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Abstract

A new energy-consistent discretization of the viscous dissipation function in incompressible flows is proposed.
It is implied by choosing a discretization of the diffusive terms and a discretization of the local kinetic energy
equation and by requiring that continuous identities like the product rule aremimicked discretely. The proposed
viscous dissipation function has a quadratic, strictly dissipative form, for both simplified (constant viscosity)
stress tensors and general stress tensors. The proposed expression is not only useful in evaluating energy budgets
in turbulent flows, but also in natural convection flows, where it appears in the internal energy equation and is
responsible for viscous heating. The viscous dissipation function is such that a consistent total energy balance is
obtained: the ‘implied’ presence as sink in the kinetic energy equation is exactly balanced by explicitly adding it
as source term in the internal energy equation.

Numerical experiments of Rayleigh-Bénard convection (RBC) and Rayleigh-Taylor instabilities confirm that
with the proposed dissipation function, the energy exchange between kinetic and internal energy is exactly pre-
served. The experiments show furthermore that viscous dissipation does not affect the critical Rayleigh number
at which instabilities form, but it does significantly impact the development of instabilities once they occur. Con-
sequently, the value of the Nusselt number on the cold plate becomes larger than on the hot plate, with the dif-
ference increasing with increasing Gebhart number. Finally, 3D simulations of turbulent RBC show that energy
balances are exactly satisfied even for very coarse grids; therefore, we consider that the proposed discretization
forms an excellent starting point for testing sub-grid scale models.

Keywords: viscous dissipation, energy conservation, staggered grid, natural convection, Rayleigh-Bénard,
Gebhart number

1. Introduction and problem description

In this article we study the viscous dissipation function and its role in natural convection flows described by
the incompressible Navier-Stokes equations, with buoyancy effects modelled by the Boussinesq approximation
[1]. These ‘Boussinesq‘ or ‘Oberbeck-Boussinesq’ equations have attracted much scientific interest over several
decades [2], not only because of their physical relevance, but also of their intriguing mathematical properties.
An important test case studied with the Boussinesq system is that of Rayleigh-Bénard convection [3], in which
a box of fluid is heated from the bottom and cooled from the top, giving rise to convection cells. The Boussinesq
equations also describe a (miscible) form of Rayleigh-Taylor instability, which occurs when a heavy (cold) fluid
is positioned above a light (warm) fluid.

A common assumption in many incompressible natural convection studies is that the effect of viscous dissi-
pation on the internal energy (effectively on the temperature) is neglected. This assumption is not always valid,
for example when considering natural convection in the Earth mantle, when considering highly viscous liquids,
when large length scales are involved, or in devices operating at high rotational speed [4, 5, 6, 7, 8, 9, 10, 11].
Of course, when considering compressible flows, e.g. high-speed flows, including heating by viscous dissipation
is known to be important, and several benchmarking studies have been performed related to modelling natural
convection in the Earth mantle [12, 13]. These studies typically assume infinite Prandtl numbers, and ignore
the unsteady and convective terms in the momentum equations. In this paper we will restrict ourselves to the
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incompressible situation, for which this effect is less studied. In this incompressible case, Ostrach [11], Gebhart
[10] and Turcotte et al. [9] should be explicitlymentioned, being among the first to address the role of viscous dis-
sipation and to introduce next to the well-knownRayleigh and Prandtl numbers another dimensionless quantity,
which is known as the dissipation number or the Gebhart number. In addition, we mention the work of Barletta
and co-authors [14, 15, 16, 17], who considered the role of viscous dissipation in natural convection in several
papers, studying the correct mathematical formulation of the problem and linear stability analysis for different
geometries. Turcotte et al. [9] were probably one of the first to perform numerical experiments of incompressible
natural convection flows that include viscous dissipation. They performed simulations on coarse grids (10 × 10)
and low Rayleigh numbers (Ra = 104, 105) for different values of the dissipation number and concluded that
Rayleigh-Bénard convection was significantly affected when the dissipation number was of order unity.

From an energy perspective, the viscous dissipation source term in the internal energy equation occurs as
a sink in the kinetic energy equation, which cancel each other when considering the total energy equation.
However, most energy analyses, especially for incompressible flow, focus on the role of the potential energy term
and its split into available and background potential energy [18, 19, 20], or on the kinetic energy budget [21]. To
the author’s knowledge, the role of viscous dissipation in the kinetic energy equation and its numerical treatment
for the internal energy equation have not been explored in detail.

In this paper, themain novelty is thatwe propose a discretization of the viscous dissipation function and apply
it to the context of natural convection flow, where it appears as a source term in the internal energy equation. Our
discretization is such that we get a correct global energy balance, on continuous, semi-discrete, and fully discrete
level. First, on the continuous level, a non-dimensionalization is proposed that makes the internal and kinetic
energy scaling consistent. Second, on the semi-discrete level, we propose a discrete dissipation operator, and
show that it cannot be chosen freely but is implied by the discretization of the viscous terms in the momentum
equations and by the definition of the kinetic energy. This discrete dissipation operator is not only of use in the
internal energy equation, but also useful beyond the context of natural convection flows, e.g. when estimating
the dissipation of kinetic energy in turbulent flows in a numerical simulation. Third, on the fully discrete level,
we propose a time integration method that preserves the total energy balance upon time marching.

The paper is structured as follows. Section 2 introduces the governing equations, energy balances, and new
non-dimensionalization. Sections 3 and 4 describe the energy-consistent spatial and temporal discretization.
Section 5 describes steady-state results of Rayleigh-Bénard convection including viscous dissipation, and section
6 describes energy-conserving simulations of Rayleigh-Taylor instabilities including viscous dissipation. Section
7 shows the effect of viscous dissipation in 3D DNS of Rayleigh-Bénard convection.

2. Energy-conserving formulation

2.1. Governing equations
The Boussinesq approximation states that density variations are small and can be ignored in all terms of the

Navier-Stokes (NS) equations, except in the one pertaining to the gravity term. The NS equations describing
conservation of mass and momentum then read

∇ ⋅ 𝒖 = 0, (1)

𝜌0 (
𝜕𝒖
𝜕𝑡 + ∇ ⋅ (𝒖 ⊗ 𝒖)) = −∇𝑝 + 𝜇∇2𝒖 + 𝜌𝒈, (2)

where 𝒖(𝒙, 𝑡) is the velocity field, 𝑝(𝒙, 𝑡) the pressure, 𝜇 the dynamic viscosity, 𝜌(𝒙, 𝑡) the density and 𝜌0 a
reference density. Without loss of generality, we consider a two-dimensional domain Ω, with the gravity vector
pointing in the negative 𝑦-direction so that 𝒈 = −𝑔𝒆𝑦 . An example of the domain as used in the Rayleigh-Bénard
problem, including the boundary conditions, is given in figure 1. In the results section we will also consider the
Rayleigh-Taylor problem, which has adiabatic boundaries on top and bottom, instead of isothermal as in case of
Rayleigh-Bénard.
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Figure 1: Problem set-up for Rayleigh-Bénard convection.

The density 𝜌 is assumed to vary only with temperature 𝑇(𝒙, 𝑡), according to 𝜌(𝑇) = 𝜌0−𝛽𝜌0(𝑇 −𝑇0), where
𝛽 is the isobaric coefficient of thermal expansion (𝛽 = − 1

𝜌

( 𝜕𝜌
𝜕𝑇

)

𝑝
). The NS equations are then written as

𝜌0 (
𝜕𝒖
𝜕𝑡 + ∇ ⋅ (𝒖 ⊗ 𝒖)) = −∇𝑝′ + 𝜇∇2𝒖 − 𝛽𝜌0(𝑇 − 𝑇0)𝒈, (3)

where 𝑝 = 𝑝′ − 𝜌0𝑔𝑦 and ∇𝑝 = ∇𝑝′ − 𝜌0𝑔𝒆𝑦 .
The equation for the internal energy 𝑒𝑖 describes the temperature evolution according to

𝜕
𝜕𝑡 (𝜌0𝑐𝑇⏟⏟⏟

𝑒𝑖

) + ∇ ⋅ (𝒖(𝜌0𝑐𝑇)) = Φ + 𝜆∇2𝑇, (4)

where 𝜆 is the thermal conductivity and 𝑐 equals 𝑐𝑣 in case of an ideal gas (the specific heat at constant volume),
and equals 𝑐𝑝−

𝑝𝛽
𝜌
for a real gas [22]). The contribution of pressure work to the change in internal energy, 𝑝∇⋅𝒖,

has been discarded in equation (3) because of equation (1). The viscous dissipation function

Φ ∶= 𝜇‖∇𝒖‖2 ≥ 0, (5)

is the key quantity in this work, where ‖∇𝒖‖2 = ∇𝒖 ∶ ∇𝒖 (the Frobenius inner product). In 2D and Cartesian
coordinates it can be written as

Φ = 𝜇 [(𝜕𝑢𝜕𝑥)
2
+ (𝜕𝑢𝜕𝑦 )

2
+ (𝜕𝑣𝜕𝑥)

2
+ (𝜕𝑣𝜕𝑦 )

2
] . (6)

Remark 1. The viscous dissipation expression (5) is only valid if the diffusive terms are written as ∇ ⋅ 𝝉 = 𝜇∇2𝒖,
with 𝝉 = ∇𝒖. This simplified form follows from the more general stress tensor expression

∇ ⋅ 𝝉̂, 𝝉̂ = 𝜇(∇𝒖 + (∇𝒖)𝑇), (7)

by assuming constant 𝜇 and incompressibility, so that the identity∇ ⋅ (𝜇∇𝒖)𝑇 = 𝜇∇(∇ ⋅ 𝒖) = 0 holds. For the more
general stress tensor 𝝉̂ we have instead

Φ̂ = 𝝉̂ ∶ ∇𝒖 = 𝜇 [2 (𝜕𝑢𝜕𝑥)
2
+ 2 (𝜕𝑣𝜕𝑦 )

2
+ (𝜕𝑢𝜕𝑦 +

𝜕𝑣
𝜕𝑥)

2
] , (8)
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which is notably different from expression (6). The dissipation function is therefore linked to the form of the stress
tensor used in the momentum equations. In this work we mainly use expression (6), but we will also explain the
extension to the more general form (8), see Appendix B, equation (B.21). For an alternative approach, see also [23].

2.2. Total energy conservation
Conservation of kinetic energy follows by taking the dot product of equation (3) with 𝒖:

𝜕
𝜕𝑡 (

1
2𝜌0|𝒖|

2

⏟⎴⏟⎴⏟
𝑒𝑘

) + ∇ ⋅ (12𝜌0|𝒖|
2𝒖) = −𝒖 ⋅ ∇𝑝′ + 𝜇∇ ⋅ (𝒖 ⋅ ∇𝒖) − 𝜇‖∇𝒖‖2 + 𝛽𝑔𝜌0(𝑇 − 𝑇0)𝑣, (9)

where 𝒈 ⋅ 𝒖 = −𝑔𝑣 and we have used the identity

𝒖 ⋅ ∇2𝒖 = −‖∇𝒖‖2 + ∇ ⋅ (𝒖 ⋅ ∇𝒖). (10)

Upon adding the kinetic and internal energy equations (4) and (9), the viscous dissipation term cancels and
we arrive at the equation for the total energy 𝑒 = 𝑒𝑘 + 𝑒𝑖:

𝜕
𝜕𝑡 (𝑒𝑘 + 𝑒𝑖) + ∇ ⋅ ((𝑒𝑘 + 𝑒𝑖)𝒖) = −∇ ⋅ (𝑝′𝒖) + 𝜇∇ ⋅ (𝒖 ⋅ ∇𝒖) + 𝛽𝑔𝜌0(𝑇 − 𝑇0)𝑣 + 𝜆∇2𝑇. (11)

All terms are in conservative (divergence) form, except the potential energy term. Upon integrating over the
domain Ω and assuming no-slip conditions 𝒖 = 𝟎 on all boundaries, we obtain the global balances

d𝐸𝑘
d𝑡 = −∫

Ω
ΦdΩ + ∫

Ω
𝛽𝑔𝜌0(𝑇 − 𝑇0)𝑣dΩ, (12)

d𝐸𝑖
d𝑡 = ∫

Ω
ΦdΩ + ∫

𝜕Ω
𝜆∇𝑇 ⋅ 𝒏 d𝑆, (13)

d𝐸
d𝑡 =

d𝐸𝑘
d𝑡 +

d𝐸𝑖
d𝑡 = ∫

Ω
𝛽𝑔𝜌0(𝑇 − 𝑇0)𝑣dΩ + ∫

𝜕Ω
𝜆∇𝑇 ⋅ 𝒏 d𝑆, (14)

where 𝐸 = ∫Ω 𝑒 dΩ = 𝐸𝑘 + 𝐸𝑖 . In case the boundary conditions are adiabatic (∇𝑇 ⋅ 𝒏 = 0), the last term in (14)
vanishes and the total energy equation expresses that the sum of internal and kinetic energy changes due to the
buoyancy flux ∫Ω 𝛽𝑔𝜌0(𝑇 − 𝑇0)𝑣 dΩ – this case will be dealt with in the Rayleigh-Taylor set-up in section 6.

In most studies of Rayleigh-Bénard convection the dissipation function Φ is left out from the internal energy
equation (4), while its corresponding counterpart in the momentum equation (𝜇∇2𝒖) is still included. As a
consequence, the energy lost in the kinetic energy equation is not balanced by the heat generated in the internal
energy equation, so that the total energy equation features a dissipation term, which destroys the global energy
balance.

Remark 2. Equations (12) and (14) feature the buoyancy flux ∫ 𝛽𝑔𝜌0(𝑇 −𝑇0)𝑣dΩ (stemming from the term ∫ 𝜌𝒈 ⋅
𝒖dΩ). In general compressible fluids, i.e. those that satisfy

𝜕𝜌
𝜕𝑡 + ∇ ⋅ (𝜌𝒖) = 0, (15)

one can show that the buoyancy flux can be written as the time derivative of the potential energy 𝐸𝑝 = ∫ 𝜌𝑔𝑦dΩ
(see [24], section 6.4.2; [7], section 3.8). In that case, one could define 𝐸̂ = 𝐸𝑘 + 𝐸𝑖 + 𝐸𝑝 and have a total energy
conservation statement of the form [25]:

d𝐸̂
d𝑡 = ∫

𝜕Ω
𝜆∇𝑇 ⋅ 𝒏 d𝑆. (16)

However, in Boussinesq fluids, equation (15) is not satisfied; instead we have

𝜕𝜌
𝜕𝑡 + ∇ ⋅ (𝜌𝒖) =

𝜕𝜌
𝜕𝑡 + (𝒖 ⋅ ∇)𝜌 + 𝜌∇ ⋅ 𝒖

⏟⏟⏟
=0

= −𝜌0𝛽 [
𝜕𝑇
𝜕𝑡 + (𝒖 ⋅ ∇)𝑇] . (17)
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The right-hand side can be written in terms of the sum of thermal diffusion and viscous dissipation, see equation (4),
and is generally nonzero. As a consequence, the time derivative of the potential energy includes not only the buoyancy
flux, but also additional terms [18, 19]. Therefore, for Boussinesq fluids additional terms appear in the right-hand
side of equation (16) (independent of whether viscous dissipation is included in the internal energy equation). In
this paper, the meaning ‘energy-consistent’ thus refers to the exchange between internal and kinetic energy, and not
to the total energy (kinetic + potential + internal), which is not conserved under the Boussinesq approximation.

2.3. Non-dimensionalization
The study of the Rayleigh-Bénard convection problem is simplified by introducing dimensionless quantities.

As explained in [4], p. 46, three dimensionless groups (or ‘similarity parameters’) are needed to fully describe the
problem. An important question that we address here is how the choice of non-dimensionalization changes the
total energy equation.

We non-dimensionalize equations (1), (2) and (4) by taking a reference length 𝐻 (cavity height), a reference
temperature difference ∆𝑇 (difference between the cold and hot plates), and a reference velocity yet to be spec-
ified. From these choices we find the time scale 𝐻∕𝑢ref and the pressure scale 𝜌0𝑢2ref . The non-dimensional
quantities are thus

𝒙̃ = 𝒙
𝐻 , 𝑡 =

𝑡𝑢ref
𝐻 , 𝒖̃ = 𝒖

𝑢ref
, 𝑇̃ =

𝑇 − 𝑇0
∆𝑇 , 𝑝̃′ =

𝑝′

𝜌0𝑢2ref
, (18)

and the non-dimensional equations read

∇̃ ⋅ 𝒖̃ = 0, (19)
𝜕𝒖̃
𝜕𝑡 + ∇̃ ⋅ (𝒖̃ ⊗ 𝒖̃) = −∇̃𝑝̃′ +

𝜇
𝜌0𝑢ref𝐻

∇̃2𝒖̃ +
𝛽𝑔∆𝑇𝐻
𝑢2ref

𝑇̃𝒆𝑦 , (20)

𝜕𝑇̃
𝜕𝑡 + ∇̃ ⋅ (𝒖̃𝑇̃) =

𝜈𝑢ref
𝑐𝐻∆𝑇 Φ̃ + 𝜅

𝑢ref𝐻
∇̃2𝑇̃, (21)

where 𝜈 = 𝜇∕𝜌0 and 𝜅 = 𝜆∕(𝜌0𝑐). The two latter equations are re-written by introducing the parameters 𝛼𝑖 ,
𝑖 = 1… 4, as

𝜕𝒖̃
𝜕𝑡 + ∇̃ ⋅ (𝒖̃ ⊗ 𝒖̃) = −∇̃𝑝̃′ + 𝛼1∇̃2𝒖̃ + 𝛼2𝑇̃𝒆𝑦 , (22)

𝜕𝑇̃
𝜕𝑡 + ∇̃ ⋅ (𝒖̃𝑇̃) = 𝛼3Φ̃ + 𝛼4∇̃2𝑇̃. (23)

The 𝛼𝑖 ’s can be expressed in terms of three dimensionless numbers, being the Rayleigh number Ra, the
Prandtl number Pr and the Gebhart number Ge (also known as the dissipation number [6]):

Ra =
𝛽𝑔∆𝑇𝐻3

𝜈𝜅 , (24)

Pr = 𝜈
𝜅 , (25)

Ge =
𝛽𝑔𝐻
𝑐 . (26)

Alternatively, one can employ the Grashof number Gr = Ra∕Pr [4]. In table 1 we present three different options
for 𝑢ref with the corresponding values of 𝛼. Choices I and II are common in literature, see for example [26]
for choice I and [15, 1, 27] for choice II. Other choices are also possible, e.g. 𝑢ref = 𝛽𝑔∆𝑇𝐻2∕𝜈 [5], but this
choice does not lead to a ‘clean’ expression in terms of the dimensionless numbers defined above. To our best
knowledge, choice III is new and inspired by the form of the total energy equation, as we will explain below.

It is important to realize that the time scales and the velocity fields corresponding to numerical simulations
with choices I, II and III are different. The time scales are related as 𝑡𝐼

𝑢ref,𝐼
= 𝑡𝐼𝐼

𝑢ref,𝐼𝐼
= 𝑡𝐼𝐼𝐼

𝑢ref,𝐼𝐼𝐼
, so 𝑡𝐼𝐼𝐼 = 𝑡𝐼∕

√
Ge

5



𝑢ref 𝛼1 =
𝜈

𝑢ref𝐻
𝛼2 =

𝛽𝑔∆𝑇𝐻
𝑢2ref

𝛼3 =
𝜈𝑢ref
𝑐∆𝑇𝐻

𝛼4 =
𝜅

𝑢ref𝐻
𝛾 = 𝛼1

𝛼3

I
√
𝛽𝑔∆𝑇𝐻

√
Pr
Ra

1 Ge
√

Pr
Ra

1
√
PrRa

1
Ge

II 𝜅
𝐻

Pr PrRa Ge
Ra

1 PrRa
Ge

III
√
𝑐∆𝑇

√
PrGe
Ra

Ge
√

PrGe
Ra

√
Ge
PrRa

1

Table 1: Different non-dimensional forms resulting from different choices of 𝑢ref .

and 𝑡𝐼𝐼𝐼 = 𝑡𝐼𝐼
√
RaPr∕

√
Ge. The velocity fields are related as 𝒖̃𝐼𝑢ref,𝐼 = 𝒖̃𝐼𝐼𝑢ref,𝐼𝐼 = 𝒖̃𝐼𝐼𝐼𝑢ref,𝐼𝐼𝐼 , so that 𝒖̃𝐼𝐼𝐼 =

𝒖̃𝐼
√
Ge, and 𝒖̃𝐼𝐼𝐼 = 𝒖̃𝐼𝐼

√
Ge∕

√
RaPr. On the other hand, the temperature fields corresponding to each choice

are equivalent, and consequently the Nusselt numbers are the same.
To obtain the non-dimensional form of the total energy equation we take the dot product of (22) with 𝒖̃ and

add the internal energy equation (23). In order for the dissipation function of the kinetic energy equation to
cancel with the internal energy equation, we require 𝛼1 = 𝛼3. This requirement is satisfied by 𝑢ref =

√
𝑐∆𝑇, i.e.

our proposed choice III in table 1. For the other choices (I and II), a weighting of the kinetic and internal energy
equations is needed in order to cancel the dissipation function in the non-dimensional total energy equation. The
weighting factor depends on the definition of the non-dimensional total energy. First define the dimensionless
kinetic and internal energy as

𝑒𝑘 ∶=
𝑒𝑘

𝜌0𝑢2ref
=

1
2
𝜌0|𝒖|2

𝜌0𝑢2ref
=

1
2
𝜌0𝑢2ref |𝒖̃|

2

𝜌0𝑢2ref
= 1
2|𝒖̃|

2, (27)

𝑒𝑖 ∶=
𝑒𝑖

𝜌0𝑐∆𝑇
=

𝜌0𝑐𝑇
𝜌0𝑐∆𝑇

=
𝜌0𝑐∆𝑇(𝑇̃ + 𝑇0∕∆𝑇)

𝜌0𝑐∆𝑇
= (𝑇̃ + 𝑇0∕∆𝑇), (28)

so that

𝑒 = 𝑒𝑘 + 𝑒𝑖 = 𝜌0𝑢2ref 𝑒𝑘 + 𝜌0𝑐∆𝑇𝑒𝑖 = 𝜌0𝑢2ref (𝑒𝑘 +
𝑐∆𝑇
𝑢2ref

𝑒𝑖) . (29)

By choosing the non-dimensional total energy as 𝑒 = 𝑒∕𝜌0𝑢2ref , we obtain

𝑒 = 𝑒𝑘 +
𝑐∆𝑇
𝑢2ref

𝑒𝑖 = 𝑒𝑘 +
𝛼1
𝛼3
𝑒𝑖 = 𝑒𝑘 + 𝛾𝑒𝑖 . (30)

Here 𝛾 = 𝛼1
𝛼3
is the weighting factor, which is reported in table 1 for different choices of 𝑢ref . The global energy

balances in non-dimensional form read

d𝐸̃𝑘
d𝑡 = −

𝛼1
Λ ∫

Ω̃
Φ̃ dΩ̃ +

𝛼2
Λ ∫

Ω̃
𝑇̃𝑣 dΩ̃, (31)

d𝐸̃𝑖
d𝑡 =

𝛼3
Λ ∫

Ω̃
Φ̃ dΩ̃ +

𝛼4
Λ ∫

𝜕Ω̃
∇̃𝑇̃ ⋅ 𝒏 d𝑆, (32)

d𝐸̃
d𝑡 =

d𝐸̃𝑘
d𝑡 + 𝛾

d𝐸̃𝑖
d𝑡 =

𝛼2
Λ ∫

Ω̃
𝑇̃𝑣 dΩ̃ +

𝛾𝛼4
Λ ∫

𝜕Ω̃
∇̃𝑇̃ ⋅ 𝒏 d𝑆, (33)

where we define 𝐸̃ = 1
Λ
∫Ω̃ 𝑒 dΩ̃, and Λ = 𝐿∕𝐻 is the aspect ratio of the box.

The choice for a particular reference velocity typically depends on the problem at hand. Choices I and II
have the advantage that in case ofGe = 0 (most commonly investigated in literature), one obtains 𝛼3 = 0 and the
dissipation terms simply drops from the internal energy equation. However, when Ge is small but nonzero, the
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weight factor 𝛾 becomes very large for choices I and II. Choice III does not suffer from this issue, because 𝛾 = 1
independent of Ge. However, choice III has the disadvantage that it does not work in the case Ge = 0, since it
leads to 𝛼𝑖 = 0 for all 𝑖. In summary: for Ge = 0, choices I and II are preferred; for small but nonzero Ge, choice
III is preferred; in other cases, all choices are fine.

2.4. Effect of viscous dissipation on Nusselt number and thermal dissipation
Amain quantity of interest in natural convection flows is the Nusselt numberNu andwewill investigate how

it changes upon including viscous dissipation in the internal energy equation. First, define the average of the
sum of convective and conductive fluxes through a horizontal plane 𝑦 = 𝑦′ by

𝐹(𝑦′) ∶= 1
𝐿 ∫

𝐿

0
(𝜌0𝑐𝑇𝑣 − 𝜆𝜕𝑇𝜕𝑦 )(𝑥,𝑦′)

d𝑥. (34)

Then, the Nusselt number based on 𝐹 follows as [3]:

Nu(𝑦̃′) ∶=
𝐹(𝑦′)
𝜆∆𝑇∕𝐻

= 1
Λ ∫

Λ

0
( 1𝛼4

𝑇̃𝑣 − 𝜕𝑇̃
𝜕𝑦̃ )(𝑥̃,𝑦̃′)

d𝑥̃. (35)

For steady state or statistically steady state (using a suitable average), and in the absence of viscous dissipation, it
is straightforward to show from the internal energy equation thatNu(𝑦̃) = Nu(𝑦̃ = 0) = Nu, which is a constant,
independent of 𝑦̃′ [1, 27]. However, upon including viscous dissipation, this relation no longer holds true and
instead the steady internal energy equation yields

𝛼4(Nu(𝑦̃′) − Nu(0)) = 𝛼3𝜖𝑈(𝑦̃′), (36)

where the integrated dissipation function is given by

𝜖𝑈(𝑦̃′) ∶=
1
Λ ∫

𝑦̃′

0
∫

Λ

0
Φ̃ d𝑥̃d𝑦̃. (37)

Equation (36) is an important relation which shows that (taking 𝑦̃′ = 1)

𝛼4(Nu(1) − Nu(0)) = 𝛼3𝜖𝑈(1), (38)

so the Nusselt number of the upper plate is always larger than or equal to the Nusselt number of the lower plate.
A second relation between Nusselt number and viscous dissipation can be obtained from the global kinetic

energy balance, equation (31). The second term in the right-hand side of equation (31) can be rewritten with
equation (36), following the analysis in [27]:

𝛼2
Λ ∫

Ω̃
𝑇̃𝑣 dΩ̃ =

𝛼2
Λ ∫

1

0
∫

Λ

0
𝑇̃𝑣 d𝑥̃d𝑦̃ = 𝛼2𝛼4 ∫

1

0
Nu(𝑦̃) d𝑦̃ +

𝛼2𝛼4
Λ ∫

Λ

0
∫

1

0

𝜕𝑇̃
𝜕𝑦̃ d𝑦̃d𝑥̃

= 𝛼2𝛼4Nu(0) + 𝛼2𝛼3 ∫
1

0
𝜖𝑈(𝑦̃) d𝑦̃ +

𝛼2𝛼4
Λ ∫

Λ

0
(𝑇̃(𝑥̃, 𝑦̃ = 1) − 𝑇̃(𝑥̃, 𝑦̃ = 0))d𝑥̃

= 𝛼2𝛼4(Nu(0) − 1) + 𝛼2𝛼3 ∫
1

0
𝜖𝑈(𝑦̃) d𝑦̃.

(39)

For (statistically) steady flow, this term equals the first term in the right-hand side of equation (31), yielding the
second relation between the Nusselt number and the viscous dissipation 𝜖𝑈

𝛼2𝛼4(Nu(0) − 1) = 𝛼1𝜖𝑈(1) − 𝛼2𝛼3 ∫
1

0
𝜖𝑈(𝑦̃) d𝑦̃. (40)
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We recognize the well-known equation 𝛼2𝛼4(Nu(0) − 1) = 𝛼1𝜖𝑈(1), see e.g. [1], but with the additional negative
term −𝛼2𝛼3 ∫

1
0 𝜖𝑈(𝑦̃) d𝑦̃.

Lastly, we link the thermal dissipation 𝜖𝑇 to the Nusselt number and the viscous dissipation function. The
non-dimensional internal energy equation, equation (23), is multiplied by 𝑇̃, and after integrating by parts, using
the skew-symmetry of the convective operator, and employing the boundary condition 𝑇̃(𝑦̃ = 1) = 0, one obtains

1
Λ
d
d𝑡 ∫Ω̃

1
2 𝑇̃

2 dΩ̃ =
𝛼3
Λ ∫

Ω̃
𝑇̃Φ̃ dΩ̃ −

𝛼4
Λ ∫

Λ

0
(𝑇̃ 𝜕𝑇̃𝜕𝑦̃ )𝑦̃=0

d𝑥̃ −
𝛼4
Λ ∫

Ω̃
‖∇̃𝑇̃‖2 dΩ̃. (41)

With the boundary condition 𝑇̃(𝑦̃ = 0) = 1, and the assumption of (statistically) steady flow, this relation is
further simplified to

𝛼4Nu(0) = 𝛼4𝜖𝑇 −
𝛼3
Λ ∫

Ω̃
𝑇̃Φ̃ dΩ̃, (42)

where
𝜖𝑇 ∶=

1
Λ ∫

Ω̃
‖∇̃𝑇̃‖2 dΩ̃. (43)

Since 𝑇̃ ≥ 0, Φ̃ ≥ 0, we conclude that viscous dissipation lowers the Nusselt number of the lower plate. In absence
of viscous dissipation in the internal energy equation, one obtains the familiar relationNu = 𝜖𝑇 . In combination
with equation (38), we obtain for the Nusselt number of the upper plate:

𝛼4Nu(1) = 𝛼4𝜖𝑇 +
𝛼3
Λ ∫ (1 − 𝑇̃)Φ̃ dΩ̃. (44)

Assuming that the temperature satisfies 0 ≤ 𝑇̃ ≤ 1, we find that viscous dissipation increases the Nusselt number
of the upper plate. In other words, the thermal dissipation lies in between the two Nusselt numbers:

Nu(0) ≤ 𝜖𝑇 ≤ Nu(1). (45)

The three relations (38), (40) and (42) are summarized in table 2 and will be confirmed in the numerical experi-
ments in section 5.

origin without viscous dissipation with viscous dissipation

internal Nu(1) = Nu(0) 𝛼4(Nu(1) − Nu(0)) = 𝛼3𝜖𝑈(1)
kinetic 𝛼2𝛼4(Nu(0) − 1) = 𝛼1𝜖𝑈(1) 𝛼2𝛼4(Nu(0) − 1) = 𝛼1𝜖𝑈(1) − 𝛼2𝛼3 ∫

1
0 𝜖𝑈(𝑦̃) d𝑦̃

internal energy ×𝑇 Nu(0) = 𝜖𝑇 𝛼4Nu(0) = 𝛼4𝜖𝑇 −
𝛼3
Λ
∫Ω̃ 𝑇̃Φ̃ dΩ̃

Table 2: Steady-state Nusselt number relations, with and without viscous dissipation.

3. Energy-consistent spatial discretization

3.1. Mass, momentum and kinetic energy equation
To discretize the non-dimensional mass and momentum equations (19) and (22), we use the staggered-grid

energy-conserving finite volume method described in [28], extended by including the buoyancy term in the mo-
mentum equations. This leads to the following semi-discrete equations:

𝑀𝑉ℎ(𝑡) = 0, (46)

Ω𝑉
d𝑉ℎ(𝑡)
d𝑡 = −𝐶𝑉(𝑉ℎ(𝑡)) − 𝐺𝑝ℎ(𝑡) + 𝛼1𝐷𝑉𝑉ℎ(𝑡) + 𝛼2(𝐴𝑇ℎ(𝑡) + 𝑦𝑇). (47)
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Here, 𝑉ℎ ∈ ℝ𝑁𝑉 are the velocity unknowns, 𝑝ℎ ∈ ℝ𝑁𝑝 the pressure unknowns, and 𝑇ℎ ∈ ℝ𝑁𝑝 the temperature
unknowns; see figure 2 for their positioning. 𝑀 ∈ ℝ𝑁𝑝×𝑁𝑉 is the discretized divergence operator, 𝐺 = −𝑀𝑇 ∈
ℝ𝑁𝑉×𝑁𝑝 the discretized gradient operator, Ω𝑉 ∈ ℝ𝑁𝑉×𝑁𝑉 a matrix with the ‘velocity’ finite volume sizes on its
diagonal, and 𝐶𝑉 and 𝐷𝑉 constitute central difference approximations of the convective and diffusive terms. 𝐴
is a matrix that averages the temperature from the center of the ‘temperature’ finite volumes to center of the
‘velocity’ finite volumes, and the vector 𝑦𝑇 incorporates the nonzero boundary condition for the temperature at
the lower plate.

The energy-conserving nature of our finite volume method is crucial in deriving an energy-consistent dis-
cretization of viscous dissipation. The energy-conserving property means that, in absence of boundary contribu-
tions, the discretized convective and pressure gradient operators do not contribute to the kinetic energy balance:
𝑉𝑇
ℎ𝐶𝑉(𝑉ℎ) = 0 and 𝑉𝑇

ℎ𝐺𝑝ℎ = 0, just like in the continuous case. This is achieved by using a skew-symmetric
convection operator and the compatibility between𝑀 and 𝐺 via 𝐺 = −𝑀𝑇 . The discrete kinetic energy balance
then reads:

d𝐸𝑘,ℎ
d𝑡 = −𝛼1𝜖𝑈,ℎ + 𝛼2𝑉𝑇

ℎ (𝐴𝑇ℎ + 𝑦𝑇), (48)

where 𝐸𝑘,ℎ =
1
2
𝑉𝑇
ℎΩ𝑉𝑉ℎ. The global viscous dissipation (i.e. summed over the entire domain) is given by 𝜖𝑈,ℎ =

‖𝑄𝑉ℎ‖22 > 0, where 𝑄 stems from decomposing the symmetric negative-definite diffusive operator as 𝐷𝑉 =
−𝑄𝑇𝑄. Equation (48) is the semi-discrete counterpart of equation (31).

𝑣𝑖,𝑗+1∕2

𝑝𝑖,𝑗

𝑢𝑖+1∕2,𝑗

𝑣𝑖,𝑗−1∕2

∆𝑥

∆𝑦
𝑢𝑖−1∕2,𝑗 𝑇𝑖,𝑗

Figure 2: Staggered grid with positioning of unknowns around a pressure volume.

3.2. Proposed viscous dissipation function
Given a discretization that satisfies a discrete kinetic energy balance, the key step is to design a discretization

scheme of the internal energy equation (23) which is such that discrete versions of the global balances (13) and
(14) are obtained. In particular, the viscous dissipation in the internal energy equation should cancel the viscous
dissipation term in the kinetic energy equation, where the latter is fully determined by the choice of the diffusion
operator and the expression for the local kinetic energy. The choice for the diffusion operator (second-order central
differencing) is straightforward. The choice for the expression of the local kinetic energy on a staggered grid is
however not obvious. We propose the following definition:

𝑘𝑖,𝑗 ∶=
1
4𝑢

2
𝑖+1∕2,𝑗 +

1
4𝑢

2
𝑖−1∕2,𝑗 +

1
4𝑣

2
𝑖,𝑗+1∕2 +

1
4𝑣

2
𝑖,𝑗−1∕2. (49)

This choice gives a local kinetic energy equation that is consistent with the continuous equations, as is detailed
in Appendix B, and consistent with the global energy definition.

The expression for Φℎ then follows from differentiating the expression for 𝑘𝑖𝑗 in time, substituting the mo-
mentum equations, and rewriting the terms involving the diffusive operator (see Appendix B). The implied
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dissipation then follows by constructing a discrete version of (10). As example, we construct the discrete version

of 𝑢 𝜕
2𝑢
𝜕𝑥2

= −
( 𝜕𝑢
𝜕𝑥

)2
+ 𝜕

𝜕𝑥

(
𝑢 𝜕𝑢
𝜕𝑥

)
, being

𝑢𝑖+1∕2,𝑗
∆𝑥 (

𝑢𝑖+3∕2,𝑗 − 𝑢𝑖+1∕2,𝑗
∆𝑥 −

𝑢𝑖+1∕2,𝑗 − 𝑢𝑖−1∕2,𝑗
∆𝑥 ) = −12 (

𝑢𝑖+3∕2,𝑗 − 𝑢𝑖+1∕2,𝑗
∆𝑥 )

2
− 1
2 (

𝑢𝑖+1∕2,𝑗 − 𝑢𝑖−1∕2,𝑗
∆𝑥 )

2

+ 1
∆𝑥 (

1
2(𝑢𝑖+3∕2,𝑗 + 𝑢𝑖+1∕2,𝑗)

𝑢𝑖+3∕2,𝑗 − 𝑢𝑖+1∕2,𝑗
∆𝑥 − 1

2(𝑢𝑖+1∕2,𝑗 + 𝑢𝑖−1∕2,𝑗)
𝑢𝑖+1∕2,𝑗 − 𝑢𝑖−1∕2,𝑗

∆𝑥 ) . (50)

The first two terms on the right-hand side contribute to the viscous dissipation function. Repeating this process
for the other components (𝑢 𝜕

2𝑢
𝜕𝑦2

, 𝑣 𝜕
2𝑣
𝜕𝑥2

, 𝑣 𝜕
2𝑣
𝜕𝑦2

), as outlined in Appendix B.2, yields the following novel expression
for the local dissipation function:

Φ𝑖,𝑗 =
1
2Φ

𝑢
𝑖+1∕2,𝑗 +

1
2Φ

𝑢
𝑖−1∕2,𝑗 +

1
2Φ

𝑣
𝑖,𝑗+1∕2 +

1
2Φ

𝑣
𝑖,𝑗−1∕2 , (51)

where

Φ𝑢𝑖+1∕2,𝑗 = −12 (
𝑢𝑖+3∕2,𝑗 − 𝑢𝑖+1∕2,𝑗

∆𝑥 )
2
−12 (

𝑢𝑖+1∕2,𝑗 − 𝑢𝑖−1∕2,𝑗
∆𝑥 )

2
−12 (

𝑢𝑖+1∕2,𝑗+1 − 𝑢𝑖+1∕2,𝑗
∆𝑦 )

2
−12 (

𝑢𝑖+1∕2,𝑗 − 𝑢𝑖+1∕2,𝑗−1
∆𝑦 )

2
,

(52)

Φ𝑣𝑖,𝑗+1∕2 = −12 (
𝑣𝑖+1,𝑗+1∕2 − 𝑣𝑖,𝑗+1∕2

∆𝑥 )
2
−12 (

𝑣𝑖+1,𝑗−1∕2 − 𝑣𝑖,𝑗−1∕2
∆𝑥 )

2
−12 (

𝑣𝑖,𝑗+3∕2 − 𝑣𝑖,𝑗+1∕2
∆𝑦 )

2
−12 (

𝑣𝑖,𝑗+1∕2 − 𝑣𝑖,𝑗−1∕2
∆𝑦 )

2
.

(53)

At boundaries, an adaptation of Φℎ is required in order to have a discrete equivalent of equation (10). This is
detailed in equation (B.15).

Note that Φℎ is derived based on local energy consideration which upon summation equals the global dissi-
pation, just like equation (37):

1𝑇Ω𝑝Φℎ = 𝜖𝑈,ℎ. (54)

3.3. Internal energy equation
Having proposed a consistent expression forΦℎ, the spatial discretization of the internal energy equation (23)

reads:
Ω𝑝

d𝑇ℎ
d𝑡 = −𝐶𝑇(𝑉ℎ, 𝑇ℎ) + 𝛼3Ω𝑝Φℎ(𝑉ℎ) + 𝛼4(𝐷𝑇𝑇ℎ + 𝑦̂𝑇), (55)

where

[𝐶𝑇(𝑉ℎ, 𝑇ℎ)]𝑖,𝑗 =∆𝑦 (𝑢𝑖+1∕2,𝑗
1
2(𝑇𝑖+1,𝑗 + 𝑇𝑖,𝑗) − 𝑢𝑖−1∕2,𝑗

1
2(𝑇𝑖,𝑗 + 𝑇𝑖−1,𝑗))+

∆𝑥 (𝑣𝑖,𝑗+1∕2
1
2(𝑇𝑖,𝑗+1 + 𝑇𝑖,𝑗) − 𝑣𝑖,𝑗−1∕2

1
2(𝑇𝑖,𝑗 + 𝑇𝑖,𝑗−1))

(56)

is the convection operator. The convection operator has a discrete skew-symmetry property which will be used in
the derivation of the thermal dissipation balance in the next subsection. 𝐷𝑇 the standard second-order difference
stencil with boundary conditions encoded in 𝑦̂𝑇 .

The total internal energy is given by 𝐸𝑖,ℎ = 1𝑇Ω𝑝𝑇ℎ (simply summing over all finite volumes). Due to the
no-slip boundary conditions on the velocity field, the convective operator satisfies 1𝑇𝐶𝑇(𝑉ℎ, 𝑇ℎ) = 0. The sum-
mation over the diffusive operator can be written in terms of the Nusselt numbers (detailed in the next section).
The total internal energy equation thus reads

d𝐸𝑖,ℎ
d𝑡 = 𝛼31𝑇Ω𝑝Φℎ + 𝛼41𝑇(𝐷𝑇𝑇ℎ + 𝑦̂𝑇),

= 𝛼31𝑇Ω𝑝Φℎ + 𝛼4(Nu𝐻 − Nu𝐶),
(57)
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where in the second line the Nusselt numbers are instantaneous Nusselt numbers. Upon adding the total kinetic
energy equation (48), and using property (54), the global energy balance results:

d𝐸ℎ
d𝑡 =

d𝐸𝑘,ℎ
d𝑡 + 𝛾

d𝐸𝑖,ℎ
d𝑡 = 𝛼2𝑉𝑇

ℎ (𝐴𝑇ℎ + 𝑦𝑇) + 𝛾𝛼41𝑇(𝐷𝑇𝑇ℎ + 𝑦̂𝑇),

= 𝛼2𝑉𝑇
ℎ (𝐴𝑇ℎ + 𝑦𝑇) + 𝛾𝛼4(Nu𝐻 − Nu𝐶),

(58)

which is the semi-discrete counterpart of equation (33). In other words, we have proposed a discrete viscous
dissipation function that leads to a correct expression for the total energy equation, namely such that the viscous
dissipation from the kinetic and internal energy equations exactly balances. Note that in the case of homogeneous
Neumann boundary conditions for the temperature on all boundaries, the last term disappears.

3.4. Discrete global balances and Nusselt number relations
We now derive discrete versions of the Nusselt relations that incorporate the viscous dissipation function,

i.e. relations (38) and (42). Our symmetry-preserving spatial discretization is such that exact discrete relations
can be derived. It is important to realize that the discrete approximation for the Nusselt number cannot be
chosen independently (when the goal is to have exact discrete global balances) but is implicitly defined once the
discretization of the diffusive operator is chosen. Consider the discretized global internal energy equation for
steady conditions,

𝛼31𝑇Ω𝑝Φℎ(𝑉ℎ) + 𝛼41𝑇(𝐷𝑇𝑇ℎ + 𝑦̂𝑇) = 0. (59)

The second term can be simplified as

1𝑇(𝐷𝑇𝑇ℎ + 𝑦̂𝑇) = −
𝑁𝑥∑

𝑖=1

𝑇𝑖,1 − 𝑇𝐻
1
2
∆𝑦

∆𝑥 +
𝑁𝑥∑

𝑖=1

𝑇𝐶 − 𝑇𝑖,𝑁𝑦

1
2
∆𝑦

∆𝑥 = Nu𝐻 − Nu𝐶 , (60)

where the Nusselt numbers on the lower (hot) and upper (cold) plate are defined as

Nu𝐻 ∶= −
𝑁𝑥∑

𝑖=1

𝑇𝑖,1 − 𝑇𝐻
1
2
∆𝑦

∆𝑥, (61)

Nu𝐶 ∶= −
𝑁𝑥∑

𝑖=1

𝑇𝐶 − 𝑇𝑖,𝑁𝑦

1
2
∆𝑦

∆𝑥. (62)

This leads to the discrete version of (38):

𝛼4(Nu𝐶 − Nu𝐻) = 𝛼31𝑇Ω𝑝Φℎ(𝑉ℎ). (63)

The discrete version of (42) follows by considering the inner product of equation (55) with 𝑇𝑇ℎ instead of 1
𝑇 .

An important property of the convective discretization (56) is that

𝑇𝑇ℎ𝐶𝑇(𝑉ℎ, 𝑇ℎ) = 0, ∀ 𝑇ℎ, if 𝑀𝑉ℎ = 0. (64)

This property is most easily derived by recognizing that 𝐶ℎ(𝑉ℎ, 𝑇ℎ) can be written in terms of a matrix-vector
product 𝐶̃𝑇(𝑉ℎ)𝑇ℎ, where 𝐶̃𝑇(𝑉ℎ) is skew-symmetric if𝑀𝑉ℎ = 0. In addition, the inner product of 𝑇ℎ with the
diffusive terms can be written as

𝑇𝑇ℎ (𝐷𝑇𝑇ℎ + 𝑦̂𝑇) =
𝑁𝑥∑

𝑖=1

⎛
⎜
⎝
−𝑇𝐻

𝑇𝑖,1 − 𝑇𝐻
1
2
∆𝑦

+ 𝑇𝐶
𝑇𝐶 − 𝑇𝑖,𝑁𝑦

1
2
∆𝑦

⎞
⎟
⎠
∆𝑥 − 𝜖𝑇,ℎ, (65)
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where

𝜖𝑇,ℎ ∶=
𝑁𝑥∑

𝑖=1

⎛
⎜
⎜
⎝

1
2
⎛
⎜
⎝

𝑇𝑖,1 − 𝑇𝐻
1
2
∆𝑦

⎞
⎟
⎠

2

+
𝑁𝑦∑

𝑗=2
(
𝑇𝑖,𝑗 − 𝑇𝑖,𝑗−1

∆𝑦 )
2

+ 1
2
⎛
⎜
⎝

𝑇𝐶 − 𝑇𝑖,𝑁𝑦

1
2
∆𝑦

⎞
⎟
⎠

2⎞
⎟
⎟
⎠

∆𝑥∆𝑦 +
𝑁𝑦∑

𝑗=1

𝑁𝑥∑

𝑖=2
(
𝑇𝑖,𝑗 − 𝑇𝑖−1,𝑗

∆𝑥 )
2

∆𝑥∆𝑦

(66)

is the discrete analogue of (41) and equation (65) is the discrete version of ∫ 𝑇 d2𝑇
d𝑦2

= [𝑇 d𝑇
d𝑦
] − ∫ (d𝑇

d𝑦
)2. With the

boundary condition 𝑇𝐻 = 1, 𝑇𝐶 = 0, we get the balance

𝛼4Nu𝐻 = 𝛼4𝜖𝑇,ℎ − 𝛼3𝑇𝑇ℎΩ𝑝Φℎ(𝑉ℎ), (67)

which is the discrete version of equation (42).

4. Energy-consistent temporal discretization

The system of equations (46), (47) and (55) needs to be integrated in time with a suitable method in order to
preserve a time-discrete version of the global energy balance (58). A common choice is to use an explicit method
(e.g. Adams-Bashforth) for the nonlinear convective terms and an implicit method (e.g. Crank-Nicolson) for the
(stiff) linear diffusion terms [20, 27, 29], or an explicit method for both convection and diffusion [30, 31]. In such
an approach, the temperature equation is typically solved first (given velocity fields at previous time instances),
and then the mass and momentum equations are solved with a pressure-correction approach. However, these
methods do not preserve the global energy balance as they violate the energy-conserving nature of the nonlinear
terms when marching in time [32].

Instead, we show here that the implicit midpoint method can be employed to achieve energy-consistent time
integration. The fully discrete system reads:

𝑀𝑉𝑛+1∕2
ℎ = 0, (68)

Ω𝑉
𝑉𝑛+1
ℎ − 𝑉𝑛

ℎ
∆𝑡 = −𝐶𝑉(𝑉

𝑛+1∕2
ℎ ) − 𝐺𝑝𝑛+1∕2ℎ + 𝛼1𝐷𝑉𝑉

𝑛+1∕2
ℎ + 𝛼2(𝐴𝑇

𝑛+1∕2
ℎ + 𝑦𝑇), (69)

Ω𝑝
𝑇𝑛+1ℎ − 𝑇𝑛ℎ

∆𝑡 = −𝐶𝑇(𝑉
𝑛+1∕2
ℎ , 𝑇𝑛+1∕2ℎ ) + 𝛼3Ω𝑝Φ(𝑉

𝑛+1∕2
ℎ ) + 𝛼4(𝐷𝑇𝑇

𝑛+1∕2
ℎ + 𝑦̂𝑇). (70)

Here 𝑉𝑛+1∕2
ℎ = 1

2
(𝑉𝑛

ℎ + 𝑉𝑛+1
ℎ ) and 𝑇𝑛+1∕2ℎ = 1

2
(𝑇𝑛ℎ + 𝑇𝑛+1ℎ ). Upon multiplying (69) by (𝑉𝑛+1∕2

ℎ )𝑇 and (70) by 1𝑇 ,
and adding the two resulting equations, we get the discrete energy balance,

𝐸𝑛+1ℎ − 𝐸𝑛ℎ
∆𝑡 =

𝐸𝑛+1𝑘,ℎ − 𝐸𝑛𝑘,ℎ
∆𝑡 + 𝛾

𝐸𝑛+1𝑖,ℎ − 𝐸𝑛𝑖,ℎ
∆𝑡 = 𝛼2(𝑉

𝑛+1∕2
ℎ )𝑇(𝐴𝑇𝑛+1∕2ℎ + 𝑦𝑇) + 𝛾𝛼41𝑇(𝐷𝑇𝑇

𝑛+1∕2
ℎ + 𝑦̂𝑇), (71)

which is the fully-discrete counterpart of equations (33) and (58). The derivations hinges again on skew-symmetry
of the convection operator 𝐶𝑉 , the compatibility between𝑀 and𝐺 (𝐺 = −𝑀𝑇), and the consistency requirement
on the viscous dissipation function, equation (54).

The system of equations (68) - (70) leads to a large system of nonlinear equations which has a saddle point
structure due to the divergence-free constraint. We solve the system in a segregated fashion and iterate at each
time step with a standard pressure-correctionmethod until the residual of the entire system is below a prescribed
tolerance. We will compare this energy-conserving time integration approach to an explicit one-leg method
[30, 31] in section 6.
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5. Steady state results (Rayleigh-Bénard)

The concept of energy consistency is best demonstrated through time-dependent simulations. However, we
start with steady-state results in order to validate the spatial discretization method and to get intuition for the
effect of the Gebhart number on the Nusselt number. For the results reported here we employ a direct solver that
solves the entire coupled non-linear system of equations that arises from spatial discretization. As initial guess
we take the following divergence-free velocity field:

𝑢(𝑥, 𝑦) = −64𝑥2(𝑥 − 1)2𝑦(𝑦 − 1)(2𝑦 − 1), (72)
𝑣(𝑥, 𝑦) = 64𝑥(𝑥 − 1)(2𝑥 − 1)𝑦2(𝑦 − 1)2, (73)

which is inspired by the regularized driven cavity problem [33]. For the temperature we take a random field
(between 0 and 1). The idea behind this choice of initial condition is to avoid the non-linear solver to be stuck
in the trivial solution (𝒖 = 0). Note that in all simulations in this article, we will set Pr = 0.71 (air), and use
non-dimensionalization choice I. Choices II and III give equivalent results apart from scaling factors.

5.1. Grid convergence study for no-dissipation case (Ge = 0)
Figure 3a shows the temperature field when viscous dissipation is not included (Ge = 0). The resulting

Nusselt numbers as a function of grid refinement are displayed in Table 3 and indicate excellent agreement with
literature [34]. We note that theNusselt numbers as defined by (61) and (62) are first-order approximations. More
accurate approximations can be constructed by includingmore interior points. We are not using such high-order
accurate approximations as they would not satisfy the discrete global balance (63). Note also that we only report
Nu𝐻 since Nu𝐶 = Nu𝐻 up to machine precision.
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Figure 3: Steady-state temperature field for Ra = 105 on a 128 × 128 grid, for different Ge.

grid Ra = 103 Ra = 104 Ra = 105

322 1.000 2.170 3.933
642 1.000 2.161 3.916
1282 1.000 2.159 3.912
2562 1.000 2.158 3.911
Cai et al. [34] (2562) 1.000 2.158 3.911

Table 3: Convergence of Nusselt number (61) with grid refinement for different Rayleigh numbers and Ge = 0.

13



5.2. Grid convergence study for viscous dissipation case (Ge> 0)
When including viscous dissipation (Ge > 0) in the internal energy equation, the flow field changes qualita-

tively and loses its symmetric nature, as can be observed in figures 3b-3c. The Nusselt numbers at the hot and
cold plate start to deviate from each other, their difference being equal to the dissipation function, according to
equation (63) (or (38)). This is reported in table 4 and figure 4a. The critical Rayleigh number that we find from
the bifurcation diagram is Ra𝑐 ≈ 2585, which is in excellent agreement with the value of 2585.02 reported in
literature [35, 36]. It is independent of the value of the Prandtl number, as shown in [35], and also independent
of the value of the Gebhart number. This latter fact follows by extending the linear stability analysis in [35] and
realizing that the term ∇𝒖 ∶ ∇𝒖 with 𝒖 = 𝒖0 + 𝜀𝒖′ and background state 𝒖0 = 0 leads to the term 𝜀2∇𝒖′ ∶ ∇𝒖′,
which disappears when gathering terms of 𝒪(𝜀). The results in figure 4a show indeed that the bifurcation point
is the same for different values of Ge.

Figure 4b shows a different interpretation of the Nusselt number, indicating the relation with the thermal
dissipation and viscous dissipation according to equation (67) (or (42)). The results confirm that the thermal
dissipation lies in between the Nusselt number of the hot and cold plate.

grid Ge = 0.1 Ge = 1
Nu𝐻 Nu𝐶 Nu𝐻 Nu𝐶

322 2.111 2.228 1.582 2.729
642 2.103 2.219 1.578 2.716
1282 2.101 2.217 1.576 2.713
2562 2.100 2.216 1.576 2.712

(a) Ra = 104.

grid Ge = 0.1 Ge = 1
Nu𝐻 Nu𝐶 Nu𝐻 Nu𝐶

322 3.786 4.080 2.448 5.319
642 3.770 4.062 2.441 5.299
1282 3.766 4.057 2.439 5.293
2562 3.765 4.056 2.439 5.292

(b) Ra = 105.

Table 4: Convergence of Nusselt numbers (61) and (62) with grid refinement for different Rayleigh and different Gebhart numbers.
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Figure 4: Bifurcation diagram for Rayleigh-Bénard problem including viscous dissipation.

6. Time-dependent, energy-conserving simulation (Rayleigh-Taylor)

The previous section confirmed the (discrete) steady-state Nusselt number balances. In this section we con-
sider the core idea of this article: achieving exact energy conservation in a time-dependent simulation. Exact
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energy conservation requires that all contributions from boundary terms disappear, which we achieve by pre-
scribing no-slip conditions 𝒖 = 0 and adiabatic conditions 𝜕𝑇

𝜕𝑛
= 0 on all boundaries (the pressure does not

require boundary conditions). The energy balance then represents a pure exchange of kinetic, internal and po-
tential energy according to

𝐸𝑛+1ℎ − 𝐸𝑛ℎ
∆𝑡 =

𝐸𝑛+1𝑘,ℎ − 𝐸𝑛𝑘,ℎ
∆𝑡 + 𝛾

𝐸𝑛+1𝑖,ℎ − 𝐸𝑛𝑖,ℎ
∆𝑡 = 𝛼2(𝑉

𝑛+1∕2
ℎ )𝑇(𝐴𝑇𝑛+1∕2ℎ + 𝑦𝑇). (74)

However, with adiabatic boundary conditions we cannot simulate the classic Rayleigh-Bénard problem. Instead,
we turn to the well-known Rayleigh-Taylor problem, featuring a cold (heavy) fluid on top of a warm (light) fluid.
A sketch of the set-up is shown in figure 5. The energy-conserving implicit midpoint (‘IM’) method detailed in
section 4 will be compared to the explicit one-leg (‘OL’) method commonly used in DNS studies [30, 31] (where
we take 𝜅 = 1

2
and a fixed time step).

𝜕𝑇
𝜕𝑥

= 0
𝒖 = 0

𝜕𝑇
𝜕𝑥

= 0

𝒖 = 0, 𝜕𝑇
𝜕𝑦

= 0

𝒖 = 0, 𝜕𝑇
𝜕𝑦

= 0

𝑦

𝑥

𝒖 = 0

𝑇 = 1

𝑇 = 0

Figure 5: Problem set-up with initial condition for Rayleigh Taylor problem.

The domain size is 1 × 2, the grid is 64 × 128, the time step ∆𝑡 = 5 ⋅ 10−3 and the end time 𝑇 = 100. We
consider the case Ra = 106 and Ge = {0.1, 1} . The instability naturally arises due to growth of round-off errors
(no perturbation is added in the initial condition). After the initial instability has developed, an asymmetry in the
solution appears, triggering a sequence of well-known ‘mushroom’ type plumes: hot plumes rising upward and
cold plumes sinking downward (figure 6). Noteworthy are the differences in the development of the instability
due to different time integration methods: IM predicts an earlier onset (around 𝑡 = 23) than OL (around 𝑡 = 33),
and the evolution stays symmetric for a much longer period of time in case of IM. For both methods, the time
of onset of instability is insensitive to the value of Ge, just like the bifurcation point in the steady state Rayleigh-
Bénard simulation was insensitive to the value of Ge. The differences between the methods might be attributed
to the absence of artificial dissipation in the IM scheme compared to OL, as well as its more symmetric nature.
However, one should note that the problem is chaotic, and similar differences in the solution can also be obtained
by adding minute perturbations to the initial condition.

Since there is no driving force and all boundary conditions are homogeneous, viscosity damps the velocity
field back to a homogeneous steady state, while at the same time increasing the temperature through dissipation.
This increase in temperature is clear fromfigure 7a, where the average temperature is displayed. Compared to the
initial temperature difference ∆𝑇 = 1, the relative temperature increase is about 2% for Ge = 0.1 and more than
20% for Ge = 1. Note that many existing natural convection models, which ignore the viscous dissipation term,
would not predict any temperature increase. With our proposed energy-consistent viscous dissipation function,
the temperature increase exactly matches the kinetic energy loss through viscous dissipation. This is confirmed
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Figure 6: Rayleigh-Taylor temperature fields.

in figure 7b, which shows the energy error

𝜀𝐸 ∶=
||||||||||

𝐸𝑛+1𝑘,ℎ − 𝐸𝑛𝑘,ℎ
∆𝑡 + 𝛾

𝐸𝑛+1𝑖,ℎ − 𝐸𝑛𝑖,ℎ
∆𝑡 − 𝛼2(𝑉

𝑛+1∕2
ℎ )𝑇(𝐴𝑇𝑛+1∕2ℎ + 𝑦𝑇)

||||||||||
. (75)

For IM the error remains at the tolerance with whichwe solve the system of nonlinear equations (10−12). For OL,
the error is initially at a similar level but increases to𝒪(10−6)when the instability develops (for 𝑡 > 30). However,
one could argue that this advantage is offset by the fact that IM is roughly 4-5× as expensive because it requires
roughly 4-5 iterations (Poisson solves) per time step, making OL much faster to run. Consequently, OL will be
employed for the 3D simulations in the next section. Note that this balance of accuracy versus computational
costs depends on the details of the flow problem and might differ in other test cases.
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Figure 7: Rayleigh-Taylor results, IM = Implicit Midpoint, OL = One-Leg scheme.
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(a) Ra = 108 and Ge = 0. (b) Ra = 108 and Ge = 1.

(c) Ra = 1010 and Ge = 0. (d) Ra = 1010 and Ge = 1.

Figure 8: Instantaneous temperature fields for 3D RBC at different Rayleigh and Gebhart numbers. For a visualization of the 3D time-
dependent simulation results, we refer to the supplementary material.

7. Energy-conserving simulation of a turbulent flow

As a final test-case, we consider the numerical simulation of an air-filled (Pr = 0.71) Rayleigh–Bénard flow
at two different Rayleigh numbers, Ra = 108 and 1010. Direct numerical simulations (DNS) were carried out and
analyzed in previous studies [37, 38] without taking into account the viscous dissipation effects (Ge = 0). Here,
the results are extended to Ge = 0.1 and Ge = 1 keeping the same domain size (𝜋 × 1 × 1) and mesh resolution
(400 × 208 × 208 for Ra = 108, and 1024 × 768 × 768 for Ra = 1010). Grids are constructed with a uniform grid
spacing in the periodic 𝑥-direction whereas wall-normal points (𝑦 and 𝑧 directions) are distributed following a
hyperbolic-tangent function as follows (identical for the 𝑧-direction)

𝑦𝑖 =
1
2 (1 +

tanh
(
𝛾𝑦(2(𝑖 − 1)∕𝑁𝑦 − 1)

)

tanh 𝛾𝑦
) , 𝑖 = 1, … ,𝑁𝑦 + 1, (76)

where𝑁𝑦 and 𝛾𝑦 are the number of control volumes and the concentration factor in the 𝑦-direction, respectively.
In our case, 𝛾𝑦 = 𝛾𝑧 = 1.4 for Ra = 108 and 𝛾𝑦 = 𝛾𝑧 = 1.6 for Ra = 1010. For further details, the reader is
referred to our previous works [37, 38].

Instantaneous temperature fields corresponding to the statistically steady state are displayed in Figure 8. As
expected, thermal dissipation effects at Ge = 1 lead to a significant increase in the average cavity temperature
which is clearly visible for both Rayleigh numbers. As in 2D, the flow symmetry (in average sense) with respect
to the mid-height plane is lost for Ge > 0 leading to higher (lower) Nusselt number for the top (bottom) wall.
Subsequently, the top (bottom) thermal boundary layer becomes thinner (thicker) with respect to the case at
Ge = 0. This implies that mesh resolution requirements in the near-wall region are also asymmetrical; however,
in this work, for the sake of simplicity, the grid spacing at the two walls is the same regardless of the Gebhart
number.
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Figure 9: Time-evolution of the most relevant energy contributions for Ge = 1; (left) Finest grid: 400 × 208 × 208 ≈ 17.3M; (right) Coarsest
grid: 50 × 26 × 26 ≈ 0.034M.

All simulations have been carried out for 500 time-units starting from a zero velocity field and uniformly
distributed random temperatures between 𝑇𝐶 and 𝑇𝐻 . As the fluid sets in motion, initially the discrete kinetic
energy of the system increases. Then, after a sufficiently long period of time (around 50 time-units) a statistically
steady state is reached. This is clearly observed in Figure 9 where the time-evolution of various rate-of-changes
of energy are shown. Results correspond to Ra = 108 and Ge = 1 using a very fine (400 × 208 × 208 ≈ 17.3M)
and a very coarse mesh. Similar results are obtained for the other tested configurations. As expected, once a
statistically steady state is reached, the kinetic energy fluctuates around its mean value and therefore its rate-of-
change d𝐸𝑘,ℎ∕d𝑡 (in red) fluctuates around zero. Only two terms contribute to the global kinetic energy of the
system (see equation (48)): the global viscous dissipation, 𝜖𝑢,ℎ (in yellow), and the contribution of the buoyancy
forces given by 𝛼2𝑉𝑇

ℎ (𝐴𝑇ℎ(𝑡) + 𝑦𝑇) (in blue). These two contributions cancel each other on average when a
statistically steady state is reached. The former is transferred into internal energy, 𝐸𝑖,ℎ, whereas the latter can
be viewed as a transfer from potential to kinetic energy. In addition, the total energy of the system is exactly in
balance with the buoyancy term and the heat conduction through the top and bottom boundaries (green line),
as given by (58), repeated here for convenience:

d𝐸𝑘,ℎ
d𝑡 + 𝛾

d𝐸𝑖,ℎ
d𝑡 − 𝛼2𝑉𝑇

ℎ (𝐴𝑇ℎ + 𝑦𝑇) − 𝛾𝛼4(Nu𝐻 − Nu𝐶) = 0. (77)

This proofs that the viscous dissipation function has indeed been discretized correctly, since an imbalance be-
tween the viscous dissipation implied by the kinetic energy equation and the explicitly added viscous dissipation
in the internal energy equation would otherwise show up. These energy balances are exactly satisfied for any
grid, so even for very coarse grids (see Figure 9, right). Notice again that it is important that the Nusselt num-
bers are evaluated consistently with the discretization of the diffusive terms in the internal energy equation, as
explained in Section 3.4.

In addition to these instantaneous balances, we show in Figure 10 that the time averages of the exact re-
lations given in equations (38), (40) and (42) are preserved at the discrete level, similar to what was shown in
steady-state in 2D (see Figure 4a). However, here we display time-averagedNusselt numbers and consider a wide
range of meshes. The finest meshes correspond to the DNS simulations shown in Figure 8 whereas coarser and
coarser meshes have been generated by reducing the number of grid points in each spatial direction by factors
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of approximately
√
2. Hence, after six successive mesh coarsenings, the total number of grid points is reduced

by approximately ((
√
2)6)3 = 29 = 512. This under-resolution causes a pile-up of (kinetic) energy close to the

smallest resolved scales, that leads to higher values of 𝜖𝑈 and, therefore, an increase of both Nu𝐻 (see equa-
tion (40)) and Nu𝐶 − Nu𝐻 (see equation (38)). Although the solution is surely less accurate at coarse grids, the
fact that an energy balance is still satisfied, makes our approach an excellent starting point for developing or
testing sub-grid scale models, as the additional dissipation that is introduced by the sub-grid scale model can be
exactly quantified.
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Figure 10: Time-averaged Nusselt numbers at lower and upper plate for a set of meshes at Ge = 0, Ge = 0.1 and Ge = 1.

8. Conclusions

In this paper we have proposed a new energy-consistent discretization of the viscous dissipation function.
The viscous dissipation function is an important quantity, for example in turbulent flow computations, where it
is critical to assess the global energy balances, or in natural convection flows, where it leads to internal heating.
This latter case has been the focus of this article, and we have shown that including the viscous dissipation
function in the internal energy equation leads to a consistent total energy balance: viscous dissipation acts as a
sink in the kinetic energy equation and as a source in the internal energy equation, such that the sum of internal
and kinetic energy only changes due to buoyancy and thermal diffusion.

Our key result is a new discretization of the local viscous dissipation function that abides by the total energy
balance. We have shown that it is determined by two choices, namely the discretization of the diffusive terms
in the momentum equations and the expression for the local kinetic energy. The discretization of the diffusive
terms is detailed for both general (non-constant viscosity) and simplified (constant viscosity) stress tensor expres-
sions. The proposed expression for the local kinetic energy is such that a discrete local kinetic energy equation
is satisfied, and leads to a quadratic, strictly dissipative form of the viscous dissipation function, also for general
stress tensors. Near boundaries we have proposed corrections to the viscous dissipation function to keep the
dissipative property.

The numerical experiments in 2D and 3D show that viscous dissipation does not affect the critical Rayleigh
number at which instabilities form, but it does significantly impact the development of instabilities once they
occur, leading to a significant difference between the Nusselt numbers on the cold and hot plates. Moreover, sim-
ulations of turbulent Rayleigh-Bénard convection have clearly shown that the proposed discretization is stable
even for very coarse grids. Namely, the numerical discretization does not interfere with the energy balances and,
therefore, we consider that the proposed method is an excellent starting point for testing sub-grid scale models.
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The analysis in this paper has been performed for the classic finite-volume staggered gridmethod. Extensions
to other discretization methods, such as finite differences or finite elements, are in principle possible provided
that a discrete local kinetic energy balance mimicking the continuous balance can be identified. Another lim-
itation of this work is the assumption of incompressible flow, which might seem restrictive given the fact that
viscous dissipation typically becomes important for compressible flows. However, the idea of discretizing the vis-
cous dissipation term in an energy-consistent manner is also applicable to compressible flows, see e.g. [39, 40],
and we expect our work can therefore be extended in that direction.

As mentioned, an important avenue for future work lies in the assessment of subgrid-scale models for tur-
bulent flows, including those driven by buoyancy. For example, in large-eddy simulation, the kinetic energy
equation of the resolved scales and of the subgrid-scales features viscous dissipation terms, and the current work
provides a basis for proper discrete representations of these terms.

Data availability statement

The incompressibleNavier-Stokes code is available at https://github.com/bsanderse/INS2D (Matlab ver-
sion). A Julia version is available from https://github.com/agdestein/IncompressibleNavierStokes.jl.
The data generated in this work is available upon request.

CRediT

Benjamin Sanderse: Conceptualization, Methodology, Writing - Original Draft, Software; Xavier Trias:
Writing - Original Draft, Writing - Review & Editing, Software

Acknowledgements

This publication is part of the project "Discretize first, reduce next" (with project number VI.Vidi.193.105) of
the research programmeNWOTalent ProgrammeVidi which is (partly) financed by the Dutch Research Council
(NWO). F.X.T. is supported by theMinisterio de Economía y Competitividad, Spain, RETOtwin project (PDC2021-
120970-I00). Turbulent Rayleigh-Bénard simulationswere carried out onMareNostrum4 supercomputer at BSC.
The authors thankfully acknowledge these institutions.

Appendix A. Forms of the dissipation function

In this appendix we expalin why the dissipation function changes depending on which form of the stress
tensor is used. The stress tensor for an incompressible fluid with non-constant viscosity is given by

𝝉̂ = 𝜇(∇𝒖 + (∇𝒖)𝑇). (A.1)

In the case of constant viscosity 𝜇, the divergence of the stress tensor can be simplified:

∇ ⋅ 𝝉̂ = 𝜇∇ ⋅ (∇𝒖 + (∇𝒖)𝑇) = 𝜇∇ ⋅ ∇𝒖 + 𝜇∇ ⋅ (∇𝒖)𝑇 = 𝜇∇2𝒖 + 𝜇∇(∇ ⋅ 𝒖) = 𝜇∇2𝒖 =∶ ∇ ⋅ 𝝉, (A.2)

where
𝝉 = 𝜇∇𝒖 = 𝝉̂ − 𝜇(∇𝒖)𝑇 . (A.3)

Note that 𝝉 is not a proper stress tensor, since it is not symmetric. We stress that∇ ⋅ 𝝉 = ∇ ⋅ 𝝉̂, even though 𝝉 ≠ 𝝉̂.
In the kinetic energy equation the divergence of the stress tensor ismultiplied by𝒖: 𝒖⋅(∇⋅𝝉). Since∇⋅𝝉 = ∇⋅𝝉̂,

we also have
𝒖 ⋅ (∇ ⋅ 𝝉) = 𝒖 ⋅ (∇ ⋅ 𝝉̂). (A.4)

Expanding both the left-hand and right-hand side with a vector identity (note: also valid for non-symmetric 𝝉)
gives:

∇ ⋅ (𝝉 ⋅ 𝒖) − 𝝉 ∶ ∇𝒖 = ∇ ⋅ (𝝉̂ ⋅ 𝒖) − 𝝉̂ ∶ ∇𝒖. (A.5)
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or
∇ ⋅ (𝝉 ⋅ 𝒖) − Φ = ∇ ⋅ (𝝉̂ ⋅ 𝒖) − Φ̂. (A.6)

The crucial point is that, even though equation (A.6) holds, the individual terms are not equal, i.e. Φ ≠ Φ̂ and
∇ ⋅ (𝝉 ⋅ 𝒖) ≠ ∇ ⋅ (𝝉̂ ⋅ 𝒖).

This insight can be further clarified by evaluating these expressions in 2D Cartesian coordinates:

∇ ⋅ (𝝉̂ ⋅ 𝒖) = 𝜇 [ 𝜕𝜕𝑥 (2𝑢
𝜕𝑢
𝜕𝑥) +

𝜕
𝜕𝑦 (𝑢 (

𝜕𝑢
𝜕𝑦 +

𝜕𝑣
𝜕𝑥)) +

𝜕
𝜕𝑥 (𝑣 (

𝜕𝑢
𝜕𝑦 +

𝜕𝑣
𝜕𝑥)) +

𝜕
𝜕𝑦 (2𝑣

𝜕𝑣
𝜕𝑦 )] , (A.7)

Φ̂ = 𝜇 [2 (𝜕𝑢𝜕𝑥)
2
+ (𝜕𝑢𝜕𝑦 +

𝜕𝑣
𝜕𝑥)

2
+ 2 (𝜕𝑣𝜕𝑦 )

2
] , (A.8)

∇ ⋅ (𝝉 ⋅ 𝒖) = 𝜇 [ 𝜕𝜕𝑥 (𝑢
𝜕𝑢
𝜕𝑥) +

𝜕
𝜕𝑦 (𝑢

𝜕𝑢
𝜕𝑦 ) +

𝜕
𝜕𝑥 (𝑣

𝜕𝑣
𝜕𝑥) +

𝜕
𝜕𝑦 (𝑣

𝜕𝑣
𝜕𝑦 )] , (A.9)

Φ = 𝜇 [(𝜕𝑢𝜕𝑥)
2
+ (𝜕𝑢𝜕𝑦 )

2
+ (𝜕𝑣𝜕𝑥)

2
+ (𝜕𝑣𝜕𝑦 )

2
] . (A.10)

Note that in a closed domain (𝒖 = 0 on all boundaries), we have the relation

∫
Ω
ΦdΩ = ∫

Ω
Φ̂ dΩ. (A.11)

Appendix B. Discrete dissipation operator from local kinetic energy equation

Appendix B.1. Momentum equations and choice of local kinetic energy
The energy-conserving discretization presented in equation (47) can be written component-wise as:

d𝑢𝑖+1∕2,𝑗
d𝑡 = −conv𝑢𝑖+1∕2,𝑗 −

𝑝𝑖+1,𝑗 − 𝑝𝑖,𝑗
∆𝑥 + 𝛼1diff

𝑢
𝑖+1∕2,𝑗 , (B.1)

d𝑣𝑖,𝑗+1∕2
d𝑡 = −conv𝑣𝑖+1∕2,𝑗 −

𝑝𝑖,𝑗+1 − 𝑝𝑖,𝑗
∆𝑦 + 𝛼1diff

𝑣
𝑖,𝑗+1∕2 + 𝛼2

1
2(𝑇𝑖,𝑗 + 𝑇𝑖,𝑗+1). (B.2)

The convective terms are discretized starting from the divergence form, and due to discrete mass conservation
they can be written in skew-symmetric form, which is energy-conserving. These terms are not the main focus of
this work and we refer to [30, 32] for details.

The aim here is to find a local kinetic energy equation expression and the exact form of the dissipation terms.
The local kinetic energy should be such that it results in the well-known global kinetic energy balance [30] upon
integration over the entire domain. This global kinetic energy equation is obtained by taking the inner product
of all momentum equations with the full velocity vector𝑉ℎ (containing 𝑢𝑖+1∕2,𝑗 and 𝑣𝑖,𝑗+1∕2 at all locations). This
resulting global kinetic energy definition 1

2
𝑉𝑇
ℎΩℎ𝑉ℎ still leaves room for the definition of the local kinetic energy.

Our proposal is to choose for the local kinetic energy the definition

𝑘𝑖,𝑗 ∶=
1
4𝑢

2
𝑖+1∕2,𝑗 +

1
4𝑢

2
𝑖−1∕2,𝑗 +

1
4𝑣

2
𝑖,𝑗+1∕2 +

1
4𝑣

2
𝑖,𝑗−1∕2. (B.3)

Upon differentiating,

d𝑘𝑖,𝑗
d𝑡 = 1

2𝑢𝑖+1∕2,𝑗
d𝑢𝑖+1∕2,𝑗

d𝑡 + 1
2𝑢𝑖−1∕2,𝑗

d𝑢𝑖−1∕2,𝑗
d𝑡 + 1

2𝑣𝑖,𝑗+1∕2
d𝑣𝑖+1∕2,𝑗

d𝑡 + 1
2𝑣𝑖,𝑗−1∕2

d𝑣𝑖,𝑗−1∕2
d𝑡 , (B.4)

and substituting the momentum equations, our proposed definition gives a local kinetic energy equation that is
consistent with the continuous equations. The stencil of points required to evaluate (B.4) is shown in figure B.11.

The choice (B.3) is inspired by the fact that it naturally allows a discrete equivalent of𝒖⋅∇𝑝 = ∇⋅(𝑝𝒖)−𝑝∇⋅𝒖:

21



𝑣𝑖,𝑗+1∕2

𝑝𝑖,𝑗
𝑢𝑖+1∕2,𝑗

𝑣𝑖,𝑗−1∕2

𝑢𝑖−1∕2,𝑗 𝑢𝑖+3∕2,𝑗𝑢𝑖−3∕2,𝑗

𝑢𝑖+1∕2,𝑗+1𝑢𝑖−1∕2,𝑗+1

𝑢𝑖+1∕2,𝑗−1𝑢𝑖−1∕2,𝑗−1

𝑣𝑖+1,𝑗+1∕2

𝑣𝑖+1,𝑗−1∕2

𝑣𝑖−1,𝑗+1∕2

𝑣𝑖−1,𝑗−1∕2

𝑝𝑖+1,𝑗𝑝𝑖−1,𝑗

𝑝𝑖,𝑗+1

𝑝𝑖,𝑗−1

𝑣𝑖,𝑗+3∕2

𝑣𝑖,𝑗−3∕2

Figure B.11: Stencil of velocity and pressure points involved in the local kinetic energy equation.

1
2𝑢𝑖+1∕2,𝑗

𝑝𝑖+1,𝑗 − 𝑝𝑖,𝑗
∆𝑥 + 1

2𝑢𝑖−1∕2,𝑗
𝑝𝑖,𝑗 − 𝑝𝑖−1,𝑗

∆𝑥 + 1
2𝑣𝑖,𝑗+1∕2

𝑝𝑖,𝑗+1 − 𝑝𝑖,𝑗
∆𝑦 + 1

2𝑣𝑖,𝑗−1∕2
𝑝𝑖,𝑗 − 𝑝𝑖,𝑗−1

∆𝑦 =

𝑢𝑖+1∕2,𝑗
1
2
(𝑝𝑖+1,𝑗 + 𝑝𝑖,𝑗) −

1
2
𝑢𝑖−1∕2,𝑗(𝑝𝑖,𝑗 + 𝑝𝑖−1,𝑗)

∆𝑥 +
𝑣𝑖,𝑗+1∕2

1
2
(𝑝𝑖,𝑗+1 + 𝑝𝑖,𝑗) − 𝑣𝑖,𝑗−1∕2

1
2
(𝑝𝑖,𝑗 + 𝑝𝑖,𝑗−1)

∆𝑦

− 𝑝𝑖,𝑗 (
𝑢𝑖+1∕2,𝑗 − 𝑢𝑖−1∕2,𝑗

∆𝑥 +
𝑣𝑖,𝑗+1∕2 − 𝑣𝑖,𝑗−1∕2

∆𝑦 )
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

div(𝑢)𝑖,𝑗

. (B.5)

Furthermore, choice (B.3) for the local kinetic energy leads to a consistent quadratic dissipation form in the case
of a general stress tensor, as will be shown in Appendix B.4.

Appendix B.2. Diffusion and dissipation
We continue to investigate the dissipation implied by the diffusive term in themomentum equation (B.1) and

the kinetic energy choice (B.3). Restricting ourselves momentarily to the term 𝜕2𝑢
𝜕𝑥2

, we are looking for a discrete
equivalent of the relation

𝑢𝜕
2𝑢
𝜕𝑥2

= −(𝜕𝑢𝜕𝑥)
2
+ 𝜕
𝜕𝑥 (𝑢

𝜕𝑢
𝜕𝑥) . (B.6)

This is given by 𝑢𝑖+1∕2,𝑗 ⋅ diff
𝑢
𝑖+1∕2,𝑗:

𝑢𝑖+1∕2,𝑗
∆𝑥 (

𝑢𝑖+3∕2,𝑗 − 𝑢𝑖+1∕2,𝑗
∆𝑥 −

𝑢𝑖+1∕2,𝑗 − 𝑢𝑖−1∕2,𝑗
∆𝑥 ) = −12 (

𝑢𝑖+3∕2,𝑗 − 𝑢𝑖+1∕2,𝑗
∆𝑥 )

2
− 1
2 (

𝑢𝑖+1∕2,𝑗 − 𝑢𝑖−1∕2,𝑗
∆𝑥 )

2

+ 1
∆𝑥 (

1
2(𝑢𝑖+3∕2,𝑗 + 𝑢𝑖+1∕2,𝑗)

𝑢𝑖+3∕2,𝑗 − 𝑢𝑖+1∕2,𝑗
∆𝑥 − 1

2(𝑢𝑖+1∕2,𝑗 + 𝑢𝑖−1∕2,𝑗)
𝑢𝑖+1∕2,𝑗 − 𝑢𝑖−1∕2,𝑗

∆𝑥 ) . (B.7)

Equation (B.7) is important because the discrete local dissipation expression is explicitly needed in the internal
energy equation.
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The analysis for the term 𝜕2𝑢
𝜕𝑦2

is completely analogous, andhencewe can define the following discrete function
that describes the dissipation implied by the discretized diffusion term of the momentum equation for 𝑢𝑖+1∕2,𝑗:

Φ𝑢𝑖+1∕2,𝑗 = −12 (
𝑢𝑖+3∕2,𝑗 − 𝑢𝑖+1∕2,𝑗

∆𝑥 )
2
− 1
2 (

𝑢𝑖+1∕2,𝑗 − 𝑢𝑖−1∕2,𝑗
∆𝑥 )

2

− 1
2 (

𝑢𝑖+1∕2,𝑗+1 − 𝑢𝑖+1∕2,𝑗
∆𝑦 )

2
− 1
2 (

𝑢𝑖+1∕2,𝑗 − 𝑢𝑖+1∕2,𝑗−1
∆𝑦 )

2
. (B.8)

Similarly, the dissipation implied by the discretized diffusion term of the momentum equation for 𝑣𝑖,𝑗+1∕2 is:

Φ𝑣𝑖,𝑗+1∕2 = −12 (
𝑣𝑖+1,𝑗+1∕2 − 𝑣𝑖,𝑗+1∕2

∆𝑥 )
2
− 1
2 (

𝑣𝑖+1,𝑗−1∕2 − 𝑣𝑖,𝑗−1∕2
∆𝑥 )

2

− 1
2 (

𝑣𝑖,𝑗+3∕2 − 𝑣𝑖,𝑗+1∕2
∆𝑦 )

2
− 1
2 (

𝑣𝑖,𝑗+1∕2 − 𝑣𝑖,𝑗−1∕2
∆𝑦 )

2
. (B.9)

The entire dissipation term appearing in the kinetic energy equation for d𝑘𝑖,𝑗
d𝑡

is then

Φ𝑖,𝑗 =
1
2Φ

𝑢
𝑖+1∕2,𝑗 +

1
2Φ

𝑢
𝑖−1∕2,𝑗 +

1
2Φ

𝑣
𝑖,𝑗+1∕2 +

1
2Φ

𝑣
𝑖,𝑗−1∕2. (B.10)

Appendix B.3. Boundary conditions
The analysis in the previous section ignored the effect of boundary conditions. Upon integrating (B.6) over

the domain, we get

∫ 𝑢𝜕
2𝑢
𝜕𝑥2

d𝑥 = −∫ (𝜕𝑢𝜕𝑥)
2
d𝑥 + [𝑢𝜕𝑢𝜕𝑥 ]

⏟⏟⏟
boundary term

, (B.11)

and the boundary term vanishes in case of homogeneous Dirichlet, homogeneous Neumann or periodic condi-
tions. The discrete version should mimic this behavior.

𝑣1,𝑗+1∕2

𝑝1,𝑗 𝑢3∕2,𝑗𝑢𝑏,𝑗
𝑣1,𝑗−1∕2

∆𝑥

∆𝑦

𝑣𝑖,3∕2

𝑝𝑖,1 𝑢𝑖+1∕2,1

𝑢𝑖+1∕2,𝑏
𝑣𝑖,𝑏

𝑣𝑖+1,3∕2

𝑣𝑖+1,𝑏

𝑢𝑖+1∕2,2

Figure B.12: Staggered grid near vertical (left) and horizontal (right) boundary.

Consider the case where the solution on the boundary is given by 𝑢1∕2,𝑗 = 𝑢𝑏,𝑗 (figure B.12, left). Then the
first unknown for which the momentum equation (B.1) is solved is 𝑢3∕2,𝑗 , and equation (B.7) becomes

𝑢3∕2,𝑗
∆𝑥 (

𝑢5∕2,𝑗 − 𝑢3∕2,𝑗
∆𝑥 −

𝑢3∕2,𝑗 − 𝑢𝑏,𝑗
∆𝑥 ) = 1

∆𝑥 (
1
2(𝑢5∕2,𝑗 + 𝑢3∕2,𝑗)

𝑢5∕2,𝑗 − 𝑢3∕2,𝑗
∆𝑥 − 1

2(𝑢3∕2,𝑗 + 𝑢𝑏,𝑗)
𝑢3∕2,𝑗 − 𝑢𝑏,𝑗

∆𝑥 )

− 1
2 (

𝑢5∕2,𝑗 − 𝑢3∕2,𝑗
∆𝑥 )

2
− 1
2 (

𝑢3∕2,𝑗 − 𝑢𝑏,𝑗
∆𝑥 )

2
. (B.12)
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In case where 𝑢𝑏,𝑗 = 0, we want the boundary term to vanish, like the term 𝑢 𝜕𝑢
𝜕𝑥
in the continuous case. However,

when setting 𝑢𝑏,𝑗 = 0, the term that corresponds to 𝑢 𝜕𝑢
𝜕𝑥
reads:

−12(𝑢3∕2,𝑗 + 𝑢𝑏,𝑗)
𝑢3∕2,𝑗 − 𝑢𝑏,𝑗

∆𝑥 = −12

𝑢23∕2,𝑗
∆𝑥 , (B.13)

and the discrete boundary contribution does not vanish for 𝑢𝑏,𝑗 = 0. This issue is caused by the fact that the
finite volumes do not cover the entire domain, because there is no momentum equation to be solved for 𝑢𝑏,𝑗 (as
it is given by the boundary data). We resolve this issue by splitting instead as

−
𝑢3∕2,𝑗
∆𝑥 (

𝑢3∕2,𝑗 − 𝑢𝑏,𝑗
∆𝑥 ) = −

𝑢𝑏,𝑗
∆𝑥 (

𝑢3∕2,𝑗 − 𝑢𝑏,𝑗
∆𝑥 )

⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟
boundary contribution

−
𝑢3∕2,𝑗 − 𝑢𝑏,𝑗

∆𝑥 (
𝑢3∕2,𝑗 − 𝑢𝑏,𝑗

∆𝑥 )
⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟

dissipation contribution

, (B.14)

so that the contribution to the dissipation function is

−(
𝑢3∕2,𝑗 − 𝑢𝑏, 𝑗

∆𝑥 )
2

, (B.15)

instead of − 1
2

(𝑢3∕2,𝑗−𝑢𝑏,𝑗
∆𝑥

)2
.

For the discretization of 𝜕
2𝑢
𝜕𝑦2

, we have a different situation, because the solution points are not aligned with

the boundary. The first unknown is 𝑢𝑖+1∕2,1, which is situated at a distance
1
2
∆𝑦 above the lower boundary. In

this case we can write

𝑢𝑖+1∕2,𝑗
∆𝑦 (

𝑢𝑖+1∕2,𝑗+1 − 𝑢𝑖+1∕2,𝑗
∆𝑦 −

𝑢𝑖+1∕2,𝑗 − 𝑢𝑖+1∕2,𝑗−1
∆𝑦 )

𝑗=1
=

𝑢𝑖+1∕2,1
∆𝑦

⎛
⎜
⎝

𝑢𝑖+1∕2,2 − 𝑢𝑖+1∕2,1
∆𝑦 −

𝑢𝑖+1∕2,1 − 𝑢𝑖+1∕2,𝑏
1
2
∆𝑦

⎞
⎟
⎠

= 1
∆𝑦

⎛
⎜
⎝

1
2(𝑢𝑖+1∕2,2 + 𝑢𝑖+1∕2,1)

𝑢𝑖+1∕2,2 − 𝑢𝑖+1∕2,1
∆𝑦 − 𝑢𝑖+1∕2,𝑏

𝑢𝑖+1∕2,2 − 𝑢𝑖+1∕2,1
1
2
∆𝑦

⎞
⎟
⎠

− 1
2 (

𝑢𝑖+1∕2,2 − 𝑢𝑖+1∕2,1
∆𝑦 )

2
− 1
2
⎛
⎜
⎝

𝑢𝑖+1∕2,1 − 𝑢𝑖+1∕2,𝑏
1
2
∆𝑦

⎞
⎟
⎠

2

, (B.16)

and we have a correct discrete equivalent of the continuous expression, and no correction to Φ is needed.
The analysis for the 𝑣-component follows in a similar fashion. A correction is needed in the expression for Φ

associated to 𝜕2𝑣
𝜕𝑥2

, but not for 𝜕2𝑣
𝜕𝑦2

.

Appendix B.4. Extension to non-constant viscosity: general stress tensor
For the case of non-constant 𝜇, the discretization of the diffusion terms in the momentum equation changes

to

diff𝑢𝑖+1∕2,𝑗 =
1
∆𝑥 [(2𝜇𝑖+1,𝑗

𝑢𝑖+3∕2,𝑗 − 𝑢𝑖+1∕2,𝑗
∆𝑥 ) − (2𝜇𝑖,𝑗

𝑢𝑖+1∕2,𝑗 − 𝑢𝑖−1∕2,𝑗
∆𝑥 )]+

1
∆𝑦 [(𝜇𝑖+1∕2,𝑗+1∕2

𝑢𝑖+1∕2,𝑗+1 − 𝑢𝑖+1∕2,𝑗
∆𝑦 ) − (𝜇𝑖+1∕2,𝑗−1∕2

𝑢𝑖+1∕2,𝑗 − 𝑢𝑖+1∕2,𝑗−1
∆𝑦 )]+

1
∆𝑦 [(𝜇𝑖+1∕2,𝑗+1∕2

𝑣𝑖+1,𝑗+1∕2 − 𝑣𝑖,𝑗+1∕2
∆𝑥 ) − (𝜇𝑖+1∕2,𝑗−1∕2

𝑣𝑖+1,𝑗−1∕2 − 𝑣𝑖,𝑗−1∕2
∆𝑥 )] .

(B.17)
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Importantly, we first show that this form reduces to the expression in equation (B.1) for constant 𝜇. In the
continuous equations, this happens because

𝜕
𝜕𝑥 (2

𝜕𝑢
𝜕𝑥) +

𝜕
𝜕𝑦 (

𝜕𝑢
𝜕𝑦 +

𝜕𝑣
𝜕𝑥) =

𝜕
𝜕𝑥 (

𝜕𝑢
𝜕𝑥) +

𝜕
𝜕𝑦 (

𝜕𝑢
𝜕𝑦 ) +

𝜕
𝜕𝑥 (

𝜕𝑢
𝜕𝑥 + 𝜕𝑣

𝜕𝑦 ) =
𝜕2𝑢
𝜕𝑥2

+ 𝜕2𝑢
𝜕𝑦2

. (B.18)

The derivationhinges on the divergence-freeness of𝒖 and interchanging of differentiation in𝑥− and 𝑦-directions.
Discretely, the same derivation holds, which can be shown by rewriting as follows:

1
∆𝑥 [(

𝑢𝑖+3∕2,𝑗 − 𝑢𝑖+1∕2,𝑗
∆𝑥 ) − (

𝑢𝑖+1∕2,𝑗 − 𝑢𝑖−1∕2,𝑗
∆𝑥 )] + 1

∆𝑦 [(
𝑢𝑖+1∕2,𝑗+1 − 𝑢𝑖+1∕2,𝑗

∆𝑦 ) − (
𝑢𝑖+1∕2,𝑗 − 𝑢𝑖+1∕2,𝑗−1

∆𝑦 )]+

1
∆𝑥 [(

𝑢𝑖+3∕2,𝑗 − 𝑢𝑖+1∕2,𝑗
∆𝑥 ) − (

𝑢𝑖+1∕2,𝑗 − 𝑢𝑖−1∕2,𝑗
∆𝑥 ) + (

𝑣𝑖+1,𝑗+1∕2 − 𝑣𝑖+1,𝑗−1∕2
∆𝑦 ) − (

𝑣𝑖,𝑗+1∕2 − 𝑣𝑖,𝑗−1∕2
∆𝑦 )] ,

(B.19)

and the second line evaluates to zero, as it contains the difference of the divergence associated to volumes (𝑖+1, 𝑗)
and (𝑖, 𝑗).

We continue to derive the dissipation function. As explain in Remark 1 and in Appendix A, the dissipation
function changeswhen the generic stress tensor for non-constant𝜇 is considered. Multiplying (B.17)with𝑢𝑖+1∕2,𝑗
and rewriting leads to

Φ̂𝑢𝑖+1∕2,𝑗 = 𝑢𝑖+1∕2,𝑗 ⋅ diff
𝑢
𝑖+1∕2,𝑗 =

1
∆𝑥 (𝜇𝑖+1,𝑗(𝑢𝑖+3∕2,𝑗 + 𝑢𝑖+1∕2,𝑗)

𝑢𝑖+3∕2,𝑗 − 𝑢𝑖+1∕2,𝑗
∆𝑥 − 𝜇𝑖,𝑗(𝑢𝑖+1∕2,𝑗 + 𝑢𝑖−1∕2,𝑗)

𝑢𝑖+1∕2,𝑗 − 𝑢𝑖−1∕2,𝑗
∆𝑥 )

− 𝜇𝑖+1,𝑗 (
𝑢𝑖+3∕2,𝑗 − 𝑢𝑖+1∕2,𝑗

∆𝑥 )
2
− 𝜇𝑖,𝑗 (

𝑢𝑖+1∕2,𝑗 − 𝑢𝑖−1∕2,𝑗
∆𝑥 )

2
+

1
∆𝑦(𝜇𝑖+1∕2,𝑗+1∕2

𝑢𝑖+1∕2,𝑗+1 + 𝑢𝑖+1∕2,𝑗
2 [

𝑢𝑖+1∕2,𝑗+1 − 𝑢𝑖+1∕2,𝑗
∆𝑦 +

𝑣𝑖+1,𝑗+1∕2 − 𝑣𝑖,𝑗+1∕2
∆𝑥 ]

− 𝜇𝑖+1∕2,𝑗−1∕2
𝑢𝑖+1∕2,𝑗 + 𝑢𝑖+1∕2,𝑗−1

2 [
𝑢𝑖+1∕2,𝑗 − 𝑢𝑖+1∕2,𝑗−1

∆𝑦 +
𝑣𝑖+1,𝑗−1∕2 − 𝑣𝑖,𝑗−1∕2

∆𝑥 ] )

−
𝜇𝑖+1∕2,𝑗+1∕2

2 (
𝑢𝑖+1∕2,𝑗+1 − 𝑢𝑖+1∕2,𝑗

∆𝑦 ) (
𝑢𝑖+1∕2,𝑗+1 − 𝑢𝑖+1∕2,𝑗

∆𝑦 +
𝑣𝑖+1,𝑗+1∕2 − 𝑣𝑖,𝑗+1∕2

∆𝑥 )

−
𝜇𝑖+1∕2,𝑗−1∕2

2 (
𝑢𝑖+1∕2,𝑗 − 𝑢𝑖+1∕2,𝑗−1

∆𝑦 ) (
𝑢𝑖+1∕2,𝑗 − 𝑢𝑖+1∕2,𝑗−1

∆𝑦 +
𝑣𝑖+1,𝑗−1∕2 − 𝑣𝑖,𝑗−1∕2

∆𝑥 ) . (B.20)

The last two terms are not in quadratic form yet. The quadratic form results upon considering the full kinetic
energy expression (B.3), i.e. adding Φ̂𝑢𝑖−1∕2,𝑗 = 𝑢𝑖−1∕2,𝑗 ⋅ diff

𝑢
𝑖−1∕2,𝑗 , Φ̂𝑣𝑖,𝑗+1∕2 = 𝑣𝑖,𝑗+1∕2 ⋅ diff

𝑣
𝑖,𝑗+1∕2 and Φ̂𝑣𝑖,𝑗−1∕2 =

𝑣𝑖,𝑗−1∕2 ⋅ diff
𝑣
𝑖,𝑗−1∕2. The full dissipation function then reads

Φ̂𝑖,𝑗 =
1
2Φ̂

𝑢
𝑖+1∕2,𝑗 +

1
2Φ̂

𝑢
𝑖−1∕2,𝑗 +

1
2Φ̂

𝑣
𝑖,𝑗+1∕2 +

1
2Φ̂

𝑣
𝑖,𝑗−1∕2 =

−
𝜇𝑖+1,𝑗
2 (

𝑢𝑖+3∕2,𝑗 − 𝑢𝑖+1∕2,𝑗
∆𝑥 )

2
− 𝜇𝑖,𝑗 (

𝑢𝑖+1∕2,𝑗 − 𝑢𝑖−1∕2,𝑗
∆𝑥 )

2
−
𝜇𝑖−1,𝑗
2 (

𝑢𝑖−1∕2,𝑗 − 𝑢𝑖−3∕2,𝑗
∆𝑥 )

2

−
𝜇𝑖+1∕2,𝑗+1∕2

4 (
𝑢𝑖+1∕2,𝑗+1 − 𝑢𝑖+1∕2,𝑗

∆𝑦 +
𝑣𝑖+1,𝑗+1∕2 − 𝑣𝑖,𝑗+1∕2

∆𝑥 )
2
−
𝜇𝑖+1∕2,𝑗−1∕2

4 (
𝑢𝑖+1∕2,𝑗 − 𝑢𝑖+1∕2,𝑗−1

∆𝑦 +
𝑣𝑖+1,𝑗−1∕2 − 𝑣𝑖,𝑗−1∕2

∆𝑥 )
2

−
𝜇𝑖−1∕2,𝑗+1∕2

4 (
𝑢𝑖−1∕2,𝑗+1 − 𝑢𝑖−1∕2,𝑗

∆𝑦 +
𝑣𝑖,𝑗+1∕2 − 𝑣𝑖−1,𝑗+1∕2

∆𝑥 )
2
−
𝜇𝑖−1∕2,𝑗−1∕2

4 (
𝑢𝑖−1∕2,𝑗 − 𝑢𝑖−1∕2,𝑗−1

∆𝑦 +
𝑣𝑖,𝑗−1∕2 − 𝑣𝑖−1,𝑗−1∕2

∆𝑥 )
2

−
𝜇𝑖,𝑗+1
2 (

𝑣𝑖,𝑗+3∕2 − 𝑣𝑖,𝑗+1∕2
∆𝑦 )

2
− 𝜇𝑖,𝑗 (

𝑣𝑖,𝑗+1∕2 − 𝑣𝑖,𝑗−1∕2
∆𝑦 )

2
−
𝜇𝑖,𝑗−1
2 (

𝑣𝑖,𝑗−1∕2 − 𝑣𝑖,𝑗−3∕2
∆𝑦 )

2
. (B.21)
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