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We congratulate Professors Li, Fearnhead, Fryzlewics and Wang on their fine work that
represents classic test statistics for change-point detection as a neural network based clas-
sifier and develops improved offline detection algorithms for historical, labelled data.

The paper focuses on real-valued observation vectors in a temporal regression model
with training data being either labelled historical data or obtained by simulation from
a model. In many applications though, the data consist of both spatial and temporal
components. For instance, the observations may take the form of a series of point patterns
(e.g., mapped tree locations at different census times) or a single observation from a
spatio-temporal point pattern (e.g., occurrence locations and times of fire incidents). For
the latter, detection of changes in intensity in a model-based Bayesian test setting was
investigated by Altieri et al. (2015). Do the authors believe that an adapted neural network
approach could be competitive in this context? A complication would be that the change-
point is due to complex changes in inter-point interaction for which neither a known model
nor labelled historical data is available. Do the authors see a way forward here?

Machine learning ideas could benefit spatio-temporal statistical practice more widely.
Specifically for point pattern analysis, Lu et al. (2023) employed random forest impor-
tance scores for variable selection, whilst Jalilian et al. (2023) trained neural networks on
simulated data to distinguish spatial structural differences. A similar motivation as that
of Li et al. is seen in point process intensity estimation. Usually, the intensity function
is assumed to be log-linear in spatial and temporal covariates. Lu et al. (2023), proposed
a tree-based model, XGBoostPP, which forms the intensity function based on a covariate
vector z(s) as

log {λ(s)} =
K∑
k=1

fk {z(s)} .
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Here, fk {z(s)} are tree predictors that output the response on the leaf where a covariate
value z(s) lies in. For model fitting, we customized a penalized weighted Poisson log-
likelihood loss function

K∑
k=1

Ω(fk)−
∑
x∈X

w(x) log {λ(x)}+

∫
S
w(s)λ(s)ds,

where X denotes the point process on S and Ω(fk) is proportional to the L1-norm of leaf
responses. The tree structures and corresponding leaf responses are optimized iteratively;
the weights w are calculated based on the estimated inhomogeneous K-function. The
classic log-linear intensity function can be represented as a reparameterized XGBoostPP;
neural networks may offer alternatives.

In the reverse direction, the STIT tessellation (Nagel and Weiss, 2005) from spatial
statistics can be used for partitioning responses (cf., Ge et al., 2019).
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