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1. Introduction.

Processor-sharing policy and impatience. Processor-sharing (PS) policies were originally proposed as
models of time sharing in computer operating systems. Recently, generalizations of this discipline have been
used to describe data transfers in congested routes through the Internet (see Roberts and Massoulié [25] and
Kelly and Williams [18] and references therein). This has created considerable renewed interest in the analysis
of PS policies.
This paper studies the behavior of a GI/GI/1 queue serving impatient jobs according to the PS policy: If

there are N jobs in the queue, each job receives simultaneous service at rate 1/N . An impatient job has a random
initial lead time in addition to its service time. Such a job has a deadline equal to its arrival time plus its initial
lead time; if the job has not completed service when the deadline expires, it abandons the queue (or reneges)
and therefore does not complete service. For example, the timeout of a transmission control protocol (TCP) flow
through the Internet can be thought of as the expiration of a random deadline and subsequent reneging of the
flow.
The impact of impatience on PS queues is greater than for first-in-first-out (FIFO) queues. A typical job

that abandons a FIFO queue will do so while waiting to begin service. In contrast, a job that abandons a PS
queue will have already received partial service. Because this partial service is wasted, impatience may create
significant overhead for a PS server.
There is a large literature on queueing models with impatience under the FIFO discipline. An early paper

by Barrer [1] considers an example arising in a military application. Stanford [27] surveys the literature in
this domain (see also Stanford [26] and Boots and Tijms [5]). This body of work focuses primarily on exact
performance analysis. Ward and Glynn [29] have recently obtained a diffusion approximation for single channel
queues. There are also various studies of multiserver queues with abandonments, motivated by call center
applications; see the survey by Bonald and Massoulié [3], Gans et al. [10], and references therein.
There is some related literature treating other policies, but in the context of soft deadlines. Jobs with soft

deadlines are not impatient; they remain in the system until completing service, even if their deadlines have
expired. In particular, these queues are work conserving in the sense that the server must fully process all work
arriving to the system. Results for such models describe the extent to which overdue jobs are produced by the
underlying service discipline, without the effect of abandonments. Doytchinov et al. [9] and Kruk et al. [20, 21]
investigate the heavy traffic behavior of various systems using the earliest deadline first and FIFO policies.
Gromoll and Kruk [12] describe the heavy traffic behavior of a PS queue incorporating a fairly general structure
of soft deadlines.
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For PS queues with impatience, only a few results are known. Coffman et al. [7] cover the special case
of exponential service times and lead times, where the lead time and service time are independent. Guillemin
et al. [14] consider heavy tailed service times, and obtain some results on the reneging behavior of large jobs by
analyzing the tail behavior of the sojourn time distribution. Using some approximations, Bonald and Roberts [4]
analyze the steady state of a system with general service times and some dependence between service times and
lead times.

Results of the paper. This paper analyzes the PS queue with impatience using fluid limits. The dynamics
of the system are represented as a measure-valued process: the system state at time t ≥ 0 is represented as a
random point measure ��t� on �0��	× �0��	, such that ��t� has a point mass at �b�d� ∈ �0��	× �0��	 if
and only if there is a job in the system at time t with residual service time b and residual lead time d. See
Jean-Marie and Robert [16] and Doytchinov et al. [9] for similar representations of residual service times in
single server queues. This setup enables a fairly general analysis. The case of a general joint distribution of
service times and initial lead times with possible dependence of the two random variables is included in our
setting.
Under mild assumptions, we show that under a convenient scaling, a family of measure-valued processes

associated with ���t�� is tight and converges in distribution to a limit ���t��. For t ≥ 0, ��t� is a nonnegative
measure on �0��	×�0��	. This fluid limit is characterized as the solution of a functional Equation (2.9), which
can be viewed as a time-changed functional differential equation.
The overloaded case > 1, which is our main focus, presents a nontrivial and interesting steady state behavior.

The total fluid mass in the system at equilibrium (the fluid analogue of the total number of jobs) is shown to
be the solution z� of a simple fixed point Equation (3.4). Moreover, the steady state of the fluid model, that is,
the limit of ��t� as t goes to infinity, is a measure on �0��	× �0��	, which has a simple expression (2.15) in
terms of z�.
These results provide significant insight into the qualitative properties of PS queues with impatience. An

interpretation of the fixed point Equation (3.4) is given and used to analyze the total number of jobs in the
system, and to estimate the long run fraction of jobs that renege. The impact of the variability of service times
and lead times, as well as other properties of this model, are investigated in Gromoll et al. [11].
In contrast to previous work on PS models, the server considered here might only process a fraction of the

service requirement of a job. This creates an important difference: The workload process does not coincide with
that of a FIFO queue, a fact that previous work has exploited heavily. For this reason, analysis of the fluid model
is more intricate. A different approach to prove existence, uniqueness, and convergence to steady state of fluid
model solutions is used. It is shown that there exists a maximal fluid model solution and, using monotonicity
arguments, the properties of fluid limits are investigated under fairly general assumptions.

Organization. A detailed description of the model and main results are presented in §2. Qualitative prop-
erties of the fluid model are analyzed in §3. Section 4 is devoted to examples. Sections 5 and 6 are concerned
with convergence to the fluid limit. Section 5 establishes tightness, and §6 characterizes limit points.

2. Model description and results. This section gives a detailed description of the stochastic processes
associated to this queue, as well as a summary of our main results.

2.1. Stochastic model. The stochastic model consists of the following: a processor-sharing server working
at unit rate from an infinite capacity buffer, a collection of stochastic primitives E�·�, �Bi�Di� describing, respec-
tively, the arrival process, service requirements, and initial lead times of jobs, and a random initial condition
specifying the state of the system at time 0. All random objects are defined on a probability space ���� �P�
with expectation operator E�·	.
The exogenous arrival process �E�t�� t ≥ 0� has rate �> 0; it is a delayed renewal process starting from zero,

with ith jump time Ui. For t ≥ 0, E�t� is the number of jobs that arrive to the buffer during �0� t	. For i≥ 1, Ui

is the arrival time of job i and �= 1/E�U2	 is the arrival rate. Jobs already in the buffer at time 0 are called
initial jobs.
For i ≥ 1, the service time Bi is a strictly positive random variable representing the amount of processing

time that job i requires from the server. The random variable Di is strictly positive and determines the deadline
of job i: It represents the maximum amount of time that job i will stay in the buffer. Because job i arrives
at time Ui, its deadline is at time Ui +Di. It will abandon the system at this time if it has not yet completed
service. The random variable Di is called the initial lead time of job i.
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The model allows either the service time or the initial lead time (but not both) to be equal to infinity. In
this way, the ordinary PS queue (Di ≡�) and the infinite server queue (Bi ≡�) are included as special cases.
Therefore, the random vector �Bi�Di� takes values in the space 
�2

+ = �0��	× �0��	. Here, 
�+ = �0��	 is the
disjoint union �0���∪ ���, with the arithmetic extensions x+�=� for all x ∈ 
�+, x ·�=� for x > 0, and
0 ·�= 0. (Note that the space 
�+ = �0��	 as used in this paper is distinct from the one-point compactification
of �0���.) The collection of Borel subsets of 
�2

+ is denoted by �. Throughout the paper, it is assumed that
all sequences of service times and initial lead times �Bi�Di� are independent and identically distributed (i.i.d.)

�2

+-valued random variables, and that their common joint distribution � on 
�2
+ satisfies

���0�× 
�+�=��
�+ × �0��=��������= 0� (2.1)

Note that the random variables Bi and Di may be dependent. A generic random element of 
�2
+ with distribution

� will be denoted �B�D�.

Initial condition. The initial condition specifies Z�0�, the number of initial jobs present in the buffer at time
zero, as well as the service times and initial lead times of these initial jobs. Assume that Z�0� is a nonnegative,
integer-valued random variable. The service times and initial lead times for initial jobs are the first Z�0� elements
of a sequence �B0

j �D
0
j � of random variables taking values in �0��	× �0��	\����� almost surely. Assume that

the expected number of initial jobs is finite: E�Z�0�	 <�.

Time evolution of the queue. For each t ≥ 0, let Z�t� denote the number of jobs in the buffer (or queue
length) at time t, and let S�t� denote the cumulative service per job provided by the server up to time t. Because
of the processor sharing policy, S�t� is given by

S�t�=
∫ t

0

1
Z�s�

ds� (2.2)

where the integrand is defined to be zero when the queue length equals zero. If a job arrived at time s ≥ 0 and
is still present in the queue at time t ≥ s, then by time t it has received the cumulative amount of processing
time S�s� t�= S�t�− S�s�.
Therefore, the residual service time at time t of job i≤E�t� and initial job j ≤Z�0� are given by

Bi�t�= �Bi − �S�t�− S�Ui���
+ and B0

j �t�= �B0
j − S�t��+� (2.3)

Define the lead time at time t of job i≤E�t� and initial job j ≤Z�0� by

Di�t�= �Ui +Di − t�+ and D0
j �t�= �D0

j − t�+� (2.4)

A job’s residual service time is the remaining amount of processing time required to fulfill its service require-
ment; its lead time is the remaining time until its deadline. Job i will depart the system either when its service
requirement is fulfilled or when its deadline is reached; it will leave the system at time

inf�t ≥Ui" min�Bi�t��Di�t��= 0��

The state descriptor is a measure-valued process that keeps track of the residual service times and lead times
of all jobs in the buffer. For job i, this information is represented as a unit of mass at the point �Bi�t��Di�t�� ∈ 
�2

+
at all times t ≥Ui such that job i is still in the system. Let #+

�x� y� denote the Dirac point measure at �x� y� ∈ 
�2
+

if min�x� y� > 0, otherwise #+
�x� y� is the zero measure. Then, the state of the system at time t ≥ 0 is represented

by the random point measure

��t�=
Z�0�∑
j=1

#+
�B0

j �t��D
0
j �t��

+
E�t�∑
i=1

#+
�Bi�t��Di�t��

� (2.5)

Note that the queue length at time t is given by the total mass of the measure ��t�,

Z�t�= �1���t��� (2.6)

where �f �&� = ∫

�2+

fd& for a Borel measure & on 
�2
+ and a &-integrable function f " 
�2

+ →�.

In this way, the dynamics of the system are represented as a distribution of point masses on 
�2
+ moving

toward the axes. At time t ≥ 0, points move left at rate 1/Z�t� and down at rate 1. (A point with one coordinate
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Abandonment

Service
completion

Residual service times

Lead times

Di(t)

Bi(t)

1

1/Z(t)

Figure 1. Dynamics of the measure-valued process ��·�.

equal to infinity will remain that way while the other coordinate moves.) Point masses vanish when hitting one
of the axes: a point mass reaching the vertical axis corresponds to a job completing service, while a point mass
hitting the horizontal axis represents a job abandoning the queue (see Figure 1).
Let M denote the space of finite nonnegative Borel measures on 
�2

+, endowed with the topology of weak
convergence: �n

w→ � in M if and only if �f � �n�→ �f � �� for all continuous bounded functions f " 
�2
+ →�. Let

D��0����M� denote the space of càdlàg paths in M, endowed with the Skorohod J1-topology. Then, for t ≥ 0,
��t� is a random element of M and ��·� is a random element of D��0����M�.
It is clear that, given stochastic primitives E�·�, �Bi�Di�, and the initial condition ��0�, the Equations (2.2)–

(2.6) uniquely determine the processes S�·�, Z�·�, ��·�, and the residual service times and lead times. It is also
easily seen that the state descriptor ��·� satisfies the following equation: For each Borel set A ∈� and all t ≥ 0,

��t��A�=��0��A+ �S�t�� t��+
E�t�∑
i=1

1+
A�Bi�t��Di�t��� (2.7)

where A+w = �a+w" a ∈ A� and 1+
A�w�= �1A�#+

w�. Note that the quantity ��0��A+ �S�t�� t�� corresponds
to a shift of the initial points by the vector �S�t�� t�: if �x� y� ∈ 
�2

+ and �s� t� ∈ 
�2
+, then for A ∈�,

#�x� y��A+ �s� t��= #�x−s� y−t��A��

Equation (2.7) plays a crucial role in determining fluid limits for the model.

2.2. A fluid scaling. We now introduce a sequence of renormalized stochastic processes 
�r �·� associated
to the solution of the evolution Equation (2.7). The limits in distribution of 
�r �·� will give the fluid limits of
this model.
Let �⊂ �0��� be a sequence increasing to infinity. Suppose that for each r ∈�, there is a stochastic model

as defined in §2.1. That is, for each r ∈�, there are stochastic primitives Er�·� and �Br
i �D

r
i �, with associated

data �r and �r and an initial condition �r �0�. As before, these determine stochastic processes Zr�·�, Sr�·�,
�r �·�, and residual service times and lead times �Br

i �·��Dr
i �·�� and �B0r

i �·��D0r
i �·��.

A fluid scaling is applied to each model in the sequence. To obtain nontrivial scaling limits, initial lead times
�Dr

i � will be assumed to be of order r . Consequently, they must be scaled by r−1 to keep track of them. For
each r ∈�, let �̆r ∈M be the probability measure defined by

�̆r �F ×G�=�r�F × rG�

for all Borel subsets F �G of 
�+, with the notation rG= �r · g" g ∈G�. Note that if �Br
i �D

r
i �= �Bi� rDi� for

some sequence �Bi�Di�, then �̆r is simply the distribution of �B1�D1�.
For each r ∈ �, the fluid scaled state descriptor is defined, for t ≥ 0, as the random measure 
�r �t� ∈ M

such that

�r �t��F ×G�= 1

r
�r �rt��F × rG�

for all Borel subsets F , G of 
�+. Note that this definition scales lead times by a factor r−1 as well. Fluid scaled
versions of the remaining processes are defined as follows: for all r ∈�, t ≥ s ≥ 0 and i= 1� / / / �Er�rt�, let

�Er�t�= 1
r
Er�rt�� �Zr�t�= 1

r
Zr�rt��
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�Sr�t�= Sr�rt�� �Sr�s� t�= �Sr�t�− �Sr�s��

�Br
i �t�= Br

i �rt�� �Dr
i �t�=

1
r
Dr

i �rt��

2.3. Fluid model. We next introduce a deterministic fluid model satisfying dynamic equations analogous
to (2.7). It will be shown that these equations can be obtained as limits of (2.7) under the above scaling.
Let �> 0, let � ∈M be a probability measure satisfying (2.1), and let �0 ∈M be such that �0����×����= 0

and such that the projections �0�· × 
�+� and �0�
�+ × ·� are free of atoms in �0���. The fluid model is defined
from the data ����� �0�, which will arise as limiting values of the parameters ��r � �̆r � 
�r �0�� of the stochastic
model (see Assumptions� below). A random vector in 
�+ with distribution � is denoted �B�D�. Let = �E�B	
denote the traffic intensity of the fluid model. It is assumed throughout that > 1, that is, the server is nominally
overloaded.
Definition 2.1. A continuous function ��·�" �0���→ M is called a measure-valued fluid model solution

for the data ����� �0� if
(i) inf t>a z�t� > 0 for all a> 0,
(ii) for all A ∈� and t ≥ 0,

��t��A�= �0�A+ �S�0� t�� t��+�
∫ t

0
��A+ �S�s� t�� t− s��ds� (2.8)

where for all v≥ u≥ 0,

S�u� v�=
∫ v

u

1
z�s�

ds�

and z�·� is the total mass function
z�t�= �1� ��t�� =

∫

�2+

��t� �dx�dy��

The function z�·� is called simply a fluid model solution for ����� �0�.
Note that S�0� t� may be equal to � if z�0� = 0, and thus �0 = 0. Both right-hand terms in (2.8) are still

well-defined in this case and the first term equals zero.
Define a class of corner sets

� = {
�x��	× �y��	" x� y ∈ 
�+

}
�

The sets C ∈ � are useful for describing the evolution of fluid model solutions. Because each C of the form
�x��	× �y��	 is characterized by the coordinates �x� y� of its corner, it will be convenient to use the notation
&�x� y�

def.= &��x��	× �y��	� for any & ∈M. Then, (2.8) can be rewritten for this class of subsets as follows.
Let z0 = �1� �0�. Let �B0�D0� be a random vector with distribution �0/z0 if z0 > 0, and let �B0�D0� be the zero
vector if z0 = 0. Recall that �B�D� is a random vector with distribution � . Then, for each x� y ∈ 
�+, and t ≥ 0,
a measure-valued fluid model solution satisfies

��t��x� y�= z0P�B
0 ≥ x+ S�0� t�3D0 ≥ y+ t�+�

∫ t

0
P�B ≥ x+ S�s� t�3D≥ y+ t− s�ds� (2.9)

Because z�t�= ��t��0�0� for each t ≥ 0, a fluid model solution z�·� satisfies
z�t�= z0P�B

0 ≥ S�0� t�3D0 ≥ t�+�
∫ t

0
P�B ≥ S�s� t�3D≥ t− s�ds� (2.10)

Conversely, if ��·�" �0��� → M is a continuous function satisfying (i) of Definition 2.1 and (2.9) for all
x� y ∈ 
�+ and t ≥ 0, then ��·� is a measure-valued fluid model solution as the following argument shows.
Let �′ be the set of A ∈� for which (2.8) holds for all t ≥ 0. Clearly, � ⊂ �′ because (2.9) holds for all

x� y ∈ 
�+ and t ≥ 0. Observe that �′ is a �-system: 
�2
+ ∈ �′ because 
�2

+ ∈ �; if �An�⊂ �′ satisfies An ↑ A,
then A ∈�′; if A1 ⊂A2 are elements of �

′, then A2\A1 ∈�′. Observe also that � is a 4-system: If C1�C2 ∈�,
then C1 ∩C2 ∈�. Because � ⊂�′ and the 5-algebra generated by � is equal to �, it follows that �′ =� by
the Dynkin 4�-theorem (see, for example, Billingsley [2]). Thus, (2.8) holds for all A ∈� and t ≥ 0, and ��·�
is a measure-valued fluid model solution.
Likewise, the previous argument shows that if z�·�" �0���→ �+ is a continuous function satisfying (i) of

Definition 2.1 and (2.10) for all t ≥ 0, then ��·� defined by (2.9) is a measure-valued fluid model solution and
z�·� is its total mass function.
The first result establishes uniqueness of fluid model solutions under a Lipschitz assumption on the initial

condition �0. Note that uniqueness of fluid model solutions is equivalent to uniqueness of measure-valued fluid
model solutions.
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Theorem 2.2. Suppose that there exists a finite constant L such that

�0�F × �y� y′	�≤ L�y′ − y� (2.11)

for all Borel sets F ⊂ 
�+ and all y′ > y ≥ 0. Then, a (measure-valued) fluid model solution for data ����� �0�
is unique.

See §3 for the proof. It will be shown that the fluid model defined above describes the limit in distribution
of the rescaled processes � 
�r �·�" r ∈ ��. The measure-valued fluid model solution ��·� corresponds to the
measure-valued state descriptor ��·�, and the fluid model solution z�·� is the limit of the queue length process
Z�·�. The main result concerning the convergence of � 
�r �·�� is given below. This result also establishes the
existence of (measure-valued) fluid model solutions. We first state the necessary asymptotic assumptions.

Assumptions �. As r →�,
� �Er�t��→ ��t� (2.12)

in distribution for the topology of uniform convergence on compact sets. In particular, �r → �. Furthermore,

�̆r w→�� (2.13)


�r �0� w→ �0� in distribution. (2.14)

Theorem 2.3. If Assumptions � hold, then the sequence � 
�r �·�" r ∈�� is tight and each weak limit point is
almost surely a measure-valued fluid model solution ��·� for the data ����� �0�. If, in addition, Condition (2.11)
holds, then 
�r �·� converges in distribution, as r →�, to the unique measure-valued fluid model solution ��·�.
The proof appears in §§5 and 6.

2.4. Properties of the fluid model. Despite the quite abstract setting of this paper (measure-valued pro-
cesses), some concrete and explicit results concerning the fluid model can be obtained. Let ����� �0� satisfy the
assumptions of §2.3.
The following result describes the time equilibrium of the fluid model, that is, its behavior as time tends to

infinity.

Theorem 2.4. Suppose that �E�B1�D=��	 < 1 and E�min�B�D�	 < �. Then, as t → �, any fluid model
solution �z�t�� converges to the unique positive solution z� of the fixed point equation

z� = �E�min�z�B�D�	�

Moreover, any measure-valued fluid model solution ���t�� converges in M to the unique measure �� defined by

���x� y�= �
∫ �

0
P
(
B ≥ x+ t

z�
3D≥ y+ t

)
dt =E�min�z��B− x�+� �D− y�+�	 (2.15)

for x� y ≥ 0.

A heuristic interpretation of the important fixed point equation satisfied by z� is as follows: Let Zr denote
the steady state number of jobs in the system. Furthermore, let V r�B� be the sojourn time of a job if the job
never reneges. Then, the actual sojourn time is given by min�V r�B��Dr�, and from Little’s law we get

E�Zr 	= �E�min�V r�B��Dr�	�

Divide both sides of this relation by r and let r →�. Because we observe the system in steady state at time 0,
the number of jobs hardly changes and, by a snapshot principle, we conclude that V r =ZrB+o�r�. Furthermore,
we have Dr =Dr . Noting that Zr/r → z� then gives the desired equation. In §4, this equation is analyzed to
investigate the qualitative behavior of the model.
Theorems 2.2 and 2.4 are proved in §3, and Theorem 2.3 is proved in §§5 and 6. Note that ��, which describes

the asymptotic behavior of the measure-valued fluid model, has a simple expression in terms of the solution z�
of the fixed point equation.
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3. Properties of the fluid model. In this section, some basic properties of fluid model solutions are derived.
In what follows, let z�·� be an arbitrary fluid model solution for data ����� �0�. Note that existence of z�·� is
guaranteed by Theorem 2.3, which is proved in §§5 and 6. Recall that z�·� satisfies (2.10):

z�t�= z0P�B
0 ≥ S�0� t�3D0 ≥ t�+�

∫ t

0
P�B ≥ S�s� t�3D≥ t− s�ds�

If z0 > 0, define
S̃�t�= inf�s" S�0� s�≥ t�� (3.1)

Because z�t�≤ z0 +�t, S�0� t�→� as t →�, implying that S̃�t� is well-defined for all t. In addition, z0 > 0
implies that S̃�t� <� for all t by property (i) of Definition 2.1 and continuity of z�·�.
Define z̃�t�= z�S̃�t��. By a change of variables, S̃�t�= ∫ t

0 z̃�u�du and z̃�·� satisfies the equation

z̃�t�= z0P�B
0 ≥ t3D0 ≥ S̃�t��+�

∫ t

0
z̃�u�P�B ≥ t− u3D≥ S̃�t�− S̃�u��du� (3.2)

3.1. A maximal solution. An important monotonicity property of fluid model solutions is proved in this
section.

Proposition 3.1. If �E�B1�D=��	 < 1 and E�min�B�D�	 <�, then any fluid model solution is bounded.

Proof. Note, first, that because E�min�B�D�	 <�, also E�min�aB�D�	 <� for every a ∈ �0���. Define
�z�t = sup0≤u≤t z�u�. Note that �z�t ≤ z0 +�t <�. Fix t and let u ∈ �0� t	. Because S�s�u�≥ �u− s�/�z�t ,

z�u�≤ z0 +�
∫ u

0
P��z�tB ≥ u− s3D≥ u− s�ds ≤ z0 +�E�min��z�tB�D�	�

which is finite because E�min�B�D�	 <�. By taking the supremum over u ∈ �0� t	 and by dividing both sides
by �z�t one obtains the relation

1≤ z0/�z�t +�E�min�B�D/�z�t�	�
If �z�t →�, then by monotone convergence one gets the inequality

1≤ �E�B1�D=��	�

which contradicts the assumption �E�B1�D=��	 < 1. We conclude that �z�t is bounded. �

Recall from the definition of fluid model solutions that the distributions of B0 and D0 are assumed to be free
of atoms.

Proposition 3.2 (Maximal Solution). There exists a fluid model solution z∗�·� for ����� �0� that is max-
imal: for any fluid model solution z�·� for ����� �0�, the relation z�t�≤ z∗�t� holds for all t ≥ 0.

Proof. To define z∗�·�, we first define a sequence of functions zn�·� inductively as follows. Let z0�t�= z0+�t
and, for n≥ 0, define Sn�u� v�= ∫ v

u
�1/zn�r��dr for v≥ u≥ 0 and

zn+1�t�= z0P�B
0 ≥ Sn�0� t�3D0 ≥ t�+�

∫ t

0
P�B ≥ Sn�s� t�3D≥ t− s�ds� (3.3)

We show that zn+1�t�≤ zn�t� by induction. The inequality z1�t�≤ z0�t� is trivial. Suppose that zn�t�≤ zn−1�t�.
Then, Sn�u� v�≥ Sn−1�u� v� for all v≥ u≥ 0 and, using the fact that tail probabilities are nonincreasing,

zn+1�t�= z0P�B
0 ≥ Sn�0� t�3D0 ≥ t�+�

∫ t

0
P�B ≥ Sn�s� t�3D≥ t− s�ds

≤ z0P�B
0 ≥ Sn−1�0� t�3D0 ≥ t�+�

∫ t

0
P�B ≥ Sn−1�s� t�3D≥ t− s�ds�

which equals zn�t�.
Because zn�t� is nonincreasing in n and nonnegative for all n, there exists a function z∗�t� such that z∗�t�=

limn→� zn�t�. If z�·� is any fluid model solution for ����� �0�, then z�t�≤ z∗�t� for all t ≥ 0. This is true because
z�t� ≤ z0�t� and, using an inductive argument as above, z�t� ≤ zn�t� for all n. Because we know that at least
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one fluid model solution exists (Theorem 2.3), it follows that inf t>a z
∗�t� > 0 for all a > 0. To show that z∗�·�

is continuous, let t� h≥ 0. Then,

�z∗�t+h�− z∗�t�� = lim
n→��zn�t+h�− zn�t���

By definition of zn�·�,

�zn�t+h�− zn�t�� ≤ z0P�t ≤D0 < t+h�+�
∫ t

0
P�t− s ≤D< t+h− s�+�h�

The right-side tends to zero as h→ 0 because D0 has no atoms and because
∫ �
0 P�w ≤D<w+h�dw ≤ h.

To show that z∗�·� satisfies (2.10), let S∗�u� v�= ∫ v

u
�1/z∗�r��dr for all v ≥ u≥ 0. Then, Sn�s� t�→ S∗�s� t�

for all t ≥ s ≥ 0 by monotone convergence. Because z∗�·� is bounded away from zero on �0���, S∗�s� t� is
strictly decreasing in s. Thus, because B and D have at most countably many atoms, there are at most countably
many s such that S∗�s� t� is an atom of B or t − s is an atom of D. This implies that P�B ≥ Sn�s� t�3D ≥
t− s�→ P�B ≥ S∗�s� t�3D≥ t− s� for almost every s ∈ �0� t	. Take the limit as n→� in (3.3). By the previous
discussion, the integral term converges to �

∫ t

0 P�B ≥ S∗�s� t�3D ≥ t− s�ds by bounded convergence. Because
B0 and D0 have no atoms, the first right-hand term converges to z0P�B

0 ≥ S∗�0� t�3D0 ≥ t�.
We conclude that z∗�t� is a maximal fluid model solution because it is continuous and satisfies (2.10) and (i)

of Definition 2.1. �

3.2. Convergence of fluid model solutions. In this subsection, we show the convergence of fluid model
solutions to a nontrivial constant z� as t→�.

Proposition 3.3. If �E�B1�D=��	 < 1, E�min�B�D�	 <�, and >1, then the equation

z� = �E�min�z�B�D�	 (3.4)

has a unique solution in �0���.

Proof. The function f " a �→ �E�min�B�aD�	 is nondecreasing and concave on �0���. Note that f �a�=
�E�min�B�aD�1�D<��	 + �E�B1�D=��	 for a > 0. Therefore, f is continuous on �0���, lima→0 f �a� =
�E�B1�D=��	 < 1, and lima→� f �a�= �E�B	 > 1. Thus, there exists a0 ∈ �0��� such that f �a0�= 1. Concav-
ity and monotonicity imply that a0 is unique. Otherwise, f would be constant and equal to 1 after a0, which
contradicts lima→� f �a�= �E�B	 > 1. We conclude that 1/a0 is the unique solution of (3.4). �

We are now ready to present the main result of this subsection, concerning the asymptotic behavior of any
fluid model solution �z�t�� as t goes to infinity.

Theorem 3.4. Let z�·� be a fluid model solution for ����� �0� and assume that

�E�B1�D=��	 < 1� E�min�B�D�	 <�� and > 1�

Then, as t→�, z�t� converges to z�, the unique positive solution of the fixed point (3.4).

Proof. It suffices to show that z̄ = lim supt→� z�t� ≤ z� and z = lim inf t→� z�t� ≥ z�� We start with the
former. Proposition 3.1 implies that z̄ <�. For any 9> 0, there exists a t9 such that t > t9 implies z�t�≤ z̄+9.
So, for t > t9, (2.10) yields

z�t�≤ z0P�B
0 ≥ S�0� t�3D0 ≥ t�+�

∫ t9

0
P�B ≥ S�s� t�3D≥ t− s�ds

+�
∫ t−t9

0
P�min��z̄+ 9�B�D�≥ s�ds�

Hence, taking the lim sup on both sides and noting that limt→� S�s� t�=� for each fixed s ≥ 0 yields

z̄≤ �E�min��z̄+ 9�B�D�	�

Letting 9 ↓ 0, we obtain z̄ ≤ z� by the dominated convergence theorem. The lower bound follows by an
analogous argument, after first noting that z > 0 because z�·� is a fluid model solution. �
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3.3. Uniqueness of fluid model solutions under nonzero initial conditions. The uniqueness of fluid model
solutions is difficult to determine in general. If one looks at the time-changed Equation (3.2) and takes �= 0,
one gets an ordinary differential equation (ODE). Uniqueness of solutions to such an ODE can usually only
be established by reducing it to some special case or by imposing a Lipschitz condition. If D ≡�, then (3.2)
reduces to a renewal equation for which uniqueness is known to hold.
Unfortunately, this reduction is not possible for more general D. For technical reasons, one has to use a

Lipschitz condition on the distribution function of �B0�D0�. This condition is probably stronger than necessary,
so that the question of uniqueness in general is still open. For related results in the functional analysis literature,
we refer to Chapter 2 of Hale and Verduyn Lunel [15].

Theorem 3.5. Let ����� �0� be such that z0 > 0 and F0�x� y�= P�B0 ≥ x3D0 ≥ y� is Lipschitz continuous
in y, that is, there is a finite constant L such that for all x� y� y′ ∈ 
�+,

�F0�x� y�− F0�x� y
′�� ≤ L�y− y′��

Then, a fluid model solution for ����� �0� is unique.

Let z�·� be a fluid model solution for ����� �0� and let ��·� be the corresponding measure-valued fluid
model solution. Let S̃�·� be defined as in (3.1) and define z̃�t� = z�S̃�t��. Recall that z̃�·� satisfies (3.2). Let
�̃�t�= ��S̃�t��. It can easily be shown that for all u� v ∈ 
�+,

�̃�t��u� v�= z0P�B
0 ≥ u+ t3D0 ≥ v+ S̃�t��+�

∫ t

0
z̃�s�P�B ≥ u+ �t− s�3D≥ v+ S̃�t�− S̃�s��ds� (3.5)

Clearly, for any u� v ∈ 
�+, and t ≥ 0, �̃�t��u� v� is completely determined by z̃�t� and ����� �0�. Thus, unique-
ness of z̃�t� on a time interval A implies uniqueness of �̃�t� on A.
We next introduce shifted time-changed fluid model solutions. For t0� t ≥ 0, define z̃�t0� t�= z̃�t0 + t� and

S̃�t0� u� v�=
∫ v

u
z̃�t0� s�ds = S̃�t0 + v�− S̃�t0 + u��

It is easily checked that for all t0� t ≥ 0,

z̃�t0� t�= �̃�t0��t� S̃�t0�0� t��+�
∫ t

0
z̃�t0� s�P�B ≥ t− s3D≥ S̃�t0� s� t��ds� (3.6)

The idea of the proof is as follows: We take a suitable constant a > 0 and prove first that z̃�t� is unique on
�0� a	. As indicated above, uniqueness carries over to �̃�t� for t ∈ �0� a	. Using this and the shifted Equation (3.6),
we then prove uniqueness for z̃�t� on the interval �a�2a	 and so forth. This iterative procedure works if �̃�t��u� v�
is Lipschitz in v for all t ≥ 0. This is the content of the following lemma.

Lemma 3.6. Under the assumptions of Theorem 3.5, we have for all x� y� y′ ∈ 
�+, and t ≥ 0,

��̃�t��x� y�− �̃�t��x� y′�� ≤ �z0L+���y− y′��

Proof. We may assume that y ≤ y′. From (3.5) we obtain

��̃�t��x� y�− �̃�t��x� y′�� ≤ z0L�y′ − y� +�
∫ t

0
z̃�s�P�S̃�t�− S̃�s�+ y ≤D< S̃�t�− S̃�s�+ y′�ds�

Noting that z̃�s�ds = dS̃�s�, we can rewrite the right side as

z0L�y′ − y� +�
∫ S̃�t�

0
P�r + y ≤D< r + y′�dr� (3.7)

Because for any #> 0, ∫ �

0
P�w ≤D<w+ #�dw ≤ #�

we see that (3.7) can be bounded above by �z0L+���y− y′�. �
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Proof of Theorem 3.5. Recall that we have fixed a fluid model solution z�·�. By the one-to-one correspon-
dence between solutions of (2.10) and (3.2), it suffices to show that z̃�·� is unique. Let a= 1/�2�z0L+ 4���.
We first show that z̃�·� is unique on �0� a	. For this, suppose that there exists a continuous function h�·� that
satisfies (3.2) for all t ∈ �0� a	, with H�t�= ∫ t

0 h�s�ds in place of S̃�·�. Set 9= sup0≤t≤a �z̃�t�− h�t��. Then, for
all 0≤ s < t ≤ a,

�H�t�−H�s�− �S̃�t�− S̃�s��� ≤ 9a�

Recall that S̃�t� = ∫ t

0 z̃�s�ds. Using (3.2) for both z�·� and h�·� together with the Lipschitz assumption, we
obtain for t ∈ �0� a	,

�z̃�t�−h�t�� ≤ z0�P�B0 ≥ t3D0 ≥ S̃�t��−P�B0 ≥ t3D0 ≥H�t���
+�

∫ t

0
�z̃�s�P�B ≥ t− s3D≥ S̃�t�− S̃�s��−h�s�P�B ≥ t− s3D≥H�t�−H�s���ds�

The first right-hand term is bounded by z0L9a. The second right-hand term is bounded by

�
∫ t

0
�z̃�s�−h�s��ds+�

∫ t

0
z̃�s��P�B ≥ t− s3D≥ S̃�t�− S̃�s��−P�B ≥ t− s3D≥H�t�−H�s���ds�

Call the previous two terms IIa and IIb. We have IIa≤ �9a. To bound IIb, we use the inequality

�P�B≥ t−s3D≥ S̃�t�− S̃�s��−P�B≥ t−s3D≥H�t�−H�s���≤P�S̃�t�− S̃�s�−9a≤D<S̃�t�− S̃�s�+9a�

to obtain (after a change of variables r = S̃�t�− S̃�s�)

IIb ≤ �
∫ S̃�t�

0
P�r − 9a≤D< r + 9a�dr ≤ �29a�

Putting everything together, we see that for t ∈ �0� a	,

�z̃�t�−h�t�� ≤ z0L9a+ 3�9a≤ 9/2�

which implies that 9= 0. Hence, z̃�·� and h�·� coincide on �0� a	, and so z̃�·� is unique on �0� a	.
Suppose now that z̃�·� is unique on �0� ka	 for some k ≥ 1. This uniquely determines �̃�ka�. By (3.6), z̃�·�

satisfies

z̃�ka� t�= �̃�ka��t� S̃�ka�0� t��+�
∫ t

0
z̃�ka� s�P�B ≥ t− s3D≥ S̃�ka+ t�− S̃�ka+ s��ds� t ≥ 0� (3.8)

We now show that this shifted equation has a unique solution on �0� a	, implying that z̃�·� is unique on
�0� �k+ 1�a	. Suppose h�·� also satisfies (3.8), with H�u�v�= ∫ v

u
h�s�ds in place of S̃�ka�u� v� for all v≥ u≥ 0.

Set 9= supt∈�0�a	 �z̃�ka� t�−h�t��. As before, we have
��S̃�ka� t�− S̃�ka� s��− �H�t�−H�s��� ≤ �t− s�9≤ a9�

Using this, we get as before (this time using Lemma 3.6 for the first term on the right)

�z̃�ka� t�−h�t�� ≤ �z0L+��a9+ 3�a9≤ 9/2�

Thus, 9= 0 and z̃�·� is unique on �0� �k+ 1�a	. Iterating this argument completes the proof for all t ≥ 0. �

3.4. Uniqueness starting from zero. The result in this subsection can be seen as an extension of a result
in Puha et al. [24], where the case of a PS queue without impatience (D≡�) was considered.

Theorem 3.7. Suppose that for each 9 > 0, there is a nonincreasing (in each coordinate) function
F9" 
�2

+ →�, with F9�0�0� > 0 and 0≤ F9�x� y�≤ �9, such that the equation

z9�t�= F9�S9�0� t�� t�+�
∫ t

0
P�B ≥ S9�t− s� t�3D≥ s�ds�

where S9�s� t� =
∫ t

s
1/z9�u�du has a unique solution z9�·� satisfying inf t>a z9�t� > 0 for all a > 0. Then, for

each t ≥ 0, z9�t�→ z∗0�t� as 9 ↓ 0, where z∗0�·� is the maximal solution starting from zero.
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Proof. As in the proof of Proposition 3.2, z9�·� can be written as the pointwise limit limn→� zn9�·�, with
zn9�·� recursively defined by z09�t�= F9�0�0�+�t and

zn+19 �t�= F9�S
n
9 �0� t�� t�+�

∫ t

0
P�B ≥ Sn

9�t− s� t�3D≥ s�ds�

From this construction, it is easily shown by induction on n that zn9�t� is nonincreasing in n and that z
n
9�t�≥ zn0�t�.

Induction on n also yields
lim sup

9↓0
z9�t�≤ lim sup

9↓0
zn9�t�= zn0�t��

Because this holds for any n, and zn0�t�→ z∗0�t�, we can let n→� to obtain

lim sup
9↓0

z9�t�≤ z∗0�t��

Similarly, for every n≥ 0,
z∗0�t�= lim

n→� z
n
0�t�≤ lim sup

n→�
zn9�t�= z9�t��

We conclude that z9�t� ≥ z∗0�t� for every 9 > 0, which implies the lower limit and the convergence z9�t� →
z∗0�t�. �

Uniqueness of fluid model solutions starting from zero is now a simple corollary.

Corollary 3.8. A fluid model solution starting from zero is unique.

Proof. Let z�·� be a fluid model solution starting from zero. Define z9�t�= z�t + 9�. Then, z9�·� satisfies
the equation

z9�t�= F9�S9�0� t�� t�+�
∫ t

0
P�B ≥ S9�t− s� t�3D≥ s�ds� (3.9)

where

F9�x� y�= �
∫ 9

0
P
(
B ≥ x+

∫ 9

9−s

1
z�u�

du3D≥ s+ y

)
ds�

Observe that for all 9 > 0, F9 satisfies the assumptions of Theorem 3.7. Moreover, F9 is globally Lipschitz
in the second coordinate (with Lipschitz constant 1). Let �B0

9�D
0
9� be distributed as F9�·� ·�/F9�0�0�. Then, by

Theorem 3.5, with �B0
9�D

0
9� in place of �B

0�D0�, (3.9) has a unique solution so that z9�·� is uniquely determined
by z�t��0≤ t ≤ 9. Because F9�x� y�≤ �9, we see from the previous theorem that z9�t�→ z∗0�t� as 9→ 0. Also,
z9�t�= z�t+ 9�→ z�t�, because z�t� is continuous. We conclude that z�t�= z∗0�t�, which implies uniqueness.
�

3.5. Analysis of the measure-valued fluid model. Some properties of measure-valued fluid model solu-
tions, which are analogues of properties of fluid model solutions, are gathered in the next theorem.

Theorem 3.9. Let ��·� be a measure-valued fluid model solution for ����� �0� with total mass function z�·�.
(i) Suppose that  > 1, E�min�B�D�	 <�, and �E�B1�D=��	 < 1. Then, ��t� w→ �z� as t → �, where for

each c > 0, the measure �c is defined by

�c��x��	× �y��	�= �
∫ �

0
P�B ≥ x+ sc−1�D≥ y+ s�ds� x� y ∈ 
�+�

and z� is the unique positive solution of the fixed point Equation (3.4).
(ii) If Condition (2.11) of Theorem 2.2 holds, then ��·� is unique.
Proof. By Theorem 3.4, z�t�→ z� as t→�. Continuity of z�·� and finiteness of z� imply that there exists

an M <� such that z�t�≤M for all t ≥ 0. This implies that S�s� t�≥ �t− s�M−1 for all s� t ≥ 0. We first show
that ���t�" t ≥ 0� is relatively compact in M. For n ∈�, let

An = ��0� n	× �0� n	�∪ ��× �0� n	�∪ ��0� n	×��∪ ��������

Clearly, An ↑ 
�2
+ and Ac

n + �x� y�⊂ Ac
n + �x′� y′� for all x ≥ x′ and y ≥ y′, where Ac

n denotes the complement.
By (2.8), for all t ≥ 0 and n ∈�,

��t��Ac
n�= �0�A

c
n + �S�0� t�� t��+�

∫ t

0
��Ac

n + �S�s� t�� t− s��ds

≤ �0�A
c
n�+�

∫ �

0
��Ac

n + �sM−1� s��ds

= �0�A
c
n�+ �M�A

c
n��
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Thus, limn→� supt≥0 ��t��A
c
n�= 0. Because supt≥0 ��t��
�2

+�= supt≥0 z�t�≤M , the set ���t�" t ≥ 0� is relatively
compact in M (see Kallenberg [17, Theorem A 7.5]). Let �∗ ∈M be a weak limit point (along a subsequence)
of ��t� as t → �, and let C ∈ � be a continuity set of �∗. Then, ��t��C� → �∗�C�. Because z�t� → z�,
S�t− t0� t�→ t0/z� for each t0 > 0. For all 0≤ t0 < t,

��t��C�= �0�C + �S�0� t�� t��+�
∫ t0

0
��C + �S�t− s� t�� s��ds

+�
∫ t

t0

��C + �S�t− s� t�� s��ds�

Denote the three right-hand terms by I� II� III . Because z�t�→ z� > 0, �S�0� t�� t�→ �����, and so the first
term converges to zero. Because C ⊂ 
�+

2 ,

III ≤ �
∫ t

t0

P�B ≥ sM−13D≥ s�ds�

From this bound, it follows that III → 0 as t0 →�. Because the marginals of � have at most countably many
atoms, C + �s/z�� s� is a continuity set for � for almost every s. Because S�t − s� t� → s/z� on �0� t0	 as
t→�, the bounded convergence theorem implies that

II → �
∫ t0

0
��C + �s/z�� s��ds� as t→��

So we can take t → � and then t0 → � to conclude that ��t��C� → �z��C� as t → �. This implies that
�∗�C� = �z��C� for all C ∈ � that are �∗-continuity sets, which excludes at most countably many C ∈ �
(because the marginals of �∗ have at most countably many atoms). Thus, �∗�C�= �z��C� for all C ∈�, and so
�∗ = �z� and ��t� w→ �z� . This proves (i).
To prove (ii), note that z�·� is unique by Theorem 3.5 and Corollary 3.8. As discussed in §2.3, uniqueness of

��·� follows. �

4. Applications. In this section, we analyze a number of quantitative properties of the fluid model Equa-
tion (2.10). In particular, we investigate the fixed point equation

z� = �E�min�z�B�D�	� (4.1)

We treat a number of examples which allow for explicit computations, and also obtain a number of stochastic
ordering results. In addition, we investigate the time-dependent behavior of z�t� for exponentially distributed
lead times.
Apart from the mean queue length z, we are also interested in the long-term fraction of jobs that leave the

system after successful service completion. Denote this fraction by Ps . It is clear that Ps = P�D > z�B�. Consider
two systems indexed by 1 and 2 such that �B2�D2�≡ �B1� aD1� for some a > 0, and such that �1 = �2. Then,
(with obvious notation) we have

z2�� = az1��� Ps�2 = Ps�1�

Consequently, the fraction Ps is invariant under any rescaling of D.
We now proceed by analyzing a number of special cases. In §4.1, we assume a strong form of dependence.

Section 4.3 assumes that B and D are independent. We give a remarkably simple expression for z�t� in the case
that D has an exponential distribution. Finally, §4.3 considers an example which can be used as a flow level
model for the integration of elastic and streaming traffic.

4.1. Completely dependent lead times. Consider first the case D=?B, where ?> 0 is a random variable
(independent of B) reflecting the average service rate expected by a job. In this case, the performance measures
can be determined from the equations (recall that = �E�B	 > 1)

z� = E�min�?� z��	� Ps = P�? > z���

Some specific examples:
—? single valued. If we assume that ? = @, then z� = min�@� z��, which implies that z� = @ because

 > 1. From this, it follows that all jobs leave the system impatiently: Ps = P�@ > @�= 0. Observe that when
a job leaves the system, a fraction 1/ of its service time has been processed.
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—? two valued. From the previous example, it is clear that Ps > 0 only if some jobs are more patient than
others. In this example, we assume that ? equals @1 with probability p and @2 with probability 1− p. Take
@2 > @1. Equation (4.1) now simplifies to

z� = pmin�z�� @1�+�1−p�min�z�� @2��

From this equation and the properties @2 > @1�  > 1, it follows that z� > @1. Furthermore, z� < @2 holds if and
only if the equation

z� = p@1 +�1−p�z�

has a nonnegative solution, which is the case if and only if �1−p� < 1 (i.e., when the offered load of the more
patient jobs does not saturate the system). In this case, we have

z� = p@1
1−�1−p�

< @2�

If the last inequality is not valid or if �1−p�≥ 1, we must have z� ≥ @2 which implies

z� = p@1 +�1−p�@2�

From the above, we can conclude that Ps = 0 if and only if �1− �1− p��@2 ≤ p@1. If the reverse inequality
holds, then all of the more patient jobs are being served successfully, i.e., Ps = �1−p�.
—? exponentially distributed. Assume that the mean of ? equals 1. In this case, z� can be determined from

the equation z� = �1− �z� + 1�e−z�� and Ps = e−z� .
Because Ps does not depend on the mean of ? and because constant ? yields the worst case Ps = 0, it seems

natural to conjecture that the fraction of successful completions is positively correlated to the variability of ?.
Thus, it seems worthwhile to look for ordering relations for Ps if ?1

cvx≥ ?2. If E�?1	=E�?2	, this is equivalent
to E�min�x�?1�	 ≤ E�min�x�?2�	 for all x ≥ 0. So ?1

cvx≥ ?2 implies that z2�� ≥ z1��, that is, less variability
in reneging behavior implies a lower service rate. To prove that P�?1 > z1��� ≥ P�?2 > z2��� as well seems
difficult without imposing further assumptions.

4.2. Independent lead times. In this case, we can write (4.1) as

�
∫ �

0
P�B > u�P�D > z�u�du= 1�

which, in case E�B	 < �, is equivalent to P�D > z�B∗� = 1/, with B∗ a random variable with density
P�B > x�/E�B	 which is also independent of D.
Recall that Ps = P�D > z�B�. Consequently, if B is exponentially distributed, we have the insensitivity result

(with respect to the distribution of D) Ps = 1/. The inequality Ps ≤ 1/ holds if B∗ is stochastically dominated
by B, and Ps ≥ 1/ if the opposite is true. Because B∗ being stochastically dominated by B is related to low
variability of B, we see again that more variability (this time in the service times) leads to a better system
performance (i.e., higher Ps).
Exponential reneging. If we assume that D has an exponential distribution with parameter B (and B a general

distribution), we see that z� is the solution of

C∗�z�B�= 1� (4.2)

with C∗�s� = E�e−sB∗
	. In addition, we have the following remarkable expression for the complete fluid limit

z�·�, if z0 = 0:

Proposition 4.1. Suppose P�D > t�= e−Bt , that B is independent of D, and that z0 = 0. Then, the unique
fluid model solution is given by

z�t�= z��1− e−Bt�� (4.3)

with z� the solution of (4.2).
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Proof. Recall that (2.10) has a unique solution. We show that (4.3) is indeed the solution of (2.10) by
verification. We thus compute the right-hand side of (2.10), writing z�u�= z��1− e−Bu�.
Observe that

z�
∫ t

s

1
z�u�

du= 1
B
�log�eBt − 1�− log�eBs − 1���

Consequently,

�
∫ t

0
P�D≥ t− s�P

(
B ≥

∫ t

s
�1/z�u��du

)
ds = �

B
e−Bt

∫ t

0
P�z�BB ≥ log�eBt − 1�− log�eBs − 1��deBs

= �

B
e−Bt

∫ �

− log�eBt−1�
e−vP�z�BB ≥ log�eBt − 1�+ v�dv

= �

B
e−Bt�eBt − 1�

∫ �

0
P�z�BB ≥ v�e−v dv

= z��1− e−Bt�C∗�z�B�= z��1− e−Bt��

which shows that z��1− e−Bt� satisfies (2.10). �

4.3. TCP-friendly traffic. Assume that there exist independent random variables B1 and D1, with finite
means, such that

�B�D�=


�B1���� with probability p�

���D1�� with probability 1−p�

When we view PS as a way of modeling TCP, this example models the integration of elastic (TCP) traffic
and TCP-friendly user datagram protocol (UDP) traffic; see Key et al. [19] for a related model. The latter type
of traffic is using the system for a certain amount of time, regardless of the level of congestion.
The fixed point Equation (4.1) specializes to

z� = �pE�z�B1	+��1−p�E�D1	�

Consequently, if the stability condition �pE�B1	 < 1 is satisfied, we see that

z� = ��1−p�E�D1	

1−�pE�B1	
�

5. Tightness. In this section, we prove the first part of Theorem 2.3. That is, we show that the sequence
of processes � 
�r �·�� r ∈ �� is tight in D��0����M�. The main results in this section implying this property
are the compact containment result in Lemma 5.2 and an oscillation inequality in Lemma 5.6. To prove these
results, a number of further lemmas are developed. Section 5.1 derives a Glivenko-Cantelli theorem for the
stochastic primitives. Section 5.2 introduces a fluid scaled version of the dynamic equation for 
�r �·�. The
compact containment property is derived in §5.3. Section 5.4 serves as a preparation for the oscillation bound.
In particular, it is shown that 
�r �t� charges arbitrarily small mass to thin L-shaped sets. The oscillation bound
is then shown in §5.5.
Throughout this section, it is assumed that Assumptions � hold.

5.1. A Glivenko-Cantelli theorem. An important preliminary result is the following functional
Glivenko-Cantelli theorem for the stochastic primitives. It will be used in §§5.3–5.5. It is convenient to consider
the primitives together as a single, measure-valued arrival process. For r ∈ � and t ≥ s ≥ 0, define the fluid
scaled measure-valued arrival process by


	r �t�= 1
r

r �Er �t�∑
i=1

#�Br
i �D

r
i r

−1��

and define the fluid scaled increment

	r �s� t�= 
	r �t�− 
	r �s�� (5.1)

Note that 
	r �·� is a random element of D��0����M� and for each t ≥ s ≥ 0, 
	r �s� t� is a random element
of M.
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To state and prove the result, we first introduce some notions from empirical process theory. Our primary
reference is van der Vaart and Wellner [28]. A collection � of subsets of 
�2

+ shatters an n-point subset
�x1� � � � � xn�⊂ 
�2

+ if the collection �C ∩ �x1� � � � � xn�" C ∈�� has cardinality 2n. In this case, say that � picks
out all subsets of �x1� � � � � xn�. The Vapnik-Červonenkis index �VC-index� of � is

V� =min�n" � shatters no n-point subset��

where the minimum of the empty set equals infinity. The collection � is a Vapnik-Červonenkis class �VC-class�
if it has finite VC-index.
VC-classes satisfy a useful entropy bound. Let 
 denote the set of Borel probability measures on 
�2

+ and,
for Q ∈ 
, let �f �Q = ��f ��Q� denote the L1�Q�-norm of a Borel measurable function f " 
�2

+ →�. For 9 > 0,
the L1�Q� 9-ball around f is the set of Borel functions �g" �f − g�Q < 9�. For a family of functions � , the
�9�L1�Q��-covering number N�9�� �L1�Q�� is the smallest number of L1�Q� 9-balls needed to cover � . If �
is a VC-class, then for all 9> 0, the family � = �1C" C ∈�� satisfies

sup
Q∈


logN�9�� �L1�Q�� <�3 (5.2)

see Theorem 2.6.4 in van der Vaart and Wellner [28].
Recall the collection of corner sets � defined in §2.3:

� = ��x��	× �y��	" x� y ∈ 
�+��

Note that for any 3-point subset �x1� x2� x3�⊂ 
�2
+, it is impossible for � to pick out all three 2-point subsets of

�x1� x2� x3�. Because � shatters no 3-point subset, it has VC-index bounded above by 3. Thus, � is a VC-class
and � = �1C" C ∈�� satisfies (5.2).
Define an envelope function for � as follows. Let 4" 
�2

+ → 
�+ be the map 4�x� y�=max�x� y�. Because
4 is continuous, (2.13) and the Skorohod representation theorem imply the existence of 
�+-valued random
variables Xr with distribution �̆r �4−1 and X with distribution � �4−1 such that Xr →X almost surely. Thus,
there exists an 
�+-valued random variable Y such that, almost surely,

Y = sup
r∈�

Xr� (5.3)

Let & be the law of Y on 
�+. Because L2�&� contains continuous unbounded functions, there exists a continuous,
unbounded function G" 
�+ →�+ that is increasing on �0���, satisfies G ≥ 1, and such that �G2�&�<�. This
implies that

��G �4�2��� =E�G�X�2	≤E�G�Y �2	 <�� (5.4)

Let F = G �4, and note that 1C ≤ F for all C ∈ �. That is, F is an envelope function for � . Finally, define

� =� ∪ �F �.

Lemma 5.1. Let T > 0. Then, as r →�,

sup
f∈ 
�

sup
0≤s≤t≤T

��f � 
	r �s� t��−�r�t− s��f � �̆r�� Pr→ 0� (5.5)

Proof. Let 9> 0. By (5.1), it suffices to show that

lim sup
r→�

Pr

(
sup
f∈ 
�

sup
t∈�0� T 	

��f � 
	r �t��−�rt�f � �̆r��>9

)
≤ 9�

Note that the above event is measurable for each r because it can be rewritten using the suprema over rational t,
and f = 1C with C having rational or infinite corner coordinates x and y. Because �f � 
	r �t�� and �rt�f � �̆r�
are nondecreasing in t for each fixed f ∈ 
� , it suffices to show that for each fixed t ∈ �0� T 	,

lim sup
r→�

Pr

(
sup
f∈ 
�

��f � 
	r �t��−�rt�f � �̆r��>9

)
≤ 9�

Because

�f � 
	r �t��−�rt�f � �̆r� = �f � �̆r�� �Er�t�−�rt�+ �Er�t�

(�f � 
	r �t��
�Er�t�

−�f � �̆r�
)
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(with the convention that division by zero equals zero), it suffices to show the two bounds

lim sup
r→�

Pr

(
sup
f∈ 
�

��f � �̆r�� �Er�t�−�rt��> 9

2

)
≤ 9

2
�

lim sup
r→�

Pr

(
sup
f∈ 
�

∣∣∣∣ �Er�t�

(�f � 
	r �t��
�Er�t�

−�f � �̆r�
)∣∣∣∣> 9

2

)
≤ 9

2
� (5.6)

The first inequality follows from assumption (2.12) and by observing that

sup
r∈�

sup
f∈ 
�

�f � �̆r� ≤ sup
r∈�

�F � �̆r� = sup
r∈�

E�G�Xr�	≤E�G�Y �	 <�� (5.7)

which follows from (5.3) and (5.4). To show (5.6), it suffices to verify three assumptions of Theorem 2.8.1 in
van der Vaart and Wellner [28]. Observe that for each n ∈� and �e1� � � � � en� ∈�n, the function

�x1� � � � � xn�→ sup
f∈ 
�

n∑
i=1

eif �xi�

is measurable on the completion of �
�2
+��� �̆r �n for each r ∈�. Thus, 
� is a �̆r -measurable class for each

r ∈�; see Definition 2.3.3 in van der Vaart and Wellner [28]. Moreover, 
� is uniformly bounded above by the
envelope function F , and

lim
M→�

sup
r∈�

�F 1�F >M�� �̆
r� = 0

by Markov’s inequality, (5.3), and (5.4). Lastly, 
� satisfies the finite entropy bound (5.2) because
N�9� 
� �L1�Q�� ≤ N�9�� �L1�Q��+ 1 and � is a VC-class. The previous three observations imply that the
assumptions of Theorem 2.8.1 in van der Vaart and Wellner [28] are satisfied. Consequently, 
� is Glivenko-
Cantelli, uniformly in r . That is, for every #> 0, there exists an n# such that n≥ n# implies

sup
r∈�

Pr

(
sup
m≥n

sup
f∈ 
�

∣∣∣∣ 1m
m∑
i=1

f �Br
i �D

r
i r

−1�−�f � �̆r�
∣∣∣∣>#

)
≤ #� (5.8)

Choose #=min�9/2� 9/�4�T ��. The left side of (5.6) is bounded above by

lim sup
r→�

Pr � �Er�t� > 2�T �+ lim sup
r→�

Pr

(
sup
f∈ 
�

∣∣∣∣�f �

	r �t��

�Er�t�
−�f � �̆r�

∣∣∣∣> 9

4�T

)
�

The first term equals zero by (2.12). For the second term, rewrite

�f � 
	r �t��
�Er�t�

= 1
Er�rt�

Er �rt�∑
i=1

f �Br
i �D

r
i r

−1�

and bound each probability in the second term by

Pr �Er�rt� < n#�+Pr

(∣∣∣∣ sup
m≥n#

sup
f∈ 
�

1
m

m∑
i=1

f �Br
i �D

r
i r

−1�−�f � �̆r�
∣∣∣∣> 9

4�T

)
� (5.9)

By (2.12), the first term in (5.9) converges to zero as r →�. By (5.8), the second term is bounded above by
#≤ 9/2, uniformly in r ∈�. This implies (5.6). �
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5.2. Fluid scaled dynamic equation. Using (2.7), it is easy to see that the fluid scaled state descriptor of
the r th model satisfies the following equation almost surely: for each Borel set A ∈�, and all t� h≥ 0,


�r �t+h��A�= 
�r �t��A+ � �Sr�t� t+h��h��+ 1
r

r �Er �t+h�∑
i=r �Er �t�+1

1+
A� �Br

i �t+h�� �Dr
i �t+h��� (5.10)

Subsequent proofs use estimates obtained from this equation. Two estimates result from bounding the sum-
mands in (5.10) by one and optionally bounding the first term on the right side by its total mass; for each A ∈�
and t� h≥ 0,


�r �t+h��A� ≤ 
�r �t��A+ � �Sr�t� t+h��h��+ 
	r �t� t+h��
�2
+�

≤ 
�r �t��
�2
+�+ 
	r �t� t+h��
�2

+�� (5.11)

Two more estimates follow from (5.10) by simply ignoring any arrivals; for each A ∈� and t� h≥ 0,


�r �t��A+ � �Sr�t� t+h��h��≤ 
�r �t+h��A�≤ 
�r �t+h��
�2
+�� (5.12)

5.3. Compact containment. This section establishes the compact containment property needed to prove
tightness.

Lemma 5.2. Let T > 0 and K > 0. There exists a compact set K⊂M such that

lim inf
r→� Pr � 
�r �t� ∈K for all t ∈ �0� T 	�≥ 1−K� (5.13)

Proof. A set K ⊂ M is relatively compact if supL∈K L�
�2
+� <�, and if there exists a sequence of nested

compact sets Kn ⊂ 
�2
+ such that

⋃
n∈�Kn = 
�2

+ and

lim
n→� supL∈K

L�Kc
n�= 0�

where Kc
n denotes the complement of Kn; see Kallenberg [17, Theorem A 7.5.] Consider the nested sequence

of compact sets in 
�2
+ given by

Kn = ��0� n	× �0� n	�∪ ��0� n	× ����∪ ����× �0� n	�∪ ����× ����� n ∈��

By (2.14), 
�r �0� w→ �0 in distribution, and so the sequence � 
�r �0�� is tight. Thus, there is a compact set
K0 ⊂M such that

lim inf
r→� Pr � 
�r �0� ∈K0�≥ 1− K

2
� (5.14)

Let M0 = supL∈K0
L�
�2

+�, and let an = supL∈K0
L�Kc

n� for each n ∈ �. Because K0 is compact, M0 < � and
there exists a sequence of nested compact sets Jn ⊂ 
�2

+ such that
⋃

n∈� Jn = 
�2
+ and limn→� supL∈K0

L�J c
n �= 0.

Because Jn ⊂Kk�n� for each n ∈� and sufficiently large k�n� ∈�, it follows that an → 0 as n→�.
Recall the definition from §5.1 of the envelope function F = G �4 for the family 
� . By (2.12) and (5.7), the

constant M = supr∈���
rT �F � �̆r�+ 1� is finite. Let K be the closure of the set

�L ∈M" L�
�2
+�≤M0 +M and L�Kc

n�≤ an +G�n�−1M for all n ∈���

Because an +G�n�−1M → 0 as n→�, the set K is compact in M.
For each r ∈�, denote the event in (5.14) by �r

0 and define the event

�r
1 = ��F � 
	r �T �� ≤ �rT �F � �̆r�+ 1��

By (5.14) and Lemma 5.1, lim inf r→� Pr ��r
0 ∩�r

1�≥ 1−K. Fix N ∈�r
0 ∩�r

1 and t ∈ �0� T 	, and assume for the
remainder of the proof that all random objects are evaluated at this N. Then, it suffices to show that 
�r �t� ∈K.
By (5.11),


�r �t��
�2
+�≤ 
�r �0��
�2

+�+ 
	r �t��
�2
+��

Because 
	r �t��
�2
+�= �1� 
	r �t�� ≤ �1� 
	r �T �� ≤ �F � 
	r �T ��, the definitions of �r

0, �
r
1, and M imply that


�r �t��
�2
+�≤M0 +M� (5.15)

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Gromoll, Robert, and Zwart: Fluid Limits for Processor-Sharing Queues with Impatience
392 Mathematics of Operations Research 33(2), pp. 375–402, © 2008 INFORMS

Fix n ∈�. By (5.10),


�r �t��Kc
n�= 
�r �0��Kc

n + � �Sr�0� t�� t��+ 1
r

r �Er �t�∑
i=1

1+
Kc
n
� �Br

i �t�� �Dr
i �t���

The shape of the set Kc
n implies that

Kc
n + �S�0� t�� t�⊂Kc

n and 1+
Kc
n
� �Br

i �t�� �Dr
i �t��≤ 1Kc

n
�Br

i �D
r
i r

−1��

for i= 1� � � � � r �Er�t�. Thus,

�r �t��Kc

n�≤ 
�r �0��Kc
n�+�1Kc

n
� 
	r �t���

By definition of G, F , and by Markov’s inequality, 1Kc
n
≤ G�n�−1F . So,


�r �t��Kc
n�≤ 
�r �0��Kc

n�+G�n�−1�F � 
	r �t���
Because �F � 
	r �t�� ≤ �F � 
	r �T ��, the definitions of �r

0, �
r
1, and M imply that


�r �t��Kc
n�≤ an +G�n�−1M� (5.16)

Equations (5.15) and (5.16) imply that 
�r �t� ∈K. �

5.4. Asymptotic regularity. The second and main step necessary to prove tightness is to bound the prob-
ability that the process 
�r �·� oscillates. Oscillations may result from sudden arrivals or departures of a large
amount of mass. Sudden arrivals are controlled by the regularity of the arrival process. To show that sudden
departures are unlikely as well, we show that 
�r �·� assigns arbitrarily small mass to the boundaries of the sets
C ∈ �. This is phrased in terms of O-enlargements of the boundaries of these sets (forming a collection of
L-shaped sets). For C ∈� and O> 0, let PC denote the boundary of C in 
�2

+ and let

POC =
{
w ∈ 
�2

+" inf
z∈PC

�w− z�<O
}

be the O-enlargement in 
�2
+ of its boundary, where the infimum over the empty set equals �. (Note that PC

and, therefore, also POC is empty for the corner set 
�2
+. Note also that POC = ��x − O�+� x + O� × ��� for a

corner set of the form �x��	× ��� with x ∈ �0���.) The following lemma establishes the result for the initial
condition 
�r �0�.

Lemma 5.3. For all 9�K > 0, there exists a O> 0 such that

lim inf
r→� Pr

(
sup
C∈�


�r �0��POC�≤ 9

)
≥ 1−K� (5.17)

Proof. Fix 9�K > 0 and let 
�r
1�0��·�= 
�r �0��· × 
�+� and 
�r

2�0��·�= 
�r �0��
�+ × ·�. For each C ∈� and
O> 0,

POC ⊂ ��x� x+ 2O	× 
�+�∪ �
�+ × �y� y+ 2O	�

for some �x� y� ∈�2
+ = �0���× �0���. Thus, it suffices to show that for i= 1�2, there exists a O> 0 such that

lim inf
r→� Pr

(
sup

x∈�0���


�r
i �0���x� x+ 2O	�≤ 9

2

)
≥ 1− K

2
� (5.18)

We prove the statement for i= 1; the proof is identical for i= 2.
The projection �x� y� �→ x is continuous, so (2.14) implies that 
�r

1�0� converges in distribution to �0�· × 
�+�
as r →�. Because �0�· × 
�+� is free of atoms in �0���, there exists a O> 0 such that

sup
x∈�0���

�0��x� x+ 4O	× 
�+�≤
9

2
� (5.19)

(If (5.19) fails, it is easy to construct an atom of �0�· × 
�+�.) Moreover, there exists a constant M such that

�0��M���× 
�+�≤
9

2
� (5.20)
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Let N = �M/O + 1, where �x denotes the smallest integer n ≥ x. For n = 0� / / / �N − 1, define the set
In = �nO� �n + 4�O	 and define IN = �M���. Note that for every x ∈ �0���, there is an n ≤ N such that
�x� x+ 2O	⊂ In. To prove (5.18), it therefore suffices to show that

lim inf
r→� Pr

(
max
n≤N


�r
1�0��In�≤

9

2

)
≥ 1− K

2
� (5.21)

Let M�
�+� denote the space of finite nonnegative Borel measures on 
�+, endowed with the weak topology.
Let A = �L ∈ M�
�+�" maxn≤N L�In� < 9/2�, and suppose that a sequence �Lk� ⊂ M�
�+� satisfies Lk

w→ L for
some L ∈A. Because the sets In are closed, the Portmanteau theorem (adapted to finite measures) implies that

lim sup
k→�

Lk�In�≤ L�In� <
9

2
for all n≤N�

Hence, Lk ∈ A for sufficiently large k, which implies that A is open in M�
�+�. Thus, a second application of
the Portmanteau theorem yields

lim inf
r→� Pr � 
�r

1�0� ∈A�≥ P��0�· × 
�+� ∈A�= 1�

which implies (5.21). �

The regularity result is now shown for the entire state descriptor 
�r �·�.
Lemma 5.4. Let T > 0 and 9�K > 0. There exists a O> 0 such that

lim inf
r→� Pr

(
sup
C∈�

sup
t∈�0�T 	


�r �t��POC�≤ 9

)
≥ 1−K� (5.22)

Proof. By Lemmas 5.1, 5.2, and 5.3, there exists a compact K ⊂M and a O0 > 0, such that for all # > 0,
the events

�r
1 =

{
sup
C∈�


�r �0��PO0C �≤ 9

2

}
�

�r
2 =

{
sup
C∈�

sup
0≤s≤t≤T

� 
	r �s� t��C�−�r�t− s��̆r �C�� ≤ #
}
�

�r
3 =

{ 
�r �t� ∈K for all t ∈ �0� T 	
}
�

�r
0 =�r

1 ∩�r
2 ∩�r

3�

satisfy
lim inf
r→� Pr ��r

0�≥ 1−K� (5.23)

Recall the compact sets Kn defined in the proof of Lemma 5.2. Because K is compact, there exists a finite
M ≥ 1 and an integer R<� such that

sup
L∈K

L�
�2
+�≤M� (5.24)

sup
L∈K

L�Kc
R�≤

9

2
� (5.25)

Let �∗ = supr∈� �r , which is finite by (2.12). Fix

h= 9�8�∗�−1� O=min�O0� h�2M�−1�� and #= 9min��8�RMh−1 �−1�2−1��

For r ∈ �, let �r
∗ denote the event in (5.22). By (5.23), it suffices to show that �r

0 ⊂ �r
∗. Let N ∈ �r

0 be
arbitrary; for the remainder of the proof, all random objects are evaluated at this N.
Consider any r ∈�, t ∈ �0� T 	, and C ∈�. We must show that 
�r �t��POC�≤ 9. Define the random time

R1 = sup�s ≤ t" �1� 
�r �s�� = 0�

if the supremum exists, and define R1 = 0 otherwise. Let R =max�R1� t−RM�. We first show that


�r �R��POC + � �Sr�R� t�� t− R��≤ 9

2
� (5.26)
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If R = 0, this follows from the definition of �r
1 because O≤ O0, because

POC + � �Sr�R� t�� t− R�⊂ PO
C+� �Sr �R� t�� t−R�

�

and because � is closed under positive translation. Suppose R = R1 > 0. Then, there is a sequence �Rn�, with
Rn ↑ R , such that �1� 
�r �Rn�� = 0 for all n. In this case, (5.11) and the definition of �r

2 imply that, for all n,


�r �R��POC + � �Sr�R� t�� t− R��≤ 
�r �Rn��
�+
2 �+ 
	r �Rn� R��
�+

2 �≤ �r�R − Rn�+ #�

Letting Rn ↑ R yields

�r �R��POC + � �Sr�R� t�� t− R��≤ #≤ 9

2
�

Suppose that R = t−RM . Because �1� 
�r �s��> 0 for all s ∈ �R� t	, the definition of �r
3 and (5.24) imply that

�Sr�R� t�=
∫ t

t−RM
�1� 
�r �s��−1 ds ≥R�

Thus, by the definition of �r
3 and (5.25),


�r �R��POC + � �Sr�R� t�� t− R��≤ 
�r �R��Kc
R�≤

9

2
�

which proves (5.26).
By (5.10),


�r �t��POC�= 
�r �R��POC + � �Sr�R� t�� t− R��+ 1
r

r �Er �t�∑
i=r �Er �R�+1

1+
POC
� �Br

i �t�� �Dr
i �t��� (5.27)

Let I denote the second right-hand term in (5.27). By (5.26), it remains to show that I ≤ 9/2. Let N =
��t− R�h−1 and, for each n= 0� / / / �N − 1, let tn = R + nh and tn =min�tn+1� t�. Then, using the inequality
1+
POC
�·� ·�≤ 1POC �·� ·�,

I ≤
N−1∑
n=0

1
r

r �Er �tn�∑
i=r �Er �tn�+1

1POC �
�Br
i �t�� �Dr

i �t��� (5.28)

Consider n ∈ �0� / / / �N − 1� and i such that Ur
i r

−1 ∈ �tn� t
n	. Observe that

�Sr�tn� t�≤ �Sr�U r
i r

−1� t�≤ �Sr�tn� t�� (5.29)

By definition,
1POC �

�Br
i �t�� �Dr

i �t��= 1POC+� �Sr �U r
i r

−1� t�� t−Ur
i r

−1��B
r
i �D

r
i r

−1�� (5.30)

So, letting

C−
n =C + � �Sr�tn� t�−O� t− tn −O�∩ 
�+

2 �

C+
n =C + � �Sr�tn� t�+O� t− tn +O�∩ 
�+

2 �

Cn =C−
n \C+

n �

it follows from (5.29) and (5.30) that

1POC �
�Br
i �t�� �Dr

i �t��≤ 1Cn
�Br

i �D
r
i r

−1�� (5.31)

Conclude from (5.28) and (5.31) that

I ≤
N−1∑
n=0

1
r

r �Er �tn�∑
i=r �Er �tn�+1

1Cn
�Br

i �D
r
i r

−1�=
N−1∑
n=0

� 
	r �tn� t
n��C−

n �− 
	r �tn� t
n��C+

n ���

For all n<N , C−
n �C

+
n ∈� and tn − tn ≤ h. So, the definition of �r

2 implies that

I ≤
N−1∑
n=0

��rh�̆r �Cn�+ 2#��
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By definition of N , and because t− R ≤RM ,

I ≤ �∗h
N−1∑
n=0

�̆r �Cn�+�RMh−1 2#�

This implies, by choice of #, that

I ≤ �∗h
N−1∑
n=0

�̆r �Cn�+
9

4
� (5.32)

If n ∈ �0� / / / �N − 3�, then
�Sr�tn+1� tn+2�≥ hM−1 ≥ 2O�

because 0 < �1� 
�r �s�� ≤ M for all s ∈ �R� t	 and because h ≥ O2M by definition of O. Thus, for all n ∈
�0� / / / �N − 3�,

�Sr�tn� t�−O= �Sr�tn+1� tn+2�+ �Sr�tn+2� t�−O≥ �Sr�tn+2� t�+O�

Hence, C−
n ⊂C+

n+2 for all n ∈ �0� / / / �N −3� and, consequently, Cn∩Cn+2 =!. Thus, because �̆r is a probability
measure,

"�N−1�/2#∑
n=0

�̆r �C2n� and
"�N−2�/2#∑

n=0
�̆r �C2n+1�

are both bounded above by one. Conclude from (5.32) that

I ≤ 2�∗h+ 9

4
�

which implies, by choice of h, that I ≤ 9/2. �

5.5. Oscillation bound. This section establishes the second main ingredient for proving tightness of the
state descriptors. As a metric on M, we use the Prohorov metric (adapted to finite measures). For &�B ∈ M,
define

d�&�B	= inf�9>0" &�A�≤B�A9�+ 9 and B�A�≤&�A9�+ 9 for all closed A ∈���

Recall that A9 = �w ∈ 
�2
+" infz∈A �z−w�<9� and that � denotes the Borel subsets of 
�2

+.
Definition 5.5. For each ��·� ∈ D��0����M� and each T > # > 0, define the modulus of continuity on

�0� T 	 by
wT ���·�� #�= sup

t∈�0� T−#	

sup
h∈�0� #	

d���t+h�� ��t�	�

Lemma 5.6. For all T > 0 and 9�K ∈ �0�1�, there exists # ∈ �0� T � such that

lim inf
r→� Pr �wT � 
�r �·�� #�≤ 9�≥ 1−K� (5.33)

Proof. Fix T > 0 and 9�K ∈ �0�1�, and let �∗ = supr∈� �r � For each O> 0, define

LO = ��0� O	× 
�+�∪ �
�+ × �0� O	��

By Lemmas 5.1 and 5.4, there exists O ∈ �0�1� such that for all # ∈ �0� T �, the events

�r
1 =

{
sup

t∈�0� T 	

�r �t��LO�≤

9

4

}
�

�r
2 =

{
sup

t∈�0� T−#	


	r �t� t+ #��
�2
+�≤ 2�∗#

}
�

�r
0 =�r

1 ∩�r
2�

satisfy
lim inf
r→� Pr ��r

0�≥ 1−K� (5.34)
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Fix #= O92�8max��∗�1��−1 and let �r
∗ be the event in (5.33). By (5.34), it suffices to show that �r

0 ⊂�r
∗ for

each r . Fix r ∈� and N ∈�r
0; for the remainder of the proof all random objects are evaluated at this N. Fix

t ∈ �0� T − #	, h ∈ �0� #	 and let A ∈� be closed. It suffices to show the two inequalities,


�r �t��A�≤ 
�r �t+h��A9�+ 9 and (5.35)


�r �t+h��A�≤ 
�r �t��A9�+ 9� (5.36)

To show (5.35), use the definition of �r
1 to write


�r �t��A� ≤ 
�r �t��LO�+ 
�r �t��A∩Lc
O�

≤ 9

4
+ 
�r �t��A∩Lc

O�� (5.37)

Let I = �s ∈ �t� t + h	 " �1� 
�r �s��< 9/4�. Suppose I =!. Then, �1� 
�r �s�� ≥ 9/4 for all s ∈ �t� t + h	, which
implies that

�� �Sr�t� t+h��h�� ≤
∫ t+#

t
�1� 
�r �s��−1 ds+ #≤ 4#

9
+ #<min�9�O�� (5.38)

Consequently, �x� y� ∈A∩Lc
O implies �x� y�− � �Sr�t� t+h��h� ∈A9, and so

A∩Lc
O ⊂A9 + � �Sr�t� t+h��h�� (5.39)

Deduce from (5.37) that

�r �t��A�≤ 9

4
+ 
�r �t��A9 + � �Sr�t� t+h��h���

Apply (5.12) to get

�r �t��A�≤ 9

4
+ 
�r �t+h��A9�� (5.40)

Suppose I $= ! and let R = inf I . Then, �1� 
�r �R�� ≤ 9/4 by right continuity. Because �1� 
�r �s�� ≥ 9/4 for all
s ∈ �t� R�,

�� �Sr�t� R�� R − t�� ≤
∫ R

t
�1� 
�r �s��−1 ds+ #≤ 4#

9
+ #< O� (5.41)

By (5.37) and (5.41),


�r �t��A�≤ 9

4
+ 
�r �t��Lc

O�≤
9

4
+ 
�r �t��
�2

+ + � �Sr�t� R�� R − t���

Apply (5.12) to get

�r �t��A�≤ 9

4
+ 
�r �R��
�2

+�≤
9

2
� (5.42)

So, (5.35) follows because either (5.40) or (5.42) holds.
To show (5.36), use (5.11) and the definitions of �r

2 and # to obtain


�r �t+h��A� ≤ 
�r �t��A+ � �Sr�t� t+h��h��+ 
	r �t� t+h��
�2
+�

≤ 
�r �t��A+ � �Sr�t� t+h��h��+ 9

4
� (5.43)

If I =!, then (5.38) implies that A+ � �Sr�t� t+h��h�⊂A9. So, (5.43) yields


�r �t+h��A�≤ 
�r �t��A9�+ 9

4
�

If I $= !, then by (5.11), the definition of �r
2, and the choice of #,


�r �t+h��A�≤ 
�r �R��
�2
+�+ 
	r �R� t+h��
�2

+�≤
9

4
+ 2�∗#≤ 9

2
�

In both cases, (5.36) holds. Conclude from (5.35) and (5.36) that

d� 
�r �t�� 
�r �t+h�	≤ 9�

Because t ∈ �0� T − #	 and h ∈ �0� #	 were arbitrary,

wT � 
�r �·�� #�≤ 9�

which implies that N ∈�r
∗. �
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6. Limiting fluid equations. This section contains the proof of Theorem 2.3. Tightness of the sequence
� 
�r �·�� follows immediately from Lemmas 5.2 and 5.6. Because � 
�r �·�� is tight, there exists a subsequence
�q�⊂� and a process ��·� in D��0����M� such that 
�q�·�⇒��·� as q → �. We must show that ��·� is
almost surely a measure-valued fluid model solution for the data ����� �0�. This is accomplished in Lemmas
6.1 and 6.2 and Theorem 6.3 below. Finally, if (2.11) holds, then a measure-valued fluid model solution for
����� �0� is unique by Theorem 2.2. In this case, the law of the limit point ��·� is unique and so 
�r �·�⇒��·�
as r →�.
Let Z�·� = �1���·�� be the total mass process for ��·�, and let S�u� v� = ∫ v

u
1/Z�s�ds for all v ≥ u ≥ 0.

To show that ��·� is almost surely a measure-valued fluid model solution, note first that ��·� is almost surely
continuous by Lemma 5.6. Note also that, by (2.14), ��0�= �0 almost surely. It remains to show that properties
(i) and (ii) of Definition 2.1 are satisfied almost surely by ��·�. The next result establishes (i).
Lemma 6.1. Almost surely, for all a> 0,

inf
t>a

Z�t� > 0� (6.1)

Proof. Suppose first that P�B = �� > 0, and let T > a > 0 be arbitrary. It suffices to show that
inf t∈�a�T � Z�t� > 0 almost surely. Assume without loss of generality that a is sufficiently small that P�B = �3
D ≥ a� > 0, and that the distribution of D is continuous at a. Define the corner set Ca = ���× �a��	 and let
ka = �a��Ca�/2> 0. For each q ∈� and t ∈ �a� T �,

�Zq�t�= 
�q�t��
�2
+�≥ 
�q�t�����× �0��	��

Applying (5.10) and then dropping the first right-hand term yields

�Zq�t�≥ 1
q

q �Eq�t�∑
i=q �Eq�t−a�+1

1+
���×�0��	

( �Bq
i �t�� �Dq

i �t�
)
� (6.2)

Note that for i > q �Eq�t − a�, we have U
q
i ≥ q�t − a� and so �Dq

i �t� = D
q
i q

−1 − t + U
q
i q

−1 ≥ D
q
i q

−1 − a. This
implies that, for each such i, 1+

���×�0��	� �Bq
i �t�� �Dq

i �t��≥ 1Ca
�B

q
i �D

q
i q

−1�. Deduce from (6.2) that

�Zq�t�≥ 
	q�t− a� t��Ca�� (6.3)

Because Ca is a �-continuity set, �qa�̆q�Ca�→ �a��Ca� by (2.12) and (2.13). So, by (6.3), Lemma 5.1, and
the definition of ka,

lim inf
q→� Pq

(
inf

t∈�a� T �
�Zq�t�≥ ka

)
≥ lim inf

q→� Pq

(
inf

t∈�a� T �

	q�t− a� t��Ca�≥ ka

)
= 1� (6.4)

Note that 
�q�·�⇒��·� implies �Zq�·�⇒Z�·�, and that the set{
z�·� ∈D��0�����+�" inf

t∈�a�T �
z�t�≥ ka

}

is closed in the Skorohod J1-topology. Thus, the Portmanteau theorem and (6.4) imply that

P
(

inf
t∈�a�T �

Z�t�≥ ka

)
≥ lim inf

q→� Pq

(
inf

t∈�a�T �
�Zq�t�≥ ka

)
= 1�

It remains to consider the case P�B =��= 0. Again, we will construct a lower bound on the queue length
process. The main difference with the case above is that we exploit results for overloaded PS queues without
impatience developed in Puha et al. [24]. Because the idea of the lower bound is similar as before, we restrict to
giving an outline. If P�B=��= 0, there exists m<� such that �E�B1�B≤m�	 > 1, and such that the distribution
of B is continuous at m. Fix a > 0, and assume without loss of generality that a is sufficiently small that
�E�B1�B≤m3D>a�	 > 1, and that the distribution of D is continuous at a. Then, by (2.13),

lim
q→��

q
[
B
q
11�Bq

1≤m3Dq
1q

−1>a�
]= �E�B1�B≤m3D>a�	�

Compare Zq�·� with the queue length process Źq�·� of an ordinary PS queue having arrival rate �q
a�m =

�qP�Bq
1 ≤m3D

q
1 > qa� and service times Bq

i�a�m, which are distributed as Bq
i � Bq

i ≤m3D
q
i > qa. This process
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can be constructed from the primitives Eq�·�, �Bq
i �D

q
i � in an obvious way, enabling a sample-path comparison

of the two processes. Assume that Źq�q�t− a��= 0.
Observe that the number of arrivals in the ordinary PS queue during the time interval �q�t − a�� qt	 is less

than or equal to the number of arrivals during that time interval in the PS queue with impatience. Furthermore,
if a job that arrived in the original system after time q�t − a� departs before time qt, then this must also be
the case in the ordinary PS queue, because that system had a service rate which was at least as large as in
the original system. These considerations imply that Zq�qt� ≥ Źq�qt�. The ordinary queue is still overloaded
(for sufficiently large q), no customer departs because of impatience, and the modified arrival process is still a
renewal process. Thus, the evolution of the modified system during �q�t − a�� qt	 has the same law as that of
an overloaded GI/GI/1 PS queue starting at 0, in the time interval �0� qa	.
Because the service times in our modified system are bounded, the means converge as q →�. The assump-

tions in Puha et al. [24] are therefore satisfied, and it follows that there exists a constant ka > 0 such that
limq→� Źq�qt�/q = ka almost surely. Consequently, we have lim infq→� �Zq�t�≥ ka almost surely, which implies
the assertion. �

Before establishing property (ii) of Definition 2.1, the following result is needed.

Lemma 6.2. Almost surely, for all C ∈� and t ≥ 0,

��t��PC�= 0� (6.5)

Proof. Let T > 0. It suffices to show the statement for all t ∈ �0� T �. Let �Kn�⊂ �0�1� be a sequence such
that

∑�
n=1 Kn <�. By Lemma 5.4, there exists a null sequence of positive reals �On� such that, for each fixed n,

lim inf
q→� Pq

(
sup

t∈�0� T 	
sup
C∈�


�q�t��P
On
C �≤ 1

n

)
≥ 1−Kn� (6.6)

For each n ∈�, let Mn = �L ∈M" supC∈� L�P
On
C �≤ 1/n�. If a sequence �Li�⊂Mn converges weakly to L, then

for each open set POnC the Portmanteau theorem yields

L�P
On
C �≤ lim sup

i→�
Li�P

On
C �≤ 1

n
�

Thus, L ∈ Mn and Mn is closed. By definition of the Skorohod J1-topology, the set DT
n = ���·� ∈

D��0����M�" ��t� ∈Mn for all t ∈ �0� T �� is also closed. Apply the Portmanteau theorem and (6.6) to obtain

P���·� ∈DT
n �≥ lim inf

q→� Pq� 
�q�·� ∈DT
n �≥ 1−Kn�

By the Borel-Cantelli lemma,

P
( �⋃
k=1

�⋂
n=k

���·� ∈DT
n �

)
= 1�

Thus, there exists a finite random variable N such that almost surely,

sup
t∈�0� T �

sup
C∈�

��t��P
On
C �≤ 1

n
� for all n>N� (6.7)

Because PC ⊂ P
On
C for all C ∈� and n ∈�, conclude that almost surely,

sup
t∈�0� T �

sup
C∈�

��t��PC�= 0� �

We now establish property (ii). Recall that Z�t�= �1���t�� for all t ≥ 0, and S�u� v�= ∫ v

u
1/Z�s�ds for all

v≥ u≥ 0.

Theorem 6.3. Almost surely, the process ��·� satisfies

��t��A�=��0��A+ �S�0� t�� t��+�
∫ t

0
��A+ �S�s� t�� t− s��ds (6.8)

for all t ≥ 0 and A ∈�.
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Proof. Let T > 0. It suffices to show that almost surely, (6.8) holds for all t ∈ �0� T 	 and all A ∈�. For
each r ∈�, define the random variable

Xr
T = sup

C∈�
sup

0≤s≤t≤T
� 
	r �s� t��C�−�r�t− s��̆r �C��� (6.9)

By Lemma 5.1, Xq
T

Pq→ 0 as q → �. Because the limit is deterministic, this convergence is joint with the
convergence 
�q�·�⇒��·�. Using the Skorohod representation theorem, assume without loss of generality that
� 
�q�·��Xq

T � and ��·� are defined on a common probability space such that
� 
�q�·��Xq

T �→ ���·��0� almost surely. (6.10)

The conclusions of Lemmas 6.1 and 6.2 hold almost surely as well. Assume for the remainder of the proof that
all random objects are evaluated on the event of probability one such that ��·� is continuous and such that (6.1),
(6.5), and (6.10) hold.
Fix t ∈ �0� T 	 and C ∈�. An extension to all Borel sets A ∈� will be made at the end. For each q, (5.10)

yields


�q�t��C�= 
�q�0��C + � �Sq�0� t�� t��+ 1
q

q �Eq�t�∑
i=1

1+
C� �Bq

i �t�� �Dq
i �t��� (6.11)

We will obtain (6.8) from (6.11) by letting q →�. The convergence in the first component of (6.10) is in the
Skorohod J1-topology on D��0����M�. However, because ��·� is continuous,


�q�s� w→��s�� for all s ∈ �0� t	. (6.12)

Because �Zq�·�= �1� 
�q�·�� and Z�·�= �1���·��, this implies that
lim
q→�

∥∥ �Zq�·�−Z�·�∥∥
t
= 0� (6.13)

For all t ≥ v≥ u> 0, (6.1) implies that inf s∈�u�v	 Z�s� > 0, and so the bounded convergence theorem yields

lim
q→�

�Sq�u� v� = lim
q→�

∫ v

u

1
�Zq�s�

ds

=
∫ v

u

1
Z�s�

ds

= S�u� v�� (6.14)

If Z�0� $= 0, then (6.14) holds for u= 0 as well, because then inf s∈�0�v	 Z�s� > 0. If Z�0�= 0, then S�0� v�=�
and �Sq�0� v�→� as q →�.
Suppose that Z�0� $= 0 and let 9 > 0. By (6.14), there exists a q9 ∈ � such that �Sq�0� t� ∈

�� �S�0� t�− 9�+� �S�0� t�+ 9� for q > q9. Deduce from the shape of the set C, (6.12), and (6.5) that

lim sup
q→�


�q�0��C + � �Sq�0� t�� t��≤ 
��0��C + �� �S�0� t�− 9�+� t���

lim inf
q→�


�q�0��C + � �Sq�0� t�� t��≥ 
��0��C + � �S�0� t�+ 9� t���

By (6.5), letting 9→ 0 yields

lim
q→�


�q�0��C + � �Sq�0� t�� t��= 
��0��C + � �S�0� t�� t��� (6.15)

If Z�0�= 0, then (6.15) holds trivially because the left side is bounded above by limq→��1� 
�q�0�� = 0 by (6.13).
Combining with (6.12) and (6.5) for 
�q�t� implies that, as q →�,


�q�t��C�− 
�q�0��C + � �Sq�0� t�� t��→��t��C�−��0��C + �S�0� t�� t���

Let Iq denote the second right-hand term in (6.11). Let # > 0 and let K ∈ �0� t�. Because �Sq�s� t� is nonin-
creasing in s and S�·� t� is continuous on �K� t	, (6.14) implies that �Sq�·� t�→ S�·� t� uniformly on �K� t	. That
is, there exists q# ∈� such that

sup
s∈�K�t	

� �Sq�s� t�− S�s� t�� ≤ #� for all q > q#� (6.16)
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Let D���� = �C ∈ �" ��PC� $= 0�. Note that D���� is countable because ��· × 
�+� and ��
�+ × ·� are
probability measures. Because Z�u� > 0 for all u ∈ �K� t	, the function S�s� t� is strictly decreasing in s on �K� t	.
Thus,

D��S�= �s ∈ �K� t	" C + �S�s� t�± 2#� t− s� ∈D�����

is also countable. For each integer N > 1, let K = tN0 < tN1 < · · · < tNN = t be a partition of �K� t	 such that
tNj (D��S� for all j = 1� / / / �N − 1, and such that maxj≤N−1�tNj+1 − tNj �→ 0 as N →�. Then,

Iq = 1
q

q �Eq�K�∑
i=1

1+
C� �Bq

i �t�� �Dq
i �t��+

N−1∑
j=0

1
q

q �Eq�tNj+1�∑
i=q �Eq�tNj �+1

1+
C� �Bq

i �t�� �Dq
i �t���

Note that the first right-hand term is bounded above by 
	q�0�K��
�2
+�. Suppose that tNj ≤ U

q
i q

−1 ≤ tNj+1, for
some q > q#, some j ≤N − 1, and some i ∈ �q �Eq�K�+ 1� / / / � q �Eq�t��. Then, by (6.16),

S�tNj+1� t�− #≤ �Sq�U
q
i q

−1� t�≤ S�tNj � t�+ #� (6.17)

By definition,
� �Bq

i �t�� �Dq
i �t��= �B

q
i − �Sq�U

q
i q

−1� t��Dq
i q

−1 − �t−U
q
i q

−1���

So, for q > q#, (6.17) and the inequalities 1C�· − #� ·�≤ 1+
C�·� ·�≤ 1C�· + #� ·� yield

1+
C� �Bq

i �t�� �Dq
i �t��≥ 1C�B

q
i − �S�tNj � t�+ 2#��Dq

i q
−1 − �t− tNj ��3

1+
C� �Bq

i �t�� �Dq
i �t��≤ 1C�B

q
i − �S�tNj+1� t�− 2#��Dq

i q
−1 − �t− tNj+1���

This yields, for q > q#,

Iq ≥
N−1∑
j=0

1
q

q �Eq�tNj+1�∑
i=q �Eq�tNj �+1

1C�B
q
i − �S�tNj � t�+ 2#��Dq

i q
−1 − �t− tNj ��3

Iq ≤ 
	q�0�K��
�2
+�+

N−1∑
j=0

1
q

q �Eq�tNj+1�∑
i=q �Eq�tNj �+1

1C�B
q
i − �S�tNj+1� t�− 2#��Dq

i q
−1 − �t− tNj+1���

Rewrite as

Iq ≥
N−1∑
j=0


	q�tNj � t
N
j+1��C + �S�tNj � t�+ 2#� t− tNj ��3

Iq ≤ 
	q�0�K��
�2
+�+

N−1∑
j=0


	q�tNj � t
N
j+1��C + �S�tNj+1� t�− 2#� t− tNj+1���

(6.18)

By (6.9) and (6.18), q > q# implies that

Iq ≥
N−1∑
j=0

��q�tNj+1 − tNj ��̆
q�C + �S�tNj � t�+ 2#� t− tNj ��−X

q
T �3

Iq ≤ �qK+X
q
T +

N−1∑
j=0

��q�tNj+1 − tNj ��̆
q�C + �S�tNj+1� t�− 2#� t− tNj+1��+X

q
T ��

By (6.10) and because tNj $∈D��S� for all j = 1� / / / �N − 1,

lim inf
q→� Iq ≥ �

N−1∑
j=0

�tNj+1 − tNj ���C + �S�tNj � t�+ 2#� t− tNj ��3

lim sup
q→�

Iq ≤ �K+�
N−1∑
j=0

�tNj+1 − tNj ���C + �S�tNj+1� t�− 2#� t− tNj+1���

(6.19)

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Gromoll, Robert, and Zwart: Fluid Limits for Processor-Sharing Queues with Impatience
Mathematics of Operations Research 33(2), pp. 375–402, © 2008 INFORMS 401

For s ∈ �K� t	 such that s (D��S�, the bounded convergence theorem implies that

lim
N→�

N−1∑
j=0

1�tNj �tNj+1��s���C + �S�tNj � t�+ 2#� t− tNj ��=��C + �S�s� t�+ 2#� t− s��3

lim
N→�

N−1∑
j=0

1�tNj �tNj+1��s���C + �S�tNj+1� t�− 2#� t− tNj+1��=��C + �S�s� t�− 2#� t− s���

(6.20)

Thus, the convergence in (6.20) holds for almost every s ∈ �K� t�. Let N → � in (6.19) and conclude from
(6.20) and the bounded convergence theorem that

lim inf
q→� Iq ≥ �

∫ t

K
��C + �S�s� t�+ 2#� t− s��ds3

lim sup
q→�

Iq ≤ �K+�
∫ t

K
��C + �S�s� t�− 2#� t− s��ds� (6.21)

Let # → 0 in (6.21). Because D���� is countable, both integrands in (6.21) converge almost everywhere on
�K� t	 to ��C + �S�s� t�� t− s��. Thus,

lim inf
q→� Iq ≥ �

∫ t

K
��C + �S�s� t�� t− s��ds3

lim sup
q→�

Iq ≤ �K+�
∫ t

K
��C + �S�s� t�� t− s��ds�

Let K→ 0 to conclude that

lim
q→� I

q = �
∫ t

0
��C + �S�s� t�� t− s��ds�

This proves (6.8) for all t ∈ �0� T 	 and C ∈ �. To extend to all A ∈ �, apply the 4�-argument appearing
in §2.3. �
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