
Vol.:(0123456789)

Annals of the Institute of Statistical Mathematics
https://doi.org/10.1007/s10463-023-00890-6

1 3

Non‑parametric adaptive bandwidth selection for kernel 
estimators of spatial intensity functions

M. N. M. van Lieshout1,2

Received: 8 December 2022 / Revised: 17 October 2023 / Accepted: 23 October 2023 
© The Institute of Statistical Mathematics, Tokyo 2023

Abstract
We introduce a new fully non-parametric two-step adaptive bandwidth selection 
method for kernel estimators of spatial point process intensity functions based on 
the Campbell–Mecke formula and Abramson’s square root law. We present a simula-
tion study to assess its performance relative to other adaptive and global bandwidth 
selectors, investigate the influence of the pilot estimator and apply the technique to 
two data sets: A pattern of trees and an earthquake catalogue.

Keywords Adaptive kernel estimation · Bandwidth selection · Campbell–Mecke 
formula · Intensity function · Poisson leave-one-out cross-validation log likelihood · 
Point process

1 Introduction

The first step in any analysis of a spatial point pattern is usually estimating its inten-
sity function (Diggle, 2014; Illian et al., 2008; Van Lieshout, 2019). To do so, var-
ious techniques exist. Perhaps the oldest is quadrat counting (Du Rietz, 1929) in 
which one simply reports the number of points falling in each quadrat scaled by the 
quadrat volume. Instead of fixed quadrats, one might use the cells in a tessellation 
formed by the pattern itself as the units for counting (Barr and Schoenberg, 2010; 
Moradi et al., 2019; Ord, 1978; Schaap and Van de Weygaert, 2000). However, the 
most popular technique by far seems to be kernel estimation (Diggle, 1985).
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The classic kernel estimator for the spatial intensity function uses a constant 
bandwidth. However, intuitively, such a ‘one size fits all’ approach would tend to 
over-smooth in dense areas, while not smoothing enough in sparse regions. As a 
consequence, finer detail in areas with many points may be lost, whereas the few 
points in sparser areas might give rise to spurious hot spots. Motivated by similar 
considerations for density estimation of one-dimensional random variables, Abram-
son (1982) proposed to use a kernel smoother in which the bandwidth at each obser-
vation is weighted by a power of the density at that observation. Doing so reduces 
the bias significantly, at least asymptotically (Hall et al., 1995). In the spatial con-
text of intensity function estimation, the same idea applies (Davies et al., 2018; Van 
Lieshout, 2021).

Clearly, the crucial parameter, both in classic and adaptive kernel estimation, is 
the bandwidth. It is often chosen by visual inspection or by using a rule of thumb 
(see e.g. Baddeley et  al. (2015,  Section  6.5), Illian et  al. (2008,  Section  3.3) or 
Scott (1992, Section 6)). Obviously, though, such procedures are rather ad hoc and 
subjective.

A more rigorous class of techniques is based on asymptotics. For instance for 
classic kernel estimators, Brooks and Marron (1991) considered a Poisson process 
on the real line and assumed a simple multiplicative model for the intensity function 
to derive an asymptotically optimal least-squares cross-validation estimator when 
the number of points tends to infinity. Lo (2017) picked up the baton and studied the 
asymptotic (integrated) mean squared error in any dimension without imposing a 
specific intensity model, again in the regime that the number of points goes to infin-
ity. Van Lieshout (2020) generalized Lo’s work to point processes that may exhibit 
interaction between the points under the assumption that replicated patterns are 
available so that infill asymptotics apply. Davies et al. (2018) considered asymptotic 
expansions for a spatial analogue of the Abramson estimator for Poisson processes 
as the number of points increases; Van Lieshout (2021) studied infill asymptotics 
that allow for interaction between the points. It is important to note that the resulting 
optimal bandwidths depend on the unknown intensity function and cannot be com-
puted in practice without resorting to iterative techniques.

Most practical procedures to select a suitable global bandwidth rely on a spe-
cific model. For example, leave-one-out cross-validation (Loader, 1999, Section 5.3) 
assumes the data come from a Poisson process. Another common approach is to 
minimize the mean squared error in state estimation for a planar stationary isotropic 
Cox process (Diggle, 1985). The disadvantage of such techniques is that the under-
lying assumption may not hold for the pattern at hand, which motivated Cronie 
and Van Lieshout (2018) to propose a fully non-parametric technique based on the 
Campbell–Mecke formula (Chiu et al., 2013). Compared to leave-one-out cross-val-
idation, this approach is also computationally cheaper and does not require numeri-
cal approximation of integrals. A simulation study that investigates the relative per-
formance in practice can be found in Cronie and Van Lieshout (2018).

In this article, we extend the leave-one-out cross-validation and Campbell–Mecke-
based approaches to adaptive bandwidth selection. The plan is as follows. Section 2 
recalls crucial concepts and fixes notation. In Sect. 3, we discuss adaptive kernel esti-
mators and present algorithms for selecting the bandwidth. The results of a simulation 
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study into the efficacy of the new approaches are given in Sect. 4; applications to two 
data sets concerning, respectively, induced earthquakes and forestry, are presented in 
Sects. 5.1 and 5.2. The paper closes with a discussion on computational complexity and 
ideas for future research.

2  Preliminaries and notation

First, let us introduce some notation. Let � be a simple point process (Chiu et al., 2013) 
in d-dimensional Euclidean space ℝd that is observed in a bounded, non-empty and 
open subset W of ℝd . We assume that the first order moment measure � of � defined 
by

the expected number of points of � that fall in Borel subsets A of ℝd , exists as a 
locally finite Borel measure and is absolutely continuous with respect to d-dimen-
sional Lebesgue measure � with a Radon–Nikodym derivative � ∶ ℝ

d
→ [0,∞) . We 

will refer to the function � as the intensity function of �.
The kernel estimator of the intensity function of a point process was introduced by 

Diggle (1985) as

possibly divided by a global edge correction factor

An alternative, local, edge correction can be found in Van Lieshout (2012). The 
function � ∶ ℝ

d
→ [0,∞) is supposed to be a kernel, that is, a d-dimensional prob-

ability density function (Silverman, 1986, p.  13) that is even in all its arguments. 
When � is positive in a neighbourhood of the origin, since W is assumed to be open, 
the global edge correction factor is nonzero for all x0 ∈ W.

The crucial parameter in (1) is the bandwidth h > 0 , which determines the amount 
of smoothing. For large h, the mass of � is spread far and wide, which reduces the vari-
ance but may lead to a large bias. For small h, the mass of � is concentrated around the 
observed points of � ∩W . Thus, the bias is reduced at the price of a larger variance.

Popular choices of kernel include those belonging to the Beta class (Hall et  al., 
2004)

�(A) = �

(∑
x∈�

1{x ∈ A}

)
,

(1)�̂(x0;h,� ,W) =
1

hd

∑
y∈�∩W

�
(x0 − y

h

)
, x0 ∈ W,

w(x0, h,W) =
1

hd ∫W

�
(x0 − z

h

)
dz.

(2)�� (x) =
� (d∕2 + � + 1)

�d∕2� (� + 1)
(1 − xTx)� 1{x ∈ B(0, 1)}, x ∈ ℝ

d,
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for � ≥ 0 . Here B(0, 1) is the closed unit ball in ℝd centred at the origin. Beta ker-
nels are supported on the compact unit ball and their smoothness is governed by 
the parameter � . Indeed, the box kernel defined by � = 0 is constant and therefore 
continuous on the interior of the unit ball; the Epanechnikov kernel corresponding 
to the choice � = 1 is Lipschitz continuous. For 𝛾 > k , the function �� is k times con-
tinuously differentiable on ℝd . An alternative with unbounded support is the Gauss-
ian kernel

Bandwidth selection techniques tend to be based either on asymptotic expansions 
(Van Lieshout, 2020) or specific model assumptions (Baddeley et  al., 2015; Ber-
man and Diggle, 1989; Loader, 1999). For example, the widely used leave-one-out 
cross-validation technique (Baddeley et al., 2015; Loader, 1999) assumes that � is 
an inhomogeneous Poisson process with log likelihood function

Upon plugging in an estimator for the unknown intensity function, the leave-one-out 
cross-validation log likelihood reads

which is then maximized over h to select the bandwidth. Note that conditions have 
to be imposed to ensure that the function �̂  is strictly positive.

In a recent paper, Cronie and Van Lieshout (2018) proposed a non-parametric 
alternative based on the Campbell–Mecke formula (Chiu et al., 2013, p. 130). For 
the function f ∶ ℝ

d
→ ℝ

+ , f (x) = 1{x ∈ W}∕�(x) known as the Stoyan–Grabarnik 
statistic (Stoyan and Grabarnik, 1991), which is measurable if 𝜆(x) > 0 for all 
x ∈ W , the Campbell–Mecke formula states that

To select a bandwidth, one may simply replace � by an estimator �̂(⋅;h,� ,W) in the 
left hand side of the equation and minimize the discrepancy between �(W) and the 
sum of �̂(x;h,� ,W)−1 over points x in � ∩W . Formally, set

and choose bandwidth h > 0 by minimizing

(3)�(x) = (2�)−d∕2 exp
(
−xTx∕2

)
, x ∈ ℝ

d.

∑
x∈�∩W

log �(x) − ∫W

�(u) du.

(4)L�(h;� ,W) =
∑

x∈�∩W

log �̂(x;h,� ⧵ {x},W) − ∫W

�̂(u;h,� ,W) du,

(5)�

( ∑
x∈�∩W

1

�(x)

)
= ∫W

1

�(x)
�(x) dx = �(W).

T�(h;� ,W) =

⎧⎪⎨⎪⎩

�
x∈�∩W

1

�̂(x;h,� ,W)
, � ∩W ≠ �,

�(W), otherwise,
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Since W is assumed to be open and � is strictly positive in a neighbourhood of the 
origin for the kernels considered in this paper, T� and therefore (6) is well-defined 
with or without edge correction. Moreover, without edge correction, a zero point of 
the equation (6) exists (Cronie and Van Lieshout, 2018, Theorem 1). Briefly, when 
h → 0 , the kernel estimator places more and more mass on the observations, so that 
T�(h;� ,W) tends to zero. When on the other hand h grows to infinity, the variance 
of the kernel estimator decreases as it spreads its mass out more and more uniformly 
over W, at the cost of an increase in bias. The function T�(h;� ,W) now tends to 
infinity. Thus, requiring that T�(h;� ,W) be equal to �(W) can be interpreted as strik-
ing a balance between bias and variance. For a graphical illustration, see the middle 
panel in the first row of Fig. 2.

Our goal in the next section is to extend the ideas outlined above to adaptive 
bandwidths.

3  Adaptive bandwidth selection

3.1  The Abramson adaptive kernel estimator

As noted in the introduction, ideally the bandwidth should be adapted to the local 
density of points. In the context of random variables, Abramson (1982) proposed 
to scale the bandwidth in proportion to a power of the probability density function. 
Similarly, in the point pattern setting, an adaptive kernel estimator (Davies et  al., 
2018; Van Lieshout, 2021) is defined as

where

N(� ∩W) denotes the number of points of � that fall in W and w(y,  h, W) is an 
edge correction weight. The power � is set to −1∕2 when considering asymptotic 
expansions (Abramson, 1982; Van Lieshout, 2021). In practice, a power � = −1∕d 
when d ≥ 2 , is considered best (Bowman and Foster, 1993; Silverman, 1986). In the 
simulation studies to be presented in Sect. 4, we will work in the plane and the two 
powers are identical.

Let us make a few observations. First, points y located in regions with a low 
intensity are given a larger bandwidth hc(y) than those in high-intensity regions, 
as desired. Secondly, we must assume that 𝜆(y) > 0 for each y ∈ � ∩W . The nor-
malization by the geometric mean is used to obtain a dimensionless quantity for 
the bandwidth (Silverman, 1986). When focussing on a single point x0 (Abramson, 

(6)F�(h;� ,W) = ||T�(h;� ,W) − �(W)||.

(7)�̂A(x0;h,� ,W) =
∑

y∈�∩W

1

c(y)dhd
�

(
x0 − y

hc(y)

)
w(y, h,W)−1

(8)c(y) =

�
�(y)∏

z∈�∩W �(z)1∕N(�∩W)

��

,
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1982; Van Lieshout, 2021), one could normalize simply by �(x0) . Finally, edge cor-
rection techniques carry over in a straightforward manner. For example, a local edge 
correction weight factor in this context takes the form

and is mass preserving:

Since the local bandwidth hc(y) depends on the unknown intensity function, (7) 
cannot be calculated. A common solution is to estimate c(y) by plugging-in a pilot 
intensity estimator (Chacón and Duong, 2018; Silverman, 1986; Wand and Jones, 
1994). For example, one could estimate �(y) by a global bandwidth kernel estimator 
of the form (1) and set

3.2  Adaptive bandwidth selection algorithms

The two global bandwidth selection algorithms presented in Sect. 2 can be modified 
for adaptive bandwidth selection by means of a two-step approach. In the first step, 
(4) or (6) is used to select a global bandwidth hg . In this step, no edge correction 
is applied as the clearest optimum is obtained that way (Cronie and Van Lieshout, 
2018). This hg is then used to calculate an edge-corrected pilot estimate �̂p , which in 
turn is plugged in (8) to obtain ĉ(y).

In the second step, we apply (4) or (6) to �̂A with local bandwidths hĉ(y) and opti-
mize over h. Again, no edge correction is applied in the bandwidth selection phase. 
Having selected the optimal ha , (7) is calculated with local edge correction.

The following results guarantee the validity of the second step. For the first step, 
we refer to Theorem 1 in Cronie and Van Lieshout (2018).

Theorem 1 Let � be a locally finite point pattern of distinct points in ℝd observed 
in some non-empty open and bounded window W such that � ∩W ≠ � . Let � be the 
Gaussian kernel or a Beta kernel with 𝛾 > 0 , and w ≡ 1 . Write �̂A for the Abramson 
estimator (7) with

for some pilot estimates �p(y) that are strictly positive for all y ∈ � ∩W . Then the 
criterion function

w(y, h,W) =
1

c(y)dhd ∫W

�

(
z − y

hc(y)

)
dz

∫
W

�̂A(z;h,� ,W) dz = N(� ∩W).

ĉ(y;h,� ,W) =

�
�̂(y;h,� ,W)∏

z∈�∩W �̂(z;h,� ,W)1∕N(�∩W)

��

.

c(y;� ,W) =

(
1

�p(y)

∏
z∈�∩W

�p(z)
1∕N(�∩W)

)1∕2
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is a continuous function of h on (0,∞) . For the box kernel, it is piecewise continu-
ous. In all cases,

Proof We will first look at the limit as h → 0 . For all h > 0 and x ∈ � ∩W,

Here, we use that since the pilot estimator �p is strictly positive on the non-empty 
pattern � ∩W , so is c(⋅) . Also, for all kernels considered, 𝜅(0) > 0 . Consequently,

The right-most expression and therefore T�(h;� ,W) tends to 0.
Next let h → ∞ . For the box, Beta and Gaussian kernels, �(⋅) ≤ �(0) . We already 

observed that c(y;� ,W) is strictly positive for y ∈ � ∩W since by assumption �p is. 
Moreover, it does not depend on h and therefore

The right-most expression and therefore T�(h;� ,W) tends to ∞ when � ∩W is 
non-empty.

It remains to look at continuity properties. Both the Beta kernels �� with 𝛾 > 0 
and the Gaussian kernel are continuous on ℝd . The box kernel is discontinuous on 
the unit sphere �B(0, 1) only. The function h → h−1 is continuous on (0,∞) . There-
fore, for fixed z ∈ ℝ

d , the function h → �(z∕h) is also continuous when � is a Gauss-
ian kernel or a Beta kernel with 𝛾 > 0 . For the box kernel, this function is piece-
wise continuous, having a discontinuity at h = ||z|| . Observe that, since � ∩W is 
non-empty by assumption, 𝜅(0) > 0 and the pilot estimates �p(x) are strictly posi-
tive for every x ∈ � ∩W , also the estimates �̂A(x;h,� ,W) are strictly positive for 
x ∈ � ∩W and h > 0 . We conclude that, as a function of h on (0,∞) , T�(h;� ,W) is 
continuous for Gaussian kernels and Beta kernels with 𝛾 > 1 , piecewise continuous 
for the box kernel.   ◻

The theorem above implies that the criterion function T�(h;� ,W) attains all 
positive values, in particular �(W) . Usually, but not always, it does so for a unique 
h. In case of multiple solutions, one may pick the smallest.

T�(h;� ,W) =
∑

x∈�∩W

1

�̂A(x;h,� ,W)

lim
h→0

T�(h;� ,W) = 0; lim
h→∞

T�(h;� ,W) = ∞.

�𝜆A(x;h,𝜓 ,W) ≥ 𝜅(0) c(x;𝜓 ,W)−dh−d > 0.

T�(h;� ,W) =
∑

x∈�∩W

1

�̂A(x;h,� ,W)
≤ hd

∑
x∈�∩W

c(x;� ,W)d

�(0)
.

T�(h;� ,W) =
�

x∈�∩W

hd

∑
y∈�∩W c(y;� ,W)−d�

�
x−y

hc(y;� ,W)

�

≥hd �
x∈�∩W

1∑
y∈�∩W c(y;� ,W)−d�(0)

.
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Theorem 2 Let � be a locally finite point pattern of distinct points in ℝd observed 
in some non-empty open and bounded window W such that � ∩W has at least two 
points. Let � be the Gaussian kernel. Write �̂A for the Abramson estimator (7) with

for some pilot estimates �p(y) that are strictly positive for all y ∈ � ∩W . Then, the 
criterion function

is a continuous function of h on (0,∞) . Moreover,

Proof The Gaussian kernel is continuous on ℝd . The function h → h−1 is continu-
ous on (0,∞) . Therefore, for fixed z ∈ ℝ

d , the function h → �(z∕h) is continuous. 
Since the logarithm is continuous on (0,∞) , the first term in L�(h;� ,W) is continu-
ous in h provided the argument is strictly positive. Now, by assumption, the pilot 
estimates �p(x) are strictly positive. Therefore, the same is true for c(y;� ,W) . Under 
the assumption that � ∩W has at least two points, � ⧵ {x} will still contain a point 
in W and, noting that the Gaussian kernel is strictly positive, one concludes that the 
argument of the logarithm is strictly positive. Turning to the integral term, continu-
ity follows from the dominated convergence theorem, as �(⋅) ≤ (2�)−d∕2 is bounded. 
We conclude that, as a function of h on (0,∞) , L�(h;� ,W) is continuous.

Next turn to the limits. First let h → ∞ . Then −d log h → −∞ while

Since h−dc(y)−d�((⋅ − y)∕(hc(y;� ,W))) is a probability density function, its integral 
takes values in between zero and one, so that the contribution from the integral term 
in L�(h;� ,W) is between 0 and the negative number of points in � ∩W . Collecting 
all terms, we find that limh→0 L�(h;� ,W) = −∞.

Finally, let h → 0 . As already noted, the contribution from the integral term in 
L�(h;� ,W) is bounded. For the logarithmic term, recall that

when ||z|| ≠ 0 . By the assumption that � ∩W contains at least two points, L�(h; 
� ,W) tends to −∞ as h → 0 .   ◻

c(y;� ,W) =

(
1

�p(y)

∏
z∈�∩W

�p(z)
1∕N(�∩W)

)1∕2

L�(h;� ,W) =
∑

x∈�∩W

log �̂A(x;h,� ⧵ {x},W) − ∫W

�̂A(u;h,� ,W)du

lim
h→0

L�(h;� ,W) = −∞; lim
h→∞

L�(h;� ,W) = −∞.

log

[ ∑
x≠y∈�∩W

1

c(y;� ,W)d
�

(
x − y

hc(y;� ,W)

)]
→ log

[ ∑
x≠y∈�∩W

�(0)

c(y;� ,W)d

]
.

lim
h→0

1

hdc(y;� ,W)d
�

(
z

hc(y;� ,W)

)
= 0
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The validity of the bandwidth selection steps follows from the observation that 
one may restrict h to a closed and bounded interval on which the continuous func-
tion L�(h;� ,W) attains its maximum. For compact support kernels such as (2), 
�̂�A(x;h,𝜓 ⧵ {x}) may be zero and the logarithmic term in L�(h;� ,W) ill-defined.

4  Simulation study

To evaluate the performance of the adaptive bandwidth selection approach and 
investigate the influence of the pilot estimates, we conduct a simulation study. We 
consider three types of intensity functions on the unit square in ℝ2 : A constant 
intensity, a gradual polynomial trend in the horizontal direction and a gradual 
trend combined with a high intensity feature. For each type of function, we set 
the parameters in such a way that realizations contain approximately 50 or 250 
points. Doing so, we obtain the intensity functions summarized in Table 1.

A convenient way to obtain realizations of point processes with spatially var-
ying intensity functions �i is to apply independent thinning to realizations of a 
stationary point process whose intensity function is known explicitly. Here, we 
choose a Poisson process, a Matérn cluster process and a Matérn hard core pro-
cess (Matérn, 1986). We will need the notation �̄�i = sup(x,y)∈(0,1)2 𝜆i(x, y).

Poisson process
Let X be a homogeneous Poisson process with intensity function �̄�i . Then, its 

independent thinning with retention probabilities 𝜆i(x, y)∕�̄�i is a heterogeneous 
Poisson process with intensity function �i , i = 1,… , 6.

Matérn cluster process
Let Xp be a homogeneous Poisson process with intensity � on (−0.01, 0.01)2 . 

Assume that each ‘parent’ point z ∈ Xp generates a Poisson number of ‘daughter’ 
points, say with mean � in the closed ball B(z, 0.01) of radius 0.01 around z and 
write X for the union of daughter points falling in (0, 1)2 . Then, X is homogene-
ous, and has constant intensity �� on (0, 1)2 . We will consider two degrees of 
clustering:

• Parent intensity 𝜅 = �̄�i∕5 , mean number of daughters � = 5 in a ball of radius 
0.01 around the parent;

Table 1  Intensity functions on the open unit square. Here the set S is the annulus 
S = {(x, y) ∈ (0, 1)2 ∶ ||((x − 0.5)2 + (y − 0.6)2)1∕2 − 0.1|| < 0.02}

Constant Trend High-contrast feature

�1(x, y) ≡ 50 �3(x, y) = 10 + 80x �5(x, y) = �3 + 1000 × 1S(x, y)

�2(x, y) ≡ 250 �4(x, y) = 30 + 440x �6(x, y) = �4 + 3000 × 1S(x, y)
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• Parent intensity 𝜅 = �̄�i∕10 , mean number of daughters � = 10 in a ball of 
radius 0.01 around the parent.

In either case, independent thinning with retention probabilities 𝜆i(x, y)∕�̄�i results 
in a point process X having intensity function �i , i = 1,… , 6.

Type II Matérn hard core process
Let Xg be a homogeneous Poisson process with intensity � on (−r, r)2 and 

assign each ‘ground’ point z ∈ Xg a mark according to the uniform distribution on 
(0, 1) independently of other points. Keep a point z ∈ Xg ∩ (0, 1)2 if no other point 
of Xg with a larger mark lies within distance r > 0 . The resulting point process X 
is homogeneous and has constant intensity (1 − e−��r

2

)∕(�r2) on (0, 1)2 . We will 
consider two degrees of repulsion:

• Ground intensity 𝜅 = −10�̄�i log 𝜈 with � = 0.9 and hard core distance 
r = (10𝜋�̄�i)

−1∕2;
• Ground intensity 𝜅 = −2�̄�i log 𝜈 with � = 0.5 and hard core distance 

r = (2𝜋�̄�i)
−1∕2.

In both cases, independent thinning with retention probabilities 𝜆i(x, y)∕�̄�i results 
in a point process X having intensity function �i , i = 1,… , 6.

The results of the simulation study are presented in Tables 2, 3, 4, 5, 6 and 7. 
For each intensity function and each point process model, we generated 100 sim-
ulations in the unit square and calculated the optimal global and adaptive band-
widths using a Gaussian kernel and criterion functions (4) and (6). In the adaptive 
case, we used two different pilot estimators. The tabulated values are the mean 
integrated squared errors after local edge correction over the 100 patterns scaled 
by the expected number of points. All calculations were done in the R-package 
spatstat (Baddeley et  al., 2015) to which we contributed the function bw.
CvL.adaptive.

A line-by-line comparison of Tables 2 and 3 confirms the conclusions in Cro-
nie and Van Lieshout (2018). For a Poisson process, the leave-one-out cross-
validation approach which assumes the process is Poisson is best. For clustered 

Table 2  Mean integrated squared error relative to expected number of points of classic kernel estimates 
over 100 simulations using a Gaussian kernel with local edge correction and bandwidth chosen by (4) for 
various point process models having intensity functions �i , i = 1,… , 6

� Poisson Cluster � = 5 Cluster � = 10 Hard core � = 0.9 Hard core � = 0.5

�1 6.0 3,170.4 6,876.2 5.4 3.2
�2 15.7 3,817.8 6,738.7 12.8 7.7
�3 9.0 775.1 2,802.4 6.6 5.1
�4 16.8 1,295.0 3,981.1 16.3 12.3
�5 398.9 433.9 508.4 398.7 443.4
�6 617.3 656.4 861.5 617.2 618.9
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patterns, the Cronie–Van Lieshout approach is far better, unless the intensity 
exhibits a strong feature ( �5 and �6 ). In the latter case, both approaches have simi-
lar mean squared error. For repulsive patterns, the approach based on (4) is some-
what better than that based on (6).

Next, let us compare Table 2 with Tables 4 and 5. As expected, when the inten-
sity function is constant, an adaptive approach to bandwidth selection tends to be 

Table 3  Mean integrated squared error relative to expected number of points of classic kernel estimates 
over 100 simulations using a Gaussian kernel with local edge correction and bandwidth chosen by (6) for 
various point process models having intensity functions �i , i = 1,… , 6

� Poisson Cluster � = 5 Cluster � = 10 Hard core � = 0.9 Hard core � = 0.5

�1 10.2 23.7 36.6 10.4 7.8
�2 32.4 63.4 74.9 29.5 23.5
�3 10.6 20.3 27.5 8.7 8.0
�4 23.7 55.1 73.5 23.6 19.6
�5 418.4 433.2 448.3 416.0 484.2
�6 663.5 697.7 720.4 664.2 666.3

Table 4  Mean integrated squared error relative to expected number of points of adaptive kernel estimates 
over 100 simulations using a Gaussian kernel with local edge correction and bandwidth chosen by (4) 
with classic kernel pilot estimate with bandwidth chosen by (4) for various point process models having 
intensity functions �i , i = 1,… , 6

� Poisson Cluster � = 5 Cluster � = 10 Hard core � = 0.9 Hard core � = 0.5

�1 11.5 3,661.9 7,730.7 10.4 5.4
�2 35.1 3,586.5 7,281.5 28.4 14.6
�3 17.0 1,293.2 3,938.8 11.9 8.3
�4 37.9 2,298.4 4,769.7 35.3 22.0
�5 343.4 745.8 1,410.9 337.7 419.7
�6 438.7 1,234.8 3,015.8 426.8 420.2

Table 5  Mean integrated squared error relative to expected number of points of adaptive kernel estimates 
over 100 simulations using a Gaussian kernel with local edge correction and bandwidth chosen by (4) 
with classic kernel pilot estimate with bandwidth chosen by (6) for various point process models having 
intensity functions �i , i = 1,… , 6

� Poisson Cluster � = 5 Cluster � = 10 Hard core � = 0.9 Hard core � = 0.5

�1 13.1 3,370.5 7,413.7 11.9 6.1
�2 42.2 3,193.3 6,908.3 34.4 18.1
�3 17.7 1,087.1 3,480.3 12.7 9.1
�4 41.3 2,086.7 4,594.0 38.6 24.9
�5 350.2 531.6 751.8 344.3 436.1
�6 443.9 909.6 1,902.7 432.6 430.5
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worse than a global one. The same remark applies when the intensity function is 
slowly varying. However, for �5 and �6 , it is better to use an adaptive approach 
unless the pattern exhibits clustering. Regarding the influence of the pilot esti-
mates, note that using (4) gives slightly better results than (6) for Poisson and 
repulsive point patterns, whereas the Campbell–Mecke-based approach mitigates 
the increase in mean squared error for clustered patterns somewhat.

When comparing Table 3 with Tables 6 and 7, as before the adaptive approach 
to bandwidth selection tends to be worse than a global one for constant and slowly 
varying intensity functions. However, for �5 and �6 , it is better to use an adaptive 
approach, unless the pattern exhibits clustering. Regarding the influence of the 
pilot estimates, as before (4) gives slightly better results than (6) for Poisson and 
repulsive point patterns, whereas the Campbell–Mecke-based approach mitigates 
the increase in mean squared error for clustered patterns somewhat.

Table 6  Mean integrated squared error relative to expected number of points of adaptive kernel estimates 
over 100 simulations using a Gaussian kernel with local edge correction and bandwidth chosen by (6) 
with classic kernel pilot estimate with bandwidth chosen by (4) for various point process models having 
intensity functions �i , i = 1,… , 6

� Poisson Cluster � = 5 Cluster � = 10 Hard core � = 0.9 Hard core � = 0.5

�1 14.0 29.2 41.3 14.2 9.6
�2 44.9 77.8 85.1 39.5 28.5
�3 18.2 41.6 46.5 14.5 12.0
�4 47.9 100.4 125.2 46.0 35.5
�5 355.7 477.7 529.0 349.5 464.4
�6 463.0 651.2 780.3 452.8 450.4

Table 7  Mean integrated squared error relative to expected number of points of adaptive kernel estimates 
over 100 simulations using a Gaussian kernel with local edge correction and bandwidth chosen by (6) 
with classic kernel pilot estimate with bandwidth chosen by (6) for various point process models having 
intensity functions �i , i = 1,… , 6

� Poisson Cluster � = 5 Cluster � = 10 Hard core � = 0.9 Hard core � = 0.5

�1 15.7 35.5 51.5 16.0 10.9
�2 52.1 106.4 120.1 46.6 35.0
�3 19.3 44.3 52.2 15.3 12.9
�4 50.9 132.1 172.2 49.6 38.0
�5 361.6 437.2 464.7 355.1 471.8
�6 468.0 617.8 723.3 457.3 457.7
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A comparison of Table  4 with Table  6 or of Table  5 with Table  7 confirms 
that the criterion (4) is somewhat better suited to Poisson and regular patterns, 
whereas (6) is far better in the case of clustering.

To illustrate the different approaches and explain why the leave-one-out cross-
validation approach is not appropriate for clustered patterns, Fig. 1 shows a simu-
lation from a Matérn cluster process with intensity function �6 based on a ground 
process that has on average � = 5 daughters in a ball of radius r = 0.01 around 
each parent. Both the gradient in intensity from left to right, the increased density 
of points near the centre of the plot and the clustering are readily apparent.

The true (top left panel) and estimated (middle and bottom rows) intensity func-
tions are shown in Fig. 2. The graphs of the criterion functions are also shown in the 
top row of the figure. The left-most panels show classic kernel estimates using band-
widths chosen according to (6) for the middle row and according to (4) for the bot-
tom row. The Campbell–Mecke-based approach captures both the trend and to some 
extent the increased intensity near the centre of the plot, whereas the leave-one-out 
cross-validation approach concentrates more on the central feature. This phenom-
enon is emphasized even more in the adaptive kernel estimates whose bandwidths 
are selected using (6) for the middle row and by leave-one-out cross-validation for 
the bottom row. For this pattern, the best estimate in terms of mean squared error is 
the one shown in the middle right panel.

5  Applications

To illustrate the conclusions of the simulation study of Sect. 4 on real data, we will 
look at two patterns. The first one shows induced earthquake occurrences whose 
intensity varies gradually over the field; the second one is a mapped tree pattern 
with intensity hot spots due to disturbances during harvesting.

Fig. 1  Realization from a 
Matérn cluster process with 
intensity function �6 based on 
a ground process that has on 
average � = 5 daughters in a ball 
of radius r = 0.01 around each 
parent
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5.1  Pattern of induced earthquakes

In 1959, a large gas field of about 969 square km was discovered in Groningen, 
a province in the north of The Netherlands. Initially, the benefits from the sale of 
gas were a boon to the Dutch economy. However, from the 1990  s earthquakes 
were being registered in the previously tectonically inactive Groningen region. 
A catalogue is maintained by the Royal Dutch Meteorological Office.1 The pat-
tern of 332 induced earthquakes of magnitude 1.5 and larger during the period 
1995–2021 is depicted in the left-most panel in Fig. 3. Note that most earthquakes 

50
0

15
00

25
00

0.00 0.05 0.10 0.15

0.
0

0.
5

1.
0

1.
5

0.01 0.02 0.03 0.04

−5
65

03
40

−5
65

03
20

−5
65

03
00

20
0

60
0

10
00

10
00

30
00

50
00

10
00

30
00

50
0

15
00

25
00

50
00

15
00

0

20
00

60
00

10
00

0
Fig. 2  Intensity function estimates for the point pattern depicted in Fig. 1. Top row: True intensity func-
tion (left), graph of T� (h) (middle) and graph of L� (h) (right) as functions of h. Middle row: Global (left) 
and adaptive kernel estimates using a Gaussian kernel with local edge correction and bandwidth chosen 
by (6) (middle and right). Middle row: Global (left) and adaptive kernel estimates using a Gaussian ker-
nel with local edge correction and bandwidth chosen by (4) (middle and right). The pilot estimates are 
classic kernel estimates using a Gaussian kernel with local edge correction and bandwidth chosen by (4) 
(middle), respectively (6) (right)

1 www. knmi. nl/ kennis- en- datac entrum/ datas et/ aardb eving scata logus.

http://www.knmi.nl/kennis-en-datacentrum/dataset/aardbevingscatalogus
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occurred in the central and western regions but there do not appear to be any 
clusters.

We therefore estimate the intensity function by adaptive kernel estimation and 
select the bandwidths using the leave-one-out cross-validation principle (4). We 
apply a Gaussian kernel and local edge correction. The result is shown in the top 
right panel in Fig. 3. For comparison, the bottom row shows a Voronoi tessella-
tion based estimate (Barr and Schoenberg, 2010) and a classic kernel estimate 
obtained upon applying the Scott rule (Scott, 1992) from classic multivariate den-
sity estimation.

In the absence of a ground truth, we can only judge the performance of the vari-
ous estimators by eye. The adaptive kernel estimator seems to outperform its com-
petitors. It captures the central high-risk region and its internal structure. Also, the 
U-bend to the west is visible. The classic kernel estimate does capture the central 
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Fig. 3  Map of earthquakes of magnitude M ≥ 1.5 that occurred during the time period 1995–2021 in the 
Groningen gas field (top left panel). Top right panel: Adaptive kernel estimates of the intensity function 
using a Gaussian kernel with local edge correction and bandwidth as well as pilot bandwidth selected by 
leave-one-out cross-validation. Bottom row: A classic kernel estimate with bandwidth chosen according 
to the Scott rule (right panel) and Voronoi-based estimate of the intensity function (left panel)
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region but misses all internal structure. The Voronoi estimate on the other hand 
seems to capture spurious detail and, being discontinuous, is less pleasing to the 
eye. To alleviate this undesirable behaviour to some extent, one could apply repeated 
thinning and smoothing, as suggested by Moradi et al. (2019).

5.2  Pattern of pine trees

The map in the left-most panel of Fig.  4 depicts the locations of 584 Longeaf 
pine trees in a 200 by 200 metre square region in Thomas County, Georgia (USA) 
(Platt et  al., 1988; Rathbun and Cressie, 1994), the coordinates of which are 
available in the R-package spatstat (Baddeley et al., 2015). The pattern dis-
plays some marked clusters of elevated intensity, probably due to disturbance of 
the ground cover during the salvage of dead timber.
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Fig. 4  Locations of pine trees (top left panel) in a square plot in Thomas County, Georgia, censused in 
1979. Top right panel: Adaptive kernel estimates of the intensity function using a Gaussian kernel with 
local edge correction and bandwidth selected by (6). The pilot bandwidth is chosen according to (4). Bot-
tom row: A classic kernel estimate with bandwidth chosen according to the and Scott rule (right panel) 
and Voronoi-based estimate of the intensity function (left panel)
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Thus, we estimate the intensity function by adaptive kernel estimation and 
select the bandwidth using (6) with a pilot bandwidth chosen according to (4). 
We apply a Gaussian kernel and local edge correction. The result is shown in the 
top right panel in Fig. 4. For comparison, the bottom row shows a Voronoi tessel-
lation-based estimate (Barr and Schoenberg, 2010) and a classic kernel estimate 
obtained upon applying the Scott rule (Scott, 1992).

One sees that the adaptive Cronie–Van Lieshout algorithm succeeds in finding 
some hot spots, which are completely missed by the classic kernel estimate. The 
Voronoi estimate finds more hot spots than the adaptive kernel estimate, but these 
could simply be clusters of trees.

6  Discussion

In this article, we compared two algorithms for adaptive bandwidth selection for 
kernel estimators of the spatial intensity function and proved their validity. Simu-
lations showed that for patterns with strong contrasts in point densities, the adap-
tive kernel estimator outperforms the classic kernel estimator in terms of integrated 
squared error. We also demonstrated the feasibility of the proposed algorithms in 
practice. The algorithm based on the Poisson leave-one-out cross-validation likeli-
hood works well for Poisson processes and for models for repulsion. The Camp-
bell–Mecke-based algorithm is more suited to models for clustering. Note that this 
algorithm applies for a wider range of kernels than the cross-validation approach 
that requires the argument of the log to be nonzero.

Let us briefly consider the numerical complexity of the two approaches. For a 
pattern with n points, the calculation of �̂A without edge correction requires n func-
tion evaluations per point. Therefore, calculation of the criterion function F� is 
quadratic in n. Discretizing the range of bandwidth values into nh steps, the total 
computational load is therefore of the order nhn2 . Evaluation of the function L� is 
rather more costly as, additionally, for every potential bandwidth also the integral 
of the estimated intensity function over W must be approximated. If a grid of size M 
is used to do so, the numerical complexity is nhMn which makes the total computa-
tional load nhn(n +M) . The computational cost of calculating the edge correction 
weights depends on the weights. When direct computation is too costly, fast approx-
imation techniques exist (Davies and Baddeley, 2018).

Finally, in this article, we only considered isotropic kernels. It would be inter-
esting to study adaptive kernel estimators with different bandwidths for the various 
components.
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