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Abstract 

Background  Frontotemporal lobar degeneration (FTLD) is characterized pathologically by neuronal and glial inclu-
sions of hyperphosphorylated tau or by neuronal cytoplasmic inclusions of TDP43. This study aimed at deciphering 
the molecular mechanisms leading to these distinct pathological subtypes.

Methods  To this end, we performed an unbiased mass spectrometry-based proteomic and systems-level analysis of 
the middle frontal gyrus cortices of FTLD-tau (n = 6), FTLD-TDP (n = 15), and control patients (n = 5). We validated 
these results in an independent patient cohort (total n = 24).

Results  The middle frontal gyrus cortex proteome was most significantly altered in FTLD-tau compared to controls 
(294 differentially expressed proteins at FDR = 0.05). The proteomic modifications in FTLD-TDP were more hetero-
geneous (49 differentially expressed proteins at FDR = 0.1). Weighted co-expression network analysis revealed 17 
modules of co-regulated proteins, 13 of which were dysregulated in FTLD-tau. These modules included proteins asso-
ciated with oxidative phosphorylation, scavenger mechanisms, chromatin regulation, and clathrin-mediated transport 
in both the frontal and temporal cortex of FTLD-tau. The most strongly dysregulated subnetworks identified cyclin-
dependent kinase 5 (CDK5) and polypyrimidine tract-binding protein 1 (PTBP1) as key players in the disease process. 
Dysregulation of 9 of these modules was confirmed in independent validation data sets of FLTD-tau and control 
temporal and frontal cortex (total n = 24). Dysregulated modules were primarily associated with changes in astrocyte 
and endothelial cell protein abundance levels, indicating pathological changes in FTD are not limited to neurons.

Conclusions  Using this innovative workflow and zooming in on the most strongly dysregulated proteins of the iden-
tified modules, we were able to identify disease-associated mechanisms in FTLD-tau with high potential as biomark-
ers and/or therapeutic targets.
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Background
Frontotemporal dementia (FTD) is a pathologically het-
erogeneous disease, clinically characterized by progres-
sive behavioural and/or language alterations with relative 
memory sparing [1]. Pathologically, neurodegeneration 
predominates in the frontal and temporal lobes (fron-
totemporal lobar degeneration (FTLD)) and correlates 
with aberrant protein aggregation and cellular inclusion 
formation [2]. FTLD is mostly sporadic, but a positive 
family history (familial FTLD (fFTLD)) is identified in 
25–40%, with an autosomal dominant pattern of inherit-
ance in 10–15% [1]. Two major non-overlapping patho-
logical subtypes of FTLD have been identified regardless 
of the sporadic or familial nature of the disease: FTLD-
tau, characterized by neuronal and glial inclusions of 
hyperphosphorylated tau, and FTLD-TDP, characterized 
by neuronal inclusions of hyperphosphorylated transac-
tive response DNA-binding protein 43 kDa (TDP43) [2]. 
The underlying pathology cannot be anticipated from the 
clinical phenotype in sporadic FTLD, but in autosomal 
dominant fFTLD, it can be inferred from the genotype. 
Mutations in the chromosome 9 open reading frame gene 
(C9ORF), the progranulin gene (GRN), and the TDP43 
gene (TARDB) invariably lead to FTLD-TDP pathology, 
while mutations in the microtubule-associated protein 
tau gene (MAPT) consistently lead to an FTLD-tau path-
ological signature [1]. The heterogeneity of these genetic 
features and the pathological similarity between sporadic 
and (autosomal dominant) fFTLD indicate different initi-
ating events can converge towards a comparable patho-
logical end-point characterized either by tau or TDP43 
aggregates.

Immunohistochemistry reveals that the types of cyto-
plasmic inclusions within the frontal and temporal lobes 
observed in FTLD-TDP can roughly be divided into four 
subcategories (A–D) [3]. Interestingly, recent studies 
have indicated that cerebellar TDP-43 is also observed in 
FTD [4, 5]. While progress has been made in the patho-
logical characterization of FTLD, there is still limited 
insight into the molecular mechanisms leading to tau or 
TDP-43 pathology in the FTLD brain [6]. One of these 
mechanisms is the disruption of nuclear pore complexes 
and nucleocytoplasmic transport by the formation of 
TDP-43 aggregates through sequestration or mislocalisa-
tion of factors important for nuclear transport or nuclear 
pore integrity [7]. Another disease mechanism is the incor-
rect splicing of RNA of other genes due to loss of function 
and consequent lower levels of mutated TDP-43 [8, 9].

Disease mechanisms for FTLD-tau may involve reduced 
interaction of tau with mitochondrial proteins [10], lysoso-
mal dysfunction [11], and glutamatergic dysfunction [12].

Identifying the mechanisms and key molecules leading 
to neuronal death associated with tau or TDP43 aggregates 

is of foremost importance in the development of specific 
therapies for FTLD, for which there are currently none [13].

Proteomic approaches allow to investigate the global 
changes in protein abundance levels in human tissues, 
offering an attractive entry point into the discovery of 
molecular pathways associated with a pathological phe-
notype. Few studies have used systems-level proteomic 
analysis to identify the dysregulated molecular pathways 
associated with FTLD, and none so far has compared 
the two most prevalent pathological subtypes of FTLD 
[14]. To identify the dysregulated pathways and cell-
type abundance changes associated with FTLD-tau and/
or FTLD-TDP, we investigated a postmortem discovery 
cohort consisting of sporadic or autosomal dominant 
FTLD cases with tau (n = 6) or TDP (n = 15) underly-
ing pathology and age-matched neurologically healthy 
controls (NHC, n = 5). The frozen middle frontal gyrus 
cortex, selected because it is consistently affected in 
FTLD, was microdissected and subjected to data-inde-
pendent quantitative proteomics analysis. In addition to 
differential expression analysis and gene set enrichment 
analysis, we performed a systems-level analysis of the 
entire proteome. To this end, we developed an original 
workflow to identify co-regulated modules of proteins as 
well as the most strongly differentially expressed subnet-
works of proteins within these modules. We designed a 
novel method to validate the protein modules in two data 
sets originating from the middle frontal gyrus cortex and 
temporal cortex samples of an independent validation 
cohort of individuals with FLTD-tau and NHC (n = 24) 
and identified the cell types most significantly associated 
with the dysregulated modules.

Materials and methods
Overview of the workflow
An overview of the study workflow is provided in Fig. 1. 
In brief, a small section of the middle frontal gyrus cortex 
was microdissected from fresh frozen brain samples orig-
inating from the discovery cohort (Table S1). In parallel, 
immunohistochemistry was performed on consecutive 
sections to ensure the region analysed by mass spectrom-
etry was affected with the characteristic neuropathologi-
cal changes. Proteins were extracted from the samples 
and quantified using SWATH mass spectrometry. Com-
putational analysis included differential expression analy-
sis between the 3 diagnostic groups, gene set enrichment 
analysis (GSEA) [15] to identify classes of genes (pro-
teins) overrepresented in FTLD-tau and/or FTLD-TDP, 
identification of co-regulated protein modules using 
weighted gene coexpression network analysis (WGCNA) 
[16], determination and validation of the most strongly 
differentially expressed subnetworks within each module, 
and expression weighted cell type enrichment (EWCE) 
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[17] analysis to determine which central nervous system 
(CNS) cell types were most significantly associated with 
the dysregulated protein modules.

Discovery cohort
Fresh frozen brain tissue of the middle frontal gyrus was 
obtained from the Netherlands Brain Bank, Netherlands 
Institute for Neuroscience, Amsterdam. All brain donors 
had given written informed consent for brain autopsy and 

the use of material and clinical information for research. 
The discovery cohort consisted of 26 cases which were 
selected based on detailed neuropathological postmor-
tem assessment and clinical information. Pure FTLD-tau 
or FTLD-TDP without significant age-associated pathol-
ogies including Alzheimer’s disease pathology, cerebral 
amyloid angiopathy, Lewy body disease, and vascular 
pathology were selected. All FTLD-tau cases (n = 6) were 
carriers of a MAPT mutation, and of the 15 FTLD-TDP 

Fig. 1  Overview of the workflow. Tissue sections of fresh frozen medial frontal gyrus were microdissected to isolate the cortex. Proteins were 
quantified using LC-MS/MS. Differentially expressed proteins were identified by comparing protein abundance levels across the 3 diagnostic 
groups. GSEA was performed to identify the classes of proteins enriched in FTLD-tau and/or FTLD-TDP. WGCNA was performed to identify the 
modules of co-regulated proteins. Based on these modules, cell-type enrichment analysis was performed to identify the cell type most significantly 
associated with the protein modules. Finally, modules were validated using 2 validation data sets (frontal validation data set and temporal validation 
data set)
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cases, 3 were sporadic, 2 were GRN mutation carriers, 8 
were C9ORF mutation carriers, and 2 were familial (with-
out GRN, C9ORF, or Valosin-containing protein (VCP) 
mutations). Age-matched NHC (n = 5) were selected 
among individuals who died without signs or symptoms 
of a neurological condition (Table S1), as defined by the 
Netherlands Brain Bank (https://​www.​brain​bank.​nl/​
brain-​tissue/​diagn​ostic​s/#​item-2). The three pathological 
groups were matched in sex, age, and PMI (Table S3).

Validation data sets
Two validation data sets were used. The first data set 
consisted of proteomic abundance data of the microdis-
sected middle frontal gyrus cortex originating from 11 
autosomal dominant fFTD with underlying FTLD-tau 
pathology and 11 NHC individuals (Table S1). The sec-
ond data set consisted of proteomic abundance data of 
the microdissected temporal cortex originating from 13 
autosomal dominant fFTD individuals with FTLD-tau 
underlying pathology and 8 NHC (Table S1). These data 
sets were selected from a larger data set that was acquired 
following the same brain sample preparation protocol, 
protein-to-peptide procedure, proteomic workflow, and 
instruments as in this study, but analysed in a different 
batch [18]. Access to the full data set of the validation 
cohort is provided in the original publication [18]. Note 
that the validation sets are partially paired, where from 2 
subjects, only the temporal cortex was extracted; from 3 
samples, only the frontal cortex was extracted; and from 
the remaining 19, both the frontal and temporal cortices 
were extracted (Table S1).

Immunohistochemistry
Fresh frozen human postmortem middle frontal gyrus 
was cut (5 μm sections), placed on a StarFrost Micro-
scope Slide (Knittel Glass), and air dried overnight at 
room temperature. Before staining, the sections were 
fixed in 100% acetone for 10 min. Endogenous peroxidase 
activity was quenched by incubation with 0.3% (vol/vol) 
H2O2in methanol for 30 min at room temperature. Anti-
gen retrieval was performed by soaking the sections in 10 
mM citrate buffer pH 6.0, heated, and boiled for 10 min 
in a microwave oven. The sections were stained over-
night at 4 °C with primary antibodies against amyloid 
beta, phosphorylated tau, p62, and TDP43, as described 
previously [19]. Primary antibodies were visualized using 
Power vision (Dako, Denmark).

Preparation of brain homogenates
Ten-micrometre sections of fresh frozen tissue con-
secutive to those used for immunohistochemistry were 
mounted on polyethylene naphthalate-membrane slides 
(Leica, Herborn, DE), fixed in 100% ethanol for 1 min, 

and stained using 1% (wt/vol) Toluidine Blue in H2O 
(Fluka Analytical, Buchs, Switzerland) for 1 min, accord-
ing to an in-house developed protocol [20]. The middle 
frontal gyrus cortex (50 mm3) was isolated from white 
matter using laser micro-dissection with a Leica AS LMD 
system. The sections were collected in Eppendorf tubes 
containing 30 mL M-PER lysis buffer (Thermo Scientific, 
Rockford, IL, USA) supplemented with reducing sodium 
dodecyl sulphate sample buffer (Thermo Scientific). Sam-
ples were boiled at 95 °C for 5 min and then centrifuged. 
The supernatant was stored at − 80 °C until further use. 
Protein separation by electrophoresis, in‑gel digestion, 
and peptide extraction were done as described previously 
[21]. Samples were diluted such that the total amount of 
protein in each sample used for mass spectrometry was 
20 μg.

Liquid chromatography tandem mass spectrometry
Peptides were analysed by liquid chromatography tan-
dem mass spectrometry (LC-MS/MS) using an Ultimate 
3000 LC system (Dionex, Thermo Scientific) coupled to 
the Triple TOF 5600 mass spectrometer (Sciex). Peptides 
were trapped on a 5-mm Pepmap 100 C18 column (300 
μm i.d., 5 μm particle size, Dionex) and fractionated on a 
200-mm Alltima C18 column (300 μm i.d., 3 μm particle 
size). The acetonitrile concentration in the mobile phase 
was increased from 5 to 18% in 88 min, 25% at 98 min, 
40% at 108 min, and 90% in 2 min, at a flow rate of 5 μL/
min. The eluted peptides were electro-sprayed into the 
Triple TOF MS. The micro-spray needle voltage was set 
to 5500 V. SWATH experiments consisted of a parent ion 
scan of 150 ms followed by a SWATH window of 8 Da 
with a scan time of 80 ms and stepped through the mass 
range between 450 and 770 m/z. The total cycle time was 
about 3.2 s, which yielded in general 9–10 measurement 
points across a typical peptide with an elution time of 30 
s. The collision energy for each window was determined 
based on the appropriate collision energy for a 2+ ion, 
centred upon the window with a spread of 15 eV.

Proteomic data analysis
Spectronaut 11 was used to process the SWATH data 
[22]. Apart from the parameters explicitly mentioned 
here, Spectronaut was run using the default settings. The 
retention time prediction type was set to dynamic iRT, 
and interference correction was enabled. Finally, across-
run normalization based on peptide total peak areas 
was performed by Spectronaut. Peptide abundances 
and Q-values (quality score, SWATH peptide to spectral 
library matching) were exported as a Spectronaut report 
and further processed using the R language for statistical 
computation. Within each fraction, peptides with Q-value 
> 0.01 in more than half the samples were discarded to 

https://www.brainbank.nl/brain-tissue/diagnostics/#item-2
https://www.brainbank.nl/brain-tissue/diagnostics/#item-2
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assure high-confidence annotations of the MS signals to 
the peptides. Quality control of the peptides for a few 
selected proteins is shown in Table S3. Next, fractions 
were combined by summation of same-peptide abun-
dance, and subsequently, protein-level abundances were 
computed by summation of their top 5 (overall) most 
abundant peptides. The protein abundances were nor-
malized such that the total protein count was equal for 
all the samples. Both because the total amount of protein 
injected into the system (see the “Preparation of brain 
homogenates” section) and because LC-MS/MS typically 
measures the relative protein abundance rather than the 
absolute values [23], this normalization is necessary to 
avoid biases in downstream analyses.

Hierarchical clustering
Protein abundances were first normalized for total pro-
tein count per sample then centred and scaled. Pearson 
correlations between both the samples and the proteins 
were calculated and used as a distance measure for clus-
tering. Hierarchical clustering was performed using the 
“hclust” function with average linkage in R version 3.6.1.

Differential expression analysis
Differential expression analysis was performed in pair-
wise comparisons using the beta-binomial test (ibb R 
package version 13.6) [24]. A beta-uniform mixture 
model was fitted to the p-value distribution of each of the 
comparisons to determine the FDR (BioNet R package 
version 1.40.0).

Gene set enrichment analysis
GSEA was performed using the GSEA software version 
4.0.3 “Run GSEA Preranked” tool with 1000 permuta-
tions, on the preranked log2 fold change (log2FC) pro-
tein levels resulting from the three pairwise comparisons 
(FTLD-tau versus NHC, FTLD-TDP versus NHC, and 
FTLD-tau versus FTLD-TDP). Normalized enrich-
ment scores (NES) were calculated as described [15]. To 
gain complementary information, 5 different gene set 
databases from the GSEA Molecular Signatures Data-
base (msigdb version 6.2) were used: the Chemical and 
Genetic Perturbations (CGP) database, which consists of 
gene sets functionally related to phenotypes or diseases; 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
and the REACTOME databases, which list, in addition, 
gene sets associated with metabolic pathways; and the 
Gene Ontology (GO) biological process (GO-bp) and 
molecular function (GO-mf) databases. The CGP Alz-
heimer’s disease gene set “blalock alzheimers disease up” 
results from a microarray analysis of the human post-
mortem hippocampus of Alzheimer’s disease individuals 

and controls and includes 1668 genes upregulated in 
Alzheimer’s disease compared to controls [25]. The CGP 
ageing frontal cortex data set “lu ageing brain up” results 
from a microarray analysis of the human postmortem 
frontal cortex of individuals ranging from 26 to 106 years 
of age and includes 261 genes upregulated in the ageing 
frontal cortex [26]. The CGP Huntington’s disease data 
set (n = 15 genes) and KEGG Huntington’s disease data 
set (n = 182 genes) include genes involved in clathrin-
mediated endocytosis and the endo-lysosomal and pro-
teasome pathway and neurotransmitter signalling. The 
KEGG Parkinson’s disease data set (n = 130 genes) and 
CGP Parkinson’s disease data set (n = 84 genes) include 
genes mutated in familial Parkinson’s disease and genes 
belonging to the molecular pathways regulated by these 
genes.

Identification of co‑regulated protein modules
A limitation of GSEA is that it requires pre-annotated func-
tional groups of genes, which biases the analysis towards 
known pathways and limits the ability to identify new func-
tional groups of genes. To overcome this limitation and 
identify the groups of co-regulated proteins in an unsu-
pervised manner without requiring predefined functional 
groups or sample labels, we designed a novel workflow 
combing WGCNA and Hierarchical HotNet [16, 27]. We 
used the WGCNA R package version 3.6.1 to create coex-
pression networks based on the sample-normalized protein 
abundance levels (Fig. S1, top row). A similarity matrix of 
the protein abundance levels was created by calculating the 
absolute value of the Pearson correlations between protein 
abundance levels and taking these values to the 7th power 
(this power was determined using the “pickSoftThreshold” 
function in the package). Based on the similarity matrix, a 
hierarchical tree of the proteins was created. Subsequently, 
the dynamic tree cut method was used to divide the pro-
teins into modules of co-regulated proteins. After the mod-
ules were created, GO enrichment analysis was performed 
on each module to identify functional enrichment. This 
way, modules can be created in an unbiased fashion while 
still gaining functional insight into the module content. All 
proteins in our data set with at least one associated GO 
term were used as background for the enrichment test. To 
determine whether a module was significantly differently 
abundant between the diagnostic groups, we performed 
Student’s t-test with Benjamini-Hochberg correction on 
the distribution of the log2FC values of all proteins within 
that module (Fig. S1). We define a module to be dysregu-
lated if this distribution is significantly different from zero 
(i.e. there is a consistent trend of the module proteins to 
have higher abundance in one pathological group compared 
to another).
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Determination of differentially abundant subnetworks
Most of the modules of co-regulated proteins consisted 
of > 100 proteins and were thus too large to be inter-
preted easily. Furthermore, many proteins in each mod-
ule had only low to medium absolute log2FC values. We 
developed a method to overcome these limitations and 
identify subnetworks of proteins most significantly dys-
regulated and thus more likely to have a high functional 
influence in the module from which they originate. Using 
correlations between protein abundance levels within 
each module as edges, a network of all the proteins 
within a module was created. Using Hierarchical HotNet, 
we identified subnetworks of proteins most highly and 
significantly dysregulated in each module based on the 
p-value between FTLD-tau and NHC for each of the pro-
teins (Fig. S1) [16]. Subnetworks were visualized using 
Cytoscape. Note that because the number of proteins in 
each subnetwork consists of a fraction of the number of 
proteins within the modules from which it originates, the 
proteins within the subnetwork do not necessarily reflect 
the overall GO term(s) associated with the module. The 
number of proteins in the subnetwork that have a GO 
annotation that supports the module GO term is shown 
in Table S2. Separate GO term enrichment analysis on 
the subnetworks was not performed because the subnet-
works are generally too small to perform a meaningful 
enrichment analysis.

Module validation
The differential abundance of the modules was validated 
in the frontal and temporal validation data sets (Table 
S2). Data pre-processing and differential expression anal-
ysis were performed in the same way as for the discovery 
data set. The log2FC and p-values obtained for the con-
trasts between FTLD-tau and NHC in both validation 
data sets were mapped onto the modules identified in 
the discovery data set. We then counted the fraction of 
proteins ( Fm,t ) within module m that had a p-value lower 
than a given threshold t and a differential expression level 
expressed in the same direction (negative or positive 
log2FC value) in both data sets (Fig. S2):

where P ∈ m indicates the set of proteins in module m , 
pP,d is the p-value of protein P in the discovery data set, 
pP,v is the p-value of protein P in the validation data 
set, log2FCP,d is the log2 fold change of protein P in the 
discovery data set, log2FCP,v is the log2 fold change of 
protein P in the validation data set, and Nm is the total 
number of proteins in module m.

Subsequently, we randomly shuffled the protein labels 
and calculated Fm,t for the shuffled data. We repeated 

Fm,t =

∑

P∈m1if
�

pP,d < t ∧ pP,v < t ∧ FCP,d ∙ FCP,v > 0
�

Nm

this permutation 1000 times. Subsequently, we calculated 
whether Fm,t was significantly higher in the real data set 
compared to the permuted data at p-value thresholds of 
0.1, 0.2, 0.5, and 0.8 using a one-sided t-test. If the aver-
age of these four p-values, which we call the gene expres-
sion set similarity (GESS) score, is lower than 0.05, we 
considered the module validated (Fig. S2). Note that in 
the context of this work, validation refers to the valida-
tion of protein abundance patterns within each module, 
rather than the module or subnetwork topology. We were 
interested in validating the modules in terms of patholog-
ical differences in protein abundances, and linking those 
to biological function through GO term analysis, rather 
than the exact module/subnetwork topologies.

Expression‑weighted cell type enrichment analysis
To determine if any of the modules could be linked 
to changes in the relative abundance of proteins asso-
ciated with specific cell types between pathological 
groups, EWCE analysis of differentially expressed pro-
teins was performed based on a data set of single nuclei 
RNA sequencing (RNAseq) of adult NHC postmortem 
frontal cortex [28]. Pre-processing and analysis of small 
non-coding RNAseq (snRNAseq) data sets was per-
formed using the Python package Scanpy version 1.5.1 
as described previously [29, 30]. Cell-gene matrices were 
filtered for outliers, and gene expression was normal-
ized per cell. All cells were clustered using Louvain clus-
tering implementation on the top 1000 highly variable 
genes. To identify cell types, marker genes and expected 
cell types were inferred from the original publications 
of the data sets. Angiotensinogen (AGT), electrogenic 
sodium bicarbonate cotransporter 1 (SLC4A4), and 
excitatory amino acid transporter 2 (SLC1A2) were used 
as markers of astrocytes; vascular endothelial growth 
factor receptor 1 (FLT1), dual specificity protein phos-
phatase 1 (DUSP1), and nostrin (NOSTRIN) as markers 
of endothelial cells; vesicular glutamate transporter 1 
(SLC17A7) as a marker of excitatory neurons; glutamate 
decarboxylase 1 (GAD1) as a marker of inhibitory neu-
rons; amyloid beta A4 precursor protein-binding family 
B member 1-interacting protein (APBB1IP) and TYRO 
protein tyrosine kinase-binding protein (TYROBP) as 
markers of microglia; myelin-associated oligodendrocyte 
basic protein (MOBP) as a marker of oligodendrocytes; 
and protocadherin-15 (PCDH15) and platelet-derived 
growth factor receptor alpha (PDGFRA) as markers of 
oligodendrocyte precursor cells (OPCs). Clusters that 
could not be clearly identified with one cell type were 
labelled “unknown”. Normalized gene expression data 
and cell type label matrices were subsequently used for 
expression-weighted cell type enrichment analysis using 
the EWCE package in R version 3.14 [17]. The total set 
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of SWATH quantified proteins for FTLD-tau and FTLD-
TDP was used as the background set, from which 20,000 
random lists were generated for bootstrapped analysis of 
the probability distribution of cell type abundance. The 
standard deviation of the average expression of proteins 
associated with a cell type compared to the mean expres-
sion of bootstrapped gene lists is used as a measure of 
significance of the cell type enrichment [17].

Results
Quantitative proteomics of the medial frontal gyrus cortex 
reveals the largest contrast between FTLD‑tau and NHC
The goal of this work was to identify the dysregulated 
biological pathways associated with FTLD-tau and 
FTLD-TDP. From a total of 26 samples, LC-MS/MS 
identified 1801 unique proteins without any missing val-
ues across all samples. We compared protein abundance 
levels across the diagnostic groups and found that the 
largest and most significant contrast resulted from the 
FTLD-tau versus NHC comparison with 293 proteins 
differentially expressed at FDR = 0.05 (Fig.  2A). Sixty 
per cent of the proteins (n = 175) were downregulated 
in FTD-tau compared to NHC, and 35% (n = 83) of the 
293 proteins had abundance level modifications beyond 
50% of the NHC levels. Fewer proteins were differen-
tially regulated in FTLD-TDP compared to NHC with 65 
proteins significantly differentially expressed at FDR = 
0.2 (Fig. 2C). Sixty-seven per cent (n = 44) were down-
regulated in FTLD-TDP compared to NHC, and 30% (n 
= 20) of the 65 proteins had abundance level modifica-
tions beyond 50% of the NHC levels. The comparison 
between FTLD-TDP and FTLD-tau yielded 49 differen-
tially expressed proteins at FDR = 0.1 (Fig. 2B). Density 

distribution of the p-values for pairwise proteome com-
parisons are provided in Fig. S3, and the overlap in dif-
ferentially abundant proteins between the three pairwise 
comparisons is shown in Fig. S19. Hierarchical cluster-
ing of the 50 most significantly differentially expressed 
proteins between each of the 3 comparisons revealed 
that the FTLD-tau and NHC samples formed clusters 
whereas the FTLD-TDP samples did not (Fig. 3). Patho-
logically, FTLD-TDP can be further classified into four 
(or five) subtypes according to the cortical layer localiza-
tion of TDP43 aggregates [31, 32]. Our cohort included A 
(n = 5), B (n = 3), and C (n = 5) subtypes, the remainder 
of the samples (n = 2) being of undetermined subtype 
(Table S1). The cohort was not sufficiently powered to 
further investigate the clustering of the subtypes.

 FTLD‑tau and FTLD‑TDP are enriched for proteins related 
to proteins associated with other neurodegenerative 
diseases and oxidative phosphorylation
GSEA was performed to identify the classes of genes 
overrepresented in FTLD-tau and FTLD-TDP. We found 
that proteins upregulated in FTLD-tau were most sig-
nificantly enriched for genes reported to be upregulated 
in Alzheimer’s disease (Fig. 4A, “blalock alzheimers dis-
ease up” gene set in the CGP database) and in the ageing 
frontal cortex (Fig.  4A, “lu ageing brain up” gene set in 
the CPG database). Proteins downregulated in FTLD-tau 
were most significantly enriched for genes reported to 
be dysregulated in Huntington’s disease (Fig.  4A, “hun-
tingtons disease” gene set in the KEGG database), genes 
involved in monovalent inorganic cation transmembrane 
transport (Fig. 4A “monovalent inorganic cation tta” gene 
set in the MF database and “monovalent inorganic cation 

Fig. 2  Volcano plot of pairwise proteome comparisons. Distribution of the log2 fold change (log2FC) protein abundance level (x-axis) and 
corresponding p-value (y-axis) for the proteome comparison between A FTLD-tau and NHC, B FTLD-tau and FTLD-TDP, and C FTLD-TDP and NHC. 
Levels of significance are indicated by the blue colour: the darker the colour, the more significant the contrast, with corresponding false discovery 
rates (FDR) indicated in the legend. The most highly and significantly dysregulated proteins are indicated by their names. SLC4A7, solute carrier 
family 4 member 7; FABP7, fatty acid-binding protein 7; ANXA1, Anexin 1; GFAP, glial fibrillary acid protein; TNC, Tenascin C; PDHA1, pyruvate 
dehydrogenase E1 subunit alpha 1; IDH3B, isocitrate dehydrogenase (NAD(+)) 3 non-catalytic subunit beta; ANKRD29, ankyrin repeat domain 29; 
HSDL2, hydroxysteroid dehydrogenase like 2; PAFAH1B3, platelet-activating factor acetylhydrolase IB subunit alpha1
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transport” gene set in the BP database), genes involved 
in synaptic signalling (Fig. 4A “synaptic signalling” gene 
set in the BP database), and genes involved in oxidative 
phosphorylation (Fig.  4A “cellular respiration” gene set 
in the BP database; “oxidative phosphorylation” gene set 
in the KEGG database; “tca cycle and respiratory elec-
tron transport” gene set in the REACTOME database). 
Proteins downregulated in FTLD-TDP were most sig-
nificantly enriched for genes reported to be involved in 
Alzheimer’s disease (Fig.  4B “alzheimers disease” gene 
sets in the CPG and KEGG databases), Parkinson’s dis-
ease (Fig. 4B “parkinsons disease” gene sets in the CGP 
and KEGG databases), Huntington’s disease (Fig.  4B 
“huntingtons disease” gene sets in the CPG and KEGG 

databases), and genes involved in oxidative phosphoryla-
tion (Fig. 4B “oxidative phosphorylation”, “electron trans-
port chain”, and “cellular respiration” gene sets in the BP 
database; “oxidative phosphorylation” and “respiratory 
electron transport” gene sets in the CPG database; “oxi-
dative phosphorylation” gene set in the KEGG database; 
“respiratory electron transport” and “tca cycle and respir-
atory electron transport” gene sets in the REACTOME 
database).

Network co‑regulation analysis identifies 17 modules 
of highly co‑regulated proteins
To identify functional groups of proteins that are similarly 
affected in the disease, the 1801 unique proteins identified 

Fig. 3  Hierarchical clustering of the samples of the discovery cohort based on the abundance levels of the 50 most significantly differentially 
expressed proteins resulting from the 3 pairwise comparisons. The samples are represented on the x-axis, FTLD-tau samples in yellow, FTLD-TDP in 
purple, and NHC in green. Normalized protein abundance levels are represented on the y-axis. Shades of red represent the upregulated proteins, 
and shades of blue represent the downregulated proteins. p-values for every 3 pairwise comparisons are indicated to the left of the figure. Shades 
of blue indicate statistically significant values: the darker, the more significant, and grey indicates non-significant p-values. To check the robustness 
in a data set with a limited sample size, we have repeated the clustering using Spearman correlation (Fig. S18). No significant differences could be 
observed



Page 9 of 18Bridel et al. Alzheimer’s Research & Therapy           (2023) 15:59 	

through LC-MS/MS were used to generate a protein co-
expression network using the WGCNA algorithm across 
the total cohort [16]. The resulting network consisted of 17 
modules of proteins with similar abundance patterns. The 
modules ranged in size from 272 (Fig. 5, module M01) to 18 
proteins (Fig. 5, module M17). GO analysis of the protein 
module members revealed the biological functions most 
significantly associated with each module (Table S2). Thir-
teen out of the 17 modules of co-expressed proteins were 
significantly dysregulated in FTLD-tau compared to NHC 
and 9 out of 17 in FTLD-TDP compared to NHC (Fig. 5). 
The mean log2 fold change of modules of co-expressed 

proteins associated with transmembrane transporter activ-
ity (module 01), post-synapse organization (module 03), 
oxidative phosphorylation (modules 04), filamin bind-
ing (modules 07), and phenylalanine t-RNA ligase activ-
ity (module 10) were significantly downregulated in both 
FTLD-tau and FTLD-TDP compared to NHC (Fig. 5). The 
mean log2 fold change of modules of co-expressed proteins 
associated with chromatin regulation (module 02), protein-
containing complex binding (module 05) and apoptotic 
signalling (module 13) were significantly upregulated in 
both FTLD-tau and FTLD-TDP compared to NHC (Fig. 5). 
The mean log2 fold change of modules of co-expressed 

Fig. 4  Significantly overrepresented gene sets in FTLD-tau and FTLD-TDP. Gene sets originated from 5 different databases: GO biological process 
database (bp, blue), chemical and genetic perturbations database (cgp, orange), Kyoto Encyclopedia of Genes and Genomes database (KEGG, 
green), GO molecular function database (mf, red), and REACTOME database (purple). Bars to the right indicate gene sets upregulated in FTLD-tau 
versus NHC (A) or FTLD-TDP versus NHC (B); bars to the left indicate gene sets downregulated in FTLD-tau versus NHC (A) or FTLD-TDP versus 
NHC (B). Dotted lines represent the significance threshold. The names of the gene sets are the original names as referred to in the msigdb.tta = 
transmembrane transporter activity. *Full name: respiratory electron transport ATP synthesis by chemiosmotic coupling and heat production by 
uncoupling proteins. **Full name: transferase activity transferring alkyl or aryl other than methyl groups
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proteins associated with vesicle-mediated transport (M06), 
co-translational protein targeting to the membrane (M09), 
tRNA binding (M11), and oxidoreductase activity (M17) 
were dysregulated in FTD-tau compared to NHC (Fig. 5).

We next identified the subnetworks of proteins that were 
most highly and significantly dysregulated within each 
module (Figs. 5 and 6I–L). Note that the subnetworks were 
created based on protein abundance level correlations and 
log2FC values, and not on functional annotations (Fig. S1). 
Hence, the proteins of the subnetwork do not necessarily 
reflect the overall GO term(s) associated with the module 
to which they belong.

Dysregulation of modules of co‑regulated proteins are 
validated in two data sets from independent FTLD‑tau 
tissue cohort
We next sought to validate the protein abundance pat-
terns within modules and subnetworks of most highly 
and significantly dysregulated proteins within each 
module in two data sets of two different brain areas 
originating from an independent cohort (Table S1, vali-
dation cohort), focussing on FTLD-tau which showed the 
strongest protein abundance contrast compared to NHC. 
Of the 1801 proteins of the discovery data set, 1738 were 
also present in the frontal cortex validation data set 

and 1671 in the temporal cortex validation data set. To 
quantify the overlap in protein abundance dysregulation 
within each module between the discovery and validation 
(frontal or temporal) data sets, we devised a GESS score 
(see the “Materials and methods” section and Fig. 6E–H). 
Of the 13 modules of co-expressed proteins dysregulated 
in FTLD-tau, the protein abundance patterns of 9 modules 
were validated in one or both validation data sets (Table 
S2, Fig. 5), including modules 03, 04, 06, and 10 (Fig. 6).

To investigate the role of the modules in disease, we 
consider a module dysregulated if the distribution of log2 
fold change values within that module is significantly dif-
ferent from zero (see the “Materials and methods” sec-
tion). The mean log2 fold change protein abundance level 
of module 03 was downregulated in FTLD-tau compared 
to NHC (Fig. 6A) and consisted of 212 co-regulated pro-
teins most significantly enriched in proteins involved 
in the post-synapse organisation (Fig.  5). Subnetwork 
analysis revealed that the most highly and significantly 
differentially abundant proteins associated with FTLD-
tau consisted of 13 proteins among which was selenium-
binding protein 1 (SELENBP1), a protein involved in 
ubiquitination/deubiquitination-mediated protein degra-
dation [33], which was highly upregulated in FTLD-tau 
(Fig. 6I, M).

Fig. 5  The mean differential protein abundance levels of the 17 co-regulated modules. The mean log2 fold change (log2FC) protein abundance 
levels for each module are provided in the table. Red indicates an upregulated mean log2FC protein abundance level within the module compared 
to NHC, and blue indicates a downregulated mean log2FC protein abundance level within the module compared to NHC. A bold font indicates that 
the mean log2FC was significantly different from zero (corrected p < 0.05). Additionally, the sizes of the modules and most significant subnetworks 
are provided. M0 is not a module but consists of the leftover proteins that do not fit in any of the 17 modules (M1 to M17). One asterisk next to 
a module name indicates that protein abundance patterns with the module were validated in one of the validation data sets, and two asterisks 
indicate that module protein abundance patterns were validated in both validation data sets. More detail about the module validation can be 
found in Table S2
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Fig. 6  Modules and subnetworks of co-regulated proteins that are dysregulated in FTLD-tau and FTLD-TDP. A–D Density curves of the log2 fold 
change (log2FC) values of all the proteins belonging to a module in the discovery data set and the validation data set. The p-value indicates the 
significance of the median log2FC difference compared to NHC. E–H Permutation test to validate the differential abundance of modules identified 
in the discovery data set. The y-axis shows the fraction of proteins where the log2FC measured in the validation data set was in the same direction 
as in the discovery data set, and the p-value was below the threshold (x-axis) in both the discovery and validation data set (blue line). We used a 
permutation test, where we repeated this procedure with the protein labels in the validation data set randomly reassigned 1000× (grey lines). 
The module was considered validated if the average p-value at thresholds 0.1, 0.5, 0.5, and 0.8 was lower than 0.05 (GESS score). Fraction validated: 
fraction of the proteins in the module that have a log2FC in the same direction as in the discovery data set. I–L Subnetworks of most highly and 
significantly dysregulated proteins within the corresponding module of co-regulated proteins in the discovery data set. Red nodes indicate a 
positive log2FC, and blue nodes indicate a negative log2FC. The darkness of the borders reflects the significance. M–P Subnetworks of most highly 
and significantly dysregulated proteins in the validation data set. Red nodes indicate a positive log2FC, and blue nodes indicate a negative log2FC. 
The darkness of the borders reflects the significance
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The mean log2 fold change protein abundance level 
of module 04 was also downregulated in FTLD-tau 
(Fig. 6B) and consisted of 159 proteins most significantly 
enriched in proteins involved in oxidative phosphoryla-
tion (Fig. 5). Subnetwork analysis revealed that the most 
highly and significantly dysregulated proteins consisted 
of 26 proteins, among which cyclin-dependent kinase 5 
(CDK5), a protein involved in the phosphorylation of tau 
(Fig. 6J, N) [34].

The mean log2 fold change protein abundance level 
of module 06 was also downregulated in FTLD-tau 
(Fig.  6C) and consisted of 129 proteins most signifi-
cantly enriched in proteins involved in vesicle-mediated 
transport (Fig. 5). Subnetwork analysis revealed that the 
most highly and significantly dysregulated proteins con-
sisted of 37 proteins among which polypyrimidine tract-
binding protein 1 (PTBP1), a splicing regulator which 
represses the splicing of MAPT exon 10, which was the 
only upregulated protein of the subnetwork (Fig. 6K, O).

The mean log2 fold change protein abundance level 
of module 10 was likewise downregulated in FTLD-tau 
(Fig. 6D) and consisted of 56 proteins most significantly 
enriched in proteins involved in phenylalanine-tRNA 
ligase activity (Fig. 5). Subnetwork analysis revealed that 

the most highly and significantly associated proteins 
consisted of 37 proteins among which was aldo-keto 
reductase family 1 member A1 (AKRA1A), a detoxify-
ing enzyme involved in the reduction of a range of toxic 
aldehydes which was highly upregulated (Fig. 6L, P). The 
protein abundance patterns in the 4 modules and subnet-
works discussed in Fig. 6 were validated in both the fron-
tal and temporal cortex data sets. The other (validated 
and non-validated) modules of co-regulated proteins and 
subnetworks are detailed in Figs. S4-S16.

Expression‑weighted cell type enrichment analysis
To determine which cell types are driving the abun-
dance changes in each co-regulated module of proteins, 
we evaluated the enrichment of specific cell type marker 
proteins in each module (see the “Materials and meth-
ods” section). We found that in FTLD-tau, the modules 
with validated differential abundance were associated 
with higher abundance levels of astrocyte, endothelial 
cell, and (only in the temporal cortex) OPC marker pro-
teins and lower abundance levels of excitatory and inhibi-
tory neuron marker proteins (Fig.  7A, B). In contrast, 
the non-validated modules were not associated with any 
cell-type marker proteins (Fig. 7C, D). When considering 

Fig. 7  Cell type enrichment of the modules with (non-)validated protein abundance patterns. A, B The proteins in the modules that were validated 
were analysed for enrichment of known cell type markers (see the “Materials and methods” section). “Up” (red) indicates that the markers for that 
specific cell type had high log2FC values in the tau cohort compared to NHC, suggesting enrichment of these cell types in the tau subjects. “Down” 
(blue) indicates that the markers for that specific cell type had low log2FC values in the tau cohort compared to NHC, suggesting depletion of these 
cell types in the tau subjects. This analysis was performed both on the modules validated in the frontal samples (A) and on the modules validated 
in the temporal samples (B) of the validation set. C, D The same procedure was performed on the modules where we were not able to validate the 
protein abundance patterns
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the changes per module (Fig. 8), proteins associated with 
astrocytes and OPCs were upregulated in FTLD-tau 
compared to NHC in the module associated with pheny-
lalanine-tRNA ligase activity (M10), indicating that this 
mechanism is specifically affected in OPCs and not the 
other cell types (Fig.  8). In contrast, proteins associated 
with excitatory and inhibitory neurons were downregu-
lated in FTLD-tau compared to NHC in modules asso-
ciated with post-synapse organisation (M03), oxidative 
phosphorylation (M04), and vesicle-mediated transport 
(M06), indicating protein abundance dysregulation in 
these processes are mostly affected in neurons (Fig.  8). 
An overview of cell-type enrichment of all modules is 
given in Fig. S17.

Discussion
FTLD‑tau has a clearer pathological signature than 
FTLD‑TDP
This study aimed to identify and validate dysregulated pro-
teins and biological pathways and the cell types driving 
these changes associated with FTLD-tau or FTLD-TDP, 
using a systems-level proteomics approach applied on 
brain cortex tissue. We found that the middle frontal 
gyrus cortical proteome was most significantly altered 
in FTLD-tau compared to age-matched NHC. The 
proteomic changes in FTLD-TDP were more hetero-
geneous, resulting in a weaker contrast with NHC. 
Weighted co-expression network analysis revealed that 
thirteen modules of co-regulated proteins were dysregu-
lated in FTLD-tau and/or FTLD-TDP. Dysregulation of 9 
of these modules was confirmed in 2 independent vali-
dation data sets of FLTD-tau and control temporal and 
frontal cortex tissue (total n = 24). We validated oxida-
tive phosphorylation, scavenger mechanisms, chromatin 
dysregulation, and clathrin-mediated transport as key 
dysregulated pathways in both the frontal and temporal 
cortices of FTLD-tau. Dysregulated modules were associ-
ated with changes in astrocyte and endothelial cell pro-
tein abundance levels, indicating pathological changes in 
FTD are not exclusively driven by neurons.

We hypothesized the relatively fewer changes in FTLD-
TDP result from the higher pathological heterogeneity of 
FTLD-TDP, which can be further classified into four (or 
five) subtypes according to the cortical layer localization 
of TDP43 aggregates [31, 32]. Conceptually similar find-
ings were reported by our group when comparing the ante 
mortem cerebrospinal fluid (CSF) proteome of FTLD-TDP 
and FTLD-tau individuals with that of NHC, the latter 
comparison yielding many more differentially regulated 
proteins than the former [35]. To date, all CNS tissue prot-
eomic studies investigated FTLD-TDP cases as one group, 
so that our findings cannot be corroborated yet [36–39].

This study was performed on a relatively small number 
of subjects (n = 26 for the discovery cohort and n = 24 
for the validation cohort). Hence, this study has too few 
samples to further stratify the FTLD-TDP samples into 
these subgroups with sufficient statistical power. Human 
brain tissue is difficult to obtain, and because FTD is a 
rare disease, cohorts tend to be rather small. With a 
larger sample size, more complex co-regulation patterns 
linked to FTLD-TDP subtypes might also be unravelled. 
The strength of our results lies in that they were validated 
in an independent cohort.

Pathways related to tau phosphorylation and alternative 
splicing affecting tau aggregation propensity affected 
in FTLD‑tau
Several tau-related proteins were dysregulated in the 
FTLD-tau data set compared to NHC, including PTBP1, 
a splicing regulator which represses the splicing of MAPT 
exon 10 [40]. This is relevant to FTLD-tau pathology as 
alternative splicing of exon 10 results in tau isoforms con-
taining either three or four microtubule-binding repeats 
(3R-tau and 4R-tau, respectively). The difference in the 
number of repeats determines the strength of the binding 
of tau to microtubules, thus modulating the stability of 
tau and its propensity to aggregation [41, 42]. Increased 
levels of PTBP1 induce splicing of exon 10, which favours 
the less aggregation-prone 3R-tau isoform. CDK5 was 
among the most significantly downregulated proteins of 
the M04 subnetwork (Fig. 6). CDK5 is a proline-directed 
serine/threonine kinase involved in tau phosphoryla-
tion via the regulation of microtubule affinity-regulating 
kinase 4 (MARK4) activity [43], and its aberrant activa-
tion leads to tau aggregation and neurodegeneration [44]. 
We hypothesize that increased PTBP1 and decreased 
CDK5 abundance represent compensatory mechanisms 
in the face of tau aggregation and could thus be interest-
ing therapeutic targets. Other tau-related proteins upreg-
ulated in FTLD-tau included protein S100 A1, involved 
in the regulation of tau phosphorylation [45], plasma 
membrane-binding protein ANXA2, a tau-binding pro-
tein that contributes to the enrichment of tau in the axon 
[46, 47], microtubule-associated protein (MAPRE1), and 
tubulin polymerization-promoting protein family mem-
ber 3 (TPPP3).

Overlap between proteins most significantly deregulated 
in FTLD‑TDP in our data set and other studies suggest 
possible FTLD‑TDP biomarker candidates
A smaller number of differentially regulated proteins 
was identified in the FTLD-TDP frontal cortex proteome 
compared to that of NHC. However, four proteins among 
the most highly upregulated proteins in FTLD-TDP and 
five proteins among the most downregulated proteins in 
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FTLD-TDP have been reported to be dysregulated in the 
FTLD-TDP frontal cortex in two separate independent 
proteomic studies, supporting our findings (confirmed 
upregulated proteins: biliverdin reductase B (BLVRD), 
chloride intracellular channel 4 (CLIC4), haemoglobin 
subunit delta (HBD), platelet-activating factor acetyl 
hydrolase 1b catalytic subunit 3 (PAFAH1B3); downregu-
lated proteins: AP2 associated kinase 1 (AAK1), NADH 
ubiquinone oxidoreductase subunit A2 (NDUFA2), 
N-terminal EF-hand calcium-binding protein 1 
(NECAB1), protein kinase C and casein kinase substrate 
in neurons 1 (PACSIN1), proline-rich transmembrane 
protein 2 (PRRT2)) [14, 36, 37].

GSEA and co‑expression analysis reveal the biological 
pathways affected in FTLD‑tau and FTLD‑TDP
Both FTLD-tau and FTLD-TDP data sets were enriched 
for gene sets previously associated with Alzheimer’s dis-
ease and Huntington’s disease, suggesting dysregulated 

pathways common to neurodegenerative conditions, next 
to gene sets associated with oxidative phosphorylation 
(Fig. 4). Impaired oxidative phosphorylation is a common 
feature of many neurodegenerative conditions [48]. In 
particular, tau aggregates have been reported to directly 
disrupt mitochondrial function [49].

To identify the groups of co-regulated proteins beyond 
the currently described pathways, we designed a novel 
workflow (Fig. S1), which resulted in the identification 
of seventeen modules of co-regulated proteins across the 
total cohort, 13 of which were dysregulated in FTLD-tau 
and/or FTLD-TDP. Dysregulation of 9 of these modules 
was validated in frontal and/or temporal cortex data sets 
derived from an independent validation cohort of FTLD-
tau and NHC. A module enriched for proteins involved 
in oxidative phosphorylation (M04) was downregulated 
in FTLD-tau and FTLD-TDP compared to NHC, further 
underscoring the importance of impaired mitochondrial 
function in FTLD similar to other neurodegenerative 

Fig. 8  Cell type enrichment in modules A M03 (postsynapse organisation), B M04 (oxidative phosphorylation), C M06 (vesicle-mediated transport), 
and D M10 (phenylalanine-tRNA ligase activity). Cell type enrichment in each of the modules was determined based on the log2FC values of 
specific CNS cell-type protein markers (shown here for the temporal validation set). Included cell types are astrocytes, endothelial cells, excitatory 
neurons, inhibitory neurons, microglia, oligodendrocytes, and oligodendrocyte precursor cells. Enrichment up (red bar) means that the markers for 
that cell type had high log2FC values in the FTLD-tau samples compared to the control group, and enrichment down (blue bar) means that the 
markers for that cell type had low log2FC values in the FTLD-tau samples compared to the control group
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conditions. Oxidative phosphorylation generates reactive 
oxygen species that can damage cells when produced in 
excess and that are mitigated by the expression of scav-
engers. We found that modules of co-regulated proteins 
associated with aldehyde dehydrogenase activity (M14), 
regulation of superoxide metabolic process (M16), and 
oxidoreductase activity (M17), all of which are impor-
tant cellular defence mechanisms against oxidative stress, 
were upregulated in FTLD-tau compared to NHC. These 
findings indicate tentative compensatory mechanisms 
may persist late in the disease course and that sustaining 
scavenger systems is an interesting therapeutic approach. 
A module of co-regulated proteins enriched for proteins 
involved in the regulation of vesicle-mediated transport 
(M06) was downregulated in FTLD-tau compared to 
NHC. Clathrin-mediated endocytosis is a key process in 
vesicular trafficking that transports a wide range of cargo 
molecules from the cell surface to the interior, includ-
ing synaptic vesicle recycling [50]. Clathrin-mediated 
endocytosis is also linked to the endo-lysosomal degra-
dative pathway and proteostasis network, which consists 
of membranous organelles specialized in regulating both 
intracellular trafficking and proteostasis. Recent in  vitro 
results revealed that similar to other toxic protein aggre-
gates, tau aggregation inhibits the chaperone-regulated 
proteostasis network processes of clathrin-mediated 
vesicular trafficking and protein folding in the cytoplasm 
[51]. In addition, neural stem cells derived from patients 
with an N279K tau mutation displayed impaired endo-
cytic trafficking as evidenced by the accumulation of 
endosomes and exosomes and a reduction of lysosomes 
[52, 53]. Together, these results suggest a key role of 
endosomal vesicle trafficking in FTLD-tau pathology. A 
module of co-regulated proteins associated with chro-
matin regulation (M02) was upregulated in FTLD-tau. 
In animal models of tauopathies, a study reported that 
tau promotes global heterochromatin relaxation leading 
to aberrant gene expression eventually resulting in neu-
rodegeneration [54]. There is to our knowledge no study 
investigating whether dysregulation of heterochroma-
tin relaxation state is at play in humans, warranting fur-
ther research in this direction. Downregulation of M06, 
upregulation of M02, and the subnetworks of most dys-
regulated proteins in these modules were validated in both 
the FTLD-tau frontal and temporal cortex independent 
data sets, indicating dysregulation of these modules is 
not anatomically specific, but rather associated with 
FTLD-tau. Modules of co-regulated proteins associated 
with post-synapse organisation (M03), filamin binding 
(M07), protein translation (M09, M10, and M11), and 
transmembrane transport (M01) were downregulated in 
FTLD-tau compared to NHC, which together may reflect 
cellular dysfunction.

Astrocytes and OPCs are involved in FTLD‑tau
We found that in addition to neurons, cellular dysfunc-
tion is also present in other cell types such as astrocyte 
and OPC proteins for example M10 (Fig.  8), indicating 
specific roles for these cell types in driving FTD pathol-
ogy. Interestingly, glial fibrillary acidic protein (GFAP), fatty 
acid-binding protein 7 (FABP7), hepatic and glial cell adhe-
sion molecule (HEPACAM), and protein S100B, all four 
of which are overexpressed by reactive astrocytes, were 
among the most highly upregulated proteins in the FTLD-
tau data set. This upregulation may reflect unspecific astro-
gliosis. However, in light of the enrichment for astrocyte 
proteins identified in some dysregulated modules and their 
essential role in the viability of neurons, this upregulation 
may reflect the loss of normal astrocyte function specifi-
cally contributing to FTLD-tau pathophysiology, as it has 
been suggested recently for Alzheimer’s disease and other 
neurodegenerative conditions [33, 55–57]. Most cell type-
specific proteins are found in multiple modules, rather than 
one module specifically. This is not surprising, considering 
that the modules were not created based on these cell-type 
annotations. These findings indicate that cell types might 
be affected in multiple ways, also indicated by the different 
GO terms associated with each module that these proteins 
are found in. However, neurons specifically have a consist-
ently lower abundance in FTLD-tau compared to the con-
trols in most modules, suggesting that this is a signature of 
neuronal degradation typical of brain disease.

Conclusions
This study confirms the importance of oxidative phos-
phorylation and scavenger mechanisms dysfunction in 
FTLD-tau and identifies chromatin dysregulation and 
clathrin-mediated transport as key dysregulated path-
ways in FTLD-tau, both in the frontal and temporal 
cortices. Tau-related proteins were identified as highly 
and significantly dysregulated proteins within module 
subnetworks and may thus be considered as therapeutic 
targets. The dysregulated modules of co-expressed pro-
teins were explicitly associated with changes in neuronal, 
astrocyte, and OPC protein abundance levels, indicating 
pathological changes are not exclusively driven by neu-
rons. Future research should study these identified pro-
teins and their role in FTLD-tau in more detail.
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Additional file 1: Fig. S1. Co-expression analysis and submodule 
identification workflow. Proteins were clustered into modules based on 
expression level correlations. GO term enrichment analysis was used to 
identify the molecular function most significantly enriched within each 
module of co-regulated proteins. Within each module, a submodule 
of most highly and significantly differentially regulated proteins was 
identified. Fig. S2. Workflow for module validation. For each module, 
the log2FC expression values of FTLD-tau versus NHC calculated in the 
discovery dataset was evaluated in the validation data set. The fraction 
of proteins that was dysregulated in the same direction in both datasets 
and that had a p-value lower than a certain threshold in both datasets 
was calculated. Subsequently, the protein labels in the validation data set 
were shuffled and the same fraction was calculated. This permutation was 
repeated 1,000 times. If the fraction of proteins was significantly higher 
in the comparison with the correct labels than in the comparison with 
the permutated labels (GESS score (see Methods) taken as the average of 
the P-values at thresholds 0.1, 0.2, 0.5, 0.8), the module was considered 
validated. Fig. S3. Density distribution of the P-values (x-axis) for pairwise 
proteome comparisons. (A) FTLD-tau versus NHC; (B) FTLD-tau versus 
FTLD-TDP; (C) FTLD-TDP versus NHC. A beta-uniform mixture (BUM) model 
was fitted (red and curved blue lines) to the distributions to determine the 
P-value thresholds required for different FDR values (vertical black lines 
are used to indicate the thresholds at FDR=0.1). Figs. S4-S16. Modules 
and subnetworks of co-regulated proteins that are dysregulated in FTLD-
tau and FTLD-TDP for each of the modules not discussed in the main 
manuscript. A Density curves of the log2 fold-change (log2FC) values of 
all the proteins belonging to a module in the discovery data set and the 
validation data set. The p-value indicates the significance of the median 
log2FC difference compared to NHC. B Permutation test to validate the 
modules identified in the discovery data set. A module was validated if 
the log2FC measured in the validation data set was in the same direction 
as in the one measured in the discovery data set, and if the p-value was 
below the threshold (blue line) in both the discovery and validation data 
sets. We used a permutation test, where we repeated this procedure with 
the protein labels in the validation data set randomly reassigned 1,000x 
(gray lines). The module was considered validated if the average p-value at 
thresholds 0.1, 0.5, 0.5, and 0.8 was lower than 0.05 (GESS score). Fraction 
validation: fraction of the proteins in the module that have a log2FC in 
the same direction as in the discover data set. C Subnetworks of most 
highly and significantly dysregulated proteins within the corresponding 
module of co-regulated proteins in the discovery data set. Red nodes 
indicate a positive log2FC and blue nodes a negative log2FC. The dark-
ness of the borders reflects the significance. D Subnetworks of most 
highly and significantly dysregulated proteins in the validation data set. 
Red nodes indicate a positive log2FC and blue nodes a negative log2FC. 
The darkness of the borders reflects the significance. Fig. S17. Cell type 
enrichment in all modules. Cell type enrichment in each of the modules 
was determined based on the log2FC values of specific CNS cell type 
protein markers. Included cell types are astrocytes, endothelial cells, 
excitatory neurons, inhibitory neurons, microglia, oligodendrocytes and 
oligodendrocyte precursor cells. Enrichment up (red bar) means that the 

markers for that cell type had high log2FC values in the FTLD-tau samples 
compared to the control group, enrichment down (blue bar) means that 
the markers for that cell type had low log2FC values in the FTLD-tau 
samples compared to the control group. Fig. S18. Hierarchical clustering 
of the samples of the discovery cohort based on the abundance levels of 
the 50 most significantly differentially expressed proteins resulting from 
the 3 pairwise comparisons using Spearman correlation. The samples are 
represented on the x-axis, FTLD-tau samples in yellow, FTLD-TDP in purple, 
and NHC in green. Normalised protein abundance levels are represented 
on the y-axis. Shades of red represent upregulated proteins, and shades 
of blue downregulated proteins. P-values for each 3 pairwise comparisons 
are indicated to the left of the figure. Shades of blue indicate statistically 
significant values; the darker the more significant, and gray indicates non-
significant p-values. Fig. S19. Overlap in significant proteins between the 
different pairwise comparisons. A significance cutoff at FDR=0.1 was used 
here. The figure shows that most proteins significantly different in FTLD-
TDP vs NHC and FTLD-tau vs FTLD-TDP are also significant in FTLD-tau vs 
NHC. There are 12 proteins significantly different between FTLD-tau and 
FTLD-TDP that are not captured in FTLD- tau vs NHC. Table S1. Discovery 
and validation cohorts. mfg, medial frontal gyrus; temp, temporal lobe; 
NHC, neurologically healthy control; AD, autosomal dominant; S, sporadic; 
Fa, familial; NA, not applicable; f, female; m, male; PMI, postmortem 
interval in hours and minutes. Age is in years. Table S2. Module summary. 
Module identity (number), module size and largest submodule size 
(number of proteins in the module/submodule), and validation in the 
FTLD-tau medial frontal gyrus cortex or temporal cortex data set of the 
validation cohort. Module function indicates the Gene ontology (GO) 
term enrichment analysis biological function most significantly associated 
with the module. The last column indicates the number of proteins in the 
subnetwork that are associated with the GO term listed in the column 
“Module function”. Table S3. Mean age, PMI and gender distribution in 
the three pathological groups. No significant differences in these variables 
were found between the three groups.
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