC,θI) , (19)

where CauchyC denotes the C-dimensional Cauchy distribution, 000 is a location vector with

C entries, I is the C × C identity scale matrix for the multivariate Cauchy distribution and

rC, θ is the scaling factor for the fixed condition effects. For the standardized effect sizes for

the random participant effects we assumed a multivariate normal distribution:

αααθ ∼ NP (000, rP,θI) , (20)

where NP denotes the P -dimensional normal distribution, and rP,θ is the scaling factor for

the random participant effects. The latter choice of prior distribution, which deviates from

Rouder et al.’s (2012) approach, was made for two reasons. First, because the random

subject effects were not the target of our statistical inference, we considered normal priors

to be sufficiently non-informative to not affect our inferences about the fixed condition

effects. Second, the heavy tails of the Cauchy distribution can slow convergence of MCMC

posterior sampling considerably. We assigned weakly informative truncated normal priors



DIFFUSION MODEL BAYES FACTORS 35

to the residual standard deviations,

σres θ ∼ N (µσ θ, σσ θ) [0, ∞), (21)

where [0, ∞) indicates truncation to the positive real line. Our use of informative priors for

the residual standard deviations, instead of the improper priors suggested by Rouder et al.

(2012), was due to the need to approximate the marginal model likelihoods by sampling.

Rouder et al. consider single-model comparisons of linear models against a null model, in

which case the improper prior drops out of the computation, and the Bayes factor is

obtained by low-dimensional numerical integration. In contrast, the marginal likelihoods

required for the comparison of several highly nonlinear models we consider here makes it

necessary to approximate high-dimensional integrals by MCMC-sampling, which renders

the use of improper priors impractical.

Construction of informative priors for intercepts. As discussed earlier, the

cognitive-process interpretation of the parameters of a cognitive model means that

informative priors should be used for the intercept terms in our model. Here, we assigned

informative normal priors to the intercepts for the DDM parameters:

µθ ∼ N (µµ θ, σµ θ) . (22)

The values of the hyperparameters for µσ θ and σσ θ were chosen to be weakly informative

whereas the values of the hyperparameters for µµ θ and σσ θ were informed by Matzke and

Wagenmakers’s (2009) survey of DDM parameter estimates. We computed the sample

mean M̄θ and sample standard deviation S̄θ of the parameter estimates in Matzke and

Wagenmakers’s survey (using the relative values of z and sz) and applied appropriate

transformations to specify the prior distribution with support on the entire real line. For v

no transformation was required. For θ ∈ {a, t0, sv} we used µθ = log(M̄θ/(S̄2
θ /M̄2

θ + 1)1/2)

and σθ =
(
log(S̄2

θ /M̄2
θ + 1)

)1/2
. For θ = z, we approximated the probit transformation by

sampling and truncation so that the prior distributions would yield values in the range

[0, 1]. To this end, we generated 10,000 samples from a normal distribution with mean M̄z
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and standard deviation S̄z, removed all samples that fell outside [0, 1], applied the probit

transformation to the truncated samples and used the mean and standard deviation of

these truncated samples to parameterize the prior distribution. For θ = sz we followed the

same procedure to determine the prior mean but used 1.1 times the standard deviation of

the truncated samples for z to compensate for the reduction in the variance of the samples

introduced by the truncation. The values of all prior means and standard deviations were

rounded to two decimals. The values of the hyperparameters rC,θ, rP,θ, µσ θ, σσ θ, µµ θ, σµ θ

are given in Table 3.

Table 3

Hyperparameter values for the hierarchical DDM parameters, transformed to the real line.

Parameter rC,θ rP,θ µσ θ σσ θ µµ θ σµ θ

ã 1 0.5 0.36 0.15 0.16 1

v 1 1 1.27 0.61 2.23 1

t̃0 1 0.5 0.23 0.13 -0.87 1

z̃ 1 0.25 0.59 0.05 0 1

s̃v – 0.5 0.48 1.06 0.17 1

s̃z – 0.25 0.65 1.15 -0.52 1

Posterior sampling

We implemented our hierarchical DDMs through a modification of the DMC R

software (Heathcote et al., 2019). For each model we ran the automatic convergence

algorithm implemented within the DMC software. We obtained 500 posterior samples from

3k chains (where k is the number of participant-level free parameters in the model) to

assess convergence after the automatic convergence algorithm, followed by 25,000 total

samples across all chains to estimate the marginal likelihood. The Gelman-Rubin statistic

R̂ (Gelman & Rubin, 1992) was smaller than 1.1 for all chains, which indicates acceptable
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convergence.

Estimation of marginal likelihoods

We used the bridge sampling estimator (Bennett, 1976; Meng & Wong, 1996)

implemented in DMC (Gronau, Heathcote, et al., 2019) to compute the marginal likelihood

of each of our sixteen candidate models for a given data set. Our estimates of the marginal

likelihood were based on 25,000 posterior samples. We set the maximum number of

iterations for the iterative scheme to 500 and used a multivariate normal proposal

distribution that matched the first three moments of the posterior samples.

Results

For our reanalysis of Dutilh et al.’s (2019) data we computed the posterior

probability for each of the 16 candidate models and inclusion Bayes factor for each of the

four core DDM parameters for each data set. For the computation of the posterior

probabilities we assigned a uniform prior distribution to the models, that is, each model

had prior probability p(Hk) = 1
16 .

As a first step, we verified the numerical stability of the estimated log-marginal

likelihoods on which the computation of the posterior model probabilities and the inclusion

Bayes factors are based. The variability of the bridge-sampling estimator decreases as the

number of posterior samples increases. To assess whether the number of posterior samples

used in our analyses yielded a sufficiently stable bridge-sampling estimator, we compared

the estimated log-marginal likelihood at different numbers of posterior samples. Due to the

considerable computational costs, we limited this analysis to a single data set.

Figure 2 shows the change in the estimated log-marginal likelihood as the number of

posterior samples increases for data set 8 from Dutilh et al. (2019). Numerical instabilities

of a given size have a larger impact on the inclusion Bayes factor when the estimated

log-marginal likelihood is small compared to when it is large. Therefore, the figure shows

the percentage change in estimated log-marginal likelihood relative to the estimated
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log-marginal likelihood at the largest posterior samples size. Specifically, the figure shows

the deviation of the log-marginal likelihood estimated at 75,000 and 50,000 samples from

the estimate at 25,000 samples, divided by the value at 75,000 samples. Each line shows

the percentage change for one of the 16 models. As can be seen, for fifteen of the models

the log-marginal likelihood did not change by more than 0.1% of its initial value. The

largest change was 0.7%, which was observed for the model that allowed all core DDM

parameters to differ between conditions except for a while there was overwhelming

evidence for a condition effect on a in this data set (set 8, see below). Hence, this larger

change in the log-marginal likelihood was most likely due to the maximal misspecification.

Taken together, these results indicate that 25,000 posterior samples are sufficient to obtain

stable estimates of the log-marginal likelihood.
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Figure 2

Stability of the bridge sampling estimate of the marginal likelihood. Lines show the

percentage change in the estimated marginal likelihood of the 16 candidate models for data

from Dutilh et al. (2019) (data set 8) at different numbers of posterior samples.

Figure 3 shows the posterior probability for each of the 16 candidate models (bars)

for each of Dutilh et al.’s (2019) 14 data sets (the exact numerical values are presented in

Table A1). Models are ordered by decreasing posterior probability. The vertical string

below each bar indicates which DDM parameters were free to vary between conditions in
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the corresponding model. A ‘+’ indicates that the corresponding parameter was free to

vary between conditions, a space indicates that the parameter was fixed across conditions.

The blue bar in each panel highlights the model that corresponds Dutilh et al.’s assumed

selective influence manipulation for the data set, which we call the target set. The outline

bar highlights the model that corresponds to the model predicted by the results of Voss

et al. (2004) and Rae et al. (2014), which we refer to as the refined target set.

As can be seen, the target model never had the highest posterior probability,

whereas the refined target model had the highest posterior probability of 9/14 cases. The

five exceptions all involved an additional t0 term, two an extra a term and one an extra z

term. These results suggest that the misspecification of the DDM may have had a wider

influence than suggested by Smith and Lilburn’s (2020) results, especially in the case of

data set 10 where there was no manipulation of any kind, yet both t0 and z effects were

supported. A final possibility, that we investigate further in the simulation study, is that

our methods are not capable of reliably identifying the data-generating model.

Figure 4 shows the log-inclusion Bayes factors for the four core DDM parameters for

each of Dutilh et al.’s 14 data sets (the exact numerical values are presented in Table A2).

Blue bars indicate model parameters that were the target of the selective influence

manipulations. Importantly, for all data sets the inclusion Bayes factors indicate evidence

for all model parameters that were targeted by the selective influence manipulations.

However, support for z in data data sets 11 and 14 is considerably weaker than for other

parameters (BFinc z = 10.22 and BFinc z = 1.08, respectively) and in general it is always

relatively weak. Manipulations of response caution and the rate of information processing,

on the other hand, resulted in strong evidence for a difference in the a and v parameter,
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Figure 3

Estimated posterior model probabilities for 14 data sets from Dutilh et al. (2019). Each bar

shows the log-marginal likelihood for one of the 16 candidate models. The symbol ‘+’ below

each bar indicates whether the model allowed the corresponding core DDM parameter to

vary between experimental conditions. Blue bars indicate the model that corresponds to the

selective influence manipulation. Outlines indicate models that were included in the refined

set.
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Figure 4

Log-inclusion Bayes factors for 14 data sets from Dutilh et al. (2019). Blue bars indicate

parameters that were target of the selective influence manipulation.
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respectively. In all data sets except data sets 2 and 5, the inclusion Bayes factors also

indicated strong evidence for an effect on t0 while this parameter was not targeted by any of

the experimental manipulations. The additional effects in the refined set (i.e., t0 effects in

data sets 2-8, 11 and 14 and v effects in data sets 4, 7 and 11) were supported in every case.

As pointed out earlier, the random dot task may cause violations of the DDM’s

selective influence assumptions, which can result in biased parameter estimates. Therefore,

we do not consider the application of BMA to the DDM parameter estimates for Dutilh

et al.’s (2019) data, but return to this issue in the simulation study that we report next.

Simulations

In the second step of our analysis we conducted a simulation study to test whether

our Bayesian model averaging approach could correctly identify the putative

selective-influence manipulations. To this end we generated sixteen data sets from the

mixed-effect DDM, one for each possible combination of cognitive processes that might be

manipulated. As in our real data analysis, we implemented sixteen different hierarchical

DDMs (listed in Table 1), one for each possible combination of targeted cognitive

processes. We subsequently fit these sixteen models to each of the fourteen data sets,

estimated the marginal likelihood of each model, and computed the posterior inclusion

probability for each of the four DDM parameters.

Methods

Simulated Data

The simulated data matched the structure of the data in Dutilh et al.’s study. Each

data set consisted of 20 simulated participants performing 200 trials for each of two

experimental conditions. The generating population-level parameters for the intercepts

(µa = 1.37, µv = 1.62, µz = 0.5, µt0 = 0.27, µsv = 0.24, µsz = 0.09) and residual standard

deviations on the transformed (i.e., unbounded) scale (σa = .15, σv = 0.61, σz = .05,
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σt0 = 0.13, σsz = 1.15, σsv = 1.06) were based on the estimated population-level values for

Dutilh et al.’s data. We also used the standard deviations of the posterior estimates (i.e.,

posterior means) of the participant effects αθ (again on the unbounded scale) to generate

participant random effects (a = 0.16, v = 0.31, z = 0.08, sz = 0.08, sv = 0.15, t0 = 0.18).

For the core DDM parameters a, v, z, t0 the effect sizes were based on the average effect size

estimated from Dutilh et al.’s data in manipulations where the parameter was assumed to

vary between conditions, where our assumptions differed from Dutilh et al.’s based on the

following considerations.

Voss et al. (2004) found that speed vs. accuracy emphasis can affect t0, and Rae

et al. (2014) found that it can affect both t0 and v in perceptual, lexical, and recognition

memory choices. Further, Smith and Lilburn (2020) suggested that some perceptual

properties of the random dot task used in Dutilh et al.’s (2019) study do not comply with

the DDM’s process assumptions. The DDM assumes that stimulus encoding is completed

before evidence accumulation begins. This assumption is appropriate for experimental tasks

where the encoding time of the stimulus is short compared to the time period over which

information is integrated to reach a decision. However, psychophysical studies suggest that

the encoding time in the random dot task is in the range of 400ms, which is relatively long

compared to the duration of the decision process, and that evidence accumulation begins

before encoding is complete, so the DDM is driven by a drift rate that changes during the

decision. Smith and Lilburn suggest further that this model misspecification might lead to

violations of the selective influence assumptions for non-decision time, non-decision time

variability, and drift rate. As discussed further below, this was particularly borne out by

Dutilh et al.’s (2019) results, which in most cases identified a non-decision time effect where

none was present. We note, however, that Dutilh et al.’s expectation that the DDM is

appropriate is very well justified on the basis of past practice, as it has been used

extensively for modeling choices in the random dot-motion task (e.g., Boehm et al., 2014;

Mulder et al., 2007; Palmer et al., 2005; Ratcliff & McKoon, 2008; van Vugt et al., 2012).
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Based on these findings we assumed that speed vs. accuracy emphasis instructions

affected the v and t0 parameters as well as the a parameter when we constructed our

simulation. That is, the effect size we used for (1) v = 0.98 was based on the average of the

estimated effect sizes under manipulations of coherence and/or emphasis, (2) a = 1.62 and

t0 = 0.72 were both based on the average estimated effect sizes for the emphasis

manipulations, and (3) z = 0.82 was based on the average estimated effect sizes for the

frequency manipulations (as originally assumed by Dutilh et al., 2019). We note, however,

that Smith and Lilburn’s (2020) findings indicate that it is possible that there are even

more widespread effects of the misspecification.

Model specification

We used the same model specification as in the real data analysis. That is, we

specified our mixed-effect DDMs at two levels. The fixed condition and random participant

effects were modeled as before, using the sum-to-zero constraint for fixed effects suggested

by Rouder et al. (2012). We assigned the vectors of standardized condition effects

multivariate Cauchy distributions. Moreover, we assigned informative normal priors to the

intercept terms on the transformed scale, with the values of the hyperparameters given in

Table 3.

Posterior sampling

We performed posterior sampling in the same way as in our real data analysis, using

the DMC R software (Heathcote et al., 2019). For each model we ran the automatic

convergence algorithm implemented within the DMC software. We obtained 500 posterior

samples from 3k chains (where k is the number of participant-level free parameters in the

model) to assess convergence after the automatic convergence algorithm, followed by 25,000

total samples across all chains to estimate the marginal likelihood. The Gelman-Rubin

statistic R̂ (Gelman & Rubin, 1992) was smaller than 1.1 for all chains, which indicates

acceptable convergence.
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Estimation of marginal likelihoods

We computed the marginal likelihoods in the same way as in our real data analysis,

using the bridge sampling estimator implemented in DMC (Gronau, Heathcote, et al.,

2019). Our estimates of the marginal likelihood were based on 25,000 posterior samples.

We set the maximum number of iterations for the iterative scheme to 500 and used a

multivariate normal proposal distribution that matched the first three moments of the

posterior samples.

Results

Figure 5 shows the posterior probabilities for the 16 candidate models for each of the

16 simulated data sets (the exact numerical values are presented in Table A3). As can be

seen, the estimated posterior probability was highest for the generating model in all data

sets except data set G. In data set G the model with the highest posterior probability did

not include an effect on z, but the generating model did have the second-highest posterior

probability. These results make it clear that the differences between the models in the

refined set and those selected by our methods are likely due to misspecification of the DDM

for Dutilh et al.’s (2019) data. In particular, there was no problem determining when data

were generated without a t0 effect, and no problems with additional a or z effects being

identified as was the case for Dutilh et al.’s data over and above those in the refined set.
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Figure 5

Estimated posterior probabilities for 16 simulated data sets in which different sets of core

DDM parameters differed between conditions. Each bar shows the log-marginal likelihood

for one of the 16 candidate models. The symbol + below each bar indicates whether the

model allowed the corresponding core DDM parameter to vary between experimental

conditions. Blue bars indicate the data generating model.
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Figure 6 shows the log-inclusion Bayes factors for the four core DDM parameters for

the 16 simulated data sets (the exact numerical values are presented in Table A4). They

support the inclusion of all of the parameters that differed between conditions in the

generating model. However, in the data sets where the z parameter was manipulated (data

sets E - H and M - P), the inclusion Bayes factors only provide weak support. The

evidence against the inclusion of parameters that were not manipulated is generally much

weaker than the evidence for the inclusion of parameters that were manipulated, which is a

general property of Bayes factors where the point of test falls inside the prior distribution

(see Bahadur & Bickel, 2009; Jeffreys, 1939; Johnson, 2010). However, with the exception

of z, the evidence was usually still overwhelming (i.e., < −20), which can be best seen with

data set A because of the smaller range of values displayed.

Finally, we illustrate the utility of BMA parameter estimates. Figure 7 shows effect

estimates (β) for the the four main DDM parameters produced by the 16 models fit to data

set O, where true effects were present for all but a. Gray bars show the individual model

effect estimates, the shaded bar shows the model-averaged estimate, and the orange bar

shows the generating value (for βa the latter two are zero). As can be seen, parameter

estimates varied considerably between the individual models. For instance, models that

allowed non-decision time but not boundary separation to vary between conditions

(indicated by the leftmost brace) produced non-decision time effect estimates close to the

true effect. In contrast, models that allowed both non-decision time and boundary

separation to vary between conditions (indicated by the rightmost brace), severely

underestimated the non-decision time condition effect. Hence, whereas model-averaged

parameter estimates (shaded bars) are close to the true value for all four parameters, if

researchers base parameter estimation on a single model, selecting the wrong model can

considerably bias parameter estimates.

In most of our simulations, model uncertainty was relatively low, which is reflected

by the generating model nearly always having the highest posterior probability. Therefore,
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Figure 6

Log-inclusion Bayes factors for 16 simulated data sets. Blue bars indicate parameters that

were varied between conditions in the data generating model.

the model-averaged parameter estimates were similar to those obtained from the generating

model. However, the results for data set G illustrate the dangers of basing parameter

estimates on a single model that has the highest posterior probability but is not the

generating model. The estimated effect sizes for this data set for the 16 models are shown

in Figure 8. The generating model (indicated by the blue bar at the bottom) included

non-zero effects for v and z but the model with the highest posterior probability (indicated

by the green bar at the bottom) only included an effect in v. A researcher who bases

parameter estimates only on the model with the highest posterior probability would

conclude that the effect on the z parameter is zero. In contrast, the model-averaged
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Figure 7

Estimates of the condition effects (βθ) on the core DDM parameters for simulated data set

O. The blue bar at the bottom indicates the generating model. The BMA estimate for βa is

numerically indistinguishable from 0 and is therefore not visible.

parameter estimate combines the estimates from all models, and, in particular, includes the

non-zero estimate for βz obtained from the generating model (see shaded bar at the right).

Hence, the non-zero model-averaged estimate is closer to the generating value.
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Estimates of the condition effects (βθ) on the core DDM parameters for simulated data set

G. The blue bar at the bottom indicates the generating model, the green bar indicates the

model with the highest posterior probability. The BMA estimate for βa is numerically

indistinguishable from 0 and is therefore not visible.
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Discussion

In the present study we illustrated how Bayesian hierarchical mixed modeling and

Bayesian model averaging can be combined to obtain a coherent approach for estimation

and inference for cognitive models. Many popular cognitive models are non-linear with

highly correlated parameters. As a consequence, fitting cognitive models often requires

large amounts of data per participant and the “sloppiness” of these models introduces a

high level of model uncertainty. Our combined approach of hierarchical mixed modeling

and Bayesian model averaging addresses both of these problems in a coherent manner. By

treating individual differences in DDM parameters as random effects and differences

between experimental conditions as fixed effects, all available data can be accommodated

in a single hierarchical model. This increases the efficiency of our models compared to

existing hierarchical DDM implementations that ignore within-person correlations of DDM

parameters. Moreover, the use of an effect-size parameterization and default priors in our

models simplifies the interpretation of differences in DDM parameters between

experimental conditions and supports the integration of results across studies. Finally,

basing inference on inclusion Bayes factors provides a coherent approach to inference under

model uncertainty while penalizing model complexity in a principled way (Myung & Pitt,

1997). Inclusion Bayes factors weigh all possible fixed-effects configurations by their a

posterior plausibility, and thus avoid giving too much weight to individual models that are

subject to sampling variation.

As an illustrative example, we re-analyzed the data from Dutilh et al.’s (2019)

blinded collaborative study, which sought to determine how well researchers could identify

experimental manipulations that putatively selectively influenced only one DDM

parameter. In line with the results reported by the collaborators in Dutilh et al.’s study,

our inclusion Bayes factors indicated strong evidence for an effect on boundary separation

and drift rate when these were the target of the selective influence manipulations. For

experimental manipulations that were aimed at starting point the inclusion Bayes factors
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indicated considerably weaker but generally positive evidence for a starting point effect.

Finally, in 12 of the 14 experiments the inclusion Bayes factors also indicated moderate to

strong evidence for the inclusion of a non-decision time effect while this parameter was not

targeted by any of the experimental manipulations. In 9 of these cases these results are

likely due to known effects of a speed vs. accuracy emphasis manipulation on non-decision

time (Rae et al., 2014; Voss et al., 2004), as were three cases where drift rates were also

affected by this manipulation. The remaining cases of non-decision effects, and a few cases

of apparent non-selective influence related to boundary separation and starting point

effects, may be due to the dot-motion stimuli used in Dutilh et al.’s choice task. Although

this task is widely modeled by the DDM, Smith and Lilburn (2020) presented convincing

evidence that the DDM is misspecified for such stimuli.

An alternative possibility is that our method cannot reliably recover the true model

in Dutilh et al.’s (2019) design, perhaps because insufficient trials were performed by each

participant. To check this possibility we conducted a simulation study using the same

design. We generated data from the DDM for all possible combinations of manipulations of

the core model parameters. The inclusion Bayes factors indicated strong evidence for an

effect on boundary separation, drift rate and non-decision time when these varied between

conditions in the generating model. Similar to the empirical data, the evidence was

considerably weaker for a starting point effect but generally pointed towards the presence

of an effect. These results show that our method is able to accurately detect which core

DDM parameters are affected by experimental manipulations. The weaker evidence for

manipulations of starting point might be due to the probit transformation we applied to

the starting point, which might have shifted some of the prior mass of the heavy-tailed

Cauchy distribution away from 0, and thus given undue a priori plausibility to large effects.

An interesting result was that log-Bayes factors against an effect on a DDM

parameter were generally smaller in absolute value than log-Bayes factors for the presence

of an effect. The reason for this phenomenon is that a model in which the DDM parameter
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is fixed to be equal in both experimental conditions, the null model, is nested under the

corresponding model in which the DDM parameter may vary between conditions, the

alternative model. Specifically, the two models only differ in the prior distribution for the

effect size for the DDM parameter in question. In the null model the prior is a point-mass

at 0 while in the alternative model the prior is a Cauchy distribution centered at 0. This

means that data that are generated by the null model are also plausible under the

alternative model but not vice versa. As a consequence, the Bayes factor against an effect

on the DDM parameter grows more slowly as the sample size increases than the Bayes

factor for an effect (Bahadur & Bickel, 2009; Jeffreys, 1939; Johnson, 2010).

The mixed effects modeling approach taken in the present work can be further

generalized. The fixed and random effects structures in our hierarchical DDMs were based

on Dutilh et al.’s (2019) experimental setup with two factor levels. However, the Bayesian

mixed modeling framework on which our hierarchical DDMs were based can accommodate

more general multi-way ANOVA designs with more than two factor levels (Rouder et al.,

2012). Moreover, the mixed modeling framework can be extended to include continuous

covariates for ANCOVA and regression designs (Liang et al., 2008; Rouder & Morey, 2012).

Both of these extensions are easily implemented as additive terms in Equation (17),

although at present our software allows only a single factor with multiple levels.

The implementation of mixed effects modeling we propose here relies on default

priors for the mixed effects but requires the specification of informed priors for the

intercept terms so as to retain the cognitive process interpretation of the DDM parameters.

The informed priors used in the present work were based on a large survey of published

parameter estimates for the DDM. However, such surveys might not be readily available for

other cognitive models. In that case researchers will need to either conduct such a survey

themselves, or might even need to obtain a sufficiently large set of parameter estimates

first. At least for evidence-accumulation models, there are large numbers of published data

sets with sufficient numbers of trials per participant available so that reliable parameter
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estimates can be obtained by fitting the target model to each participant’s data

individually. Informed priors can then be obtained as described in the present work, by

fitting a suitable continuous distribution to the first and second moments of the empirical

distribution of parameter estimates. The resulting priors can subsequently be updated as

more parameter estimates from further studies become available.

A practical limitation of our method is its high computational costs. In order to

compute inclusion Bayes factors, we had to fit all sixteen possible configurations of fixed

effects structures to the experimental data and compute the marginal likelihood for each

model and data set. Fitting the 16 models to Dutilh et al.’s (2019) data, for instance, took

between 19 and 27 hours per model. A first way to decrease the associated computational

costs is through the selection of more suitable priors for the mean DDM parameters. Our

current implementation specifies an informative prior distribution separately for each DDM

parameter and thus ignores the covariance structure among the parameters. As a

consequence, the posterior sampling algorithm might spend considerable time exploring

parameter combinations with a low likelihood. Including the covariance structure in the

prior distribution can increase sampling efficiency and the quality of parameter estimates

(Gunawan et al., 2020).

A second way to decrease computational costs is through the choice of a more

efficient sampling algorithm. Our current implementation first generates a large number of

posterior samples using differential evolution MCMC sampling (ter Braak, 2006; Turner

et al., 2013), and subsequently uses bridge sampling to compute the marginal likelihood

(Bennett, 1976; Meng & Wong, 1996). Recently developed sampling algorithms for the

Linear Ballistic Accumulator (Brown & Heathcote, 2008) model provide a more efficient,

integrated approach for parameter estimation and model selection that is amenable to a

high level of parallelization (Gunawan et al., 2020; Tran et al., 2020). Hence, adapting

these algorithms to the DDM might help further reduce the computational costs for the

computation of inclusion Bayes factors.
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A potential alternative to BMA is the use of regularization methods such as Lasso

(Gelman et al., 2013). Applying this approach to our mixed modeling framework, a single

hierarchical model with a maximal mixed effects structure is fit to the data. The priors in

the model are chosen in such a way that many model parameters (i.e., fixed and random

effects) are shrunk to near-zero values. Kang et al. (2022), for instance, suggest this

approach for their hierarchical DDM implementation in which a structural equation model

(instead of a mixed effects structure) is used to relate large neural data sets (e.g., the

BOLD response of several thousand voxels in fMRI measurements) to DDM parameters. If

sufficient data are available for all participants and trials, the regularization approach

yields similar results to BMA in the sense that the model-averaged parameter estimates for

parameters whose value is shrunk to a near-zero value by the Lasso would also be

dominated by a single model in which the corresponding parameter value is fixed to zero.

While the regularization approach is computationally more efficient than BMA, it suffers

from the same shortcoming as single-model inference and estimation; whereas in

model-averaging parameter estimates change continuously as more data become available,

regularization methods lead to abrupt changes in the estimated parameter values.

In summary, in the present work we showed how a mixed effects modeling

framework for the DDM can address several shortcomings of earlier hierarchical

implementations of the DDM. Our implementation allows researchers to appropriately

account for within-subjects correlations by means of additive random subjects effects. The

use of default priors in combination with an effect size parameterization simplifies the

comparison and integration of results across studies. Moreover, the implementation of our

models in the DMC software package allows researchers to readily compute inclusion Bayes

factors, and thus facilitates inference under model uncertainty. We believe that this

approach represents an advance over previous methods of simultaneously analyzing choice

and RT data (Heathcote et al., 2019; Van der Linden, 2007; Vandekerckhove et al., 2011;

Wiecki et al., 2013) and advances the development of a cognitively grounded psychometrics



DIFFUSION MODEL BAYES FACTORS 56

(Batchelder, 1998; Riefer et al., 2002).
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Appendix A: Exact analysis results

The tables in this section show the exact numerical values for the posterior

probabilities (Tables A1 and A3) and inclusion Bayes factors (Tables A2 and A4) for the

analysis of Dutilh et al.’s (2019) and our simulated data. Note that the posterior

probability for some models (last row in Table A1 and next-to-last row in Table A3) is

shown as 1 for some data sets due to rounding. For data set 3 in Table A1, for instance,

the posterior probability for the maximal model differs from 1 only in the tenth decimal, so

its exact decimal value (to 10 digits) 0.9999999998 is rounded to 1.



DIFFUSION MODEL BAYES FACTORS 58

T
ab

le
A

1

Es
tim

at
ed

po
st

er
io

r
m

od
el

pr
ob

ab
ili

tie
s

fo
r

14
da

ta
se

ts
fro

m
D

ut
ilh

et
al

.(
20

19
).

M
od

el
D

at
a

Se
t

a
v

z
t 0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

9.
53

·1
0−

55
4.

78
·1

0−
58

1
3.

60
·1

0−
60

4
5.

97
·1

0−
26

3
3.

16
·1

0−
22

5
3.

37
·1

0−
29

5
3.

19
·1

0−
24

5
1.

20
·1

0−
19

4
1.

86
·1

0−
4

6.
76

·1
0−

13
1.

16
·1

0−
22

8
1.

19
·1

0−
11

5.
35

·1
0−

89
1.

47
·1

0−
22

6

+
1.

40
·1

0−
9

1.
55

·1
0−

49
2

6.
80

·1
0−

23
3

2.
78

·1
0−

15
4

1.
61

·1
0−

45
1

2.
17

·1
0−

15
8

6.
15

·1
0−

17
5

4.
51

·1
0−

36
4

4.
56

·1
0−

80
3.

85
·1

0−
1

6.
83

·1
0−

12
5

2.
49

·1
0−

79
1.

25
·1

0−
73

1.
78

·1
0−

42
5

+
4.

65
·1

0−
48

4.
62

·1
0−

58
0

6.
07

·1
0−

59
0

2.
38

·1
0−

56
1

1.
29

·1
0−

50
0

1.
30

·1
0−

59
4

1.
50

·1
0−

51
7

2.
23

·1
0−

49
3

4.
57

·1
0−

10
0

1.
61

·1
0−

13
3.

28
·1

0−
52

6
5.

33
·1

0−
10

3
8.

57
·1

0−
90

7.
24

·1
0−

52
6

+
+

8.
00

·1
0−

1
6.

65
·1

0−
49

3
6.

57
·1

0−
22

2
1.

57
·1

0−
15

2
1.

50
·1

0−
42

8
3.

21
·1

0−
15

6
2.

67
·1

0−
15

6
4.

02
·1

0−
36

7
3.

29
·1

0−
75

6.
15

·1
0−

1
2.

11
·1

0−
11

9
1.

44
·1

0−
70

3.
81

·1
0−

74
1.

74
·1

0−
42

5

+
6.

58
·1

0−
60

2.
31

·1
0−

54
5

4.
31

·1
0−

38
7

1.
64

·1
0−

54
2

1.
06

·1
0−

48
8

1.
27

·1
0−

41
9

3.
08

·1
0−

52
7

1.
49

·1
0−

30
9

6.
94

·1
0−

49
5.

43
·1

0−
20

1.
21

·1
0−

52
2

6.
77

·1
0−

61
1.

25
·1

0−
32

2.
78

·1
0−

49
6

+
+

9.
17

·1
0−

13
2.

86
·1

0−
43

4
1.

72
·1

0−
13

1
2.

78
·1

0−
14

8
4.

61
·1

0−
39

7
5.

84
·1

0−
98

2.
16

·1
0−

16
6

8.
86

·1
0−

24
3

4.
00

·1
0−

15
3.

07
·1

0−
8

2.
14

·1
0−

12
3

4.
54

·1
0−

15
8.

02
·1

0−
1

2.
16

·1
0−

36
8

+
+

4.
13

·1
0−

53
1.

42
·1

0−
54

4
7.

27
·1

0−
37

3
4.

56
·1

0−
54

1
3.

38
·1

0−
46

4
1.

28
·1

0−
41

8
5.

37
·1

0−
49

9
5.

86
·1

0−
30

8
1.

75
·1

0−
44

7.
64

·1
0−

21
1.

72
·1

0−
52

0
1.

85
·1

0−
51

3.
08

·1
0−

33
9.

18
·1

0−
49

6

+
+

+
1.

27
·1

0−
4

8.
74

·1
0−

43
6

2.
62

·1
0−

11
9

1.
51

·1
0−

14
6

3.
01

·1
0−

37
5

2.
32

·1
0−

95
5.

82
·1

0−
14

8
8.

40
·1

0−
24

6
1.

24
·1

0−
9

2.
79

·1
0−

8
5.

89
·1

0−
11

8
1.

25
·1

0−
5

1.
98

·1
0−

1
5.

06
·1

0−
36

9

+
1.

39
·1

0−
57

6.
10

·1
0−

27
2

1.
86

·1
0−

16
4

1.
81

·1
0−

16
4

8.
48

·1
0−

26
1

2.
09

·1
0−

20
7

4.
36

·1
0−

18
1

4.
06

·1
0−

47
1.

34
·1

0−
10

5
3.

20
·1

0−
21

1.
48

·1
0−

19
6

3.
84

·1
0−

11
0

4.
14

·1
0−

91
5.

63
·1

0−
26

5

+
+

2.
57

·1
0−

10
1.

24
·1

0−
25

7
1.

75
·1

0−
51

1.
36

·1
0−

15
2.

63
·1

0−
24

0
1.

50
·1

0−
27

3.
36

·1
0−

30
3.

83
·1

0−
23

9.
47

·1
0−

80
1.

76
·1

0−
6

1.
53

·1
0−

20
1.

08
·1

0−
69

1.
14

·1
0−

68
1.

59
·1

0−
23

9

+
+

3.
40

·1
0−

50
4.

30
·1

0−
27

3
6.

89
·1

0−
15

5
2.

45
·1

0−
16

5
5.

80
·1

0−
24

5
7.

09
·1

0−
20

9
6.

47
·1

0−
16

8
1.

49
·1

0−
48

1.
05

·1
0−

10
0

1.
58

·1
0−

21
8.

47
·1

0−
19

8
7.

42
·1

0−
10

1
8.

29
·1

0−
92

9.
50

·1
0−

26
6

+
+

+
2.

00
·1

0−
1

4.
44

·1
0−

25
7

7.
43

·1
0−

42
5.

67
·1

0−
17

2.
25

·1
0−

22
6

6.
75

·1
0−

28
1.

03
·1

0−
18

1.
14

·1
0−

24
2.

60
·1

0−
74

1.
06

·1
0−

6
1.

87
·1

0−
19

3.
55

·1
0−

60
1.

97
·1

0−
69

1.
96

·1
0−

24
0

+
+

1.
68

·1
0−

61
4.

82
·1

0−
9

1.
73

·1
0−

12
7

3.
61

·1
0−

14
9

6.
37

·1
0−

29
4.

34
·1

0−
18

2
1.

34
·1

0−
16

0
3.

35
·1

0−
25

1.
29

·1
0−

32
4.

16
·1

0−
27

1.
68

·1
0−

17
7

4.
90

·1
0−

49
7.

98
·1

0−
24

1.
55

·1
0−

19

+
+

+
3.

25
·1

0−
14

8.
88

·1
0−

1
4.

71
·1

0−
11

9.
57

·1
0−

1
2.

19
·1

0−
14

4.
57

·1
0−

1
1.

50
·1

0−
11

9.
78

·1
0−

1
2.

71
·1

0−
7

1.
46

·1
0−

12
8.

91
·1

0−
2

2.
50

·1
0−

10
1.

29
·1

0−
5

4.
81

·1
0−

1

+
+

+
3.

63
·1

0−
54

5.
77

·1
0−

10
9.

43
·1

0−
11

7
4.

51
·1

0−
15

0
1.

87
·1

0−
12

1.
70

·1
0−

18
3

3.
02

·1
0−

14
8

1.
17

·1
0−

26
2.

62
·1

0−
26

1.
11

·1
0−

27
7.

38
·1

0−
17

8
1.

31
·1

0−
39

2.
37

·1
0−

24
1.

69
·1

0−
19

+
+

+
+

5.
88

·1
0−

6
1.

12
·1

0−
1

1
·1

00
4.

28
·1

0−
2

1
·1

00
5.

43
·1

0−
1

1
·1

00
2.

17
·1

0−
2

1
·1

00
5.

66
·1

0−
13

9.
11

·1
0−

1
1

·1
0−

1
3.

65
·1

0−
6

5.
19

·1
0−

1



DIFFUSION MODEL BAYES FACTORS 59

T
ab

le
A

2

Lo
g-

in
cl

us
io

n
Ba

ye
s

fa
ct

or
s

fo
r

14
da

ta
se

ts
fro

m
D

ut
ilh

et
al

.(
20

19
).

D
at

a
Se

t

Pa
ra

m
et

er
1

2
3

4
5

6
7

8
9

10
11

12
13

14

a
−

1.
39

99
8.

24
27

3.
04

33
5.

74
86

2.
37

21
7.

9
33

9.
02

55
7.

35
20

.5
1

−
12

.7
8

26
9.

9
11

.2
9

−
11

.0
1

84
6.

37

v
−

8.
93

59
0.

03
94

.7
34

.1
9

51
9.

57
61

.3
9

41
.4

1
51

.5
9

16
9.

32
−

16
.6

5
43

.0
5

13
6.

89
15

6.
29

54
9.

74

z
20

.2
2

−
2.

07
23

.7
8

−
3.

11
31

.4
5

0.
17

24
.9

2
−

3.
81

15
.1

2
0.

47
2.

32
22

.1
1

−
1.

4
0.

08

t 0
10

8.
98

19
.0

4
26

7.
16

34
1.

68
27

.0
1

41
7.

56
33

9.
68

56
.3

2
58

.9
1

27
.8

1
40

6.
68

89
.5

3
52

.9
2

42
.5

7

T
ab

le
A

3

Es
tim

at
ed

po
st

er
io

r
m

od
el

pr
ob

ab
ili

tie
s

fo
r

16
si

m
ul

at
ed

da
ta

se
ts

.

a
v

z
t 0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

1.
00

·1
0−

1
6.

27
·1

0−
33

0
5.

08
·1

0−
26

6
6.

94
·1

0−
33

5
1.

12
·1

0−
1

6.
47

·1
0−

32
5

1.
43

·1
0−

22
1

4.
47

·1
0−

44
0

3.
89

·1
0−

13
6

6.
33

·1
0−

61
2

5.
90

·1
0−

40
0

1.
30

·1
0−

66
1

1.
41

·1
0−

13
6

4.
95

·1
0−

58
0

7.
71

·1
0−

37
2

3.
03

·1
0−

66
0

+
4.

86
·1

0−
15

7.
86

·1
0−

22
4

1.
12

·1
0−

27
2

2.
62

·1
0−

26
4

1.
55

·1
0−

15
5.

10
·1

0−
21

2
1.

27
·1

0−
22

3
1.

38
·1

0−
34

3
1.

00
·1

0−
1

2.
78

·1
0−

23
7

1.
03

·1
0−

20
0

4.
69

·1
0−

36
7

3.
30

·1
0−

3
3.

73
·1

0−
21

3
4.

41
·1

0−
16

4
6.

45
·1

0−
31

5

+
1.

48
·1

0−
4

8.
23

·1
0−

32
7

1.
88

·1
0−

26
8

7.
06

·1
0−

33
7

8.
88

·1
0−

1
5.

67
·1

0−
31

8
2.

07
·1

0−
22

2
2.

53
·1

0−
43

4
2.

10
·1

0−
13

9
1.

58
·1

0−
60

7
1.

38
·1

0−
40

2
2.

59
·1

0−
65

3
1.

67
·1

0−
13

5
6.

99
·1

0−
57

5
1.

09
·1

0−
37

0
1.

50
·1

0−
65

8

+
+

8.
88

·1
0−

19
5.

60
·1

0−
22

5
2.

98
·1

0−
27

5
4.

46
·1

0−
26

6
1.

61
·1

0−
14

4.
07

·1
0−

20
7

2.
18

·1
0−

22
4

7.
54

·1
0−

33
7

1.
70

·1
0−

4
2.

42
·1

0−
23

9
3.

35
·1

0−
20

4
1.

81
·1

0−
36

6
9.

97
·1

0−
1

2.
56

·1
0−

21
1

1.
85

·1
0−

16
2

1.
79

·1
0−

31
4

+
1.

62
·1

0−
11

3.
36

·1
0−

30
4

9.
98

·1
0−

1
2.

17
·1

0−
20

9
6.

81
·1

0−
12

9.
27

·1
0−

30
4

8.
13

·1
0−

1
5.

72
·1

0−
29

2
2.

36
·1

0−
13

4
1.

82
·1

0−
49

3
1.

52
·1

0−
21

0
6.

75
·1

0−
58

3
3.

23
·1

0−
13

4
1.

36
·1

0−
50

3
3.

78
·1

0−
23

1
2.

35
·1

0−
48

5

+
+

2.
06

·1
0−

25
2.

54
·1

0−
21

8
1.

21
·1

0−
15

4.
58

·1
0−

12
2

9.
89

·1
0−

26
3.

89
·1

0−
20

9
1.

04
·1

0−
10

2.
40

·1
0−

19
1

8.
91

·1
0−

12
2.

94
·1

0−
20

5
1.

00
·1

0−
1

1.
33

·1
0−

26
5

1.
61

·1
0−

13
1.

32
·1

0−
20

2
1.

61
·1

0−
2

3.
93

·1
0−

95

+
+

1.
77

·1
0−

15
2.

09
·1

0−
30

1
2.

01
·1

0−
3

1.
84

·1
0−

21
0

5.
58

·1
0−

11
1.

44
·1

0−
29

6
1.

87
·1

0−
1

1.
93

·1
0−

28
5

1.
38

·1
0−

13
7

2.
45

·1
0−

49
2

6.
52

·1
0−

21
3

6.
58

·1
0−

57
4

3.
35

·1
0−

13
3

3.
91

·1
0−

50
2

3.
51

·1
0−

23
0

8.
02

·1
0−

48
4

+
+

+
2.

85
·1

0−
29

7.
68

·1
0−

22
0

2.
68

·1
0−

18
9.

12
·1

0−
12

4
9.

72
·1

0−
25

1.
64

·1
0−

20
4

2.
98

·1
0−

11
5.

78
·1

0−
18

5
1.

03
·1

0−
15

6.
35

·1
0−

20
7

3.
83

·1
0−

4
8.

08
·1

0−
26

6
5.

46
·1

0−
11

7.
98

·1
0−

20
1

9.
84

·1
0−

1
9.

74
·1

0−
95

+
7.

51
·1

0−
10

9.
87

·1
0−

1
1.

90
·1

0−
24

0
2.

93
·1

0−
18

9
7.

90
·1

0−
13

3.
25

·1
0−

5
3.

29
·1

0−
19

0
3.

40
·1

0−
18

3
9.

66
·1

0−
81

7.
22

·1
0−

36
4.

58
·1

0−
32

0
1.

67
·1

0−
23

2
2.

33
·1

0−
75

3.
66

·1
0−

90
5.

43
·1

0−
29

3
2.

50
·1

0−
38

3

+
+

2.
69

·1
0−

19
1.

86
·1

0−
11

3.
88

·1
0−

25
4

1.
91

·1
0−

18
9

3.
60

·1
0−

23
1.

10
·1

0−
14

7.
03

·1
0−

19
8

1.
15

·1
0−

18
6

2.
12

·1
0−

10
9.

97
·1

0−
1

5.
65

·1
0−

18
3

8.
27

·1
0−

17
1

4.
70

·1
0−

9
5.

55
·1

0−
3

4.
39

·1
0−

14
9

4.
86

·1
0−

24
2

+
+

8.
01

·1
0−

14
1.

28
·1

0−
2

1.
02

·1
0−

24
2

4.
38

·1
0−

19
1

7.
56

·1
0−

12
1.

00
·1

0−
1

9.
14

·1
0−

19
1

1.
49

·1
0−

17
6

2.
51

·1
0−

84
2.

23
·1

0−
38

5.
23

·1
0−

32
3

3.
64

·1
0−

23
4

4.
85

·1
0−

74
4.

60
·1

0−
88

1.
02

·1
0−

29
1

2.
46

·1
0−

38
3

+
+

+
5.

00
·1

0−
23

2.
02

·1
0−

13
8.

55
·1

0−
25

7
4.

13
·1

0−
19

1
4.

96
·1

0−
22

1.
74

·1
0−

10
2.

11
·1

0−
19

8
6.

16
·1

0−
18

0
2.

06
·1

0−
14

3.
38

·1
0−

3
6.

91
·1

0−
18

7
3.

37
·1

0−
17

2
1.

88
·1

0−
6

9.
94

·1
0−

1
7.

06
·1

0−
14

7
1.

13
·1

0−
24

1

+
+

2.
10

·1
0−

20
1.

11
·1

0−
8

1.
09

·1
0−

10
9.

79
·1

0−
1

4.
18

·1
0−

22
2.

74
·1

0−
12

9.
96

·1
0−

10
2.

88
·1

0−
7

1.
83

·1
0−

90
8.

72
·1

0−
42

4.
44

·1
0−

12
1

2.
73

·1
0−

43
1.

13
·1

0−
84

2.
99

·1
0−

98
1.

51
·1

0−
14

0
1.

20
·1

0−
92

+
+

+
1.

04
·1

0−
29

1.
46

·1
0−

19
9.

05
·1

0−
24

4.
48

·1
0−

7
2.

92
·1

0−
32

8.
50

·1
0−

22
7.

80
·1

0−
20

2.
92

·1
0−

15
1.

54
·1

0−
20

4.
29

·1
0−

7
3.

02
·1

0−
7

9.
95

·1
0−

1
1.

90
·1

0−
18

2.
68

·1
0−

11
3.

70
·1

0−
9

1.
34

·1
0−

1

+
+

+
2.

77
·1

0−
24

1.
31

·1
0−

10
2.

67
·1

0−
13

2.
14

·1
0−

2
3.

49
·1

0−
21

1.
19

·1
0−

7
1.

82
·1

0−
10

1.
00

·1
00

3.
10

·1
0−

94
2.

43
·1

0−
44

3.
77

·1
0−

12
4

7.
43

·1
0−

45
4.

19
·1

0−
83

2.
75

·1
0−

96
2.

14
·1

0−
13

9
1.

08
·1

0−
91

+
+

+
+

2.
19

·1
0−

33
3.

33
·1

0−
21

1.
47

·1
0−

26
5.

87
·1

0−
9

3.
64

·1
0−

31
1.

25
·1

0−
17

1.
71

·1
0−

20
1.

30
·1

0−
8

1.
20

·1
0−

24
2.

35
·1

0−
9

8.
04

·1
0−

11
5.

49
·1

0−
3

5.
10

·1
0−

16
3.

56
·1

0−
9

2.
09

·1
0−

7
8.

66
·1

0−
1



DIFFUSION MODEL BAYES FACTORS 60

T
ab

le
A

4

Lo
g-

in
cl

us
io

n
Ba

ye
s

fa
ct

or
s

fo
r

16
si

m
ul

at
ed

da
ta

se
ts

.

D
at

a
Se

t

Pa
ra

m
et

er
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16

a
−

21
.0

1
50

1
−

22
.9

4
27

9.
37

−
25

.5
1

46
9.

23
−

20
.5

6
42

4.
22

−
22

.2
7

47
0.

93
−

15
.0

1
60

9.
43

−
13

.1
8

46
0.

73
−

15
.3

6
21

6.
13

v
−

24
.8

5
−

18
.3

55
1.

97
43

3.
59

−
23

.4
9

−
15

.9
5

43
6.

05
40

4.
86

−
25

.4
4

−
14

.6
6

41
9.

64
39

1.
59

−
23

.6
3

−
19

.4
5

33
6.

52
55

4.
44

z
−

8.
82

−
4.

34
−

6.
21

−
3.

82
2.

07
10

.3
3

−
1.

47
15

.0
6

−
8.

68
−

5.
69

−
7.

87
−

5.
2

5.
71

5.
19

4.
12

1.
86

t 0
−

32
.9

6
−

24
.7

−
34

.3
4

−
14

.6
1

−
31

.6
7

−
22

.4
7

−
22

.7
3

−
18

.1
6

18
4.

24
80

.9
1

27
7.

12
97

.9
8

16
8.

76
20

1.
09

31
9.

23
20

9.
35



DIFFUSION MODEL BAYES FACTORS 61

Appendix B: Implementation of the DDM in the DMC toolbox

Here, we provide a brief tutorial on how to implement the code associated with our

proposed methodology. While the methodology may seem complex, the underlying DMC

functions (code provided on the OSF: https://osf.io/v6u8e/) makes our proposed

methodology extremely simple to implement, with the user only needing to parse the data

into the correct format, and adjust a few lines of code at the beginning of the fitting script.

However, while this section will cover how to run and implement the code, users unfamiliar

with how to interpret the output of the code should see Heathcote et al.’s (2019) and

Gronau et al.’s (2020) for existing in-depth tutorials on interpreting the DMC sampling

output and the bridge sampling output, respectively.

The script “implementationFit.R” provides code that can be easily adapted to allow

users to apply the proposed methodology to their data sets. Specifically, users only need to

change at most 6 lines of code in the script: lines 3-8. Lines 3-6 are where users need to

specify what parameters are allowed to differ between conditions in the model; line 3 for

threshold (a), line 4 for drift rate (v), line 5 for starting point (z), and line 6 for

non-decision time (t0). In each case, setting the “index” variable (e.g., “thresIndex” for

threshold on line 3) to 1 will constrain the parameter to have the same value in both

conditions (i.e., no effect of the manipulation on this parameter), and setting it to 2 will

allow the parameter to have different values in each condition (i.e., an effect of the

manipulation on this parameter). Line 7 is where the user needs to specify the “.RData”

file containing the data (e.g., “myData.RData”), which needs to already be parsed into the

format described above. Finally, line 8 specifies the number of CPU cores to parallelize the

fit over, which is currently set to 1 to try and ensure users do not accidentally overload

their computers when initially testing out the code on computers with a small number of

CPU cores.

Provided that the data is in the correct format, the correct data file is loaded in,

and proper indexes (i.e., 1 or 2) are specified for all of the parameters, the code should

https://osf.io/v6u8e/
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automatically perform the sampling and save all of the relevant sampling and diagnostic

information. Specifically, the final saved “.RData” file from a fit will begin with

“BF_FIT_”, and then contain a 4 character string consisting of Ns and Vs, corresponding

to whether each variable was (V) or was not (N) allowed to vary across conditions, with

parameters in the same order as specified by the user at the start of the code. This file will

contain two variables: “newHsamples”, which contains all of the posterior samples needed

for posterior estimation and inference methods (see Heathcote et al.’s (2019) for an

in-depth tutorial on how to interpret this output), and “r”, which contains the output for

the bridgeSampling package used to calculate the marginal likelihood (see Gronau et al.’s

(2020) for an in-depth tutorial on how to interpret this output).

R Script “implementationFit.R”

1 rm(list=ls())

2

3 # The following indexes are set to values to specify what

model we are fitting to the data , in terms of what

parameters are allowed to change over the conditions of the

experiment . Setting an index to 1 means that the parameter

stays constant over conditions , and setting the index to 2

means that the parameter is allowed to vary across the

conditions . In this case , we have all indexes set to 1,

making this the null model
4

5 thresIndex =1 #Set to 1 to constrain threshold over

conditions , or to 2 to let it vary
6 driftIndex =1 #Set to 1 to constrain drift rate over

conditions , or to 2 to let it vary
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7 startIndex =1 #Set to 1 to constrain starting point over

conditions , or to 2 to let it vary
8 nonDecIndex =1 #Set to 1 to constrain non - decision time

over conditions , or to 2 to let it vary
9 dataFileName =" myData.RData"

10 cores =1 # Set the number of cores; important if multi -core

parallelization is possible !
11

12 # Make dmc functions available in the current R environment

13 source (" dmc/dmc_ES.R")

14

15 # Effect size DDM model

16 load_model ("DDM -ES"," ddmES.R")

17

18

19 # Transform the previous indexes into strings that are used

throughout the script , to create some automation . For

example , the previous threshold index that we set to 1 is

then used to make the " doesThresVary " variable (used for

naming save files etc .) equal to "N" (for "not varying "),

and the mapThres variable (used to create the dmc model and

specify whether the parameter is constant / varying )
20 doesThresVary =c("N","V") [ thresIndex ]; mapThres =c("1" ,"F")

[ thresIndex ];
21 doesDriftVary =c("N","V") [ driftIndex ]; mapDrift =c("1" ,"F")

[ driftIndex ];
22 doesStartVary =c("N","V") [ startIndex ]; mapStart =c("1" ,"F")

[ startIndex ];
23 doesNonDecVary =c("N","V") [ nonDecIndex ];

mapNonDec =c("1" ,"F") [ nonDecIndex ];
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24

25 stringIndexes =paste( doesThresVary , doesDriftVary ,

doesStartVary , doesNonDecVary , sep ="")
26

27

28 set.seed (666)

29

30 # Specify the priors for the random subject effects on all

estimated parameters
31 subject .sd <- c(a=0.5 ,v=1,z=0.25 , sz =0.25 , sv =0.5 , t0 =0.5)

32

33 # Create the parameter mapping for DMC based on the previous

indexes , in order to match to the internal specifications of

DMC. In all cases , a parameter should have a value of "1" if

it is constant across conditions , and a value of "F" if it

differs across experimental conditions (specifically , factor

"F", which is the standard naming convention in DMC)
34 p.map <- list(a=mapThres , v= mapDrift ,z=mapStart , d="1" ,

sz ="1" , sv ="1" , t0=mapNonDec , st0 ="1")
35

36 # Unit effects for hyper -prior; essentially , this creates a

list called effects , which stores which parameters will vary

over conditions (needed for the internal specifications of

DMC for the random effects models)
37

38 effects = list ()

39 if ( doesThresVary =="V") effects [["a"]]=1

40 if ( doesDriftVary =="V") effects [["v"]]=1

41 if ( doesStartVary =="V") effects [["z"]]=1
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42 if ( doesNonDecVary =="V") effects [[" t0 "]]=1

43

44 sampFileName <- paste (" FIT_", stringIndexes ,". RData",sep ="")

45

46 #### Model specification ----------------------------------

47

48 # Here we specify information about the data needed for the

internal specifications of DMC , as well as the constants in

the model (i.e., parameters that are fixed to specific

values , are aren ’t estimated at all). S refers to the

stimuli , F refers to the factors (i.e., conditions ), and R

refers to the responses
49

50 factors =list(S=c("s1","s2"),F=c("f1","f2")) # Specify the

conditions ( stimuli and factors )
51 responses =c("r1","r2") # Specify the responses

52 match.map=list(M=list(s1="r1",s2="r2")) # Specify which

response is correct for each stimulus
53 const <- c(st0=log (1e -6) ,d=0) # Set constants in the model;

note that you can ’t set st0 to exactly zero as undefined on

log scale
54 type ="rd"

55

56 # Set up the DMC model based on all of the previous

specifications ; specifically , the "model.dmc" function is

used to bind the information together , which is needed for

the internal specifications of DMC
57 model <- model.dmc(

58 p.map=p.map ,
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59 constants =const ,

60 match.map=match.map ,

61 factors =factors ,

62 responses =responses ,

63 type=type)

64

65 #### Make Gaussian data level prior including DMs , mu_indx ,

alpha_indx ; specifically , this sets up the priors for the

internal specifications of DMC
66 p.vector <- attr(model ,"p.vector ") # Doesnt have to have

content
67 p.prior <- prior.p.dmc(

68 p1=p.vector ,

69 p2=rep(1, length(p.vector)),

70 model=model

71 )

72

73 #### Population distribution ------------------------------

74

75 # Population parameter intercepts and scales; specifically ,

this line is loading the estimated intercepts from Matzke &

Wagenmakers (2009) , which are used to create the informed

priors
76 tmp=load (" MatzkeIntercepts .RData ")

77

78 # Load the data and connect it with the DMC model

79 load( dataFileName )

80 dm <- data.model.dmc(data = datas , model = model)
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81

82

83

84 #### Sampling ---------------------------------------------

85

86 # hyper -prior for fitting ; specifically , this code sets up

the priors in the format needed for the internal

specifications of DMC
87 pp.prior <- prior.pp.dmc(

88 p1.mu= intercept .mean , # mean of normal with SD=1

89 p1.sigma= intercept .sd , # mean of default normal

90 p2.ce=effects ,p2.se= subject .sd) # default cauchy

91

92

93 # Get some (amount specified by nmc) initial MCMC samples

from the model , which will be used as the starting point of

the auto - convergence algorithm in the next step
94 hsamples <- h. samples .dmc(nmc = 120,

95 p.prior = p.prior ,

96 pp.prior = pp.prior ,

97 data = dm)

98 save(datas ,hsamples ,file= sampFileName ) # Save these initial

samples
99

100

101 # Run fits ------------------------------------------------

102

103 tmp=load( sampFileName ) # Load in initial samples from above
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104

105 # Run the auto - convergence algorithm in DMC , the standard

version used in other implementations of DMC. In the initial

run sampling mixes the standard cross -over step with

migration steps on a randomly chosen 5\% of iterations at

both participant and population levels.
106

107 hsamples <- h.run. unstuck .dmc(hsamples , cores=cores ,

p. migrate =0.05 , h.p. migrate =0.05 , max.try =10)
108 save(hsamples ,file = sampFileName )

109

110 # This continues until no chains differ from the median of

the others in likelihood by more than 10 units. Next

migration is turned off , 120 samples taken , then on each

cycle 40 more added and either retained or the first 40

removed , based on whichever results in better mixing as

measured by the ‘‘gelman.diag ’’ statistic provided by the

CODA package function of that name. This processes continues

until gelman.diag < 1.1. At that point previous samples are

discarded and a further 300 iterations performed .
111

112 hsamples <-

h.run. converge .dmc(h. samples .dmc( samples =hsamples , nmc =120 ,

thin =10) , cores=cores , report =10, max.try =10, finalrun =TRUE ,

finalI =300)
113 save(hsamples ,file = sampFileName ) # Once the sampling

appears to have converged , store these samples
114
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115 # Occasionally visual inspection of the output from the

previous step reveals that some chains have diverged . In

this case these can be removed and then a further set of

samples obtained as follows , usually fixing the problem . As

doing so does not hurt in cases where there are no problems

this was done in all cases.
116

117 hsamples <- h.run.dmc(h. samples .dmc( samples =hsamples ,

nmc =50, replace .bad.chains=TRUE), cores=cores) # Start by

getting some new initial samples
118

119 # A final set of 500 iterations is obtained and saved for

later analysis .
120

121 hsamples <-

h.run.dmc(h. samples .dmc( samples =hsamples ,nmc =500) ,cores=cores)
122 save(hsamples ,file = sampFileName ) # Save the posterior

samples
123

124

125 # Summarize fit -------------------------------------------

126

127 Smry <- summary .dmc(hsamples ,hyper=FALSE) # Obtain summaries

of the individual -level parameter estimates
128 h.Smry <- summary .dmc(hsamples ,hyper=TRUE) # Obtain

summaries of the group -level parameter estimates
129 print(Smry) # Display the individual -level parameters summary

130 print(h.Smry) Display the group -level parameters summary

131 save(Smry ,h.Smry ,hsamples ,file = sampFileName ) # Save the

summaries with the samples
132
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133 # Get the R.hat values for the individual and group level

parameters to ensure that they are still reasonable (i.e.,

that chains didn ’t drift away from the stationary

distribution after the auto - convergence algorithm finished )
134 h.gelman.diag.dmc( hsamples )

135 gelman.diag.dmc(hsamples ,hyper=TRUE)

136 effectiveSize .dmc(hsamples ,hyper=TRUE)

137

138 # Make plots of the chains of the posterior distributions to

diagnose any potential issues
139 pdf(paste(use.file ,". pdf",sep ="") ,height =6, width = 8)

140 plot.dmc(hsamples ,hyper=TRUE ,pll.chain=TRUE)

141 plot.dmc(hsamples ,hyper=TRUE ,layout=c(2 ,5)) # mu

142 plot.dmc(hsamples ,hyper=TRUE ,layout=c(2 ,3) ,hyper.par =" sigma ")

143 plot.dmc(hsamples ,hyper=TRUE ,layout=c(3 ,5) ,hyper.par =" alpha ")

144 par(mfrow=c(3 ,5))

145 for (i in 1: length( hsamples ))

146 plot.dmc( hsamples [[i]], pll.chain=TRUE ,

main.pll=paste (" Subject ", i))
147 dev.off ()

148

149

150 # Calculate the marginal likelihood for the model ( required

to calculate Bayes factors and for model averaging ) based on

25000 new samples ( assuming that is enough) ------------
151
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152 totalIter =round (25000/ hsamples$ ‘1‘$n.chains ,0) # Get the

number of iterations of the sampler that are needed to

obtain 25000 new samples
153 newHsamples <- h.run.dmc(h. samples .dmc( samples =hsamples ,

nmc= totalIter ), cores=cores) # Run the sampler to obtain the

25000 new samples
154 save(newHsamples , file = paste (" BF_", sampFileName ,sep =""))

# Save the new samples
155 r <- h.bridge. sampler .es.dmc( samples = newHsamples , cores =

cores) # Run bridge sampling on the new samples to obtain an

estimate of the marginal likelihood
156 save(newHsamples , r, file = paste (" BF_", sampFileName ,

sep ="")) # Save the new samples and the estimated marginal

likelihood
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