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Abstract

Live programming brings code to life with immediate and
continuous feedback. To enjoy its bene�ts, programmers
need powerful languages and live programming environ-
ments for understanding the e�ects of code modi�cations on
running programs. Unfortunately, the enabling technology
that powers these languages, is missing. Change, a crucial
enabler for explorative coding, omniscient debugging and
version control, is a potential solution.

We aim to deliver generic solutions for creating these lan-
guages, in particular Domain-Speci�c Languages (DSLs). We
present Cascade, a meta-language for expressing DSLs with
interface- and feedback-mechanisms that drive live program-
ming. We demonstrate run-time migrations, ripple e�ects
and live desugaring of three existing DSLs. Our results show
that an explicit representation of change is instrumental
for how these languages are built, and that cause-and-e�ect
relationships are vital for delivering precise feedback.

CCS Concepts: • Software and its engineering→ Visual

languages; Domain speci�c languages; Integrated and visual
development environments; Interpreters.

Keywords: live programming, metamodels, domain-speci�c
languages, bidirectional transformations, model migration
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1 Introduction

Live programming caters to the needs of programmers by
providing immediate feedback about the e�ect of changes
to the code. Figure 1 illustrates a typical coding cycle [13].
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Figure 1. Live Programming speeds up coding cycles

Each iteration, programmers make improvements by per-
forming coding actions, events that result in the construc-
tion, modi�cation and deletion of objects over time. To help
programmers realize their intentions, live programming en-
vironments o�er suitable user interface mechanisms that
enable performing the e�ects of coding actions. In addition,
these environments o�er feedback mechanisms that display
changes for perceiving those e�ects, and evaluating if the
action has been successful. Good feedback supports forming
mental models and learning cause-and-e�ect relationships
that help programmers predict e�ects of coding actions and
make targeted improvements.
Despite the compelling advantages of live programming,

its adoption remains sporadic due to a lack of enabling
technology for creating the necessary programming lan-
guages. Unfortunately, creating languages whose users enjoy
the advantages of live programming is incredibly complex,
time-consuming and error-prone. Language engineers lack
reusable abstractions and techniques to account for run-time
scenarios with eventualities such as run-time state migra-
tions, e.g., removing the current state of a state machine.

Several Domain-Speci�c Languages (DSLs) support a form
of live programming that modi�es running programs, e.g.,
the State Machine Language (SML) [24], Questionnaire Lan-
guage (QL) [20] and Machinations [23]. However, these are
one-o� solutions with hand-crafted interpreters that are dif-
�cult to extend and maintain.

We study how to create such DSLs in a principled manner,
how to express their liveness, and how to add this liveness to
existing ones. We hypothesize that an explicit representation
of change, a crucial enabler for exploratory coding, omni-
scient debugging and version control, is the missing factor
in the currently available language technology. Our main
objective is to deliver language-parametric solutions for cre-
ating change-driven DSLs that foreground cause-and-e�ect
relationships, and let programmers perceive e�ects.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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Figure 2. Relating actions to events, feedback and insights

1 machine doors

2 state closed

3 open => opened

4 state opened

5 close => closed

(a) Textual doors program

sm: doors

closed opened
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(b) Visual program

Figure 3. State Machine Language: doors example

We propose a novel meta-modeling approach that lever-
ages an explicit representation of change. We present Cas-
cade, a meta-language for expressing DSLs with input and
feedback mechanisms that drive live programming. Cascade
expresses “cascading changes” that introduce liveness using
bi-directional model transformations with side-e�ects.
Using its compiler, language engineers generate inter-

preters that integrate with Delta, Cascade’s runtime. Delta
o�ers a built-in Read-Eval-Print-Loop (REPL) for simulating
live programming scenarios that bring the code to life. By
executing sequential commands on the REPL, engineers can
simulate coding actions, user interaction and feedback.
When Delta executes events, it generates transactions as

cause-and-e�ect chains. These transactions update a live
program’s syntax and run-time state. We investigate how
Cascade can help express the interpreters of SML, QL and
Machinations. Our results show Cascade is instrumental for
rapidly creating executable DSL prototypes with concise
and maintainable designs. Our contributions are: 1) Cascade:
a meta-language for change, cause and e�ect; 2) Delta: a
runtime for creating live programming environments; and
3) three case studies that reproduce liveness1.

2 Problem Overview

We study a form of live programming that works on running
programs. We relate the needs of programmers, illustrated
by Figure 2, to changes and feedback in Section 2.2. We
formulate hypotheses and objectives in Sections 2.3 and 2.4.
First, we introduce a scenario that motivates this work.

2.1 Scenario: Modifying a running machine

The Live State Machine Language (LiveSML) is a DSL for
simultaneously creating and running state machines.

1An earlier version of this paper has been presented as: R. van Rozen. 2022.
Cascade: A Meta-Language for Change, Cause and E�ect: Enabling Technol-
ogy for Live Programming. In Workshop on Live Programming, LIVE 2022.

# Origin E�ect Run-time state

1. Coding actions. Adding state locked.

opened closed lockedclose

open

lock

unlock

closed: 1 *

opened: 0

locked: 0

2. User interaction. Locking the door.
opened closed lockedclose

open

lock

unlock

closed: 1

opened: 0

locked: 1 *

3. Coding action. Deleting the locked state.
opened closed lockedclose

open

lock

unlock

closed: 1

opened: 0

locked: 1 *

4. State migration. Updating the current state.
opened closed lockedclose

open

closed: 2 *

opened: 0

Figure 4. Live programming scenario of a running doors
program that demonstrates run-time state migration

We use this DSL as a illustrative example because it is
easy to comprehend, and also appears in related work [19,
24]. Figure 3 shows an SML program called doors. When
executed, it can be either in the opened or closed state.
As a concise example, Figure 4 describes a live program-

ming scenario of a running doors program. After starting the
program of Figure 3, each step shows the origin of a change
and the e�ects on the program and its run-time state.
First, the programmer adds a locked state, and two tran-

sitions for locking and unlocking the door. These additions
are marked in green. In response, the interpreter introduces
a locked count of zero (shown in a box). Initially, the current
state (marked *), is closed, and the lock and open transi-
tions (underlined) can be activated. In step two, the pro-
grammer triggers the lock transition in the user interface.
The interpreter performs the transition (feedback shown in
orange), updates the current state to locked, and raises its
count (shown in a box). Updates are shown in blue.
Finally, in step three, the programmer deletes the locked

state. In response, the interpreter also deletes the lock and
unlock transitions (shown in red). Because the current state
is removed (indicated with strikethrough), this state has
become invalid. In step four, which follows immediately, the
interpreter migrates the program to the initial state closed.

2.2 The need for Live Programming

Though limited in its complexity, the scenario illustrates key
requirements that programming environments must ful�l
to cater to the programmers’ needs. Every coding cycle, the
challenge is relating feedback about the e�ects of changes
to insights about improvements, as illustrated by Figure 2.
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Figure 5. Change-based Live Programming Environment

R1. Gradual change. As software evolves, programmers
constantly need to make changes to the code. Each iteration,
they realize intentions, improve behaviors and �x bugs.
R2. Immediate feedback. Feedback is essential for testing

hypotheses and verifying behaviors. For making timely im-
provements, programmers need feedback with every change.

R3. Evolving behavior. Programmers run programs to eval-
uate behaviors. For assessing the impact of changes, they
need to observe the di�erence in behavior.

R4. Learnable behavior. Formaking targeted improvements,
programmers need to learn from successes and mistakes. Pro-
grammers have to learn to predict the outcomes of changes.
R5. Exploratory design. To support gradually improving

insights, programmers need to freely explore design spaces
through do, undo, redo, record, and playback functionality.

2.3 Change-based DSL environments

Using programming environments, programmers can per-
form coding actions, events that result in the construction,
modi�cation and deletion of program elements. Invalid or
syntactically incorrect edits are not coding actions. We study
the e�ects of coding actions, speci�cally, changes to visual
programs that work directly on the abstract syntax and a�ect
running programs. Two main hypotheses drive this study:

1. Live programming can make code come alive in the imagi-
nation of the programmer by keeping “test cases” running.

2. DSLs are especially suitable to support live programming
and to deliver feedback that appeals to the imagination.

We aim to empower programmers with programming envi-
ronments for exploring the run-time e�ects of coding actions.

2.4 Language-parametric enabling technology

We study how to create such DSLs in a principled manner,
how to express their liveness, and how to add this liveness
to existing ones. We envision change-based live program-
ming environments, as illustrated by Figure 5, based on a
set of reusable principles, formalisms and components. For
providing live feedback, language designs must account for
run-time eventualities, valid changes to programs and run-
time states. These cannot easily all be linearly represented
due to the multitude of valid executions and dependencies.

Live Programming Environment

Cascade Compiler

Compile
DSL

Specification

REPL
Give

Command
Display
Feedback

Custom UI
Edit

Program
Run

Program

DSL Interpreter

Event
Pre-

Migrate Generate
Post-

Migrate
Notify

Delta

Schedule Dispatch
Edit

Operation Commit
History
+ Heap

Figure 6. Cascade Framework: Generating DSL Interpreters

We address the need for enabling technology that powers
these environments. We aim to simplify language design by
abstracting from individual scenarios and the ordering of
events. Next, we propose a generic approach that expresses
change as modular and reusable model transformations. This
solution can steer global run-time executions through local
and conditional side-e�ects de�ned on the meta-level.

3 Cascade Framework

We present the Cascade framework, a language-parametric
solution for developing change-based live programming en-
vironments. Cascade, illustrated by Figure 6, o�ers a meta-
language and a set of generic reusable components (gray)
that integrate domain-speci�c additions (white) for address-
ing the following technical challenges.

3.1 Cascade Meta-Language

Cascade is a meta-language for change, cause and e�ect. We
introduce its features in Section 5. To create DSLs realizing
the requirements of Section 2.2 language engineers can:

T1 Express the syntax and run-time states usingmeta-models
(R1, R3). Section 5.1 introduces these concepts.

T2 Design actions, events and e�ects as bi-directional model-
transformations that support exploratory coding (R5).
Section 5.2 explains how to design interactions that grad-
ually change the syntax and program behaviors (R1–3).

T3 Design side-e�ects as relationships between events with
predicable outcomes to steer behaviors (R4). Section 5.3
explains how to express mutations of program elements.

T4 Design cascading changes that are central to live pro-
gramming, e.g, for expressing run-time state migrations
(R3, R4) that must account for many run-time eventuali-
ties (R5). Section 5.4 discusses design considerations.

In three case studies, we explore how Cascade helps to
express the language designs and program execution of DSLs
in a principled manner. In Sections 7, 8 and 9 we investigate:
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o_new(|uuid://1|, "State");

o_set([|uuid://1|], "name", "opened", null);

o_new(|uuid://2|, "List<Trans>");

o_set([|uuid://1|], "out", [|uuid://2|], null);

o_new(|uuid://3|, "Trans");

o_set([|uuid://3|], "src", "opened", null);

o_set(|[uuid://3|], "evt", "close", null);

l_insert([|uuid://2|], 0, [|uuid://3|]);

(a) Example edit operations

s = new State();

s.name = "opened";

s.out = new List<Trans>();

t = new Trans();

t.src = s;

t.evt = "close";

s.out.push(t);

(b)Generic edit script

Figure 7. Contrasting edit operations from edit scripts

a) consistency and run-time state migrations of LiveSML;
b) trickle-e�ects and �xpoint computations of LiveQL; and
c) live desugaring and visual feedback of Machinations.

3.2 Live Programming Environments

Cascade provides reusable components for developing live
programming environments, easing the authorial burden.

3.2.1 User Interface. Programmers need appropriate in-
put and feedback mechanisms for changing code, obtaining
feedback, and observing changes. Cascade o�ers a choice:
1) develop a user-friendly custom UI, based on its event APIs;
or 2) use a generic Read-Eval-Print-Loop (REPL), e.g., before
creating a custom UI. In this paper, we explore both. We use
the REPL to simulate live programming scenarios textually.
By executing sequential commands, we can simulate coding
actions, user interaction and feedback on a line by line basis.

3.2.2 Interpreter. A powerful interpreter is the driving
force behind live programming. We formulate technical chal-
lenges for creating interpreters that can support the require-
ments of Section 2.2.

T5 Integrate DSLs in a common run-time environment.
T6 Schedule and execute events that perform bi-directional

model transformations and run-time state migrations.
T7 Maintain a version history and a heap, for updating syn-

tax trees and run-time states with gradual changes.
T8 Generate the e�ects of transformations as historical trans-

actions that: a) capture changes as edit operations; and
b) preserve causal relationships in cause-and-e�ect chains.

To tackle these challenges, Cascade generates a DSL inter-
preter from its speci�cation. Section 6 discusses the design of
the compiler, the generated interpreters and Delta, Cascade’s
runtime. We begin by introducing edit operations.

4 Edit Operations

Cascade introduces an explicit representation of change for
expressing behavioral e�ects of coding actions, user interac-
tions and program executions. Cascade expresses change as
model transformations that work on models (or programs)
and run-time states, which each consist of objects. We base
its representation on a language variant of the edit opera-
tions [2]. Originally introduced for di�erencing and merging,
these operations have since also been used as a low-level
storage format for expressing run-time e�ects [20, 24].

Mach

– name: String

State

– name: String

Trans

– evt: String

MachInst

StateInst

– count: int

def

def

instances
*

i

*

o

* src tgt

cur

elements
*

sis

*

(a) Static meta-model (b) Run-time meta-model

Figure 8. Static and run-time meta-models of LiveSML

Cascade leverages edit operations to express transactional
e�ects, maintain a version history, and support exploratory
live programming. Figure 7a shows example operations that
create new objects and replace attribute values. Appendix A
describes a complete set of edit operations that work on
commonly used data structures: objects, lists, sets and maps.
However, edit operations alone are not su�cient. An ex-

pressive meta-language for change requires variables, not
just values. Cascade introduces a script notation, illustrated
by Figures 7b, that resolves this issue. Next, we explain how
Cascade’s transformations encapsulate these edit scripts.

5 The Cascade Meta-Language

Cascade is a meta-programming language for expressing
change, cause and e�ect. Using Cascade, language engineers
can create interpreters (language back-ends) described as
meta-models with bi-directional model transformations.

At run time, the interpreter executes these transformations
in sequence and produces transactions consisting of edit
operations. Upon completion, it commits the transactions
to the version history as cause-and-e�ect chains. Next, we
introduce the main language concepts and features.

5.1 Models and meta-models

Cascade expresses languages and changes usingmeta-models.
Programs are models that conform to the meta-model of the
language. In particular, these models are Abstract Syntax
Graphs (ASGs) composed of objects. The language seman-
tics steer the behavior of running programs. A program’s
run-time state, also a model, stores the results of program
execution and user interactions.
For instance, Figure 8 shows the UML class diagram of

LiveSML’s meta-model. The static metamodel (on the left),
de�nes the abstract syntax. A machine consists of a number
of states with transitions between them. The run-time meta-
model (on the right) expresses running state machines. A
running machine has a current state, and registers how often
it has resided in each state (the count).
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class Mach {

String name;

Set<State> states;

Set<MachInst> instances;

...

(a)Machine

class State {

String name;

Set<Trans> i;

Set<Trans> o;

...

(b) State

class Trans {

ref State src;

String evt;

ref State tgt;

...

(c) Transition

class MachInst {

ref Mach def;

ref StateInst cur;

Map<State, StateInst> sis;

...

(d)Machine Instance

class StateInst {

ref State def;

int count;

...

(e) Machine Instance

Figure 9. Cascade de�nitions of LiveSML’s meta-model

begin endcreation modi�cations deletion

Figure 10. Object lifeline, events and modi�cations

The notation for meta-models resembles object-oriented
programming, as shown in Figure 9. Aside from classes, it
supports the base types String, int, bool, and enum, and the
composite types List, Set and Map. Attribute ownership is
explicit, and by default, a class owns its attributes. The ref

keyword denotes an alias. We omit visibility because the aim
is encapsulating change.

5.2 Actions, events and transformations

Cascade is designed to express run-time transformations
with explicit e�ects. As a back-end language, it does not
distinguish between coding actions and user interactions.
Mechanisms for both can be expressed using three kinds
of parameterized event declarations, called effect, trigger
and signal. An e�ect describes how a speci�c object can
be created, modi�ed or deleted. A trigger is an input event
that has no direct e�ect, but can schedule other events, side-
e�ects that happen afterwards. A signal is an output event
that �ags an occurrence such as an exception or an error.

5.2.1 Objects. Objects have a limited life span. Instead of
operating on objects directly, events work on object life-
lines, as shown in Figure 10. The life span of an object begins
before its creation and ends after its deletion. Any number of
changes may happen in between. These life stages are called
issued, bound and retired.

5.2.2 E�ects. The basic unit of change, called effect, of-
fers a parameterized abstraction for scripting and reuse. Ef-
fects are bi-directional model transformations whose body
is an edit script. Each e�ect has parameters, type-value pairs
separated by commas that determine its scope. Figure 11
shows an example.

5.2.3 Creation. Creation e�ects are used to create new
objects of a certain class. For instance, Figure 11 shows a
partial speci�cation of the Machine class. We use the REPL
to create a new state machine called “doors” as shown in

1 class Mach {

2 String name;

3 Set<State> states;

4 Set<MachInst> instances;

5

6 effect Create(future Mach m,

7 String name) {

8 m = new Mach();

9 m.name = name;

10 m.states = new Set<State>();

11 m.instances =

12 new Set<MachInst>();

13 }

14 inverse effect Delete(past Mach m,

15 String name = m.name) {

16 delete m.instances;

17 delete m.states;

18 m.name = null;

19 delete m;

20 } pre {

21 foreach(State s in m.states) {

22 State.Delete(s, s.name, m); }

23 foreach(MachInst mi in m.instances) {

24 MachInst.Delete(mi, m); }

25 }

26 ...

Figure 11. Partial Cascade speci�cation of the Mach class

var m; ←↪

Mach.Create(m, "doors"); ←↪

(a) Creating a machine

print m; ←↪

machine doors

(b) Obtaining feedback

Mach.Create([|uuid://5|], "doors") {

[|uuid://5|] = new Mach();

[|uuid://5|].name = null → "doors";

[|uuid://6|] = new Set<State>();

[|uuid://5|].states = null → [|uuid://6|];

[|uuid://7|] = new Set<MachInst>();

[|uuid://5|].instances = null → [|uuid://7|];

}

(c) Generated transaction

Figure 12. Creating state machine from the REPL

Figure 12a. For conciseness, we will omit declaring variables
from now on. This command calls the Create e�ect (lines 6–
13). Note the←↪ symbol indicates REPL input (pressing the
return key), and its absence indicates output the interpreter
gives in response. We verify the results by reading the output
from the REPL in Figure 12b. The interpeter also generates
the changes that have occurred. The transaction shown in
Figure 12c is a short-hand for encapsulated edit operations.

5.2.4 Subject. The �rst parameter of an e�ect, called sub-

ject, is always a reference to the object that is subject to
change. The subject can optionally be preceded by an addi-
tional keyword that provides guarantees about its life before
and after execution. The future keyword, used only in cre-
ations, denotes the subject must be issued and will be bound
afterwards. The past keyword, used only in deletions de-
notes a bound subject will be retired afterwards. The lack of
a keyword signi�es it will continue to exist.

5.2.5 Parameters. There are two kinds of additional pa-
rameters that may follow the subject in the signature. Con-
stant parameters are inputs that enable passing values such
as an int, bool, String, enum or object reference. Change pa-
rameters enable updating the value of an object �eld from
an old to a new value. In Figure 11, both parameters of the
Create e�ect (lines 6–7) are constant parameters. The Delete
e�ect (line 15) also has a change parameter. It indicates trans-
actions will store the old and the new value of name �eld.

5.3 Side-e�ects and causal tranformations

5.3.1 Side-e�ects. The pre and post clauses enable sched-
uling e�ects before and after an event. Side e�ects can be
used to create modular constructors and destructors that
keep the syntax and the run-time states consistent. The post
clause enables creating additional objects, booting up sys-
tems and de�ning e�ects of user interaction. These clauses
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can contain if-statements and while loops that read values
and schedule events, but cannot modify values directly. Trig-
gers only have a post-clause. Signals have no side-e�ects.

5.3.2 Begin statement. For weaving side-e�ects together,
the begin and end statements issue objects references and re-
voke their validity. For instance, “begin State s;” is a state-
ment that issues a new reference to a State object. Afterwards,
we can schedule its creation.

5.3.3 Deletion. By design, every object that can be cre-
ated can also be deleted. Unlike creations, which work on
“blanks slates”, deletionsmust account for ownership and con-
sistency. The pre clause enables performing clean up tasks
such as deleting owned data, removing aliases, and shutting
down entire systems. For instance, calling Mach.Delete(m)

from the REPL does not only delete a machine, but also
cleans up the every state and any running instance it owns,
as de�ned by the pre-clause on lines 20–25 of Figure 11. We
demonstrate how LiveSML handles deletion in Section 7.

5.3.4 Inverse. Inverse e�ects, indicated by the inverse

keyword, perform conceptually opposite operations to their
preceding e�ects. E�ects and their inverses must have com-
patible signatures. Create and Delete in Figure 11 are in-
verse e�ects. Create’s future subject and constant param-
eters match Delete’s past subject and change parameters.
At run time, an inversion entails creating an opposite ef-
fect that can roll back a transaction, undoing its e�ects. An
invertible e�ect, typically a setter, is its own inverse. For
such an e�ect, an inversion matches the constant subject,
and swaps the old and new values of the change parameter.

5.4 Design considerations

5.4.1 Root cause analysis. The design decision, that all
change must be explicit, adds some verbosity but ensures
events can always be related to their Cascade speci�cation.
We observe that default code for e�ects and inverses may be
generated, and explicit ownership enables static analysis.

5.4.2 Consistency. To ensure bi-directionality, deletions
and removals must also be explicit. Therefore objects cannot
be garbage-collected. Creating a new object is, as one would
expect, a sequence of operations that create new objects and
afterwards assign initial values. However, deleting an object
is more involved. Deletion requires a clean-up of every child
object owned, and typically also erasure of references to
the object (or aliases) before the object can be deleted itself.
Fields must all have default values before deletion.

5.4.3 Liveness. Cascading changes can introduce liveness
into DSLs. By adding relationships between coding actions
and run-time e�ects, language engineers can improve in-
put and feedback mechanisms that help programmers make
gradual changes and observe di�erences in behavior. This

History Juncture

– previous: Juncture
– next: List<Juncture>

Event
– language: ILanguage
– loc: Location
– cause: Event
– preE�ect: List<Event>
– postE�ect: List<Event>

E�ect
– operations:

List<Operation> Trigger Signal

headstart

event

Figure 13.Delta’s history consists of cause-and-e�ect chains

1 void schedule(Patcher p, Dispatcher d, Event e) {

2 d.resolve(e);

3 foreach(Event pre in d.preMigrate(e)){ schedule(p,d,pre); }

4 d.generate(e);

5 p.commit(e);

6 foreach(Event post in d.postMigrate(e)){ schedule(p,d,post); }

7 }

Figure 14. C# pseudo-code of Delta’s event scheduler

has far reaching implications for the language designs of
DSLs, as we will demonstrate in Sections 7, 8 and 9.

6 Cascade Compiler and Runtime

The Cascade framework consists of a compiler written in
Rascal [8], and Delta, a runtime written in C#. The compiler
translates Cascade speci�cations into language modules that
integrate with Delta’s extensible engine. Figure 6 gives an
overview that illustrates how the main components process
and transform events.
Each generated DSL interpreter (or language) consists

of three sub-packages: 1) Model contains the classes of the
meta-model; 2) Operation contains the classes representing
events; and 3) Runtime contains components that process
events and transform models. Key runtime components are
the generator, and pre- and post-migrators, which generate
edit operations and handle side-e�ects. Delta’s engine has
three main components. The dispatcher manages a set of
languages, and determines which one handles an event. The
patcher executes edit operations, maintains the heap and
updates the version history. The scheduler determines the
order in which events are scheduled, generated and migrated.
Next, we explain how non-linear event scheduling works.

6.1 Scheduling events

The engine generates transactions in the form of cause-and-
e�ect chains, as illustrated by Figure 13. Histories consists
of junctures, branching points in time signifying events.
When called, the scheduler binds an event to a speci�c

subject. We sketch the recursive algorithm that schedules
each event in Figure 14. First, the dispatcher resolves the lan-
guage that processes the event (line 2). Before processing the
event itself, the pre-migrator of the language determines if
any events need to happen before, and if so, those are sched-
uled �rst (line 3). Only when the recursive pre-side-e�ects
have completed, the generator of the language generates the
edit operations that perform the event’s own e�ect (line 4).
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Figure 15. LiveSML: Static dependency graphs of events, and an example run-time state migration

The patcher immediately commits the transaction to the
history, before the operations go stale (line 5). Afterwards,
post-migration schedules any events that need to happen
afterwards (line 6). When each of those events completes,
the event itself completes.

6.2 Implementation

The compiler consists of 3285 LOC of Rascal. Delta consists
of 11.5 KLOC of C#. Delta’s main parts are the edit opera-
tions interpreter (1745 LOC), the runtime (7288 LOC), and the
REPL language (2603 LOC). Cascade is available under the
2-clause BSD license: h�ps://github.com/vrozen/Cascade.

7 Live State Machine Language

We investigate how to express the design of LiveSML [24].
LiveSML exempli�es run-time state migrations with one-to-
many relationships. Its semantics introduce dependencies be-
tween de�nitions of machines and states and their instances.
Changes to de�nitions potentially have many side-e�ects on
the run-time state. Because this state is not known a priori,
run-time state migrations have to account for many even-
tualities. Using Cascade, we create an interactive prototype
that reproduces the behavior of the original Java implemen-
tation. We demonstrate its interpreter accounts for run-time
eventualities by reproducing the scenario of Section 2.1.

7.1 Event-based language design

We create an event-based language design. In addition to
its meta-model, shown in Figure 8, we design its run-time
transformations. Figure 15 schematically depicts the static de-
pendencies between creation events, deletion events and run-
time triggers. Events, shown as rounded rectangles, work on
the syntax (white) and the run-time state (gray). Interactive
events (double line) are coding actions (white) and user inter-
actions (gray) with side-e�ects (single line). Arrows indicate
if side-e�ects happen before (pre) or after (post) an event.
Converging arrows indicate reuse in distinct scenarios.

Creation. The programmer begins with an empty state ma-
chine by creating one. At any moment, they can add states
to a program and transitions between states by creating new
states and transitions. They can also run a machine at any
point in time. Each running machine separately keeps track
of its visit counts. Therefore, creating a new machine also
instantiates each state. Running machines update their book-
keeping when adding a new state to their machine de�nition.
Afterwards, each running machine reinitializes (↓), since it
may not have a current state yet.
Deletion. Of course, programmers can also delete a ma-

chine. Each machine cleans up its states and running in-
stances. Deleting a state has side-e�ects that also remove
and delete every transition from its inputs and outputs. In
addition, removing a state also removes and deletes state
instances from every running machine. Finally, removing
the current state of a running machine migrates its to the
�rst state in its de�nition.
Run-time triggers. Triggering (↓) a running machine can

cause a transition that sets a new current state. However, it
can also result in the signals (↑) missing state or quiescence.
These signals do not cause any change, but do provide feed-
back to the user. When setting a new current state, its count
is also increased by one.

Prototype. The Cascade implementation of LiveSML counts
213 LOC. Compiling the sources results in 2204 LOC of gen-
erated C#. Next, we will apply the fully generated prototype.

7.2 Live programming scenario

We reproduce the run-time state migration of Section 2.1.
Instead of parsing an SML program, we simulate sequential
coding actions, user interactions, and feedback directly from
the REPL. Figure 16 shows the REPL commands and feedback
that simulate the scenario.

We �rst create a new machine doors that contains a closed
state (Figure 16a). Using the print command, we call the
pretty printer. We obtain feedback and verify the syntax of
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Mach.Create(m, "doors"); ←↪

State.Create(s1, "closed", m); ←↪

print m; ←↪

machine doors

state closed

(a) Creating the program

MachInst.Create(mi, m); ←↪

print mi; ←↪

machine doors

closed : 1 *

(b) Runing the program

State.Create(s2, "opened", m); ←↪

State.Create(s3, "locked", m); ←↪

Trans.Create(t1, s1, "open", s2); ←↪

Trans.Create(t2, s2, "close", s1); ←↪

Trans.Create(t3, s1, "lock", s3); ←↪

Trans.Create(t4, s3, "unlock", s1); ←↪

(c) Completing the program

print mi; ←↪

machine doors

[open] [lock]

closed : 1 *

opened : 0

locked : 0

(d) Updated run-time state

MachInst.Trigger(mi, "lock"); ←↪

print mi; ←↪

machine doors

[unlock]

closed : 1

opened : 0

locked : 1 *

(e) Locking the door

State.Delete(s3, "locked", m); ←↪

print mi; ←↪

machine doors

[open]

closed : 2 *

opened : 0

(f) Deleting the locked state

Figure 16. LiveSML scenario simulated from the REPL

the DSL program is as expected. Although the program is not
yet complete, we already run it. We create an instance, and
use the print command to observe that, initially, its current
state (*) is closed (Figure 16b).
We now complete the program (Figure 16c) by adding

opened and locked states, and the transitions between them.
Behind the scenes, several side-e�ect have occurred. We
inspect the running program has also been updated (Fig-
ure 16d). The text between brackets denote “buttons” for the
available actions. Users can now open or lock the closed door.
We simulate an action that locks the door (Figure 16e).

Finally, we delete the locked state (Figure 16f). As expected,
this causes a run-time state migration, setting the current
state to closed, and increasing its count by one.

The resulting transaction, described in more detail in Ap-
pendix B, is super-imposed on the design on Figure 15. Its
generated control �ow traverses events that a�ect both the
syntax and the run-time state. Note that, the edit operations
of the deletion itself, actually happen last.

7.3 Analysis

Compared to the original LiveSML, which counts 1217 LOC
of hand-written Java, our prototype is signi�cantly smaller
(213 LOC)2. Cascade addresses the main shortcoming of the
Run-timeModel Patching (RMPatch) approach that expresses
run-time state migrations as hard-coding visitors on edit op-
erations, which is time consuming and error-prone [24]. In-
stead, Cascade expresses them on the meta-level. As a result,
LiveSML’s modular design is more concise and maintainable.

8 Live Questionnaire Language

The Questionnaire Language (QL) is a DSL for expressing
interactive digital questionnaires. Originally designed for the

2h�ps://github.com/vrozen/Cascade/tree/main/LiveSML

form Celebration {

"Your discount is" :

int discount = age/2-10

"What is your age?" :

int age

}

(a) Celebration form

Celebration

Your discount is 24

What is your age? 68

(b) Example �lled-out form

Figure 17. Forms that calculates an age dependent discount

Dutch tax o�ce, this DSL has since served as a benchmark for
generic language technology, e.g., the Language Workbench
Challenge [7]. We study LiveQL, a language variant that
enables simultaneously designing and answering forms [20].
We focus on the liveness properties and trickle e�ects at the
heart of its semantics. In particular, we aim to reproduce
the behavior that propagates the e�ects of giving answers.
Using Cascade, we express LiveQL and create a language
prototype. We use its REPL to simulate a run-time scenario
of an example that demonstrates a �xpoint computation.

8.1 Questionnaire Language

Forms consists of sequences (or blocks) of two kinds of state-
ments: questions and if statements. Figures 17 shows a from
that expresses an age-based discount, and an answered form.

8.1.1 Questions. Each question consists of a textual mes-
sage the user sees, a question type (int, str or bool), and a
variable name that can be used to reference the question’s
answer. By default, questions are answerable. The question
“what is your age?” is answerable. Users answer questions
by supplying a value of the speci�ed question type. In this
case, age requires an int value, for instance 68.

However, when assigned with an expression, questions be-
come computed. Instead of prompting the user to answer the
question, the form computes the answer by evaluating the
expression. In the example, discount is a computed answer.
Its computed value is 24.

8.1.2 If statements. Conditional questionnaire sections
can be designed using if statements. Each if consists of a
condition (a boolean expression), an if-block and an optional
else-block. The user sees the statements nested in the if-block
if the condition is true, and those in the else-block otherwise.
Statements that have an expression referencing a variable
have data dependency on that variable. Statements nested
inside an if-block have a control dependency on each variable
referenced in the condition. Here, we omit an example.

8.1.3 LiveQL. Originally, QL required that users answer
questions in a top-down manner [7]. Each statement could
only refer back to variables whose value have been previ-
ously given or computed.

LiveQL relaxes this requirement by enabling forward ref-
erences, and allowing changes to running forms [20]. These
changes introduce two forms of liveness. First, when the pro-
grammer adds, removes or changes statements, this a�ects
the running form. Second, when a user answers a question,
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Form
– name:

Identifier

Block

Stat

�estion

– msg: String
– type: QType
– id: Identifier
– exp: Exp

IfStat

– cond: Exp

State
– change: bool
– work:

List<Identifier>

Answer

– visible: bool
– v: Val

block

stats
*

state

form

answer

*
answer

question

if else

(a) Static metamodel (b) Run-time metamodel

Figure 18. Static and run-time meta-models of LiveQL

package LiveQL {

class State {

ref Form f;

List<Answer> ans;

bool change;

List<Identifier> work;

trigger TriggerID(State s, Identifier i) {

SetChanged(s, false); //First, reset the changed flag.

PushWork(s, i); //Next, add the identifier to the work queue.

DoWork(s); //Schedule the work, which may cause re-evaluations.

WhileChange(s, i); } //Finally, check if there is more change.

trigger WhileChange(State s, Identifier i) {

if(s.change) { //If a change has happened as a result of re-evaluation

TriggerID(s, i); //continue the computation

} else { //otherwise

Done(s, i); //signal done.

} }

signal Done(State s, Identifier i);

Figure 19. LiveQL contains a �xpoint computation

the form re-evaluates dependent computed questions and if
statements. As a result, answers may update and sections of
the form can become visible or invisible.

8.2 Language design

We investigate how Cascade helps to express the behavior
of LiveQL, in particular the trickle e�ects that result from
answering questions. The meta-model of LiveQL, shown in
Figure 18, is based on the original Java implementation [20].
The run-time meta-model extends the static meta-model
with information about the current state of the form, such
as answers to questions and visibility.

The key to expressing trickle e�ects is de�ning a �xpoint
computation that schedules future events in sequence from
the body of a trigger. When answering a question, depen-
dent computed answers and if-statements recompute until no
more changes can be observed. Figure 19 illustrates the main
events. When the value of an identi�er updates, TriggerID
is called. After performing work, which potentially causes
changes, the check of WhileChange determines if the compu-
tation completes or continues to propagate changes.

1 Form.Create(f, "Celebration"); ←↪

2 Question.Create(q1, f, "Your discount is", QType.Int, "discount");←↪

3 Question.SetExpression(q1, f, "age/2-10"); ←↪

4 Question.Create(q2, f, "What is your age?", QType.Int, "age"); ←↪

(a) Creating the Celebration form

Question.GiveAnswer(q2 , f, "68"); ←↪

(b) Answering the age question

print f; ←↪

form Celebration {

"Your discount is" :

int discount = age/2-10

==> undefined

"What is your age?" :

int age ==> undefined

}

(c) Unanswered form

print f; ←↪

form Celebration {

"Your discount is" :

int discount = age/2-10

==> 24

"What is your age?" :

int age ==> 68

}

(d) Answered form

Figure 20. LiveQL scenario simulated from the REPL

8.3 Prototype live programming environment

We create a textual DSL prototype, an interpreter with a
built-in REPL. Its Cascade speci�cation counts 1044 LOC3.
Compiling the sources results in 8189 LOC of generated C#.
Most components of the prototype are fully generated. We
add the following components, which amounts to a total of
916 LOC hand-written C#.

The pretty-printer enables inspecting the syntax and run-
time state from the REPL. We add an expression evaluator
and two small helper classes for: 1) performing lookups for
use-def relationships of variables; 2) collecting conditions
of questions; and 3) evaluating the expressions of questions
and if-statements. We use ANTLR 4 to create a QL parser
that generates ASTs of programs and expressions. To bring
these ASTs under management of Delta, we create a Builder
that generates Cascade events for recreating the ASTs.

8.4 Live programming scenario

We demonstrate a trickle e�ect in a live programming sce-
nario that reproduces the Celebration example of Figure 17.
After creating the form, answering the question age with 68

should result in the discount becoming 24.
Using our prototype, we simulate coding actions and user

interaction from the REPL, as shown in Figure 20. We begin
with the coding actions shown in Figure 20a. First, we create a
new form f called Celebration (line 1).We add a new question
q1 to form f with message “Your discount is”, introducing the
variable discount of type int (line 2). To make q1 a computed
question, we set its expression to age/2-10 (line 3). Finally
we add the second question q2 introducing int age (line 4).

LiveQL programs automatically run one instance. We ver-
ify the program runs, and observe discount and age are ini-
tially unde�ned, as shown in Figure 20c. Next, we answer
question q2 and give answer 68, as shown in Figure 20b. Fi-
nally, we verify the value of discount has indeed become 24.
Figure 20d indicates the change has been correctly propa-
gated. For conciseness, we omit the generated transaction.

3h�ps://github.com/vrozen/Cascade/tree/main/LiveQL
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(a) Mechanism for exchanging gold for health (what designers see)
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gold

100

hpbuyMedkit
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(b) Desugared version of the diagram (what the engine runs)

Figure 21.Diagram showing an excerpt of the internal econ-
omy of Johnny Jetstream (adapted from van Rozen [21])

8.5 Analysis

Our results demonstrate Cascade helps express the trickle
e�ects of LiveQL as a concise �xpoint computation. Cre-
ating the prototype, including its helper classes, cost ap-
proximately one working day, with only the experience of
LiveSML. The original Java implementation, which measures
6179 LOC, also includes a visual front-end. The new proto-
type is signi�cantly smaller, measuring 816 LOC.

9 Live Machinations

Machinations is a visual notation for game design that fore-
grounds elemental feedback loops associated with emergent
gameplay [1, 1]. Micro-Machinations (MM) is a textual and vi-
sual programming language that addresses several technical
shortcomings of its evolutionary predecessor. In particular,
MM introduces a live programming approach for rapidly
prototyping and �ne-tuning a game’s mechanics [23], and
accelerating the game development process.

We study the design of the MM library (MM-Lib), includ-
ing its run-time bahavior and state migrations. In particular,
we explore how Cascade helps to express live desugaring.
We create a visual prototype using Cascade and the Godot
game engine. Vie is a tiny live game engine for simultane-
ously prototyping and playtesting a game’s mechanisms. In
live programming scenario of a simple game economy, we
demonstrate Vie correctly desugars converters.

9.1 Micro-Machinations

Micro-Machinations programs, or diagrams, are directed
graphs that can control the internal economy of running dig-
ital games. When set in motion through runtime and player
interactions, the nodes act by pushing or pulling economic
resources along its edges.
Figure 21a shows a mechanism in the internal economy

of Johnny Jetstream, a 2D �y-by shooter [21]. Two pool

nodes, shown as circles, abstract from the in-game resources,
gold and health (hp). The integers inside represent current
amounts. The edges are resource connections that de�ne the
rate at which resources can �ow between source and target
nodes. BuyMedkit is an interactive converter node, appearing

ProgramElement
– name: String
– visible: bool

Edge Node

– type: NodeType

FlowEdge

– amount: int

Trigger

Behavior
– when: When
– act: Act
– how: How

Pool

– at: int
– max: int

Converter
– s: Node
– d: Node
– t: Trigger

Source

Drain

Engine

– change: bool

NodeInst
– triggered: bool
– amount: int

elements*

src

tgt

state

*

work

*

behavior

engines *

node

(a) Static meta-model

(b) Run-time
meta-model

Figure 22. Partial meta-model of Micro-Machinations

as a triangle pointing right with a vertical line through the
middle. This converter consumes 10gold and produces 20hp.

Converters are so-called syntactic sugar, a convenience no-
tation, which translates into a simpler elements for e�cient
processing. Figure 21b shows that converters can be rewrit-
ten as a combination of a drain, a trigger and a source. When
the drain node consumes the costs of the conversion, the
trigger activates the source node, which then produces the
bene�ts. During the translation, the inputs of the converter
connect to the drain, and the outputs to the source.

Designers can simultaneously prototype and playtest run-
ning economies, e.g., by activating mechanisms or modifying
node types. Therefore, desugarings must also happen live.

9.2 Language design

We investigate how Cascade helps to express the liveness of
MM’s core language features, focusing on live desugaring
of converters in particular. As a starting point, we analyze
the C++ implementation of MM-Lib, an embeddable script
engine for MM [23]. Figure 22 shows a partial meta-model
based onMM-Lib. As before, we express the dependencies be-
tween the abstract syntax and the run-time state. An engine,
which instantiates a program, tracks the current amounts
of pool nodes and which nodes are triggered for activation.
Through a combination of e�ects and helper methods, it
evaluates how the resources �ow when nodes activate.
The solution for desugaring converter nodes introduces

invisible elements that implement its behavior. When a node
becomes a converter, a series of transformations immedi-
ately generate 1) a source, a trigger and a drain; 2) incoming
edges to the drain; and 3) outgoing edges to the source. In
addition, running engines obtain new node instances used
for evaluating �ow rates. Changes to a converter node are
delegated its source and drain nodes. Changing the node’s
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Figure 23. Prototyping and playtesting a mechanism in Vie

behavior to another type, cleans up these invisible elements,
and also removes node instances from running engines.

9.3 Vie: a tiny live game engine

We use Cascade and the Godot game engine to create a pro-
totype that implements the design of MM. Vie is a tiny live
game engine for simultaneously prototyping, playtesting
and �ne-tuning a game’s design. MM’s implementation in
Cascade counts 1542 LOC4. Compiling its sources generates
an interpreter, 11.7 KLOC of generated C#. We augment En-
gine with two helper classes, EvalContext (153 LOC) and
Flow (29 LOC), for storing temporary run-time data.

Instead of using its built-in REPL, we create a visual front-
end using Godot (v3.5.1). We leverage the GraphNode and
GraphEdit framework, and program C# classes for connect-
ing Cascade events to UI events. In another paper we further
detail how we manually create this front-end [22].

9.4 Live programming scenario

We reproduce the behavior of the mechanism shown in Fig-
ure 11. Using Vie, we perform a sequence of prototyping and
playtesting actions that demonstrate the behavior of MM,
including live desugaring and run-time state migrations.
We �rst recreate the diagram using Vie’s visual editor,

shown in Figure 23. Next, we trigger the converter buyMedit
by clicking on its center. The UI shows visual feedback.
We observe the engine succeeds (yellow) in activating its
drain, trigger and source. The nodes consume and produce
resources at the expected rates (green). The textual view
on the program, shows the invisible elements. Finally, we
change the node type of the converter to pool. The resulting
transaction is a long cause-e�ect-chain that cleans up the
desugared converter and migrates the run-time state.

9.5 Analysis

MM-Lib measures 21.2 KLOC of C++. In comparison, Vie
does not yet support every feature, e.g. modules. However,
at a mere 1542 LOC, its Cascade speci�cation is considerably

4h�ps://github.com/vrozen/Cascade/tree/main/LiveMM

more concise. Due to its representation of e�ects, Vie solves
two limitations of MM-Lib. First, it adds traceability of cause-
and-e�ect for all actions. Second, it expresses the e�ects of
resource propagation and triggers as a �xpoint computation.
Vie is more extensible and maintainable. Combining Godot
with Cascade is straightforward. Since both have event APIs,
and Godot support C#, they integrate well. Our e�ort went
mainly into creating the UI. A bene�t of Godot is that Vie is
a portable app (Windows, Linux, MacOS, iOS, Android).

10 Discussion

Cascade has compelling bene�ts for creating live program-
ming environments. Using its notations and abstractions,
language engineers can concisely express DSL run-time be-
haviors, and account for many migration scenarios, on the
meta-level. They can ensure transformations and side-e�ects
are correct by design. However, no automated contextual
analysis is provided yet. At no additional cost, Delta gen-
erates a history that traces how and why every event hap-
pens, while ensuring the run-time state is correctly updated.
Cause-and-e�ect chains are instrumental for exploratory live
programming, omniscient debugging and version control.
Because the generated interpreters are event-driven, they
combine well with visual UIs, e.g., bowsers or game engines.

Of course there are also costs. For language engineers, bidi-
rectional thinking is not straightforward. Language designs
do not normally include run-time state migrations. Learning
how bi-directional designs work takes time and practice.
We have validated Cascade against a limited number of

existing DSLs. Further validation will require introducing
new liveness to DSLs. Additionally, the compiler is a com-
plex meta-program that bridges a wide conceptual gap. As
a result, it undoubtedly still contains bugs we have not yet
identi�ed. To address this, we plan to create a test harness
that automates testing features and prototypes.
Of course, the proposed combination of transformations,

migrators and feedback mechanisms generalizes beyond Cas-
cade. These abstractions can also be programmed using Gen-
eral Purpose Languages (GPLs). Our compiler targets C#.
Unlike Cascade, GPLs do not support bi-directional transfor-
mations or generate cause-and-e�ect chains out of the box.
Adding support requires a considerable engineering e�ort.

We have not studied using Cascade to add liveness to GPLs.
The underlying executionmodels, e.g., program counters and
stack frames, do not directly support liveness. GPLs require
additional mechanisms such as probes to introduce liveness.
Cascade’s generic REPL has limitations. Its mechanisms

are low-level, and not suitable for DSL users. Furthermore,
Cascade still lacks a debugger for exploring histories, in-
specting cause-and-e�ect chains and tracing source locations.
Debugging a DSL involves stepping through the generated
C# code. Debugging transactions involves inspecting the
notation on the REPL (e.g., Figure 24 in Appendix B).
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Cascade’s integration in C# is helpful for extending it func-
tionality with helper methods. The lack of a formal seman-
tics complicates analyses. We see opportunities for checking
cyclic dependencies and the correctness of inverse e�ects.

Live programming with run-time state migrations is inher-
ently inconsistent. An open challenge is identifying formal
properties of liveness. Cascade introduces a local dependen-
cies between events that have a global consistency of e�ects.

11 Related Work

Live Programming is a research area that intersects Pro-
gramming Languages (PL) and Human-Computer Interac-
tion (HCI). The term refers to a wide array of user interface
mechanisms, language features and debugging techniques
that revolve around iterative changes and immediate and
continuous feedback [16]. Tanimoto describes levels of live-
ness that help distinguish between forms of feedback in live
programming environments [18]. Each level adds a property:
1) informative or descriptive; 2) executable; 3) responsive or
edit triggered; and 4) live or stream driven. Many forms of
live programming exist, each designed with di�erent goals
in mind. For instance, McDirmid describes how probes, a
mechanism interwoven in the editor, helps diagnosing prob-
lems [11]. Ko describes whyline, a debugging mechanism for
asking why-questions about Java program behavior [9].

Another approach is creating interpreters with a so-called
Read-Eval-Print-Loop (REPL), a textual interface for execut-
ing commands sequentially [3] A REPL, by de�nition, lends
itself naturally to exploration, incremental change and im-
mediate feedback, each key ingredients to live programming.
Interpreters created with Cascade have a built-in REPL and
REPL-like APIs for designing DSLs with event-based input
and feedback mechanisms, including visual ones.
Omniscient debugging, also called back-in-time debug-

ging, is a form of debugging that allows exploring what-if
scenarios by stepping forward and backward through the
code [14, 15]. Such debuggers have been created for general
purpose languages Java [15]. Retro�tting an omniscient de-
bugger to an existing language can come at a considerable
cost, redesign and implementation e�ort. Bousse et al. pro-
pose a meta-modeling approach for a generic debugger of
executable DSLs that supports common debugging services
for tracing the execution [4]. Cascade is also designed with
omniscient debugging in mind. Cause-and-e�ect chains are
a key data structure for creating omniscient debuggers.
The area of modelware is a technological space that re-

volves around the design, maintenance and reuse of models
(or programs). Model transformations are a key technology
for expressing change. In their seminal paper on “The Dif-
ference and Union of Models”, Alanen and Porres describe a
notation, originally intended for model versioning, known
as edit operations, which expresses model deltas [2]. Van der
Storm proposes creating live programming environments
driven by “semantic deltas”, based on this notation [20]. Van

Rozen and van der Storm combine origin tracking and text
di�erencing for textual model di�erencing [21].
Bi-directional Model Transformation (BX) is a well re-

searched topic that intersects with several areas [6]. BX has
impacted relational databases, model-driven software devel-
opment [17], UIs, visualizations with direct manipulation,
structure editors, and data serialization, to name a few. Ci-
cchetti et al describe the Janus Transformation Language
(JTL), a language for bi-directional change propagation [5].

The study of live modeling with run-time state migra-
tions has initially focused on �ne-grained patching with edit
operations [24]. Constraint-based solutions instead focus
on correct states with respect to a set of constraints [19], a
course-grained approach that omits �ne-tuning. Sanitization
solutions regard run-time state migrations as a way to �x
what is broken [25]. We instead take the position that they
are an integral part of the language semantics.
Until now, no solution could explain why a particular

migration happened. Cascade is a BX solution that addresses
both how and why, for precise feedback about root causes
and �nger sensitive �ne-tuning.
Cascade is the �rst language-parametric and generic ap-

proach for creating DSLs that leverages a bi-directional trans-
formations for live programming. Compared to existing ap-
proaches, it adds a scheduling mechanism for de�ning com-
plex deterministic side-e�ects. To the best of our knowledge,
no other system exists that can generate run-time state mi-
grations from meta-descriptions as cause-and-e�ect chains.

12 Conclusions and future work

We have addressed the lack of enabling technology for cre-
ating live programming environments. We have proposed
Cascade, a meta-language for expressing DSLs with interface-
and feedback-mechanisms that drive live programming. In
three case studies, we have explored expressing the liveness
features of LiveSML, LiveQL and Machinations. We have
demonstrated how to express gradual change, run-time state
migrations, ripple e�ects and live desugarings. Our results
show that an explicit representation of change is instrumen-
tal for how these languages are built, and that cause-and-
e�ect relationships are vital for delivering feedback.

In future work, wewill investigate how to create a reusable
omniscient debugger for change-based DSL environments.
Schema or program modi�cations require both instance

migrations and view adaptations. We will further investigate
how to express coupled transformations [10], e.g., for Vie.
Live programming requires interactive visual interfaces,

and generic language technology to create them [12]. We
will investigate how to automate the development of UIs
that leverage game engine technology [22].
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Table 1. Edit operations supported by Delta

Operation Inverse operation

o_new (ID id, StringVal class) o_delete (ID id, StringVal class)

o_set (Path p, Field f, Val nv,Val ov) o_set (Path p, Field f, Val ov,Val nv)

l_insert (Path p, IntVal i, Val v) l_remove (Path p, IntVal i, Val v)

l_push (Path p, Val v) l_pop (Path p, Val v)

l_set (Path p, IntVal i, Val nv,Val ov) l_set( Path p, IntVal i, Val ov,Val nv)

s_add (Path p, Val v) s_remove (Path p, Val v)

m_add (Path p, Val k) m_remove (Path p, Val k)

m_set (Path p, Val k, Val nv, Val ov) m_set (Path p, Val k, Val ov, Val nv)

A Edit Operations

This appendix describes on a complete set of edit operations
for manipulating commonly used data structures: objects,
lists, sets and maps. Cascade’s runtime Delta uses these op-
erations to execute bi-directional model transformations.

A.1 Objects, heap and quali�ed names

Edit operations work on objects. A global store, or heap,
stores the current program state as a collection of objects
with �elds and references. Values can have a base type such
as int, String, bool.
Enums and classes introduce custom objects and values.

The built-in datatypes Set, List and Map help to create ob-
ject hierarchies, such as trees and graphs. Edit operations
can perform lookups using quali�ed names or paths. The
notation uses dots and brackets for lookups in the global
store, maps and lists. For instance, [|uuid://1|] performs a
lookup of an object with Unique Universal Identi�er (UUID)
1, and [|uuid://1|].cur retrieves its �eld cur.

A.2 Supported edit operations

Delta supports the edit operations shown in Table 1. We
brie�y describe these operations, which work on objects,
lists sets and maps. Figure 7a shows an example sequence of
operations that partially recreate the example SML program
shown in Figure 3.

A.2.1 Objects. The o_new operation creates a new object
with identi�er id of a particular class. The new object will
have all of its �elds set to default values. Its inverse operation
o_delete has the exact opposite e�ect, and deletes an object
with identi�er id. Deletions include the class parameter and
they require that each �elds of the object has default values.
Without this, the operation cannot be reversed. Finally, to set
the values of �elds, the o_set operation, replaces the value
ov of �eld f of the object denoted by path p by a new value
nv. This operation is its own inverse, swapping the old and
the new values. Figure 7a shows examples.

A.2.2 List. Specialized operations that only work on list
objects of type List<X> are the following. The operations

root 1 State.Delete([|uuid://26|], "locked", [|uuid://13|]) {

pre 2 Trans.Delete([|uuid://33|], [|uuid://26|], "unlock", [|uuid://16|]) {

pre 3 State.RemoveOut([|uuid://26|], [|uuid://33]) {

[|uuid://28|].remove([|uuid://33|]);

}

pre 4 State.RemoveIn([|uuid://16|], [|uuid://33|]) {

[|uuid://17|].remove([|uuid://33|])

}

[|uuid://33|].src = [|uuid://uuid26|] → null;

[|uuid://33|].evt = "unlock" → null;

[|uuid://33|].tgt = [|uuid://uuid16|] → null;

delete Trans [|uuid://33|];

}

pre 5 Trans.Delete([|uuid://32|], [|uuid://16|], "lock", [|uuid://26|]) {

pre 6 State.RemoveOut([|uuid://16], [uuid://32]) {

[|uuid://18|].remove([|uuid://32|]);

}

pre 7 State.RemoveIn([|uuid://26|], [uuid://32]) {

[|uuid://27|].remove([|uuid://32|])

}

[|uuid://32|].src = [|uuid://uuid16|] → null;

[|uuid://32|].evt = "lock" → null;

[|uuid://32|].tgt = [|uuid://uuid26|] → null;

delete Trans [|uuid://32|];

}

pre 8 Mach.RemoveState([|uuid://13|], [|uuid://26|]) {

pre 9 MachInst.RemoveStateInst([|uuid://19|], [|uuid://29|], [|uuid://26|]){

pre 10 MachInst.SetCurState([|uuid://19|], null, [|uuid://29|]) {

[|uuid://19|].cur = [|uuid://uuid29|] → null;

}

[|uuid://20|][[|uuid://26|]] = [|uuid://29|] → null;

[|uuid://20|].remove([|uuid://26|]);

}

pre 11 StateInst.Delete([|uuid://29|], [|uuid://26|]) {

[|uuid://29|].def = [|uuid://26|] → null;

[|uuid://29|].count = 1 → 0;

delete StateInst [|uuid://29|];

}

pre 12 MachInst.Initialize([|uuid://19|]) {

post 13 MachInst.SetCurState([|uuid://19|], [|uuid://21|]) {

[|uuid://19|].cur = [|uuid://21|];

post 14 StateInst.SetCount([|uuid://21|], 2, 1) {

[|uuid://21|].count = 1 → 2;

}

}

}

[|uuid://14|].remove([|uuid://26|]);

}

[|uuid://26|].name = "locked" → null;

delete Set<Trans> [|uuid://27|];

delete Set<Trans> [|uuid://28|];

delete State [|uuid://26|];

}

Figure 24. Cause-e�ect chain that deletes the locked state

l_insert and l_remove are each other’s inverse. These op-
erations respectively insert or remove a value v at an index i
in the list denoted by path p.

To modify a value in a list, the invertible operation l_set,
replaces an old value ov by a new value nv at index i in the
list denoted by path p. For convenience, l_push inserts a
value v at the tail of an existing list, and l_pop removes it,
without specifying the index.

A.2.3 Set. Two operations work on set objects of type
Set<X>. The inverse operations s_add and s_remove re-
spectively add or remove a value v of type X in an existing
set denoted by path p.

A.2.4 Map. Operations that work on map objects of type
Map<K,V> are the following. The operations m_add and
m_remove respectively add or remove a map record de-
noted by key k of type K in an existing map denoted by
path p. To ensure correctness, the initial and �nal value in a
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record must be defaults. To update a map record, the opera-
tionm_set replaces an old value ov by new value nv in the
record denoted by key k in the map denoted by path p.

B LiveSML: Cause-and-e�ect chain

We detail the results of Section 7, which reproduces the
example LiveSML live programming scenario of Section 2.1.
Figure 24 shows the cause-and-e�ect chain that results from
deleting the locked state. The numbers appearing in the
circles coincide with those in the generated control �ow that
is superimposed on the static dependency graph of Figure 15.
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