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ROB CLAES\dagger , KARL MEERBERGEN\ddagger , AND SIMON TELEN\S 

Abstract. Solving polynomial eigenvalue problems with eigenvector nonlinearities (PEPv) is an
interesting computational challenge, outside the reach of the well-developed methods for nonlinear
eigenvalue problems. We present a natural generalization of these methods which leads to a contour
integration approach for computing all eigenvalues of a PEPv in a compact region of the complex
plane. Our methods can be used to solve any suitably generic system of polynomial or rational
function equations.

Key words. eigenvector nonlinearities, contour integration, polynomial equations, trace, poly-
nomial eigenvalue problem

MSC codes. 65F15, 65H17, 65H04, 13P15

DOI. 10.1137/22M1497985

1. Introduction. We consider a matrix valued function T : \BbbC n \times \BbbC \rightarrow \BbbC n\times n,
(x, z) \mapsto \rightarrow T (x, z) such that, for any fixed z \in \BbbC , T is given by homogeneous polynomials
in x, and for any fixed x, T is given by polynomials in z. We assume, moreover, that
all polynomials in the ith row of T are of the same degree di. If any of these degrees
is positive, the function T defines a polynomial eigenvalue problem with eigenvector
nonlinearities (PEPv), given by the equation

T (x, z) \cdot x= 0.(1.1)

By homogeneity, these equations are well defined on \BbbP n - 1 \times \BbbC , where \BbbP n - 1 is the
(n - 1)-dimensional complex projective space. Points (x\ast , z\ast ) \in \BbbP n - 1 \times \BbbC such that
T (x\ast , z\ast )\cdot x\ast = 0 are called eigenpairs. For such an eigenpair, z\ast is the eigenvalue, with
corresponding eigenvector x\ast . This paper is concerned with computing all eigenpairs
(x\ast , z\ast ) for which z\ast lies in a compact domain \Omega \subset \BbbC , whose Euclidean boundary is
denoted by \partial \Omega .

Example 1.1 (n= 3, d1 = d2 = d3 = 1). Consider the PEPv given by

T (x, z) \cdot x=

\left(  x1 + zx2 zx2 + x3 x1  - x3

x1 + (1+ z)x2 (1 - z2)x2  - zx3 x1 + x3

(1 + z)x1 + x2 x2  - x3 zx1 + (1 - z)x3

\right)  \cdot 
\left(  x1

x2

x3

\right)  =

\left(  0
0
0

\right)  .

For fixed z \in \BbbC , the entries of T (x, z) \cdot x define three conics in \BbbP 2, given by fi(x, z) =
0, i = 1,2,3. For instance, the equation of the first conic is f1 = x2

1 + zx1x2 + zx2
2 +
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1620 ROB CLAES, KARL MEERBERGEN, AND SIMON TELEN

x2x3 + x1x3  - x2
3 = 0. For fixed z, this is a homogeneous quadratic equation in the

coordinates x on \BbbP 2. Usually, three conics have no common intersection points. The
eigenvalues z = z\ast are precisely those choices of z for which the three conics intersect.
The 12 eigenvalues are the roots of

\scrR (z) = 4z12 + 12z11  - z10  - 53z9  - 100z8  - 108z7  - 78z6  - 23z5 + 14z4

+ 22z3 + 8z2  - 4z + 3,

depicted in Figure 1.1a. This polynomial is computed via resultants which will be
explained in section 3. One of the eigenvalues is z\ast \approx 0.5919, with eigenvector x\ast \approx 
(1 : - 1.9218 : - 1.9646) \in \BbbP 2. A possible choice for the target domain \Omega to select this
eigenvalue is shown in Figure 1.1a by its boundary \partial \Omega . The three conics corresponding
to z\ast = 0.5919 are shown in Figure 1.1b. More precisely, we plot the conics in the
affine chart where x1 \not = 0. For instance, the blue curve consists of all points (x2, x3)
satisfying f1(1, x2, x3, z

\ast ) = 0.

Any system of polynomial equations f1(x, z) = \cdot \cdot \cdot = fn(x, z) = 0 on \BbbP n - 1\times \BbbC can
be formulated as a PEPv. This leads to a wide variety of applications. An example
is given in experiment 5 of section 7. Rewriting such a system as in (1.1) and calling
solutions ``eigenpairs"" seemingly does not change much. Our motivation is that the
algorithm we propose for finding eigenpairs with z\ast \in \Omega is a natural generalization of
standard algorithms used for eigenvalue problems with more structure. More precisely,
PEPv's generalize polynomial eigenvalue problems (PEP) for which di = 0. These,
in turn, contain generalized eigenvalue problems (GEP) for which di = 0 and T (z) =
A - z \cdot B is an affine-linear function.

Polynomial eigenvalue problems often arise from an intermediate step in solving
general nonlinear eigenvalue problems (NEP), in which the entries of T (z) are allowed
to be transcendental functions of z. One typically approximates these functions by
polynomials in a certain region of the complex plane, obtaining a PEP. One way of

Fig. 1.1. Example 1.1. (Figure in color online.)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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CONTOUR INTEGRATION FOR EIGENVECTOR NONLINEARITIES 1621

solving PEPs is linearization [11, 24]. The linearization step results in a GEP of larger
dimension. This dimension grows with the degree of the approximating polynomials,
and is typically very large. In order to solve it, special structure exploiting methods
are used [15, 23].

Another common approach for solving NEPs is based on contour integration. The
goal of methods like Beyn [3], SS [1], or NLFEAST [13] is to locate all eigenvalues
on a compact domain \Omega in the complex plane. This is done by calculating a contour
integral over the boundary \partial \Omega with an integrand that contains the matrix inverse of
the eigenvalue problem. Using the residue theorem, the poles of the integrand---which
coincide with the desired eigenvalues in the compact domain---can be extracted.

In the present paper, we develop a new contour-integration-based method for
finding all eigenpairs of a PEPv with z\ast \in \Omega . It generalizes known approaches for
PEPs in the sense that when di = 0, Beyn's algorithm is recovered. We reiterate
that, under suitable genericity assumptions, this can be used to find all solutions to
a polynomial system f1(x, z) = \cdot \cdot \cdot = fn(x, z) = 0 with z-coordinate inside \Omega . The
situation of interest is where the number of solutions with this property is much
smaller than the total number of solutions, i.e., the total number of eigenvalues of
T (x, z). Our strategy is to integrate trace functions along the boundary \partial \Omega , and
extract the eigenvalues from moments. These traces are evaluated using numerical
homotopy continuation [17]. Such methods can also be used to naively compute all
eigenpairs of T (x, z) and then filter out relevant solutions by checking whether z \in \Omega .
However, an important feature of our method is that evaluating the trace may require
significantly less homotopy paths than the total number of eigenvalues of T (x, z),
which makes it more efficient than the naive approach (section 6). It is important
to note that the traces are not available in an explicit form as is usually expected
for PEPs solved by Krylov methods. Therefore, we only consider contour integration
methods in this paper: these only require evaluation of the trace, not its explicit
expression.

This paper is structured as follows. An overview of the standard Beyn's algorithm
is presented in section 2. The basis of our approach is laid in section 3 by introducing
the concepts of resultants and traces. Section 4 relates the denominator of the trace to
the resultant, and hence its poles to the eigenvalues. Section 5 describes the resulting
contour integration method and comments on the numerical implementation. We
discuss the complexity of our method in section 6 and present an analysis for two
families of systems of equations. Our numerical experiments in section 7 confirm
the presented theory, the Julia code used for these experiments is available online at
github.com/robclaes/contour-integration.

2. Beyn's algorithm. The method of Beyn [3] considers the nonlinear eigen-
value problem defined by the holomorphic matrix valued function A : \BbbC \rightarrow \BbbC n\times n

as

A(z) \cdot x= 0.

The goal is to find eigenpairs (x\ast , z\ast )\in \BbbP n - 1\times \BbbC for which the eigenvalue z\ast lies in the
compact domain \Omega of the complex plane. The function A is typically assumed to be
holomorphic in a neighborhood of \Omega . Beyn's method is especially useful for targeting
a specific subset of the, possibly infinite, complete set of eigenvalues. In this section,
we recapitulate the idea and theory behind contour integration for eigenvalue prob-
lems. For reasons of clarity, we focus the derivations on simple eigenvalues only. An
eigenvalue is called simple if the algebraic multiplicity and the geometric multiplicity

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1622 ROB CLAES, KARL MEERBERGEN, AND SIMON TELEN

are equal to one, where the multiplicity of an eigenvalue is defined by the following
definitions.

Definition 2.1. The algebraic multiplicity of an eigenvalue z\ast is the smallest
positive integer ma such that

dma

dzma
det(A(z))

\bigm| \bigm| \bigm| \bigm| 
z=z\ast 

\not = 0.(2.1)

Definition 2.2. The geometric multiplicity of an eigenvalue z\ast is the dimension
of the null space of A(z\ast ).

Let z\ast be a simple eigenvalue of A with corresponding right and left eigenvectors
x\ast and y\ast such that A(z\ast )\cdot x\ast = 0 and A(z\ast )H \cdot y\ast = 0. Here A(z\ast )H denotes Hermitian
transpose of A(z\ast ). There exists a region\scrN \subset \BbbC around z\ast and a holomorphic function
R :\BbbC \rightarrow \BbbC n\times n such that

A(z) - 1 =
1

z  - z\ast 
x\ast y\ast H +R(z), z \in \scrN \setminus \{ z\ast \} .

This property can be easily generalized to the case where multiple simple eigenvalues
are considered in a compact subset of \BbbC [3, Thm. 2.4].

Theorem 2.3. Let \Omega \subset \BbbC be a compact subset that contains only the simple
eigenvalues z\ast i , i = 1, . . . , l with corresponding right and left eigenvectors x\ast 

i and y\ast i .
Then there exists a neighborhood \scrN of \Omega and a holomorphic function R : \BbbC \rightarrow \BbbC n\times n

such that

A(z) - 1 =

l\sum 
i=1

1

z  - z\ast i
x\ast 
i y

\ast H
i +R(z), z \in \scrN \setminus \{ z\ast 1 , . . . , z\ast l \} .

Theorem 2.3 provides us with a way of expressing the value of a contour integral
over the boundary of the compact subset \Omega \subset \scrN .

Theorem 2.4. In the situation of Theorem 2.3, we have that

1

2\pi 
\surd 
 - 1

\oint 
\partial \Omega 

f(z)A(z) - 1dz =

l\sum 
i=1

f(z\ast i )xiy
H
i .

Under the assumption that only a few eigenvalues lie within \Omega , i.e., l < n, and all
eigenvectors are linearly independent, we can extract the eigenvalues and correspond-
ing eigenvectors from the following two contour integrals:

A0 =
1

2\pi 
\surd 
 - 1

\oint 
\partial \Omega 

A(z) - 1 \^V dz, A1 =
1

2\pi 
\surd 
 - 1

\oint 
\partial \Omega 

zA(z) - 1 \^V dz,

with \^V \in \BbbC n\times q, q\geq l a random matrix of full rank q. Using Theorem 2.4, we see that

A0 =

l\sum 
i=1

x\ast 
i y

\ast H
i

\^V =XY H \^V , A1 =

l\sum 
i=1

z\ast i x
\ast 
i y

\ast H
i

\^V =XZY H \^V ,

where X and Y have the right and left eigenvectors for their columns and Z is a
diagonal matrix containing the corresponding eigenvalues. The matrix A0 has rank
at most l for random choices of \^V , so that a reduced singular value decomposition
can be expressed as

A0 = V0\Sigma 0W
H
0

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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CONTOUR INTEGRATION FOR EIGENVECTOR NONLINEARITIES 1623

with rectangular V0 \in \BbbC n\times l and W0 \in \BbbC q\times l and diagonal matrix \Sigma 0 =diag(\sigma 1, . . . , \sigma l).
In [3] it is shown, via some linear algebra manipulations, that

V H
0 A1W0\Sigma 

 - 1
0 = SZS - 1.

This decomposition reveals the diagonal matrix Z containing the eigenvalues, while
the corresponding eigenvectors can be extracted from V = V0S.

Since nonlinear eigenvalue problems can have more eigenvalues than the size of
the matrix, it is necessary to extend this approach to the case where l > n. Luckily,
Beyn's algorithm generalizes easily to this case. First, the matrix \^V \in \BbbC n\times n is now a
square matrix of full rank which is used to calculate so-called higher order moments
of the contour integrals:

Ak =
1

2\pi 
\surd 
 - 1

\oint 
\partial \Omega 

zkA(z) - 1 \^V dz.

It should be clear that Ak can be decomposed as Ak =XZkY H \^V . From these higher
order moments, we can calculate two block Hankel matrices

B0 =

\left(   A0 \cdot \cdot \cdot AM - 1

...
...

AM - 1 \cdot \cdot \cdot A2M - 2

\right)   and B1 =

\left(   A1 \cdot \cdot \cdot AM

...
...

AM \cdot \cdot \cdot A2M - 1

\right)   .(2.2)

In a similar way as with few eigenvalues, it can be shown that the rank of B0 is equal
to the number of eigenvalues in \Omega such that the diagonazible matrix

V H
0 B1W0\Sigma 

 - 1
0 = SZS - 1

is defined by the reduced singular value decomposition B0 = V0\Sigma 0W
H
0 . The eigenval-

ues are again the elements of the diagonal matrix Z while the corresponding eigen-
vectors can be extracted from V

[1]
0 S with V

[1]
0 the first n rows of V0. Some additional

technicalities need to be considered in the case of semisimple and defective eigenvalues
[3], but this falls outside the scope of this discussion.

We conclude this section with a discussion on how the moment matrices Ak are
computed in practice. We assume that \partial \Omega is parameterized by a continuous function
\varphi : [0,2\pi )\rightarrow \BbbC . The moment matrix Ak is then expressed as

Ak =
1

2\pi 
\surd 
 - 1

\int 2\pi 

0

\varphi k(t)A(\varphi (t)) - 1 \^V \varphi \prime (t)dt.

This integral can be approximated numerically by the trapezoidal rule with N equidis-
tant points t\ell =

2\ell \pi 
N , \ell = 0, . . . ,N  - 1, as

Ak \approx Ak,N =
1

N
\surd 
 - 1

N - 1\sum 
\ell =0

\varphi k(t\ell )A(\varphi (t\ell ))
 - 1 \^V \varphi \prime (t\ell ).

The choice of the trapezoidal rule integration scheme with equidistant points might
feel somewhat arbitrary, but it often leads to satisfactory results with a limited amount
of points [3]. The impact of the integration scheme on the accuracy of the results is
discussed in [22].

The largest part of the computational cost of Beyn's method originates from the
calculation of the moment matrices. Note that most of the computation work can be
reused between every moment matrix since the factor A(\varphi (t\ell ))

 - 1 \^V is independent of
the moment index k. Each linear system A(\varphi (t\ell ))

 - 1 \^V can be solved independently for
every value of t\ell which leads to an efficient parallel implementation. In what follows,
our aim is to generalize Beyn's method to the case with eigenvector nonlinearities.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1624 ROB CLAES, KARL MEERBERGEN, AND SIMON TELEN

3. Resultants and traces. In this section, we turn back to the PEPv from the
introduction. We discuss resultants and traces related to our equations T (x, z) \cdot x= 0.
We work in the ring K[x] = K[x1, . . . , xn] of polynomials in the variables xi with
coefficients in the rational function field K =\BbbC (z). The polynomials f1, . . . , fn \in K[x]
are the entries of the vector T (x, z) \cdot x. We assume that fi is homogeneous of degree
di + 1 and write fi \in K[xi]di+1.

For fixed values z = z\ast , the system of polynomial equations f1 = \cdot \cdot \cdot = fn = 0
encoded by the PEPv T (x, z\ast ) \cdot x= 0 consists of n homogeneous equations on \BbbP n - 1.
Generically, one expects such equations to have no solution with nonzero coordinates.
The eigenvalues are those special values of z\ast for which they do have solutions; see
Example 1.1. This is captured by a polynomial \scrR (z) obtained via resultants. We
summarize the basics, and refer the reader to [6, Chapters 3 and 7] for more details.
Let \scrA i \subset \BbbN n, i = 1, . . . , n denote the supports of the polynomials fi \in K[x]: if fi =\sum 

\alpha \in \BbbN n ci,\alpha (z)x
\alpha , where x\alpha is short for x\alpha 1

1 \cdot \cdot \cdot x\alpha n
n , then

\scrA i = \{ \alpha \in \BbbN n | ci,\alpha \not = 0\} .

We write K[x]di+1 \supset K[x]\scrA i
\simeq K | \scrA i| for the affine space of polynomials with coef-

ficients in K and support contained in \scrA i. A natural set of coordinates for K[x]\scrA i

is given by the coefficients \{ bi,\alpha | \alpha \in \scrA i\} of a generic polynomial with support
\scrA i. That is, a polynomial hi =

\sum 
\alpha \in \scrA i

bi,\alpha x
\alpha \in K[x]\scrA i

is represented by the point

(bi,\alpha )\alpha \in \scrA i
\in K | \scrA i| .

Let Z0 \subset K[x]\scrA 1
\times \cdot \cdot \cdot \times K[x]\scrA n

be the set of tuples (h1, . . . , hn) for which h1 =
\cdot \cdot \cdot = hn = 0 has a solution in (K \setminus \{ 0\} )n. This is, in general, not a variety. Its Zariski
closure Z is the smallest algebraic variety containing Z0. That is,

Z = Z0 \subset K[x]\scrA 1
\times \cdot \cdot \cdot \times K[x]\scrA n

.

Under mild assumptions on the \scrA i, Z has codimension one, so that it is defined by one
polynomial equation in the coefficients of h1, . . . , hn [18, Cor. 1.1], called the sparse
resultant. This polynomial is denoted by R\scrA 1,...,\scrA n . It has integer coefficients, and it
is irreducible over \BbbC [18, Lem. 1.1]. In summary, the sparse resultant R\scrA 1,...,\scrA n is the
unique (up to sign) irreducible polynomial in \BbbZ [ bi,\alpha | i= 1, . . . , n,\alpha \in \scrA i ] such that

(h1, . . . , hn)\in Z \Leftarrow \Rightarrow R\scrA 1,...,\scrA n(h1, . . . , hn) = 0.

Example 3.1. Let \scrA i = \{ (1,0, . . . ,0), (0,1, . . . ,0), . . . , (0,0, . . . ,1)\} consist of the
list of standard basis vectors for i = 1, . . . , n. The polynomials hi are generic linear
forms in x1, . . . , xn:\left(     

h1

h2

...
hn

\right)     =

\left(     
b11 b12 . . . b1n
b21 b22 . . . b2n
...

...
...

bn1 bn2 . . . bnn

\right)     \cdot 
\left(     
x1

x2

...
xn

\right)     = B \cdot x.

Since there is a nonzero solution to h1 = \cdot \cdot \cdot = hn = 0 if and only if B is singular, we
have R\scrA 1,...,\scrA n =detB. The resultant is a homogeneous polynomial of degree n in n2

variables.

Example 3.2. Let n= 2 and \scrA i = \{ (2,0), (1,1), (0,2)\} for i= 1,2. In this case we
are asking for which coefficients b11, b12, b13, b21, b22, b23 the two binary quadrics

h1 = b11x
2
1 + b12x1x2 + b13x

2
2 and h2 = b21x

2
1 + b22x1x2 + b23x

2
2

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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CONTOUR INTEGRATION FOR EIGENVECTOR NONLINEARITIES 1625

have a common root in \BbbP 1. Sylvester's formula [6, Chapter 3, sect. 1] writes the
resultant as

R\scrA 1,\scrA 2 = det

\left(    
b11 0 b21 0
b12 b11 b22 b21
b13 b12 b23 b22
0 b13 0 b23

\right)    .

This is a homogeneous degree 4 polynomial in our six variables with integer coeffi-
cients.

Example 3.3. Let \scrA =\scrA 1 =\scrA 2 =\scrA 3 \subset \BbbZ 3 consist of all monomials of degree 2 in
three variables. Consider 3 general ternary quadrics

hi = bi,1 x
2
1 + bi,2 x

2
2 + bi,3 x

2
3 + bi,4 x1x2 + bi,5 x1x3 + bi,6 x2x3, i= 1,2,3.

The resultant R\scrA ,\scrA ,\scrA is a polynomial of degree 12 in the 18 variables bi,j , i= 1, . . . ,3,
j = 1, . . . ,6, which characterizes when the three conics \{ hi = 0\} \subset \BbbP 2 intersect. It has
21894 terms and can be computed as a 6\times 6 determinant; see [6, Chapter 3, sect. 2].

Evaluating the sparse resultant R\scrA 1,...,\scrA n at our tuple (f1, . . . , fn)\in K[x]n means
plugging in the coefficients ci,\alpha (z) \in K for the bi,\alpha . Since we assume the coefficients
of the fi to be polynomials in z, we obtain a polynomial

\scrR (z) =R\scrA 1,...,\scrA n
(f1, . . . , fn) \in \BbbC [z].(3.1)

The zeros of \scrR (z) capture the values of z for which f1 = \cdot \cdot \cdot = fn = 0 has a solution.

Example 3.4. In the case of a EP given by T (z) \cdot x= 0, we have \scrR (z) = detT (z).
This is obtained by substituting the entries of T (z) into the matrix B from Exam-
ple 3.1.

Example 3.5. Plugging in the coefficients of the polynomials f1, f2, f3 in Exam-
ple 1.1 into the 6 \times 6 determinant from Example 3.3, i.e., b1,1 = 1, b1,2 = z, b1,3 =
 - 1, b1,4 = z, . . ., we obtain the degree 12 polynomial \scrR (z) =R\scrA ,\scrA ,\scrA (f1, f2, f3) shown
in Example 1.1.

As illustrated by Example 3.5, the roots of the polynomial \scrR (z) are eigenvalues
of the PEPv given by T (x, z) \cdot x = 0. We propose the following notion of regularity
for a PEPv.

Definition 3.1. The PEPv given by T (x, z) \cdot x= 0 is called regular if \scrR (z) \not = 0.

By Example 3.4, this agrees with the definition of regularity for PEPs. Unlike for
PEPs, regularity of a PEPv does not mean that there are finitely many eigenvalues.

Example 3.6. We consider the PEPv T (x, z) \cdot x= 0 where

T (x, z) =

\left(  x1 (1 + z)x1 x2

2x1 3x1 (3 + z)x2

2zx1 x1 x2

\right)  and
f1 = x2

1 + (1+ z)x1x2 + x2x3,
f2 = 2x2

1 + 3x1x2 + (3+ z)x2x3,
f3 = 2zx2

1 + x1x2 + x2x3.

We calculate \scrR (z) = 2z3 + 8z2  - 3z \not = 0. However, for any z\ast \in \BbbC , we have that
T (x\ast , z\ast ) \cdot x\ast = 0, with x\ast = (0,0,1)\top or x\ast = (0,1,0)\top .

To avoid such artefacts, we will limit ourselves to computing eigenpairs (z\ast , x\ast )
for which x\ast has no zero coordinates. That is, we look for eigenvectors in the algebraic
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1626 ROB CLAES, KARL MEERBERGEN, AND SIMON TELEN

torus \{ x \in \BbbP n - 1 | xi \not = 0, i = 1, . . . , n\} . For such an eigenpair, we say that z\ast is an
eigenvalue with toric eigenvector. By the definition of the resultant, if z\ast \in \BbbC is an
eigenvalue of T (x, z) with toric eigenvector, then\scrR (z\ast ) = 0. This implies the following
statement.

Theorem 3.2. A regular PEPv has finitely many eigenvalues with toric eigen-
vector.

It is not true, in general, that each z\ast such that \scrR (z\ast ) = 0 is an eigenvalue with
toric eigenvector. We continue Example 3.6.

Example 3.7. There are no toric solutions to T (x, z\ast ) \cdot x = 0, with z\ast = 0 and T
as in Example 3.6. For readers familiar with toric geometry, we point out that this
eigenvalue appears in \scrR (z) because it corresponds to a solution of T (x, z\ast ) \cdot x= 0 in a
toric compactification of (\BbbC \setminus \{ 0\} )n. For this eigenvalue, there is an ``extra"" nontoric
eigenvector (0,1, - 1)\top .

Definition 3.3. An eigenvalue of the PEPv T (x, z) \cdot x= 0 with toric eigenvector
is called simple if it is a simple zero of \scrR (z).

Example 3.8. In Example 1.1, z\ast \approx 0.5919 is a simple eigenvalue with toric
eigenvector.

It is usually hard to compute \scrR (z). We now turn to traces, which are rational
functions in z whose denominator is \scrR (z). The upshot is that these traces can be
evaluated using tools from numerical nonlinear algebra. Once we know how to eval-
uate, we can approximate residue integrals to compute the poles of the trace. Since
the denominator is \scrR (z), these poles are our eigenvalues.

We fix n random homogeneous polynomials a1, . . . , an \in \BbbC [x] such that deg(ai) =
di =deg(fi) - 1. We write ai \in \BbbC [x]di and collect them in a vector a= (a1, . . . , an)

\top \in 
\BbbC [x]n. Consider the ideal Ia generated by the entries of T (x, z) \cdot x - a:

Ia = \langle f1  - a1, . . . , fn  - an\rangle \subset K[x,x - 1].(3.2)

Here K[x,x - 1] =K[x\pm 1
1 , . . . , x\pm 1

n ] is the Laurent polynomial ring in n variables with
coefficients in K. Note that the ideal Ia is not homogeneous. We will assume through-
out that the equations fi  - ai = 0 have finitely many solutions in (K \setminus \{ 0\} )n, where
K is the algebraic closure of K. This is the field of Puiseux series K = \BbbC \{ \{ z\} \} . By
[7, Chapter 5, sect. 3, Theorem 6], our assumption can equivalently be phrased as
follows.

Assumption 1. The dimension \delta =dimK K[x,x - 1]/Ia is finite.

This is a natural assumption, since Ia is generated by n (nonhomogeneous) equa-
tions in n unknowns. The set of solutions to f1  - a1 = \cdot \cdot \cdot = fn  - an = 0 is denoted
by

V (Ia) = \{ \xi \in (K \setminus \{ 0\} )n | fi(\xi ) - ai(\xi ) = 0, i= 1, . . . , n\} .(3.3)

A point \xi \in V (Ia) has multiplicity \mu (\xi ). By Assumption 1,
\sum 

\xi \in V (Ia)
\mu (\xi ) = \delta .

Definition 3.4. For a polynomial p \in K[x,x - 1], the trace Trp(Ia) is\sum 
\xi \in V (Ia)

\mu (\xi )p(\xi ).

Remark 3.1. In linear algebra, the trace tr(A) of a matrix A is the sum of its
eigenvalues. Hence, it equals the sum of the values of the polynomial p = x at the
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CONTOUR INTEGRATION FOR EIGENVECTOR NONLINEARITIES 1627

nonzero roots of \chi (x) = det(x \cdot id  - A) where we used ``id"" to indicate the identity
operator. In symbols, we have tr(A) =Trx(\langle \chi (x)\rangle ).

Proposition 3.5. For any Laurent polynomial p \in K[x,x - 1], the trace Trp(Ia)
is a rational function in z. That is, Trp(Ia)\in K.

Proof. This is a standard result from Galois theory; see, for instance, [16, Chapter
6, Thm. 1.2]. Another way to see this explicitly is by considering the K-linear map

Mp :K[x,x - 1]/Ia  - \rightarrow K[x,x - 1]/Ia given by [f ] \mapsto  - \rightarrow [pf ],

where [f ] denotes the residue class of f \in K[x,x - 1] in K[x,x - 1]/Ia. This is called a
multiplication map. A matrix representation of such a map can be computed using
linear algebra overK. A standard algorithm uses Gr\"obner bases [6, Chapter 2, sect. 4].
Since Mp can be represented by a \delta \times \delta matrix with entries in K, its trace tr(Mp) lies
manifestly in K. Moreover, since the trace is the sum of the eigenvalues, [6, Chapter
4, sect. 2, Prop. 2.7] gives tr(Mp) =Trp(Ia).

Example 3.9. Let T be as in Example 1.1. The number \delta is the number of Puiseux
series solutions x(z) = (x1(z), x2(z), x3(z)) to f1  - a1 = f2  - a2 = f3  - a3 = 0, with

f1  - a1 = x2
1 + zx1x2 + zx2

2 + x2x3 + x1x3  - x2
3  - (b11x1 + b12x2 + b13x3),

f2  - a2 = x2
1+(1+z)x1x2+(1 - z2)x2

2 - zx2x3 + x1x3 + x2
3  - (b21x1 + b22x2 + b23x3),

f3  - a3 = (1+ z)x2
1 + x1x2 + x2

2  - x2x3 + zx1x3 + (1 - z)x2
3  - (b31x1 + b32x2 + b33x3).

Here ai = bi1x1 + bi2x2 + bi3x3 are generic linear forms. Using Maple, we find \delta = 8
and

Trx2(Ia) =
(16b11 + 8b13)z

11 + ( - 4b33 + \cdot \cdot \cdot  - 16b31)z
10 + \cdot \cdot \cdot + ( - 8b33 + \cdot \cdot \cdot + 2b32)

\scrR (z)
,

where \scrR (z) is the polynomial from Example 1.1.

The fact that \scrR (z) shows up as the denominator of Trx2
(Ia) in Example 3.9 is

no coincidence. The fact that this happens generally is the main result of the next
section.

4. From traces to eigenvalues. This section relates the algebraic objects \scrR (z)
and Trp(Ia) defined in section 3. The main result (Theorem 4.1) leads to our strategy
for solving a PEPv. In short, the reasoning is as follows:

(1) The roots of the polynomial \scrR (z) are the eigenvalues of T (x, z).
(2) The trace Trp(Ia) is a rational function in z whose denominator is (roughly)
\scrR (z).

(3) Traces can be evaluated using tools from numerical nonlinear algebra. This
allows one to perform numerical contour integration along \partial \Omega to compute
eigenvalues.

Point (1) was motivated in section 3. This section deals with (2), and (3) is the
subject of the next section.

Recall that our PEPv defines n homogeneous polynomials fi of degree di + 1,
and the ideal Ia is generated by fi  - ai, where ai \in \BbbC [x]di

. As in section 3, we write
\scrA i \subset \BbbZ n for the monomial support of fi. Similarly, the supports of the polynomials
ai are denoted \scrB i, i = 1, . . . , n. We set \scrA 0 = \{ e1, . . . , en\} with ei the ith standard
basis vector of \BbbZ n, \scrB 0 = \{ 0\} , and \scrC i =\scrA i \cup \scrB i for i= 0, . . . , n. The set \scrC 0 = \{ 0\} \cup \scrA 0

contains all lattice points of the standard simplex in \BbbZ n. The resultant R\scrC 0,\scrC 1,...,\scrC n
is
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1628 ROB CLAES, KARL MEERBERGEN, AND SIMON TELEN

a polynomial in bi,\gamma , i = 0, . . . , n, \gamma \in \scrC i, characterizing when h0 = \cdot \cdot \cdot = hn = 0 has a
solution in (\BbbC \setminus \{ 0\} )n, with hi =

\sum 
\gamma \in \scrC i

bi,\gamma x
\gamma .

Remark 4.1. Note that R\scrC 0,\scrC 1,...,\scrC n
is defined for n+ 1 polynomials h0, . . . , hn in

n variables x1, . . . , xn, unlike in section 3, where the number of equations equals the
number of variables. This is because the hi are not homogeneous. To switch to the
setting of section 3, one simply homogenizes the hi. For instance, the resultant R\scrC 1,\scrC 2

with \scrC 1 = \scrC 2 = \{ 0,1,2\} \subset \BbbZ 1 vanishes when b11x
2+ b12x+ b13 = b21x

2+ b22x+ b23 = 0
has a solution. This is the same as R\scrA 1,\scrA 2

from Example 3.2, where \scrA 1 = \scrA 2 is
obtained by homogenizing the polynomials.

Our main result of this section makes point (2) above precise, under some as-
sumptions (Assumptions 2 and 3) on the fi and Ia that we will state below.

Theorem 4.1. Let T (x, z)\cdot x= (f1, . . . , fn)
\top = 0 be a PEPv satisfying Assumption

2, and let ai \in \BbbC [x]di be such that Ia satisfies Assumption 3. Let \scrC i be the support
of fi  - ai and \scrC 0 = \{ 0, e1, . . . , en\} . The PEPv given by T (x, z) is regular and for
p=

\sum 
\gamma \in \scrC 0

c0,\gamma x
\gamma we have

Trp(Ia) =
\scrQ p,a(z)

\scrR (z) \cdot \scrS a(z)
,(4.1)

where \scrQ p,a(z) =
\sum 
\gamma \in \scrC 0

c0,\gamma 
\partial R\scrC 0,\scrC 1,...,\scrC n

\partial b0,\gamma 
(1, f1  - a1, . . . , fn  - an),

\scrR (z) is as in (3.1) and \scrS a(z) is a nonzero polynomial.

Here regularity of T (x, z) is in the sense of Definition 3.1. We wrote roughly in
point (2) because the denominator may have a spurious factor \scrS a(z). This did not
happen in Example 3.9, where \scrS a(z) = 1. Here is an example where \scrS a(z) is not
constant.

Example 4.1. Consider de PEPv T (x, z) \cdot x= 0 given by

T (x, z) =

\left(  1 z 1
2 1 z
x2 (z + 1)x3 + x2 0

\right)  .

This satisfies Assumptions 2 and 3. We have \scrC 0 = \{ (0,0,0), (1,0,0), (0,1,0), (0,0,1)\} ,
a1, a2 \in \BbbC and a3(x) = b31x1 + b32x2 + b33x3. The trace for p= x1 is

Trx1
(Ia) =

b31 z
4 + (a1 + a2  - b32  - 2b33)z

3 + \cdot \cdot \cdot + (2a1 + 4a2 + b31  - 2b32  - b33)

(z2 + 2z  - 2)(z  - 2)
.

(4.2)

Here \scrR (z) = z2 + 2z  - 2 and \scrS a(z) = z  - 2 is independent of a. We will explain the
extraneous factor \scrS a(z) in Example A.1 below.

Before proving Theorem 4.1, we state Assumptions 2 and 3. The following exam-
ple will help us to motivate Assumption 2.

Example 4.2. Let f1 = x2
1 + x2

2, f2 = x2
1 + zx2

2 and a1 = x1, a2 = x2. Summing the
x1-coordinates of the solutions to f1  - a1 = f2  - a2 = 0, one computes that

Trx1
(Ia) =

2z

z  - 1
.
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CONTOUR INTEGRATION FOR EIGENVECTOR NONLINEARITIES 1629

However, plugging the coefficients of f1, f2 into the resultant R\scrA 1,\scrA 2 from Example
3.2, we obtain \scrR (z) = (z  - 1)2. The eigenvalue z\ast = 1 is not simple. It has two toric
eigenvectors: (1,

\surd 
 - 1)\top and ( - 1,

\surd 
 - 1)\top . One can make this eigenvalue simple by

applying a simple change of coordinates to the PEPv. We set y1 = x2
1 and y2 = x2

2

and obtain the new equations \~f1 = y1 + y2, \~f2 = y1 + zy2. The ai now need to be
replaced by constants. We set \~a1 = 1, \~a2 = 1. The trace of y1 is the y1-coordinate of
the unique solution:

Try1(I\~a) =
z  - 2

z  - 1
.

The resultant polynomial is now \~\scrR (z) = z - 1 and coincides with the denominator, as
desired. The eigenvalue z\ast = 1 is now simple with eigenvector (1, - 1), and the original
two eigenvectors can easily be recovered by undoing the coordinate change. Although
the formula of Theorem 4.1 still holds in this example (the polynomial \scrQ x1,a(z) also
vanishes at z = 1), it is natural and convenient to assume that whenever such a
coordinate change is possible, it is performed a priori. This is the essential content of
Assumption 2 below.

To see whether a coordinate transformation like that in Example 4.2 is possible,
one looks at the lattice affinely generated by \scrA 1, . . . ,\scrA n. This is the sublattice of \BbbZ n

given by

L(\scrA 1, . . . ,\scrA n) =

\Biggl\{ \sum 
\alpha \in \scrA 1

\ell 1,\alpha \alpha + \cdot \cdot \cdot +
\sum 

\alpha \in \scrA n

\ell n,\alpha \alpha 
\bigm| \bigm| \sum 
\alpha \in \scrA i

\ell i,\alpha = 0, \ell i,\alpha \in \BbbZ 

\Biggr\} 
.

Since the polynomials fi are homogeneous, we have L(\scrA 1, . . . ,\scrA n) \subset \{ \alpha \in \BbbZ n | \alpha 1 +
\cdot \cdot \cdot +\alpha n = 0\} . If this is a strict inclusion, a change of coordinates simplifies the PEPv.

Example 4.3. In Example 4.2, the supports are \scrA 1 =\scrA 2 = \{ (2,0), (0,2)\} . These
affinely generate a sublattice L(\scrA 1,\scrA 2) \subsetneq \{ \alpha \in \BbbZ 2 | \alpha 1 + \alpha 2 = 0\} , shown in the left
part of Figure 4.1. After changing coordinates, the supports of \~f1, \~f2 are \~\scrA 1 = \~\scrA 2 =
\{ (1,0), (0,1)\} . The red lattice L( \~\scrA 1, \~\scrA 2) now coincides with the full green lattice, see
the right part of Figure 4.1.

Assumption 2. The lattice L(\scrA 1, . . . ,\scrA n) is equal to \{ \alpha \in \BbbZ n | \alpha 1 + \cdot \cdot \cdot +\alpha n = 0\} .
This can always be realized by a change of coordinates as long as L(\scrA 1, . . . ,\scrA n) has
rank n - 1.

Fig. 4.1. The lattices L(\scrA 1,\scrA 2) (left) and L( \~A1, \~A2) (right) from Example 4.3 shown as red
dots, and the lattice \{ \alpha \in \BbbZ 2 | \alpha 1 + \alpha 2 = 0\} shown as green diamonds. (Figure in color online.)
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1630 ROB CLAES, KARL MEERBERGEN, AND SIMON TELEN

This assumption is natural: if it is not satisfied the PEPv can be simplified. We
leave the details of the general coordinate transformation as an easy exercise to the
reader.

Our second assumption is that the equations f1  - a1 = \cdot \cdot \cdot = fn  - an = 0 have
the expected number of solutions in (K \setminus \{ 0\} )n. To make this precise, we denote by
Pi = Conv(\scrC i) \subset \BbbR n the Newton polytope of fi  - ai. This is the convex hull of the
lattice points in \scrC i. The mixed volume of P1, . . . , Pn, denoted MV(P1, . . . , Pn), is the
generic number of solutions to a system of equations with supports \scrC 1, . . . ,\scrC n. For
definitions and examples; see, for instance, [19, sect. 5.1] or [6, Chapter 7, sect. 5].

Assumption 3. The dimension \delta = dimK K[x,x - 1]/Ia equals MV(P1, . . . , Pn).
Equivalently, V (Ia) from (3.3) consists of the expected number of points in (K\setminus \{ 0\} )n.

This assumption is also quite mild, as the polynomials ai can be chosen ran-
domly. Having specified Assumptions 2 and 3, we are now ready to state the proof of
Theorem 4.1.

Proof of Theorem 4.1. Our starting point is Theorem 2.3 in [8], which expresses
the trace as

Trp(Ia) =C \cdot \scrQ p,a(z)

R\scrC 0,...,\scrC n
(1, f1  - a1, . . . , fn  - an)

for a nonzero constant C. Proposition 2.6 in the same paper writes the denomina-
tor R\scrC 0,...,\scrC n

(1, f1  - a1, . . . , fn  - an) as a product of face resultants. More precisely,
adopting the standard notation used in [8] (which is recalled in Appendix A), we have

R\scrC 0,...,\scrC n
(1, f1  - a1, . . . , fn  - an) =

\prod 
\omega 

R\scrC \omega 
1 ,...,\scrC \omega 

n
((f1  - a1)

\omega , . . . , (fn  - an)
\omega )\delta \omega ,

where the product ranges over the primitive inward pointing facet normals \omega of the
Minkowski sum P1 + \cdot \cdot \cdot + Pn. The exponents \delta \omega are defined combinatorially from
the \scrC i in the discussion preceeding [8, Proposition 2.6]. By Assumption 3, none of
the face resultants vanishes identically. Let \omega \ast = ( - 1, . . . , - 1) \in (\BbbZ n)\vee . We have
\scrC \omega \ast 

i =\scrA i and (fi  - ai)
\omega \ast 

= fi, which shows that T (x, z) is regular and that \scrR (z)\delta \omega \ast 

is a factor in the denominator of Trp(Ia). Assumption 2 and the fact that Conv(\scrC 0)
is a standard simplex imply \delta \omega \ast = 1. The theorem follows by setting \scrS a(z) = C - 1 \cdot \prod 

\omega \not =\omega \ast R\scrC \omega 
1 ,...,\scrC \omega 

n
((f1  - a1)

\omega , . . . , (fn  - an)
\omega )\delta \omega .

Our main interest in Theorem 4.1 comes from the following immediate conse-
quence.

Corollary 4.2. If the PEPv T (x, z) \cdot x = (f1, . . . , fn)
\top = 0 and the ideal Ia

satisfy Assumptions 2 and 3, then an eigenvalue z\ast of T (x, z) with toric eigenvector
is a pole of Trp(Ia) if \scrQ p,a(z

\ast ) \not = 0. Moreover, simple such eigenvalues correspond to
simple poles of the trace.

In the above notation. It would be desirable to have \scrS a(z) equal to a nonzero
constant. In Appendix A, we identify two important families of PEPv for which this
happens.

We conclude by briefly discussing the condition \scrQ p,a(z
\ast ) \not = 0. First, note that

Assumption 3 implies Tr1(Ia) = \delta , so by Theorem 4.1 we have

\scrQ 1,a(z) =
\partial R\scrC 0,...,\scrC n

\partial b0,0
(1, f1  - a1, . . . , fn  - an) = \delta \scrR (z)\scrS a(z).
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CONTOUR INTEGRATION FOR EIGENVECTOR NONLINEARITIES 1631

In particular, \scrQ 1,a(z
\ast ) = 0 for every eigenvalue z\ast with toric eigenvector. Therefore,

we will use the traces Trxi(Ia), corresponding to the remaining exponents \scrA 0 = \scrC 0 \setminus 
\{ 0\} .

Definition 4.3. We say that an eigenvalue z\ast of T (x, z) has a simple toric
eigenvector if \scrR (z\ast ) = 0 and, for generic choices of ai, there is some i \in \{ 1, . . . , n\} 
for which \scrQ xi,a(z

\ast ) \not = 0.

We point out that if z\ast has a simple toric eigenvector, then for generic ai the
tuple (1, f1(x, z

\ast )  - a1(x), . . . , fn(x, z
\ast )  - an(x)) is a smooth point on the resultant

hypersurface given by \{ R\scrC 0,...,\scrC n = 0\} . This implies that the corresponding eigenvector
is unique. We summarize the above discussion in the following theorem.

Theorem 4.4. Under Assumptions 2 and 3, each simple eigenvalue z\ast of T (x, z)
with simple toric eigenvector is a pole of order one of the trace vector (Trx1

(Ia), . . . ,
Trxn(Ia)) \in \BbbC (z)n. (In the situations of Theorems A.1 and A.2, all simple poles
correspond to such eigenvalues.)

We leave the problem of determining the precise conditions under which a simple
eigenvalue has a simple toric eigenvector for future research. In our examples and
experiments from section 7, we observe that this is satisfied for all simple eigenvalues.

5. Contour integration and homotopy continuation. Let T (x, z) be a
PEPv satisfying Assumptions 2 and 3. We write the trace vector from Theorem 4.4
as Tr\scrA 0

(Ia) = (Trx1
(Ia), . . . ,Trxn

(Ia)). Using Definition 3.4 and Assumption 3, we
see that the entries of Tr\scrA 0

(Ia) are computed as a sum of \delta = | V (Ia)| terms:

Trxi
(Ia) =

\sum 
\xi \in V (Ia)

\xi i.(5.1)

The simple eigenvalues with simple toric eigenvector of T (x, z) are among the poles
of Tr\scrA 0

(Ia). We remind the reader that a \in \BbbC [x] has homogeneous entries of degree
di, where di is the degree in x of the entries in the ith row of T (x, z). In analogy with
Beyn's method, we evaluate the trace for several vectors a. We collect Tr\scrA 0

(Ia(j)) for
n random choices a(1), . . . , a(n) \in \BbbC n in the columns of

U(z) =

\left(      
| | 

Tr\scrA 0
(Ia(1)) \cdot \cdot \cdot Tr\scrA 0

(Ia(n))

| | 

\right)      \in \BbbC (z)n\times n.(5.2)

Our next result uses notation from Theorem 4.1 and explains our interest in the
matrix U(z).

Theorem 5.1. Let U(z) be as above, and let Q(z) = (\scrQ xi,a(j)(z))i,j. Suppose that
detQ(z) \not = 0 and z\ast is a simple eigenvalue of T (x, z) with simple toric eigenvector
x\ast \in \BbbP n - 1. If \scrS a(j)(z\ast ) \not = 0 for j = 1, . . . , n, we have U(z\ast ) - 1 \cdot x\ast = 0 and z\ast is a
simple zero of detU(z) - 1.

Proof. If the matrixQ(z) = (\scrQ xi,a(j)(z))i,j is invertible, then so is U(z)\in \BbbC (z)n\times n.
Indeed, Theorem 4.1 implies

det(U(z)) = det(Q(z)) \cdot 
\biggl( 
\scrR (z)n \cdot 

n\prod 
j=1

\scrS a(j)(z)

\biggr)  - 1

.
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1632 ROB CLAES, KARL MEERBERGEN, AND SIMON TELEN

For any j, we have

U(z) \cdot 

\left(        

0
...

\scrR (z) \cdot \scrS a(j)(z)
...
0

\right)        =

\left(        

\scrQ x1,a(j)(z)
...

\scrQ xj ,a(j)(z)
...

\scrQ xn,a(j)(z)

\right)        
by Theorem 4.1. This is an equality of vectors of rational functions. We denote the
right-hand side by Qj(z). Left multiplying by U(z) - 1 and plugging in z = z\ast shows
that (z\ast ,Qj(z

\ast )) is an eigenpair of U(z) - 1. Here we use that x\ast is a simple toric
eigenvector, so that Qj(z

\ast ) \not = 0. It remains to show that, as points in projective space
\BbbP n - 1, we have Qj(z

\ast ) = x\ast . For this, one adapts the proof of [10, Lemma 3.9]. The
important step requires [9, Proposition 1.37]. For brevity, we omit technicalities and
leave the details to the reader.

To see that z\ast is a simple zero of detU(z) - 1, we start from the identity

detU(z) - 1 \cdot detQ(z) =\scrR n(z) \cdot 
n\prod 

j=1

\scrS a(j)(z).(5.3)

We have established that detU(z) - 1 = c1(z  - z\ast )\kappa +O((z  - z\ast )\kappa +1) near z = z\ast for
some c1 \in \BbbC \setminus \{ 0\} and \kappa > 0. Moreover, since \scrS a(j)(z\ast ) \not = 0 and z\ast is a simple zero of
\scrR (z), the right-hand side equals c3(z  - z\ast )n +O((z  - z\ast )n+1) for some c3 \in \BbbC \setminus \{ 0\} .
Since Qj(z

\ast ) = x\ast \in \BbbP n for all j = 1, . . . , n, we know that rank(Q(z\ast )) = 1. Therefore,
(z  - z\ast ) divides all but one of the invariant factors of Q(z), viewed as a matrix over
\BbbC [z]. It follows that detQ(z) = c2(z  - z\ast )\lambda + O((z  - z\ast )\lambda +1) for \lambda \geq n  - 1. Since
\kappa + \lambda = n by (5.3), we must have \kappa = 1, \lambda = n - 1, which concludes the proof.

Theorem 5.1 shows that the matrix U(z) reduces our problem to a rational eigen-
value problem of the form U(z) - 1 \cdot x= 0, which can be solved using contour integration
techniques from section 2. We proceed by discussing how to do this in practice.

The kth moment matrix Ak is given by

Ak =
1

2\pi 
\surd 
 - 1

\oint 
\partial \Omega 

zk U(z)dz, k= 0,1,2, . . . .

To find the poles of U(z), these matrices are arranged into two block Hankel ma-
trices B0,B1, on which we perform a sequence of standard numerical linear algebra
operations. This was explained in section 2. The rank of B0 equals the number of
eigenvalues inside \partial \Omega . We emphasize that when T (x, z) = T (z) represents a PEP,

the matrix U(z) is given by T (z) - 1 \cdot 
\bigl( 
a(1) \cdot \cdot \cdot a(\ell )

\bigr) \top 
and our moment matrices

Ak coincide with those used in Beyn's algorithm. In practice, we approximate the
moment matrices Ak using numerical integration techniques. We assume that \partial \Omega is
parameterized by a differentiable map \varphi : [0,2\pi )\rightarrow \BbbC , so that the kth moment matrix
can be written as

Ak =
1

2\pi 
\surd 
 - 1

\int 2\pi 

0

U(\varphi (t))\varphi \prime (t)\varphi k(t)dt.

A standard approach to evaluate this integral numerically is to use the trapezoidal rule
with N + 1 equidistant nodes t\ell =

2\pi \ell 
N , \ell = 0, . . . ,N . This gives the approximation

Ak,N \approx Ak:
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CONTOUR INTEGRATION FOR EIGENVECTOR NONLINEARITIES 1633

Ak,N =
1\surd 
 - 1N

N - 1\sum 
\ell =0

U(\varphi (t\ell ))\varphi 
\prime (t\ell )\varphi 

k(t\ell ).(5.4)

Hence, we need to evaluate U(z) for z =\varphi (t\ell ), \ell = 0, . . . ,N  - 1. We do this efficiently,
without explicitly constructing U(z), using homotopy continuation methods. Here, we
briefly review the basics. For a complete introduction, the reader is referred to the
textbook [17].

For fixed t\in [0,2\pi ), the trace vectors Tr\scrA 0(Ia(j))| z=\varphi (t) are obtained by summing
over the solutions to the system of polynomial equations given by F (x, t) = 0, where

F (x, t) = T (x,\varphi (t)) \cdot x - a(j)(x) =

\left(   f1(x,\varphi (t)) - a
(j)
1 (x)

\cdot \cdot \cdot 
fn(x,\varphi (t)) - a

(j)
n (x)

\right)   .

By Assumption 3, there are \delta solutions. We think of these solutions as paths x(m) :
[0,2\pi )\rightarrow \BbbC n satisfying F (x(m)(t), t) = 0, m = 1, . . . , \delta . These paths are described by
a system of ordinary differential equations called the Davidenko equation:

dF (x(t), t)

dt
= JF (x(t), t) \cdot 

dx

dt
+

\partial F (x(t), t)

\partial t
= 0,(5.5)

where JF is the Jacobian matrix whose (j, k) entry is
\partial fj
\partial xk

. Each of the paths is

uniquely determined by an initial condition specifying x(m)(t0) = x(m)(0). For com-
puting the trace, we need to evaluate the paths at the discrete points t\ell =

2\pi \ell 
N . The

situation is illustrated by means of a cartoon in Figure 5.1, where \partial \Omega is the unit circle
in the complex plane, parameterized by \varphi (t) = cos(t)+

\surd 
 - 1 \cdot sin(t). This is drawn in

orange. At each of the points \varphi (t\ell ), represented as black dots on \partial \Omega , there are \delta = 3
solutions x(m)(t\ell ),m = 1, . . . ,3 to F (x, t\ell ) = 0. This is illustrated with a dashed line
for one choice of \ell .

Fig. 5.1. An illustration of the paths x(m)(t),m= 1, . . . , \delta and the discretized paths x(m)(t\ell ), \ell =
0, . . . ,N for \delta = 3 and N = 9. (Figure in color online.)
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1634 ROB CLAES, KARL MEERBERGEN, AND SIMON TELEN

Approximating x(m)(t\ell ) can be done using numerical techniques for solving the
Davidenko equation (5.5). An example is the Euler method, which approximates
x(m)(t\ell ) from x(m)(t\ell  - 1) using finite differences. An important remark is that, in our
scenario, we have an implicit equation F (x(t), t) = 0 satisfied by the solution paths.

This allows us, in every step, to refine an approximation \widetilde x(m)(t\ell ) for x(m)(t\ell ) using
Newton iteration on F (x, t\ell ) = 0. With a slight abuse of notation, we also write
x(m)(t\ell ) for the numerical approximation of x(m)(t\ell ) obtained after this refinement.
The path values x(m)(t\ell ) are used to evaluate the ith column Tr\scrA 0(Ia(j)) of U(\varphi (t\ell )),
by plugging a= a(j) and \xi = x(m)(t\ell ) into (5.1).

We summarize this discussion in Algorithm 5.1 and provide some clarifying re-
marks. We start by pointing out that Assumption 3 guarantees that for all but finitely
many values z \in \BbbC , the system of equations T (x, z) \cdot x  - a(j)(x) = 0 has \delta isolated
solutions x \in \BbbC n, each with multiplicity one. We assume that the contour \partial \Omega misses
these finitely many z-values, which makes sure that the solution paths x(m)(t) do not
cross, i.e., x(m)(t) \not = x(m\prime )(t) for m \not =m\prime . This can be realized, if necessary, by slightly
enlarging \Omega . In line 1 of Algorithm 5.1, the starting points x(m)(t0) are computed.
This can be done using any numerical method for solving polynomial systems. Recent
eigenvalue methods are described in [2]. In case of many variables, it is favorable to
use the polyhedral homotopies introduced in [14]. We note that in this step it is cru-
cial that all \delta solutions are found. An ``incomplete"" trace which sums over a subset
of all solutions will not satisfy the formula of Theorem 4.1. Line 6 is often called
the predictor step. Our presentation assumes a first order predictor, which uses only
x(m)(t\ell  - 1) to compute an approximation for x(m)(t\ell ). In practice, one sometimes uses
the path values at t\ell  - 2, t\ell  - 3, . . . for more accurate results. It is important to remark
that when N is too small, the step size 2\pi /N may be too large to track the paths
reliably. A bad approximation in line 6 may cause the Newton iteration in line 7 to
converge to a different path. This phenomenon is called path jumping. To remedy
this, one could take some ``extra"" steps between t\ell  - 1 and t\ell . Recent studies in the
direction of adaptive stepsize algorithms are [20, 21]. Details are beyond the scope of
this paper. In our implementation, the algorithm in [21] decides how many steps to
take between t\ell  - 1 and t\ell . Line 7 is called the corrector step, and Algorithm 5.1 is a
blueprint for a predictor-corrector scheme; see, e.g., [20, Alg. 2.1].

Algorithm 5.1 Evaluating the jth column of U(z) at z =\varphi (t\ell ), \ell = 0, . . . ,N  - 1.

1: Compute \delta start solutions x(m)(t0),m= 1, . . . , \delta satisfying F (x(m)(t0), t0) = 0

2: Tr\scrA 0(Ia(j))| z=\varphi (t0) =
\Bigl( \sum \delta 

m=1(x
(m)(t0))i

\Bigr) 
i=1,...,n

3: \ell \leftarrow 0
4: while \ell \leq N do
5: for m= 1, . . . , \delta do

6: \widetilde x(m)(t\ell )\leftarrow an approximation for x(m)(t\ell ) obtained from x(m)(t\ell  - 1)

7: x(m)(t\ell )\leftarrow refine \widetilde x(m)(t\ell ) using Newton iteration
8: end for

9: Tr\scrA 0(Ia(j))| z=\varphi (t\ell ) =
\Bigl( \sum \delta 

m=1(x
(m)(t\ell ))i

\Bigr) 
i=1,...,n

10: \ell \leftarrow \ell + 1
11: end while
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CONTOUR INTEGRATION FOR EIGENVECTOR NONLINEARITIES 1635

Algorithm 5.2 Contour integration for the PEPv.
1: Choose M \in \BbbN such that M \cdot n is larger than the expected number of eigenvalues

in \Omega .
2: Use Algorithm 5.1 to compute U(z) columnwise for each z =\varphi (t\ell )

3: Ak,N \leftarrow 1\surd 
 - 1N

\sum N - 1
\ell =0 U(\varphi (t\ell ))\varphi 

\prime (t\ell )\varphi 
k(t\ell ) for k= 0, . . . ,2M  - 1

4: Construct block Hankel matrices B0,N and B1,N as in (2.2)
5: Compute the SVD B0,N = V \Sigma WH with \Sigma = diag(\sigma 1, \sigma 2, . . . , \sigma Mn)
6: Estimate rank(B0,N ): find 0< l\leq Mn s.t. \sigma 1 \geq \sigma 2 \geq \cdot \cdot \cdot \geq \sigma l >\sigma l+1 \approx \cdot \cdot \cdot \approx 

\sigma Mn \approx 0.
7: if l=Mn then
8: Increase M and go back to step 1.
9: else
10: V0\leftarrow V (1 :Mn,1 : l), W0\leftarrow W (1 :Mn,1 : l), \Sigma 0\leftarrow diag(\sigma 1, . . . , \sigma l)
11: D\leftarrow V H

0 B1,NW0\Sigma 
 - 1
0

12: Compute all eigenvalues of D
13: Accept an eigenpair (y\ast j , z

\ast 
j ) of D as a solution (x\ast 

j , z
\ast 
j ) of the PEPv with

corresponding eigenvector x\ast 
j = V

[1]
0 y\ast j if T (x\ast 

j , z
\ast 
j ) \cdot x\ast 

j is smaller than a given
tolerance.

14: end if

The complete algorithm to identiy solutions of the PEPv using contour integration
is summarized in Algorithm 5.2. Note that the only difference from Beyn's algorithm
as described in [3] is the calculation of Ak,N in lines 2 and 3.

6. Complexity. In this section, we discuss the complexity of the contour in-
tegration algorithm presented in section 5. We split the algorithm into two major
steps:

1. Evaluate the moment matrices A0, . . . ,A2M - 1.
2. Extract the eigenvalues from these moment matrices.

In step 2, one constructs the matrices B0,B1 from (2.2). These are of size M \cdot n,
and M is chosen such that M \cdot n \geq \delta (\Omega ), where \delta (\Omega ) is the number of eigenvalues
inside \Omega . The eigenvalues are then extracted from B0,B1 by computing an SVD; see
section 2. The cost is O(M3 \cdot n3). The most favorable situation for our method is
when \delta (\Omega )\approx M \cdot n\ll \^\delta .

Step 1 uses numerical homotopy continuation. Continuing to work under Assump-
tion 3, it requires tracking n \cdot \delta = n \cdot MV(P1, . . . , Pn) solution paths. The homotopy
is used to evaluate U(\varphi (t\ell )) as discussed in section 5. The moment matrices Ak are
then approximated via (5.4). In our analysis, we assume that the number of nodes N
is fixed. Moreover, we ignore the complexity of computing Ak,N from U(\varphi (t\ell )), as it
is negligible compared to the cost of tracking our n \cdot \delta paths.

As an alternative to our method, one could also use homotopy continuation to
solve the system of equations T (x, z) \cdot x = 0 directly. Here one dehomogenizes, e.g.,
by setting x1 = 1, to obtain a system of n equations in n variables. The number of
paths tracked by homotopy continuation is at least the total number of eigenvalues,
which is denoted \^\delta in what follows. The eigenpairs whose eigenvalues lie outside \Omega 
can then be discarded. Below, we will refer to this approach as the naive approach.
The reader is referred to the standard textbook [17] for more details on homotopy
continuation for solving polynomial systems.
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1636 ROB CLAES, KARL MEERBERGEN, AND SIMON TELEN

To compare our method to this naive approach, the number n \cdot \delta should be com-
pared to the total number \^\delta of eigenvalues of T (x, z). However, we warn the reader
that one cannot straightforwardly draw conclusions about the computation time by
simply comparing n \cdot \delta with \^\delta . For instance, it might be favorable to solve n problems
with \delta < \^\delta solutions rather than one problem with \^\delta solutions, even if n \cdot \delta > \^\delta . Below,
we compute the number of paths n \cdot \delta for two families of PEPv's. The first one is
inspired by Theorems A.1 and A.2, where d1 = \cdot \cdot \cdot = dn. The second one is a family
of systems of rational function equations from [5], which can be solved using a slight
modification of our method.

6.1. Unmixed, dense equations. We consider the case where T (x, z) \cdot x =
(f1(x, z), . . . , fn(x, z))

\top comes from the polynomial system f1 = \cdot \cdot \cdot = fn = 0, where
each fi is homogeneous of degree d+ 1 in x, and of degree e in z. We assume that
xd+1
j , j = 1, . . . , n, appear in each of the fi. First, we also choose the polynomials

ai(x) \in \BbbC [x]d such that xd
j , j = 1, . . . , n, appear in each of them. This is the situation

of Theorem A.1, which states that the polynomial \scrS a(z) from Theorem 4.1 for such
a PEPv is constant. We compute the numbers n \cdot \delta and \^\delta for this setup.

Proposition 6.1. Let f1, . . . , fn, a1, . . . , an be as in Theorem A.1. We have

n \cdot \delta = n \cdot ((d+ 1)n  - dn), \^\delta = e \cdot n \cdot (d+ 1)n - 1.

Proof. By the multihomogeneous version of B\'ezout's theorem [17, Theorem 8.4.7],
the total number of eigenvalues, i.e., solutions to f1 = \cdot \cdot \cdot = fn = 0 is \^\delta = e\cdot n\cdot (d+1)n - 1.
To compute \delta , consider the polytope P = P1 = \cdot \cdot \cdot = Pn \subset \BbbR n, given by (A.1), with
di = d. By Kushnirenko's theorem [6, Chapter 7, sect. 5, Exercise 5], the number \delta is
the lattice volume of P . This is given by \delta = (d+ 1)n  - dn.

It follows that, for large d, the ratio (n \cdot \delta )/\^\delta tends to n/e. Hence, our method
tracks significantly fewer solution paths when e\gg n. We note that, for small d, this
conclusion is pessimistic. For instance, if d= 2, we find that (n \cdot \delta )/\^\delta \approx 2/e.

A smaller number of paths n \cdot \delta is obtained when the ai(x) are chosen as in The-
orem A.2: ai = ci x

\beta consists of one term of degree d, with ci \not = 0. The computation
is similar to the proof of Proposition 6.1, noting that the lattice volume of a pyramid
of lattice height 1 equals the (n - 1)-dimensional lattice volume of its base.

Proposition 6.2. Let f1, . . . , fn, a1, . . . , an be as in Theorem A.2. We have

n \cdot \delta = n \cdot (d+ 1)n - 1.

Propositions 6.1 and 6.2 lead us to conclude that the methods presented in this
paper are effective only when the degree in the eigenvalue variable is large. This
situation arises, for instance, when the PEPv comes from a polynomial approximation
of a set of equations that depends transcendentally on z. We will show an example in
section 7.3. Proposition 6.2 also shows that the complexity of our method increases
sensitively with n and d. Still, as our experiments in section 7 show, it can be used
to solve challenging instances.

6.2. Rational functions. We now discuss an example where the entries of the
matrix T (x, z) are homogeneous rational functions in x. More precisely, consider a
rational map T : \BbbP n - 1 \times \BbbC   \dashrightarrow \BbbC n\times n of the form

T (x, z) = T0(z) +
r1(x)

s1(x)
T1 + \cdot \cdot \cdot + rm(x)

sm(x)
Tm,(6.1)
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CONTOUR INTEGRATION FOR EIGENVECTOR NONLINEARITIES 1637

where T0(z) =A+ z \cdot B with A,B \in \BbbC n\times n, and ri(x), si(x) are linear forms in x. The
associated rational eigenvalue problem with eigenvector nonlinearities (REPv) is

find (x\ast , z\ast )\in (\BbbP n - 1 \setminus V\BbbP n - 1(s1 \cdot \cdot \cdot sm))\times \BbbC such that T (x\ast , z\ast ) \cdot x\ast = 0.(6.2)

Here we use the standard notation VX(f) = \{ x \in X | f(x) = 0\} . The problem (6.2)
was studied in [5]. We discuss here how our methods can be used to solve this REPv.
We point out that, in this case, the problem cannot be turned into a PEPv by clearing
denominators, as this typically introduces infinitely many spurious eigenvectors.

Recall that the degree of a rational function r/s is the difference of the deg(r) and
deg(s). The rows of T are homogeneous of degree d = 0 in x. Consistently with our
approach for PEPv's, we consider the equation T (x, z)\cdot x - a= (f1 - a1, . . . , fn - an)\top =
0, where a= (a1, . . . , an)

\top \in \BbbC n is a generic vector of complex constants. The matrix
U(z) from (5.2) is constructed by summing over the \delta solutions. Essentially, the
reason why this works is that these rational function equations are equivalent to a
system of polynomial equations in m + n variables. This is used in the proof of the
following theorem, which predicts \delta .

Theorem 6.3. For T as in (6.1) and generic z\ast \in \BbbC , a \in \BbbC n, the system of
equations T (x, z\ast ) \cdot x - a= 0 has at most \delta isolated solutions in (\BbbC n \setminus V\BbbC n(s1 \cdot \cdot \cdot sm)),
with

\delta =

min(n - 1,m)\sum 
k=0

\biggl( 
n - 1
k

\biggr) 
\cdot 
\biggl( 
m
k

\biggr) 
.

Sketch of proof. The system of rational function equations T (x, z) \cdot x - a = 0 is
equivalent to the system of n+m polynomial equations

(T0 + \lambda 1T1 + \cdot \cdot \cdot + \lambda nTn) \cdot x - a= 0, si(x)\lambda i  - ri(x) = 0, i= 1, . . . ,m,(6.3)

where \lambda 1, . . . , \lambda m are new variables and T0 = T0(z). The entries of (T0 + \lambda 1T1 + \cdot \cdot \cdot +
\lambda nTn) \cdot x - a all have the same Newton polytope, denoted P \subset \BbbR m+n. The equation
si(x)\lambda i - ri(x) has Newton polytope \Delta n\times Li, where \Delta n =Conv(e1, . . . , en)\subset \BbbR n and
Li = Conv(0, ei) \subset \BbbR m. By the BKK theorem [6, Chapter 7, sect. 5], the number of
isolated solutions to (6.3) is bounded by the mixed volume \delta = MV(P, . . . ,P,\Delta n \times 
L1, . . . ,\Delta n\times Lm). Here P is listed n times. Multilinearity and symmetry of the mixed
volume gives the equality

\delta =

m\sum 
k=0

\biggl( 
m
k

\biggr) 
MV(P, . . . ,P,\Delta n, . . . ,\Delta n,Lk+1, . . . ,Lm).

Since \Delta n has dimension n - 1, all terms with k > n - 1 are zero. It remains to show
that for k\leq min(n - 1,m), we have

MV(P, . . . ,P,\Delta n, . . . ,\Delta n,Lk+1, . . . ,Lm) =

\biggl( 
n - 1
k

\biggr) 
.

This number counts solutions to (T0 + \lambda 1T1 + \cdot \cdot \cdot + \lambda nTn) \cdot x  - a = 0 after plug-
ging in random values for \lambda k+1, . . . , \lambda m and replacing xn - k+1, . . . , xn by generic lin-
ear forms in x1, . . . , xn - k. What is left is a system of n equations in the variables
(x1, . . . , xn - k, \lambda 1, . . . , \lambda k). It has at most (n - 1

k ) solutions by the multihomogeneous
version of B\'ezout's theorem.
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1638 ROB CLAES, KARL MEERBERGEN, AND SIMON TELEN

By [5, Theorem 3.1], the total number of eigenvalues of (6.1) is \^\delta = (n+m
m+1 ).

Although \delta < \^\delta , we have n \cdot \delta > \^\delta . We will illustrate this with an example in section 7.
We leave the question whether and when our method is advantageous for solving this
type of REPv as a topic for future research.

7. Numerical experiments. In this section we present several numerical ex-
amples illustrating the results presented above. Our algorithm has two important pa-
rameters that impact the numerical performance: the number N +1 of discretization
points on the contour to evaluate the integral, and the number of moment matrices
2M . In the experiments below, we will investigate the influence of these parameters
on the accuracy. We assess the quality of an approximate eigenpair (x\ast , z\ast ) by its
residual r\ast = \| T (x\ast , z\ast ) \cdot x\ast \| /\| x\ast \| . The presented result are generated by an imple-
mentation in Julia (v1.6) using HomotopyContinuation.jl (v2.6.4) [4]. The source
code is available online to reproduce all results.1

7.1. Experiment 1. Consider the PEPv T (x, z) \cdot x = 0 where T (x, z) has size
3 \times 3 and each row is of degree d = 2 in x and e = 4 in z. The coefficients are
randomly generated in order to obtain a generic system. The contour enclosing the
target domain \Omega is shown in Figure 7.1 together with the exact eigenvalues in the
neighborhood of \Omega .

The impact of the number of discretization points N+1 is the most intuitive: the
more points, the higher the accuracy of the detected eigenvalues in \Omega . There is a less
intuitive impact that has been observed in contour integration for nonlinear eigenvalue
problems [22]. When the contour integral is approximated with a low number of
points, it is possible that eigenvalues outside the contour are detected. Evaluating
the contour integral with 1000 points detects only the four eigenvalues in \Omega with
average residual in the order of magnitude of machine precision. However, evaluating
the contour integral with 100 points detects 14 eigenvalues depicted in Figure 7.1: four
eigenvalues in \Omega with average residual of \approx 10 - 11 and eight eigenvalues outside the
target domain with residual varying from 10 - 9 to 10 - 5 depending on the distance from

Fig. 7.1. Eigenvalues ( ) inside the target domain defined by the contour ( ) and the ex-
tracted values by contour integration ( ) for experiment 1. (Figure in color online.)

1github.com/robclaes/contour-integration.
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CONTOUR INTEGRATION FOR EIGENVECTOR NONLINEARITIES 1639

the contour. This phenomenon is best explained via the relation between numerical
integration and filter functions on \BbbC ; see [22] for details.

An obvious impact of the number of moment matrices can be seen in (2.2): the
maximum number of eigenvalues that can be detected is Mn. Therefore, M should
be large enough to detect at least the expected number of eigenvalues in \Omega . However
when a low number of discretization points is chosen, extra care must be taken when
choosing the number of moment matrices: the algorithm will detect additional eigen-
values outside \Omega which may lead to more eigenvalues than the number of eigenvalues
that can be detected for a given M . For the specific instance here, we selected M = 9
which leads to a maximum of Mn= 27 detectable eigenvalues. In the case with 100
discretization points this upper bound is large enough to detect the 14 eigenvalues.
When we set M = 2 -- which should suffice for the expected four eigenvalues in \Omega --
with 100 discretization points, the eigenvalues outside \Omega perturb the result leading
the an average residual of the four eigenvalues in \Omega of 10 - 3.

Since the degree of the polynomials is the same for each row, we select the polyno-
mials ai in accordance with Theorem A.2, i.e., ai is a monomial in x of degree d= 2.
By Proposition 6.2, this leads to n \cdot \delta = n \cdot (d + 1)n - 1 = 27 tracked paths, which is
smaller than the expected number of tracked paths when using random polynomials:
n \cdot \delta = n \cdot ((d+ 1)n  - dn) = 57.

7.2. Experiment 2. Consider the PEPv T (x, z) \cdot x = 0 where T (x, z) has size
10 \times 10 and each row is of degree d = 1 in x and e = 5 in z. The coefficients
are randomly generated. The contour enclosing the target domain \Omega is shown in
Figure 7.2a together with the exact eigenvalues in the neighborhood of \Omega . This is
a very nontrivial problem since the total number of solutions of the PEPv equals
\^\delta = 25600 and they are almost all clustered around the origin of the complex plane.
The selected contour is a circle with center at the origin and a radius of 0.1 which
encircles 44 eigenvalues of the problem.

Since the neighborhood of the target region \Omega is densely scattered with eigenval-
ues, we select a relatively high number of integration points N + 1 = 400 to increase

Fig. 7.2. Eigenvalues ( ) inside the target domain defined by the contour ( ) and the ex-
tracted values by contour integration ( ). (Figure in color online.)
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1640 ROB CLAES, KARL MEERBERGEN, AND SIMON TELEN

the sharpness of the integration filter as discussed in the previous example. Given
the high number of integration points, a maximum of 2M = 10 moment matrices
should suffice to capture the 44 expected eigenvalues in \Omega . The result is shown in
Figure 7.2a: a total of 46 detected eigenvalues: 44 inside \Omega and 2 just outside the
target region. The residual for the extracted eigenpairs varies from 10 - 4 to 10 - 8. In
accordance with Theorem A.2, we selected ai as a monomial of degree d = 1 which
leads to n \cdot \delta = n \cdot (d+ 1)n - 1 = 5120 tracked paths for our method (Proposition 6.2).
Finding all 25600 solutions with standard homotopy continuation takes roughly 2390
seconds to compute, while our approach with 400 interpolation points takes 1120
seconds. (Both timings result from a single-thread implementation in Julia.)

7.3. Experiment 3. Consider the system of equations T (x, z) \cdot x= 0 given by

T (x, z) =

\biggl( 
x2
1x2  - 2

\surd 
 - 1x2

1x2 cos(z)
 - x2

2 cos(z
2) 2x2

2 sin(3z)

\biggr) 
.(7.1)

Note that this system is not polynomial in z, but, in practice, the system is solved
by an implicit substitution of Maclaurin series of high order for the sine and cosine
functions. This approach leads to a PEPv that is of high degree in z. We expect
an infinite number of solutions since the trigonometric functions can be expressed by
their Maclaurin series in z. We use 100 discretization points for the contour, and
2M = 16 moment matrices. The ai are selected as random monomials in x that have
the same degree as the polynomials in the corresponding row of T (x, z), similarly as in
Theorem A.2. This leads to four tracked paths, instead of 10 for random polynomials.
Figure 7.3 shows the impact of the number of discretization points on the residual of
the 11 extracted solutions. As stated in experiment 1, increasing the number of
discretization points leads to a decrease in the residual.

7.4. Experiment 4. Consider the REPv (6.1) of dimension n= 10 with m= 2
rational terms where all coefficients are randomly generated. A problem with these di-
mensions is expected to have \^\delta = (n+m

m+1 ) = 220 eigenvalues. According to Theorem 6.3
we need to track n \cdot \delta = 550 paths. As depicted in Figure 7.2e, all 33 eigenvalues in
the contour are detected with a residual ranging from 10 - 8 to 10 - 12, and one eigen-

Fig. 7.3. Impact of number of discretization points on residuals for experiment 3.
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CONTOUR INTEGRATION FOR EIGENVECTOR NONLINEARITIES 1641

value outside of the contour with a residual of 10 - 6. This result is obtained using
N + 1= 400 nodes, and 2M = 10 moment matrices.

7.5. Experiment 5. Our final example shows explicitly how to convert a sys-
tem of polynomial equations into a PEPv. We illustrate this by means of an example
from computational biology. In a formulation taken from [12, sect. 3], the equilib-
rium conformations of a cyclic six-atom molecule are encoded by the solutions of the
polynomial system \^f1 = \^f2 = \^f3 = 0, where

\^f1 = \beta 11 + \beta 12t
2
2 + \beta 13t

2
3 + \beta 14t2t3 + \beta 15t

2
2t

2
3,

\^f2 = \beta 21 + \beta 22t
2
3 + \beta 23t

2
1 + \beta 24t1t3 + \beta 25t

2
1t

2
3,

\^f3 = \beta 31 + \beta 32t
2
1 + \beta 33t

2
2 + \beta 34t1t2 + \beta 35t

2
1t

2
2.

Only real solutions (t1, t2, t3)\in \BbbR 3 are relevant for the application. The parameters \beta ij

are the entries of a 3\times 5-matrix \beta , which depends on the molecule under consideration.
The coefficients used for cyclohexane in [12] are

\beta =

\left(   - 310 959 774 1389 1313
 - 365 755 917 1451 1269
 - 413 837 838 1655 1352

\right)  .

Our system has three equations in three unknowns. The first step to formulate this
as a PEPv is to let one of the variables play the role of eigenvalue. For no specific
reason, we choose z = t2. We view \^fi(t1, t3) as polynomials in t1, t3, with coefficients
in K = \BbbC (z). Note that \^f1 and \^f3 have degree two, while \^f2 has degree four. Next,
we homogenize the equations

f1 = x2
3 \cdot \^f1

\biggl( 
x1

x3
,
x2

x3

\biggr) 
, f2 = x4

3 \cdot \^f2
\biggl( 
x1

x3
,
x2

x3

\biggr) 
, f3 = x2

3 \cdot \^f3
\biggl( 
x1

x3
,
x2

x3

\biggr) 
.

The equations f1 = f2 = f3 = 0 are equivalent to T (x, z) \cdot x= 0, with

T (x, z)(7.2)

=

\left(  0 (\beta 13 + \beta 15z
2)x2 + \beta 14zx3 (\beta 11 + \beta 12z

2)x3

(\beta 23x1 + \beta 24x2)x
2
3 (\beta 25x

2
1 + \beta 22x

2
3)x2 \beta 21x

3
3

(\beta 32 + \beta 35z
2)x1 + \beta 34zx3 0 (\beta 31 + \beta 33z

2)x3

\right)  .

An eigenpair (x\ast , z\ast ) with x\ast 
3 \not = 0 gives the solution t1 = x\ast 

1/x
\ast 
3, t2 = z\ast , t3 = x\ast 

2/x
\ast 
3

to the original equations \^f1 = \^f2 = \^f3 = 0. As reported in [12, sect. 3], there are 16
complex solutions, of which 4 are real. Our method finds (only!) the real solutions
by choosing \Omega = \{ z \in \BbbC | | z| < 0.4\} . Our solutions agree with those reported in [12].
The columns of \left(   - 0.368436 0.712646  - 0.712646 0.368436

 - 0.319725  - 0.0103841 0.0103841 0.319725
 - 0.296956  - 0.623453 0.623453 0.296956

\right)  
are the approximate solutions (t1, t2, t3). Note that the t2-coordinates lie inside \Omega .
We point out that these simple equations can be solved rapidly using standard meth-
ods, without too much computational overhead coming from the twelve biologically
meaningless solutions. We chose this system of equations to demonstrate how to tran-
sition between polynomial equations and PEPv's. In larger examples, we do expect
our method to outperform standard solvers. This was illustrated in section 7.2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/2

9/
23

 to
 1

92
.1

6.
19

1.
13

6 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



1642 ROB CLAES, KARL MEERBERGEN, AND SIMON TELEN

8. Conclusions. We presented a new contour integration method for solving
polynomial eigenvalue problems with eigenvector nonlinearities and developed its first
theoretical foundations. The eigenvalues are the roots of a resultant polynomial. We
showed that, under suitable assumptions, this polynomial equals the denominator
of the trace obtained by summing over the solutions to a modified system of equa-
tions. This can be evaluated along a contour using numerical homotopy continuation
techniques. This way, we can extract eigenvalues in a compact domain and their
corresponding eigenvectors by numerical contour integration. We derived the number
of homotopy continuation paths that need to be tracked for two classes of problems.
This governs, to a certain extent, the complexity of our method. However, a di-
rect comparison with the total number of eigenvalues is not very meaningful since
the difficulty and computational cost of tracking a single path may differ greatly. A
comparative study on the total computational cost is an interesting topic for future
research, together with a study on the applicability of other NEP methods on the
compound trace matrix U(z).

Appendix A. Appendix. This appendix identifies two families of PEPv for
which the polynomial \scrS a(z) in Theorem 4.1 is constant. For any point \omega in \BbbZ n and
any finite subset \scrC \subset \BbbZ n, let

\scrC \omega =

\biggl\{ 
\gamma \in \scrC | \langle \omega ,\gamma \rangle =min

\gamma \prime \in \scrC 
\langle \omega ,\gamma \prime \rangle 

\biggr\} 
.

Here \langle \cdot , \cdot \rangle is the dot product. For a polynomial f =
\sum 

\gamma \in \scrC c\gamma x
\gamma supported in \scrC , we

write f\omega for the leading form of f w.r.t. \omega :

f\omega =
\sum 
\gamma \in \scrC \omega 

c\gamma x
\gamma .

Let \scrC i be the support of fi  - ai, as in section 4, and let P = P1 + \cdot \cdot \cdot + Pn be
the Minkowski sum of the Newton polytopes Pi = Conv(\scrC i) \subset \BbbR n. In the proof of
Theorem 4.1 we derived

\scrS a(z) =C - 1 \cdot 
\prod 

\omega \not =\omega \ast 

R\scrC \omega 
1 ,...,\scrC \omega 

n
((f1  - a1)

\omega , . . . , (fn  - an)
\omega )\delta \omega ,

where \omega ranges over the inner facet normals to P . It follows from the definition of
\delta \omega in [8, sect. 2] that the only facet normals \omega for which \delta \omega \not = 0 are those for which
0 /\in \scrC \omega 0 . This gives a sufficient condition for \scrS a(z) \in \BbbC \setminus \{ 0\} . Let P0 = Conv(\scrC 0) be
the standard simplex in \BbbR n. If the monomials xdi+1

j , j = 1, . . . , n, appear in fi, and

xdi
j appear in ai, then

Pi =Conv(\scrC i) = cl((di + 1) \cdot P0 \setminus (di \cdot P0)),(A.1)

where cl(\cdot ) denotes the Euclidean closure in \BbbR n.

Theorem A.1. Let T (x, z) \cdot x= (f1, . . . , fn)
\top = 0 be a PEPv satisfying Assump-

tion 2, with deg(fi) = di + 1. Let ai \in \BbbC [x]di be such that Ia satisfies Assumption 3
and Pi =Conv(\scrC i) = cl((di+1)\cdot P0\setminus (di \cdot P0)). Then \scrS a(z) in Theorem 4.1 is a nonzero
complex constant.

Proof. The theorem follows from the fact that, under the assumption (A.1), the
facet normals of P = P1 + \cdot \cdot \cdot + Pn are

\omega \ast = ( - 1, . . . , - 1), \omega 0 = (1, . . . ,1), \omega 1 = (1,0, . . . ,0),(A.2)

\omega 2 = (0,1, . . . ,0), \omega n = (0,0, . . . ,1).

Out of these, only for \omega = \omega \ast we have 0 /\in \scrC \omega 0 .
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CONTOUR INTEGRATION FOR EIGENVECTOR NONLINEARITIES 1643

We present one more example of a family of PEPv's for which Sa(z)\in \BbbC \setminus \{ 0\} . We
assume that all fi are of the same degree d+1 and such that xd+1

j appears in fj for all j.

We let ai = ci x
\beta consist of one term of degree d, with ci \not = 0. The resulting polytopes

Pi are all equal to a pyramid of height one over the simplex (d+1) \cdot Conv(e1, . . . , en).
Theorem A.2. Let T (x, z) \cdot x= (f1, . . . , fn)

\top = 0 be a PEPv satisfying Assump-
tion 2, with deg(fi) = d + 1. Let ai(x) = ci x

\beta \in \BbbC [x]d be such that Ia satisfies
Assumption 3. Then \scrS a(z) in Theorem 4.1 is a nonzero complex constant.

Proof. The polytope P = P1 + \cdot \cdot \cdot + Pn = n \cdot P1 has n + 1 normal vectors. All
of these are nonnegative, except \omega \ast = ( - 1, . . . , - 1). Therefore, only \omega \ast satisfies
0 /\in \scrC \omega 0 .

If Conv(\scrA 1) = \cdot \cdot \cdot =Conv(\scrA n), the argument in the proof of Theorem A.2 can be
used to construct more general situations in which P1 = \cdot \cdot \cdot = Pn is a pyramid over
Conv(Ai) and \scrS a(z)\in \BbbC \setminus \{ 0\} . We do not work this out explicitly. Here is an example
where \scrS a(z) /\in \BbbC \setminus \{ 0\} .

Example A.1. The polytope P = P1 + P2 + P3 from the PEPv in Example 4.1 is
shown in Figure A.1. There are six facets. Their normal vectors \omega i in the dual lattice
(\BbbZ 3)\vee \simeq \BbbZ 3 are

\omega 1 = (0,0,1), \omega 2 = - (1,0,1), \omega 3 = - (1,1,1), \omega 4 = (1,0,0),
(A.3)

\omega 5 = (1,1,1), \omega 6 = (0,1,0).

Here \omega \ast = \omega 3. The only other facet normal for which 0 /\in \scrC \omega i
0 is \omega 2. We calculate

\scrC \omega 2
1 = \scrC \omega 2

2 = \{ (1,0,0), (0,0,1)\} , \scrC \omega 2
3 = \{ (1,0,0), (0,0,1), (0,1,1), (1,1,0)\} .

The corresponding face equations are f\omega 2
1 = f\omega 2

2 = f\omega 2
3 = 0, with

f\omega 2
1 = x1 + x3, f\omega 2

2 = 2x1 + zx3, f\omega 2
3 = (z + 1)x2x3 + x1x2  - b31x1  - b33x3.

These have a nontrivial solution if and only if the determinant of the linear system
f\omega 2
1 = f\omega 2

2 = 0 vanishes. This explains R\scrC \omega 2
1 ,\scrC \omega 2

2 ,\scrC \omega 2
3

= z - 2, which gives the extraneous
factor in the denominator of (4.2).

Fig. A.1. The polytope P from Example A.1. The facets corresponding to \omega 2 and \omega 3 are the
quadrilateral and triangle colored in blue and orange, respectively. (Figure in color online.)
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