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The authors derive nonasymptotic anytime-valid confidence sequences for the mean of a se-
quence X1, X2, . . . of bounded random variables. When put to practice, their new methods beat
the best known bounds, sometimes by vast margin — even for the fixed-sample size, not anytime-
valid setting. It is rare in statistics that one can get such substantial improvements on a decades-old
problem, and I congratulate Waudby-Smith and Ramdas on this remarkable achievement. It il-
lustrates once more the relevance of e-process-based anytime-valid methods [Grünwald et al., 2024]
even when anytime-validity is not required. In particular their results have repercussions for PAC-
Bayesian machine learning theory, which relies on concentration bounds for bounded i.i.d. Xt —
the main (but not only) setting the authors (WSR from now on) consider and on which I will also
focus. So, let X1, X2, . . . be i.i.d. ∼ P with P an arbitrary distribution on [0, 1]. The null, denoted
Pµ, consists of all distributions on [0, 1] with some fixed mean µ. We want to test whether the
mean is µ, against alternative

⋃
µ′ ̸=µ Pµ′

.

1 An Embarrassment of Neyman-Pearson Theory

Assume the Xt arrive sequentially. A company’s data science team is instructed to find out whether
it can rule out, with high certainty, that µ < µ0 for some fixed given value µ0. They plan to await
5000 outcomes and then check if the lower end of the 1 − α confidence interval is above µ0, for
α = 0.001.

But now suppose their boss is impatient and, at t = 1000, wants to know if there is already
sufficiently strong evidence to rule out µ < µ0. He thus asks the data science team to peek at the
data. They find they already have a significant result, so they stop sampling. As is well-known,
this invalidates confidence intervals, and may be viewed as p-hacking. What is less known though,
is that even if they had not found a significant result at t = 1000 and therefore had decided to keep
sampling until t = 5000 after all, they would already have invalidated the (1 − α)-coverage — by
the mere act of just checking, even if based on the particular data they saw they did not change
course after the check. In this sense, classical methods seem almost like quantum mechanics: you
may already destroy the validity of your conclusions merely by looking at the data! Anytime-valid
methods like WSR’s avoid this issue altogether.
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2 An Embarrassment of Bayes Theory

Doesn’t Bayesian statistics fare better on this problem? It has often been claimed that ‘optional
stopping is no problem for Bayesians’. While such claims are problematic anyway [Hendriksen
et al., 2021], here I focus on a different issue: the simple problem addressed by WSR is incredibly
difficult to solve via a full Bayesian analysis, which requires specifying a prior distribution on some
set P containing P . How to choose P if, like WSR, we want to make no assumptions at all on
P? Even if one adapts a standard nonparametric P and corresponding prior, one still rules out
many possible and reasonable P ... While such points have been made since the 1950s, the issue is
brought to light particularly clearly in WSR’s bounded support setting, since they really need to
assume nothing further about P at all and require only two parameters to get their results.

Still, their approach does have a pseudo-Bayesian flavour. They employ capital processes
(Kt(µ))

∞
t=0 which are really test martingales relative to the null Pµ, of the form

Kt(µ) =
t∏

i=1

(1 + λi(µ) · (Xi − µ)), (1)

with K0(µ) := 1 and (λt(µ))
∞
t=1 any Λ(µ)-valued predictable sequence, with Λ(µ) = (−1/(1 −

µ), 1/µ). Thus, one can let λt(µ) depend on Xt−1
1 and in this way one can learn ‘good’ values

of λ based on past data. In their arguably most sophisticated approach for determining the λt’s,
GRAPA, WSR determine a λ̂t(µ) directly, via a plug-in approach, but, they point out, it can also
be done via the method of mixtures, by putting a prior density wµ on Λ(µ) and using in (1) the
‘posterior-mean’ λ̃t(µ) :=

∫
wµ(λ | Xt−1

1 )dλ, based on ‘pseudo-posterior mixture’

wµ(λ | Xt−1
1 ) ∝ wµ(λ) ·

t−1∏
i=1

(1 + λ(Xi − µ)). (2)

Orabona and Jun [2021] (OJ) take this approach, with wµ generalizing Jeffreys’ prior for the
Bernoulli model.

3 GRAPA vs. REGROW vs. KLinf

What is a good martingale to use in the first place? Grünwald et al. [2024] strongly argued that,
if a simple alternative P is given, then the Kelly criterion (which they called P -GRO, standing for
growth-rate optimal relative to P ) is the natural anytime-valid replacement for the traditional goal
of optimizing power. The P -GRO martingale (Mt)

∞
t=0 (if it exists) maximizes

EP [logMt] (3)

for all t. The natural extension of (3) in case of a large (rather than simple) alternative hypothesis
is called REGROW (for relative growth-optimality in worst-case) by Grünwald et al. [2024]. WSR’s
GRAPA can be viewed as approximating the REGROW martingale. This follows from WSR’s
Proposition 2, Part (d), which shows that any test martingale for testing µ must be of the form (1)
for some predictable λt. Thus, for any P in the alternative

⋃
µ′ ̸=µ Pµ′

, there must be some sequence

{λ(P )
t }t for which the corresponding Kt(µ) is GRO. The arguments of Koolen and Grünwald [2021]

imply that λ
(P )
t must be the same for all t; let us denote it as λ∗

P . REGROW then amounts to
finding a test martingale (Mt)

∞
t=0 for testing H0 for which

max
P∈H1

EP

[
logK(λ∗

P )
t (µ)− logMt

]
(4)

2

ACCEPTED M
ANUSCRIPT

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssb/advance-article/doi/10.1093/jrsssb/qkad128/7394904 by C

W
I user on 04 January 2024



is small for each t, where we use K(λ)
t (µ) to denote the fixed-λ-capital process with λt = λ for all

t. Alternatively, one may consider the expected regret, given by replacing λ∗
P in (4) by λhs(Xt)

(‘optimal fixed λ with hindsight’), the λ for which K(λ)
t (µ) is maximized at time t.

GRAPA can be thought of as finding an (almost-) REGROW Kt(µ) by setting each λt to the
λhs(Xt−1) that would have maximized the empirical counterpart based on the data seen in the past.
OJ, in contrast, show that for their prior the regret ((4) with λ∗

P replaced by λhs(Xt)) is within
(1/2) log t + O(1). We suspect that GRAPA will deliver similar REGROWth and regret, taking
as our cue the parametric setting, where both REGROW and regret of order (1/2) log t + O(1)
is achieved for both the ‘prequential’ ML plug-in method (of which GRAPA is a nonparametric
analogue) and the Bayesian mixture (for which JO’s approach is the nonparametric analogue).

Imposing a regret-minimizing prior on λ’s in (1) is also central to the KLinf method in the ban-
dit literature [Agrawal et al., 2021], which directly links growth-optimality of (1) to KL divergence,
providing a nonparametric analogue of the duality between KL divergence and GRO established
by Grünwald et al. [2024] in the parametric case. A further theoretical analysis of the precise rela-
tion between GRAPA, KLinf and regret should lead to better understanding and propel potential
extensions such as bounded regression.
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