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ABSTRACT
A computationally-simplified and descriptor-richer Point
Cloud Quality Assessment (PCQA) metric, namely Point-
PCA+, is proposed in this paper, which is an extension
of PointPCA. PointPCA proposed a set of perceptually-
relevant descriptors based on PCA decomposition that were
applied to both the geometry and texture data of point clouds
for full reference PCQA. PointPCA+ employs PCA only
on the geometry data while enriching existing geometry
and texture descriptors, that are computed more efficiently.
Similarly to PointPCA, a total quality score is obtained
through a learning-based fusion of individual predictions
from geometry and texture descriptors that capture local
shape and appearance properties, respectively. Before feature
fusion, a feature selection module is introduced to choose the
most effective features from a proposed super-set. Experi-
mental results show that PointPCA+ achieves high predictive
performance against subjective ground truth scores obtained
from publicly available datasets. The code is available at
https://github.com/cwi-dis/pointpca suite/.

Index Terms— Point cloud, PCA, Feature selection,
Objective quality assessment, Random forest

I. INTRODUCTION

Point cloud is prevailing among the available 3D imaging
formats in recent years. It is essentially a collection of
points, where each point has attributes of geometry, color,
reflectance, etc. However, through acquisition, compression,
transmission, and rendering, the quality of a point cloud can
be degraded, which necessitates effective and efficient Point
Cloud Quality Assessment (PCQA) metrics. These metrics
provide a guide on the design, optimization, and parameter
tuning of point cloud processing pipelines.

Objective PCQA metrics can be divided into point-
based, projection-based, and feature-based models. Point-
based metrics such as point-to-point, point-to-plane metrics
and their variants measure degradations between the original
and distorted point clouds per point, mainly based on Eu-
clidean or color space distances [1]. Alexiou et al. propose
the angular similarity of tangent planes among corresponding
points, which considers neighborhood information [2]. These

metrics are computationally efficient but suffer from a crude
correspondence of matching between points.

Projection-based approaches adapt existing Image Quality
Assessment (IQA) metrics to PCQA. Alexiou et al. [3]
develop a framework for predicting the quality by employing
2D IQA metrics on 6 orthographic projected views. Liu
et al. [4] provide a PCQA model based on the principle
of information content weighted structural similarity (IW-
SSIM). However, the projection process and the number of
viewpoints have a non-negligible impact on the final predic-
tion accuracy; besides, how to combine the quality score on
each viewpoint into a score is also not straightforward.

Feature-based metrics consider perceptual loss from both
geometry and texture properties. Viola et al. [5] extract
color statistics, histogram, and correlogram to assess the
level of impairment and combine the color-based metrics
with geometry-based metrics to form a global quality score.
Alexiou et al. [6] employ the local distributions of point
clouds to predict perceptual degradations from topology and
color. Yang et al. [7] construct a local graph centered at
resampled key points for both reference and distorted point
clouds, with the color gradient on the local graph being used
to measure distortions. Meynet et al. [8] utilize an optimally-
weighted linear combination of curvature-based and color-
based features to evaluate visual quality. Diniz et al. [9]
adopt the statistical information of the extracted geome-
try/color features and feed them into a regression model.
Deep learning-based modules have also been used to extract
perceptual features. Liu et al. [10] design an end-to-end No
Reference (NR) PCQA framework for estimating subjective
quality. A sparse convolutional neural network is applied in
both feature extraction and regression modules. An extension
using coarse-to-fine progressive knowledge transfer based
on Human Vision System (HVS) is given in [11]. Zhang
et al. [12] make use of multi-modal information to address
the PCQA problem; the quality-aware encoder features are
optimized with the assistance of symmetric cross-modality
attention. Interested readers may refer to [1] for a more
comprehensive review of the literature.

Point-based schemes may neglect the high-dimensional
properties of point clouds and the interplay among these
dimensions, thereby limiting their effectiveness. Projection-
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Fig. 1: PointPCA+ architecture: both the reference and the distorted point cloud are passing from every stage to compute a
quality score. Operations in the blue box are applied only to the geometry data of point clouds.

based methods often rely on 2D IQA, which may not ade-
quately capture the intrinsic characteristics of point clouds.
Feature-based schemes tend to have a high level of complex-
ity, while the interpretability of deep learning-based methods
is a drawback with training requiring a huge amount of data.
In light of the above limitations and inspired by PointPCA
[13], we propose PointPCA+. Our differences are threefold
compared with PointPCA.

• By performing PCA on the geometry data of the ref-
erence point cloud and transforming both the reference
and distorted point clouds onto the new basis, we can
capture differences in their shape properties effectively.

• We utilize knn algorithm to determine the neighbor-
hood, which is faster and returns a consistent number
of points, therefore further decreasing the computational
cost of subsequent processing steps.

• Recursive Feature Elimination (RFE) algorithm is em-
ployed to select the most relevant and complementary
features. This approach streamlines the quality regres-
sion process.

II. PROPOSED POINTPCA+ METHOD

In Fig. 1, the PointPCA+ framework is illustrated, which
is split into three modules, namely, (a) pre-processing, (b)
feature extraction, and (c) quality regression which are
introduced in the following subsections. Note that a Full
Reference (FR) metric typically uses either the pristine or
the impaired content as a reference, or both. In our design,
only the pristine point cloud serves as a reference.

II-A. Pre-processing
To ensure coherent geometry and color information with-

out redundancies, points with identical coordinates that be-
long to the same point cloud are merged [14]. The color
of a merged point is obtained by averaging the color of
corresponding points sharing the same coordinates. For an
FR PCQA metric, identifying matches between reference and

distorted point clouds is crucial for comparing corresponding
local properties. In our method, we use the knn algorithm
to identify neighborhood pairs between two point clouds. In
particular, for each point that belongs to a reference point
cloud A, we find its K nearest reference points, and its K
nearest distorted points from the distorted point cloud B, in
terms of Euclidean distance.

II-B. Feature Extraction
To capture local perceptual quality degradations of a

distorted point cloud, we compute geometry and texture
descriptors based on the identified neighborhoods. Statistics
based on these descriptors are subsequently calculated and
serve as predictors of visual quality. As mentioned earlier,
our method uses only the pristine point cloud as a reference
to find the matches in the distorted point cloud.

Geometry descriptors: Given a query point pi of A, the
subscript i denotes the point index, 1 ≤ i ≤ |A|, and |A| is
the cardinality. The coordinates of pi’s N nearest neighbors
in F are indicated as pg,F

n = (xn, yn, zn)
T, with 1 ≤ n ≤ N

and F ∈ {A,B}. The geometry of pi is denoted as pg,A
i ,

and the geometry of its closest neighbor in B is denoted as
pg,B
i .
Initially, the covariance matrix ΣA

i is computed as

ΣA
i =

1

N

∑N
n=1

(
pg,A
n − p̄g,A

i

)
·
(
pg,A
n − p̄g,A

i

)T

, (1)

where p̄g,A
i indicates the centroid, given as

p̄g,A
i =

1

N

∑N
n=1 p

g,A
n . (2)

Then, eigen-decomposition is applied to ΣA
i , to obtain the

eigenvectors which form an orthonormal basis VA com-
posed of eigenvectors vA

m, with corresponding eigenvalues
λAm, where m = 1, 2, 3, and λA1 > λA2 > λA3 . Next, we
map the reference and distorted neighborhoods to the new
orthonormal basis, denoted as ωF

n = (pg,F
n − p̄gA

i ) · VA.
Finally, we apply PCA to the covariance matrix of ωB

n



Table I: Definition of descriptors.

Descriptor Definition Distance

G
eo

m
et

ri
c

Error vector e = (ωB
i − ωA

i ) rα

Error along axes ϵm = (ωB
i − ωA

i )T · um rβ

Error from origin ε = ωF
i rα,rβ

Mean µB = 1
N

∑
n ωB

n rα,rβ

Variance λF = 1
N

∑
n

(
ωF

n − µF)2
rδ

Sum of variance ΣF =
∑

m λF
m rδ

Covariance Σ = 1
N

∑
n

(
ωA
n − µA

)
·
(
ωB
n − µB

)T rγ

Omnivariance OF = 3
√∏

m λF
m rλ

Eigenentropy EF = −
∑

m λF
m · log λF

m rδ

Anisotropy AF = (λF
1 − λF

3 )/λF
1 rδ

Planarity PF = (λF
2 − λF

3 )/λF
1 rδ

Linearity LF = (λF
1 − λF

2 )/λF
1 rδ

Scattering SF = λF
3 /λF

1 rδ

Change of curvature CF = λF
3

/∑
m λF

m rδ

Parallelity Pm = 1− um · vB
m −

Angular similarity θm = 1− 2·arccos(cos(um,vB
m))

π
−

Te
xt

ur
al

Mean µ̃F = 1
N

∑
n pt,F

n rδ

Variance s̃F = 1
N

∑
n

(
pt,F
n − µ̃F

)2
rδ

Sum of variance Σ̃F =
∑

m s̃Fm rδ

Covariance Σ̃ = 1
N

∑
n

(
p
t,A
n − µ̃A

)
·
(
p
t,B
n − µ̃B

)T rγ

Omnivariance ÕF = 3
√∏

m s̃Fm rδ

Entropy H̃F = −
∑

m s̃Fm · log s̃Fm rδ

and compute the eigenvectors vB
m and eigenvalues λBm. The

mapped coordinates of the reference and distorted points
ωF

n , the eigenvectors vF
m and the unit vectors um, with

u1 = [1, 0, 0]T, u2 = [0, 1, 0]T and u3 = [0, 0, 1]T, are used
to construct the geometric descriptors defined in Table I.

Texture descriptors: The color space is first converted
from RGB to YCbCr [15]. This conversion is motivated by
the fact that the human eye is more sensitive to changes
in brightness than changes in color. We denote the texture
information of pi’s N nearest neighbors in F as pt,F

n =
(Yn, Cbn, Crn)

T. The proposed 6 texture descriptors are
defined in Table I.

Explanation of descriptors: Each geometry descriptor
represents an interpretable shape property inside the neigh-
borhood. Specifically, e denotes the error vector between
the mapped coordinates of the reference query point and its
nearest neighbor, and ϵm is the projected distance of the
error vector across the m-th axis. The ε is used to capture
the Euclidean and projected distances of the mapped refer-
ence query point or its nearest distorted neighbor from the
centroid and principal axes, respectively. µB, λF , ΣF and Σ
reveal local statistics. EF provides an estimation of the space
uncertainty on the projected surfaces. Additionally, Pm and
θm assess the parallelity and the angular dispersion of the
distorted plane. The remaining geometry descriptors explore
the topology of a local region from different aspects, relying

on the spatial dispersion along different principal axes. µ̃F ,
s̃F and Σ̃F of the YCbCr channel express the intrinsic
distribution of luminance and chromatic components. Σ̃ and
ÕF show the variability of color information. H̃F provides
an estimation of color uncertainty of the local region. Every
descriptor is computed per point pi.

Predictors: Predictors are defined as the error samples
obtained by computing a distance over a descriptor. We
define different distance functions for different descriptors.
We use the Euclidean distance to measure the point-to-point
distances between query point pairs under the new basis

rα =

√∑
m d1

2, (3)

where d1 is the difference between two points. We use the
absolute value to measure the point-to-plane distance, as

rβ = |d2|, (4)

where d2 indicates the projected distance between a point
and the reference axes. We use the following definition of
relative difference for the covariance features

rγ =
|qA ⊙ qB −Q|

qA ⊙ qB , (5)

where {qF = λF ,Q = Σ} and {qF = s̃F ,Q = Σ̃},
for geometry and texture attributes, respectively, ⊙ is for
element-wise product. We use the relative difference formula
[6], for the remaining descriptors

rδ =
|ϕA − ϕB|

|ϕA|+ |ϕB|+ ε
, (6)

where ε is a small constant to avoid undefined operations.
Finally, the definitions of parallelity and angular similarity
descriptors incorporate a distance function. For notational
purposes only, we define distances rρ and rθ to be identical
to the definitions of Pm and θm, respectively. Table I enlists
distance function(s) used per descriptor.

Features: Features are defined by pooling over predic-
tor values. Specifically, predictors ψi,j,k are obtained per
point pi, descriptor j, and distance function rk, k ∈
{α, β, γ, δ, ρ, θ}. This is done for all descriptors j in Table I,
using the corresponding distances rk. Through pooling, we
obtain a feature fj,k for every predictor:

fj,k =
1

|A|
∑|A|

i=1 ψi,j,k. (7)

II-C. Quality Regression

To obtain a quality score that is well-aligned with the
HVS, RFE is used to select the most relevant predictor set
among all the proposed predictors. RFE [17] improves model
accuracy, and efficiency, and reduces overfitting. We then use
the random forest algorithm to regress the selected predictors
to the final quality score.



Table II: SROCC performance on M-PCCD, SJTU and WPC datasets
Metric PointPCA+ PointPCA[13] PCQM[8] pSSIM[6] BitDance[16] Plane2plane[2] P2Plane MSE[1] P2P MSE [1] PSNR Y[1]

M-PCCD 0.943±0.022 0.941±0.032 0.940±0.032 0.925±0.024 0.859±0.061 0.847±0.076 0.901±0.025 0.896±0.042 0.798±0.162
SJTU 0.865±0.064 0.890±0.056 0.862±0.030 0.708±0.070 0.748±0.077 0.761±0.039 0.578±0.155 0.612±0.157 0.743±0.083
WPC 0.857±0.040 0.866±0.036 0.749±0.036 0.465±0.059 0.451±0.054 0.454±0.069 0.452±0.065 0.563±0.071 0.614±0.061

III. EXPERIMENTAL RESULTS
In this section, we report evaluation results of the proposed

PointPCA+ metric under three public datasets. Moreover,
we report the performance achieved in the ICIP 2023 Point
Cloud Visual Quality Assessment (PCVQA) grand chal-
lenge1. Specifically, the challenge consists of 5 tracks, which
correspond to different use cases in which quality metrics
are typically used. We participated in Track#1 FR broad-
range quality estimation, Track#3 FR high-range quality
estimation, and Track#5 Intra-reference quality estimation.

III-A. Setup
Datasets: Three publicly available datasets were recruited

for performance evaluation, namely, M-PCCD, SJTU, and
WPC. The M-PCCD [18] consists of 8 point clouds whose
geometry and color are encoded using V-PCC and G-PCC
variants, resulting in 232 distorted stimuli. The SJTU [19]
includes 9 reference point clouds with each point cloud
corrupted by seven types of distortions under six levels,
generating 378 distorted stimuli. The WPC [4] contains
20 reference point clouds with each point cloud degraded
under five types of distortions and different levels, leading
to 740 distorted stimuli. The Broad Quality Assessment of
Static Point Clouds (BASICS) [20] is used in the ICIP
2023 PCVQA grand challenge, and comprises 75 point
clouds from 3 different semantic categories. Each point
cloud is compressed with 4 different algorithms at varying
compression levels, resulting in 1494 processed point clouds.

Evaluation metrics: We evaluate the performance with
four standard criteria: Pearson Linear Correlation Coeffi-
cient (PLCC), Spearman Rank Order Correlation Coefficient
(SROCC), Difference/Similar Analysis quantified by Area
Under the Curve (AUC), and Better/Worse Analysis quan-
tified by Correct Classification percentage (CC) [21]. No
function is adopted for score mapping. Finally, we report
the Runtime Complexity (RC).

Implementation details: We use RFE to select the best
feature set among all the predictors, with the best SROCC
performance on the training set. In the inference stage,
the default configuration of scikit-learn (version 1.2.2) in
Python is used. Regarding the neighborhood size for the
computation of descriptors, K = 81 is chosen consider-
ing complexity and performance, after experimenting with
K ∈ {9, 25, 49, 81, 121}.

III-B. Overall performance comparison
Performance evaluation on M-PCCD, SJTU and WPC:

We compare PointPCA+ with existing state-of-the-art FR

1https://sites.google.com/view/icip2023-pcvqa-grand-challenge

quality metrics, the results are shown in TABLE II. The best
performance among these metrics is highlighted in boldface,
with the second best underlined. We used an 80%-20% split
for training and testing for each dataset. Then, the average
and the standard deviation of SROCC index computed across
all testing splits of each dataset, are reported. Specifically,
for M-PCCD, SJTU, and WPC, we have 28, 36, and 4845
splits respectively. PCA-based metrics are competitive with
the highest PLCC/SROCC on the three datasets.

Performance evaluation on BASICS: We split BA-
SICS into training-validation-test with 60%-20%-20% fol-
lowing the rules from the PCVQA grand challenge
[22]. Table III shows the official evaluation results of
Track#1. The PointPCA+ secured a third-place ranking
in Track#3 and Track#5, with {PLCC, SROCC, AUC,
CC}= {0.479, 0.603, 0.625, 0.886} and {AUC, CC} =
{0.811, 0.938}, respectively.

Table III: Top 4 performance comparison on the official
PCVQA grand challenge test set, evaluated by the challenge
organizers. Best in bold and second best underlined.

Submission PLCC SROCC AUC CC RC(s)
KDDIUSCJoint 0.917 0.875 0.888 0.970 42.8

CWI DIS 0.909 0.874 0.871 0.961 1000
SJTU MMLAB 0.896 0.871 0.832 0.955 8.60

SlowHand 0.825 0.791 0.805 0.924 130.47

IV. CONCLUSION

This paper proposes a PCA-based PCQA metric, namely
PointPCA+, which relies on an enriched set of lower com-
plexity descriptors with respect to its PointPCA predecessor.
After a pre-processing step, features are extracted from both
geometric and textural domains. A subset of features is
selected to enhance the stability of the model, and a learning-
based feature fusion based on ensemble learning is applied
to the feature subset, to provide a total quality score for a
distorted point cloud. Our experimental results demonstrate
that PointPCA+ outperforms the majority of existing PCQA
metrics, reaching second place in Track#1 of the ICIP 2023
PCVQA grand challenge. Future work will focus on further
reducing computational complexity and incorporating global
descriptors to more effectively handle general distortion.
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