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Abstract
New asymptotic approximations of the noncentral 𝑡 dis-
tribution are given a generalization of the Student’s
𝑡 distribution. Using new integral representations, we
give new asymptotic expansions not only for large val-
ues of the noncentrality parameter but also for large
values of the degrees of freedom parameter. In some
cases, we accept more than one large parameter. These
results are not only in terms of elementary functions,
but also in terms of the complementary error func-
tion and the incomplete gamma function. A number
of numerical tests demonstrate the performance of the
asymptotic approximations.
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1 INTRODUCTION

The noncentral 𝑡-distribution has several applications in engineering, biology, and other scientific
areas; see, for example, Refs. [1–3]. There is a vast literature on the Student’s 𝑡 distribution and its
generalizations, including the noncentral distribution. For a recent review, see Ref. [4]; and for
the particular case of the noncentral 𝑡 distribution, see Ref. [5].
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We introduce the following notation of the noncentral 𝑡-distribution, which we denote by
𝐹𝑛(𝑥; 𝛿). Let 𝑥 ≥ 0, 𝛿 ∈ ℝ, and 𝑛 > 0. Then we define

𝐹𝑛(𝑥; 𝛿) =
1
2erfc

(
𝛿∕

√
2
)
+ 𝑃𝑛(𝑥; 𝛿) + 𝑄𝑛(𝑥; 𝛿),

𝑃𝑛(𝑥; 𝛿) =
1
2𝑒
−
1

2
𝛿2
∞∑
𝑗=0

𝑝𝑗(𝛿)𝐼𝑦

(
𝑗 +

1
2 ,
1
2𝑛

)
,

𝑄𝑛(𝑥; 𝛿) =
1
2𝑒
−
1

2
𝛿2
∞∑
𝑗=0

𝑞𝑗(𝛿)𝐼𝑦

(
𝑗 + 1,

1
2𝑛

)
,

𝑝𝑗(𝛿) =

(
1

2
𝛿2
)𝑗

𝑗!
, 𝑞𝑗(𝛿) =

𝛿√
2

(
1

2
𝛿2
)𝑗

Γ
(
𝑗 +

3

2

) , 𝑦 = 𝑥2

𝑛 + 𝑥2
.

(1)

For 𝑥 ≤ 0, we define
𝐹𝑛(𝑥; 𝛿) = 1 − 𝐹𝑛(−𝑥;−𝛿). (2)

In the first line of (1), erfc(𝑥) is the complementary error function defined by

erfc(𝑥) =
2√
𝜋 ∫

∞

𝑥

𝑒−𝑡
2
𝑑𝑡 = 2Φ

(
−𝑥

√
2
)
, Φ(𝑥) =

1√
2𝜋 ∫

𝑥

−∞

𝑒
−
1

2
𝑡2
𝑑𝑡. (3)

The function Φ(𝑥) is called the normal distribution and 𝐼𝑦(𝑎, 𝑏) is the incomplete beta function
defined by

𝐼𝑦(𝑎, 𝑏) =
1

𝐵(𝑎, 𝑏) ∫
𝑦

0

𝑡𝑎−1(1 − 𝑡)𝑏−1 𝑑𝑡, 𝐵(𝑎, 𝑏) =
Γ(𝑎)Γ(𝑏)

Γ(𝑎 + 𝑏)
. (4)

The parameter 𝛿 is the noncentrality parameter. We assume that 𝑛 > 0, not necessarily an inte-
ger in this paper; 𝑛 denotes the degrees of freedom. In the literature, the definition of 𝐹𝑛(𝑥; 𝛿) in
the first line of (1) is also given with 1

2
erfc(𝛿∕

√
2) replaced by Φ(−𝛿).

When 𝛿 = 0, the function𝐹𝑛(𝑥; 𝛿) reduces to Student’s 𝑡 distribution𝐹𝑛(𝑥), whichwe discussed
in our recent paper.6 The definition in (1) corresponds with the one in [Ref. 7]. In [8, Equation (5)],
the following form (with different notation of parameters) is given

𝐹𝑛(𝑥; 𝛿) = 1 − 𝐺𝑛(𝑥; 𝛿),

𝐺𝑛(𝑥; 𝛿) =
1
2𝑒
−
1

2
𝛿2
∞∑
𝑗=0

(𝛿∕
√
2)𝑗

Γ
(
1

2
𝑗 + 1

) 𝐼1−𝑦( 1
2𝑛,

1
2 +

1
2𝑗

)
,

(5)

with 𝑦 as in (1). Hence, 𝐹𝑛(𝑥; 𝛿) and 𝐺𝑛(𝑥; 𝛿) are complementary functions, and in numerical
computations, it is convenient, to avoid numerical cancelation when one of the two functions is
needed, to compute first the primary function, that is,min{𝐹𝑛(𝑥; 𝛿), 𝐺𝑛(𝑥; 𝛿)}. This is also impor-
tant for 𝑥 < 0 where 𝐹𝑛(𝑥; 𝛿) may be very small; see Figure 1, right. In that case, the relation in
(2) should be written as 𝐹𝑛(𝑥; 𝛿) = 𝐺𝑛(−𝑥;−𝛿), 𝑥 < 0.
In the graphs of Figure 1, we see that the function values are about 1

2
when 𝑥 = 𝛿. We call 𝑥 (or

𝛿) the transition value of 𝐹𝑛(𝑥; 𝛿) considered as a function of 𝛿 (or of 𝑥). When we have derived
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GIL et al. 859

F IGURE 1 Graphs of 𝐹𝑛(𝑥; 𝛿) as a function of the parameters 𝛿 and 𝑥. Left: 𝑥 = 5, 𝑛 = 10, −5 ≤ 𝛿 ≤ 10.
Right: −5 ≤ 𝑥 ≤ 15, 𝑛 = 10, 𝛿 = 5.

asymptotic approximations, wewill see in differentways that the transition does indeed take place
when 𝑥 = 𝛿.
The representation of 𝐹𝑛(𝑥; 𝛿) in (5) can be transformed into those in (1) by using the

complementary relation of the incomplete beta function

𝐼𝑦(𝑎, 𝑏) = 1 − 𝐼1−𝑦(𝑏, 𝑎), (6)

and the Kummer function, or confluent hypergeometric function, defined by

1𝐹1

(
𝑎

𝑏
; 𝑧

)
=

∞∑
𝑘=0

(𝑎)𝑛
(𝑏)𝑛

𝑧𝑛

𝑛!
, (𝑎)𝑛 =

Γ(𝑎 + 𝑛)

Γ(𝑎)
, (7)

with the special case

1𝐹1

(
1
3

2

; 𝑧2

)
=

√
𝜋

2𝑧
𝑒𝑧
2
erf 𝑧. (8)

Remark 1. In [9, Equation (31.17)], the form (1) is given without the first term 1

2
erfc(𝛿∕

√
2). The

series expansion of 2𝑃𝑛(𝑥; 𝛿) that follows from (1) is given in [10, p. 455] as one of the many
definitions of the noncentral 𝑡-distribution that do not correspond with our definition in (1).

Remark 2. The function 𝑃𝑛(𝑥; 𝛿) introduced in (1) is a special case of the noncentral beta
distribution that we considered in a recent paper11 in the form

𝐵𝑝,𝑞(𝑥, 𝑦) = 𝑒
−𝑥∕2

∞∑
𝑗=0

1
j!

( x
2

)𝑗
𝐼𝑦(𝑝 + 𝑗, 𝑞), 0 < 𝑦 < 1. (9)

We have

𝑃𝑛(𝑥; 𝛿) =
1
2𝐵12 ,

1

2
𝑛

(
𝛿2, 𝑦

)
, 𝑦 =

𝑥2

𝑛 + 𝑥2
. (10)
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860 GIL et al.

In the previous paper, we have derived recurrence relations of 𝐵𝑝,𝑞(𝑥, 𝑦) with respect to 𝑝 and to
𝑞, which cannot be used for 𝑃𝑛(𝑥; 𝛿) with respect to 𝑛, because 𝑦 in (10) depends on 𝑛 as well.

In the first sections, we give new integral representations for𝐹𝑛(𝑥; 𝛿) and for the auxiliary func-
tions 𝑃𝑛(𝑥; 𝛿) and 𝑄𝑛(𝑥; 𝛿). In later sections, using these integral representations, we give new
asymptotic expansions for large values of the noncentrality parameter 𝛿 but also for large values
of the degrees of freedom parameter 𝑛. In several cases, we accept more than one large parame-
ter. These results are in terms of elementary functions, but also in terms of the complementary
error function and the incomplete gamma function. A number of numerical tests demonstrate the
performance of the asymptotic approximations.

2 REAL INTEGRAL REPRESENTATIONS

We have the following lemma.

Lemma 1. Let 𝑦 = 𝑥2∕(𝑛 + 𝑥2), then

𝑃𝑛(𝑥; 𝛿) =
1

2

𝑒
−
1
2
𝛿2

𝐵
(
1

2
,
1

2
𝑛
) ∫

𝑦

0

𝑡
−
1

2 (1 − 𝑡)
1

2
𝑛−1
1𝐹1

⎛⎜⎜⎝
1

2
𝑛 +

1

2
1

2

;
1

2
𝛿2𝑡

⎞⎟⎟⎠ 𝑑𝑡
=
1

2
−
1

2

𝑒
−
1
2
𝛿2

𝐵
(
1

2
,
1

2
𝑛
) ∫

1−𝑦

0

𝑡
1

2
𝑛−1
(1 − 𝑡)

−
1

2 1𝐹1

⎛⎜⎜⎝
1

2
𝑛 +

1

2
1

2

;
1

2
𝛿2(1 − 𝑡)

⎞⎟⎟⎠ 𝑑𝑡,
𝑄𝑛(𝑥; 𝛿) =

1

2

𝛿𝑛 𝑒
−
1
2
𝛿2√

2𝜋 ∫
𝑦

0

(1 − 𝑡)
1

2
𝑛−1
1𝐹1

⎛⎜⎜⎝
1

2
𝑛 + 1
3

2

;
1

2
𝛿2𝑡

⎞⎟⎟⎠ 𝑑𝑡
=
1

2
erf

(
𝛿∕

√
2
)
−
𝛿𝑛 𝑒

−
1

2
𝛿2

2
√
2𝜋 ∫

1−𝑦

0

𝑡
1

2
𝑛−1
1𝐹1

⎛⎜⎜⎝
1

2
𝑛 + 1
3

2

;
1

2
𝛿2(1 − 𝑡)

⎞⎟⎟⎠ 𝑑𝑡.

(11)

Proof. The proof follows from (1) by using the integral representation (4) and the series expansion
(7). For the integrals with intervals of integration [0, 1 − 𝑦], we first change the integrals over [0, 𝑦]
by writing [0, 𝑦] = [0, 1] ⧵ [𝑦, 1], and then, we use the change of variable 𝑡 → 1 − 𝑡 for the integral
over [𝑦, 1]. The complete integral over [0,1] becomes for the first case, with 𝑧 = 1

2
𝛿2,

1
2

𝑒𝑧

𝐵
(
1

2
,
1

2
𝑛
) ∫

1

0

𝑡
−
1

2 (1 − 𝑡)
1

2
𝑛−1
1𝐹1

⎛⎜⎜⎝
1

2
𝑛 +

1

2
1

2

; 𝑧𝑡
⎞⎟⎟⎠ 𝑑𝑡

=
1
2

𝑒−𝑧

𝐵
(
1

2
,
1

2
𝑛
) ∞∑
𝑗=0

𝑧𝑗

𝑗!

(
1

2
𝑛 +

1

2

)
𝑗(

1

2

)
𝑗

∫
1

0

𝑡
𝑗−
1

2 (1 − 𝑡)
1

2
𝑛−1
𝑑𝑡

=
1
2

𝑒−𝑧

𝐵
(
1

2
,
1

2
𝑛
) Γ

(
1

2
𝑛
)
Γ
(
1

2

)
Γ
(
1

2
𝑛 +

1

2

) ∞∑
𝑗=0

𝑧𝑗

𝑗!
=
1
2 .

(12)

The second case follows similarly by using (8). □
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GIL et al. 861

The integral of 𝑃𝑛(𝑥; 𝛿) in (11) also corresponds with a more general integral of the noncentral
beta distribution; see [11, Equation (1.6)]. TheKummer functions in these integrals are relatedwith
parabolic cylinder functions, see [12, Section 12.7(iv)].
A known integral representation is given in the following lemma.

Lemma 2. Let 𝛿 ∈ ℝ, 𝑥 ≥ 0 and 𝑛 > 0, then

𝐹𝑛(𝑥; 𝛿) = 𝐴𝑛 ∫
∞

0

erfc
(
(𝛿 − 𝑥𝑡)∕

√
2
)
𝑒
−
1

2
𝑛𝑡2
𝑡𝑛−1 𝑑𝑡, 𝐴𝑛 =

(𝑛∕2)𝑛∕2

Γ(𝑛∕2)
. (13)

Proof. This integral is given, with different notation, in [5, Section 13] and it also follows from the
the integral representation derived in [7, Equation (10)]:

𝐹𝑛(𝑥; 𝛿) =
1
2erfc

(
𝛿∕

√
2
)
+
1√
2𝜋 ∫

∞

0

𝑒
−
1

2
(𝑠−𝛿)2

𝑄

(
1
2𝑛,

1
2𝑛𝑠

2∕𝑥2
)
𝑑𝑠. (14)

The function 𝑄(𝑎, 𝑧) is the normalized incomplete gamma functions, which together with the
complementary function 𝑃(𝑎, 𝑧) = 1 − 𝑄(𝑎, 𝑧) is defined by

𝑃(𝑎, 𝑧) =
1

Γ(𝑎) ∫
𝑧

0

𝑡𝑎−1𝑒−𝑡 𝑑𝑡, 𝑄(𝑎, 𝑧) =
1

Γ(𝑎) ∫
∞

𝑧

𝑡𝑎−1𝑒−𝑡 𝑑𝑡, (15)

withℜ𝑎 > 0 for the function 𝑃(𝑎, 𝑧). Because

1√
2𝜋
𝑒
−
1

2
(𝑠−𝛿)2

= −
1
2
𝑑

𝑑𝑠
erfc

(
(𝑠 − 𝛿)∕

√
2
)
, (16)

we can integrate (14) by parts, and obtain the representation

𝐹𝑛(𝑥; 𝛿) =
( 𝑛
2𝑥2

)𝑛∕2 1

Γ(𝑛∕2) ∫
∞

0

erfc
(
(𝛿 − 𝑠)∕

√
2
)
𝑠𝑛−1𝑒−𝑛𝑠

2∕(2𝑥2) 𝑑𝑠. (17)

We have used the relations

erfc(𝑧) = 2 − erfc(−𝑧), 𝑄(𝑎, 0) = 1,
𝑑

𝑑𝑧
𝑄(𝑎, 𝑧) = −

𝑧𝑎−1𝑒−𝑧

Γ(𝑎)
, (18)

and ( 𝑛
2𝑥2

)𝑛∕2 1

Γ(𝑛∕2) ∫
∞

0

𝑠𝑛−1𝑒−𝑛𝑠
2∕(2𝑥2) 𝑑𝑠 = 𝐴𝑛 ∫

∞

0

𝑒
−
1

2
𝑛𝑡2
𝑡𝑛−1 𝑑𝑡 =

1
2 . (19)

Substituting in (17) 𝑠 = 𝑥𝑡 gives the integral in (13). □

Corollary 1. We have the alternative representations, again for 𝑥 ≥ 0,

𝐹𝑛(𝑥; 𝛿) = 1 − 𝐴𝑛𝑒
−
1

2
𝑛

∫
∞

0

erfc
(
(𝑥𝑡 − 𝛿)∕

√
2
)
𝑒
−
1

2
𝑛𝜙(𝑡) 𝑑𝑡

𝑡
,

=
1

2
− 𝐴𝑛𝑒

−
1

2
𝑛

∫
∞

0

erf
(
(𝛿 − 𝑥𝑡)∕

√
2
)
𝑒
−
1

2
𝑛𝜙(𝑡) 𝑑𝑡

𝑡
,

(20)
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862 GIL et al.

where

𝜙(𝑡) = 𝑡2 − ln(𝑡2) − 1. (21)

The first relation corresponds with (2).

Proof. This follows from the relation for erfc(𝑧) = 2 − erfc(−𝑧) = 1 − erf (𝑧), and from (19). □

Corollary 2. Let 𝑦 = 𝑥2∕(𝑛 + 𝑥2). We have in terms of parabolic cylinder functions

𝜕

𝜕𝑥
𝐹𝑛(𝑥; 𝛿) =

√
2

𝜋
𝐴𝑛Γ(𝑛 + 1)

𝑒
−
1

4
𝛿2(2−𝑦)

(𝑛 + 𝑥2)
1

2
𝑛+
1

2

𝑈

(
𝑛 +
1

2
,−𝛿

√
𝑦

)
,

𝜕

𝜕𝛿
𝐹𝑛(𝑥; 𝛿) = −

√
2

𝜋
𝐴𝑛Γ(𝑛)

𝑒
−
1

4
𝛿2(2−𝑦)

(𝑛 + 𝑥2)
1

2
𝑛
𝑈

(
𝑛 −
1

2
,−𝛿

√
𝑦

)
.

(22)

Proof. The proof follows from (3), the integral in (13), and the integral representation of the
parabolic cylinder function (see [12, Section 12.5(i)])

𝑈(𝑎, 𝑧) =
𝑒
−
1

4
𝑧2

Γ
(
𝑎 +

1

2

) ∫
∞

0

𝑡
𝑎−
1

2 𝑒
−
1

2
𝑡2−𝑧𝑡

𝑑𝑡, ℜ𝑎 > −
1
2 . (23)

□

The derivatives show clearly the monotonicity of 𝐹𝑛(𝑥; 𝛿) for 𝑥 ≥ 0 and 𝛿 ∈ ℝ.
The complementary error function in the integral in (13) becomes almost equal to 2 for large

positive 𝑡 and when 𝑡 ≪ 𝛿∕𝑥, this function will become exponentially small. This gives a change
of behavior when 𝑡 = 𝛿∕𝑥. In addition, the exponential part of the integrand exp(−1

2
𝑛𝜙(𝑡)) has its

maximal behavior when 𝑡 = 1. Consequently, these special behaviors of two parts of the integrand
give a sudden change in behavior of 𝐹𝑛(𝑥; 𝛿)when 𝛿 passes the value 𝑥, in particular, when 𝛿 and
𝑥 are large. In that case, 𝐹𝑛(𝑥; 𝛿) passes the value

1

2
.

In Figure 2,we give two graphs of the integrands of the integral in (13) for two sets of the parame-
ters. The left graph is nicely bell shaped, the right one, with a larger value of 𝛿, shows a very steep
left side near 𝑡 = 𝛿∕𝑥 ≐ 1.35, where the complementary error function rapidly changes values
from 0 to 2. Numerical quadrature experiences this as a discontinuity.
When we have algorithms for computing 𝐹𝑛(𝑥; 𝛿) as well as for the complementary function

𝐺𝑛(𝑥; 𝛿) defined in(5), it is important to compute first the primary functionmin{𝐹𝑛(𝑥; 𝛿), 𝐺𝑛(𝑥; 𝛿)}
(see below (5)). This means that if 𝛿 ≥ 𝑥, we should calculate 𝐹𝑛(𝑥; 𝛿) first; otherwise, it is bet-
ter to calculate 𝐺𝑛(𝑥; 𝛿). The other function follows from the complementary relation 𝐹𝑛(𝑥; 𝛿) +
𝐺𝑛(𝑥; 𝛿) = 1. Observe that the first line in (20) gives an integral of the function 𝐺𝑛(𝑥; 𝛿).

3 CONTOUR INTEGRAL REPRESENTATIONS

We use the following integral representation of the incomplete beta function (see [13, §8.17(iii)]):

𝐼𝑦(𝑝, 𝑞) =
𝑦𝑝(1 − 𝑦)𝑞

2𝜋𝑖 ∫
𝑐+𝑖∞

𝑐−𝑖∞

𝑑𝑡

𝑡𝑝(1 − 𝑡)𝑞(𝑡 − 𝑦)
, 0 < 𝑦 < 𝑐 < 1, (24)
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GIL et al. 863

F IGURE 2 Graphs of the integrands of the integral in (13). Left: 𝑥 = 20, 𝑛 = 30, 𝛿 = 10. Right: 𝑥 = 52,
𝑛 = 4, 𝛿 = 70.

with 𝑝 > 0, 𝑞 > 0. The branches of 𝑠−𝑎 and (1 − 𝑠)−𝑏 are continuous on the path and assume their
principal values when 𝑡 = 𝑐.
The function 𝑃𝑛(𝑥; 𝛿) in (1) becomes

𝑃𝑛(𝑥; 𝛿) =
1
2𝑒
−
1

2
𝛿2
√
𝑦 (1 − 𝑦)

1

2
𝑛

2𝜋𝑖 ∫
𝑐+𝑖∞

𝑐−𝑖∞

𝑒
1

2𝑡
𝛿2𝑦√

𝑡 (1 − 𝑡)
1

2
𝑛
(𝑡 − 𝑦)

𝑑𝑡

=
1
2 −

1
2𝑒
−
1

2
𝛿2
√
𝑦 (1 − 𝑦)

1

2
𝑛

2𝜋𝑖 ∫
𝑑+𝑖∞

𝑑−𝑖∞

𝑒
1

2𝑡
𝛿2𝑦√

𝑡 (1 − 𝑡)
1

2
𝑛
(𝑦 − 𝑡)

𝑑𝑡,

(25)

where 0 < 𝑦 < 𝑐 < 1 and 0 < 𝑑 < 𝑦 < 1. The argument of the exponential function is a bounded
quantity on the path of integration; hence, interchanging summation and integration can be jus-
tified because of uniform convergence. The second follows from shifting in the first integral the
path to the right, across the pole at 𝑡 = 𝑦.
For the function 𝑄𝑛(𝑥; 𝛿), we obtain, using (1), (7), (8), and (24),

𝑄𝑛(𝑥; 𝛿) =
1
2
𝛿√
2

𝑒
−
1

2
𝛿2

Γ
(
3

2

) 𝑦(1 − 𝑦) 12 𝑛
2𝜋𝑖 ∫

𝑐+𝑖∞

𝑐−𝑖∞

1𝐹1

(
1,
3

2
;
1

2𝑡
𝛿2𝑦

)
𝑡(1 − 𝑡)

1

2
𝑛
(𝑡 − 𝑦)

𝑑𝑡,

=
1
2𝑒
−
1

2
𝛿2
√
𝑦 (1 − 𝑦)

1

2
𝑛

2𝜋𝑖 ∫
𝑐+𝑖∞

𝑐−𝑖∞

𝑒
1

2𝑡
𝛿2𝑦
erf

(
𝛿
√
𝑦

2𝑡

)
√
𝑡 (1 − 𝑡)

1

2
𝑛
(𝑡 − 𝑦)

𝑑𝑡.

(26)

When we use erf 𝑧 = 1 − erfc 𝑧, we obtain

𝑄𝑛(𝑥; 𝛿) = 𝑃𝑛(𝑥; 𝛿) −
1
2𝑒
−
1

2
𝛿2
√
𝑦 (1 − 𝑦)

1

2
𝑛

2𝜋𝑖 ∫
𝑐+𝑖∞

𝑐−𝑖∞

𝑒
1

2𝑡
𝛿2𝑦
erfc

(
𝛿
√
𝑦

2𝑡

)
√
𝑡 (1 − 𝑡)

1

2
𝑛
(𝑡 − 𝑦)

𝑑𝑡. (27)
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864 GIL et al.

We conclude:

Lemma 3. We have derived the following representation:

𝐹𝑛(𝑥; 𝛿) = 2𝑃𝑛(𝑥; 𝛿) + 𝑅𝑛(𝑥; 𝛿), (28)

where

𝑅𝑛(𝑥; 𝛿) =
1

2
erfc

(
𝛿∕

√
2
)
+ 𝑄𝑛(𝑥; 𝛿) − 𝑃𝑛(𝑥; 𝛿)

=
1

2
erfc

(
𝛿∕

√
2
)

−
1

2
𝑒
−
1

2
𝛿2

√
𝑦 (1−𝑦)

1
2
𝑛

2𝜋𝑖 ∫
𝑐+𝑖∞

𝑐−𝑖∞

𝑒
1

2𝑡
𝛿2𝑦
erfc

(
𝛿
√
𝑦

2𝑡

)
√
𝑡 (1 − 𝑡)

1

2
𝑛
(𝑡 − 𝑦)

𝑑𝑡

=
1

2
𝑒
−
1

2
𝛿2

√
𝑦 (1−𝑦)

1
2
𝑛

2𝜋𝑖 ∫
𝑑+𝑖∞

𝑑−𝑖∞

𝑒
1

2𝑡
𝛿2𝑦
erfc

(
𝛿
√
𝑦

2𝑡

)
√
𝑡 (1 − 𝑡)

1

2
𝑛
(𝑦 − 𝑡)

𝑑𝑡,

(29)

where 0 < 𝑦 < 𝑐 < 1 and 0 < 𝑑 < 𝑦 < 1.

We find, using erfc(−𝑧) = 2 − erfc 𝑧 and because 𝑃𝑛(𝑥; 𝛿) is evenwith respect to 𝛿 and𝑄𝑛(𝑥; 𝛿)
is odd:

𝐹𝑛(𝑥; −𝛿) = 1 −
1
2erfc

(
𝛿∕

√
2
)
+ 𝑃𝑛(𝑥; 𝛿) − 𝑄𝑛(𝑥; 𝛿), (30)

and we conclude

Corollary 3. With 𝑅𝑛(𝑥; 𝛿) given in (29), the following representation holds:

𝐹𝑛(𝑥; −𝛿) = 1 − 𝑅𝑛(𝑥; 𝛿), 𝐺𝑛(𝑥; −𝛿) = 𝑅𝑛(𝑥; 𝛿), (31)

where 𝐺𝑛(𝑥; 𝛿) is the complementary function defined in (5).

When we compare this with the representation in (5), we see that

𝑅𝑛(𝑥; 𝛿) =
1
2𝑒
−
1

2
𝛿2
∞∑
𝑗=0

(−𝛿∕
√
2)𝑗

Γ
(
1

2
𝑗 + 1

) 𝐼1−𝑦( 1
2𝑛,

1
2 +

1
2𝑗

)
. (32)

This also follows by using in (29) and the expansion[14, §7.2(i), §6(i)]

𝑤(𝑧) = 𝑒−𝑧
2
erfc(−𝑖𝑧), 𝑤(𝑧) =

∞∑
𝑘=0

(𝑖𝑧)𝑘

Γ
(
1

2
𝑘 + 1

) , (33)

and the integral representation of the incomplete beta function in (24).
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GIL et al. 865

The next theorem will show that the second integral in (29) can be written as a simple Laplace
integral.

Theorem 1. The function 𝑅𝑛(𝑥; 𝛿) has the following representation:

𝑅𝑛(𝑥; 𝛿) =
𝑒
−
1

2
𝛿2√
𝑦 (1 − 𝑦)

1

2
𝑛

2𝜋 ∫
∞

0

𝑒
−
1

2
𝛿2𝑦𝑡 𝑡

1

2
𝑛−
1

2

(𝑡 + 1)
1

2
𝑛
(1 + 𝑦𝑡)

𝑑𝑡. (34)

Proof. The proof follows from shifting the contour of the second integral in (29) to the left,
along the imaginary axis. The contour can be further modified by bending it along the nega-
tive axis, taking into account the multivalued function

√
𝑡. Convergence at the origin follows

from the asymptotic behavior of the complementary error function (see [14, 7.12.1] for more
details)

erfc 𝑧 =
𝑒−𝑧

2

𝑧
√
𝜋

(
1 + (𝑧−2)), 𝑧 → ∞. (35)

The relation erfc(𝑖𝑤) + erfc(−𝑖𝑤) = 2 and a few extra steps finish the proof. □

In [11, §5.2], we have used a finite loop integral of the noncentral beta distribution,
which function is related with 𝑃𝑛(𝑥; 𝛿), see (10). In the present case, we have the following
theorem.

Theorem 2. The functions 𝑃𝑛(𝑥; 𝛿), 𝑄𝑛(𝑥; 𝛿), and 𝑅𝑛(𝑥; 𝛿) have the following integral representa-
tions:

𝑃𝑛(𝑥; 𝛿) =
1

2
𝑒
−
1

2
𝛿2

√
𝑦 (1−𝑦)

1
2
𝑛

2𝜋𝑖 ∫
(1+)

0

𝑒
1

2
𝛿2𝑦𝜏 𝜏

1

2
𝑛−
1

2

(𝜏 − 1)
1

2
𝑛
(1 − 𝑦𝜏)

𝑑𝜏,

𝑄𝑛(𝑥; 𝛿) =
1

2
𝑒
−
1

2
𝛿2

√
𝑦 (1−𝑦)

1
2
𝑛

2𝜋𝑖 ∫
(1+)

0

𝑒
1

2
𝛿2𝑦𝜏
𝜏
1

2
𝑛−
1

2 erf

(
𝛿
√
1

2
𝑦𝜏

)
(𝜏 − 1)

1

2
𝑛
(1 − 𝑦𝜏)

𝑑𝜏,

𝑅𝑛(𝑥; 𝛿) =
1

2
erfc

(
𝛿∕

√
2
)

−
1

2
𝑒
−
1

2
𝛿2

√
𝑦 (1−𝑦)

1
2
𝑛

2𝜋𝑖 ∫
(1+)

0

𝑒
1

2
𝛿2𝑦𝜏
𝜏
1

2
𝑛−
1

2 erfc

(
𝛿
√
1

2
𝑦𝜏

)
(𝜏 − 1)

1

2
𝑛
(1 − 𝑦𝜏)

𝑑𝜏.

(36)

The finite contours start at the origin, encircle the point 𝜏 = 1 anticlockwise, and return to the ori-
gin. The multivalued factors assume their principal values, and (𝜏 − 1) is positive for 𝜏 > 1. The pole
at 𝜏 = 1∕𝑦 is outside the contours, which means that the contours cut the positive real axis between 1
and 1∕𝑦.

Proof. These representations immediately follow from (25), (26), and (29) by using the substitution
𝑡 = 1∕𝜏.
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866 GIL et al.

From this theorem, a similar result for𝐹𝑛(𝑥; 𝛿) easily follows.Observe that the second represen-
tation in the following theorem gives a result for the complementary function𝐺𝑛(𝑥; 𝛿) introduced
in (5). We have the following.

Theorem 3. The noncentral 𝑡 distribution 𝐹𝑛(𝑥; 𝛿) defined in (1) has the integral representations

𝐹𝑛(𝑥; 𝛿) =
1

2
erfc

(
𝛿∕

√
2
)

+
1

2
𝑒
−
1

2
𝛿2

√
𝑦 (1−𝑦)

1
2
𝑛

2𝜋𝑖 ∫
(1+)

0

𝑒
1

2
𝛿2𝑦𝜏
𝜏
1

2
𝑛−
1

2 erfc

(
−𝛿

√
1

2
𝑦𝜏

)
(𝜏 − 1)

1

2
𝑛
(1 − 𝑦𝜏)

𝑑𝜏,

= 1 −
1

2
𝑒
−
1

2
𝛿2

√
𝑦 (1−𝑦)

1
2
𝑛

2𝜋𝑖 ∫
(1+,1∕𝑦+)

0

𝑒
1

2
𝛿2𝑦𝜏
𝜏
1

2
𝑛−
1

2 erfc

(
−𝛿

√
1

2
𝑦𝜏

)
(𝜏 − 1)

1

2
𝑛
(𝑦𝜏 − 1)

𝑑𝜏,

(37)

where the first contour is as in (36) and the second one starts at the origin, encircles the point 𝜏 = 1
and 𝜏 = 1∕𝑦 anticlockwise, and returns to the origin.

Proof. The sum 𝑃𝑛(𝑥; 𝛿) + 𝑄𝑛(𝑥; 𝛿) with integral representations in (36) gives a similar inte-
gral with 1 + erf (𝛿

√
𝑦𝜏∕2) = 1 − erf (−𝛿

√
𝑦𝜏∕2) = erfc(−𝛿

√
𝑦𝜏∕2). By using this in (1), the first

representation follows. For the second representation, we modify the contour in the first repre-
sentation by taking the pole at 𝜏 = 1∕𝑦 inside the contour and picking up the residue. We use the
property erfc(𝑧) + erfc(−𝑧) = 2 to conclude the proof. □

The integral representation of 𝑅𝑛(𝑥; 𝛿) given in (34) of Theorem 1 also plays a role in the
following theorem.

Theorem 4. Let the function𝐻𝑛(𝑥; 𝛿) be defined by the contour integral

𝐻𝑛(𝑥; 𝛿) =
1

2
𝑒
−
1

2
𝛿2
√
𝑦 (1 − 𝑦)

1

2
𝑛

2𝜋𝑖 ∫
(1+)

−∞

𝑒
1

2
𝛿2𝑦𝜏 𝜏

1

2
𝑛−
1

2

(𝜏 − 1)
1

2
𝑛
(1 − 𝑦𝜏)

𝑑𝜏, (38)

with 𝑦 = 𝑥2∕(𝑛 + 𝑥2). The contour starts at−∞with the phases of 𝜏 and (𝜏 − 1) equal to−𝜋, encir-
cles 𝜏 = 1 anticlockwise, and terminates at −∞ with the phases of 𝜏 and (𝜏 − 1) equal to +𝜋. The
contour cuts the positives axis between 1 and 1∕𝑦. Then,

𝐻𝑛(𝑥; 𝛿) = 𝑃𝑛(𝑥; 𝛿) + 𝑅𝑛(𝑥; 𝛿), 𝐹𝑛(𝑥; 𝛿) = 2𝐻𝑛(𝑥; 𝛿) − 𝑅𝑛(𝑥; 𝛿). (39)

Proof. We take the parts of the contourwithℜ𝜏 < 0 below and above the negative axis, taking into
account the phase of 𝜏 and 𝜏 − 1. The remaining integral with path ∫ (1+)

0
gives the representation

in (36) of 𝑃𝑛(𝑥; 𝛿), and the integrals along (−∞, 0) give together the representation of 𝑅𝑛(𝑥; 𝛿) in
(34). This gives the first relation in (39), and the second one follows from (28). □

Remark 3. The integral in (34) becomes aKummer𝑈 functionwhen (1 + 𝑦𝑡) is removed. Similarly,
for the first integral in (36) and the integral in (38),without (1 − 𝑦𝜏), the integrals becomeKummer
𝐹 functions. The relation in (39) corresponds with the relation in [15, Eq. 13.2.42], and the proof
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GIL et al. 867

of this relation for the Kummer functions can be based on the integral representations in [15,
Eqns. 13.4.4, 13.4.9, 13.4.13].

4 PRELIMINARY OBSERVATIONS FOR LARGE VALUES OF 𝜹

We will show in this section that we only need to consider the role of 𝑃𝑛(𝑥; 𝛿) in the asymptotic
analysis of 𝐹𝑛(𝑥; 𝛿) for large values of 𝛿. We explain this in the simple example where we start
with the even and odd power series of 𝑒𝑥:

𝑒𝑥 =

∞∑
𝑘=0

𝑥2𝑘

(2𝑘)!
+

∞∑
𝑘=0

𝑥2𝑘+1

(2𝑘 + 1)!
= 2 cosh 𝑥 + (sinh 𝑥 − cosh 𝑥) = 2 cosh 𝑥 − 𝑒−𝑥. (40)

When we want to compute 𝑒𝑥 for large values of 𝑥 by using the Taylor series, it is possible to use
twice the expansion of cosh 𝑥, with a relative error term of order 𝑒−2𝑥.
In the present case, we have the following theorem.

Theorem 5. The noncentral 𝑡 distribution 𝐹𝑛(𝑥; 𝛿) defined in (1) has for large values of the
noncentrality parameter 𝛿 the asymptotic representation

𝐹𝑛(𝑥; 𝛿) = 2𝑃𝑛(𝑥; 𝛿) +
𝑒
−
1

2
𝛿2√
𝑦 (1 − 𝑦)

1

2
𝑛

2𝜋

Γ
(
1

2
𝑛 +

1

2

)
𝜁
1

2
𝑛+
1

2

(
1 + (𝛿−2)), (41)

where 𝜁 = 1
2
𝛿2𝑦, and 𝑦 ∈ (0, 1) and 𝑛 are fixed.

Proof. The proof follows from (28), the representation of 𝑅𝑛(𝑥; 𝛿) in (34), and a straightforward
application of Watson’s lemma; see [16, Chapter 2]. □

Whenwe compute 𝐹𝑛(𝑥; 𝛿) by using the relation in (28), it is needed to compute 𝑅𝑛(𝑥; 𝛿). How-
ever, in the transition case 𝛿 ∼ 𝑥, where 𝐹𝑛(𝑥; 𝛿) ∼

1

2
, 𝑅𝑛(𝑥; 𝛿) can be neglected when 𝛿 is large

enough. This follows from (41). More details on the asymptotic expansion of 𝑅𝑛(𝑥; 𝛿)will be given
in Theorem 10 of Section 6.2, wherewe shall see that there is an extra exponentially small behavior
noticeable for large values of 𝑛 and 𝛿.

5 ASYMPTOTIC EXPANSIONS FOR LARGE 𝜹

From Theorem 5, it follows that we can concentrate on the asymptotic behavior of 𝑃𝑛(𝑥; 𝛿). In the
first part of this section, we summarize the corresponding result derived for the noncentral beta
distribution in [11, §6.1]. In Subsection 5.2, we give a new expansion that is not given in our earlier
paper, and which can be modified with respect to the parameters (see (10)) to obtain a similar
result for the noncentral beta distribution.
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868 GIL et al.

5.1 An expansion in terms of elementary functions

The result of this subsection is amodificationwith respect to notation of a result for the noncentral
beta distribution as derived in [11, §6.1].

Theorem 6. The function 𝐹𝑛(𝑥; 𝛿) defined in (1) has the asymptotic expansion

𝐹𝑛(𝑥; 𝛿) ∼
𝑒
−
1

2
(1−𝑦)𝛿2√

𝑦(1 − 𝑦)
1

2
𝑛
𝜁
1

2
𝑛−1

Γ
(
1

2
𝑛
) ∞∑

𝑘=0

(−1)𝑘
(
1 −
1

2
𝑛

)
𝑘

𝑐𝑘
𝜁𝑘
, (42)

as 𝜁 → ∞, where 𝜁 = 1
2
𝛿2𝑦. The coefficients 𝑐𝑘 follow from the expansion

(1 + 𝑡)
1

2
𝑛−
1

2

1 − 𝑦(𝑡 + 1)
=

∞∑
𝑛=0

𝑐𝑘𝑡
𝑘. (43)

The expansion in (42) can be used for 𝑛 = (1) and for 𝜀 ≤ 𝑦 ≤ 1 − 𝜀, where 𝜀 is a fixed positive small
number. When 𝑛 = 2𝑚,𝑚 = 1, 2, 3, … , the terms in the expansion with index 𝑘 ≥ 𝑚 all vanish.

The coefficients 𝑐𝑘 defined in (43) follow from the simple recursions

𝑐𝑘 =
1

1 − 𝑦
(𝑎𝑘 + 𝑦𝑐𝑘−1), 𝑘 ≥ 1, 𝑐0 = 1

1 − 𝑦
, (44)

where the coefficients 𝑎𝑘 follow from

(1 + 𝑡)
1

2
𝑛−
1

2 =

∞∑
𝑘=0

𝑎𝑘𝑡
𝑘, 𝑎𝑘 =

(
1

2
𝑛 −

1

2

𝑘

)
=

1

2
𝑛 +

1

2
− 𝑘

𝑘
𝑎𝑘−1, (45)

for 𝑘 ≥ 1 with 𝑎0 = 1.
Proof. We start with an expansion of𝐻𝑛(𝑥; 𝛿), and the proof is based on the representation in (38)
after the transformation 𝜏 = 1 + 𝑡. This gives

𝐻𝑛(𝑥; 𝛿) =
1
2𝑒
−
1

2
(1−𝑦)𝛿2

√
𝑦 (1 − 𝑦)

1

2
𝑛

2𝜋𝑖 ∫
(0+)

−∞

𝑒𝜁𝑡𝑡
−
1

2
𝑛 (1 + 𝑡)

1

2
𝑛−
1

2

1 − 𝑦(1 + 𝑡)
𝑑𝑡. (46)

We applyWatson’s lemma for loop integrals (see [17, Page 120]) by substituting the expansion (43),
and using the contour integral

1

Γ(𝑧)
=
1

2𝜋𝑖 ∫
(0+)

−∞

𝑒𝑡𝑡−𝑧 𝑑𝑡. (47)

We obtain

𝐻𝑛(𝑥; 𝛿) ∼
1
2
𝑒
−
1

2
(1−𝑦)𝛿2√

𝑦(1 − 𝑦)
1

2
𝑛
𝜁
1

2
𝑛−1

Γ
(
1

2
𝑛
) ∞∑

𝑘=0

(−1)𝑘
(
1 −

1
2𝑛

)
𝑘

𝑐𝑘
𝜁𝑘
. (48)
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GIL et al. 869

TABLE 1 Computed values of 𝐹𝑛(𝑥; 𝛿) and relative errors for 𝑛 = 10.3, 𝛿 = 20, and several values of 𝑥. We
used the expansion given in (42) with 11 terms.

x 𝑭𝒏(𝒙; 𝜹) Rel. accuracy 𝟏 − 𝒚 𝒋𝐦𝐚𝐱

5 0.7890745035061528 × 10−20 0.20 × 10−13 0.29178 254
8 0.1902963697413609 × 10−07 0.40 × 10−12 0.13863 294
11 0.4649258368179092 × 10−03 0.12 × 10−09 0.07845 310
14 0.2912746016055676 × 10−01 0.11 × 10−07 0.04993 317
17 0.1858422833307925 × 10−00 0.41 × 10−06 0.03441 321
20 0.4434882973203470 × 10−00 0.82 × 10−05 0.02510 323

The terms in this expansion with index 𝑘 ≥ 𝑚 vanish when 𝑛 = 2𝑚,𝑚 = 1, 2, 3, … because

1

2𝜋𝑖 ∫
(0+)

−∞

𝑒𝜁𝑡𝑡𝑘−𝑚 𝑑𝑡 = 0, 𝑘 = 𝑚,𝑚 + 1,𝑚 + 2,… . (49)

With the expansion for 𝐻𝑛(𝑥; 𝛿) in (48), we use 𝐹𝑛(𝑥; 𝛿) ∼ 2𝐻𝑛(𝑥; 𝛿) for large values of 𝛿 to
obtain the expansion in (42). This follows from the second relation in (39) and from Theorem 5,

where we have given an asymptotic estimate of 𝑅𝑛(𝑥; 𝛿)with exponential factor 𝑒
−
1

2
𝛿2 . In (42), we

see an exponential factor 𝑒−
1

2
(1−𝑦)𝛿2 . Hence, from an asymptotic point of view, when 𝛿 is large,

𝑅𝑛(𝑥; 𝛿) can be neglected in the relation 𝐹𝑛(𝑥; 𝛿) = 2𝐻𝑛(𝑥; 𝛿) − 𝑅𝑛(𝑥; 𝛿). □

In Table 1, we give numerical values of 𝐹𝑛(𝑥; 𝛿) for 𝑛 = 10.3, 𝛿 = 20 and several values of 𝑥
by using the expansion of 𝐹𝑛(𝑥; 𝛿) given in (42). Because of (28), we have for large 𝛿 a simi-
lar asymptotic estimate 𝐹𝑛(𝑥; 𝛿) ∼ 2𝑃𝑛(𝑥; 𝛿) as for 𝐻𝑛(𝑥; 𝛿), and we can compare the computed
values with twice the series expansion of 𝑃𝑛(𝑥; 𝛿) in (1). The final column in the table gives
the number of terms 𝑗max needed in that expansion to have the relative error smaller than
10−16 compared with the computed sum. We have computed the incomplete beta functions per
term, not with recursion. We see that when 𝑥 = 𝛿, the transition value, 𝐹𝑛(𝑥; 𝛿) is near

1

2
. As

𝑥 increases from 5 to the transition value 20, with decreasing values of 1 − 𝑦 = 𝑛∕(𝑛 + 𝑥2), the
relative accuracy becomes larger. This happens because 𝑐𝑘 becomes larger as 1 − 𝑦 becomes
smaller, which follows from the recursion in (44). The computations are done with Maple,
𝐷𝑖𝑔𝑖𝑡𝑠 = 16.

5.2 An expansion in terms of incomplete gamma functions

Clearly, the coefficients in the expansion given in Theorem 6 are not defined as 𝑦 → 1, which
corresponds with 𝑥2 ≫ 𝑛. To handle this, we can use the following theorem.

Theorem 7. The function 𝐹𝑛(𝑥; 𝛿) has the asymptotic expansions

𝐹𝑛(𝑥; 𝛿) ∼ 𝑦
1

2
𝑛−
1

2

∞∑
𝑘=0

(
1

2
𝑛 −

1

2

𝑘

)
𝜂𝑘𝑄

(
1

2
𝑛 − 𝑘, 𝜂𝜁

)
, (50)
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870 GIL et al.

and

𝐹𝑛(𝑥; 𝛿) ∼ 1 − 𝑦
1

2
𝑛−
1

2

∞∑
𝑘=0

(
1

2
𝑛 −

1

2

𝑘

)
𝜂𝑘𝑃

(
1

2
𝑛 − 𝑘, 𝜂𝜁

)
, (51)

as 𝜁 → ∞, where 𝑃(𝑎, 𝑧) and 𝑄(𝑎, 𝑧) are the incomplete gamma function ratios given in (15), and

𝜁 =
1

2
𝛿2𝑦, 𝜂 =

1 − 𝑦

𝑦
=
𝑛

𝑥2
. (52)

Remark 4. Before we give the proof, we note the following.

1. The expansions in (50) and (51) can be used for 𝑛 = (1) and for 𝜀 ≤ 𝑦 ≤ 1, where 𝜀 is a fixed
positive small number.

2. These expansions are finite with (𝑛 − 1)∕2 + 1 terms when 𝑛 is an odd positive integer. This
follows from the definition of the coefficients 𝑎𝑘 in (45).

3. The expansion in (50) is finite with 𝑛∕2 terms when 𝑛 is an even positive integer, because
𝑄(𝑎, 𝑧) = 0 for 𝑎 = 0,−1,−2,…, which follows from the definition in (15).

4. Because 𝑄(𝑎, 𝑧) = Γ(𝑎, 𝑧)∕Γ(𝑎) ∼ 𝑧𝑎−1𝑒−𝑧∕Γ(𝑎) as 𝑧 → ∞, we have the estimate

𝜂𝑘𝑄

(
1
2𝑛 − 𝑘, 𝜂𝜁

)
∼
(𝜂𝜁)

1

2
𝑛−1
𝑒−𝜂𝜁

Γ
(
1

2
𝑛 − 𝑘

) 𝜁−𝑘, 𝜁 → ∞, (53)

which shows that the expansion in (50) has a true asymptotic character for large values of
𝜁 =

1

2
𝛿2𝑦.

5. The asymptotic character of the expansion in (51) follows from (see [15, Eq. 13.6.5, Eq. 13.7.1])

𝑃(𝑎, 𝑧) =
𝑧𝑎𝑒−𝑧

Γ(𝑎 + 1)
1𝐹1

(
1

𝑎 + 1
; 𝑧

)
∼ 1, 𝑧 → ∞, (54)

with 𝑎 fixed. This gives for fixed 𝑛 and 𝑘

𝜂𝑘𝑃

(
1
2𝑛 − 𝑘, 𝜂𝜁

)
∼ 𝜂𝑘 = (𝑛∕𝑥2)𝑘, 𝜂𝜁 → ∞, 𝜂𝜁 =

1
2𝛿
2 𝑛

𝑛 + 𝑥2
. (55)

Now the assumed large values of 𝑥 are relevant for the asymptotic character of the expansion.
When 𝜂𝜁 = (1), 𝑃( 12𝑛 − 𝑘, 𝜂𝜁) = (1), and the asymptotic character of the expansion again
comes from the powers 𝜂𝑘.

Proof. Again, we start with a result for the function𝐻𝑛(𝑥; 𝛿) and use the integral representation in

(46). After substituting the expansion of (1 + 𝑡)
1

2
𝑛−
1

2 (see (45)), we find an expansionwith integrals
of the form

1

2𝜋𝑖 ∫
(0+)

−∞

𝑒𝜁𝑡𝑡
−
1

2
𝑛+𝑘 𝑑𝑡

𝜂 − 𝑡
, (56)

 14679590, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sapm

.12609 by C
ochrane N

etherlands, W
iley O

nline L
ibrary on [29/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



GIL et al. 871

TABLE 2 Computed values of 𝐹𝑛(𝑥; 𝛿) and relative errors for 𝑛 = 10.3, 𝛿 = 20, and several values of 𝑥. We
used the expansion given in (50) with six terms.

x 𝑭𝒏(𝒙; 𝜹) Rel. accuracy 𝟏 − 𝒚 𝒋𝐦𝐚𝐱

5 0.7890745035061292 × 10−20 0.10 × 10−13 0.29178 254
8 0.1902963697414361 × 10−07 0.32 × 10−14 0.1386 294
11 0.4649258368729340 × 10−03 0.97 × 10−14 0.07845 310
14 0.2912746047441838 × 10−01 0.69 × 10−14 0.04993 317
17 0.1858423597361172 × 10−00 0.70 × 10−14 0.03441 321
20 0.4434919419501216 × 10−00 0.50 × 10−14 0.02510 323

with 𝜁 and 𝜂 given in (52). These integrals can be written in terms of the incomplete gamma
function 𝑄(𝑎, 𝑧). We use the representation (see [16, Section 37.2])

𝑄(𝑎, 𝑧) =
𝑒−𝑎𝜙(𝜆)

2𝜋𝑖 ∫
(0+)

−∞

𝑒𝑎𝜙(𝑠)
𝑑𝑠

𝜆 − 𝑠
, (57)

where the contour cuts the positive real axis in the interval [0, 𝜆] and

𝜙(𝑠) = 𝑠 − 1 − ln 𝑠, 𝜆 =
𝑧

𝑎
. (58)

Using 𝜂𝜁 = 1
2
(1 − 𝑦)𝛿2 and the substitution 𝑡 = (1

2
𝑛 − 𝑘)𝑠∕𝜁 in the integral in (56), the expansion

is as given in (50), where we have used 𝐹𝑛(𝑥; 𝛿) ∼ 2𝐻𝑛(𝑥; 𝛿) again.
The expansion in (51) follows from shifting the contours in (38) and (57) to the right, across

the poles, picking up the residues and using the complementary relation 𝑄(𝑎, 𝑧) = 1 − 𝑃(𝑎, 𝑧). A

formal proof follows from this relation and the expansion
∑∞
𝑘=0
𝑎𝑘𝜂

𝑘 = 𝑦
−
1

2
𝑛+
1

2 . □

Recurrence relations to compute the normalized incomplete gamma functions are given
in [13, §8.8]. Which one of the expansions in Theorem (7) is most convenient for numeri-
cal computations follows from choosing the series with the smallest first term. We know that
𝑄(
1

2
𝑛, 𝜂𝜁) ≤ 𝑃(1

2
𝑛, 𝜂𝜁) when (roughly) 1

2
𝑛 ≤ 𝜂𝜁. That is, when 𝑥2 + 𝑛 ≤ 𝛿2. When 𝑥2 ≫ 𝑛 and

𝛿 is also large, we conclude that for 𝑥 ≤ 𝛿, we should take (50); otherwise, it is better to take
expansion (51).
When we compare Table 1 with Table 2, we observe for the same parameters a uniform

relative error in the latter. Also, in (50), we used only six terms. The computations are
done with Maple, 𝐷𝑖𝑔𝑖𝑡𝑠 = 16, and we evaluated the incomplete gamma functions by Maple’s
Γ(𝑎, 𝑧); no recursion is used. For comparison, we have used twice the expansions of 𝑃𝑛(𝑥; 𝛿)
in (1).

6 ASYMPTOTIC EXPANSIONS FOR LARGE 𝒏

For large values of 𝑛, we consider two cases: onewith 𝛿 and 𝑥 small with respect to 𝑛, and a second
case with larger values of these parameters.
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872 GIL et al.

6.1 Bounded values of 𝜹 and 𝒙

We use the representation of 𝐹𝑛(𝑥; 𝛿) in (13) and write

𝐹𝑛(𝑥; 𝛿) = 𝐴𝑛𝑒
−
1

2
𝑛

∫
∞

0

𝐸(𝑡)𝑒
−
1

2
𝑛𝜙(𝑡) 𝑑𝑡

𝑡
,

𝐴𝑛 =
(𝑛∕2)𝑛∕2

Γ(𝑛∕2)
, 𝐸(𝑡) = erfc

(
(𝛿 − 𝑥𝑡)∕

√
2
)
,

𝜙(𝑡) = 𝑡2 − ln
(
𝑡2
)
− 1, 𝜙′(𝑡) =

2(𝑡2 − 1)

𝑡
.

(59)

The asymptotic analysis focuses on the positive saddle point 𝑡 = 1 and to represent the coeffi-
cients in a convenient form, we first split off a term by writing 𝐸(𝑡) = (𝐸(𝑡) − 𝐸(1)) + 𝐸(1), where
𝐸(1) = erfc((𝛿 − 𝑥)∕

√
2). The part with 𝐸(1) gives

𝐸(1)𝐴𝑛 ∫
∞

0

𝑒
−
1

2
𝑛𝑡2
𝑡𝑛−1 𝑑𝑡 =

1
2erfc

(
(𝛿 − 𝑥)∕

√
2
)
, (60)

and we continue with the following theorem.

Theorem 8. For large values of 𝑛 and bounded values of 𝛿 and 𝑥, we have the expansion

𝐹𝑛(𝑥; 𝛿) ∼
1

2
erfc

(
(𝛿 − 𝑥)∕

√
2
)
+ 𝐵(𝑥; 𝛿)

∞∑
𝑘=1

𝑐𝑘
𝑛𝑘
, 𝑛 → ∞, (61)

where 𝐵(𝑥; 𝛿) and the first coefficients 𝑐𝑘 are given by

𝐵(𝑥; 𝛿) = 𝑥

√
2

𝜋
𝑒
−
1

2
(𝛿−𝑥)2

,

𝑐1 =
1

8

(
𝑥𝛿 − 𝑥2 − 1

)
,

𝑐2 =
1

192

(
3𝛿3𝑥3 − 9𝛿2𝑥4 + 9𝛿𝑥5 − 3𝑥6 − 2𝛿2𝑥2 − 5𝛿𝑥3 + 7𝑥4 − 3𝛿𝑥 + 5𝑥2 + 3

)
.

(62)

Proof. With the transformation

𝜙(𝑡) =
1
2𝑤
2, sign(𝑡 − 1) = sign(𝑤), (63)

we obtain

𝐹𝑛(𝑥; 𝛿) =
1
2erfc

(
(𝛿 − 𝑥)∕

√
2
)
+ 𝐴𝑛𝑒

−
1

2
𝑛

∫
∞

−∞

𝑒
−
1

4
𝑛𝑤2
𝑓(𝑤) 𝑑𝑤,

𝑓(𝑤) =
𝐸(𝑡) − 𝐸(1)

𝑡

𝑑𝑡

𝑑𝑤
.

(64)

We invert the relation in (63) in the form of the expansion

𝑡 = 1 +
1
2𝑤 +

1
24𝑤

2 + (𝑤3), (65)
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GIL et al. 873

which is valid for small |𝑤|. Next, we expand for small |𝑡 − 1|
𝐸(𝑡) − 𝐸(1)

𝑡
= 𝐵(𝑥; 𝛿)(𝑡 − 1)

(
1 +

1
2 (𝛿𝑥 − 𝑥

2 − 2)(𝑡 − 1) + (𝑡 − 1)2)
)
, (66)

where 𝐵(𝑥; 𝛿) is given in (62). With these two expansions, we obtain

𝑓(𝑤) =

∞∑
𝑘=0

𝑓𝑘𝑤
𝑘 = 𝐵(𝑥; 𝛿)

(
1
4𝑤 +

1
16 (𝛿𝑥 − 𝑥

2 − 1)𝑤2 + (𝑤3)
)
, (67)

from which we can obtain the first 𝑓𝑘. With the expansion of 𝑓(𝑤), we find the asymptotic
expansion

𝐹𝑛(𝑥; 𝛿) ∼
1
2erfc

(
(𝛿 − 𝑥)∕

√
2
)
+
𝐵(𝑥; 𝛿)

Γ∗(𝑛∕2)

∞∑
𝑘=0

𝑏𝑘
𝑛𝑘
, (68)

where

𝑏0 = 0, 𝑏𝑘 =
1

𝐵(𝑥; 𝛿)

(
1
2

)
𝑘

22𝑘𝑓2𝑘, 𝑘 = 1, 2, 3, … . (69)

Here we used (see (59))

2𝐴𝑛𝑒
−
1

2
𝑛

√
𝜋

𝑛
= 2
(𝑛∕2)𝑛∕2

Γ(𝑛∕2)
𝑒
−
1

2
𝑛

√
𝜋

𝑛
=

1

Γ∗(𝑛∕2)
, (70)

and the scaled gamma function Γ∗(𝑧) defined by

Γ(𝑧) =
√
2𝜋 𝑒−𝑧𝑧

𝑧−
1

2 Γ∗(𝑧). (71)

The first coefficients 𝑏𝑘 are

𝑏0 = 0, 𝑏1 =
1
8
(
𝑥𝛿 − 𝑥2 − 1

)
,

𝑏2 =
1

192

(
3𝛿3𝑥3 − 9𝛿2𝑥4 + 9𝛿𝑥5 − 3𝑥6 − 2𝛿2𝑥2 − 5𝛿𝑥3 + 7𝑥4 + 𝛿𝑥 + 𝑥2 − 1

)
.

(72)

Because 𝑛 is large, we can use the asymptotic expansion of the scaled gamma function. We have
(see [16, Chapter 6])

Γ∗
(
1
2𝑛

)
∼

∞∑
𝑘=0

𝑎𝑘
𝑛𝑘
,

1

Γ∗
(
1

2
𝑛
) ∼ ∞∑

𝑘=0

(−1)𝑘
𝑎𝑘
𝑛𝑘
, 𝑛 → ∞, (73)

with first coefficients 𝑎0 = 1, 𝑎1 =
1

6
, 𝑎2 =

1

72
, 𝑎3 =

139
6480 , and we can write the expansion in (68)

as in (61), where the 𝑐𝑘 follows from the formal power series multiplication

∞∑
𝑘=1

𝑐𝑘
𝑛𝑘
=

∞∑
𝑘=0

(−1)𝑘
𝑎𝑘
𝑛𝑘

∞∑
𝑘=1

𝑏𝑘
𝑛𝑘
, (74)
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874 GIL et al.

TABLE 3 Computed values of 𝐹𝑛(𝑥; 𝛿) and relative errors for 𝑛 = 1000, 𝛿 = 10, and several values of 𝑥. We
used the expansion given in (61) with six terms.

x 𝑭𝒏(𝒙; 𝜹) Rel. accuracy 𝒋𝐦𝐚𝐱

1.0 0.1149355213382657 × 10−18 0.78 × 10−14 23
2.5 0.3472666641712521 × 10−13 0.31 × 10−11 39
5.0 0.3344736497826102 × 10−06 0.15 × 10−10 60
7.5 0.6806053041739461 × 10−02 0.17 × 10−11 80
10.0 0.4990113438101769 × 10−00 0.21 × 10−10 97
12.5 0.9919154834852601 × 10−00 0.63 × 10−10 110

which gives

𝑐0 = 0, 𝑐𝑘 =

𝑘−1∑
𝑗=0

(−1)𝑗𝑎𝑗𝑏𝑘−𝑗, 𝑘 ≥ 1. (75)
□

The coefficients 𝑓𝑘 and 𝑏𝑘 appearing in this proof can be obtained by using manipulation of
power series. Sometimes, simple explicit forms or recurrence relations for these coefficients are
available, but not in the present case. It is always possible to construct explicit formulas for these
coefficients. For a short summary of this topic, we refer to [16, Section 3.3].
In Table 3, we give numerical values of 𝐹𝑛(𝑥; 𝛿) for 𝑛 = 1000, 𝛿 = 10, and several values of 𝑥.

We have obtained 𝐹𝑛(𝑥; 𝛿) using the expansion given in (61) with six terms. We see that when
𝑥 = 𝛿, the transition value, 𝐹𝑛(𝑥; 𝛿), is near

1

2
.

We have compared the computed values with the representation of 𝐹𝑛(𝑥; 𝛿) in (1). The final
column in the table gives the number of terms 𝑗max needed in the expansions to have the relative
error smaller than 10−16 compared with the computed sum. We have computed the incomplete
beta functions per term, not with recursion. These computations are done with Maple, 𝐷𝑖𝑔𝑖𝑡𝑠 =
16. The computed value for 𝑥 = 1 can be compared with the result given in [7, Table 1] for the
same chosen parameters.

6.2 Values of 𝜹 and 𝒙 of order (𝒏)

To obtain the result for 𝐹𝑛(𝑥; 𝛿), we start with 𝑃𝑛(𝑥; 𝛿) and use the relation 𝐹𝑛(𝑥; 𝛿) = 2𝑃𝑛(𝑥; 𝛿) +
𝑅𝑛(𝑥; 𝛿) derived in Lemma 3. We scale the 𝑥 and 𝛿 parameters by writing

𝑥 = 𝜉
√
𝑛, 𝛿 = 𝜎

√
𝑛, (76)

and we assume that 𝑥∕𝑛 and 𝛿∕𝑛 are bounded. For small values of these parameters, we refer to
Section 6.1. We have the following theorem.

Theorem 9. Consider the integral of 𝑃𝑛(𝑥; 𝛿) given in (36) written in the form

𝑃𝑛(𝑥; 𝛿) =
1

2

√
𝑦 𝑒
−
1

2
𝑛𝜙(1∕𝑦)

2𝜋𝑖 ∫
(1+)

0

𝑒
1

2
𝑛𝜙(𝑡) 𝑑𝑡

(1 − 𝑦𝑡)
√
𝑡
,

𝜙(𝑡) = 𝑧𝑡 + ln(𝑡) − ln(𝑡 − 1), 𝑦 =
𝑥2

𝑛 + 𝑥2
=

𝜉2

1 + 𝜉2
, 𝑧 = 𝑦𝜎2.

(77)
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GIL et al. 875

Let 𝑡0 be the positive saddle point that follows from

𝜙′(𝑡) =
𝑧𝑡2 − 𝑧𝑡 − 1

𝑡(𝑡 − 1)
⟹ 𝑡0 =

𝑧 +
√
𝑧(𝑧 + 4)

2𝑧
, (78)

and let the real number 𝜂 be defined by

𝜙(1∕𝑦) − 𝜙(𝑡0) = 𝜂
2, sign(𝜂) = sign(1∕𝑦 − 𝑡0). (79)

Then, as 𝑛 → ∞ and 𝑧 > 0, we have the asymptotic result

𝑃𝑛(𝑥; 𝛿) ∼
1

4
erfc

(
𝜂
√
𝑛∕2

)
+
1

2

𝑒
−
1

2
𝑛𝜂2√
2𝜋𝑛

∞∑
𝑘=0

𝑐𝑘

𝑛𝑘
, 𝑛 → ∞. (80)

The first two coefficients 𝑐𝑘 are given in the proof.

Before we give the proof, we note that the location of the saddle point 𝑡0 relative to the pole at
1∕𝑦 has a major influence on the asymptotic behavior of 𝑃𝑛(𝑥; 𝛿). We can verify that 𝑡0 = 1∕𝑦 if
𝜎 = 𝜉, that is, if 𝛿 = 𝑥, which is the transition case; see the end of Section 2. Initially, we assume
that 𝑡0 < 1∕𝑦, in which case we can take the contour in (77) through the saddle point 𝑡0, which is
always larger than unity. We have sign(𝑡0 − 1∕𝑦) = sign(𝑥 − 𝛿), as is easily verified.

Proof. We use the transformation

𝜙(𝑡) − 𝜙(𝑡0) = 𝑠
2, (81)

with condition sign(𝑠) = sign(𝑡 − 𝑡0) for 𝑡 > 1 and real 𝑠, with continuity for complex values, and
we obtain

𝑃𝑛(𝑥; 𝛿) =
1
2
𝑒
−
1

2
𝑛(𝜙(1∕𝑦)−𝜙(𝑡0))

2𝜋𝑖 ∫
+𝑖∞

−𝑖∞

𝑒
1
2𝑛𝑠

2

𝑓(𝑠) 𝑑𝑠,

𝑓(𝑠) =

√
𝑦

(1 − 𝑦𝑡)
√
𝑡

𝑑𝑡

𝑑𝑠
=

√
𝜌

𝑡

1

𝜌 − 𝑡

𝑑𝑡

𝑑𝑠
, 𝜌 =

1

𝑦
.

(82)

The pole at 1∕𝑦 in the 𝑡-plane should correspond with a pole, say 𝜂, in the 𝑠-plane, and 𝜂 follows
from the equation given in (79), where the sign condition follows from the one given for the trans-
formation in (79). Because we have assumed 𝛿 > 𝑥, hence 1∕𝑦 > 𝑡0, it follows that 𝜂 > 0 (for the
time being).
We split off the pole, writing

𝑓(𝑠) =
𝐴

𝜂 − 𝑠
+ 𝑔(𝑠), (83)

assuming that 𝑔(𝑠) is finite at 𝑠 = 𝜂. Writing

𝐴 =
𝜂 − 𝑠

𝜌 − 𝑡

√
𝜌

𝑡

𝑑𝑡

𝑑𝑠
− (𝜂 − 𝑠)𝑔(𝑠), (84)
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876 GIL et al.

and using l’Hôpital’s rule in the limit 𝜂 → 𝑠, 𝜌 → 𝑡, we find 𝐴 = 1. This gives

𝑃𝑛(𝑥; 𝛿) =
1
4erfc

(
𝜂
√
𝑛∕2

)
+
1
2
𝑒
−
1

2
𝑛𝜂2

2𝜋𝑖 ∫
+𝑖∞

−𝑖∞

𝑒
1

2
𝑛𝑠2
𝑔(𝑠) 𝑑𝑠, (85)

where we have used (see [14, 7.2.3, 7.7.2])

𝑒
−
1

2
𝑛𝜂2

4𝜋𝑖 ∫
+𝑖∞

−𝑖∞

𝑒
1

2
𝑛𝑠2 𝑑𝑠

𝜂 − 𝑠
=
𝑒
−
1

2
𝑛𝜂2

4𝜋𝑖 ∫
∞

−∞

𝑒
−
1

2
𝑛𝑡2 𝑑𝑡

𝑡 − 𝑖𝜂
=
1
4erfc

(
𝜂
√
𝑛∕2

)
. (86)

The expansion 𝑔(𝑠) =
∑∞
𝑘=0
𝑔𝑘𝑠
𝑘 gives the asymptotic expansion in (80), where

𝑐𝑘 = (−1)
𝑘2𝑘

(
1
2

)
𝑘

𝑔2𝑘, 𝑘 = 0, 1, 2, … . (87)

The coefficients 𝑐𝑘 follow from inverting the relation in (81) by determining the coefficients 𝑡𝑘
in the expansion 𝑡 = 𝑡0 +

∑∞
𝑘=0
𝑡𝑘𝑠
𝑘. The first few are

𝑡1 =

√
2√

𝜙′′(𝑡0)
=

√
2√

𝑧
√
𝑧(𝑧 + 4)

=

√
2 𝑡0(𝑡0 − 1)√
2𝑡0 − 1

,

𝑡2 =
𝑡21(3𝑡

2
0 − 3𝑡0 + 1)

3𝑡0(𝑡0 − 1)(2𝑡0 − 1)
, 𝑡3 =

𝑡31(18𝑡
4
0 − 36𝑡

3
0 + 24𝑡

2
0 − 6𝑡0 + 1)

36𝑡20(2𝑡0 − 1)
2(𝑡0 − 1)2

,

𝑡4 = −
𝑡41(9𝑡

2
0 − 9𝑡0 + 1)

270𝑡30(2𝑡0 − 1)
3(𝑡0 − 1)3

,

(88)

with 𝑡0 defined in (78). For the coefficients 𝑡𝑘 with 𝑘 ≥ 2, we prefer to express 𝑡𝑘 in terms of 𝑡0, not
𝑧, to avoid square roots. For the first 𝑔2𝑘, we find

𝑔0 =

√
𝜌

𝑡0

𝑡1
𝜌 − 𝑡0

−
1

𝜂
,

𝑔2 =

√
𝜌

𝑡0

𝑡31
(
𝑎0 + 𝑎1𝑡0 + 𝑎2𝑡

2
0 + 𝑎3𝑡

3
0 + 𝑎4𝑡

4
0 + 𝑎5𝑡

5
0

)
24𝑡20(𝑡0 − 1)

2(2𝑡0 − 1)2(𝜌 − 𝑡0)3
−
1

𝜂3
,

𝑎0 = −𝜌
2, 𝑎1 = 2𝜌(7 + 3𝜌), 𝑎2 = −3𝜌

2 − 84𝜌 + 11,

𝑎3 = 186𝜌 − 66, 𝑎4 = −216𝜌 + 129, 𝑎5 = 96𝜌 − 72.

(89)

To obtain these, we have used (82), (83), and (88). The coefficients 𝑔2𝑘 are bounded as 𝜂 → 0,
and for small values of 𝜂, we can expand the coefficients in powers of 𝜂. Details are given in the
Appendix. □

Remark 5. We have assumed 𝜂 > 0 in the proof, which follows from the initial assumption 𝛿 > 𝑥.
The function 𝑔(𝑠) introduced in (83) is analytic at 𝑠 = 𝜂 (whether or not positive or zero) and the
complementary error function in (80) is also and analytic function of 𝜂. It follows that we can
use the asymptotic result in (80) also for 𝛿 ≤ 𝑥 (𝜂 ≤ 0), although for 𝛿 < 𝑥, it is better to use the
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GIL et al. 877

TABLE 4 Computed values of 𝐹𝑛(𝑥; 𝛿) and relative errors for several values of 𝑥, 𝑛, and 𝛿. We used twice the
expansion given in (80) with three terms and six terms.

x n 𝜹 Three terms Six terms
50 100 75 1.26 × 10−08 6.38 × 10−09

500 100 510 7.45 × 10−10 4.54 × 10−12

100 1000 105 6.94 × 10−13 3.00 × 10−15

1000 1000 1010 2.65 × 10−13 3.00 × 10−15

complementary function 𝐺𝑛(𝑥; 𝛿) = 1 − 𝐹𝑛(𝑥; 𝛿) = 1 − 2𝑃𝑛(𝑥; 𝛿) − 𝑅𝑛(𝑥; 𝛿), and the expansion

1 − 2𝑃𝑛(𝑥; 𝛿) ∼
1
2erfc

(
−𝜂

√
𝑛∕2

)
−
𝑒
−
1

2
𝑛𝜂2√
2𝜋𝑛

∞∑
𝑘=0

𝑐𝑘

𝑛𝑘
, 𝑛 → ∞. (90)

Example 1. When we take 𝑥 = 1000, 𝑛 = 1000, 𝛿 = 1010 and we compute 𝜂 ≐ 0.014104716 from
(79). With

𝐹𝑛(𝑥; 𝛿) ∼ 2𝑃𝑛(𝑥; 𝛿) ∼
1
2erfc

(
𝜂
√
𝑛∕2

)
+
𝑒
−
1

2
𝑛𝜂2√
2𝜋𝑛

𝑐0, (91)

the result is 𝐹𝑛(𝑥; 𝛿) ≐ 0.3224383497, with relative error 1.96 × 10−7. With 𝑥 = 500, 𝑛 = 100, 𝛿 =
510, we find 𝜂 ≐ 0.028180106 and 𝐹𝑛(𝑥; 𝛿) ≐ 0.3711630202, with relative error 5.51 × 10−6. We
used Maple, 𝐷𝑖𝑔𝑖𝑡𝑠 = 16, and compared with values given in [7, Table 1].

In Theorem 5, we have given an estimate of 𝑅𝑛(𝑥; 𝛿) for large values of 𝛿. This estimate can be
used to decide if we need the computation of the function 𝑅𝑛(𝑥; 𝛿) in the algorithm to compute
𝐹𝑛(𝑥; 𝛿) = 2𝑃𝑛(𝑥; 𝛿) + 𝑅𝑛(𝑥; 𝛿).
In Table 4, we give relative errors of numerical results of the expansion in (80) with three and

six terms. We used twice the results to obtain an approximation of 𝐹𝑛(𝑥; 𝛿). In these examples,
we have not used the term 𝑅𝑛(𝑥; 𝛿) because it is too small to influence the obtained accuracy.
We used Maple, 𝐷𝑖𝑔𝑖𝑡𝑠 = 16, and compared with values given in [7, Table 1]. For the values of 𝑥
and 𝛿 of the table, the values of 𝜂 defined in (79) are rather small, and we have used expansions
𝑔2𝑘 =

∑∞
𝑗=0
𝑔𝑗,𝑘𝜂

𝑘, as explained in the Appendix.
To complement the expansion in (80), we conclude this section with deriving an asymptotic

expansion of 𝑅𝑛(𝑥; 𝛿) valid for large values of 𝑛. Again, we use the scaled parameters 𝜉 = 𝑥∕
√
𝑛

and 𝜎 = 𝛿∕
√
𝑛.

Theorem 10. Let us define

𝜓(𝑡) = 𝑧𝑡 − ln 𝑡 + ln(1 + 𝑡), 𝑡 > 0, 𝑧 = 𝑦𝜎2. (92)

Then, as 𝑛 → ∞ and 𝑧 > 0, the function 𝑅𝑛(𝑥; 𝛿) with integral representation given in (34) has the
asymptotic expansion

𝑅𝑛(𝑥; 𝛿) ∼
𝑒
−
1

2
𝛿2√
𝑦 (1 − 𝑦)

1

2
𝑛√

2𝜋𝑛
𝑒
−
1

2
𝑛𝜓(𝑡𝑝)

∞∑
𝑘=0

𝑑𝑘
𝑛𝑘
, (93)
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878 GIL et al.

where 𝑡𝑝 is the positive saddle point that follows from

𝜓′(𝑡) =
𝑧𝑡2 + 𝑧𝑡 − 1

𝑡(1 + 𝑡)
⟹ 𝑡𝑝 =

−𝑧 +
√
𝑧(𝑧 + 4)

2𝑧
. (94)

The first coefficients 𝑑𝑘 are given in the proof.

We assume that 𝑥 and 𝛿 are bounded. In particular, when 𝛿 is large, 𝑧 will be large, and the
saddle point 𝑡𝑝 will approach the origin, where the integral has a singularity. Other asymptotic
methods can be used in which 𝐾-Bessel functions are the main approximants, similarly as for the
Kummer 𝑈 function, as discussed in [16, Section 27.4.1].

Proof. We write the integral of 𝑅𝑛(𝑥; 𝛿) as

𝑅𝑛(𝑥; 𝛿) =
𝑒
−
1

2
𝛿2√
𝑦 (1 − 𝑦)

1

2
𝑛

2𝜋 ∫
∞

0

𝑒
−
1

2
𝑛𝜓(𝑡) 𝑑𝑡√

𝑡 (1 + 𝑦𝑡)
. (95)

The transformation

𝜓(𝑡) − 𝜓(𝑡𝑝) = 𝑤
2, sign(𝑡 − 𝑡𝑝) = sign(𝑤), (96)

gives

𝑅𝑛(𝑥; 𝛿) =
𝑒
−
1

2
𝛿2√
𝑦 (1 − 𝑦)

1

2
𝑛

2𝜋
𝑒
−
1

2
𝑛𝜓(𝑡𝑝) ∫

∞

−∞

𝑒
−
1

2
𝑛𝑤2
ℎ(𝑤) 𝑑𝑤,

ℎ(𝑤) =
1√

𝑡 (1 + 𝑦𝑡)

𝑑𝑡

𝑑𝑤
.

(97)

To find the coefficients, we can use a standard method, first by determining the coefficients 𝑟𝑘 of
the expansion 𝑡 = 𝑡𝑝 +

∑∞
𝑘=1
𝑟𝑘𝑤

𝑘 and from these, we can find the coefficientsℎ𝑘 of the expansion
ℎ(𝑤) =

∑∞
𝑘=0 ℎ𝑘𝑤

𝑘. Substitution of this series in (97) gives the asymptotic expansion in (93) with

coefficients 𝑑𝑘 = 2𝑘(
1
2 )𝑘ℎ2𝑘. The first coefficients are

𝑑0 = ℎ0 =
𝑟1√

𝑡𝑝 (1 + 𝑦𝑡𝑝)
,

𝑟1 =

√
2√

𝜓′′(𝑡𝑝)
=

√
2 𝑡𝑝(𝑡𝑝 + 1)√
2𝑡𝑝 + 1

=

√
2√

𝑧
√
𝑧(𝑧 + 4)

,

𝑟2 = =
𝑟21(3𝑡

2
𝑝 + 3𝑡𝑝 + 1)

3𝑡𝑝(𝑡𝑝 + 1)(2𝑡𝑝 + 1)
,

𝑑1 = ℎ2 = 𝑟
3
1

𝑏0 + 𝑏1𝑡𝑝 + 𝑏2𝑡
2
𝑝 + 𝑏3𝑡

3
𝑝 + 𝑏4𝑡

4
𝑝 + 𝑏5𝑡

5
𝑝

24𝑡
5∕2
𝑝 (𝑡𝑝 + 1)2(2𝑡𝑝 + 1)2(𝑡𝑝𝑦 + 1)3

,

𝑏0 = −1, 𝑏1 = −14𝑦 − 6, 𝑏2 = 11𝑦
2 − 84𝑦 − 3,

𝑏3 = 6𝑦(11𝑦 − 31), 𝑏4 = 3𝑦(43𝑦 − 72), 𝑏5 = 24𝑦(3𝑦 − 4).

(98)

□
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GIL et al. 879

We expect that the estimate in (91) without the termwith 𝑐0 can serve as a valuable estimate for
a large interval of the parameters 𝑥, 𝑛, and 𝛿. It can also be used to obtain a first guess when solv-
ing 𝑥 or 𝛿 of the equation 𝐹𝑛(𝑥; 𝛿) = 𝑓, with 𝑓 ∈ (0.1), because inversion of the complementary
error function is a very simple problem. Similar asymptotic inversionmethods for several classical
cumulative distribution functions are considered in16, Chapter 42]. For inverting the noncentral
beta distribution and the Student’s 𝑡-distribution, we refer to Refs. [11] and [6]. In [5, Section 16],
several approximations of percentage points in terms of elementary expressions are discussed in
with comparisons from the literature factors in tables.

7 NUMERICAL ASPECTS

We consider a few possible approaches for the numerical evaluation of the functions 𝐹𝑛(𝑥; 𝛿),
𝑃𝑛(𝑥; 𝛿), and 𝑄𝑛(𝑥; 𝛿). The asymptotic expansions derived in the previous sections may be very
efficient for certain choices of the parameters 𝑥, 𝑛, and 𝛿, but we need to use different methods
for a substantial remaining part of values of these quantities.

7.1 Using the defining series

The series expansions in (1) is an excellent starting point to compute the functions 𝑃𝑛(𝑥; 𝛿) and
𝑄𝑛(𝑥; 𝛿) when the noncentrality parameter 𝛿 is small. The incomplete beta functions can be
computed by using the recurrence relation

(𝑝 + 𝑗)𝑓𝑗+1 = (𝑝 + 𝑗 + (𝑝 + 𝑗 + 𝑞 − 1)𝑦)𝑓𝑗 − (𝑝 + 𝑗 + 𝑞 − 1)𝑦𝑓𝑗−1, (99)

where 𝑓𝑗 = 𝐼𝑦(𝑝 + 𝑗, 𝑞). Initial values for the recursion can be computed using, for example, our
recent algorithm.18 It should be observed that the recursion is not stable in the forward direction,
but we can use a backward recursion scheme (see [19, §4.6]). Because 0 < 𝐼𝑦(𝑝, 𝑞) < 1, the con-

vergence of the series is always better than that of the Taylor series of 𝑒
1

2
𝛿2 , and we may obtain a

starting value of the backward recursion by examining the series of this exponential function.
For example, whenwe take 𝑥 = 5, 𝑛 = 10, and 𝛿 = 7.5, we need 73 terms in the series of𝑃𝑛(𝑥; 𝛿)

in (1) to get

𝑝72𝐼𝑦(72 +
1

2
,
1

2
𝑛)∑72

𝑗=0 𝑝𝑗𝐼𝑦(𝑗 +
1

2
,
1

2
𝑛)
< 𝜀, 𝑝𝑗 =

𝑧𝑗

𝑗!
, 𝑧 =

1
2𝛿
2, 𝜀 = 10−16. (100)

The smallest 𝑗0 for which 𝑒−𝑧
∑𝑗0
𝑗
𝑝𝑗 < 𝜀 is 𝑗0 = 85. A simple inversion method to find 𝑗0

numerically follows from solving for 𝑗 > 𝑧 the equation

𝑒−𝑧
𝑧𝑗

𝑒−𝑗𝑗𝑗
= 𝜀. (101)

In a second example, we take 𝑥 = 15, 𝑛 = 510, and 𝛿 = 17.5, and we need 251 terms in the series
of 𝑃𝑛(𝑥; 𝛿) in (1). By solving the equation in (101), we find 𝑗 ≐ 271.
In this way, by solving the equation in (101), we can obtain an estimate of the 𝑗-value to start the

backward recursion for the evaluation of the series in (1) for both functions 𝑃𝑛(𝑥; 𝛿) and 𝑄𝑛(𝑥; 𝛿).
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880 GIL et al.

In Ref. [8], algorithms are given for the numerical evaluation of the series of 𝑃𝑛(𝑥; 𝛿) in (1)
and of the series in (5). In an algorithm in Ref. [20], both defining series for 𝑃𝑛(𝑥; 𝛿) and 𝑄𝑛(𝑥; 𝛿)
are used.

7.2 Numerical quadrature

In Ref. [7], numerical quadrature is used based on Gauss–Kronrod numerical integration for the
integral given in (14). The results in Table 1 of that paper show that the method can be used for
a wide range of the parameters. Our integral in (13) is simpler because the incomplete gamma
function is replaced by an error function.
In Figure 2, we see quite simple graphs of𝐹𝑛(𝑥; 𝛿), which indeedmight suggest that quadrature

is a simplemethodwhen an algorithm for the complementary error function is available. For small
and not too large values of the parameters, this is true, but for large values, the left side of the graph
of the bell-shaped curve is very steep due to the influence of the complementary error function
from very small values when 𝑡 < 𝛿∕𝑥 to values near 2 for larger values of 𝑡. The influence of the

part 𝑒−
1

2
𝑛𝑡2
𝑡𝑛, with maximum at 𝑡 = 1, is also quite noticeable.

The trapezoidal rule is a simple quadrature method, and we have verified its performance for
several cases. For example, the integral in (13) becomes after the substitution 𝑡 = 𝑒𝑠

𝐹𝑛(𝑥; 𝛿) = 𝐴𝑛 ∫
∞

−∞

erfc
(
(𝛿 − 𝑥𝑒𝑠)∕

√
2
)
𝑒
−
1

2
𝑛𝑒2𝑠
𝑒𝑛𝑠 𝑑𝑠. (102)

When we take 𝑥 = 1, 𝑛 = 10, and 𝛿 = 5 and use Maple with 𝐷𝑖𝑔𝑖𝑡𝑠 = 16, we need 72 func-
tion evaluations on the 𝑠-interval [−3.975, 1.35] with step size ℎ = 0.075 to obtain 𝐹𝑛(𝑥; 𝛿) ≐
0.00004347252856505909 with relative error 2.0 × 10−15. We have compared this value with the
corresponding value in Table 1 of Ref. [7].

7.3 Asymptotic expansions

For testing the asymptotic expansions, we have provided tables in the earlier sections.
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APPENDIX A
We give details about obtaining the coefficients 𝑔2𝑘 used via (87) in the asymptotic expansion in
(80), with 𝑔0 and 𝑔2 given in (89). In particular, we take care for small values of 𝜂, which means
𝛿 ∼ 𝑥, the transition case.
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It follows from the first coefficients and from evaluated later ones that we can write

𝑔2𝑘 =
1

𝜂2𝑘+1

(√
𝜌

𝑡0

𝐺2𝑘(𝑡0)

𝜏2𝑘+1
− 1

)
, 𝜏 =

𝜌 − 𝑡0
𝜂𝑡1

, (A1)

where 𝐺2𝑘(𝑡0) does not depend on 𝜂. The first 𝐺-coefficients are (see (89))

𝐺0(𝑡0) = 1, 𝐺2(𝑡0) =
𝑎0 + 𝑎1𝑡0 + 𝑎2𝑡

2
0 + 𝑎3𝑡

3
0 + 𝑎4𝑡

4
0 + 𝑎5𝑡

5
0

24𝑡20(𝑡0 − 1)
2(2𝑡0 − 1)2

. (A2)

Although this representation is not stable for small values of 𝜂, it is somewhat better to handle
than the forms in (89), because the subtraction is now with terms of size unity. We concentrate
now on obtaining expansions in powers of 𝜂.
The coefficients 𝑔2𝑘 are analytic at 𝜂 = 0 and for the numerical evaluations, we can use

expansions

𝑔2𝑘 =

∞∑
𝑗=0

𝑔𝑗,𝑘𝜂
𝑗, 𝑘 = 0, 1, 2, … . (A3)

To obtain the coefficients 𝑔𝑗,𝑘, we use the relation in (79), applied with 1∕𝑦 = 𝜌, from which we
obtain the expansions

𝜌

𝑡0
= 1 +

∞∑
𝑘=1

𝑡𝑘
𝑡0
𝜂𝑘, 𝜏 = 1 +

∞∑
𝑘=1

𝑡𝑘+1
𝑡1
𝜂𝑘, (A4)

with first coefficients 𝑡𝑘 given in (88). From the expansions, we can easily generate the expansions√
𝜌

𝑡0

1

𝜏2𝑘+1
=

∞∑
𝑗=0

𝑝𝑗,𝑘𝜂
𝑗, 𝑝0,𝑘 = 1, 𝑘 = 0, 1, 2, … . (A5)

The first terms of the expansion of 𝐺2 are

𝐺2 = 1 +
𝑡1(4𝑡

2
0 − 3𝑡0 + 1)

2𝑡0(2𝑡0 − 1)(𝑡0 − 1)
𝜂 + (𝜂2), (A6)

and for 𝑔2, we obtain

𝑔2 =
1

𝜂3

(
1 −
𝑡31
(
540𝑡40 − 1485𝑡

3
0 + 1269𝑡

2
0 − 369𝑡0 + 41

)
𝜂3

2160𝑡30(𝑡0 − 1)
3(2𝑡0 − 1)3

+ (𝜂4) − 1)

= −
𝑡31
(
540𝑡40 − 1485𝑡

3
0 + 1269𝑡

2
0 − 369𝑡0 + 41

)
2160𝑡30(𝑡0 − 1)

3(2𝑡0 − 1)3
+ (𝜂).

(A7)

We see a cancelation of terms in a way that we obtain a well-defined value as 𝜂 → 0, and this will
happen for all 𝑔2𝑘. For this expansion of 𝑔2 with the shown first term 𝑔0,2, we need coefficients
𝑡1, 𝑡2, 𝑡3, 𝑡4 given in (88).
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