
Energy-Conserving Neural Network for Turbulence Closure Modeling

T. van Gastelena, W. Edelinga, B. Sandersea

aCentrum Wiskunde & Informatica, Science Park 123, Amsterdam, The Netherlands

Abstract

In turbulence modeling, and more particularly in the Large-Eddy Simulation (LES) framework, we are
concerned with finding closure models that represent the effect of the unresolved subgrid scales on the
resolved scales. Recent approaches gravitate towards machine learning techniques to construct such models.
However, the stability of machine-learned closure models and their abidance by physical structure (e.g.
symmetries, conservation laws) are still open problems. To tackle both issues, we take the ‘discretize first,
filter next’ approach, in which we apply a spatial averaging filter to existing energy-conserving (fine-grid)
discretizations. The main novelty is that we extend the system of equations describing the filtered solution
with a set of equations that describe the evolution of (a compressed version of) the energy of the subgrid
scales. Having an estimate of the energy of the subgrid scales, we can use the concept of energy conservation
and derive stability of the discrete representation. The compressed variables are determined via a data-
driven technique in such a way that the energy of the subgrid scales is matched. For the extended system,
the closure model should be energy-conserving, and a new skew-symmetric convolutional neural network
architecture is proposed that has this property. Stability is thus guaranteed, independent of the actual
weights and biases of the network. Importantly, our framework allows energy exchange between resolved
scales and compressed subgrid scales and thus enables backscatter. To model dissipative systems (e.g. viscous
flows), the framework is extended with a diffusive component. The introduced neural network architecture is
constructed such that it also satisfies momentum conservation. We apply the new methodology to both the
viscous Burgers’ equation and the Korteweg-De Vries equation in 1D and show superior stability properties
when compared to a vanilla convolutional neural network.

Keywords: Turbulence modeling, Neural networks, Energy conservation, Structure preservation, Burgers’
equation, Korteweg-de Vries equation

1. Introduction

Simulating turbulent flows with direct numerical simulations (DNSs) is often infeasible due to the high
computational requirements. This is due to the fact that with increasing Reynolds number fine computa-
tional meshes are required in order to resolve all the relevant scales. Especially for applications in design
and uncertainty quantification, where typically many simulations are required, this rapidly becomes com-
putationally infeasible [1, 2]. To tackle this issue several different approaches have been proposed, such as
reduced order models [3], Reynolds-averaged Navier-Stokes (RANS) [4], and Large Eddy Simulation (LES)
[5]. These approaches differ in how much of the physics is simulated and how much is modelled. Here we
will focus on the LES approach.

In LES the large-scale physics is modelled directly by a numerical discretization of the governing equations
on a coarse grid. However, due to fact that the filter does not commute with the nonlinear terms in
the equations a commutator error arises. This prevents one from obtaining an accurate solution without
knowledge of the subgrid-scale (SGS) content. This commutator error is typically referred to as the closure
term and modeling this term is the main concern of the LES community. A major difficulty in the modeling
of this closure term, by a corresponding closure model, is dealing with the exchange of energy from the
small to the large scales (backscatter) [6, 7], as the SGS energy content is unknown during the time of
the simulation. This makes accounting for backscatter difficult without leading to numerical instabilities

Preprint submitted to Elsevier March 1, 2023

ar
X

iv
:2

30
1.

13
77

0v
3

 [
m

at
h.

N
A

]
 2

8
Fe

b
20

23

[8]. Classical physics-based closure models are therefore often represented by a dissipative model, e.g. of
eddy-viscosity type [9], ensuring a net decrease in energy, or clipped such that backscatter is removed [10].
Even though the assumption of a global net decrease in energy is valid [9], explicit modeling of backscatter
is still important, as locally the effect of backscatter can be of great significance [11, 12]. Closure models
that explicitly model the global kinetic energy present in the small scales at a given point in time, to allow
for backscatter without sacrificing stability, also exist [13]. Recently, machine learning approaches, or more
specifically neural networks (NNs), have also become a viable option for the modeling of this closure term,
as they show potential for outperforming the classical approaches in different use cases [14–17]. However,
stability remains an important issue along with abidance by physical structure such as mass, momentum,
and energy conservation [16, 18–20].

In [18] the case of homogeneous isotropic turbulence for the compressible Navier-Stokes equations was
investigated. A convolutional neural network (CNN) was trained to reproduce the closure term from high-
resolution flow data. Although a priori cross-correlation analysis on the training data showed promising
results, stable models could only be achieved by projecting onto an eddy-viscosity basis. In [19] a gated
recurrent NN was applied to the same test case which showed even higher cross-correlation values with the
actual closure term, but still yielded unstable models, even after employing stability training on data with
artificial noise [20]. In [16] the case of incompressible turbulent channel flow was treated. Here NNs with
varying dimensions of input space were employed to construct a closure model. They showed that increasing
the size of the input space of the NN improves a priori performance. However, a posteriori analysis showed
that this increased input space also led to instabilities. Even after introducing a form of backscatter clipping
to stabilize these larger models, they were still outperformed by NN closure models with a small input
space, for which only the solution at neighboring grid points was provided to the NN. Two other recent
promising approaches to improving the stability of NN closure models are ‘trajectory fitting’ [14, 15, 21–23]
and reinforcement learning [24, 25]. Both of these approaches have in common that instead of fitting the NN
to match the exact closure term (which is what we will refer to as ‘derivative fitting’), one optimizes directly
with respect to how well the solution is reproduced when carrying out a simulation with the closure model
embedded into the solver. This has been shown to lead to more accurate and stable models [14, 15, 26]. The
main difference between the two is that for trajectory fitting one requires the implementation of the spatial
and temporal discretization to be differentiable with respect to the NN parameters. In this way one can
determine the gradients of the solution error with respect to the NN parameters such that gradient-based
optimizers can be applied to the corresponding optimization problem. Reinforcement learning on the other
hand does not require these gradients which makes it suitable for non-differentiable processes such as chess
and self-driving cars [27]. However, neither of these approaches lead to a provably stable NN closure model
without some form of clipping and also do not guarantee abidance by the underlying conservation laws. The
latter something that to our knowledge does not yet exist in the case of LES closure models.

To resolve the issues of stability and lack of physical structure, we present a new NN closure model
that satisfies both momentum and kinetic energy conservation and is therefore stable by design, while still
allowing for backscatter of energy into the resolved scales. As stated earlier, the difficulty of this task mainly
lies in the fact that: (i) the kinetic energy conservation law includes terms which depend on the SGS content
which is too expensive to simulate directly, and consequently (ii) kinetic energy of the large scales is not a
conserved quantity (in the limit of vanishing viscosity). In order to tackle these issues we propose to take
the ‘discretize first, filter next’ approach [22, 26]. This means that we start from a high-resolution solution
with N degrees of freedom (on a fine computational grid), to which we apply a discrete filter (a spatial
average) that projects the solution onto a coarse computational grid of dimension I, with I � N . Given the
discrete filter the exact closure term can be computed from the high-resolution simulation by calculating
the commutator error. The main advantage of this approach is that the closure term now also accounts for
the discretization error. Based on the filter’s properties we then derive an energy conservation law that can
be split into two components: one that depends solely on the large, or resolved, scales (resolved energy)
and another that solely depends on the SGS content (SGS energy) [13]. Like in existing works the closure
model is represented by a NN, however, we include an additional set of SGS variables that represent the
SGS energy in our simulation. The key insight is that the resulting total system of equations should still
conserve energy in the inviscid limit, and we choose our NN approximation such that it is consistent with

2

this limit. In this way we still allow for backscatter without sacrificing stability.
The paper is structured in the following way. In section 2 we discuss Burgers’ and Korteweg-de Vries

equation and their energy and momentum conservation properties. We introduce the discrete filter, the
resulting closure problem, and derive a new energy conservation law that describes an energy exchange
between the resolved energy and the SGS energy. In section 3 we introduce our new machine learning
approach for modeling the closure term, satisfying the derived energy conservation law using a set of SGS
variables to represent the SGS energy. In addition, we show how to also satisfy momentum conservation. In
section 4 we study the convergence properties and stability of our closure model with respect to the coarse
grid resolution and compare this to a vanilla CNN. We also analyze the structure-preserving properties in
terms of momentum and energy conservation and the ability of the trained closure models to extrapolate in
space and time. In section 5 we conclude our work.

2. Governing equations, discrete filtering, and closure problem

Before constructing a machine learning closure on the discrete level, we formulate a description of the
closure problem and the machinery required (e.g. discrete filters and reconstruction operators) at the discrete
level, and we discuss the effect of filtering on the physical structure.

2.1. Spatial discretization

We consider an initial value problem (IVP) of the following form:

∂u

∂t
= f(u), (1)

u(x, 0) = u0(x), (2)

which describes the evolution of some quantity u(x, t) in space x ∈ Ω and time t on the spatial domain
Ω ⊆ Rd, given initial state u0. The dynamics of the system is governed by right-hand side (RHS) f(u),
which typically involves partial derivatives of u. After spatial discretization (method of lines), we obtain the
vector u(t) ∈ RN which approximates the value of u at each of the N grid points xi ∈ Ω for i = 1, . . . , N ,
such that ui ≈ u(xi). The discrete analogue of the IVP is then

du

dt
= fh(u), (3)

u(0) = u0, (4)

where fh represents a spatial discretization of f . It is assumed that all the physics described by equation (1)
is captured in the discrete solution u. This means that whenever the physics involves a wide range of spatial
scales, a very large number of degrees of freedom N is needed to adequately resolve all these scales. This
places a heavy (or even insurmountable) burden on the computational effort that is required to numerically
solve the considered equations.

2.2. Burgers’ and Korteweg-de Vries equation and physical structure

We are interested in the modeling and simulation of turbulent flows. For this purpose, we first consider
Burgers’ equation, a 1D simplification of the Navier-Stokes equations. Burgers’ equation describes the
evolution of the velocity u(x, t) according to partial differential equation (PDE)

∂u

∂t
= −1

2

∂u2

∂x
+ ν

∂2u

∂x2
, (5)

where the first term on the RHS represents non-linear convection and the second term diffusion, weighted
by the viscosity parameter ν ≥ 0. These processes are somewhat analogous to 3-D turbulence in the fact
that smaller scales are created by nonlinear convective terms which are then dissipated by diffusion [28]. We

3

will be interested in two properties of the Burgers’ equation, which we collectively call ‘structure’. Firstly,
momentum P is conserved on periodic domains:

dP

dt
=

d

dt

∫
Ω

udΩ =

∫
Ω

−1

2

∂u2

∂x
+ ν

∂2u

∂x2
dΩ = −1

2
[u2]ba + ν[

∂u

∂x
]ba = 0, (6)

Secondly, on periodic domains (kinetic) energy is conserved in the absence of viscosity:

dE

dt
=

1

2

d

dt

∫
Ω

u2dΩ =

∫
Ω

−u
2

∂u2

∂x
+uν

∂2u

∂x2
dΩ = −1

3
[u3]ba +ν[u

∂u

∂x
]ba−ν

∫
Ω

(
∂u

∂x

)2

dΩ = − ν
∫

Ω

(
∂u

∂x

)2

dΩ︸ ︷︷ ︸
≥0

,

(7)
where we used integration by parts.

These properties can be preserved in a discrete setting by employing a structure-preserving scheme [29]
on a uniform grid with grid-spacing h. The convective term is approximated by the following skew-symmetric
scheme:

G(u) = −1

3
D1u

2 − 1

3
diag(u)D1u, (8)

where D1 is the central difference operator corresponding to the stencil (D1u)i = (ui+1 − ui−1)/(2h), u2 is
to be interpreted element-wise, and D2 is the diffusive operator with stencil (D2u)i = (ui+1−2ui+ui−1)/h2.
We assume periodic boundary conditions (BCs). The spatial discretization leads to a system of ordinary
differential equations (ODEs):

du

dt
= G(u) + νD2u︸ ︷︷ ︸

=fh(u)

. (9)

which we will march forward in time using an explicit RK4 scheme [30]. The structure is preserved because
the discretization conserves the discrete momentum Ph = h1Tu (for periodic BCs):

dPh

dt
= h1T fh(u) = 0, (10)

where 1 is a column vector with all entries equal to one. Furthermore, due to the skew-symmetry of the
convection operator the evolution of the discrete kinetic energy Eh = h

2 uTu (which we will refer to simply
as energy) is given by:

Burgers’ equation:
dEh

dt
= huT fh(u) = hνuTD2u = −ν||Qu||22. (11)

Here we used the fact that D2 can be written as the Cholesky decomposition −QTQ [3], where Q is a simple
forward difference approximation of the first-order derivative. The norm ‖.‖2 represents the conventional
two-norm further detailed in section 2.5. This discretization ensures net energy dissipation and conservation
in the inviscid limit.

In addition to Burgers’ equation we will consider the Korteweg-de Vries (KdV) equation:

∂u

∂t
= −ε

2

∂u2

∂x
− µ∂

3u

∂x3
, (12)

where ε and µ are parameters. The KdV equation conserves momentum and (kinetic) energy irrespective of
the values of ε and µ. We discretize the nonlinear term in the same way as for Burgers’ equation, using the
skew-symmetric scheme. The third-order spatial derivative is approximated by the skew-symmetric central
difference operator D3 corresponding to the stencil (D3u)i = (−ui−2 +2ui−1−2ui+1 +ui+2)/(2h3), see [31].
The resulting discretization is then not only momentum conserving, but also energy conserving in the case
of periodic BCs:

KdV equation:
dEh

dt
= 0. (13)

4

2.3. Discrete filtering

In order to tackle the issue of high computational expenses for large N we apply a spatial averaging filter
to the fine-grid solution u, resulting in the coarse-grid solution ū. The coarse grid follows from dividing Ω
into I non-overlapping cells Ωi with cell centers Xi. The coarse grid is refined into the fine grid by splitting
each Ωi into J(i) subcells ωij with cell centers xij . This subdivision is intuitively pictured in the upper
grid of Figure 1, for a 1D grid. Given the coarse and fine grid, we define the mass matrices ω ∈ RN×N and
Ω ∈ RI×I which contain the volumes of the fine and coarse cells on the main diagonal, respectively.

ū1

Ω1

u1

ω11

u2

ω12

u3

ω13

ū2

Ω2

u4

ω21

u5

ω22

u6

ω23

ū3

Ω3

u7

ω31

u8

ω32

u9

ω33

u10

ω34

Figure 1: Subdivision of the spatial grid where the dots represent cell centers xij and Xi for J(1) = J(2) = 3 and J(3) = 4.

To reduce the degrees of freedom of the system we apply a discrete spatial averaging filter W ∈ RI×N ,
I < N , to the fine-grid solution u in order to obtain the filtered solution ū:

ū = Wu. (14)

The spatial averaging filter is defined as
W := Ω−1O. (15)

with overlap matrix O ∈ RI×N :

O :=

|ω11| . . . |ω1J(1)|
. . .

. . .
. . .

|ωI1| . . . |ωIJ(I)|

 . (16)

Here |.| represents the volume of the considered subcell. The overlap matrix essentially contains the volume
of the overlap between coarse-grid cell Ωi and fine-grid subcell ωij at the appropriate locations. Note that
each column of W and O only contains one non-zero entry.

The filter reduces the number of unknowns at each time step from N to I. Next to the filter, we define
a reconstruction operator R ∈ RN×I which relates to W as

R := ω−1WTΩ = ω−1OT . (17)

The matrix R is essentially a simple approximation of the inverse of W by a piece-wise constant function
[32]. This is intuitively pictured in Figure 2. An important property of the filter/reconstruction pair, which
will be used in subsequent derivations, is that

WR = Ω−1Oω−1OT =


. . . ∑J(i)

j=1
|ωij |
|Ωi|

. . .

 = I. (18)

Consequently, filtering a reconstructed solution Rū leaves ū unchanged, i.e.

ū = (WR)p︸ ︷︷ ︸
=I

Wu (19)

for p ∈ N0. We will refer to this property as the ‘projection’ property, as it is similar to how repeated
application of a projection operator leaves a vector unchanged. By subtracting the reconstructed solution
Rū from u we can define the subgrid-scale (SGS) content u′ ∈ RN :

u′ := u−Rū. (20)

5

In addition, we will refer to the SGS content in a single coarse cell Ωi as µi ∈ RJ(i), see Figure 2. Applying
the filter to u′ yields zero:

Wu′ = Wu−WR︸︷︷︸
=I

ū = ū− ū = 0Ω, (21)

where 0Ω is a vector with all entries equal to zero defined on the coarse grid. This can be seen as the
discrete equivalent of a property of a Reynolds operator [5]. As illustration we show each of the introduced
quantities, calculated for a 1D sinusoidal wave, in Figure 2.

0 2 4 6

−1

−0.5

0

0.5

1

x

u

u
Rū

u′
µ4

0 2 4 6

−1

−0.5

0

0.5

1

x

u

u
Rū

u′
µ4

Figure 2: Fine-grid solution u, reconstructed Rū, and SGS content u′ for u = sin(x) evaluated over x ∈ [0, 2π]. Here N = 1000,
I = 20, and J = 50. The SGS content in the fourth coarse cell µ4 is also indicated.

2.4. Discrete closure problem

After having defined the filter we describe the time evolution of ū. Since we employ a spatial filter that

does not depend on time, filtering and time-differentiation commute: W du
dt = d(Wu)

dt = dū
dt . The closure

problem arises because such a commutation property is not true for the spatial discretization, i.e.

Wfh(u) 6= fH(Wu) = fH(ū), (22)

where fH represents the same spatial discretization scheme as fh, but on the coarse grid. The closure
problem is that the equations for ū are ‘unclosed’, meaning that we require the fine-grid solution u to be
able to evolve the coarse-grid solution ū in time. The filtered system can be rewritten in closure model form
as

dū

dt
= fH(ū) + (Wfh(u)− fH(ū))︸ ︷︷ ︸

=:c(u)

, (23)

where c(u) ∈ RI is the closure term. c(u) is essentially the discrete equivalent of the commutator error in LES
[5]. One advantage of having first discretized the problem is that c(u) now also includes the discretization
error. The aim in closure modeling is generally to approximate c(u) by a closure model c̃(ū; Θ). In section
3 we choose to represent c̃ by a neural network (NN), whose parameters Θ are to be trained to make the
approximation accurate. In constructing such approximations, we will also use the equation describing the
evolution of the SGS content du′

dt :
du′

dt
=

du

dt
−R

dū

dt
. (24)

6

2.5. Inner products and energy decomposition

To describe the energy that is present in the system at any given time, we define the following inner
products and norms:

(a,b)ξ := aT ξb (25)

||a||2ξ := (a,a)ξ (26)

for ξ ∈ {ω,Ω}. With this notation we can represent the inner product on the fine grid, a,b ∈ RN , as
well as the coarse grid, a,b ∈ RI , respectively. For ξ = I we simply obtain the conventional inner product
and two-norm, denoted as (a,b) = aTb and ||a||22, respectively. We also define a joint inner product as the
following sum of inner products:

(

 a1

...
aM

 ,
 b1

...
bM

)ξM
:=

 a1

...
aM


T ξ . . .

ξ


︸ ︷︷ ︸

=:ξM

 b1

...
bM

 , (27)

where vectors ai and bi (i = 1, . . . ,M) have the appropriate dimensions and are concatenated into a column
vector. Furthermore, ξM is the extended mass matrix. This notation is introduced in order to later extend
our system of equations with additional equations for the subgrid content. Besides the projection property
(19) an additional characteristic of the filter/reconstruction pair is that the inner product is conserved under
reconstruction (see Appendix A):

(Rā,Rb̄)ω = (ā, b̄)Ω. (28)

The total energy Eh of the fine-grid solution in terms of inner products reads

Eh :=
1

2
||u||2ω, (29)

which can be decomposed using (20):

Eh =
1

2
||u||2ω =

1

2
||Rū + u′||2ω

=
1

2
||Rū||2ω + (Rū,u′)ω +

1

2
||u′||2ω.

We can simplify this decomposition by noting that the cross-term is zero, i.e. Rū is orthogonal to u′, see
Appendix A. Combining this orthogonality property with property (28) leads to the following important
energy decomposition:

Eh =
1

2
||ū||2Ω︸ ︷︷ ︸
=:Ēh

+
1

2
||u′||2ω︸ ︷︷ ︸
=:E′h

. (30)

In other words, our choice of filter and reconstruction operators is such that the total energy of the system
can be split into one part (the resolved energy Ēh) that exclusively depends on the filtered ū and another
part (the SGS energy E′h) that depends only on the SGS content u′. The energy conservation law can also
be decomposed into a resolved and SGS part:

dEh

dt
=

dĒh

dt
+

dE′h
dt

= (ū,
dū

dt
)Ω + (u′,

du′

dt
)ω = 0, (31)

where we used the product rule to arrive at this relation. For Burgers’ equation with ν > 0, the last equality
sign changes to ≤. This means that even for dissipative systems the resolved energy could in principle
increase (so-called ‘backscatter’), as long as the total energy is decreasing.

We illustrate the energy decomposition using simulations of the KdV equation. Figure 3 shows the
exchange of energy between the subgrid and filtered solutions. Clearly, the energy of the filtered solution is
not a conserved quantity.

7

0 2 4 6 8 10

0

1

2

3

4

t

Eh = Ēh + E ′
h

Ēh

E ′
h

Figure 3: Simulation of KdV equation (12) with periodic BCs before and after filtering (left) and corresponding energy
decomposition (right).

2.6. Momentum conservation

Next to the energy, we formulate the total discrete momentum in terms of an inner product and inves-
tigate if it is conserved upon filtering. The total discrete momentum is given by

Ph = (1ω,u)ω, (32)

where 1ω is a vector with all entries equal to one, defined on the fine grid. From this definition we can show
(see Appendix A) that the discrete momentum does not change upon filtering, i.e.

Ph = (1ω,u)ω = (1Ω, ū)Ω. (33)

This relation allows us to derive a momentum conservation condition on the closure term:

dPh

dt
= (1ω, fh(u))ω = (1Ω,Wfh(u))Ω = (1Ω, fH(ū) + c(u))Ω = (1Ω, c(u))Ω = 0, (34)

where we used the fact that the coarse discretization is already momentum conserving.

3. Structure-preserving closure modeling framework

The derived discrete energy and momentum balances, before and after filtering, will be used to construct
a novel structure-preserving closure model in this section. We will also discuss how to fit the parameters
of the model. The ideas will be presented for periodic BCs in 1D, whereas different types of boundary
conditions (BCs) are discussed in Appendix C.

3.1. Framework

Many existing closure approaches aim at approximating c(u) by a closure model c̃(ū; Θ), where Θ are
parameters to be determined such that the approximation is accurate. In this work, we propose a novel

8

formulation, in which we extend the system of equations for the I filtered variables ū with a set of I auxiliary
SGS variables s ∈ RI that locally model the SGS energy. This extended system of equations has the form

d

dt

[
ū
s

]
=

[
fH(ū)

0

]
+ Ω−1

2 (K −KT)

[
ū
s

]
−Ω−1

2 QTQ
[
ū
s

]
, (35)

where K = K(ū, s,Θ) ∈ R2I×2I and Q = Q(ū, s,Θ) ∈ R2I×2I , and Θ represents the parameters. Note that
this system is an approximation of the true dynamics. Next to the introduction of the SGS variables s, the
second main novelty in this work is to formulate the closure model in terms of a skew-symmetric term and a
dissipative term. The skew-symmetric term is introduced to allow for a local energy exchange between the
filtered solution and the SGS variables, and the dissipative term to provide additional dissipation. These
operators will be modelled in terms of neural networks (NNs) with trainable parameters (contained in Θ).
So even though the notation in (35) suggests linearity of the closure model in ū and s, the dependence of
K and Q on ū and s makes the model non-linear. The construction of the introduced operators will be
detailed in sections 3.3 and 3.4. Note the presence of Ω−1

2 in (35), which is due to the fact that our energy
definition includes Ω.

The SGS variables s are used to represent the SGS energy on the coarse grid, such that

1

2
s2 ≈ 1

2
W(u′)2, (36)

where the notation (.)2 is again to be interpreted element-wise. In section 3.2 we present how we achieve
this approximation. By adding these SGS variables as unknowns into equation (35), we are able to include
an approximation of the SGS energy into the simulation, while still significantly reducing the system size
(from N to 2I). Our key insight is that by explicitly including an approximation of the SGS energy we are
able to satisfy the energy conservation balance, equation (31). The energy balance serves not only as an
important constraint that restrains the possible forms that the closure model (represented by a NN) can
take, but also guarantees stability of our closure model, since the (kinetic) energy is a norm of the solution
which is bounded in time.

Given the extended system of equations, the total energy is approximated as

Eh ≈ Es := ||Ū||2Ω2
=

1

2
(ū, ū)Ω︸ ︷︷ ︸
=Ēh

+
1

2
(s, s)Ω︸ ︷︷ ︸
=:S

, (37)

with S approximating the SGS energy
S ≈ Ē′h, (38)

with evolution
dEs

dt
=

(
Ū,

dŪ

dt

)
Ω2

, (39)

where we used the joint inner product notation introduced in (27) and concatenated the filtered solution
and the SGS variables into a single vector Ū ∈ R2I :

Ū :=

[
ū
s

]
. (40)

Upon substituting the closure model form, equation (35), the following evolution equation for the approxi-
mated total energy results:

dEs

dt
= (ū, fH(ū))Ω − ||QŪ||22, (41)

as the skew-symmetric term involving K−KT cancels. This equation can be further simplified when choosing
a specific fH . For example, if we substitute the structure-preserving discretization of Burgers’ equation (9)
for fH (with grid-spacing H) we obtain

Burgers’ equation:
dEs

dt
= −Hν||Q̄ū||22 − ||QŪ||22 ≤ 0, (42)

9

i.e. energy is dissipated from the system by two terms: the coarse-grid diffusion operator, and an additional
(trainable) dissipation term. Here Q̄ represents the forward difference approximation of the first-order deriva-
tive on the coarse grid. This additional dissipation term is required as the diffusion operator, discretized on
the fine grid, is more dissipative than on the coarse grid, see Appendix B.

For energy-conserving systems, such as KdV, we set Q to zero, and we obtain:

KdV equation:
dEs

dt
= 0. (43)

We stress again that by having added an approximation of the subgrid energy into the equation system,
we are able to use the concept of energy conservation (or dissipation) in constructing a closure model.
Furthermore, as energy is dissipated or conserved the resulting model is stable by design.

3.2. SGS variables

To represent the SGS variables we propose a data-driven linear compression of the SGS content (assuming
uniform coarse and fine grids such that J(i) = J):

si = tTµi, i = 1, . . . , I, (44)

where we recall that µi ∈ RJ represents the SGS content in a single coarse cell Ωi. The SGS variable si is
a representation of the SGS content within cell Ωi encoded by learnable compression parameters t ∈ RJ .
This linear compression can be written for all coarse-grid points as the following matrix vector product:

s = Tu′, (45)

with T(t) ∈ RI×N being the (sparse) compression matrix fully defined by the parameters t. Note that T
has the same sparsity pattern as W. Using this notation (40) can be written as

Ū = WTu, (46)

where

WT :=

[
W

T(I−RW)

]
. (47)

The main advantage of defining the compression as a linear operation is that, if we have reference data
for u′, we can easily obtain the evolution of s as

ds

dt
=

∂s

∂u′
du′

dt
= T

du′

dt
. (48)

Another advantage is that the Jacobian ∂s
∂u′ = T does not depend on u′, such that we avoid the problem

that arises when taking the ‘natural’ choice of s, which would be s =
√

W(u′)2, namely that the Jacobian(
∂s

∂u′

)
ij

=
Wiju

′
j√∑N

j=1 Wij(u′j)
2

becomes undefined when the denominator is zero. A third advantage is that the linear compression allows us
to calculate the contribution of a forcing term to ds

dt (this will be explained in section 3.5). The parameters
t are chosen such that the SGS energy is accurately represented on the coarse grid, i.e. we determine the
elements of t such that they minimize the error made in approximation (36), leading to the loss function

Ls(D; t) =
1

|D|
∑
d∈D

1

|Ω| ||
1

2
(T(t)u′d)2 − 1

2
W(u′d)2||2Ω, (49)

where the notation (.)2 is again to be interpreted element-wise. Here the subscript d represents a sample
from the training dataset D containing |D| samples. Note that, due to the way t appears in the loss function,

10

0 2 4 6
−1

0

1

2

3

x

u
Rū

u′

Rs

Figure 4: Learned SGS compression applied to Burgers’ equation for N = 1000, with I = 20 and J = 50. By filtering and
applying the SGS compression the degrees of freedom of this system are effectively reduced from N = 1000 to 2I = 40.

negative values for s are allowed. To overcome the saddle point at t = 0 we initialize the elements of t
with random noise (see Appendix D). For J = 2 this minimization problem has an exact solution (see
Appendix E).

To illustrate how the compression works in practice we consider a snapshot from a simulation of Burgers’
equation (ν = 0.01) with periodic BCs, see Figure 4. We observe that s serves as an energy storage for the
SGS content, which is mainly present near shocks.

3.3. Skew-symmetric closure term K
Having defined the SGS variables s, we continue to detail the construction of K appearing in equation

(35). We propose the following decomposition:

K =

[
K11 K12

0 K22

]
→ K−KT =

[
K11 −KT

11 K12

−KT
12 K22 −KT

22

]
, (50)

with submatrices Kij(Ū; Θ) ∈ RI×I , which will depend on the solution Ū and trainable parameters Θ.
This decomposition is chosen such that the upper-left submatrix K11 allows for an energy exchange within
the resolved scales, the upper-right submatrix K12 for an energy exchange between the resolved scales and
the SGS variables, and the final submatrix K22 for an energy exchange within the SGS variables. If all
entries of each Kij would be taken as parameters, one would have O(I2) parameters, which is too large for
practical problems of interest. Instead, we propose to represent each Kij in terms of a matrix Φij ∈ RI×I

of only 2D + 1 diagonals φij
d ∈ RI (d = −D, . . . ,D), where each diagonal is given by an output channel of

a convolutional neural network (CNN, [33]):

Φij =


. . .

. . .
. . .

. . .
. . .

φij
−D · · · φij

−1 φij
0 φij

1 · · · φij
D

. . .
. . .

. . .
. . .

. . .

 . (51)

The hyperparameter D determines the sparsity of Φij and is taken such that D � I/2 to reduce computa-
tional costs. In this way only a local neighbourhood is included in the approximation. As the input channels
of the CNN we take {ū, s, fH(ū)}. The dependence of φd on Ū through the CNN adds non-linearity to the

11

closure model. Multiplying some vector v by Φij thus corresponds to the following non-linear stencil

(Φijv)k =

D∑
d=−D

φijdk(Ū; Θ)vk+d. (52)

A CNN is chosen to represent the diagonals as it is invariant with respect to translations of the input
channels. In this way our final closure model inherits this property. In total, the CNN thus consists of
three input channels, an arbitrary number of hidden channels (to be specified in the results section), and
3(2D + 1) output channels:

CNN : ū, s, fH(ū) 7→ φ11
d ,φ

12
d ,φ

22
d d = −D, . . .D. (53)

In the case of periodic BCs we apply circular padding to the input channels of the CNN to connect both
ends of the domain. Different BC types are discussed in Appendix C.

Although in principle the matrices Kij could be represented directly by matrices of the form (51), such
a construction is not momentum-conserving. In the next subsection we will propose an approach to express
Kij in terms of Φij which is momentum conserving.

3.3.1. Momentum-conserving transformation

Requiring momentum conservation for the extended system (35) leads to the following condition (see
also (34)): ([

1Ω

0Ω

]
,Ω−1

2 (K −KT)Ū

)
Ω2

= 1T
Ω(K11 −KT

11)ū + 1T
ΩK12s = 0, (54)

such that we impose the following constraints on the K matrices:

1T
ΩK11 = 1T

ΩKT
11 = 1T

ΩK12 = 0Ω. (55)

To satisfy conditions (55) we first define the linear operator B ∈ RI×I corresponding to the stencil

(Bv)i =

B∑
j=−B

bivi+j (56)

with 2B + 1 parameters bi (i = −B, . . . , B), applied to some vector v. In addition, we define the matrix
B̄ ∈ RI×I whose elements are given by

b̄i = bi −
1

2B + 1

B∑
i=−B

bi, (57)

corresponding to the stencil

(B̄v)i =

B∑
j=−B

b̄ivi+j . (58)

In the periodic case this matrix satisfies

1T
ΩB̄ = 1T

ΩB̄T = 0Ω, (59)

independent of the choice of underlying parameters bi. A simple example of a matrix B̄ that satisfies such
conditions is the second order finite difference representation of a first-order derivative: B = 1, b̄−1 =
−1/(2H), b̄0 = 0, b̄1 = 1/(2H). Our framework allows for more general stencils which are trained based on
fine-grid simulations.

12

These B matrices can be used to enforce momentum conservation on the Φ matrices by pre- and post-
multiplication. This will be denoted by a superscript, e.g.

K12 = ΦB̄B
12 = B̄Φ12

1 Φ12B
Φ12
2 (60)

such that 1T
ΩK12 = 0 is satisfied. Note that satisfying this condition only requires a (̄.) over the pre-

multiplying B matrix. The matrices B̄Φ12
1 ,BΦ12

2 ∈ RI×I each contain their own unique set of 2B + 1
underlying parameters. The hyperparameter B is taken such that B � I/2 to enforce sparsity and thus
reduce computational costs. Similarly,

K11 = ΦB̄B̄
11 = B̄Φ11

1 Φ11B̄
Φ11
2 (61)

such that the constraints 1T
ΩK11 = 1T

ΩKT
11 = 0 are met. The additional B matrices of K11 add another set

of 2(2B + 1) parameters to the framework.
The full matrix K follows as

K =

[
ΦB̄B̄

11 ΦB̄B
12

0 ΦBB
22

]
, (62)

where we used a momentum-conserving matrix B̄ where appropriate. We thus have 6(2B + 1) parameters
that fully describe the B matrices.

3.4. Dissipative term Q
In a similar fashion as K we decompose Q as

Q =

[
Q11 Q12

Q21 Q22

]
. (63)

As for the K matrix, we do not represent the entire matrix by parameters but instead use the output channels
of the CNN to represent the diagonals of the submatrices. However, in this case we only construct the main
and D upper diagonals. The reason for this will be explained later. The diagonals are again represented by
CNN output channels ψij ∈ RI defining the matrix Ψij ∈ RI×I . The CNN of section 3.3 is thus extended
and represents the mapping

CNN : ū, s, fH(ū) 7→ φ11
d1
,φ12

d1
,φ22

d1
,ψ11

d2
,ψ12

d2
,ψ21

d2
,ψ22

d2
, d1 = −D, . . .D, d2 = 0, . . . D. (64)

The underlying CNN now consists of three input channels, an arbitrary number of hidden channels, and
3(2D + 1) + 4(D + 1) output channels.

Again, like in case of Φ, a mapping is needed to make the Ψ matrices momentum-conserving. Substituting
decomposition (63) into the momentum conservation constraint (34) results in

−
([

1Ω

0Ω

]
,Ω−1

2 (QTQ)Ū

)
Ω2

= −1T
Ω(QT

11Q11 + QT
21Q21)ū− 1T

Ω(QT
11Q12 + QT

21Q22)s = 0, (65)

leading to the constraints
1T

ΩQT
11 = 1T

ΩQT
21 = 0Ω. (66)

The matrix Q that satisfies these constraints follows as

Q =

[
ΨIB̄

11 ΨIB
12

ΨIB̄
21 ΨIB

22

]
, (67)

where we used a momentum-conserving matrix B̄ where appropriate and replaced the pre-multiplying B
matrix by the identity matrix. The latter, in addition to only constructing the main and upper diagonals of
the Ψ matrices, makes that the sparsity pattern of QTQ matches that of K−KT . With the addition of this
dissipative term all the B matrices combined contain in total 10(2B+ 1) parameters that are to be trained.

13

Figure 5: Example of a simulation of Burgers’ equation with periodic BCs using our trained structure-preserving closure model
for I = 20 (left), along with the DNS solution for N = 1000 (right).

14

0 2 4 6 8 10

10−2

10−1

100

101

102

t

||fH(ū)||2Ω
||(K −KT)Ū||22
||QTQŪ||22

Figure 6: Magnitude of each of the different terms present in (35) corresponding to the simulation in Figure 5.

An example application of the framework is shown in Figure 5, where we simulate Burgers’ equation
using our structure-preserving closure modeling framework and compare it to a direct numerical simulation
(DNS). It is again interesting to see that s is largest at the shocks, indicating the presence of significant SGS
content there. When comparing the magnitude of the different terms in (35) (see Figure 6), we observe that
the K term, that is responsible for redistributing the energy, is most important, and in fact more important
than the coarse-grid discretization operator fH(ū). In other words, our closure model has learned dynamics
that are highly significant to correctly predict the evolution of the filtered system.

3.5. Forcing

Our proposed closure modeling framework allows for the presence of a forcing term Fi(t) ≈ F (xi, t) in
the RHS of our discretized PDE (3), with F ∈ RN . As long as this term does not depend on the solution u
the forcing commutes with W. This means we can simply add F̄ = WF to the RHS of (23) without any
contribution to the closure term. In addition, we can account for its contribution to the evolution of s by
first computing its contribution F′ to the evolution of the SGS content (see (24)) as

F′ := F−RF̄. (68)

The contribution to the evolution s is then given by TF′, see (48).
The full closure modeling framework is thus summarized by

dŪ

dt
= GΘ(Ū) :=

[
fH(ū)

0

]
+ Ω−1

2 (K −KT)Ū−Ω−1
2 QTQŪ + WTF, (69)

depending on parameters Θ. Note that we separated the forcing from fH (the RHS of the coarse discretiza-
tion). In the results section we use a forcing term in some of the Burgers’ equation simulations.

3.6. Finding the optimal parameter values

The optimal parameter values Θ∗, where Θ includes the weights of the CNN along with the parameters
of the B matrices, can be obtained numerically by minimizing

L(D; Θ) :=
1

|D|
∑
d∈D

1

2|Ω| ||GΘ(WTud)−WTfh(ud)||2Ω2
(70)

15

with respect to Θ for the training set D containing |D| samples. We will refer to this approach as ‘derivative
fitting’, as we minimize the residual between the predicted and the true RHS. In (70) the true RHS is obtained
by applying WT to the fine-grid RHS fh(ud). The subscript d indicates a sample from the training set.

We will combine this method with a different approach in which we directly optimize Θ such that the
solution itself is accurately reproduced. To achieve this we minimize

Ln(D; Θ) :=
1

|D|
∑
d∈D

1

n

n∑
i=1

1

2|Ω| ||S̄
i
Θ(WTud)−WTSi(∆t/∆t)(ud)||2Ω2

, (71)

where S̄iΘ(WTud) represents the successive application of an explicit time integration scheme for i time
steps, with step size ∆t, starting from initial condition WTud, using the introduced closure model. The

fine-grid counterpart is indicated by Si(∆t/∆t)(ud), with step size ∆t, starting from initial condition ud. Note
the appearance of the ratio ∆t/∆t, as the coarser grid for ū allows us to take larger time steps [34]. This
further reduces the required computational resources. We will refer to this method of finding the optimal
parameters as ‘trajectory fitting’. This approach has been shown to yield more accurate and stable closure
models [14, 15, 21–23], as this approach also accounts for the time discretization error.

In practice, we employ a hybrid approach in which we first use derivative fitting and subsequently
continue with trajectory fitting, as the latter requires more computational effort.

4. Results

To test our closure modeling framework we consider the previously introduced Burgers’ equation with
ν = 0.01 on the spatial domain Ω = [0, 2π] for two test cases: (i) periodic BCs without forcing and
(ii) inflow/outflow (I/O) BCs with time-independent forcing. The implementation of BCs is discussed in
Appendix C. We also consider a third test case: (iii) the KdV equation with ε = 6 and µ = 1 on the spatial
domain Ω = [0, 32] for periodic BCs. Parameter values for Burgers’ and KdV are taken from [35]. Reference
simulations are carried out on a uniform grid of N = 1000 for Burgers’ and N = 600 for KdV up to time
t = T = 10. The data that is generated from these reference simulations is split into a training set and
a validation set. The simulation conditions (initial conditions, BCs, and forcing) for training and testing
purposes are generated randomly, as described in Appendix D. In addition to this, the construction of a
training and validation set, the training procedure, and the chosen hyperparameters are also described in
Appendix D.

For the analysis, we will compare our structure-preserving framework (SP) to a vanilla CNN that models
the closure term as c(u) ≈ Q̄CNN(ū, fH(ū);θ) (with parameters θ). Multiplication of the CNN output
channel by the coarse-grid forward difference operator Q̄ takes care of the momentum conservation condition
(this has been shown to yield more accurate closure models [26]). The same trick is not applied for our
SP closure, as it would destroy the derived evolution of the (approximated) total energy, see (42) and (43).
Instead we resort to the described pre- and post-multiplication by the parameterized B matrices to satisfy
momentum conservation. Furthermore, we consider the no closure (NC) case, i.e. c̃ = 0Ω, which corresponds
to a coarse-grid solution of the PDEs. To make a fair comparison we compare closure models with the same
number of degrees of freedom (DOF). For SP we have DOF = 2I, as we obtain an additional set of I
degrees of freedom corresponding to the addition of the SGS variables. For the CNN and NC we simply
have DOF = I.

To march the solution forward in time we employ an explicit RK4 scheme [30] with ∆t = 0.01 (4× larger
than the DNS) for use cases (i) and (ii) and ∆t = 5×10−3 (50× larger than the DNS) for use case (iii). The
SP closure models contain in total 7607 parameters (consisting of two hidden layers with each 30 channels
and a kernel size of 5 for the underlying CNN) for use cases (i) and (ii) and 3905 (consisting of two hidden
layers with each 20 channels and a kernel size of 5) for use case (iii). The purely CNN-based closure models
consist of 3261 parameters (two hidden layers with each 20 channels and a kernel size of 7) for every use
case. These settings are based on the hyperparameter tuning procedure in Appendix D. In between hidden
layers we employ the ReLU activation function, whereas we apply a linear activation function to the final

16

layer for both SP and the vanilla CNN. For SP we choose D = B = 1 for the construction of the B and Φ/Ψ
matrices for use cases (i) and (ii) matching the width of the coarse discretization fH(ū). For (iii) we do the
same and therefore take D = B = 2. Note that the same set of compression matrices and closure models are
used for (i) and (ii), as they both correspond to the same equation. These closure models are thus trained
on a dataset containing both simulation conditions. As stated earlier, the model parameters are optimized
by first derivative fitting and then trajectory fitting. This is specified in Appendix D. We implement our
closure models in the Julia programming language [36] using the Flux.jl package [37, 38]. The code can be
found at https://github.com/tobyvg/ECNCM_1D.

4.1. Closure model performance
We first examine the performance of the trained closure models based on how well the filtered DNS

solution is reproduced for cases (i)-(iii) and unseen simulation conditions. During our comparison we will
make extensive use of the normalized root-mean-squared error (NRMSE) metric, defined as

NRMSE ū(t) =

√
1

|Ω| ||ū(t)− ūDNS(t)||2Ω, (72)

to compare the approximated solution ū at time t, living on the coarse grid, to the ground truth ūDNS

obtained from the DNS. We will refer to this metric as the solution error. In addition, we define the
integrated-NRMSE (I-NRMSE) as

I-NRMSE ū(t) =
1

t

∑
i

∆t NMRSE ū(i∆t), 0 ≤ i∆t ≤ t, (73)

such that the sum represents integrating the solution error in time. We will refer to this metric as the
integrated solution error.

4.1.1. Convergence

As we refine the resolution of the coarse grid, and with this increase the number of DOF, we expect
convergence of both the compression error Ls (defined in equation (49)) and the solution error. We consider
DOF ∈ {20, 30, 40, 50, 60, 70, 80, 90, 100}, each with a different set of trained closure models. If the fine-grid
resolution N is not divisible by the coarse-grid resolution I we first project the fine-grid solution on a grid
with a resolution that is divisible by I to generate reference data. This is necessary for constructing the
spatial averaging filter (see section 2.3). In total 36 closure models are trained: two (SP and CNN) for each
combination of the 9 considered coarse-grid resolutions and equation (Burgers’ or KdV). Closure models
corresponding to Burgers’ equation are applied to both use case (i) periodic and (ii) I/O conditions.

The SGS compression error evaluated over the validation set is shown in Figure 7. We observe monotonic
convergence of the compression error as we refine the grid. We expect the compression error to further
converge to zero until the exact solution is reached at DOF = N (J = 2), see Appendix E. The faster
convergence for the KdV equation is likely caused by the lower fine-grid resolution of N = 600, as opposed
to N = 1000 for Burgers’ equation.

Next, we look at the integrated solution error averaged over 20 simulations with unseen simulation
conditions, generated as described in Appendix D, for each of the considered numbers of DOF, see Figure 8.
For test cases (i) and (ii) we observe, for both SP and NC, almost monotonic convergence of the solution error
as we increase the number of DOF in the simulation, with SP improving upon NC with roughly one order of
magnitude. On the other hand, the solution error for the CNN behaves quite erratically: sometimes more
accurate than SP, sometimes unstable (e.g. in case (ii) and DOF = 80, all 20 simulations were unstable),
and sometimes less accurate than NC (case (i), DOF = 90).

For test case (iii) we find that for most numbers of DOF the CNN outperforms SP, while not resulting in
stable closure models for DOF ∈ {90, 100}. Overall, the conclusion is that our proposed SP closure model
leads to much more robust simulations while being on par in terms of accuracy with a CNN closure model.
Furthermore, for the lower numbers of DOF we observe similar performance for SP and the CNN. From this
we conclude that the compression error (see Figure 7) is likely not the limiting factor of the closure model
performance.

17

https://github.com/tobyvg/ECNCM_1D

20 40 60 80 100

10−7

10−6

10−5

10−4

10−3

DOF

L s

Burgers’
KdV

Figure 7: Convergence of the SGS compression error when refining the coarse grid, evaluated on the validation set for Burgers’
equation (N = 1000) and KdV equation (N = 600).

20 40 60 80 100

10−2

10−1

DOF

I-
N
R
M
S
E
ū

(i) Burgers’

20 40 60 80 100

10−2

10−1

DOF

I-
N
R
M
S
E
ū

(ii) Burgers’ (I/O)

20 40 60 80 100

10−2

10−1

DOF

I-
N
R
M
S
E
ū

(iii) KdV

NC
CNN
SP

Figure 8: Integrated solution error evaluated at T = 10 averaged over 20 simulations for the different use cases (i)-(iii) and
an increasing number of DOF. Only stable simulations are considered for the depicted averages. Absence of a scatter point
indicates no stable simulations.

4.1.2. Consistency of the training procedure

It is important to note that the closure models trained in the previous section possess a degree of
randomness, caused by the (random) initialization of the network weights and the random selection the
mini-batches. This can possibly lead to the irregular convergence behavior shown in the previous section.
In order to evaluate this effect, we train 10 separate replica models for DOF = 60, which only differ in the
random seed.

The trained models are evaluated in terms of stability (number of unstable simulations) and integrated
solution error. A simulation is considered unstable when it produces NaN values for ū(t) (t ≤ T). In total
20 simulations per closure model are carried out using the same simulation conditions as in the convergence
study. The results are depicted in Figure 9. With regards to stability we observe that all trained SP
closure models produced exclusively stable simulations. This is in accordance with the earlier derived
stability conditions (42) and (43) for the periodic cases. In addition, for the non-periodic test case (ii) we
also observe a clear stability advantage, as all of the trained SP closure models still produced only stable
simulations with a consistently low integrated solution error.

Regarding this integrated solution error, we observe that the SP closure models all perform very con-

18

0 20 40 60 80 100

10−2

10−1

100

% unstable simulations

I-
N
R
M
S
E
ū

(i) Burgers’

0 20 40 60 80 100
10−2

10−1

100

% unstable simulations
I-
N
R
M
S
E
ū

(ii) Burgers’ (I/O)

0 20 40 60 80 100

10−2

10−1

100

101

% unstable simulations

I-
N
R
M
S
E
ū

(iii) KdV

CNN
SP

Figure 9: Integrated solution error evaluated at T = 10 averaged over 20 simulations and % of unstable simulations for each
closure model in the trained ensemble of closure models (DOF = 60). Use cases (i)-(iii) are considered. For (ii) two CNN
closure models produced 100% unstable simulations and are therefore omitted from the graph.

0 2 4 6 8 10

10−3

10−2

10−1

100

t

N
R
M
S
E
ū

NC
CNN
SP

0 2 4 6 8 10
12.5

13

13.5

14

14.5

15

t

Ē
h NC
CNN
SP: Es

DNS: Eh

Figure 10: Solution error (left) and resolved energy (right) trajectories for a simulation of Burgers’ equation with periodic
BCs starting from an unseen initial condition. The presented results correspond to DOF = 90. For SP and the DNS the
(approximated) total energy is displayed, as the SGS energy is small. These trajectories overlap for the entirety of the
simulation.

sistently (errors are almost overlapping). The CNNs sometimes outperform SP for test cases (i) and (iii),
but also show very large outliers. This confirms our conclusion of the previous section that our SP closure
models are much more robust than the CNNs, which can be ‘hit or miss’ depending on the randomness in
the training procedure.

4.1.3. Error behavior in time

To further exemplify how structure preservation aids in robustness and accuracy we consider a single
simulation of Burgers’ equation with periodic BCs. We choose DOF = 90 (the value for which the CNN
closure model performed poorly during the convergence study) and randomly select one of the simulations
from the convergence study for the analysis. The resulting solution error trajectory and energy trajectories
for this simulation are displayed in Figure 10. We find that the resolved energy for the CNN starts showing
erratic behavior around the time the solution error surpasses the one of NC. Around t = 4 the resolved energy
even increases drastically. The other three methods show no increase in energy. This is in accordance with
the derived evolution of the energy: equation (11) for NC and the DNS, and equation (42) for SP. From
this we conclude that there is a clear stability and accuracy benefit to adhering to physical structure, as
compared to using a standard CNN.

19

0 2 4 6 8 10
10−19

10−18

10−17

10−16

10−15

10−14

t

|∆
tP

h
|

NC
CNN
SP
DNS

0 2 4 6 8 10
12.5

13

13.5

14

14.5

15

t

Ē
h

NC
SP
DNS
SP: Es

DNS: Eh

0 2 4 6 8 10
12.5

13

13.5

14

14.5

15

t

Ē
h

NC
SP
DNS
SP: Es

DNS: Eh

Figure 11: Change in momentum ∆tPh = Ph(t)−Ph(0) (left) and evolution of resolved and total energy (right) for a simulation
of Burgers’ equation with periodic BCs starting from an unseen initial condition. The presented results correspond to DOF = 40.

4.2. Structure preservation

To analyze how well the SP closure models adhere to physical structure we consider a single simulation
of Burgers’ and KdV with periodic BCs, i.e. use case (i) and (iii), and unseen simulation conditions. For
the purpose of this analysis we stick to closure models corresponding to DOF = 40.

4.2.1. Burgers’ equation

For Burgers’ equation the results are depicted in Figure 11. With regards to momentum conservation we
find that each of the considered closures preserves momentum within machine precision. NC and the DNS
achieve this through a structure-preserving discretization, the CNN achieves this through the multiplication
by the forward difference operator Q̄, and the SP model through the construction of K and Q.

With regards to the energy, both the resolved energy Ēh as well as the (approximated) total energy
Es/Eh are considered. The first observation is that the energy of NC is strictly decreasing but remains
at a too high level as compared to the DNS, which is consistent with our analysis in Appendix B. For SP
the approximated total energy is also always decreasing, as derived in (42), thus successfully mimicking the
property that the total energy should be decreasing for viscous flows and periodic BCs, in the absence of
forcing. Furthermore, when looking only at the resolved energy we find that SP nicely captures the back
and forth energy transfer between the resolved and SGS energy, similar to the DNS result. This means that
it successfully allows for backscatter, without sacrificing stability. The CNN is omitted from this analysis,
as earlier we observed that it is not strictly dissipative, see Figure 10.

4.2.2. Korteweg-de Vries equation

Next, we study the KdV equation. With regards to momentum we observe that it is again conserved up
to machine precision for each of the closures, see Figure 12. However, in contrast to Burgers’ equation with
viscosity, the total energy should now be exactly conserved. We mimic this by not including the dissipative
Q term in the SP closure model. We find that the approximated total energy is indeed conserved up to
a time integration error, due to the use of an explicit RK4 integration scheme [30] instead of a structure-
preserving time integration method such as implicit midpoint. This is done as implicit time integration
schemes are incompatible with trajectory fitting. The energy error decreases with O(∆t4) when the time
step is decreased and is at machine precision for ∆t = 10−4.

Based on the results for Burgers’ and KdV equation, we conclude that our proposed SP closure model
successfully achieves stability by mimicking the energy conservation law of the full system, while still allowing
for backscatter to be modelled correctly.

20

0 2 4 6 8 10

10−18

10−17

10−16

10−15

10−14

t

|∆
tP

h
|

NC
CNN
SP
DNS

0 2 4 6 8 10
10−16

10−14

10−12

10−10

10−8

t

|∆
tE

s/
h
|

SP (∆t = 5× 10−3)

SP (∆t = 10−4)
DNS (∆t = 10−4)

Figure 12: Change in momentum ∆tPh = Ph(t)−Ph(0) (left) and change in (approximated) total energy ∆tEs/h = Es/h(t)−
Es/h(0) (right) for a simulation of KdV equation with periodic BCs starting from an unseen initial condition. The presented
results correspond to DOF = 40.

4.3. Extrapolation in space and time

As a final experiment we evaluate how well the closure models are capable of extrapolating in space
and time. We consider the KdV equation on an extended spatial domain Ω = [0, 96], which is three times
the size of the domain in the training data, and run the simulation until T = 50 (five times longer than
present in the training data). As closure models, we use the ones trained during the convergence study that
correspond to the grid-spacing of the employed grid. The resulting DNS (N = 3× 600), and absolute error
(AE) for the NC, CNN, and SP simulations (DOF = 3 × 40) are shown in Figure 13. We observe that SP
and the CNN both improve upon NC in the earlier stages of the simulation (t ≤ 20), but less so for longer
time spans. However, since the absolute error is sensitive to small translations in the solution (as observed in
the later stages of the simulation), we require a more thorough analysis to further compare the two machine
learning-based closure models.

For this purpose we first look at the trajectory of the resolved energy. This is presented in Figure 14.
We find that for SP the resolved energy (in black) stays in close proximity to its corresponding filtered DNS
simulation (in green). This is in contrast to the CNN (in red) which starts to diverge from the DNS (in
brown) around t = 5. The resolved energy for the CNN also exceeds the maximum allowed total energy
Eh (in orange) at different points in the simulation, which is unphysical. We thus conclude that adding
the SGS variables and conserving the total energy helps with capturing the delicate energy balance between
resolved and SGS energy that characterizes the DNS. It is also interesting to note that NC conserves the
resolved energy, as the coarse discretization conserves the discrete energy. However, this is not desired, as
the resolved energy is not a conserved quantity, see Figure 3.

To make a more quantitative analysis of this phenomenon we investigate the trajectory of the solution
error and the Gaussian kernel density estimate (KDE) [39] of the resolved energy distribution, for both the
CNN and SP. The latter analysis is carried out to analyze whether the closure models capture the correct
energy balance between the resolved and SGS energy. The results for DOF ∈ {40, 60, 80} are depicted in
Figure 15. Looking at the solution error trajectories we find that at the earlier stages of the simulation the
CNN outperforms SP (for DOF = 60 and DOF = 80). However, SP slowly overtakes the CNN past the
training region (t ≤ 10). For DOF = 40, SP outperforms the CNN roughly throughout the entire simulation.
With regards to the resolved energy distribution we find that for each of the considered numbers of DOF
SP is capable reproducing the DNS distribution. On the other had, the CNN closure models struggle to
capture this distribution. For DOF = 40 a significant part of the distribution even exceeds the total energy
present in the DNS, i.e. there occurs a nonphysical influx of energy.

From this we conclude that both the SP and CNN closure models are capable of extrapolating beyond

21

Figure 13: Absolute errors for the simulations produced by the NC, CNN, and SP closures, as well as the DNS solution, for
solving the KdV equation on an extended spatial Ω = [0, 96] and temporal domain t = [0, 50]. The grid resolutions correspond
to DOF = 3× 40 for the closure models and N = 3× 600 for the DNS. The area enclosed within the dashed lines indicates the
size of the domain used for training.

the training data. However, the fact that SP is capable of correctly capturing the energy balance between
the resolved and unresolved scales allows it to more accurately capture the statistics of the DNS results.
This in turn leads to more robust long-term solution error behavior.

5. Conclusion

In this paper we proposed a novel way of constructing machine learning-based closure models in a
structure-preserving fashion by taking the ‘discretize first and filter next’ approach. We started off by
applying a spatial averaging filter to a fine-grid discretization and writing the resulting filtered system in
closure model form, where the closure term requires modeling. Next, we showed that by applying the filter
we effectively remove part of the energy. We then introduced a linear compression of the subgrid-scale
(SGS) content into a set of SGS variables living on the coarse grid. These SGS variables serve as a means
of reintroducing the removed energy back into the system, allowing us to use the concept of kinetic energy
conservation. In turn we introduced an extended system of equations that models the evolution of the
filtered solution as well as the evolution of the compressed SGS variables. For this extended system we
propose a structure-preserving closure modeling framework that allows for energy exchange between the
filtered solution and the SGS variables, in addition to dissipation. This framework serves to constrain
the underlying convolutional neural network (CNN) such that no additional energy enters the system for
periodic boundary conditions (BCs). In this way we achieve stability by abiding by the underlying energy
conservation law, while still allowing for backscatter through the energy present in the SGS variables. The
framework is constructed such that momentum conservation is also satisfied.

22

0 10 20 30 40 50

4

6

8

t

Ē
h

NC
CNN

DNS (I = DOF)
SP

DNS (I = DOF/2)
DNS: Eh

Figure 14: Trajectory of the resolved energy Ēh for the simulation presented in Figure 13 for each of the different models
corresponding to DOF = 40. The DNS resolved energy is depicted for both I = DOF (to compare with the CNN) and
I = DOF/2 (to compare with SP).

A convergence study showed that the learned SGS variables are able to accurately match the original
SGS energy content, with accuracy consistently improving when refining the coarse-grid resolution.

Given the SGS compression operator, our proposed structure-preserving framework (SP) was compared
to a vanilla CNN (adapted to be momentum-conserving). Overall, the SP method performed on par with the
CNN in terms of accuracy, provided that the CNN produced stable results. However, the results for the CNN
were typically inconsistent, not showing clear convergence of the integrated solution error upon increasing
the degrees of freedom, in addition to suffering from stability issues. On the other hand, our SP method
produced stable results in all cases, while also consistently improving upon the ‘no closure model’ results by
roughly an order of magnitude in terms of the integrated solution error.

This conclusion was further strengthened by training an ensemble of closure models, where we inves-
tigated the consistency of the closure model performance with respect to the randomness inherent in the
neural network training procedure. We observed that the trained vanilla CNNs differed significantly in per-
formance and stability, whereas the different SP models performed very similarly to each other and displayed
no stability issues. Our SP model is therefore more robust and successfully resolves the stability issues that
plague conventional CNNs.

Our numerical experiments confirmed the structure-preserving properties of our method: exact momen-
tum conservation, energy conservation (in the absence of dissipation) up to a time discretization error, and
strict energy decrease in the presence of dissipation. We also showed that our method succeeds in accurately
modeling backscatter. Furthermore, when extrapolating in space and time, the advantage of including the
SGS variables and embedding structure-preserving properties became even more apparent: our method is
much better at capturing the delicate energy balance between the resolved and SGS energy. This in turn
yielded better long-term error behavior.

Based on these results we conclude that including the SGS variables, as well as adherence to the under-
lying energy conservation law, has the important advantages of stability and long-term accuracy, in addition
to consistent performance. This work therefore serves as an important starting point for building physical
constraints into machine learning-based turbulence closure models. In the future we aim to apply our SP
framework to the Navier-Stokes equations in 2D and 3D, locally modeling the turbulent kinetic energy by a
set of SGS variables. More generally, our framework is potentially applicable to a wide range of systems that
possess multiscale behavior while also possessing a secondary conservation law, for example incompressible

23

0 10 20 30 40 50

10−3

10−2

10−1

100

t

N
R
M
S
E
ū

DOF = 3× 40

0 10 20 30 40 50

10−4

10−3

10−2

10−1

100

t
N
R
M
S
E
ū

DOF = 3× 60

0 10 20 30 40 50

10−4

10−3

10−2

10−1

100

t

N
R
M
S
E
ū

DOF = 3× 80

NC
CNN
SP

6 7 8 9

0

2

4

6

Ēh

p

7.4 7.6 7.8 8 8.2 8.4 8.6

0

5

10

Ēh

p

8 8.2 8.4 8.6

0

5

10

15

20

Ēh

p

CNN
DNS (I = DOF)

SP
DNS (I = DOF/2)

Figure 15: Solution error trajectory (top) and KDEs estimating the distribution of Ēh (bottom) for the trained closure models
corresponding to different numbers of DOF. These quantities are computed for a simulation of the KdV equation with the same
initial condition on the extended spatial and temporal domain. In the top row the vertical black line indicates the maximum
time present in the training data, while in the bottom row it indicates the total energy of the DNS (which should not be
exceeded). The DNS resolved energy is again depicted for both I = DOF (to compare with the CNN) and I = DOF/2 (to
compare with SP).

pipe flow [40] and the streamfunction-vorticity formulation of Navier-Stokes in 2D [41].

CRediT authorship contribution

T. van Gastelen: Conceptualization, Methodology, Software, Writing - original draft. W. Edeling:
Writing - review & editing. B. Sanderse: Conceptualization, Methodology, Writing - review & editing,
Funding acquisition.

Data availability

The code used to generate the training data and the implementation of the neural networks can be found
at https://github.com/tobyvg/ECNCM_1D.

Acknowledgements

This publication is part of the project “Unraveling Neural Networks with Structure-Preserving Com-
puting” (with project number OCENW.GROOT.2019.044 of the research programme NWO XL which is
financed by the Dutch Research Council (NWO)). In addition, part of this publication is funded by Eind-
hoven University of Technology.

24

https://github.com/tobyvg/ECNCM_1D

References

[1] R. C. Smith, Uncertainty quantification: theory, implementation, and applications, Vol. 12, Siam, 2013.
[2] D. Sasaki, S. Obayashi, K. Nakahashi, Navier-stokes optimization of supersonic wings with four objectives using evolu-

tionary algorithm, Journal of Aircraft 39 (4) (2002) 621–629.
[3] B. Sanderse, Non-linearly stable reduced-order models for incompressible flow with energy-conserving finite volume meth-

ods, Journal of Computational Physics 421 (2020) 109736. doi:10.1016/j.jcp.2020.109736.
[4] G. Alfonsi, Reynolds-averaged navier-stokes equations for turbulence modeling, Applied Mechanics Reviews - APPL

MECH REV 62 (07 2009). doi:10.1115/1.3124648.
[5] P. Sagaut, C. Meneveau, Large Eddy Simulation for Incompressible Flows: An Introduction, Scientific Computation,

Springer, 2006.
URL https://books.google.nl/books?id=ODYiH6RNyoQC

[6] J. J. O’Neill, X.-M. Cai, R. Kinnersley, A generalised stochastic backscatter model: large-eddy simulation of the neutral
surface layer, Quarterly Journal of the Royal Meteorological Society 141 (692) (2015) 2617–2629. arXiv:https://rmets.

onlinelibrary.wiley.com/doi/pdf/10.1002/qj.2548, doi:https://doi.org/10.1002/qj.2548.
URL https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.2548

[7] D. Carati, S. Ghosal, P. Moin, On the representation of backscatter in dynamic localization models, Physics of Fluids
7 (3) (1995) 606 – 616, cited by: 115. doi:10.1063/1.868585.
URL https://www.scopus.com/inward/record.uri?eid=2-s2.0-0000176178&doi=10.1063%2f1.868585&partnerID=40&

md5=2bf2184a75c303b29897eb25f5dc357b

[8] D. K. Lilly, A proposed modification of the germano subgrid-scale closure method, Physics of Fluids A: Fluid Dynamics
4 (3) (1992) 633–635. arXiv:https://doi.org/10.1063/1.858280, doi:10.1063/1.858280.
URL https://doi.org/10.1063/1.858280

[9] J. Smagorinsky, General circulation experiments with the primitive equations: I. the basic experiment, Monthly weather
review 91 (3) (1963) 99–164.

[10] A. Prakash, K. E. Jansen, J. A. Evans, Optimal clipping of structural subgrid stress closures for large eddy simulation
(2022). doi:10.48550/ARXIV.2201.09122.
URL https://arxiv.org/abs/2201.09122

[11] U. Piomelli, W. H. Cabot, P. Moin, S. Lee, Subgrid-scale backscatter in turbulent and transitional flows, Physics of Fluids
A 3 (7) (1991) 1766 – 1771, cited by: 315. doi:10.1063/1.857956.
URL https://www.scopus.com/inward/record.uri?eid=2-s2.0-0001165360&doi=10.1063%2f1.857956&partnerID=40&

md5=d73e57f3428cb7323a4ef7f7f4f6cfad

[12] U. Piomelli, T. A. Zang, C. G. Speziale, M. Y. Hussaini, On the large-eddy simulation of transitional wall-bounded flows,
Physics of Fluids A 2 (2) (1990) 257 – 265, cited by: 96; All Open Access, Green Open Access. doi:10.1063/1.857774.
URL https://www.scopus.com/inward/record.uri?eid=2-s2.0-0001126541&doi=10.1063%2f1.857774&partnerID=40&

md5=bfefe4458776d8d80cb1eed212c5c924

[13] S. Ghosal, T. S. Lund, P. Moin, K. Akselvoll, A dynamic localization model for large-eddy simulation of turbulent flows,
Journal of Fluid Mechanics 286 (1995) 229–255. doi:10.1017/S0022112095000711.

[14] H. Frezat, J. L. Sommer, R. Fablet, G. Balarac, R. Lguensat, A posteriori learning of quasi-geostrophic turbulence
parametrization: an experiment on integration steps (2021). doi:10.48550/ARXIV.2111.06841.
URL https://arxiv.org/abs/2111.06841

[15] B. List, L.-W. Chen, N. Thuerey, Learned turbulence modelling with differentiable fluid solvers (2022). doi:10.48550/

ARXIV.2202.06988.
URL https://arxiv.org/abs/2202.06988

[16] J. Park, H. Choi, Toward neural-network-based large eddy simulation: application to turbulent channel flow, Journal of
Fluid Mechanics 914 (2021) A16. doi:10.1017/jfm.2020.931.

[17] Y. Guan, A. Chattopadhyay, A. Subel, P. Hassanzadeh, Stable a posteriori les of 2d turbulence using convolutional neural
networks: Backscattering analysis and generalization to higher re via transfer learning, Journal of Computational Physics
458 (2022) 111090. doi:https://doi.org/10.1016/j.jcp.2022.111090.
URL https://www.sciencedirect.com/science/article/pii/S0021999122001528

[18] A. Beck, D. Flad, C.-D. Munz, Deep neural networks for data-driven les closure models, Journal of Computational Physics
398 (2019) 108910. doi:https://doi.org/10.1016/j.jcp.2019.108910.
URL https://www.sciencedirect.com/science/article/pii/S0021999119306151

[19] M. Kurz, A. Beck, A machine learning framework for les closure terms, ETNA - Electronic Transactions on Numerical
Analysis 56 (2022) 117–137. doi:10.1553/etna_vol56s117.

[20] M. Kurz, A. Beck, Investigating model-data inconsistency in data-informed turbulence closure terms, in: 14th WCCM-
ECCOMAS Congress 2020, 2021. doi:10.23967/wccm-eccomas.2020.115.

[21] J. F. MacArt, J. Sirignano, J. B. Freund, Embedded training of neural-network subgrid-scale turbulence models, Phys.
Rev. Fluids 6 (2021) 050502. doi:10.1103/PhysRevFluids.6.050502.
URL https://link.aps.org/doi/10.1103/PhysRevFluids.6.050502

[22] S. D. Agdestein, B. Sanderse, Learning filtered discretization operators: non-intrusive versus intrusive approaches (2022).
doi:10.48550/ARXIV.2208.09363.
URL https://arxiv.org/abs/2208.09363

[23] H. Melchers, D. Crommelin, B. Koren, V. Menkovski, B. Sanderse, Comparison of neural closure models for discretised
pdes, ArXiv preprint arXiv:2210.14675 (2022).

25

https://doi.org/10.1016/j.jcp.2020.109736
https://doi.org/10.1115/1.3124648
https://books.google.nl/books?id=ODYiH6RNyoQC
https://books.google.nl/books?id=ODYiH6RNyoQC
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.2548
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.2548
http://arxiv.org/abs/https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.2548
http://arxiv.org/abs/https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.2548
https://doi.org/https://doi.org/10.1002/qj.2548
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.2548
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0000176178&doi=10.1063%2f1.868585&partnerID=40&md5=2bf2184a75c303b29897eb25f5dc357b
https://doi.org/10.1063/1.868585
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0000176178&doi=10.1063%2f1.868585&partnerID=40&md5=2bf2184a75c303b29897eb25f5dc357b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0000176178&doi=10.1063%2f1.868585&partnerID=40&md5=2bf2184a75c303b29897eb25f5dc357b
https://doi.org/10.1063/1.858280
http://arxiv.org/abs/https://doi.org/10.1063/1.858280
https://doi.org/10.1063/1.858280
https://doi.org/10.1063/1.858280
https://arxiv.org/abs/2201.09122
https://doi.org/10.48550/ARXIV.2201.09122
https://arxiv.org/abs/2201.09122
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0001165360&doi=10.1063%2f1.857956&partnerID=40&md5=d73e57f3428cb7323a4ef7f7f4f6cfad
https://doi.org/10.1063/1.857956
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0001165360&doi=10.1063%2f1.857956&partnerID=40&md5=d73e57f3428cb7323a4ef7f7f4f6cfad
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0001165360&doi=10.1063%2f1.857956&partnerID=40&md5=d73e57f3428cb7323a4ef7f7f4f6cfad
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0001126541&doi=10.1063%2f1.857774&partnerID=40&md5=bfefe4458776d8d80cb1eed212c5c924
https://doi.org/10.1063/1.857774
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0001126541&doi=10.1063%2f1.857774&partnerID=40&md5=bfefe4458776d8d80cb1eed212c5c924
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0001126541&doi=10.1063%2f1.857774&partnerID=40&md5=bfefe4458776d8d80cb1eed212c5c924
https://doi.org/10.1017/S0022112095000711
https://arxiv.org/abs/2111.06841
https://arxiv.org/abs/2111.06841
https://doi.org/10.48550/ARXIV.2111.06841
https://arxiv.org/abs/2111.06841
https://arxiv.org/abs/2202.06988
https://doi.org/10.48550/ARXIV.2202.06988
https://doi.org/10.48550/ARXIV.2202.06988
https://arxiv.org/abs/2202.06988
https://doi.org/10.1017/jfm.2020.931
https://www.sciencedirect.com/science/article/pii/S0021999122001528
https://www.sciencedirect.com/science/article/pii/S0021999122001528
https://doi.org/https://doi.org/10.1016/j.jcp.2022.111090
https://www.sciencedirect.com/science/article/pii/S0021999122001528
https://www.sciencedirect.com/science/article/pii/S0021999119306151
https://doi.org/https://doi.org/10.1016/j.jcp.2019.108910
https://www.sciencedirect.com/science/article/pii/S0021999119306151
https://doi.org/10.1553/etna_vol56s117
https://doi.org/10.23967/wccm-eccomas.2020.115
https://link.aps.org/doi/10.1103/PhysRevFluids.6.050502
https://doi.org/10.1103/PhysRevFluids.6.050502
https://link.aps.org/doi/10.1103/PhysRevFluids.6.050502
https://arxiv.org/abs/2208.09363
https://doi.org/10.48550/ARXIV.2208.09363
https://arxiv.org/abs/2208.09363

[24] M. Kurz, P. Offenhäuser, A. Beck, Deep reinforcement learning for turbulence modeling in large eddy simulations (2022).
doi:10.48550/ARXIV.2206.11038.
URL https://arxiv.org/abs/2206.11038

[25] H. J. Bae, P. Koumoutsakos, Scientific multi-agent reinforcement learning for wall-models of turbulent flows, Nature
Communications 13 (1) (2022) 1443. doi:10.1038/s41467-022-28957-7.
URL https://doi.org/10.1038/s41467-022-28957-7

[26] H. Melchers, Machine learning for closure models, Master’s thesis, Eindhoven University of Technology (Jun. 2022).
[27] Y. Li, Deep reinforcement learning: An overview, CoRR abs/1701.07274 (2017). arXiv:1701.07274.

URL http://arxiv.org/abs/1701.07274

[28] M. D. Love, Subgrid modelling studies with burgers’ equation, Journal of Fluid Mechanics 100 (1) (1980) 87–110. doi:

10.1017/S0022112080001024.
[29] A. Jameson, The construction of discretely conservative finite volume schemes that also globally conserve energy or entropy,

J. Sci. Comput. 34 (2008) 152–187. doi:10.1007/s10915-007-9171-7.
[30] J. Butcher, Runge-Kutta methods, Scholarpedia 2 (9) (2007) 3147, revision #91735. doi:10.4249/scholarpedia.3147.
[31] J.-L. Yan, L.-H. Zheng, A class of momentum-preserving finite difference schemes for the korteweg-de vries equation,

Computational Mathematics and Mathematical Physics 59 (10) (2019) 1582–1596. doi:10.1134/S0965542519100154.
URL https://doi.org/10.1134/S0965542519100154

[32] F. Trias, O. Lehmkuhl, A. Oliva, C. Pérez-Segarra, R. Verstappen, Symmetry-preserving discretization of navier–stokes
equations on collocated unstructured grids, Journal of Computational Physics 258 (2014) 246–267. doi:https://doi.org/
10.1016/j.jcp.2013.10.031.
URL https://www.sciencedirect.com/science/article/pii/S0021999113007079

[33] K. O’Shea, R. Nash, An introduction to convolutional neural networks (2015). doi:10.48550/ARXIV.1511.08458.
URL https://arxiv.org/abs/1511.08458

[34] C. A. De Moura, C. S. Kubrusly, The courant–friedrichs–lewy (cfl) condition, AMC 10 (12) (2013).
[35] Y. Bar-Sinai, S. Hoyer, J. Hickey, M. P. Brenner, Learning data-driven discretizations for partial differential equations,

Proceedings of the National Academy of Sciences 116 (31) (2019) 15344–15349. arXiv:https://www.pnas.org/doi/pdf/

10.1073/pnas.1814058116, doi:10.1073/pnas.1814058116.
URL https://www.pnas.org/doi/abs/10.1073/pnas.1814058116

[36] J. Bezanson, A. Edelman, S. Karpinski, V. B. Shah, Julia: A fresh approach to numerical computing, SIAM review 59 (1)
(2017) 65–98.
URL https://doi.org/10.1137/141000671

[37] M. Innes, E. Saba, K. Fischer, D. Gandhi, M. C. Rudilosso, N. M. Joy, T. Karmali, A. Pal, V. Shah, Fashionable modelling
with flux, CoRR abs/1811.01457 (2018). arXiv:1811.01457.
URL https://arxiv.org/abs/1811.01457

[38] M. Innes, Flux: Elegant machine learning with julia, Journal of Open Source Software (2018). doi:10.21105/joss.00602.
[39] Weglarczyk, Stanislaw, Kernel density estimation and its application, ITM Web Conf. 23 (2018) 00037. doi:10.1051/

itmconf/20182300037.
URL https://doi.org/10.1051/itmconf/20182300037

[40] J. Buist, B. Sanderse, S. Dubinkina, R. Henkes, C. Oosterlee, Energy-conserving formulation of the two-fluid model for
incompressible two-phase flow in channels and pipes, arXiv preprint arXiv:2104.07728 (2021).

[41] W. Edeling, D. Crommelin, Reducing data-driven dynamical subgrid scale models by physical constraints, Computers &
Fluids 201 (2020) 104470. doi:https://doi.org/10.1016/j.compfluid.2020.104470.
URL https://www.sciencedirect.com/science/article/pii/S0045793020300438

[42] A. Dadone, B. Grossman, Ghost-cell method for analysis of inviscid three-dimensional flows on cartesian-grids, Computers
& Fluids 36 (10) (2007) 1513–1528, special Issue Dedicated to Professor Michele Napolitano on the Occasion of his 60th
Birthday. doi:https://doi.org/10.1016/j.compfluid.2007.03.013.
URL https://www.sciencedirect.com/science/article/pii/S0045793007000394

[43] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in: Y. W. Teh, M. Tit-
terington (Eds.), Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Vol. 9 of
Proceedings of Machine Learning Research, PMLR, Chia Laguna Resort, Sardinia, Italy, 2010, pp. 249–256.
URL https://proceedings.mlr.press/v9/glorot10a.html

[44] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization (2014). doi:10.48550/ARXIV.1412.6980.
URL https://arxiv.org/abs/1412.6980

26

https://arxiv.org/abs/2206.11038
https://doi.org/10.48550/ARXIV.2206.11038
https://arxiv.org/abs/2206.11038
https://doi.org/10.1038/s41467-022-28957-7
https://doi.org/10.1038/s41467-022-28957-7
https://doi.org/10.1038/s41467-022-28957-7
http://arxiv.org/abs/1701.07274
http://arxiv.org/abs/1701.07274
http://arxiv.org/abs/1701.07274
https://doi.org/10.1017/S0022112080001024
https://doi.org/10.1017/S0022112080001024
https://doi.org/10.1007/s10915-007-9171-7
https://doi.org/10.4249/scholarpedia.3147
https://doi.org/10.1134/S0965542519100154
https://doi.org/10.1134/S0965542519100154
https://doi.org/10.1134/S0965542519100154
https://www.sciencedirect.com/science/article/pii/S0021999113007079
https://www.sciencedirect.com/science/article/pii/S0021999113007079
https://doi.org/https://doi.org/10.1016/j.jcp.2013.10.031
https://doi.org/https://doi.org/10.1016/j.jcp.2013.10.031
https://www.sciencedirect.com/science/article/pii/S0021999113007079
https://arxiv.org/abs/1511.08458
https://doi.org/10.48550/ARXIV.1511.08458
https://arxiv.org/abs/1511.08458
https://www.pnas.org/doi/abs/10.1073/pnas.1814058116
http://arxiv.org/abs/https://www.pnas.org/doi/pdf/10.1073/pnas.1814058116
http://arxiv.org/abs/https://www.pnas.org/doi/pdf/10.1073/pnas.1814058116
https://doi.org/10.1073/pnas.1814058116
https://www.pnas.org/doi/abs/10.1073/pnas.1814058116
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
https://arxiv.org/abs/1811.01457
https://arxiv.org/abs/1811.01457
http://arxiv.org/abs/1811.01457
https://arxiv.org/abs/1811.01457
https://doi.org/10.21105/joss.00602
https://doi.org/10.1051/itmconf/20182300037
https://doi.org/10.1051/itmconf/20182300037
https://doi.org/10.1051/itmconf/20182300037
https://doi.org/10.1051/itmconf/20182300037
https://www.sciencedirect.com/science/article/pii/S0045793020300438
https://doi.org/https://doi.org/10.1016/j.compfluid.2020.104470
https://www.sciencedirect.com/science/article/pii/S0045793020300438
https://www.sciencedirect.com/science/article/pii/S0045793007000394
https://doi.org/https://doi.org/10.1016/j.compfluid.2007.03.013
https://www.sciencedirect.com/science/article/pii/S0045793007000394
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
https://arxiv.org/abs/1412.6980
https://doi.org/10.48550/ARXIV.1412.6980
https://arxiv.org/abs/1412.6980

Appendix A. Filter properties

Here we derive important properties of the spatial averaging filter. We first show that equation (28)
holds:

(Rā,Rb̄)ω = āTRTωRb̄ = āTΩWω−1ωRb̄ = āTΩ WR︸︷︷︸
=I

b̄ = (ā, b̄)Ω. (A.1)

Next, we proof that Rū is orthogonal to u′:

(Rū,u′)ω = (Rū,u−Rū)ω = (Rū, (I−RW)u)ω = ūTRTω(I−RW)u

= ūTΩW(I−RW)u = (ū, (W −WR︸︷︷︸
=I

W)u)Ω = (ū, (W −W)u)Ω = 0. (A.2)

Finally, we show that equation (33) holds:

(1ω,u)ω = 1T
ωωu = 1T

ΩRTωu = 1T
ΩΩWω−1ωu = 1T

ΩΩWu = (1Ω,Wu)Ω = (1Ω, ū)Ω, (A.3)

where we used the fact that 1ω = R1Ω.

Appendix B. Comparing coarse and fine-grid dissipation

We compare the rate of dissipation induced by the 1D diffusion operator discretized on the coarse grid,
D̄2 ∈ RI×I (for grid-spacing H), with the dissipation induced by the same operator but discretized on the
fine grid, D2 ∈ RN×N (for grid-spacing h = H

J). We define the difference in dissipated energy between these
two quantities as ∆D, which is given by (for periodic BCs):

∆D = (u,D2u)ω − (ū, D̄2ū)Ω = uTωD2u− (Wu)TΩD̄2Wu = uT H

J
D2u− uTHWT D̄2Wu

=
J

H
uT (

H2

J2
D2 −

H2

J
WT D̄2W)u =

J

H
uT (h2D2 −

1

J
WT (H2D̄2)W)︸ ︷︷ ︸
=:D∆

2

u. (B.1)

We choose D∆
2 such that it is independent of the grid-spacing, but only depends on the ratio J = H

h
and coarse and fine-grid resolutions I and N = IJ . Note that D∆

2 is a symmetric matrix and as such
its eigenvalues λ∆

N ≤ . . . ≤ λ∆
1 are real and its eigenvectors can be chosen to form an orthogonal basis.

Furthermore, λ∆
1 = 0 due to periodic boundary conditions. We can thus bound ∆D by noting that

∆D ≤ max
i

J

H
λ∆
i ||u||22, (B.2)

If the eigenvalues are all strictly nonpositive, we observe that the difference in dissipation ∆D is always less
than or equal to zero. In other words, D2 extracts more (or equal) energy from the reference system as D̄2

does from the filtered system. To prove that the eigenvalues of D∆
2 are indeed all nonpositive is a difficult

problem which we circumvent here with a numerical ‘proof’. In Figure B.16 we display the largest non-zero
eigenvalue λ∆

2 (λ∆
1 being the zero eigenvalue) for different values of I and J , indicating that λ∆

i ≤ 0 for
realistic values of I and J .

Appendix C. Non-periodic boundary conditions

To extend our method to different types of BCs for Burgers’ equation in 1D we resort to what the
machine learning community refers to as padding [33] and the scientific computing community refers to as
the ghost-cell method [42]. We will treat both inflow and outflow BCs, on uniform coarse and fine grids, as
this is relevant for fluid flow modeling.

27

10 20 30 40

10

20

30

40

I

J

log10(−λ∆
2)

−6

−4

−2

Figure B.16: Largest non-zero eigenvalue λ∆
2 of D∆

2 for different values of I and J .

Appendix C.1. Implementation for the fine grid

The ghost-cell method enhances the discretization with ghost cells beyond the domain boundary ∂Ω
(with domain Ω = [a, b]), as displayed in Figure C.17.

The inflow (Dirichlet) BC is given by u(x = a, t) = α(t), which is encoded on the fine grid by choosing
ghost value u0 as

u(x = a, t) = α(t) =
u1 + u0

2
→ u0 = 2α(t)− u1. (C.1)

This corresponds to the first ghost cell outside the left boundary, see Figure C.17. For the outflow BC we

use a symmetric BC at the right boundary, given by ∂u(x=b,t)
∂x = 0. This can easily be implemented by

taking uN+1 = uN for ghost value uN+1 corresponding to the first ghost cell outside the right boundary, see
Figure C.17.

x=a x=b

x−1 x0 x1 x2 x3 x4 x5 x6 x7

Figure C.17: 1D grid enhanced with ghost cells, indicated by the hollow circles, beyond the domain boundaries.

Appendix C.2. Implementation for the filtered system

As our closure model is effectively a non-linear discretization (due to the presence of the CNN) which takes
information from k neighboring grid cells, we require the inclusion of k ghost cells on each side of the domain
boundary ∂Ω. To find appropriate choices for the ghost values ūi and si (i = −k+ 1, . . . , 0, I + 1, . . . , I + k)
we consider the fine-grid solution u and appropriately extend this past the domain boundary, see Figure
C.18.

Appendix C.2.1. Inflow BC

For the left inflow BC we extend (C.1) to

u−i+1 = 2α(t)− ui, i = 1, 2, . . . (C.2)

28

We can rewrite this as a function of ūi and SGS content µi:

(ū−i+1 + µ−i+1,J−j) = 2α(t)− (ūi + µi,1+j), 1 ≤ i ≤ k, 0 ≤ j ≤ J − 1. (C.3)

This can be split into a filtered part:

ū−i+1 = 2α(t)− ūi, 1 ≤ i ≤ k, (C.4)

which yields the ghost values for ū past the left boundary, as displayed in Figure C.18, and a SGS part:

µ−i+1,J−j = −µi,1+j , 1 ≤ i ≤ k, 0 ≤ j ≤ J − 1. (C.5)

The latter equality can be simplified as

µ−i+1 = −Pµi, 1 ≤ i ≤ k, (C.6)

where P ∈ RJ×J is the permutation matrix that represents the reflection across the boundary. Important
properties of such a matrix are its symmetry:

P = PT (C.7)

and orthogonality:
PPT = PTP = P2 = I. (C.8)

Appendix C.2.2. Outflow BC

For the symmetric outflow BC we extend the fine-grid solution past the domain as

uN+i = uN−i+1, i = 1, 2, . . . (C.9)

In terms of ūi and µi this becomes

(ūI+i + µI+i,1+j) = (ūI−i+1 + µI−i+1,J−j), 1 ≤ i ≤ k, 0 ≤ j ≤ J − 1, (C.10)

which can again be split into the equation for the ghost values for ū (shown in figure C.18):

ūI+i = ūI−i+1, 1 ≤ i ≤ k, (C.11)

and a SGS part
µI+i = PµI−i+1, 1 ≤ i ≤ k. (C.12)

Appendix C.3. BCs for the SGS variables

For the SGS variables the left and right ghost values respectively become:

s−i+1 = tTµ−i+1 = −tTPµi, 1 ≤ i ≤ k, (C.13)

and
sI+i = tTµI+i = tTPµI−i+1, 1 ≤ i ≤ k. (C.14)

As u′ is unknown during the time of simulation these quantities can not be calculated explicitly. However,
we do know s within the domain:

si = tTµi, 1 ≤ i ≤ I.
To find s outside the domain we need to know the effect of applying the reflection operator P on the SGS
content before applying the SGS compression. By defining t as

t(t̃) = (I−P)t̃, (C.15)

29

−2 0 2 4 6 8

0

0.5

1

1.5

x

u

u
ū

u′
s

Figure C.18: An example solution u with N = 1000 filtered onto a coarse grid with I = 5 and extended past ∂Ω according
to (C.2) (α = 7

10
) for the left boundary and (C.9) for the right boundary. ∂Ω is indicated by the dashed vertical lines. ū is

extended past ∂Ω according to (C.4) and (C.11), u′ is extended according to (C.6) and (C.12), and s is extended according to
(C.16) and (C.17).

with underlying parameters t̃ ∈ RJ , we enforce that si changes sign when the SGS content µi is reflected
across the boundary. We can also choose to leave si invariant under this reflection, however this does not
allow for the exact solution when J = 2, as is detailed Appendix E.

Let us first consider the left Dirichlet BC:

s−i+1 = tTµ−i+1 = −tTPµi = −t̃T (I−P)TPµi = −t̃T (IP−PTP︸ ︷︷ ︸
=I

)µi

= −t̃T (P− I)Tµi = tTµi = si, 1 ≤ i ≤ k.

This results in the following relation for the ghost values

s−i+1 = si, 1 ≤ i ≤ k, (C.16)

where the RHS is known during the time of simulation. For the right symmetric BC we similarly obtain:

sI+i = tTµI+i = tTPµI−i+1 = t̃T (I−P)TPµI−i+1 = t̃T (IP−PTP︸ ︷︷ ︸
=I

)µI−i+1

= t̃T (P− I)TµI−i+1 = −tTµI−i+1 = −sI−i+1, 1 ≤ i ≤ k.

leading to following relation for the ghost values:

sI+i = −sI−i+1, 1 ≤ i ≤ k. (C.17)

The ghost values for s are also depicted in Figure C.18. For Burgers’ equation (49) is thus minimized with
respect to the elements of t̃ to obtain the compression matrix T.

An example simulation for this I/O BC implementation is shown in Figure C.19, where we simulate Burg-
ers’ equation with I/O BCs, and some additional forcing (see Appendix D), using our structure-preserving
closure modeling framework and compare it to the DNS.

30

Figure C.19: Example of a simulation of Burgers’ equation with I/O BCs and forcing using our trained structure-preserving
closure model for DOF = 40 (left), along with the DNS solution for N = 1000 (right).

Appendix D. Training procedure

In order to train our machine learning-based closure models we first require DNSs to serve as reference
data. This reference data in turn serves as a target for our machine learning models to reproduce. In this
section we describe how we randomly generate simulation conditions (initial condtions, BCs, and forcing)
for closure model training and testing, along with the training procedure of the models, in addition to the
corresponding hyperparameter values obtained from the described hyperparameter tuning procedure.

Appendix D.1. Generating training data

To generate initial conditions, forcing, and unsteady Dirichlet BCs we make use of the following param-
eterized Fourier decomposition (with parameters α1, α2, α3 ∈ R):

ξ(y;α1, α2, α3) = α1 +
α2√
M

M∑
i=2

Ci1 sin

(
i
2π

α3
y

)
+ Ci2 cos

(
i
2π

α3
y

)
, (D.1)

where M is uniformly sampled from 2, 3, . . . , 8 and Cij ∼ p for

p(y) =

{
1, for 1

2 ≤ |y| ≤ 1,

0, elsewhere.
(D.2)

In the case of Burgers’ equation we carry out 100 reference simulations on a uniform grid with N = 1000 on a
domain Ω = [0, 2π] for ν = 0.01. To march the solution forward in time we employ an RK4 scheme [30] with

31

a time step size of ∆t = 2.5×10−3 and simulate up to T = 10. 50 simulations are carried out using periodic
BCs and 50 with I/O BCs. For the periodic case the initial condition is given by u(x, t = 0) = ξ(x; 2, 1, |Ω|).
For the I/O case the inflow condition is given by u(0, t) = ξ(t, 2, 1, 2π) and the outflow condition by a
symmetric BC on the right side of the domain (implementation of the BCs is described in Appendix C).
The initial condition is in turn given by a constant valued function, where the constant is equal to the inflow
condition at t = 0. In addition, we also add a steady forcing term F (x) = ξ(x; 0, 1

2 , |Ω|) to the RHS for the
I/O case. This is done to test the implementation of forcing in our structure-preserving framework.

With regards to the KdV equation we employ a uniform grid with N = 600 on a domain Ω = [0, 32] for
ε = 6 and µ = 1. The solution is again marched forward in time using an RK4 scheme with a time step size
of ∆t = 10−4, up to T = 10. In this case we only consider periodic BCs, with the initial condition given by
u(x, 0) = ξ(x; 0, 3

5 , |Ω|), and perform 100 reference simulations by randomly sampling M and Cij .
For both Burgers’ and KdV reference data is saved at a time interval of 5 × 10−3. We then randomly

sample 10% of the data from these two datasets (one for each equation) to generate the final datasets.
Both datasets are split into a training (70%) and a validation set (30%). For testing purposes the unseen
simulation conditions are generated in a similar manner, but with different randomly generated M and Cij .

Appendix D.2. Initialization of the parameters

The weights and biases of the CNN are initiated using the Glorot normal initialization algorithm [43].
The diagonals of the B-matrices are initialized as

(−1)i exp(−0.4i2)

where i indicates the distance from the main diagonal. In this way diagonals far away from the main diagonal
are initialized with lower weights. The elements of t/t̃ are initialized as noise sampled from the uniform
distribution U(−10−20, 10−20).

Appendix D.3. Hyperparameters and tuning

The chosen hyperparameters for our SP closure and the vanilla CNN are displayed in Table D.1. Both t
and the closure model parameters are optimized using the Adam optimization algorithm with parameters α
(learning-rate), β1 (decay rate for the first momentum estimates), β2 (decay rate for the second momentum
estimates), ε (small constant to combat numerical instability) [44]. Hyperparameters are selected based on
how well the trained closure models reproduce the RHS for the solution snapshots present in the validation
set corresponding to DOF = 60. For this purpose, models are trained without trajectory fitting. For the
hyperparameter optimization we opt to vary the number of hidden layers, for which we consider {0, 1, 2},
and the number of channels per hidden layer, for which we consider {10, 20, 30}. The performance of each
of the trained closure models is shown in figure D.20. The best performing combination of hyperparameters
(displayed in Table D.1), for each of the use cases, is then selected to train the final closure model, but this
time with trajectory fitting included. Only for the SP models corresponding to DOF = 20 we decrease the
kernel size by two and take D = B = 1.

Appendix E. Exact solution SGS compression for J = 2

For J = 2 the minimization problem in (49) has an exact solution. This is obtained by equating the true
local energy to the approximated local energy in the SGS variable:

1

4
µ2
i1 +

1

4
µ2
i2 =

1

2
(t1µi1 + t2µi2)2, (E.1)

assuming uniform coarse and fine grids. Noting that µi1 = −µi2 (see (21)) we obtain t as

µ2
i1 = (t1 − t2)2µ2

i1 → 1 = (t1 − t2)2 → t1 = ±1

2
+ τ0, t2 = ∓1

2
+ τ0, (E.2)

32

0 2,000 4,000 6,000 8,000

10−1

100

parameters

N
R
M
S
E

Burgers’

CNN: dū
dt

SP: dū
dt

SP: ds
dt

0 2,000 4,000 6,000 8,000

10−2

10−1

parameters
N
R
M
S
E

KdV

CNN: dū
dt

SP: dū
dt

SP: ds
dt

Figure D.20: NRMSE for reproducing the RHS for each of the considered hyperparameter configurations for Burgers’ (left)
and KdV (right) averaged over the validation set for DOF = 60.

with τ0 ∈ R. We can safely set τ0 to zero as its value does not contribute to si. This can be seen by writing
the following for general J :

si = tTµi = t̂Tµi +��
��:0

τ01
Tµi, (E.3)

where we decomposed t as variations t̂ ∈ {v ∈ RJ : 1Tv = 0} around the constant offset τ0:

t = t̂ + τ01. (E.4)

The relation 1Tµi = 0 follows from (21) for uniform grids.
In Appendix C we chose t such that s changes sign when the SGS content is reflected across the boundary,

see (C.15). Similarly, we can choose t as
t(t̃) = (I + P)t̃ (E.5)

ensuring that s is invariant, as opposed changing sign, under this reflection:

sI+i = tTµI+i = tTPµI−i+1 = t̃T (I + P)TPµI−i+1 = t̃T (IP + PTP︸ ︷︷ ︸
=I

)µI−i+1

= t̃T (P + I)TµI−i+1 = tTµI−i+1 = sI−i+1, 1 ≤ i ≤ k,

for a symmetric BC applied to the right boundary. However, this does not allow for the exact solution at
J = 2, as

t(t̃) = (I + P)t̃ =

(
I +

[
0 1
1 0

])[
t̃1

t̃2

]
=

[
t̃1 + t̃2

t̃2 + t̃1

]
(E.6)

has no solutions for [
t̃1 + t̃2

t̃2 + t̃1

]
=

[
± 1

2
∓ 1

2

]
. (E.7)

The choice of t presented in Appendix C, namely (C.15), does allow for this exact solution:

t(t̃) = (I−P)t̃ =

(
I−

[
0 1
1 0

])[
t̃1

t̃2

]
=

[
t̃1 − t̃2

t̃2 − t̃1

]
=

[
± 1

2
∓ 1

2

]
→ t̃1 = t̃2 ±

1

2
(E.8)

and is therefore preferred.

33

Table D.1: Hyperparameters for the trained closure models

hyperparameter CNN SP
α 10−3 10−3

β1 0.9 0.9
β2 0.999 0.999
ε 10−8 10−8

mini-batch size 20 20
batch size for optimizing t - 400

iterations for optimizing t - 200
iterations derivative fitting 100 100
iterations trajectory fitting 20 20

trajectory fitting ∆t (Burgers’) 0.01 0.01

trajectory fitting ∆t (KdV) 5× 10−3 5× 10−3

trajectory fitting # time steps 5 20
non-linear activation function (underlying) CNN ReLU ReLU

final activation function (underlying) CNN linear linear
kernel size 7 5

stride 1 1
hidden layers 2 2

channels per hidden layer Burgers’ 20 30
channels per hidden layer KdV 20 20

total # parameters Burgers’ 3261 7607
total # parameters KdV 3261 3905

B (Burgers’) - 1
B (KdV) - 2

D (Burgers’) - 1
D (KdV) - 2

34

	1 Introduction
	2 Governing equations, discrete filtering, and closure problem
	2.1 Spatial discretization
	2.2 Burgers' and Korteweg-de Vries equation and physical structure
	2.3 Discrete filtering
	2.4 Discrete closure problem
	2.5 Inner products and energy decomposition
	2.6 Momentum conservation

	3 Structure-preserving closure modeling framework
	3.1 Framework
	3.2 SGS variables
	3.3 Skew-symmetric closure term K
	3.3.1 Momentum-conserving transformation

	3.4 Dissipative term Q
	3.5 Forcing
	3.6 Finding the optimal parameter values

	4 Results
	4.1 Closure model performance
	4.1.1 Convergence
	4.1.2 Consistency of the training procedure
	4.1.3 Error behavior in time

	4.2 Structure preservation
	4.2.1 Burgers' equation
	4.2.2 Korteweg-de Vries equation

	4.3 Extrapolation in space and time

	5 Conclusion
	Appendix A Filter properties
	Appendix B Comparing coarse and fine-grid dissipation
	Appendix C Non-periodic boundary conditions
	Appendix C.1 Implementation for the fine grid
	Appendix C.2 Implementation for the filtered system
	Appendix C.2.1 Inflow BC
	Appendix C.2.2 Outflow BC

	Appendix C.3 BCs for the SGS variables

	Appendix D Training procedure
	Appendix D.1 Generating training data
	Appendix D.2 Initialization of the parameters
	Appendix D.3 Hyperparameters and tuning

	Appendix E Exact solution SGS compression for J=2

