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Figure 1: Fixation maps of dancer sequences with uniform temporal sampling every 30 frames.

ABSTRACT

Perceptual quality assessment of Dynamic Point Cloud (DPC) plays
an important role in various Virtual Reality (VR) applications that
involve human beings as the end users. Visual attention has the
potential of aiding in understanding and modeling perceptual quality
assessment. However, incorporating aspects of visual attention in
DPC quality models is largely unexplored, as ground-truth visual
attention data is scarcely available. This paper presents a dataset
containing subjective opinion scores and visual attention maps of
DPCs, collected in VR using eye-tracking technology. The data
was collected during a subjective quality assessment experiment, in
which subjects were instructed to watch and rate DPCs at various
degradation levels under 6 degree-of-freedom, using a head-mounted
display. The dataset comprises 5 reference DPCs, each reference
DPC has 9 distorted DPCs compressed by 3 encoders, each with
3 distortion levels. Moreover, it includes 1000 gaze trials from
40 participants, resulting in 15,000 visual attention maps in total.
The constructed database can serve as ground-truth data for the
performance evaluation of objective metrics of DPC perceptual qual-
ity. This work contributes to understanding DPC quality and visual
attention, advancing research in VR experiences and perception.

Index Terms: Volumetric video, Dynamic point cloud, Visual
saliency, Visual attention, Subjective quality assessment, Objective
quality metrics, Eye tracking, 6DoF
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1 INTRODUCTION

Volumetric video has become available for representing real-world
objects, due to the rapid development of capture devices, trans-
mission technology, and computational capability. Point cloud has
emerged as one of the most popular formats for volumetric video
representation. Dynamic Point Cloud (DPC) can be used for auto-
motive/robotic navigation [50], medical imaging [5], virtual video
conferencing [20, 42], etc. A point cloud is a set of points in space
represented in a 3D coordinate system. A DPC is essentially a
sequence of individual point cloud frames played in succession.
However, each point cloud frame requires a large number of points
to faithfully represent the content and achieve a good Quality-of-
Experience (QoE). Therefore, effective compression is essential
before transmission, storage, rendering, and display. Quality degra-
dation will be inevitably introduced during this end-to-end pipeline,
which deteriorates the visual quality and affects the perception. Ex-
ploring the distortion characteristics of DPC and effectively mea-
suring them in 6 Degree-of-Freedom (DoF) is a challenge in both
subjective and objective quality assessment [1].

Subjective quality assessment leads to ground-truth ratings for
visual impairments in a stimulus. Subjective quality assessment for
DPC has been explored in desktop viewing conditions [46, 47] or in
immersive environments with users consuming the contents through
a Head-Mounted Display (HMD) under 6DoF [38, 43]. In the latter
case, information about users’ movement can be captured in addi-
tion to subjective quality ratings, to understand how users navigate
and observe objects in VR space. A more accurate representation
of the user’s consumption is given by gaze data, which highlights
the specific areas of content being viewed with focused attention.
This information aids in the creation of visual attention maps. Incor-
porating visual attention into quality assessment has demonstrated
potential improvement for predicting the visual quality of 2D/3D
image/video [23, 49]. Nonetheless, visual attention for DPC is still
in its infancy, thus hindering the utilization of its outcomes in aiding
visual quality assessment.

A summary of existing subjective quality assessment and visual
attention datasets for point clouds is shown in Table 1. Most of
the studies in the literature involving DPCs are conducted with 2D



Table 1: Publicly available subjective quality assessment and visual attention datasets for point clouds.

Dataset Type Degradation Stimuli Time Display Interaction Opinion Score Visual Attention

VsenseVVDB [46] Dynamic down-sampling, VPCC 32 6.6s 2D monitor ✗ ✓ ✗

VsenseVVDB2 [47] Dynamic Mesh: Draco+JPEG
Point Clouds: GPCC, VPCC

28
136 10s 2D monitor ✗ ✓ ✗

Owlii [45] Dynamic Mesh: TFAN, FFmpeg
Point Clouds: VPCC, FFmpeg 20 20s 2D monitor ✗ ✓ ✗

Subramanyam et al. [38] Dynamic CWI-PCL, VPCC 72 5s HMD ✓ ✓ ✗
ViAtPCVR [3] Static Only reference 8 - HMD ✓ ✗ ✓

QAVA-DPC(Ours) Dynamic VPCC, GPCC, CWI-PCL 50 10s HMD ✓ ✓ ✓

monitors: the DPCs are pre-recorded and play back to the user
using conventional video software [45–47]. However, the passive
nature of the display restricts user freedom, as DPCs can only be
presented according to a predetermined trajectory. On the other
hand, an immersive HMD-based display with 6DoF allows for a
complete representation of the entire DPC, but typically involves a
smaller number of DPCs (20) or shorter time duration (5 seconds),
due to technical limitations that prevent a smooth playback in real
time [38]. Due to such limitations, no visual attention dataset specif-
ically designed for DPC has been released so far; existing research
has primarily explored the attention of static point clouds [3], confin-
ing the scope to a few undistorted contents. There is currently a lack
of studies that connect visual attention and visual quality specifically
for DPC.

Visual attention of point cloud can benefit a myriad of vision tasks,
such as segmentation, localization, and registration [13]. Improve-
ment has been reported by using the visual attention map to weight
a quality map for perceptual quality prediction [25]. By connecting
visual attention and visual quality for DPC, the quality allocation
between the salient region and the remaining area; saliency-aware
compression and streaming; saliency-aided objective quality metrics
can be further investigated and optimized.

In this paper, we aim to create an eye-tracking-based Visual At-
tention and Quality Assessment dataset for DPC sequences (VAQA-
DPC), which consists of diverse contents and encompasses various
types of distortions. The corresponding visual attention map can
thereby enhance the understanding of human behavior to facilitate
the QoE. Our contributions can be summarized as follows:

• We propose a new dataset, namely, VAQA-DPC, which con-
tains 5 reference DPC; each sequence includes 3 codecs, and
each codec has 3 distortion levels. Fixation maps are collected
and presented for both the reference and distorted sequences as
heatmap overlaid on top of the stimuli frames. To the best of
our knowledge, this is the first time connecting visual attention
and visual quality for DPC in VR.

• We release all raw data, containing the opinion scores
and eye-tracking-related information collected in our study,
alongside the software used to perform the experiment,
and the scripts used to post-process the data, at the
following link: https://github.com/cwi-dis/ISMAR_
PointCloud_EyeTracking.

2 RELATED WORK

2.1 Eye Tracking Experiment for 3D contents
Owning to the human vision system’s selectivity to respond to the
most attractive activities in the visual field, it’s inappropriate to treat
each voxel equally [23]. To explore visual attention for 3D contents,
the eye-tracking experiment remains the main way for understanding
human visual behavior. Sitzmann et al. [35] capture and analyze
gaze and head orientation data of users exploring stereoscopic, static
omnidirectional panoramas, for a total of 1980 head and gaze tra-
jectories for three different viewing conditions. They found the
existence of a particular fixation bias, which can be used to adapt

existing saliency predictors to immersive VR conditions. Nguyen et
al. [27] introduce a large saliency dataset for 360-degree videos with
a new methodology supported by psychology studies with HMD.
They describe an open-source software implementing this method-
ology that can generate saliency maps from any head tracking data.
Lavoue et al. [21] present a dataset that records the eye-movement
data for rendered 3D shapes. During their experiment, 3D meshes
are rendered using different materials and lighting conditions under
different scenes, the rendered videos of 3D meshes are shown on
the screen for subjects to observe. Ding et al. [8] propose a novel
6DoF mesh saliency dataset that provides both the subject’s 6DoF
data and eye-movement data, a 6DoF mesh saliency detection algo-
rithm based on the uniqueness measure and the bias preference is
developed. Alexiou et al. [3] conduct an eye-tracking experiment in
an immersive 3D scene that offers 6DoF. A method to exploit the
high-quality recorded gaze measurements was introduced based on
a per-session profiling and a scheme to determine areas of fixations
in a point cloud has been proposed.

To the best of our knowledge, no dataset has been released for
the visual attention of DPC, which is our main contribution.

2.2 DPC Quality Assessment
Whereas subjective and objective quality assessment of static point
clouds has been explored in more detail in the literature [2], the
associated research of DPCs is still a sophisticated and challenging
problem, owing to numerous factors such as evaluation methodol-
ogy, rendering method, display equipment and so forth. Subjective
quality scores, such as Mean Opinion Score (MOS) or Differential
MOS (DMOS), are commonly used to quantify the subjective per-
ception of visual artifacts. Zerman et al. [46] conduct a subjective
experiment on two DPCs (VsenseVVDB) using MPEG VPCC com-
pression [33]. The same author compares the mesh and point cloud
representation formats (VsenseVVDB2) for a volumetric video com-
pression scenario utilizing state-of-the-art compression techniques.
The results show that meshes provide the best quality at high bitrates,
while point clouds perform better for low bitrates cases [47]. Hooft
et al. investigate how and to what extent various aspects have more
impact on the user’s QoE, via extensive objective and subjective
evaluation of volumetric 6DoF streaming [40]. Mekuria et al. eval-
uate the subjective quality of the CWI-PCL codec performance in
a realistic 3D tele-immersive system in a virtual 3D room scenario,
in which users are represented and interact as 3D avatars and/or 3D
point clouds [26]. The results show that the degradation introduced
by CWI-PCL is negligible. However, these experiments are all with
a desktop setting in a passive manner. Viola et al. compare two
different VR viewing conditions enabling 3/6 DoF, along with a
desktop setting, to understand how interaction in the virtual space
affects the perception of quality [43]. Results show no statistical
difference between scores given in a desktop and VR setup; how-
ever, qualitative results highlighted the added value of interactive
evaluation. One main limitation of the study lies in the length of the
sequences used for the evaluation, as the authors use 150 frames for
their study. Subramanyam et al. [39] evaluate the performance of
several adaptive streaming solutions in an interactive VR experiment.
In their setup, they compare the performance of VPCC with respect
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Figure 2: Distribution of SI and TI of 12 source DPCs from 3 datasets,
the color value is computed by

√
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to CWI-PCL, using various adaptive streaming strategies.

In our study, we aim at complementing existing literature by
performing an experiment comparing the visual quality of several
state-of-the-art compression techniques for DPC. We do so in an
interactive manner, using an HMD-based VR rendering of 10s se-
quences from various datasets, which has not been done before in
the literature in combination with eye-tracking.

2.3 Eye-Tracking based Objective Quality Assessment

Recent literature in eye-tracking-based visual saliency for immersive
contents has mainly focused on task-free experiments to gather
visual attention maps [29, 36]; no study has been conducted to
link visual attention to visual quality assessment for volumetric
contents. The literature suggests that visual attention might be
beneficial for understanding the process of perception of visual
quality for 2D images/videos; in fact, different metrics for Image
Quality Assessment (IQA) have been extended with a computational
model of visual attention [23], but the resulting gain to what extent
improvement of the metrics so far is unclear. To better understand
the basic added value of including visual attention in the design of
objective metrics, the following works take advantage of measured
data of visual attention. Lin et al. [24] perform two eye-tracking
experiments: one with a free-looking task and one with a quality
assessment task. They found a tendency that adding saliency to a
metric yields a larger amount of gain in performance. The extent
of the performance gain tends to depend on the specific objective
metric and the image content. In addition, the gain is small for
objective metrics that already show a high correlation with perceived
quality for a given distortion type. Zhang et al. [49] propose a new
methodology to eliminate the inherent bias due to the involvement
of stimulus repetition. The refined methodology result in a new eye-
tracking dataset with a large degree of stimulus variability. Based
on the ground truth labeling, the statistical evaluation shows that the
attention of both the referenced and distorted scene is beneficial for
IQA metrics, but the latter tends to further boost the effectiveness of
the integration of attention in IQA metrics. Jin et al. [18] utilize the
eye-tracker to create foveation-compressed VR datasets and evaluate
both the foveated and non-foveated objective image/video quality
assessment algorithms.

To better understand whether the findings regarding visual
saliency and quality assessment on 2D images/videos can hold for
volumetric contents, ad-hoc datasets that combine the two aspects
are needed. That is the research gap we aim to fill with this paper.

3 QAVA-DPC CONSTRUCTION

3.1 Stimuli Selection

For the creation of the dataset, we selected 5 DPCs from 3 public
datasets, namely VsenseVVDB2 [47], 8i [9] and Owlii [45]. To show
the diversity of DPCs, we considered the Spatial Information (SI)
and Temporal Information (TI) for each content [15]. We projected
the source point cloud into 4 views, which are the left, right, front,
and back view, of its bounding box to apply SI and TI separately,
then obtain the maximum value among the 4 views over all the first
300 frames as the final SI/TI for one sequence. The distribution of
all DPCs can be seen in Fig.2, we finally choose dancer, exercise,
long dress, rafa2, and soldier as the contents in our dataset. The
dispersed state in SI (horizontal axes)/TI (vertical axes) shows the
diversity of our contents in the spatial/temporal domain.

3.2 Stimuli Processing

Before conducting the subjective experiment on DPC, specific pro-
cedures are necessary due to various codecs. These procedures,
including pre-processing, encoding, and rendering, are aimed at
minimizing additional influencing factors.

3.2.1 Pre-processing

The sequences mentioned above are selected from different datasets,
which means the resolution, position and orientations vary. The
DPCs are life-size so to create a realistic tele-immersive scenario.
We normalize the DPCs to a similar bounding box. The geometry
precision of dancer and exercise is voxelized from 11 to 10. The
source model has been processed with rotation, translation and scal-
ing. Additionally, VPCC encoder fails to deal with decimals, thus
the coordinates of point cloud go through the round operation before
VPCC compression. CWI-PCL encoder has specific requirements
for the resolution of point cloud, so before CWI-PCL compression
the coordinates of the point cloud go through the scaling operation.

3.2.2 Encoding

Distorted versions are generated using the state-of-the-art MPEG
PCC reference software Test Model Category 2 Version 18 (T MC2V-
18.0) and Category 1&3 Version 14 (T MC13V-14.0) namely VPCC
and GPCC [33]. We also adopt CWI-PCL [26] codec as a compar-
ison. GPCC is proposed mainly for the aim of compressing static
point cloud, and VPCC is developed for DPC compression, CWI-
PCL is mainly for real-time requirements. To compare them in a
fair way, we considered the following cases: GPCC encoder with
Region-Aptive Hierarchical Transform (RAHT) to compress point-
wise color attributes and Octree for geometry representation; VPCC
encoder with All Intra (AI) mode, which adapts intra-prediction
for one frame; CWI-PCL intra frame, geometry coded with octree
subdivision and color attributes encoded based on JPEG.

To define the configuration parameters for the encoders, the
MPEG Common Test Conditions [37] are followed. To compare
with different codecs and different distortion levels, we select the
distortion levels that can reveal a similar low-medium-high quality
range among the 3 codecs. Specifically, for GPCC we have three
distortion levels, namely R02, R04, and R05, by setting position-
QuantizationScale and QP parameters. For VPCC, we select three
distortion levels, namely R01, R03, and R05 by setting different
geometry QP, attribute QP, and occupancyPrecision parameters. For
CWI-PCL, we choose three combinations of octree depth with JPEG
QP parameters to match a similar quality range, by looping over
octree depth from 7 to 9 and JPEG QP from 25 to 95 (step size =
10). When testing on the dataset, the above parameter settings for
the three codecs yielded subjectively similar from the perspective of
the quality range. Specific parameter settings are shown in Table 2.



Table 2: Parameter sets for different encoders

Encoders Distortion Level

GPCC(Octree-RAHT) R02
(0.125,46)

R04
(0.5,34)

R05
(0.75,28)

VPCC(AI) R01
(32,42)

R03
(24,32)

R05
(16,22)

CWI-PCL R01
( 7-25)

R02
(8-95)

R03
(9-95)

Hardware Software Unity 3D

Vive Pro Eye
Vive controlleres

Vive base stations

SteamVR
SRAnipal Runtime

SteamVR Plugin
Open XR Plugin

CWIPC Unity package

Figure 3: Schematic diagram with the hardware and software modules
together with their inter-dependencies.

3.2.3 Rendering
Point cloud rendering is the process of producing a visual represen-
tation that can be consumed by users using an available display [17],
which has a significant impact on the quality perceived by the user.
In our experiment, we choose to display the point cloud directly
using the point cloud data (point-based). For the same stimuli, both
reference and distorted versions are watertight by adjusting the point
size to the average distance among its 10 nearest neighbors all over
all points in the point cloud [38]. Within a DPC, we utilize the same
point size for all frames.

Our experiment software is developed in Unity (version
2021.3.10.f1), exploiting the SteamVR plugin (version 1.24.7) to
connect with VR headsets and controllers. CWI Point Cloud
(CWIPC) supported unity package (version 0.10.0) helps us im-
port the DPCs and playback them inside Unity [30]. A high-level
diagram indicating the hardware/software dependencies is provided
in Fig.3. After pre-processing, point clouds are rescaled to a similar
size, around 1.8m height, to mimic a realistic tele-immersive sce-
narios. Notably, a large size of DPC file might take up too much
memory and cause a system hang. So we first transform the DPC
data to CWIPC-supported point cloud playback format to improve
the software stability. To ensure smooth playback of DPC, we take
advantage of the Unity Coroutine scheme to preload each DPC into
memory before the user switch to next DPC. 5 DPCs with their
corresponding operation are selected in our test. Each DPC has 3
compression codecs, and each codec has 3 distortion levels, for a
total of 45 distorted DPCs. It should be noted for each sequence, we
only choose the first 300 frames from the source model. The frame
rate for playback is 30 frames per second, hence each video lasts for
10 seconds.

We use HTC Vive Pro Eye devices with eye-tracking capabil-
ities and Vive hand controllers for participants to interact in our
experiment. The VR scene was illuminated by a virtual lamp on the
ceiling centralized above the models. The lamp is set as an area light
with intensity values of 2 in Unity to simulate ordinary lighting in a
room. To develop eye-tracking applications for the Vive Pro Eye we
use the native HTC Vive SRanipal SDK. The sampling frequency
(binocular) of the eye tracker is 120 HZ.

3.3 Experimental Procedure
Since there is no specific recommendation for designing subjective
quality assessment experiments on DPC in VR, we have made an
effort to adhere to existing ITU recommendations on images/videos
[12, 14, 16] to establish an appropriate assessment methodology for
DPC. In our subjective study, we opt for Absolute Category Rating
with Hidden Reference (ACR-HR). Each time only a single DPC

is shown to the observer, test materials include impaired DPC with
randomly inserted intact HR sequences. HR sequences are repre-
sented as any other test stimulus. To avoid the effects of contextual
or memory comparisons, we randomly generate a playlist for each
subject, care is also given to avoid displaying the same DPC model
consecutively. A training phase preceded the actual test. During
training, the subjects are acquainted with the VR environment and
facility usage. The contents used for training are different from the
test stimulus.

Before the experiment, the visual acuity and color vision of every
subject are tested using Snellen [11] and Ishihara [6] charts. Each
subject is informed in advance about the manner and purpose of
the study as part of the informed consent procedure. Then, a train-
ing session is conducted to help familiarize the subjects with the
system, including the controllers and the naming of each button to
communicate more easily. The inter-pupillary distance is measured
and the headset is adjusted by the subject accordingly. One training
sequence, namely loot, is used, which is not included in the dataset.
The quality range of loot is similar to the quality range of the test
videos, giving the subjects a sense of what they would see in the for-
mal sessions. The subjects always start at the same location, which
is 1.5 meters away from the center of the virtual room, but can move
freely from there onward. A DPC is located in the center of the
virtual room, and each DPC is randomly rotated between [0◦,360◦]
to avoid bias. During the experiment, the subjects were instructed to
view each model carefully in the VR environment, by moving freely
during the playback of each DPC. The subjects were also required
to stand still while doing the calibration and error profiling. A fixed
distance was set between the subjects and the error profiling scene,
which is a circle composed of 9 eye-ball markers.

After feeling comfortable with the set-up, the participants are
informed about the task that is assigned to them: “we ask you to
examine a set of human DPC models, each model will be looped
three times, each loop is last for 10 seconds; after visualization,
we will ask you to rate the quality of the stimuli you are looking
at, and in the same time, we will record your gaze-related data.”
To determine the number of loops, we referred to related papers
on video quality assessment and eye-tracking-based visual saliency
detection [7,22,41,48]. Additionally, in [28], the effect of exposition
time by repeating the same video from 1 to 4 loops was explored,
concluding that more loops do not necessarily result in more unique
fixation points for most videos. Hence we chose 3 loops instead
of once or an unlimited number. There are two dummy objects at
the beginning of each session to make the subject familiar with the
testing procedure and the rating scales. For each subject, the test
is split into two rounds, lasting for around 30 minutes each, with a
mandatory 5-minute break in between. Before and after each round,
participants are requested to fill in a Simulator Sickness Question-
naire (SSQ) on a 1-4 discrete scale (1=none to 4=severe) [19]. For
every model and subject, a round is split into four consecutive steps:

1 Calibration is the process by which the geometric characteris-
tics of a participant’s eyes are estimated as the basis for a fully
customized and accurate gaze point calculation, which is im-
plemented to optimize the eye tracking algorithm. Calibration
will be done at the beginning of the experiment, only when
calibration is successful users can enter into the DPC playback
stage.

2 Inspection of models is the step where the participants are
consuming DPC, while their trajectory and gaze-related infor-
mation are recorded.

3 Quality evaluation of models requires the subject to rate DPC.
The rating button is marked with labels ranging from “Poor”
to “Excellent” to facilitate anchoring the rating process, and
subjects could use their controllers to select and submit a score
without taking off the headset.



Figure 4: SSQ score for two test sessions

4 Error profiling is issued as the last step in order to estimate the
accuracy of the gaze measurements due to calibration inaccu-
racies, or HMD displacements. A regular circle of 9 markers
at pre-defined positions in the virtual scene is presented to the
user. Based on the recorded gaze measurements, the average
angular error is computed per marker online. This procedure
allows us to decide whether the gaze data obtained from a
certain session is accurate or not.

In this study, a total of 40 participants take part in the subjective
tests, with a diverse composition, including 1 non-binary individual,
19 males, and 20 females. The participants’ ages range from 20 to
34, with an average age of 26.90 and a standard deviation of 3.51.
Each participant observed half of the DPCs among all stimuli, lead-
ing to 20 opinion scores per sequence. In terms of occupation, the
majority (80%) of the participants are students, ranging from bache-
lor to PhD levels. The remaining 20% are composed of researchers,
postdoctoral fellows, and one auditor. Regarding familiarity with
VR devices, 7 participants have never experienced VR before the
experiment, 26 participants have intermediate experience (using VR
1 to 3 times), and 7 of them are considered experts, having back-
grounds as VR designers or researchers. Additionally, 22 out of 40
participants wore glasses during the experiment.

3.4 Data Processing
3.4.1 Processing of SSQ Data

SSQ comprises 16 symptoms which are further grouped into three
different categories: Oculomotor, Nausea, and Disorientation; we
also computed the total score. Fig. 4 suggests that simulator scores
are increasing after performing the experiment. However, it can be
seen that breaks help in reducing simulator sickness.

3.4.2 Processing of Opinion Scores

After removing the scores of the first two dummy objects, outlier
detection was performed according to ITU-T Recommendations
P.913 [16]. The recommended threshold values r1 = 0.75 and r2
= 0.8 were used. No outliers were found in our test. After outlier
detection, the MOS was computed for each DPC. The associated
95% Confidence Intervals (CIs) were obtained assuming a Student’s
t-distribution. Additionally, the DMOS was obtained by applying
HR removal, following the procedure described in ITU-T Recom-
mendations P.913 [16].

3.4.3 Processing of Gaze Data

One subject walked into the body of two DPCs in the VR envi-
ronment when observing, so the corresponding gaze data was not
included. We ignore the initial 400 ms gaze data of each user to
avoid unintentional gaze because of the unexpected appearance of

Figure 5: Estimation of the angular error for one gaze data

(a) Fixation points of
dancer, front view (orig-
inal fixations)

(b) Fixation points of
dancer, front view (with
filtering)

Figure 6: Fixation map comparison with/without filtering by DBSCAN.

the DPC. Then, only the valid gaze samples provided by the SRa-
nipal SDK are selected. Each valid gaze sample is processed as
follows:

1 Verify the data validity of gaze data: A barycentric interpo-
lation with weights equal to corresponding angular errors ob-
tained from the profiling is applied. A threshold of 7.5◦ is
used to discard unintentional gaze. After displaying each tar-
get, 0.8 seconds will be waited before including the samples
in actual calculations. This delay accounts for the initial mo-
ments in eye-tracking data during the actual experiment, which
can be influenced by factors such as calibration stabilization,
participant adaptation, and gaze analysis during fully engaged
periods [34]. We make use of GazeMetrics [4], an open-source
tool for measuring the data quality of HMD-based eye trackers
to compute the angular error. Finally, we apply a compensatory
weighted average angular error to each gaze sample. This is
repeated for every user gaze sample to maintain high-quality
estimations while avoiding discarding useful data. Fig.5 illus-
trates the estimation of angular error for gaze data in 2D, g
represents the intersection between the gaze ray and the plane
formed by nine markers denoted as m1 to m9. These mark-
ers are positioned at a distance of 1.25 meters relative to the
camera within the VR environment.

2 Identifying fixation points of gaze data: Taking into account
the dynamic nature of our content, we choose the Dispersion-
Threshold Identification (I-DT) [31] method. I-DT leverages
the fact that fixation points, owing to their reduced veloc-
ity, tend to cluster in close proximity [44]. It identifies fixa-
tion points as groups of consecutive points within a particu-
lar dispersion, or maximum separation. The I-DT algorithm



(a) rafa2 (b) dancer (c) exercise

(d) long dress (e) soldier

Figure 7: MOS (solid line) and DMOS (dashed line) against bit-rate, expressed in Mbps. HR scores are shown using a shaded purple plot.

requires two parameters, the dispersion threshold and the du-
ration threshold, we set the dispersion threshold equal to 3◦
and the duration threshold equal to 100 ms, separately. Thus
we take the average of these gaze points within the duration
threshold as the fixation point.

3 Mapping gaze data to DPC frames: We proceed by associating
the filtered gaze data with the currently viewed frames and
translating the gaze data (x,y,z) from world space into fixation
points within that corresponding frame. As a result, we get all
the gaze data in an endeavor to cover 300 frames in total. We
adopt the truncated-cone-sector algorithm to assign weights to
points in a given DPC frame [3].

4 Fusing multiple users’ gaze data to DPC frames: A fixation
map is the aggregation of fixation points from all users viewing
the same DPC frame at a given timestamp, which can mark the
region of interest. In our experiment, unintentional observation
can cause isolated fixation points on DPC frame after mapping.
Thus, it is necessary to filter out these noisy fixation points.
We choose the Density-Based Spatial Clustering of Applica-
tions with Noise (DBSCAN) [10] algorithm to filter out noisy
fixation points. Based on the density of fixation points on the
point cloud, the DBSCAN is configured to remove the noisiest
fixation points in clusters with high density at the same time
be able to retain certain core fixation points in clusters with
less density [27]. Fig.6 illustrates the effect of filtering noisy
fixations. DBSCAN requires two parameters: ε is the radius
of the circle to be created around each data point to check the
density and θ is the minimum number of points required inside
that circle for that data point to be classified as a core point. θ

should increase as the point size α of a point cloud becomes
small, which means a high-density point cloud. The minimum

number of points is computed as

θ =

[
27

1+20∗α

]
. (1)

ε is decided by k-distance graph [32]. We take the average of
fixation maps generated by multiple users, which is defined as

V S f =
1
N

N

∑
n=1

(V Sn). (2)

where V S f is the fixation map for each DPC frame, V Sn is the
fixation map for each DPC frame by one subject, specifically,
V Sn also takes the average number of times a frame is viewed
by one subject. N denotes one specific frame that has been
viewed by N subjects in total. After we get the averaged
fixation map for one DPC frame, we apply the DBSCAN
filtering operation to get the final fixation map.

4 EXPERIMENTAL RESULT

4.1 Analysis of Opinion Scores
Fig.7 shows the results of the subjective quality assessment of the
contents in 6DoF viewing conditions. In particular, the MOS scores
associated with the compressed contents are shown with solid lines,
along with relative CIs, whereas the dashed lines represent the re-
spective DMOS scores. The HR scores for each content are repre-
sented with a solid line to indicate the MOS, and a shaded plot for
the corresponding CIs.

While evaluating the point cloud codecs, we observe that, under
similar bitrates, VPCC codec exhibits the best perceptual quality,
GPCC the second, and CWI-PCL is the last codec for all 5 contents.
This observation is consistent with [38, 47]. From the perspective of
contents, MOS and DMOS present similar trends, as the MOS for
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Figure 8: The fixations for each subject and for each content. Each row denotes the fixations on a specific content and each column denotes the
fixations for each subject, respectively. R1 (low), R2 (medium), and R3 (high) indicate the bitrates of each codec, while R0 denotes the reference
DPC.
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Figure 9: Fixations against bitrates, expressed in Mbps. The average
number of fixations is expressed with a line. Each color denotes a
content, specifically, rafa2 is in blue, dancer is in red, exercise is in
yellow, long dress is in purple and soldier is in green.

the HR contents is between 4 and 5. The only exception to the trend
is rafa2, for which the MOS for the reference content remains at
around 3. This is likely related to the reconstruction error: compared
with other contents captured in more professional studio settings, the
reference version of rafa2 does not offer a satisfactory quality. The
calculated DMOS is between [3, 5], due to the fact that the reference
content was rated so low.

4.2 Analysis of Gaze Data
To understand how and what users explore DPC in VR, we analyze
the relationship between fixations and bitrates. Fig.8 represents the
number of fixations of each subject on each content. It should be
noted that the fixations are the filtered ones on individual DPC in-
stead of the raw fixations of subjects. Fig.9 depicts the exact number
of fixations across all subjects on different bitrates. Combining Fig.2,
8, 9, we have the following observations:

• Subjects are more interested in the high-motion DPC (i.e., with
higher TI) compared with the low-motion one. For example,
the average number of fixations on dancer and long dress is
higher than rafa2 and soldier, which have less TI on average.

• There is no indication that low-quality contents will receive

Figure 10: Fixation map on the hair and heal of long dress

less attention. In fact, we do not observe any particular trend re-
garding the number of fixations changing with varying quality
levels. Visual attention for dynamic scenes should be consider-
ing both motion and quality.

• Certain subjects consistently exhibit a higher number of gaze
fixations (e.g., user 27 and 38 in Fig. 8, possibly due to the
individual differences of the participants or the accuracy of the
device during the experiment.

We also explore where the subjects are looking at the DPC in
VR, and how the quality degradation will impact the visual attention
in a dynamic scene. Subjects pay attention to unrealistic rendering
artifacts, such as high-heeled shoes and hair of long dress. Fig.10
depicts the fixation map on these two areas. Certain frames miss the
heelpiece; certain frames exhibit unnatural hair rendering. Fig.11
shows the fixation map of both the reference and all distorted long
dress point cloud frames. We can see subjects are interested in the
face and the area with high motion. For all 5 contents, subjects tend
to focus on the faces and the front view of the DPC, despite the
random rotation of the DPC itself. No differences are observed for
the salient area in different distortion levels. The heat values on the
face are consistent across all the distortion levels; the heat value in
high-motion areas is floating with the motions; the heat value on the
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Figure 11: The referenced and distorted versions of point cloud long dress (frame 128) with corresponding visual attention maps based on the
proposed processing protocol. Figures 11a is the reference version. Figures 11b-11j are the distorted version of long dress from low bitrate to high
bitrate. Specifically, 11b-11d: VPCC, 11e-11g: GPCC, 11h-11j: CWI-PCL.

remaining area has no pattern. This randomness may come from
unintentional fixation or the random rotation of DPCs.

5 DISCUSSION

5.1 Dataset applications and prospective extensions
QAVA-DPC, encompassing MOS/DMOS, users’ gaze data, and
our meticulously processed visual attention maps, holds significant
potential as a foundational reference for the following aspects: 1)
Since it includes the raw data alongside the visual attention maps, the
dataset can be used by researchers and practitioners to develop and
test novel algorithms for post-processing of gaze data and creation of
visual attention maps; 2) The dataset can be used for the development
of objective quality metrics and visual attention prediction models
for DPC without needing to conduct resource-intensive user studies;
3) Existing point-based objective quality metrics can be refined and
tailored for DPC, to explore how to incorporate visual attention, and
what is the added value; 4) Visual attention maps can be used as a
comparison to static point clouds, to find the intrinsic differences
between visual attention in dynamic and static contents in terms of
perceptual quality assessment.

5.2 Task-dependent visual attention
As our experiment was devoted to evaluating the visual quality of
the DPCs, the attention of our participants might have been focused
on parts of the contents that are assisting them in the task: for
example, areas with patterns on which distortions would easily be
spotted. That does not necessarily mean that the same area would
be a salient region had the test been administered with a different
task or task-free. Further experiments are needed to understand how
visual attention changes based on the context of the task.

5.3 Influence of reference quality
Our results highlight how the same content, when mixed among
different sets of contents, can receive different ratings: thus, the
quality ratings of one content should always be considered in the
context of the content set in which they are placed. Our results also
highlight the importance of selecting the right set of contents for
a subjective experiment. Reference quality should be considered
in order to avoid biasing the subjects towards one or another con-
tent despite the SI-TI information. How to automatically perform
such prediction of reference quality is, however, an open research
issue [1].

6 CONCLUSION

In this study, we collect a dataset that includes the gaze and opinion
scores for each DPC in 6DoF. The computed opinion scores and
visual attention maps along with the raw data needed for computation
are included in the dataset. The dataset contains 50 DPCs, composed
of 9 distorted and one reference version. 15,000 visual attention
maps for each frame are also provided.

The main task of the presented study was to evaluate the quality
of DPCs. In the future, we aim at expanding the dataset to include a
task-free eye-tracking experiment, to make a comparison of these
two visual attention maps and explore how the task impacts visual
attention in virtual reality.
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