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Abstract. In this work, we investigate privacy risks associated with
model inversion attribute inference attacks. Specifically, we explore a
case in which a governmental institute aims to release a trained machine
learning model to the public (i.e., for collaboration or transparency rea-
sons) without threatening privacy. The model predicts change of living
place and is important for studying individuals’ tendency to relocate. For
this reason, it is called a propensity-to-move model. Our results first show
that there is a potential leak of sensitive information when a propensity-
to-move model is trained on the original data, in the form collected from
the individuals. To address this privacy risk, we propose a data synthesis
+ privacy preservation approach: we replace the original training data
with synthetic data on top of which we apply privacy preserving tech-
niques. Our approach aims to maintain the prediction performance of
the model, while controlling the privacy risk. Related work has studied a
one-step synthesis of privacy preserving data. In contrast, here, we first
synthesize data and then apply privacy preserving techniques. We carry
out experiments involving attacks on individuals included in the train-
ing data (“inclusive individuals”) as well as attacks on individuals not
included in the training data (“exclusive individuals”). In this regard,
our work goes beyond conventional model inversion attribute inference
attacks, which focus on individuals contained in the training data. Our
results show that a propensity-to-move model trained on synthetic train-
ing data protected with privacy-preserving techniques achieves perfor-
mance comparable to a model trained on the original training data. At
the same time, we observe a reduction in the efficacy of certain attacks.
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1 Introduction

A governmental institute that is responsible for providing reliable statistical
information may use machine learning (ML) approaches to estimate values that
are missing in their data or to infer attributes whose values are not possible to
collect. Ideally, the machine learning model that is used to make the estimates
can be made available outside of the institute in order to promote transparency
and support collaboration with external parties. Currently, however, an impor-
tant unsolved problem stands in the way of providing external access to machine
learning models: the models may pose a privacy threat because they are suscepti-
ble to model inversion attribute inference attacks. In other words, they may leak
information about sensitive characteristics of individuals whose data they were
trained on (“inclusive individuals”). Further, going beyond the strict definition
of model inversion, access to models may enable the inference of attributes of
individuals whose data is not included in the original training set (“exclusive
individuals”).

In this paper, we investigate the potential leaks that could occur when exter-
nal access is provided to machine learning models. We carry out a case study on
a model that is trained to predict whether an individual is likely to move or to
relocate within the next two years. Such models are helpful for understanding
tendencies in the population to change their living location and are, for this rea-
son, called propensity-to-move models. We study the case in which an institute
would like to provide access to the model by allowing external parties to query
the model and receive output predictions and by releasing the marginal distribu-
tions of the data the model is trained on. Additionally, the output might include
confidence scores. Finally, access might include releasing a confusion matrix of
the model calculated on the training data. Attackers wish to target a certain set
of target individuals to obtain values of sensitive attributes for these individuals.
We assume that for this set of target individuals, attackers possess a set of non-
sensitive attributes that they have previously obtained, e.g., by scraping social
media, including the correct value for the propensity-to-move attribute.

First, we show the effectiveness of our propensity-to-move prediction model.
Then, we evaluate a number of existing model inversion attribute inference
attacks [14,28] and demonstrate that, if access would be provided to the model,
a privacy threat would occur. Next, we address this threat by proposing a syn-
thesis + privacy preservation approach, which applies privacy preserving tech-
niques designed to inhibit attribute inference attacks on top of synthetic data.
This two-step approach is motivated by the fact that within our case study,
training models on synthetic data is an already established practice and the
goal is to address the threat posed by synthetic data. In our previous work [42],
we demonstrated that training on synthetic data has the potential to provide a
small measure of protection, and here we build on that result.

Our results show that a propensity-to-move model trained on data created
with our synthesis + privacy preservation approach achieves performance com-
parable to a propensity-to-move model trained on original training data. We
also observe that the data created by our synthesis + privacy preservation app-
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roach contributes to the reduced success of certain attacks over a certain group
of target individuals. Last but not least, we use the Correct Attribution Proba-
bility (CAP) metric [27] from Statistical Disclosure Control as a disclosure risk
measure to calculate the risk of attribute disclosure for individuals.

We summarize our contributions as follows:

– Threat Model: Our attacks consider both target individuals who are
included in the data on which the model is trained (“inclusive individuals”)
and target individuals who are not (“exclusive individuals”). Studying exclu-
sive individuals goes beyond the strict definition of model inversion and is
not well-studied in the literature.

– Data synthesis + privacy preservation: We explore a two-step approach
that applies privacy-preserving techniques on top of synthetic data. Our app-
roach aims to maintain model utility, i.e., the prediction performance of the
model, while at the same time inhibiting inference of the sensitive attributes
of target individuals.

– Disclosure Risk: In contrast to measures that rely on machine learning met-
rics, which often average or aggregate scores, we employ the Correct Attribu-
tion Probability (CAP) to quantify the level of disclosure risk for individual
cases.

2 Threat Model

We start characterizing the case we study in terms of a threat model [39], a
theoretical formulation that describes: the adversary’s objective, the resources
at the adversary’s disposal, the vulnerability that the adversary seeks to exploit,
and the types of countermeasures that come into consideration. Table 1 presents
our threat model. We cover each of the dimensions, in turn, explaining their
specification for our case.

As objective, the attacker seeks to infer sensitive information about a set
of target individuals. As resources, we assume that the attacker has collected a
set of data for each target individual, i.e., from previous data releases or social
media. The set contains non-sensitive attributes of the target individuals and
that includes the individual’s ID and the corresponding true label for propensity-
to-move. The target individuals are either in the training data used to train the
released model (“inclusive individuals”) or not in the training data (“exclusive
individuals”). The vulnerability is related to how the model is released, i.e., the
access that has been provided to the model. The attacker can query the model
and collect the output of the model, both predictions and confidence scores,
for unlimited number of inputs. The attacker also has information about the
marginal distribution for each attribute in the training data. The countermeasure
that we study is a change in the model that is released, which is accomplished
by modifying the training data.
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Table 1. Model inversion attribute inference threat model, defined for our case.

Component Description

Adversary: Objective Specific sensitive attributes of the target
individuals

Adversary: Resources A set of non-sensitive attributes of the target
individuals, including the correct value for the
propensity-to-move attribute, for “inclusive
individuals” (in the training set) or “exclusive
individuals” (not in the training set)

Vulnerability:Opportunity Ability to query the model to obtain output plus
the marginal distributions of the data that the
model was trained on. Additionally, the output
might include confidence scores and a confusion
matrix calculated on the training data might be
available

Countermeasure Modify the data on which the model is trained

3 Background and Related Work

In this section, we provide a brief overview of existing literature on data syn-
thesis, privacy-preserving techniques, and model inversion attribute inference
attacks.

3.1 Synthetic Data Generation

Synthetic data generation methods involve constructing a model of the data
and generating synthetic data from this model. These methods are designed
to preserve specific statistical properties and relationships between attributes
in the original data [9,16,47]. Synthetic data generation techniques fall into
two categories [20]: partially synthetic data and fully synthetic data. Partially
synthetic data contain a mix of original and synthetic records [10]. Techniques
to achieve partial synthesis replace only observed values for attributes that bear
a high risk of disclosure (i.e., sensitive attributes) [11]. Fully synthetic data,
which we use in our experiments, creates an entirely synthetic data set based on
the original data [10,11]. Next, we discuss existing work on fully synthetic data
generation from Statistical Disclosure Control [9,47] and deep learning [48,51].

Data Synthesis in Statistical Disclosure Control. Several approaches have
been proposed in the literature for generating synthetic data, such as data distor-
tion by probability distribution [23], synthetic data by multiple imputation [38],
and synthetic data by Latin Hypercube Sampling [8]. In [12], the authors pro-
posed an empirical evaluation of different machine learning algorithms, e.g., clas-
sification and regression trees (CART), bagging, random forests, and Support
Vector Machines for generating synthetic data. The authors showed that data
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synthesis using CART results in synthetic data that provides reliable predictions
and low disclosure risks. CART, being a non-parametric method, helps in han-
dling mixed data types and effectively captures complex relationships between
attributes [12].

Data Synthesis Using Generative Models. A lot of research has been car-
ried out lately focusing on tabular data synthesis [7,31,51]. In [7], the authors
proposed MedGAN, one of the earliest tabular GAN-based data synthesis used
to generate synthetic Health Records. MedGAN transformed binary and cate-
gorical attributes into a continuous space by combining an auto-encoder with
GAN. In [31], the authors proposed TableGAN, a GAN-based method to synthe-
size fake data that are statistically similar to the original data while protecting
against information leakage, e.g., re-identification attack and membership attack.
TableGAN uses a convolutional neural network that optimizes the label column’s
quality such that the generated data can be used to train classifiers. In [51], the
authors pointed out different shortcomings that were not addressed in previous
GAN models, e.g., a mixture of data types, non-Gaussian and multimodal distri-
bution, learning from sparse one-hot encoded vectors and the problem of highly
imbalanced categorical attributes. In [51], a new GAN model called CTGAN
is introduced, which uses a conditional generator to properly model continuous
and categorical columns.

3.2 Privacy-Preserving Techniques

In this section, we provide an overview of existing work on privacy-preserving
techniques. Privacy-preserving techniques can be categorized as perturbative
or non perturbative methods. Perturbative methods involve introducing slight
modifications or noise to the original data to protect privacy, while non pertur-
bative methods achieve privacy through data transformation techniques without
altering the data itself [47]. These techniques, which have been studied for many
years, include randomization, data shuffling, data swapping [29,33], obfusca-
tion [4], post-randomization [50]. We discuss the privacy-preserving techniques
that we use in our experiments in more depth:

Data swapping is a non-perturbative method that is based on randomly
interchanging values of an attribute across records. Swapping maintains the
marginal distributions in the shuffled data. By shuffling values of sensitive
attributes, data swapping provides a high level of utility while minimizing risk
of disclosure [29].

Post-randomization (PRAM) is a perturbative method. Applying PRAM
to a specific attribute (or a number of attributes) means that the values of the
record in the PRAMmed attribute will be changed according to a specific prob-
ability. Following notations used in [50], let ξ denote the categorical attribute
in the original data to which PRAM will be applied. X denotes the same cat-
egorical attribute in the PRAMmed data. We suppose that ξ and X have K
categories 1, . . . , K. pkl = P(X = l|ξ = k) denotes the transition probabilities
that define PRAM. This means the probability that an original value ξ = k is
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changed to value X = l for k, l = 1, . . . , K. Using the transition probabilities as
entries of a K × K matrix, we obtain P (called the PRAM-matrix).

Differential privacy has gained a lot of attention in recent years [1,22]. Dif-
ferential privacy (DP) uses a mathematical formulation to measure privacy. DP
creates differentially private protected data by injecting noise expressed by ε into
the original data. In [52] a differentially private Bayesian Network, PrivBayes
is proposed to make possible the release of high-dimensional data. PrivBayes
first constructs a Bayesian network that captures the correlations among the
attributes and learns the distribution of data. After that, PrivBayes injects noise
to ensure differential privacy and it uses the noisy marginals and the Bayesian
network to construct an approximation of the data distribution. In [34], the
authors introduced two methods for creating differentially private synthetic data.
The first method adds noise to a cross-tabulation of all the attributes and creates
synthetic data by a multinomial sampling from the resulting probabilities. The
second method uses an iterative proportional fitting algorithm to obtain a fit to
the probabilities computed from noisy marginals. Then, it generates synthetic
data from the resulting probability distributions. A more recent work, Differen-
tially Private CTGAN (DPCTGAN) [13] adds a differentially private noise to
CTGAN. Specifically, DPCTGAN adds ε − δ noise to the discriminator D and
clips the norm to make it differentially private. We consider DPCTGAN to be
a one-step synthesis approach, as it combines the application of noise and the
synthesis process. Here, we test DPCTGAN, alongside our two-step synthesis +
privacy preservation approaches.

3.3 Model Inversion Attribute Inference Attacks

Privacy attacks on data [25] include identification (or identity disclosure)
attacks [2,3,51], membership inference attacks [41], and attribute inference
attacks (or attribute disclosure) [3,19,44]. A lot of attention has been given
to identification attacks on synthetic data [26,40,43]. However, less attention
has been given to attribute inference attacks on synthetic data [40]. Attacks
on data include attacks on models aimed at acquiring information about the
training data. Here we investigate a model inversion attribute inference attack.

Model inversion attacks (MIA) aim to reconstruct the data a model is trained
on or expose sensitive information inherent in the data [18,49]. Attribute infer-
ence attacks use machine learning algorithms to predict, and perform attacks
that infer sensitive attributes, i.e., gender, age, income. In a model inversion
attribute inference attack, the attacker is interested in inferring sensitive infor-
mation, e.g., demographic attributes, about an individual [14,25,28].

We distinguish between three categories of model inversion attribute infer-
ence attacks [18,25]. An attack is black-box if the attacker only gets access to
predictions generated by the model, i.e., can query the model with target indi-
viduals to receive the model’s output. An attack is gray-box if the structure of
the model and or some auxiliary information is further known, e.g., the attacker
knows that the prediction is based on decision tree model, or attacker knows
about the estimated weights of the model. An attack is white-box if an attacker
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has the full model, e.g., predictions, estimated weights or structure of model,
and other information about training data.

In [14,15], the authors showed that it is possible to use black-box access
to prediction models (access to commercial machine learning as a service APIs
such as BigML) to learn genomic information about individuals. In [14], the
authors developed an attack model that exploits adversarial access to a model
to learn information about its training data. To perform the attack, the adver-
sary uses the confidence scores included with the predictions as well as the
confusion matrix of the target model and the marginal distributions of the sen-
sitive attributes. In [28], the authors proposed two attack models: confidence
score-based MIA (CSMIA) and label-only MIA (LOMIA). CSMIA exploits con-
fidence scores returned by the target model. Different from Fredrikson et al. [14],
in CSMIA an attacker is assumed to not have access to the marginal distri-
butions or confusion matrix. LOMIA uses only the model’s predicted labels.
CSMIA, LOMIA, and Fredrikson et al., [14] are the attacks we study in our
work. The three attacks aim to achieve the adversary’s objective of inferring
sensitive attributes about target individuals, while assuming different resources
and opportunities available to the attacker. (Further details are in Sect. 4.4).
Other model inversion attacks use variational inference [49] or imputation [21]
to infer sensitive attributes.

3.4 Attribute Disclosure Risk

Previous work on identity and attribute disclosure risk has looked either at
matching probability by comparing perceived, expected, and true match risk [36],
or at a Bayesian estimation approach, assuming that an attacker seeks a Bayesian
posterior distribution [37]. Similar to [36], other work [19,27,46] has looked at
the concept of Correct Attribution Probability (CAP).

CAP assumes that the attacker knows the values of a set of key attributes for
an individual in the original data set, and aims to learn the respective value of
a target attribute. The key attributes encompass all attributes within the data,
excluding the sensitive attribute that is the target attribute. Correct Attribution
Probability (CAP) measures the disclosure risk of the individual’s real value in
the case where an adversary has access to protected data, and was originally
proposed for synthetic data [19,46]. The basic idea of CAP is that an attacker
is supposed to search for all records in the synthetic data that match records
in the original data for given key attributes. The CAP score is the propor-
tion of matches leading to correct attribution out of the total matches for a
given individual [46]. In [46], the authors extended their previous preliminary
work [27]. They proposed a new CAP measure called differential correct attri-
bution probability (DCAP). DCAP captures the effect of multiple imputations
on the disclosure risk of synthetic data. The authors of [46] stated that DCAP
is well-suited for fully synthetic data. In [24], the authors introduced TCAP, for
targeted correct attribution probability. TCAP calculates CAP value for tar-
geted individuals that the attacker knows their existence in the original data. In
our experiments, we use the CAP measure introduced in [27].
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4 Experimental Setup

In this section, we describe our experimental setup. First, we provide an overview
of our data set. Second, we describe how we synthesize data and the privacy
protection techniques that we use. Next, we discuss target machine learning
algorithms that we will use to predict propensity-to-move. Then, we describe
the model inversion attribute inference attacks we study in our experiments.

4.1 Data Set

For our experiments, we use a data set from a governmental institute. The data
set was previously collected and first used in [5]. It combines different regis-
ters from the System of Social Statistical Data sets (SSD). In our experiments,
we use the same version of the data set used in [42]. Our data contains 150K
individuals’ records between 2013 and 2015. We have 40 attributes (categorical
and numerical) containing information about individual demographic attributes
such as gender and age, and time-dependent personal, household, and housing
attributes. The target attribute “y01” is binary, indicating whether (=1) or not
(=0) a person moved in year j where j = 2013, 2015. The target attribute is
imbalanced with 129428 0 s (majority class) and 24971 1 s (minority class).

We have three distinct groups of individuals within the data. The difference
between the three groups resides in the fact that there are some individuals who
are in the data in the year 2013 (called Inclusive individuals 2013). The same
individuals appear again in the year 2015 (called Inclusive individuals 2015),
where they may have different values for the time-dependent attributes than
they did in 2013. The last group (called Exclusive individuals 2015) contains
individuals who are “new in the country”. We have a total of: 76904 Inclusive
individuals 2013, 74591 Inclusive individuals 2015, and 2904 Exclusive individ-
uals 2015.

Our propensity-to-move classifier (i.e., the target model) is trained on all 2013
data (76904 records). The classifier is tested on the 2015 data (77495 records) as
in [42]. For the target model trained on (privacy-preserving) synthetic data, we
use TSTR evaluation strategy such that we train classifiers on 2013 (privacy-
preserving) synthetically generated data and we test on 2015 original data [17,
42].

As adversary resources, we assume that the attacker has access to a set of
non-sensitive attributes of the target individuals (see our threat model in Sect. 2).
As in [42], we consider three cases:

– Inclusive individuals (2013): the attacker has access to data from the
year 2013, which aligns with the data used to train the target model.

– Inclusive individuals (2015): Here, the attacker possesses more recent
data from 2015, but it corresponds to the same set of individuals used in
training the target model. The data being more recent implies that some of
the (time-sensitive) attributes for particular individuals may have changed
somewhat.
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– Exclusive individuals (2015): In this case, the attacker’s data is from
2015, but it pertains to a distinct group of individuals who were not part of
the training set for the target model.

We create data sets for each of the three cases. As in [42], for Exclusive individ-
uals (2015) we use all 2904 individuals and for the other two cases we randomly
sample to create data sets of the same size (2904 individuals each). The attributes
of the target individuals that are in the possession of the attacker include the
correct value of the propensity-to-move attribute but do not include the sensitive
attributes gender, age, and income, which are targeted by the attack.

4.2 Privacy-Preserving Techniques on Synthetic Training Data

In this section, we describe how we synthesized data, and how we then applied
privacy preserving approaches to it. The synthesis and privacy-preserving tech-
niques are applied to the training data of the target model (the 76904 Inclusive
individuals 2013), which is intended for release.

Our experiments with our two-step synthesis + privacy protection approach
use a classification and regression tree (CART) model to synthesize data since
it is shown to perform the best in the literature [12,35]. Recall that CART is a
non-parametric method that can handle mixed data types and is able to capture
complex and non-linear relationships between attributes. We apply CART to
the training data of the target model, which includes individuals from 2013. We
use the open public R package, Synthpop for our implementation of the CART
model [30]1. Within Synthpop, there are a number of parameters that can be
optimized to achieve a good quality of synthesis [30]. Visiting.sequence parameter
specifies the order in which attributes are synthesized. The order is determined
institute-internally by a human expert. Stopping rules parameter dictates the
number of observations that are assigned to a node in the tree. Stopping rules
parameter helps to avoid over-fitting.

Following synthesis using CART, we apply privacy-preserving techniques,
data swapping and PRAM (cf. Sect. 3.2), to the synthetic data. We use two
data swapping approaches, referred to as Swapping and Conditional swapping.
For Swapping, we perform data swapping separately for each sensitive attribute,
which includes gender, age, and income. Specifically, for the age attribute, we
interchange numerical age values among individuals and subsequently map these
values to their respective age groups. For Conditional swapping, we perform
simultaneous data swapping for gender, age, and income conditioned on the
propensity-to-move target attribute. Conditional data swapping ensures that
sensitive attributes are swapped while preserving the influence of the target
attribute. Additionally, we apply Post-randomization (PRAM) independently
to the attributes of gender, age, and income within the synthetic data generated
using CART. Our transition matrices can be found in supplementary material.2

1 http://www.synthpop.org.uk/.
2 Supplemental material is at this link in Section.2: PRAM.

http://www.synthpop.org.uk/
https://surfdrive.surf.nl/files/index.php/s/YzfuWc4qu0qmarM
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We use the sdcMicro toolkit.3 It is important to note that our evaluation includes
separate testing of PRAM and data-swapping techniques.

In addition to experiments with our two-step synthesis + privacy protec-
tion approach, we explore a GAN-based one-step approach for generating (pri-
vacy preserving) synthetic data generation. We use CTGAN, a popular and
widely used GAN-based generative model [51]. The data synthesis procedure of
CTGAN involves three key elements, namely: the conditional vector, the gen-
erator loss, and the training-by-sampling method. CTGAN uses a conditional
generator to deal with the class imbalance problem. The conditional genera-
tor generates synthetic rows conditioned on one of the discrete columns. With
training-by-sampling, the conditional and training data are sampled according to
the log frequency of each category. We used open public toolkit Synthetic Data
Vault (SDV)4 implemented in Python [32]. In our implementation, hyperparam-
eter tuning is applied to batch size, number of epochs, generator dimension, and
discriminator dimension. We left other parameters set to default. We generate
differentially private CTGAN data using DPCTGAN, which takes the state-
of-the-art CTGAN and incorporates differential privacy. We chose to make a
comparison with CTGAN and DPCTGAN because of the success of the two
techniques reported in the literature [51].

4.3 Target Machine Learning Model

In this section, we discuss the target machine learning algorithm used to predict
the propensity to move. We trained and tested a number of machine learning
algorithms, including decision tree, random forest, näıve Bayes, and extra trees.
We found that all classifiers outperform the majority-class classifier, with classi-
fiers using trees generally being the best performers. For simplicity, in the rest of
the paper, we will use random forest classifier as it is shown to perform the best
on the original data and on the synthetic data. We report the results of random
classifier using the most frequent (majority-class) strategy as a näıve baseline.

Recall that we must ensure that the prediction performance of the model is
maintained when it is trained on synthetic + privacy-preservation data. To this
end, we use the following metrics: F1-Macro, Matthews Correlation Coefficient
(MCC), geometric mean (G-mean), True Negative (TN), False Positive (FP),
False Negative (FN), and True Positive (TP). Our choice is motivated by the
imbalance of the target attribute.

The macro-averaged F1 score (F1-Macro) is computed using the arithmetic
mean (i.e., unweighted mean) of all the per-class F1 scores. This method treats
all classes equally regardless of their support values.

The Geometric mean (G-mean) is the geometric mean of sensitivity and
specificity [45]. G-mean takes all of the TP, TN, FP, and FN into account.

G-mean =

√
TP

TP + FN
∗ TN

TN + FP
(1)

3 https://cran.r-project.org/web/packages/sdcMicro/sdcMicro.pdf.
4 https://github.com/sdv-dev/SDV.

https://cran.r-project.org/web/packages/sdcMicro/sdcMicro.pdf
https://github.com/sdv-dev/SDV
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Matthews Correlation Coefficient (MCC) metric is a balanced measure that
can be used especially if the classes of the target attribute are of different sizes [6].
It returns a value between -1 and 1.

MCC =
(TP ∗ TN) − (FP ∗ FN)√

(TP + FP ) ∗ (TP + FN) ∗ (TN + FP ) ∗ (TN + FN)
(2)

4.4 Model Inversion Attribute Inference Attacks

In this section, we describe three model inversion attacks that we use in
our paper: confidence-score MIA (CSMIA) [28], label-only MIA (LOMIA +
Marginals), and the Fredrikson et al. MIA (FMIA) [14].

Confidence-Score MIA (CSMIA) [28] uses the output and confidence
scores returned when the attacker queries the target propensity-to-move model.
The attacker also has knowledge of the possible values for the sensitive attribute.
For each target individual, the attacker creates different versions of the individ-
ual’s records by substituting in for the missing sensitive attribute all values that
would be possible for that attribute. The attacker then queries the model with
each version and obtains the predicted class labels and the corresponding model
confidence scores. Then, the attacker uses the predicted labels and confidence
scores as follows [28]:

Case (1): when the target model’s prediction is correct for only a single
sensitive attribute value, then, the attacker selects the sensitive attribute value
to be the one for which the prediction is correct.

Case (2): when target model’s prediction is correct for multiple sensitive
attribute values, then the attacker selects the sensitive value to be the one for
which prediction confidence score is maximum.

Case (3): when target model’s prediction is incorrect for all sensitive
attribute values, then the attacker selects the sensitive value to be the one for
which prediction confidence score is minimum.

Label-Only MIA with Marginals (LOMIA + Marginals) is based
on the LOMIA attack proposed by [28]. LOMIA + Marginals uses the output
returned when the attacker queries the target propensity-to-move model and
the marginal distributions of the training data (which includes the information
about the possible values of sensitive attributes).

As with CSMIA, for each target individual, the attacker queries the target
model multiple times, varying the value of the sensitive attribute. To determine
the value of the sensitive attribute, the attacker follows Case (1) of CSMIA,
as described in [28]. Specifically, if the target model’s prediction is correct for a
single sensitive attribute value, the attacker selects that value as the sensitive
attribute. Differently from [28], for cases where the attacker cannot infer the
sensitive attribute, we do not run an auxiliary machine learning model. Instead,
the attacker uses the released marginal distribution to predict the most probable
value of the sensitive attribute.

The Fredrikson et al. MIA (FMIA) [14] uses the output returned when
the attacker queries the target propensity-to-move model and the marginal dis-
tributions of the training data. Following the threat model of [14], the attacker
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also has access to a confusion matrix of the target model’s predictions on its
training data. As with CSMIA and LOMIA + Marginals, the attacker queries
the target model multiple times for each target individual, changing the sensitive
attribute to take on all possible values and obtaining the predicted labels. Next,
the attacker calculates the product of the probability that the target model’s pre-
diction aligns with the true label and the marginal distribution for each potential
sensitive attribute value across all possibilities. Then, the attacker predicts the
sensitive attribute value for which this product is maximized.

Measuring Success of Attribute Inference Attack. We use two ways to
measure attribute inference attacks:

(1) From a machine learning perspective, we evaluate the success of the attack by
measuring precision (also called the positive predicted value (PPV) [21]). The
precision metric measures the ratio of true positive predictions considering
all positive predictions. A precision score of 1 indicates that the positive
predictions of the attack are always correct.

(2) From statistical disclosure control, we use CAP to measure the disclosure
risk of the individuals. Following [46], we define Dorg as the original data
and Korg and Torg as vectors for the key and target sensitive attributes
of the original data: Dorg = {Korg, Torg}. Similarly, we denote by Dsyn

as the synthetic data and Ksyn and Tsyn as the vectors for the key and
target sensitive attributes of the synthetic data: Dsyn = {Ksyn, Tsyn}. Note
that when we are calculating CAP, the synthetic data we use is the data
reconstructed by the attacker by inferring the missing sensitive value and
adding it to the previously-possessed non-sensitive attributes used for the
attack. We consider gender, age, and income as target sensitive attributes,
evaluating CAP for each sensitive attribute separately. Key attributes are
all other attributes for an individual except for the sensitive attribute being
measured by CAP. The CAP for a record j is the probability of its target
attributes given its key attributes.

CAPorg,j = Pr(Torg,j |Korg,j) =

∑M
i=1 [Torg,i = Torg,j , Korg,i = Korg,j ]∑M

i=1(Korg,i = Korg,j)
(3)

where M is the number of records. The CAP score for the original data is
considered as an approximate upper bound. Then, the CAP for the record j
based on a corresponding synthetic data Dsyn is the same probability but derived
from synthetic data Dsyn.

CAPsyn,j = (Pr(Torg,j |Korg,j))syn =

∑M
i=1 [Tsyn,i = Torg,j , Ksyn,i = Korg,j ]∑M

i=1(Ksyn,i = Korg,j)
(4)

CAP has a score between 0 and 1: a low score (close to 0) indicates that the
synthetic data has a little risk of disclosure and a high score (close to 1) indicates
a high risk of disclosure.
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5 Performance of the Target Models

In this section, we compare the performance of the target propensity-to-move
models. We evaluate whether a random forest classifier trained on protected
synthetic data can attain performance comparable to a random forest classi-
fier trained on the original data. Our results are reported in Table 2. Column
“privacy-preservation” provides different privacy-preserving techniques that we
applied to synthetic training data. “Privacy-preservation” with “None” means
that there are no privacy-preserving techniques applied on top of the synthesis.

In Table 2, we see that random forest classifier trained on synthetic data using
CART with None (i.e., no privacy-preserving technique applied) has quite close
and comparable results to random forest classifier trained on original data. As
a sanity check, we observe that both outperform the majority-class classifier.

Table 2. Classification performance of the target model. We generate synthetic data
using CART and CTGAN. For privacy-preserving techniques, we used swapping, con-
ditional swapping, PRAM, and differential privacy (ε = 3). In each case, the test data
is used in its original (unprotected) form.

Target MLs to be Released Data sets Privacy-preservation F1-Macro MCC G-mean TN FP FN TP

Majority-class Original data None 0.4924 0.0012 0.4924 46452 9539 17818 3686

Random Forest Original Data None 0.5946 0.2407 0.5779 61907 2363 10677 2548

Random Forest Synthetic data using CART None 0.5946 0.2426 0.5793 61848 2422 10628 2597

Swapping 0.5881 0.2389 0.5742 62174 2096 10831 2394

Conditional swapping 0.4654 0.0216 0.5028 63704 566 13034 191

PRAM 0.5941 0.2415 0.5789 61844 2426 10638 2587

Synthetic data using CTGAN None 0.4586 0.0392 0.5021 64207 63 13155 70

Differential privacy 0.4534 0.000 0.5000 64270 0 13225 0

We observe that in two cases the model trained on our synthesis + pri-
vacy preservation data retains a level of performance comparable to a model
trained on the original data: CART with Swapping and CART with PRAM.
Surprisingly, we find that when the training data is created with CART synthe-
sis and Conditional swapping or CTGAN (with or without Differential privacy)
the performance is comparable to that of a majority-class classifier. This result
suggests that the use of conditional swapping and differential privacy may not
effectively preserve the utility of the propensity-to-move data. For the rest of
the paper, we will assume that we intend to release machine learning models
trained on synthetic data using CART with: None, Swapping, and PRAM as
privacy-preserving techniques.

6 Results of Model Inversion Attribute Inference Attacks

In this section, we report the performance of different model inversion attribute
inference attacks. We evaluate the performance of attacks on the model when it
is trained on the original training data. Then, we investigate whether training
the model on synthesis + privacy preservation data can protect against model
inversion attribute inference attacks.
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6.1 Attacks on the Model Trained on Original Data

First, we look at the performance of model inversion attribute inference attacks
on the target model trained on original training data. The results are reported
in Table 3.

Table 3. Results of model inversion attribute inference attacks measured using pre-
cision (positive predictive value) for three different target individual sets. The target
propensity-to-move model is trained on original training data. Numbers in bold
and italic represent the first and second best inference scores across conditions. A high
precision indicates that the attack is good at correctly inferring the sensitive attribute
values. We run experiments ten times and we report average scores. The standard
deviation is below 0.01.

Adversary Resources Inclusive individuals (2013) Inclusive individuals (2015) Exclusive individuals (2015)

Attack models Gender Age Income Gender Age Income Gender Age Income

Marginals Only 0.4977 0.1238 0.1982 0.5029 0.1244 0.1991 0.5012 0.1275 0.2001

CSMIA 0.3206 0.0105 0.0514 0.4660 0.0638 0.1581 0.4943 0.0721 0.1602

LOMIA + Marginals 0.5157 0.1336 0.2105 0.5035 0.1291 0.1983 0.5014 0.1234 0.2005

FMIA 0.7563 0.6777 0.6898 0.4647 0.0170 0.2499 0.5205 0.1091 0.1452

The attack models show varying performances compared to the Marginals
Only Attack. We observe that attribute inference scores for the attack mod-
els “LOMIA + Marginals” and “FMIA” outperform the inference scores of the
Marginals Only Attack. In particular, FMIA for Inclusive individuals (2013)
achieves the highest precision for all three sensitive attributes gender, age, and
income. It outperforms other attack models in terms of correctly predicting pos-
itive instances. LOMIA + Marginals shows moderate performance, obtaining
precision values higher than Marginals Only Attack. The fact that the attack
performance for Inclusive individuals (2013) is highest is not surprising since
these individuals are in the training set of the target model. For Inclusive indi-
viduals (2015) and Exclusive individuals (2015), we see that the performance
for all attack models is relatively low and comparable to the Marginals Only
Attack, except for a few cases such as FMIA on age for Inclusive individuals
(2015). Recall that for FMIA, the attacker is exploiting a larger opportunity for
attack than for the other attacks. Specifically, the attacker can query the model
but also possesses the marginal distributions of the training data and a confusion
matrix (cf. Sect. 4.4. For this reason, it is not particularly surprising that FMIA
is the strongest attack).

6.2 Attacks on the Model Trained on Protected Synthetic Data

Second, we investigate whether we can counter the attack by replacing original
data used to train target model by a privacy-preserving synthetic data. The
results of the model inversion attribute inference attacks are reported in Table 4.
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Table 4. Results of model inversion attribute inference attacks measured using pre-
cision for three different target individual sets. The target propensity to move model
is trained on privacy-preserving (PP) + synthetic training data. Numbers in bold and
italic represent the first and second best inference scores across conditions. We run
experiments ten times and we report average scores. The standard deviation is below
0.02.

PP+ Synthetic data Attack Models Inclusive individuals (2013) Inclusive individuals (2015) Exclusive individuals (2015)

Gender Age Income Gender Age Income Gender Age Income

Synthesis Only Marginals Only 0.5036 0.1228 0.2021 0.4938 0.1225 0.2033 0.4979 0.1233 0.1980

CSMIA 0.4901 0.0675 0.1423 0.4947 0.0775 0.1544 0.5018 0.1012 0.1826

LOMIA + Marginals 0.4980 0.1261 0.1995 0.5003 0.1282 0.1972 0.4989 0.1252 0.1985

FMIA 0.5153 0.0498 0.3453 0.5007 0.0588 0.2772 0.5069 0.1080 0.1452

Synthesis + Swapping Marginals Only 0.4980 0.1238 0.1974 0.4979 0.1233 0.2060 0.4975 0.1248 0.1973

CSMIA 0.4958 0.1198 0.2032 0.4996 0.1175 0.1848 0.5093 0.1457 0.1986

LOMIA + Marginals 0.5012 0.1280 0.1984 0.4972 0.1265 0.1984 0.5032 0.1242 0.1988

FMIA 0.4473 0.0901 0.0792 0.4320 0.1362 0.3098 0.5351 0.1020 0.1452

Synthesis + PRAM Marginals Only 0.5002 0.1259 0.2010 0.5063 0.1239 0.2039 0.5002 0.1255 0.2000

CSMIA 0.4967 0.1175 0.1701 0.4913 0.1059 0.1827 0.4895 0.1371 0.2070

LOMIA + Marginals 0.5038 0.1274 0.1963 0.5004 0.1238 0.2002 0.5004 0.1247 0.1987

FMIA 0.4827 0.0282 0.1635 0.5286 0.1129 0.1188 0.5120 0.1019 0.1452

Overall we see that the effectiveness of the synthesis + privacy-preserving
techniques varies across different attributes, attack models, and adversary
resources (target sets). While some attributes have an inference score higher
than the inference score of the Marginals Only attack, others only have com-
parable performance to the Marginals Only attack. We notice a decrease in the
performance of attack models specifically for Inclusive individuals (2013) com-
pared to the performance of attack models for the same group of individuals in
Table 3. For Inclusive individuals (2015) and Exclusive individuals (2015) which
were not part of the training of the synthesis nor the training of the target model,
we do not see a clear impact of privacy-preserving techniques on attack models.
In most cases, the leak of sensitive information is low and comparable to the
performance of the Marginals Only attack.

7 Correct Attribution Probability

Now, we shift our focus to calculate the risk of attribute disclosure for individual
target subjects using CAP (Correct Attribution Probability). CAP captures how
many specific individuals face a high risk of attribute disclosure and how many a
lower risk. We measure CAP using Eq. 4, where Dorg is the attacker’s data with
key attributes Korg and the original target sensitive attribute Torg (gender, age,
income). Dsyn represents the attacker’s data where Ksyn = Korg are the key
attributes and Tsyn is the outcome of the model inversion attribute inference
attacks.

Figure 1 and Fig. 2 show the frequency of CAP scores for sensitive attributes
age and income, respectively. Due to space limitation, we specifically, focus on
FMIA attack because it outperformed other attack models in Table 3. The top
row of Fig. 1 and Fig. 2 shows the frequency of CAP scores on the original data
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Fig. 1. Frequency of CAP scores for attribute age. The total number of queries is 2904.
The numbers inside the bars represent the count of individuals with corresponding CAP
scores.
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Fig. 2. Frequency of CAP scores for attribute income. The attack model is FMIA. The
total number of queries is 2904. The numbers inside the bars represent the count of
individuals with corresponding CAP scores.

(unprotected data). We see that across all three cases, Inclusive individuals
(2013), Inclusive individuals (2015), and Exclusive individuals (2015), there is a
high CAP score, signifying a high disclosure risk. However, when we calculate
CAP scores based on the outcome of the model inversion attack, we observe
that the risk of disclosure is relatively low, with approximately up to 92% of
individuals considered protected. Only for the remaining individuals (8% indi-
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viduals), we observe that an attacker can easily infer sensitive attributes age,
and income with high CAP scores. Also, the number of disclosed individuals
varies depending on the privacy-preserving technique applied. Comparing differ-
ent resources, we see that for sensitive attribute age, Inclusive individuals (2013)
have the highest number of disclosed individuals, next are Inclusive individuals
(2015), and finally, Exclusive individuals (2015) have the lowest number of dis-
closed individuals. This aligns with the findings in Table 4. Notably, even though
we generated privacy-preserving synthetic training data sets, the target model
appears to retain some information about the original data, leading to a risk of
disclosure for certain individuals.

8 Conclusion and Future Work

We have conducted an investigation aimed at protecting sensitive attributes
against model inversion attacks, with a specific focus on a case study for a gov-
ernmental institute. Our objective was to determine the feasibility of releasing
a trained machine learning model predicting propensity-to-move to the pub-
lic without causing privacy concerns. To accomplish this, we evaluated a num-
ber of existing privacy attacks, including CSMIA, LOMIA + Marginals, and
FMIA, each distinguished by the resources available to the attacker. Our find-
ings revealed that FMIA presented the highest degree of information leakage,
followed by LOMIA + Marginals, while CSMIA exhibited the least leakage.

To mitigate these privacy risks, we employed privacy-preserving techniques
on top of synthetic data utilized to train the machine learning model prior to its
public release. Our results indicated that, in specific cases, such as with Inclusive
individuals (2013), our privacy-preserving techniques successfully reduced infor-
mation leakage. However, in other cases Inclusive individuals (2015) and Exclu-
sive individuals (2015), the leakage remained comparable to that of a Marginals
Only Attack, which uses the marginal distributions of the training data. We
found a high disclosure risk, measured with CAP, when the target model is
trained on original data. When the target model is trained on data protected
with our two step synthesis + privacy preservation approach a lower percentage
of individuals risk disclosure.

Furthermore, we think that the performance of the target machine learning
model, as well as the correlation between the sensitive attribute and the target
attribute, play a key role in the success of model inversion attacks. Future work
should explore other case studies, in which this correlation might be different.
Also, future work can look at other threat models such as white-box attacks,
where the model predictions, model parameters, and explanation of the model’s
output are made public.
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