
This article was downloaded by: [192.16.191.136] On: 28 November 2023, At: 03:43
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Mathematics of Operations Research

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

An Accelerated Newton–Dinkelbach Method and Its
Application to Two Variables per Inequality Systems
Daniel Dadush, Zhuan Khye Koh, Bento Natura, László A. Végh

To cite this article:
Daniel Dadush, Zhuan Khye Koh, Bento Natura, László A. Végh (2023) An Accelerated Newton–Dinkelbach Method and
Its Application to Two Variables per Inequality Systems. Mathematics of Operations Research 48(4):1934-1958. https://
doi.org/10.1287/moor.2022.1326

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2022, INFORMS

Please scroll down for article—it is on subsequent pages

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/moor.2022.1326
https://doi.org/10.1287/moor.2022.1326
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org

An Accelerated Newton–Dinkelbach Method and Its Application
to Two Variables per Inequality Systems
Daniel Dadush,a Zhuan Khye Koh,b Bento Natura,b László A. Véghb,*
a Centrum Wiskunde & Informatica, Amsterdam 1098 XG, Netherlands; b Department of Mathematics, London School of Economics and
Political Science, London WC2A 2AE, United Kingdom
*Corresponding author
Contact: dadush@cwi.nl, https://orcid.org/0000-0001-5577-5012 (DD); z.koh3@lse.ac.uk, https://orcid.org/0000-0002-4450-8506 (ZKK);
B.Natura@lse.ac.uk, https://orcid.org/0000-0002-8068-3280 (BN); l.vegh@lse.ac.uk, https://orcid.org/0000-0003-1152-200X (LAV)

Received: August 3, 2021
Revised: July 27, 2022
Accepted: September 10, 2022
Published Online in Articles in Advance:
December 1, 2022

MSC2020 Subject Classifications: Primary:
49M15, 90C32, 90C05; secondary: 90C27,
90C40, 68W40

https://doi.org/10.1287/moor.2022.1326

Copyright: © 2022 INFORMS

Abstract. We present an accelerated or “look-ahead” version of the Newton–Dinkelbach
method, a well-known technique for solving fractional and parametric optimization problems.
This acceleration halves the Bregman divergence between the current iterate and the optimal
solution within every two iterations. Using the Bregman divergence as a potential in conjunc-
tion with combinatorial arguments, we obtain strongly polynomial algorithms in three appli-
cations domains. (i) For linear fractional combinatorial optimization, we show a convergence
bound of O(m log m) iterations; the previous best bound was O(m2logm) by Wang, Yang, and
Zhang from 2006. (ii) We obtain a strongly polynomial label-correcting algorithm for solving
linear feasibility systems with two variables per inequality (2VPI). For a 2VPI system with n
variables and m constraints, our algorithm runs in O(mn) iterations. Every iteration takes
O(mn) time for general 2VPI systems and O(m+ n log n) time for the special case of deter-
ministic Markov decision processes (DMDPs). This extends and strengthens a previous result
by Madani from 2002 that showed a weakly polynomial bound for a variant of the
Newton–Dinkelbach method for solving DMDPs. (iii) We give a simplified variant of the para-
metric submodular function minimization result from 2017 by Goemans, Gupta, and Jaillet.

Funding: This project received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme [Grants 757481-ScaleOpt and 805241-
QIP].

Keywords: Newton–Dinkelbach method • fractional optimization • parametric optimization • strongly polynomial algorithm •

two variables per inequality system • Markov decision process • submodular function minimization

1. Introduction
Linear fractional optimization problems are well studied in combinatorial optimization. Given a closed domain
D ⊆ Rm and c, d ∈ Rm such that d⊤x > 0 for all x ∈D, the problem is

inf c⊤x=d⊤x s:t: x ∈D: (1)

The domain D could be either a convex set or a discrete set D ⊆ {0,1}m. Classical examples include finding mini-
mum cost-to-time ratio cycles and minimum ratio spanning trees. One can equivalently formulate (1) as a para-
metric search problem. Let

f (δ) � inf{(c� δd)⊤x : x ∈D} (2)
be a concave and decreasing function. Assuming (1) has a finite optimum δ, it corresponds to the unique root f (δ) � 0.

A natural question is to investigate how the computational complexity of solving the minimum ratio Problem (1)
may depend on the complexity of the corresponding linear optimization problem min c⊤x subject to x ∈D. Using the
reformulation (2), one can reduce the fractional problem to the linear problem via binary search; however, the number
of iterations needed to find an exact solution may depend on the bit complexity of the input. A particularly interesting
question is the following. Assuming there exists a strongly polynomial algorithm for linear optimization over a
domain D, can we find a strongly polynomial algorithm for linear fractional optimization over the same domain?

A seminal paper by Megiddo [22] introduced the parametric search technique to solve linear fractional combina-
torial optimization problems. He showed that if the linear optimization algorithm only uses p(m) comparisons
and q(m) additions, then there exists an O(p(m)(p(m) + q(m)) algorithm for the linear fractional optimization

1934

MATHEMATICS OF OPERATIONS RESEARCH
Vol. 48, No. 4, November 2023, pp. 1934–1958

ISSN 0364-765X (print), ISSN 1526-5471 (online) https://pubsonline.informs.org/journal/moor

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

19
2.

16
.1

91
.1

36
]

on
 2

8
N

ov
em

be
r

20
23

, a
t 0

3:
43

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

mailto:dadush@cwi.nl
https://orcid.org/0000-0001-5577-5012
mailto:z.koh3@lse.ac.uk
https://orcid.org/0000-0002-4450-8506
mailto:B.Natura@lse.ac.uk
https://orcid.org/0000-0002-8068-3280
mailto:l.vegh@lse.ac.uk
https://orcid.org/0000-0003-1152-200X

problem. This in particular yielded the first strongly polynomial algorithm for the minimum cost-to-time ratio
cycle problem. On a very high level, parametric search works by simulating the linear optimization algorithm for
the parametric Problem (2), with the parameter δ ∈ R being indeterminate.

A natural alternative approach is to solve (2) using a standard root finding algorithm. Radzik [27] showed that
for a discrete domain D ⊆ {0,1}m, the discrete Newton method—in this context, also known as Dinkelbach’s method
(Dinkelbach [6])—terminates in a strongly polynomial number of iterations. In contrast to parametric search,
there are no restrictions on the possible operations in the linear optimization algorithm. In certain settings, such
as the maximum ratio cut problem, the discrete Newton method outperforms parametric search; we refer to the
comprehensive survey by Radzik [28] for details and comparison of the two methods.

1.1. Our Contributions
We introduce a new accelerated variant of Newton’s method for univariate functions. Let f : R→ R ∪ {�∞} be a con-
cave function. Under some mild assumptions on f, our goal is to either find the largest root or show that no root
exists. Let δ∗ denote the largest root, or in case f < 0, let δ∗ denote the largest maximizer of f. For simplicity, we
now describe the method for differentiable functions. This will not hold in general; functions of the form (2) will
be piecewise linear if D is finite or polyhedral. The algorithm description in Section 3 uses a form with supergra-
dients (that can be chosen arbitrarily between the left and right derivatives).

The standard Newton method, also used by Radzik [28], proceeds through iterates δ(1) > δ(2) >⋯> δ(t) such
that f (δ(i)) ≤ 0 and updates δ(i+1) � δ(i) � f (δ(i))=f ′(δ(i)).

Our new variant uses a more aggressive “look-ahead” technique. At each iteration, we compute δ � δ(i) �
f (δ(i))=f ′(δ(i)) and jump ahead to δ′ � 2δ� δ(i). In case f (δ′) ≤ 0 and f ′(δ′) < 0, we update δ(i+1) � δ′; otherwise, we
continue with the standard iterate δ.

This modification leads to an improved and at the same time, simplified analysis based on the Bregman diver-
gence Df (δ

∗,δ(i)) � f (δ(i)) + f ′(δ(i))(δ∗ � δ(i))� f (δ∗). We show that this decreases by a factor of two between any two
iterations.

A salient feature of the algorithm is that it handles both feasible and infeasible outcomes in a unified frame-
work. In the context of linear fractional optimization, this means that the assumption d⊤x > 0 for all x ∈D in (1)
can be waived. Instead, d⊤x > 0 is now added as a feasibility constraint to (1). This generalization is important
when we use the algorithm to solve two variables per inequality (2VPI) systems.

This general result leads to improvements and simplifications of a number of algorithms using the discrete
Newton method.
• For linear fractional combinatorial optimization, namely the setting (1) with D ⊆ {0,1}m, we obtain an O(m logm)

bound on the number of iterations, a factor m improvement over the previous best bound O(m2logm) by Wang et al.
[35] from 2006. We remark that Radzik’s first analysis (Radzik [27]) yielded a bound of O(m4log2m) iterations,
improved to O(m2log2m) in Radzik [28].
• Goemans et al. [10] used the discrete Newton method to obtain a strongly polynomial algorithm for parametric

submodular function minimization (SFM). We give a simple new variant of this result with the same asymptotic
running time using the accelerated algorithm.
• For 2VPI systems, we obtain a strongly polynomial label-correcting algorithm. This will be discussed in more detail

next.

1.2. Two Variables per Inequality Systems
A major open question in the theory of linear programming (LP) is whether there exists a strongly polynomial
algorithm for LP. This problem is 1 of Smale’s 18 mathematical challenges for the twenty-first century (Smale
[31]). An LP algorithm is strongly polynomial if it only uses elementary arithmetic operations (+, � , × ,=) and
comparisons, and the number of such operations is polynomially bounded in the number of variables and con-
straints. Furthermore, the algorithm needs to be in PSPACE (i.e., the numbers occurring in the computations
must remain polynomially bounded in the input size).

The notion of a strongly polynomial algorithm was formally introduced by Megiddo [23] in 1983 (using the
term “genuinely polynomial”), where he gave the first such algorithm for two variables per inequality systems.
These are feasibility LPs where every inequality contains at most two variables. More formally, let M2(n, m) be
the set of n × m matrices with at most two nonzero entries per column. A 2VPI system is of the form A⊤y ≤ c for
A ∈M2(n, m) and c ∈ Rm.

If we further require that every inequality has at most one positive coefficient and at most one negative coeffi-
cient, it is called a monotone two variables per inequality (M2VPI) system. A simple and efficient reduction is known

Dadush et al.: An Accelerated Newton–Dinkelbach Method and its Application to 2VPI Systems
Mathematics of Operations Research, 2023, vol. 48, no. 4, pp. 1934–1958, © 2022 INFORMS 1935

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

19
2.

16
.1

91
.1

36
]

on
 2

8
N

ov
em

be
r

20
23

, a
t 0

3:
43

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

from 2VPI systems with n variables and m inequalities to M2VPI systems with 2n variables and ≤ 2m inequalities
(Edelsbrunner et al. [7], Hochbaum et al. [14]) (sketch in Appendix B.1).

1.2.1. Connection Between 2VPI and Parametric Optimization. An M2VPI system has a natural graphical interpreta-
tion; after normalization, we can assume every constraint is of the form yu � γeyv ≤ ce. Such a constraint naturally
maps to an arc e � (u, v)with gain factor γe > 0 and cost ce. Based on Shostak’s work (Shostak [30]) that characterized fea-
sibility in terms of this graph, Aspvall and Shiloach [2] gave the first weakly polynomial algorithm for M2VPI systems.

We say that a directed cycle C is flow absorbing if
Q

e∈Cγe < 1 and flow generating if
Q

e∈Cγe > 1. Every flow-
absorbing cycle C implies an upper bound for every variable yu incident to C; similarly, flow-generating cycles
imply lower bounds. The crux of the algorithm of Aspvall and Shiloach [2] is to find the tightest upper and lower
bounds for each variable yu.

Finding these bounds corresponds to solving fractional optimization problems of the form (1), where D ⊆ Rm

describes “generalized flows” around cycles. The paper by Aspvall and Shiloach [2] introduced the GRAPEVINE

algorithm—a natural modification of the Bellman–Ford algorithm—to decide whether the optimum ratio is
smaller or larger than a fixed value δ. The optimum value can be found using binary search on the parameter.

Megiddo’s strongly polynomial algorithm (Megiddo [23]) replaced the binary search framework in the algo-
rithm of Aspvall and Shiloach [2] by extending the parametric search technique in Megiddo [22]. Subsequently,
Cohen and Megiddo [3] devised faster strongly polynomial algorithms for the problem. The current fastest determin-
istic strongly polynomial algorithm is given by Hochbaum and Naor [13], an efficient Fourier–Motzkin elimination
with running time of O(mn2logm). Recently, Karczmarz [18] gave a randomized trade-off algorithm, which runs in
Õ(nmh+ (n=h)3) time and uses Õ(n2=h+m) space for any parameter h ∈ [1, n].

1.2.2. 2VPI via Newton’s Method. Because Newton’s method proved to be an efficient and viable alternative to
parametric search, a natural question is to see whether it can solve the parametric problems occurring in 2VPI
systems. Radzik’s fractional combinatorial optimization results (Radzik [27, 28]) are not directly applicable
because the domain D in this setting is a polyhedron and not a discrete set.1 Madani [21] used a variant of the
Newton–Dinkelbach method as a tool to analyze the convergence of policy iteration on deterministic Markov deci-
sion processes (DMDPs), a special class of M2VPI systems (discussed later in more detail). He obtained a weakly
polynomial convergence bound; it remained open whether such an algorithm could be strongly polynomial.

1.2.3. Our 2VPI Algorithm. We introduce a new type of strongly polynomial 2VPI algorithm by combining the accel-
erated Newton–Dinkelbach method with a “variable-fixing” analysis. Variable fixing was first introduced in the semi-
nal work of Tardos [32] on minimum-cost flows and has been a central idea of strongly polynomial algorithms; see, in
particular, Goldberg and Tarjan [11] and Radzik and Goldberg [29] for cycle canceling minimum-cost flow algorithms
and Olver and Végh [25] and Végh [34] for maximum generalized flows, a dual to the 2VPI problem.

We show that for every iterate δ(i), there is a constraint that has been “actively used” at δ(i) but will not be used ever
again after a strongly polynomial number of iterations. The analysis combines the decay in Bregman divergence shown
in the general accelerated Newton–Dinkelbach analysis with a combinatorial “subpath monotonicity” property.

Our overall algorithm can be seen as an extension of Madani’s DMDP algorithm. In particular, we adapt his
“unfreezing” idea; the variables yu are admitted to the system one by one, and the accelerated Newton–Dinkelbach
method is used to find the best “cycle bound” attainable at the newly admitted yu in the graph induced by the cur-
rent variable set. This returns a feasible solution or reports infeasibility within O(m) iterations. As every iteration
takes O(mn) time, our overall algorithm terminates in O(m2n2) time. For the special setting of DMDPs, the run time
per iteration improves to O(m+ n log n), giving a total run time of O(mn(m+ n log n)).

Even though our running time bound is worse than the state-of-the-art 2VPI algorithm (Hochbaum and Naor
[13]), it is of a very different nature from all previous 2VPI algorithms. In fact, our algorithm is a label-correcting
algorithm, naturally fitting to the family of algorithms used in other combinatorial optimization problems with
constraint matrices from M2(n, m), such as maximum flow, shortest paths, minimum-cost flow, and generalized
flow problems. We next elaborate on this connection.

1.2.4. Label-Correcting Algorithms. An important special case of M2VPI systems corresponds to the shortest
paths problem; given a directed graph G � (V, E) with target node t ∈ V and arc costs c ∈ RE, we associate con-
straints yu � yv ≤ ce for every arc e � (u, v) ∈ E and yt � 0. If the system is feasible and bounded, the pointwise

Dadush et al.: An Accelerated Newton–Dinkelbach Method and its Application to 2VPI Systems
1936 Mathematics of Operations Research, 2023, vol. 48, no. 4, pp. 1934–1958, © 2022 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

19
2.

16
.1

91
.1

36
]

on
 2

8
N

ov
em

be
r

20
23

, a
t 0

3:
43

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

maximal solution corresponds to the shortest path labels to t; an infeasible system contains a negative cost cycle.
A generic label-correcting algorithm maintains distance labels y that are upper bounds on the shortest path dis-
tances to t. The labels are decreased according to violated constraints. Namely, if yu � yv > ce, then decreasing yu
to ce + yv gives a smaller valid distance label at u. We terminate with the shortest path labels once all constraints
are satisfied. The Bellman–Ford algorithm for the shortest paths problem is a particular implementation of the
generic label-correcting algorithm; we refer the reader to Ahuja et al. [1, chapter 5] for more details.

It is a natural question if label-correcting algorithms can be extended to general M2VPI systems, where con-
straints are of the form yu � γeyv ≤ ce for a “gain/loss factor” γe > 0 associated with each arc. A fundamental
property of M2VPI systems is that, whenever bounded, a unique pointwise maximal solution exists (i.e., a feasi-
ble solution y∗ such that y ≤ y∗ for every feasible solution y). A label-correcting algorithm for such a setting can be
naturally defined as follows. Let us assume that the problem is bounded. The algorithm should proceed via a
decreasing sequence y(0) ≥ y(1) ≥⋯≥ y(t) of labels that are all valid upper bounds on any feasible solution y to the
system. The algorithm either terminates with the unique pointwise maximal solution y(t) � y∗ or finds an infeasi-
bility certificate.

The basic label-correcting operation is the “arc update,” decreasing yu to min{yu, ce + γeyv} for some arc
e � (u, v) ∈ E. Such updates suffice in the shortest path setting. However, in the general setting, arc operations
only may not lead to finite termination. Consider a system with only two variables, yu and yv, and two con-
straints, yu � yv ≤ 0 and yv �

1
2 yu ≤� 1. The alternating sequence of arc updates converges to (y∗u, y∗v) � (� 2, � 2)

but does not finitely terminate. In this example, we can “detect” the cycle formed by the two arcs that implies the
bound yu �

1
2 yu ≤� 1.

The result of Shostak [30] demonstrates that arc updates together with such cycle updates should be sufficient
for finite termination. Our M2VPI algorithm amounts to the first strongly polynomial label-correcting algorithm
for general M2VPI systems using arc updates and cycle updates.

1.2.5. Deterministic Markov Decision Processes. A well-studied special case of M2VPI systems in which γ ≤ 1 is
known as the deterministic Markov decision process. A policy corresponds to selecting an outgoing arc from every
node, and the objective is to find a policy that minimizes the total discounted cost over an infinite time horizon.
The pointwise maximal solution of this system corresponds to the optimal values of a policy.

The standard policy iteration, value iteration, and simplex algorithms can be all interpreted as variants of the
label-correcting framework.2 Value iteration can be seen as a generalization of the Bellman–Ford algorithm to
the DMDP setting. As our previous example shows, value iteration may not be finite. One could still consider as
the termination criterion the point where value iteration “reveals” the optimal policy (i.e., updates are only per-
formed using constraints that are tight in the optimal solution). If each discount factor γe is at most γ′ for some
γ′ > 0, then it is well known that value iteration converges at the rate 1=(1� γ′). This is in fact true more gener-
ally for nondeterministic Markov decision processes (Littman et al. [20]). However, if the discount factors can be
arbitrarily close to one, then Feinberg and Huang [8] showed that value iteration cannot reveal the optimal policy
in strongly polynomial time even for DMDPs. Post and Ye [26] proved that simplex with the most negative
reduced cost pivoting rule is strongly polynomial for DMDPs; this was later improved by Hansen et al. [12].
These papers heavily rely on the assumption γ ≤ 1, and this does not seem to extend to general M2VPI systems.

The previously mentioned work of Madani [21] used a variant of the Newton–Dinkelbach method as a tool to
analyze the convergence of policy iteration on DMDPs and derived a weakly polynomial run time bound.

1.2.6. Paper Organization. We start by giving preliminaries and introducing notation in Section 2. In Section 3,
we present an accelerated Newton’s method for univariate concave functions and apply it to linear fractional
combinatorial optimization and linear fractional programming. Section 4 contains our main application of the
method to the 2VPI problem. Our results on parametric submodular function minimization are in Section 5.
Missing proofs can be found in the appendix.

2. Preliminaries
Let R+ and R++ be the nonnegative and positive reals, respectively, and denote R̄ :� R ∪ {6∞}. Given a proper
concave function f : R→ R̄, let dom(f) :� {x :�∞ < f (x) <∞} be the effective domain of f. For a point x0 ∈ dom(f),
denote the set of supergradients of f at x0 as ∂f (x0) :� {g : f (x) ≤ f (x0) + g(x� x0) ∀x ∈ R}. If x0 is in the interior of
dom(f), then ∂f (x0) � [f ′�(x0), f ′+(x0)], where f ′�(x0) and f ′+(x0) are the left and right derivatives. Throughout, we
use log(x) � log2(x) to indicate base 2 logarithm. For x, y ∈ Rm, denote x ◦ y ∈ Rm as the element-wise product of the
two vectors.

Dadush et al.: An Accelerated Newton–Dinkelbach Method and its Application to 2VPI Systems
Mathematics of Operations Research, 2023, vol. 48, no. 4, pp. 1934–1958, © 2022 INFORMS 1937

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

19
2.

16
.1

91
.1

36
]

on
 2

8
N

ov
em

be
r

20
23

, a
t 0

3:
43

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

3. An Accelerated Newton–Dinkelbach Method
Let f : R→ R̄ be a proper concave function such that f (δ) ≤ 0 and ∂f (δ) ∩ R<0 ≠ ∅ for some δ ∈ dom(f). Given a
suitable starting point as well as value and supergradient oracles of f, the Newton–Dinkelbach method either
computes the largest root of f or declares that it does not have a root. In this paper, we make the mild assumption
that f has a root or attains its maximum. Consequently, the point

δ∗ :�max({δ : f (δ) � 0} ∪ arg max f (δ))

is well defined. It is the largest root of f if f has a root. Otherwise, it is the largest maximizer of f (see Figure 1 for
examples). Therefore, the Newton–Dinkelbach method returns δ∗ if f has a root and certifies that f (δ∗) < 0
otherwise.

The algorithm takes as input an initial point δ(1) ∈ dom(f) and a supergradient g(1) ∈ ∂f (δ(1)) such that f (δ(1)) ≤ 0
and g(1) < 0. At the start of every iteration i ≥ 1, it maintains a point δ(i) ∈ dom(f) and a supergradient g(i) ∈ ∂f (δ(i))
where f (δ(i)) ≤ 0. If f (δ(i)) � 0, then it returns δ(i) as the largest root of f. Otherwise, a new point δ :� δ(i) � f (δ(i))=g(i)
is generated. Now, there are two scenarios in which the algorithm terminates and reports that f does not have a
root: (1) f (δ) ��∞; (2) f (δ) < 0 and g ≥ 0, where g ∈ ∂f (δ) is the supergradient given by the oracle. If both scenar-
ios do not apply, the next point and supergradient are set to δ(i+1) :� δ�and g(i+1) :� g, respectively. Then, a new
iteration begins (see Figure 2 for an example).

According to this update rule, observe that g(i) < 0 except possibly in the final iteration when f (δ(i)) � 0. This
proves the correctness of the algorithm. Indeed, δ(i) � δ∗ if f (δ(i)) � 0. On the other hand, if either of the aforemen-
tioned scenarios applies, then combining it with f (δ(i)) < 0 and g(i) < 0 certifies that f (δ∗) < 0.

The following lemma shows that δ(i) is monotonically decreasing, whereas f (δ(i)) is monotonically increasing.
Furthermore, g(i) is monotonically increasing except in the final iteration where it may remain unchanged. The
lemma also illustrates the useful property that | f (δ(i))| or |g(i)| decreases geometrically. These are well-known
facts, and similar statements can be found in, for example, Radzik [28, lemmas 3.1 and 3.2]. The proof is given in
Appendix A.

Lemma 1. For every iteration i ≥ 2, we have δ∗ ≤ δ(i) < δ(i�1), f (δ∗) ≥ f (δ(i)) > f (δ(i�1)), and g(i) ≥ g(i�1), where the last
inequality holds at equality if and only if g(i) � infg∈∂f (δ(i))g, g(i�1) � supg∈∂f (δ(i�1))g, and f (δ(i)) � 0. Moreover,

f (δ(i))
f (δ(i�1))

+
g(i)

g(i�1) ≤ 1:

Figure 1. Two examples of f with no root. In the left panel, f (δ) ��∞ for all δ < δ∗.

Figure 2. An example run of the Newton–Dinkelbach method when f has a root.

Dadush et al.: An Accelerated Newton–Dinkelbach Method and its Application to 2VPI Systems
1938 Mathematics of Operations Research, 2023, vol. 48, no. 4, pp. 1934–1958, © 2022 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

19
2.

16
.1

91
.1

36
]

on
 2

8
N

ov
em

be
r

20
23

, a
t 0

3:
43

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Our analysis of the Newton–Dinkelbach method utilizes the Bregman divergence associated with f as a potential.
Even though the original definition requires f to be differentiable and strictly concave, it can be naturally
extended to our setting in the following way.

Definition 1. Given a proper concave function f : R→ R̄, the Bregman divergence associated with f is defined as

Df (δ
′,δ) :�

f (δ) + sup
g∈∂f (δ)

g(δ′ � δ)� f (δ′) if δ≠ δ′,

0 otherwise;

(

for all δ,δ′ ∈ dom(f) such that ∂f (δ)≠ ∅.
Because f is concave, the Bregman divergence is nonnegative. See Figure 3 for an example. The next lemma

shows that Df (δ
∗,δ(i)) is monotonically decreasing except in the final iteration, where it may remain unchanged.

The proof is given in Appendix A.

Lemma 2. For every iteration i ≥ 2, we have Df (δ
∗,δ(i)) ≤Df (δ

∗,δ(i�1)), which holds at equality if and only if g(i�1) �

infg∈∂f (δ(i�1))g and f (δ(i)) � 0.

To accelerate this classical method, we perform an aggressive guess δ′ :� 2δ� δ(i) on the next point at the end
of every iteration i. Note that this is twice the usual Newton step (i.e., δ′ � δ(i) + 2(δ� δ(i)) < δ). We call this proce-
dure look ahead, which is implemented in lines 8–11 of Algorithm 1. Let g′ ∈ ∂f (δ′) be the supergradient returned
by the oracle. If �∞ < f (δ′) < 0 and g′ < 0, then the next point and supergradient are set to δ(i+1) :� δ′ and
g(i+1) :� g′, respectively, as δ′ ≥ δ∗. In this case, we say that look ahead is successful in iteration i. Otherwise, we
proceed as usual by taking δ(i+1) :� δ�and g(i+1) :� g (see Figure 4 for an example). It is easy to verify that Lemmas
1 and 2 also hold for Algorithm 1.

Algorithm 1 (Look-Ahead Newton)
Input: Value and supergradient oracles for a proper concave function f, an initial point δ(1) ∈ dom(f), and

supergradient g(1) ∈ ∂f (δ(1)), where f (δ(1)) ≤ 0 and g(1) < 0.
Output: The largest root of f if it exists; report NO ROOT otherwise.

Figure 3. The Bregman divergence Df (δ
∗,δ(i)) of an example function f.

Figure 4. An example run of Algorithm 1 where look ahead failed in iteration i.

Dadush et al.: An Accelerated Newton–Dinkelbach Method and its Application to 2VPI Systems
Mathematics of Operations Research, 2023, vol. 48, no. 4, pp. 1934–1958, © 2022 INFORMS 1939

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

19
2.

16
.1

91
.1

36
]

on
 2

8
N

ov
em

be
r

20
23

, a
t 0

3:
43

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

1. i← 1
2. while f (δ(i)) < 0 do
3. δ← δ(i) � f (δ(i))=g(i)
4. g ∈ ∂f (δ) . Empty if f (δ) ��∞
5. if f (δ) ��∞ or (f (δ) < 0 and g ≥ 0) then
6. return NO ROOT
7. end if
8. δ′ ← 2δ� δ(i) . Look-ahead guess
9. g′ ∈ ∂f (δ′) . Empty if f (δ′) ��∞

10. if �∞ < f (δ′) < 0 and g′ < 0 then . Is the guess successful?
11. δ← δ′, g← g′
12. end if
13. δ(i+1) ← δ, g(i+1) ← g
14. i← i+ 1
15. end while
16. return δ(i)

If look ahead is successful, then we have made significant progress. Otherwise, by our choice of δ′, we learn
that we are not too far away from δ∗. The next lemma demonstrates the advantage of using the look-ahead
Newton–Dinkelbach method. It exploits the proximity to δ∗ to produce a geometric decay in the Bregman diver-
gence of δ(i) and δ∗.

Lemma 3. For every iteration i > 2 in Algorithm 1, we have Df (δ
∗,δ(i)) < 1

2 Df (δ
∗,δ(i�2)).

Proof. Fix an iteration i > 2 of Algorithm 1. Let g(i)+ �ming∈∂f (δ(i))g denote the right derivative of f at δ(i). From
Lemma 1, we know that δ∗ ≤ δ(i) < δ(i�1) < δ(i�2), 0 ≥ f (δ∗) ≥ f (δ(i)) > f (δ(i�1)) > f (δ(i�2)), and 0 > g(i)+ ≥ g(i�1) > g(i�2).
Because δ∗ ≤ δ(i), we see that Df (δ

∗,δ(i)) � f (δ(i)) + g(i)+ (δ∗ � δ(i))� f (δ∗).
Assume first that the look-ahead step in iteration i – 1 was successful. We now claim that 0 <� 2g(i)+ ≤� g(i�1).

To see this, we have that

f (δ(i�1)) ≤ f (δ(i)) + g(i)+ (δ
(i�1) � δ(i)) (by concavity of f)

≤ g(i)+ (δ
(i�1) � δ(i))

�
because f (δ(i)) ≤ 0

�

� 2g(i)+
f (δ(i�1))

g(i�1) (by definition of the accelerated step):

The desired inequality follows by multiplying through by � g(i�1)

f (δ(i�1))
< 0.

Using the inequality, we compare Bregman divergences as follows:

Df (δ
∗, δ(i�1)) ≥ f (δ(i�1)) + g(i�1)(δ∗ � δ(i�1)) � f (δ∗) (because Df is a maximum over supergradients)

> g(i�1)(δ∗ � δ(i)) � f (δ∗)
�
f (δ(i�1)) + g(i�1)(δ(i) � δ(i�1)) �� f (δ(i�1)) > 0

�

≥ g(i�1)(δ∗ � δ(i))
�
� f (δ∗) ≥ 0

�

≥ 2g(i)+ (δ
∗ � δ(i))

�
� g(i�1) ≥� 2g(i)+ and δ(i) > δ∗

�

≥ 2(f (δ(i)) + g(i)+ (δ
∗ � δ(i)) � f (δ∗))

�
because f (δ∗) ≥ f (δ(i))

�

� 2Df (δ
∗, δ(i))

�
by our choice of g(i)+

�
:

The desired inequality now follows from Df (δ
∗,δ(i�2)) >Df (δ

∗,δ(i�1)) by Lemma 2.
Now assume that the look-ahead step at iteration i – 1 was unsuccessful. This implies that 2δ(i) � δ(i�1) ≤

δ∗� 2(δ(i) � δ∗) ≤ δ(i�1) � δ∗ (i.e., that the look-ahead step “went past or exactly to” δ∗). We compare Bregman

Dadush et al.: An Accelerated Newton–Dinkelbach Method and its Application to 2VPI Systems
1940 Mathematics of Operations Research, 2023, vol. 48, no. 4, pp. 1934–1958, © 2022 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

19
2.

16
.1

91
.1

36
]

on
 2

8
N

ov
em

be
r

20
23

, a
t 0

3:
43

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

divergences as follows:

Df (δ
∗,δ(i�2)) ≥ f (δ(i�2)) + g(i�2)(δ∗ � δ(i�2))� f (δ∗) (because Df is a maximum over supergradients)

≥ g(i�2)(δ∗ � δ(i�1))� f (δ∗)
�
f (δ(i�2)) + g(i�2)(δ(i�1) � δ(i�2)) ≥ 0

�

≥ g(i�2)(δ∗ � δ(i�1))
�
� f (δ∗) ≥ 0

�

> g(i)+ (δ
∗ � δ(i�1))

�
0 > g(i)+ > g(i�2) and δ(i�1) > δ∗

�

≥ 2g(i)+ (δ
∗ � δ(i))

�
0 > g(i)+ and δ(i�1) � δ∗ ≥ 2(δ(i) � δ∗)

�

≥ 2(f (δ(i)) + g(i)+ (δ
∗ � δ(i))� f (δ∗))

�
because f (δ∗) ≥ f (δ(i))

�

� 2Df (δ
∗,δ(i))

�
by our choice of g(i)+

�
:

This concludes the proof.

Remark 1. Instead of taking twice the usual Newton step during look ahead, one could consider δ′ :� δ(i) + α(δ�
δ(i)) for any α > 1. By redoing the proof of Lemma 3 with this choice of δ′, one gets Df (δ

∗,δ(i�2)) ≥ αDf (δ
∗,δ(i)) if

look ahead was successful in iteration i – 1 and Df (δ
∗,δ(i�2)) ≥ α

α�1 Df (δ
∗,δ(i)) if look ahead failed in iteration i – 1.

So, choosing α�� 2 balances the decay in Bregman divergence for both cases.
In the remaining of this section, we apply the accelerated Newton–Dinkelbach method to linear fractional com-

binatorial optimization and linear fractional programming. The application to parametric submodular function
minimization is in Section 5.

3.1. Linear Fractional Combinatorial Optimization
Problem (1) with D ⊆ {0,1}m is known as linear fractional combinatorial optimization. Radzik [27] showed that the
Newton–Dinkelbach method applied to the function f (δ) as in (2) terminates in a strongly polynomial number of
iterations. Recall that f (δ) �minx∈D(c� δd)⊤x. By the assumption d⊤x > 0 for all x ∈D, this function is concave,
strictly decreasing, finite, and piecewise linear. Hence, it has a unique root. Moreover, f (δ) < 0 and ∂f (δ) ∩ R<0 ≠ ∅
for sufficiently large δ. To implement the value and supergradient oracles, we assume that a linear optimization
oracle over D is available (i.e., it returns an element in arg minx∈D(c� δd)⊤x for any δ ∈ R).

Our result for the accelerated variant improves the state-of-the-art bound O(m2log m) by Wang et al. [35] on
the standard Newton–Dinkelbach method. We will need the following lemma given by Radzik [28] and credited
to Goemans in Radzik [28]. It gives a strongly polynomial bound on the length of a geometrically decreasing
sequence of sums.

Lemma 4 (Radzik [28]). Let c ∈ Rm
+ and x(1), x(2), : : : , x(k) ∈ {� 1, 0, 1}m. If 0 < c⊤x(i+1) ≤ 1

2 c⊤x(i) for all i < k, then
k �O(m log m).

Theorem 1. Algorithm 1 converges in O(m log m) iterations for linear fractional combinatorial optimization problems.

Proof. Observe that Algorithm 1 terminates in a finite number of iterations because f is piecewise linear. Let
δ(1) > δ(2) >⋯> δ(k) � δ∗ denote the sequence of iterates at the start of Algorithm 1. Because f is concave, we have
Df (δ

∗,δ(i)) ≥ 0 for all i ∈ [k]. For each i ∈ [k], pick x(i) ∈ arg minx∈D(c� δ(i)d)⊤x, which maximizes d⊤x. This is well
defined because f is finite. Note that � d⊤x(i) �min∂f (δ(i)). As f (δ∗) � 0, the Bregman divergence of δ(i) and δ∗ can
be written as

Df (δ
∗,δ(i)) � f (δ(i)) + max

g∈∂f (δ(i))
g(δ∗ � δ(i)) � (c� δ(i)d)⊤x(i) � d⊤x(i)(δ∗ � δ(i)) � (c� δ∗d)⊤x(i):

According to Lemma 3, (c� δ∗d)⊤x(i) �Df (δ
∗,δ(i)) < 1

2 Df (δ
∗,δ(i�2)) � 1

2 (c� δ
∗d)⊤x(i�2) for all 3 ≤ i ≤ k. By Lemma 2,

we also know that Df (δ
∗,δ(i)) > 0 for all 1 ≤ i ≤ k� 2. Thus, applying Lemma 4 yields k �O(m log m). w

3.2. Linear Fractional Programming
We next consider linear fractional programming, an extension of (1) with the assumption that the domain D ⊆ Rm is
a polyhedron but removing the condition d⊤x > 0 for x ∈D. For c, d ∈ Rm, the problem is

inf c⊤x=d⊤x s:t: d⊤x > 0, x ∈D: (F)

Dadush et al.: An Accelerated Newton–Dinkelbach Method and its Application to 2VPI Systems
Mathematics of Operations Research, 2023, vol. 48, no. 4, pp. 1934–1958, © 2022 INFORMS 1941

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

19
2.

16
.1

91
.1

36
]

on
 2

8
N

ov
em

be
r

20
23

, a
t 0

3:
43

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

For the problem to be meaningful, we assume that D ∩ {x : d⊤x > 0}≠ ∅. The common form in the literature
assumes d⊤x > 0 for all x ∈D as in (1); we consider the more general setup for the purpose of solving M2VPI sys-
tems in Section 4. It is easy to see that any linear fractional combinatorial optimization problem on a domain X ⊆
{0,1}m can be cast as a linear fractional program with the polytope D � conv(X) because c⊤x̄=d⊤x̄ ≥
minx∈X c⊤x=d⊤x for all x̄ ∈D by the mediant inequality. The next theorem characterizes when (F) is unbounded.

Theorem 2. If D ∩ {x : d⊤x > 0}≠ ∅, then the optimal value of (F) is �∞ if and only if at least one of the following two
conditions hold.

1. There exists x ∈D such that c⊤x < 0 and d⊤x � 0.
2. There exists r ∈ Rm such that c⊤r < 0, d⊤r � 0 and x+λr ∈D for all x ∈D,λ ≥ 0.

Proof. By the Minkowski–Weyl theorem, the polyhedron D̄ :�D ∩ {x : d⊤x ≥ 0} can be written as

D̄ �
Xk

i�1
λigi +

Xℓ

j�1
νjhj : λ ≥ 0,ν ≥ 0, ||λ||1 � 1

)8
<

:

for some vectors g1, : : : , gk and h1, : : : , hℓ. Note that d⊤gi ≥ 0 for all i ∈ [k] and d⊤hj ≥ 0 for all j ∈ [ℓ]. Let
x◦ ∈D ∩ {x : d⊤x > 0}. If there exists i ∈ [k] such that c⊤gi < 0 and d⊤gi � 0 or j ∈ [ℓ] such that c⊤hj < 0 and d⊤hj � 0;
then,

lim
λ↗1

c⊤(λgi + (1� λ)x◦)
d⊤(λgi + (1� λ)x◦)

��∞ or lim
λ→∞

c⊤(x◦ +λhj)

d⊤(x◦ +λhj)
��∞

as in condition (1) or (2).
Otherwise, the fractional value of any element in D ∩ {x : d⊤x > 0} can be lower bounded by

c⊤(
Pk

i�1λigi +
Pℓ

j�1 νjhj)

d⊤(
Pk

i�1λigi +
Pℓ

j�1 νjhj)
≥

P
i∈[k],d⊤gi>0λic⊤gi +

P
j∈[ℓ],d⊤hj>0νjc⊤hj

P
i∈[k],d⊤gi>0λid⊤gi +

P
j∈[ℓ],d⊤hj>0νjd⊤hj

≥min min
i∈[k],d⊤gi>0

c⊤gi

d⊤gi
, min

j∈[ℓ],d⊤hj>0

c⊤hj

d⊤hj

� �

,

where the last expression is finite by the assumption that D ∩ {x : d⊤x > 0} is nonempty. w

Example 1. Unlike in linear programming, the optimal value may not be attained even if it is finite. Consider the
instance given by inf(� x1 + x2)=(x1 + x2) subject to x1 + x2 > 0 and � x1 + x2 � 1. The numerator is equal to one for
any feasible solution, whereas the denominator can be made arbitrarily large. Hence, the optimal value of this
program is zero, which is not attained in the feasible region.

We use the Newton–Dinkelbach method for f as in (2); that is, f (δ) � infx∈D(c� δd)⊤x. Because D ≠ ∅, f (δ) <∞
for all δ ∈ R. By the Minkowski–Weyl theorem, there exist finitely many points P ⊆D such that f (δ) �
minx∈P(c� δd)⊤x for all δ ∈ dom(f). Hence, f is concave and piecewise linear. Observe that f (δ) >�∞ if and only
if every ray r in the recession cone of D satisfies (c� δd)⊤r ≥ 0. For f to be proper, we need to assume that condi-
tion (2) in Theorem 2 does not hold. Moreover, we require the existence of a point δ′ ∈ dom(f) such that f (δ′) �
(c� δ′d)⊤x′ ≤ 0 for some x′ ∈D with d⊤x′ > 0. It follows that f has a root or attains its maximum because dom(f)
is closed. We are ready to characterize the optimal value of (F) using f.

Lemma 5. Assume that there exists δ′ ∈ dom(f) such that f (δ′) � (c� δ′d)⊤x′ ≤ 0 for some x′ ∈D with d⊤x′ > 0. If f has
a root, then the optimal value of (F) is equal to the largest root and is attained. Otherwise, the optimal value is �∞.

Proof. Recall the definition of δ∗ �max({δ : f (δ) � 0} ∪ arg max f (δ)). By our assumption on f, there exists x∗ ∈D

such that f (δ∗) � (c� δ∗d)⊤x∗ and d⊤x∗ > 0. If f has a root, then f (δ∗) � 0. This implies that c⊤x=d⊤x ≥ δ∗ � c⊤x∗=d⊤x∗
for all x ∈D with d⊤x > 0 as desired. Next, assume that f does not have a root. Then, f (δ∗) < 0 and 0 ∈ ∂f (δ∗). By
convexity, there exists x̄ ∈D such that (c� δ∗d)⊤x̄ � f (δ∗) < 0 and d⊤x̄ � 0. Then, c⊤x̄ < 0, so x̄ is a point as in con-
dition (1) of Theorem 2. w

4. Monotone Two Variables per Inequality Systems
Recall that an M2VPI system can be represented as a directed multigraph G � (V, E) with arc costs c ∈ Rm and
gain factors γ ∈ Rm

++. For a u-v walk P in G with E(P) � (e1, e2, : : : , ek), its cost and gain factor are defined as c(P) :�Pk
i�1(
Qi�1

j�1 γej
)cei and γ(P) :�

Qk
i�1 γei

, respectively. If P is a single vertex, then c(P) :� 0 and γ(P) :� 1. The walk P
induces the valid inequality yu ≤ c(P) + γ(P)yv, implied by the sequence of arcs/inequalities in E(P). It is also

Dadush et al.: An Accelerated Newton–Dinkelbach Method and its Application to 2VPI Systems
1942 Mathematics of Operations Research, 2023, vol. 48, no. 4, pp. 1934–1958, © 2022 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

19
2.

16
.1

91
.1

36
]

on
 2

8
N

ov
em

be
r

20
23

, a
t 0

3:
43

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

worth considering the dual interpretation. Dual variables on arcs correspond to generalized flows; if one unit of
flow enters the arc e � (u, v) at u, then γe units reach v at a shipping cost of ce. Thus, if one unit of flow enters a
path P, then γ(P) units reach the end of the path, incurring a cost of c(P).

Given node labels y ∈ R̄n, the y cost of a u-v walk P is defined as c(P) + γ(P)yv. Note that the y cost of a walk
only depends on the label at the sink. A u-v path is called a shortest u-v path with respect to y if it has the smallest y
cost among all u-v walks. A shortest path from u with respect to y is a shortest u-v path with respect to y for some
node v. Such a path does not always exist, as demonstrated in Appendix B.2.

If P is a u-u walk such that its intermediate nodes are distinct, then it is called a cycle at u. Given a u-v walk P
and a v-w walk Q, we denote PQ as the u-w walk obtained by concatenating P and Q.

Definition 2. A cycle C is called flow generating if γ(C) > 1, unit gain if γ(C) � 1, and flow absorbing if γ(C) < 1. We
say that a unit-gain cycle C is negative if c(C) < 0.

Note that c(C) depends on the starting point u of a cycle C. This ambiguity is resolved by using the term cycle
at u. For a unit-gain cycle C, it is not hard to see that the starting point does not affect the sign of c(C). Hence, the
definition of a negative unit-gain cycle is sound. Observe that a flow-absorbing cycle C induces an upper bound
yu ≤ c(C)=(1� γ(C)), whereas a flow-generating cycle C induces a lower bound yu ≥� c(C)(γ(C)� 1). Let Cabs

u (G)
and Cgen

u (G) denote the set of flow-absorbing cycles and flow-generating cycles at u in G, respectively.

Definition 3. Given a flow-generating cycle C at u, a flow-absorbing cycle D at v, and a u-v path P, the walk CPD
is called a bicycle. We say that the bicycle is negative if

c(P) + γ(P) c(D)
1 � γ(D) <

� c(C)
γ(C) � 1 :

Using these two structures, Shostak characterized the feasibility of M2VPI systems.

Theorem 3 (Shostak [30]). An M2VPI system (G, c,γ) is infeasible if and only if G contains a negative unit-gain cycle or
a negative bicycle.

4.1. A Linear Fractional Programming Formulation
Our goal is to compute the pointwise maximal solution ymax ∈ R̄n to an M2VPI system if it is feasible, where
ymax

u :�∞ if and only if the variable yu is unbounded from above. It is well known how to convert ymax into a
finite feasible solution—we refer to Appendix B.3 for details. In order to apply Algorithm 1, we first need to
reformulate the problem as a linear fractional program. Now, every coordinate ymax

u can be expressed as the
following primal-dual pair of linear programs, where ∇xv :�

P
e∈δ+(v)xe �

P
e∈δ�(v)γexe denotes the net flow at a

node v:
min c⊤x

s:t: ∇xu � 1
∇xv � 0 ∀v ∈ V \ u

x ≥ 0 (Pu)

max yu
s:t: yv � γeyw ≤ ce ∀e � (v, w) ∈ E: (Du)

The primal LP (Pu) is a minimum-cost generalized flow problem with a supply of one at node u. It asks for the
cheapest way to destroy one unit of flow at u. Observe that it is feasible if and only if u can reach a flow-
absorbing cycle in G. If it is feasible, then it is unbounded if and only if there exists a negative unit-gain cycle or a
negative bicycle in G. It can be reformulated as the following linear fractional program:

inf c⊤x
1 �

P
e∈δ�(u)γexe

s:t: 1 �
X

e∈δ�(u)
γexe > 0, x ∈ D (Fu)

with the polyhedron
D :� {x ∈ Rm

+ : x(δ+(u)) � 1,∇xv � 0 ∀v ∈ V \ u}:

Indeed, if x is a feasible solution to (Pu), then x=x(δ+(u)) is a feasible solution to (Fu) with the same objective value.
This is because 1�

P
e∈δ�(u)γexe=x(δ+(u)) � 1=x(δ+(u)). Conversely, if x is a feasible solution to (Fu), then x=(1�

P
e∈δ�(u)γexe) is a feasible solution to (Pu) with the same objective value. Even though the denominator is an affine

function of x, it can be made linear to conform with (F) by working with the polyhedron {(x, 1) : x ∈D}.

Dadush et al.: An Accelerated Newton–Dinkelbach Method and its Application to 2VPI Systems
Mathematics of Operations Research, 2023, vol. 48, no. 4, pp. 1934–1958, © 2022 INFORMS 1943

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

19
2.

16
.1

91
.1

36
]

on
 2

8
N

ov
em

be
r

20
23

, a
t 0

3:
43

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Our goal is to solve (Fu) using Algorithm 1. For a fixed δ ∈ R, the value of the parametric function f (δ) can be
written as the following pair of primal and dual LPs, respectively:

min c⊤x+ δ
X

e∈δ�(u)
γexe � δ

s:t: x ∈D

max yu � δ
s:t: yv � γeδ ≤ ce ∀e � (v, u) ∈ δ�(u)

yv � γeyw ≤ ce ∀e � (v, w) ∉ δ�(u):

We refer to them as the primal (dual) LP for f (δ) and their corresponding feasible/optimal solution as a feasible/
optimal primal (dual) solution to f (δ).

Because of the specific structure of this linear fractional program, a suitable initial point for the
Newton–Dinkelbach method can be obtained from any feasible solution to (Fu). This is a consequence of the
unboundedness test given by the following lemma.

Lemma 6. Let x be a feasible solution to (Fu) and δ̄ :� c⊤x=(1�
P

e∈δ�(u)γexe). If either f (δ̄) ��∞ or f (δ̄) � c⊤x̄ � δ̄(1�P
e∈δ�(u)γex̄e) < 0 for some x̄ ∈D with 1�

P
e∈δ�(u)γex̄e ≤ 0, then the optimal value of (Fu) is �∞.

Proof. First, assume that f (δ̄) >�∞. Let λ :� (1�
P

e∈δ�(u)γexe)=
P

e∈δ�(u)γe(x̄e � xe). Note that λ ∈ (0, 1]. Consider
the convex combination x̂ :� λx̄ + (1� λ)x ∈D. Then, c⊤x̂ < 0 and 1�

P
e∈δ�(u)γex̂e � 0. Hence, the optimal value

of (Fu) is unbounded by condition (1) of Theorem 2. Next, assume that f (δ̄) ��∞. There exists a ray r in the reces-
sion cone of D such that c⊤r� δ̄

P
e∈δ�(u)γere < 0. Note that r ≥ 0. If r(δ�(u)) � 0, then r satisfies condition (2) of

Theorem 2. So, the optimal value is unbounded. Otherwise, for a sufficiently large α > 0, we have c⊤(x+ αr) +
δ̄(1�

P
e∈δ�(u)γe(xe + αre)) < 0 and 1�

P
e∈δ�(u)γe(xe +αre) < 0. Then, taking an appropriate convex combination of

x+ αr and x like before produces a point in D, which satisfies condition (1) of Theorem 2. w

In order to characterize the finiteness of f (δ), we introduce the following notion of a negative flow-generating
cycle.

Definition 4. For a fixed δ ∈ R and u ∈ V, a flow-generating cycle C is said to be (δ, u) negative if there exists a path
P from a node v ∈ V(C) to node u such that

c(C) + (γ(C)� 1)(c(P) + γ(P)δ) < 0,

where C is treated as a v-v walk in c(C).

Lemma 7. For any δ ∈ R, f (δ) ��∞ if and only if D ≠ ∅ and there exists a negative unit-gain cycle, a negative bicycle, or
a (δ, u)-negative flow-generating cycle in G \ δ+(u).

Proof. The primal LP for f (δ) is unbounded if and only if D ≠ ∅ and there exists an extreme ray r in the recession
cone of D such that c⊤r+ δ

P
e∈δ�(u)γere < 0. Note that the recession cone of D is {x ∈ Rm

+ : x(δ+(u)) � 0,
∇xv � 0 ∀v ≠ u}. By the generalized flow decomposition theorem, r belongs to one of the following three funda-
mental flows in G \ δ+(u): (1) a unit-gain cycle, (2) a bicycle, or (3) a flow-generating cycle C and a path P from C
to u. In the first two cases, re � 0 for all e ∈ δ�(u). Thus, the unit-gain cycle or bicycle is negative. In the last case,
we have c(C) + (γ(C)� 1)(c(P) + γ(P)δ) � c⊤r+ δ

P
e∈δ�(u)γere. w

It turns out that if we have an optimal dual solution y to f (δ) for some δ ∈ R, then we can compute an optimal
dual solution to f (δ′) for any δ′ < δ. A suitable subroutine for this task is the so-called GRAPEVINE algorithm (Algo-
rithm 2), developed by Aspvall and Shiloach [2].

Algorithm 2 (GRAPEVINE)
Input: A directed multigraph G � (V, E) with arc costs c ∈ Rm and gain factors γ ∈ Rm

++, node labels y ∈ R̄n, and
a node u ∈ V.

Output: Node labels y ∈ R̄n and a walk P of length at most n starting from u.
1. for i � 1 to n do
2. for all v ∈ V do
3. y′v←min(yv, minvw∈δ+(v)cvw + γvwyw)

4. if y′v < yv then
5. pred(v, i) ← arg minvw∈δ+(v)cvw + γvwyw . Break ties arbitrarily
6. else

Dadush et al.: An Accelerated Newton–Dinkelbach Method and its Application to 2VPI Systems
1944 Mathematics of Operations Research, 2023, vol. 48, no. 4, pp. 1934–1958, © 2022 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

19
2.

16
.1

91
.1

36
]

on
 2

8
N

ov
em

be
r

20
23

, a
t 0

3:
43

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

7. pred(v, i) ← ∅
8. end if
9. end for

10. y← y′
11. end for
12. Let P be the walk obtained by tracing from pred(u, n)
13. return (y, P)

Given initial node labels y ∈ R̄n and a specified node u, GRAPEVINE runs for n iterations. We say that an arc e �
(v, w) is violated with respect to y if yv > ce + γeyw. In an iteration i ∈ [n], the algorithm records the most violated arc
with respect to y in δ+(v) as pred(v, i) for each node v ∈ V (ties are broken arbitrarily). Note that pred(v, i) � ∅ if
there are no violated arcs in δ+(v). Then, each yv is decreased by the amount of violation in the corresponding
recorded arc. After n iterations, the algorithm traces a walk P from u by following the recorded arcs in reverse
chronological order. During the trace, if pred(v, i) � ∅ for some v ∈ V and i > 1, then pred(v, i� 1) is read. Finally,
the updated node labels y, and the walk P is returned. Clearly, the running time of GRAPEVINE is O(mn).

Given an optimal dual solution y ∈ Rn to f (δ) and δ′ < δ, the dual LP for f (δ′) can be solved using GRAPEVINE as
follows. Define the directed graph Gu :� (V ∪ {u′}, Eu), where Eu :� (E \ δ�(u)) ∪ {vu′ : vu ∈ δ�(u)}. The graph Gu
is obtained from G by splitting u into two nodes u, u′ and reassigning the incoming arcs of u to u′. These arcs
inherit the same costs and gain factors from their counterparts in G. Let ȳ ∈ Rn+1 be node labels in Gu defined by
ȳu′ :� δ′ and ȳv :� yv for all v ≠ u′. Then, we run GRAPEVINE on Gu with input node labels ȳ and node u. Note that
ȳu′ remains unchanged throughout the algorithm. The next lemma verifies the correctness of this method.

Lemma 8. Given an optimal dual solution y ∈ Rn to f (δ) and δ′ < δ, define ȳ ∈ Rn+1 as ȳu′ :� δ′ and ȳv :� yv for all v ∈ V.
Let (z̄, P) be the node labels and walk returned by GRAPEVINE(Gu, ȳ, u). If z̄V is not feasible to the dual LP for f (δ′), then
f (δ′) ��∞. Otherwise, z̄V is a dual optimal solution to f (δ′), and P is a shortest path from u with respect to ȳ in Gu.

Proof. Because f (δ) � yu � δ�is finite, we have D ≠ ∅. First, assume that z̄V is not feasible to the dual LP for f (δ′).
Then, there exists a violated arc in Gu with respect to z̄. Let w be the head of this arc, and let R be the walk
obtained by tracing pred(w, n) in reverse chronological order. Then, R ends at u′ because y is dual feasible to f (δ).
Because R has n edges, decompose it into R �QCP′, where Q is a w-v walk, C is a nontrivial cycle at v, and P′ is a
v-u′ path for some node v. Then, we have c(CP′) + γ(CP′)δ′ < c(P′) + γ(P′)δ′ ≤ ȳv. Because of Lemma 7, it suffices
to show that γ(C) > 1, as this would imply that C is a (δ′, u)-negative flow-generating cycle in G. Suppose other-
wise for a contradiction. Because y is dual feasible to f (δ) and u′ ∉ V(C), we have ȳv ≤ c(C) + γ(C)ȳv. If γ(C) � 1,
then we obtain 0 ≤ c(C) < 0 from the previous two inequalities. Otherwise, we get the following contradiction:

ȳv ≤
c(C)

1� γ(C) < c(P′) + γ(P′)δ′ ≤ ȳv:

Next, assume that z̄V is a dual-feasible solution to f (δ′). Then, P is a u-t path for some node t. This is because if P
is not simple, repeating the argument from the previous paragraph proves that the dual LP for f (δ′) is infeasible.
Note that ȳt � z̄t. Moreover, z̄v ≤ cvw + γvwz̄w for all vw ∈ Eu, with equality on E(P). Let cz̄ ∈ Rm

+ be the reduced cost
defined by cz̄

vw :� cvw + γvwz̄w � z̄v for all vw ∈ Eu. Because for every u-t walk P′, we have

c(P) + γ(P)z̄t � z̄u � cz̄(P) � 0 ≤ cz̄(P′) � c(P′) + γ(P′)z̄t � z̄u,

it follows that P is a shortest u-t path with respect to ȳ.
It is left to show that z̄V is a dual optimal solution to f (δ′). Let z∗ be an optimal dual solution to f (δ′). Note that

z∗u ≤ yu because δ′ < δ. For the purpose of contradiction, suppose that z̄u < z∗u. Because z̄u < ȳu, the path P ends at
u′ because y is dual feasible to f (δ). Thus, z̄u � c(P) + γ(P)δ′. However, P also implies the valid inequality
z∗u ≤ c(P) + γ(P)δ′, which is a contradiction. w

If z̄V is an optimal dual solution to f (δ′), a supergradient in ∂f (δ′) can be inferred from the returned path P. We
say that an arc e � (v, w) is tight with respect to z̄ if z̄v � ce + γez̄w. By complementary slackness, every optimal pri-
mal solution to f (δ′) is supported on the subgraph of Gu induced by tight arcs with respect to z̄. In particular, any
u-u′ path or any path from u to a flow-absorbing cycle in this subgraph constitutes a basic optimal primal solu-
tion to f (δ′). As P is also a path in this subgraph, we have γ(P)� 1 ∈ ∂f (δ′) if P ends at u′. Otherwise, u can reach
a flow-absorbing cycle in this subgraph because δ′ < δ. In this case, � 1 ∈ ∂f (δ′).

Dadush et al.: An Accelerated Newton–Dinkelbach Method and its Application to 2VPI Systems
Mathematics of Operations Research, 2023, vol. 48, no. 4, pp. 1934–1958, © 2022 INFORMS 1945

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

19
2.

16
.1

91
.1

36
]

on
 2

8
N

ov
em

be
r

20
23

, a
t 0

3:
43

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

4.2. A Strongly Polynomial Label-Correcting Algorithm
Using Algorithm 1, we develop a strongly polynomial label-correcting algorithm for solving an M2VPI system
(G, c,γ). The main idea is to start with a subsystem for which (Du) is trivial and progressively solve (Du) for larger
and larger subsystems. Throughout the algorithm, we maintain node labels y ∈ R̄n, which form valid upper
bounds on each variable. They are initialized to ∞ at every node. We also maintain a subgraph of G, which ini-
tially is G(0) :� (V,∅).

Algorithm 3 (Label-Correcting Algorithm for M2VPI Systems)
Input: An M2VPI system (G, c,γ).
Output: The pointwise maximal solution ymax or the string INFEASIBLE.

1. Initialize graph G(0) ← (V,∅) and counter k← 0
2. Initialize node labels y ∈ R̄n as yv←∞ ∀v ∈ V
3. for all u ∈ V do
4. k← k+ 1
5. G(k) ← G(k�1) ∪ δ+(u)
6. yu←minuv∈δ+(u)cuv + γuvyv

7. if yu �∞ and Cabs
u (G(k))≠ ∅ then

8. yu← c(C)=(1� γ(C)) for any C ∈ Cabs
u (G(k))

9. end if
10. if yu <∞ then
11. Define node labels ȳ ∈ R̄n+1 as ȳu′ ← yu and ȳv← yv ∀v ∈ V
12. (ȳ, P) ← GRAPEVINE(G(K)U , Ȳ,U)
13. if ∃ a violated arc with respect to ȳ in G(k)u or (|E(P)| > 0 and γ(P) ≥ 1) then
14. return INFEASIBLE
15. end if
16. ȳu′ ← LOOK-AHEAD NEWTON (GRAPEVINE (G(k)u , · , u), ȳu′ ,γ(P)� 1)
17. if ȳu′ � NO ROOT then
18. return INFEASIBLE
19. end if
20. y← ȳV
21. end if
22. end for
23. return y

The algorithm (Algorithm 3) is divided into n phases. At the start of phase k ∈ [n], a new node u ∈ V is selected,
and all of its outgoing arcs in G are added to G(k�1), resulting in a larger subgraph G(k). Because yu �∞ at this
point, we update it to the smallest upper bound implied by its outgoing arcs and the labels of its out neighbors.
If yu is still infinity, then we know that δ+(u) � ∅ or yv �∞ for all v ∈N+(u). In this case, we find a flow-absorbing
cycle at u in G(k) using the multiplicative Bellman–Ford algorithm by treating the gain factors as arc costs. If there
are none, then we proceed to the next phase immediately as yu is unbounded from above in the subsystem
(G(k), c,γ). This is because u cannot reach a flow-absorbing cycle in G(k) by induction. We would like to point out
that this does not necessarily imply that the full system (G, c,γ) is feasible (see Appendix B.3 for details). On the
other hand, if Bellman–Ford returns a flow-absorbing cycle, then yu is set to the upper bound implied by the
cycle. Then, we apply Algorithm 1 to solve (Du) for the subsystem (G(k), c,γ).

The value and supergradient oracle for the parametric function f (δ) are GRAPEVINE. Let G(k)u be the modified
graph and ȳ ∈ R̄n+1 be the node labels as defined in the previous subsection. In order to provide Algorithm 1
with a suitable initial point and supergradient, we run GRAPEVINE on G(k)u with input node labels ȳ. It updates ȳ
and returns a walk P from u. If ȳV is not feasible to the dual LP for f (ȳu′) or P is a nontrivial walk with γ(P) ≥ 1,
then we declare infeasibility. Otherwise, we run Algorithm 1 with the initial point ȳu′ and supergradient
γ(P)� 1. We remark that GRAPEVINE continues to update ȳ throughout the execution of Algorithm 1.

Theorem 4. If Algorithm 3 returns y ∈ R̄n, then y � ymax if the M2VPI system is feasible. Otherwise, the system is
infeasible.

Proof. It suffices to prove the theorem for the subsystem (G(k), c,γ) encountered in each phase k. We proceed by
induction on k. For the base case k � 0, the system (G(0), c,γ) is trivially feasible as it does not have any con-
straints. Hence, ymax � (∞,∞, : : : ,∞) � y, where the second equality is because of our initialization. For the

Dadush et al.: An Accelerated Newton–Dinkelbach Method and its Application to 2VPI Systems
1946 Mathematics of Operations Research, 2023, vol. 48, no. 4, pp. 1934–1958, © 2022 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

19
2.

16
.1

91
.1

36
]

on
 2

8
N

ov
em

be
r

20
23

, a
t 0

3:
43

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

inductive step, assume that the theorem is true for some 0 ≤ k < n, and consider the system (G(k+1), c,γ). If Algo-
rithm 3 terminated in phase k, then (G(k+1), c,γ) is infeasible by the inductive hypothesis. So, let y ∈ R̄n be the
node labels maintained by the algorithm during line 10 of phase k + 1. We have yu �∞ if and only if Cabs

u (G(k+1)) �
∅ and yv �∞ for all v ∈N+(u). For each v ≠ u, we also have yv �∞ if and only if v cannot reach a flow-absorbing
cycle in G(k). So, if yu �∞, then u cannot reach a flow-absorbing cycle in G(k+1). By the inductive hypothesis, y �
ymax if the system (G(k+1), c,γ) is feasible.

Next, assume that yu <∞. Without loss of generality, we may assume that every node v with yv �∞ can reach
u in G(k+1). Let W :� {v ∈ V : yv �∞}. Note that the cut W does not have any outgoing edges in G(k+1). If there
exists a negative unit-gain cycle in G(k+1)[W], then it contains a violated arc with respect to any finite labels. In
this case, the algorithm correctly detects infeasibility. Otherwise, by Lemma 7, f (δ′) >�∞ for a sufficiently high
δ′ ∈ R because there are no flow-absorbing cycles in G(k+1)[W]. Pick δ′ > yu big enough such that an optimal dual
solution y′ ∈ Rn to f (δ′) satisfies y′v � yv for all v ∈ V \W. Among all such optimal dual solutions, choose y′ as the
pointwise maximal one. Then, every vertex v ∈W has a tight path to u in G(k+1). Now, let ȳ′ ∈ Rn+1 be node labels
defined by ȳ′u′ :� yu and ȳ′v :� y′v for all v ∈ V. It is easy to see that running GRAPEVINE on G(k+1)

u with input node
labels ȳ and ȳ′ yields the same behavior. Let (z̄, P) be the node labels and walk returned by GRAPEVINE.

Let x ∈ RE(G(k+1))
+ be a feasible solution to (Fu) such that yu � c⊤x=(1�

P
e∈δ�(u)γexe). Clearly, such an x exists if

yu � c(C)=1� γ(C) for some flow-absorbing cycle C ∈ Cabs
u (G(k+1)). Otherwise, if yu � cuv + γuvyv for some

uv ∈ δ+(u), then yv � c(Q) + γ(Q)(c(C)=1� γ(C)), where Q is a path leading to a flow-absorbing cycle C in
G(k)[V \W]. This is because yV\W is the pointwise maximal solution to the feasible subsystem (G(k)[V \W], c,γ) by
the inductive hypothesis. Hence, x can be chosen as the fundamental flow from u to the cycle C via the path
Q+ uv.

Now, according to Lemma 8, if z̄V is not feasible to the dual LP for f (yu), then f (yu) ��∞. By Lemma 6, the
optimal value of (Fu) is �∞. On the other hand, if z̄V is a feasible solution to the dual LP for f (yu), then it is also
optimal. Moreover, P is a shortest path from u with respect to ȳ′ in G(k+1)

u . If |E(P)| > 0 and γ(P) ≥ 1, then the path
ends at u′ because ȳ′ is dual feasible to f (δ′). Let x̄ be the fundamental u-u′ flow on P. By complementary slack-
ness, x̄ is an optimal primal solution to f (yu) < 0 and 1�

P
e∈δ�(u)γex̄e � 1� γ(P) ≤ 0. Applying Lemma 6 again

yields unboundedness of (Fu). In both cases, as (Pu) is feasible, (G(k+1), c,γ) is infeasible.
If these cases do not apply, then z̄u and γ(P)� 1 constitute a suitable initial point and supergradient for Algo-

rithm 1, respectively. Note that the node labels ȳ are updated to z̄ ∈ Rn+1. Throughout the execution of Algorithm
1, it is easy to see that ȳV remains an upper bound on every feasible solution to the system (G(k+1), c,γ). If phase k
+ 1 terminates with node labels y :� ȳV, then yu is the largest root of f. By Lemma 5, yu is the optimal value of
(Fu). Because y is an optimal solution to (Du), we obtain y � ymax as desired. On the other hand, if phase k + 1 ter-
minates with infeasible, then f does not have a root. By Lemma 5, the optimal value of (Fu) is �∞. As (Pu) is feasi-
ble, this implies that (G(k+1), c,γ) is infeasible. w

We would like to point out that Algorithm 3 may return node labels y ∈ R̄n even if the M2VPI system is infeasi-
ble. This happens when y contains ∞ entries. It is well known how to ascertain the system’s feasibility status in
this case (see Appendix B.3 for details).

To bound the running time of Algorithm 3, it suffices to bound the running time of Algorithm 1 in every
phase. Our strategy is to analyze the sequence of paths whose gain factors determine the right derivative of f at
each iterate of Algorithm 1. The next property is crucial in our arc elimination argument.

Definition 5. Let P � (P(1), P(2), : : : , P(ℓ)) be a sequence of paths from u. We say that P satisfies subpath monotonicity
at u if for every pair P(i), P(j) where i < j, and for every shared node v ≠ u, we have γ(P(i)uv) ≤ γ(P

(j)
uv).

Lemma 9. Let δ(1) > δ(2) >⋯> δ(ℓ) be a decreasing sequence of iterates. For each δ(i) ∈ R, let P(i) be a u-u′ path in Gu on
which a unit flow is an optimal primal solution to f (δ(i)). Then, the sequence (P(1), P(2), : : : , P(ℓ)) satisfies subpath monotonic-
ity at u.

Proof. For each i ∈ [ℓ], let y(i) ∈ Rn be an optimal dual solution to f (δ(i)). Let ȳ(i) ∈ Rn+1 be the node labels in Gu

defined by ȳ(i)u′ :� δ(i) and ȳ(i)v :� y(i)v for all v ≠ u′. By complementary slackness, every edge in P(i) is tight with
respect to ȳ(i). Hence, P(i) is a shortest u-u′ path in Gu with respect to ȳ(i). Now, pick a pair of paths P(i) and P(j)

such that i < j and they share a node v ≠ u. Then, the subpaths P(i)uv and P(j)uv are also shortest u-v paths in Gu with

Dadush et al.: An Accelerated Newton–Dinkelbach Method and its Application to 2VPI Systems
Mathematics of Operations Research, 2023, vol. 48, no. 4, pp. 1934–1958, © 2022 INFORMS 1947

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

19
2.

16
.1

91
.1

36
]

on
 2

8
N

ov
em

be
r

20
23

, a
t 0

3:
43

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

respect to ȳ(i) and ȳ(j), respectively. Observe that ȳ(i)v > ȳ(j)v because ȳ(i)u′ � δ
(i) > δ(j) � ȳ(j)u′ . Define the function ψ :

[ȳ(j)v , ȳ(i)v] → R̄ as

ψ(α) :� inf{c(P) + γ(P)α : P is a u-v walk in Gu}:

Clearly, it is increasing and concave. It is also finite because ψ(ȳ(i)v) � c(P(i)uv) + γ(P(i)uv)ȳ(i)v and ψ(ȳ(j)v) � c(P(j)uv)+

γ(P(j)uv)ȳ
(j)
v . Subpath monotonicity then follows from concavity of ψ. w

Theorem 5. In each phase k of Algorithm 3, Algorithm 1 terminates in O(|E(G(k))|) iterations.

Proof. Fix a phase k ∈ [n], and denote mk :� |E(G(k))|. Let Ȳ � (ȳ(1), ȳ(2), : : : , ȳ(ℓ)) be the sequence of node labels at
the start of every iteration of Algorithm 1 in phase k. Note that ȳ(i) ≥ ȳ(i+1) and ȳ(i)u′ > ȳ(i+1)

u′ for all i < ℓ. Let f : R→
R̄ be the parametric function associated with the linear fractional program (Fu) for the subsystem (G(k), c,γ). We
may assume that ℓ ≥ 1, which in turn, implies that f (y(1)u′) is finite by Lemma 6. By Lemma 7, there are no negative
unit-gain cycles or bicycles in G(k) \ δ+(u). It follows that all negative unit-gain cycles and negative bicycles in G(k)
contain u. Hence, there exists a smallest ε ≥ 0 such that the subsystem (G(k), ĉ,γ) is feasible, where ĉ ∈ Rmk are
modified arc costs defined by ĉe :� ce + ε�if e ∈ δ+(u) and ĉe :� ce otherwise.

For each i > 1, every basic optimal primal solution to f (ȳ(i)u′) is a path flow from u to u′ in G(k)u . This is because u
cannot reach a flow-absorbing cycle in the subgraph of G(k)u induced by tight arcs with respect to ȳ(i)u . Indeed,
such a cycle would impose an upper bound of ȳ(i)u on the variable yu. As ȳ(i�1)

u > ȳ(i)u , this contradicts the feasibility
of ȳ(i�1)

V to the dual LP for f (ȳ(i�1)
u′). For each i > 1, let P(i) be a u-u′ path with the smallest gain factor in the sub-

graph of G(k)u induced by tight arcs with respect to ȳ(i). Note that P(i) is well defined because of the same reason.
Then, γ(P(i))� 1 �min∂f (ȳ(i)u′). Denote this sequence of u-u′ paths as P :� (P(2), P(3), : : : , P(ℓ)).

Without loss of generality, we may assume that ȳ(i) is finite for all i ≥ 1. Because every vertex can reach a flow-
absorbing cycle in G(k), there exists a pointwise maximal solution y∗ ∈ Rn to the modified system (G(k), ĉ,γ). Define
the reduced cost c∗ ∈ Rmk

+ as c∗vw :� ĉvw + γvwy∗w � y∗v for all vw ∈ E(G(k)). Because f (y∗u) �� ε, we obtain

c∗(P(i)) � c(P(i))� (1� γ(P(i)))y∗u + ε

� f (ȳ(i)u′)� (1� γ(P(i)))(y∗u � ȳ(i)u)� f (y∗u)

�Df (y∗u, ȳ(i)u′) ≤
1
2 Df (y∗u, ȳ(i�2)

u′) �
1
2 c∗(P(i�2))

for all i > 3, where the inequality is because of Lemma 3.
Consider the vector x ∈ Rmk

+ defined by

xvw :�
max
i∈[ℓ]
{γ(P(i)uv) : vw ∈ E(P(i))} if vw ∈∪ℓi�1 E(P(i)),

0 otherwise:

8
<

:

By Lemma 9, the sequence P satisfies subpath monotonicity at u. Hence, xvw is equal to the gain factor of the u-v
subpath of the last path in P that contains vw. Let 0 ≤ c∗1x1 ≤ c∗2x2 ≤⋯≤ c∗mk

xmk be the elements of c∗ ◦ x in nonde-
creasing order. Let e1, e2, : : : , emk denote the arcs in G(k) according to this order, and define di :�

Pi
j�1 c∗j xj for every

i ∈ [mk]. Then, c∗(P(i)) ∈ [d1, dmk] for all i ∈ [ℓ] because c∗(P(ℓ)) ≥ d1 and c∗(P(1)) ≤ dmk . To prove that ℓ �O(mk), it suf-
fices to show that every interval (di, di+1] contains the cost of at most two paths from P.

Pick j <mk. Among all the paths in P whose costs lie in (dj, dj+1], let P(i) be the most expensive one. If
dj ≥ dj+1=2, then

c∗(P(i+2)) ≤
1
2 c∗(P(i)) ≤ 1

2 dj+1 ≤ dj:

On the other hand, if dj < dj+1=2, then

c∗(P(i+2)) ≤
1
2 c∗(P(i)) ≤ 1

2 dj+1 � dj+1 �
1
2 dj+1 � c∗j+1xj+1 + dj �

1
2 dj+1 < c∗j+1xj+1:

By subpath monotonicity, the paths from P(i+2) onward do not contain an arc from the set {ej+1, ej+2, : : : , emk}.
Therefore, their costs are at most dj each. w

The run time of every iteration of Algorithm 1 is dominated by GRAPEVINE. Thus, following the discussion in
Appendix B.3, we obtain the following result.

Dadush et al.: An Accelerated Newton–Dinkelbach Method and its Application to 2VPI Systems
1948 Mathematics of Operations Research, 2023, vol. 48, no. 4, pp. 1934–1958, © 2022 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

19
2.

16
.1

91
.1

36
]

on
 2

8
N

ov
em

be
r

20
23

, a
t 0

3:
43

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Corollary 1. Algorithm 3 solves the feasibility of M2VPI linear systems in O(m2n2) time.

One might wonder if Algorithm 3 is still strongly polynomial if we replace the look-ahead Newton–Dinkelbach
method on line 16 with the standard version. In Appendix C, we show that this is indeed the case, although with a
slower convergence.

4.3. Deterministic Markov Decision Processes
In this subsection, we replace GRAPEVINE with a variant of Dijkstra’s algorithm (Algorithm 4) in order to speed up
Algorithm 3 for solving a special class of 2VPI linear programs, known as DMDPs. This idea was briefly men-
tioned by Madani [21]; we will supply the details. Recall that an instance of DMDP is described by a directed
multigraph G � (V, E) with arc costs c ∈ Rm and discount factors γ ∈ (0,1]m. The goal is to select an outgoing arc
from every node so as to minimize the total discounted cost over an infinite time horizon. It can be formulated as
the following pair of primal and dual LPs:

min c⊤x
s:t: ∇xv � 1 ∀v ∈ V

x ≥ 0
(P)

max 1⊤y
s:t: yv � γeyw ≤ ce ∀e � (v, w) ∈ E: (D)

Because the discount factor of every cycle is at most one, there are no bicycles in G. Consequently, by Theorem 3,
the linear program (D) is infeasible if and only if there is a negative unit-gain cycle in G. This condition can be
easily checked by running a negative cycle detection algorithm on the subgraph induced by arcs with discount
factor 1.

Algorithm 4 is slightly modified from the standard Dijkstra’s algorithm (Dijkstra [5]) to handle our notion of
shortest paths that depends on node labels. As part of the input, it requires a target node t with out-degree zero,
node labels y ∈ Rn that induce nonnegative reduced costs, and a parameter α < yt. As output, it returns a shortest
path tree T to t when yt is decreased to α. It also returns node labels z ∈ Rn, which certify the optimality of T (i.e.,
z induces nonnegative reduced costs with zero reduced costs on T) and zt � α.

Algorithm 4 (Recompute Shortest Paths to t)
Input: A directed multigraph G � (V, E) with arc costs c ∈ RE and discount factors γ ∈ (0,1]E, a target node t ∈ V

where δ+(t) � ∅, node labels y ∈ RV such that cvw + γvwyw � yv ≥ 0 for every vw ∈ E, and a parameter α < yt
Output: An in-tree T rooted at t and node labels z ∈ RV such that z ≤ y, zu � α�and cvw + γvwzw � zv ≥ 0 for every

vw ∈ E, with equality on every arc of T.
1. yu← α
2. Define reduced cost c̄ ∈ RE by c̄vw← cvw + γvwyw � yv for all vw ∈ E
3. Initialize node labels z ∈ RV by zv← 0 for all v ∈ V
4. Initialize sets R← {t} and S←∅
5. while R ≠ ∅ do
6. w← arg minv∈R{zv}

7. R← R \ {w}
8. S← S ∪ {w}
9. for all vw ∈ E where v ∉ S do

10. if zv > c̄vw + γvwzw then
11. zv← c̄vw + γvwzw
12. pred(v) ← vw
13. R← R ∪ {v}
14. end if
15. end for
16. end while
17. Let T be the in tree defined by pred()
18. z← y+ z
19. return (z, T)

An iteration of Algorithm 4 refers to a repetition of the while loop. In the pseudocode, observe that c̄e ≥ 0 for all
e ∈ E \ δ�(u).

Dadush et al.: An Accelerated Newton–Dinkelbach Method and its Application to 2VPI Systems
Mathematics of Operations Research, 2023, vol. 48, no. 4, pp. 1934–1958, © 2022 INFORMS 1949

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

19
2.

16
.1

91
.1

36
]

on
 2

8
N

ov
em

be
r

20
23

, a
t 0

3:
43

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Lemma 10. Algorithm 4 is correct.

Proof. We proceed by induction on the number of elapsed iterations k. Let z be the node labels at the end of itera-
tion k. For each i ≤ k, let vi be the node added to S in iteration i. Note that zS remains unchanged in future itera-
tions. We first show that zv2 ≤ zv3 ≤⋯≤ zvk < zv1 � 0. The base case k � 1 is true because of our initialization,
whereas the base case k � 2 is true because v2 ∈ R. For the inductive step, suppose that the claim is true for some
k ≥ 2. Let vk+1 � arg minv∈R{zv} and vj � pred(vk+1) for some j ≤ k. We know that zvk+1 < 0 because vk+1 ∈ R. If j < k,
then zvk+1 ≥ zvk , as otherwise, vk would not have been chosen to enter S in iteration k. If j � k, using the fact that
γvk+1vk

≤ 1 and c̄vk+1vk ≥ 0, we obtain
zvk+1 � c̄vk+1vk + γvk+1vk

zvk ≥ zvk :

It is left to show that c̄vw + γvwzw � zv ≥ 0 for all vw ∈ E(G[S]). The base case k � 1 is trivially true. For the induc-
tive step, suppose that the statement is true for some k ≥ 1. We know that zvk+1 ≤ c̄vk+1v + γvk+1vzv for every outgoing
arc vk+1v ∈ E(G[S]). For every incoming arc vvk+1 ∈ E(G[S]), using the fact that γvvk+1

≤ 1 and c̄vvk+1 ≥ 0, we get
zv ≤ c̄vvk+1 + γvvk+1

zv ≤ c̄vvk+1 + γvvk+1
zvk+1 ,

where the second inequality follows from zv ≤ zvk+1 . w

In every phase k of Algorithm 3, Algorithm 4 now replaces GRAPEVINE as the new value and supergradient
oracle of f. Given an optimal dual solution y to f (α) for some α ∈ R, Algorithm 4 is used to compute an optimal
dual solution to f (α′) for any α′ < α. In particular, we run it on the modified graph G(k)u with input node labels ȳ
defined by ȳu′ :� α�and ȳv :� yv for all v ≠ u′, target node t � u′, and parameter α′ < α. Note that u′ has out-degree
zero in G(k)u by construction. Let (z̄, T) be the node labels and tree returned by Algorithm 4, where z̄V is an optimal
dual solution to f (α′). A supergradient at f (α′) can be inferred from the output via complementary slackness.
Specifically, if u ∈ V(T), then γ(P)� 1 ∈ ∂f (α′), where P is the unique u-u′ path in T. Otherwise, u can reach a
flow-absorbing cycle in the tight subgraph with respect to z̄, so � 1 ∈ ∂f (α′).

An efficient implementation of Dijkstra’s algorithm using Fibonacci heaps was given by Fredman and Tarjan
[9]. It can also be applied to our setting, with the same running time of O(m+ n log n). Consequently, we obtain a
faster running time of Algorithm 3 for DMDPs.

Corollary 2. Algorithm 3 solves DMDPs in O(mn(m+ n log n)) time.

5. Parametric Submodular Function Minimization
Let V be a set with n elements, and define 2V :� {S : S ⊆ V} to be the set of all subsets of V. A function h : 2V→ R
is submodular if

h(S) + h(T) ≥ h(S ∩ T) + h(S ∪ T) ∀S, T ⊆ V:

Given a nonnegative submodular function h : 2V→ R+ and a vector a ∈ RV satisfying maxi∈Vai > 0, we examine
the problem of computing

δ∗ :�max
�

δ : min
S⊆V

h(S)� δa(S) ≥ 0
�

, (3)

where a(S) :�
P

i∈Sai. As the input model, we assume access to an evaluation oracle for h, which allows us to
query h(S) for any set S ⊆ V. The problem models the line-search problem inside a submodular polyhedron and
has been studied in Goemans et al. [10], Nagano [24], and Topkis [33].

To connect to the root-finding problem studied in previous sections, for δ ∈ R, we define
f (δ) :�min

S⊆V
hδ(S) :�min

S⊆V
h(S)� δa(S):

Because f is the minimum of 2n affine functions, f is a piecewise linear concave function. Noting that f is continu-
ous, Problem (3) can be equivalently restated as that of computing the largest root of f (i.e., the largest δ∗ ∈ R such
that f (δ∗) � 0). The assumption that h is nonnegative ensures that f (0) ≥ 0, and the assumption that maxi∈Vai > 0
ensures that δ∗ exists and δ∗ ≥ 0 (see the initialization section). Given the root finding representation, we may
apply the Newton–Dinkelbach method on f to compute δ∗. This approach was taken by Goemans et al. [10], who
were motivated to give a more efficient alternative to the parametric search-based algorithm of Nagano [24].
Their main result is as follows.

Dadush et al.: An Accelerated Newton–Dinkelbach Method and its Application to 2VPI Systems
1950 Mathematics of Operations Research, 2023, vol. 48, no. 4, pp. 1934–1958, © 2022 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

19
2.

16
.1

91
.1

36
]

on
 2

8
N

ov
em

be
r

20
23

, a
t 0

3:
43

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Theorem 6 (Goemans et al. [10]). The Newton–Dinkelbach method requires at most n2 +O(nlog2n) iterations to solve
(3).

The goal of this section is to give a simplified potential function-based proof of the theorem using the acceler-
ated Newton–Dinkelbach method (Algorithm 1), where we will give a slightly weaker 2n2 + 2n+ 4 bound on the
iteration count. Our analysis uses the same combinatorial ring family analysis as in Goemans et al. [10], but the
Bregman divergence enables considerable simplifications.

5.1. Implementing the Accelerated Newton–Dinkelbach Method
We explain how to implement and initialize the accelerated Newton–Dinkelbach method in the present context.
To begin, Algorithm 1 requires access to the supergradients of f. For δ ∈ R, it is easy to verify that

S ∈ arg min{hδ(T) : T ⊆ V}⇒� a(S) ∈ ∂f (δ):

Therefore, computing supergradients of f can be reduced to computing minimizers of the submodular functions
hδ(S) :� h(S)� δa(S), δ ∈ R. SFM is a classic problem in combinatorial optimization and has been extensively
studied from the viewpoint of strongly polynomial algorithms (Dadush et al. [4], Iwata [15], Iwata and Orlin
[16], Jiang [17], Lee et al. [19]). The fastest strongly polynomial running time is by Jiang [17], who gave an algo-
rithm for SFM using O(n3) calls to the evaluation oracle.

In what follows, we assume access to an SFM oracle that we will call on the submodular functions hδ�for δ ∈ R.
Each iteration of Algorithm 1 requires two calls to a supergradient oracle, one for the standard step and one for
the look-ahead step, and hence, they can be implemented using two calls to the SFM oracle. Goemans et al. [10]
were directly concerned with the number of calls to an SFM oracle, which is exactly equal to the number of itera-
tions of standard Newton–Dinkelbach (it requires only one SFM call per iteration instead of two). As mentioned,
we will prove a 2n2 + 2n+ 4 bound on the iteration count for accelerated Newton–Dinkelbach, which will recover
the bound on the number of SFM calls of Goemans et al. [10] up to a factor of four. Because accelerated
Newton–Dinkelbach is always as fast as the standard method (it goes at least as far in each iteration), the itera-
tion bound in Theorem 6 in fact applies to the accelerated method as well.

We now explain how to initialize the method. For this purpose, Algorithm 1 requires δ(1) ∈ R and g(1) ∈ ∂f (δ(1))
such that f (δ(1)) ≤ 0 and g(1) < 0. We proceed as in Goemans et al. [10] and let δ(1) :�min{h({i})=ai : i ∈ V, ai > 0} ≥ 0,
which is well defined by assumption on a. We compute f (δ(1)) by the SFM oracle. Note that

f (δ(1)) �min
S⊆V

hδ(S) ≤ min
i∈V, ai>0

h({i})� δ(1)ai � 0:

If f (δ(1)) � 0, we return δ(1), as we are already done. Otherwise, if f (δ(1)) < 0, set g(1) �� a(S(1)), where S(1) ∈
argminS⊆Vhδ(1) (S) as returned by the oracle. From here, note that

0 > f (δ(1)) � hδ(1) (S
(1)) � h(S(1))� δ(1)a(S(1)) � h(S(1)) + g(1)δ(1) ≥ g(1)δ(1),

where the last inequality follows by nonnegativity of h. Because δ(1) ≥ 0, this implies that δ(1) > 0 and g(1) < 0. We
may, therefore, initialize Algorithm 1 with δ(1) and g(1).

Assuming f (δ(1)) < 0, the largest root δ∗ of f is guaranteed to exist in the interval [0,δ(1)). This follows because f
is continuous, f (0) �minS⊆Vh(S) ≥ 0 (by nonnegativity of h), and f (δ(1)) < 0. Note that there does not exist a root
larger than δ(1) because of the concavity of f. So, Algorithm 1 on input f ,δ(1), g(1) is guaranteed to output the
desired largest root δ∗ in a finite number of iterations (recalling that f is piecewise affine with 2n pieces). In the
next subsection, we prove a 2n2 + 2n+ 4 bound on the number of iterations.

5.2. Proof of the 2n212n14 Iteration Bound
Let δ(1) >⋯> δ(ℓ) � δ∗ denote the iterates of Algorithm 1 on input f and δ(1) > 0, g(1) < 0. For each i ∈ [ℓ], let S(i) be
any set satisfying

S(i) ∈ arg max{a(S) : S ∈ arg minT⊆Vhδ(i) (T)}:

It is not hard to verify that S(i), i ∈ [ℓ], is a minimizer of hδ(i) inducing the right derivative of f at δ(i). Precisely,
� a(S(i)) � infg∈∂f (δ(i))g, ∀i ∈ [ℓ]. We note that the sets S(i), i ∈ [ℓ], need not be the sets outputted by the SFM oracle
and are only required for the analysis of the algorithm.

Our goal is to prove that ℓ ≤ 2n2 + 2n+ 4. For this purpose, we rely on the key idea of Goemans et al. [10],
which is to extract an increasing sequence of ring families from the sets S(i), i ∈ [ℓ].

Dadush et al.: An Accelerated Newton–Dinkelbach Method and its Application to 2VPI Systems
Mathematics of Operations Research, 2023, vol. 48, no. 4, pp. 1934–1958, © 2022 INFORMS 1951

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

19
2.

16
.1

91
.1

36
]

on
 2

8
N

ov
em

be
r

20
23

, a
t 0

3:
43

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

A ring family R ⊆ 2V is a subsystem of sets that is closed under unions and intersections, precisely A, B ∈R⇒

A ∩ B, A ∪ B ∈R. Given T ⊆ 2V, we let R(T) denote the smallest ring family containing T . We will use the fol-
lowing lemma of Goemans et al. [10], which bounds the length of an increasing sequence of ring families.

Lemma 11 (Goemans et al. [10, theorem 2]). Let ∅≠ R1(R2(⋯ (Rk ⊆ 2V, where |V| � n. Then, k ≤ n+ 1
2

� �

+ 1.

The proof of this lemma is based on the Birkhoff representation of a ring family. Precisely, for any ring family
R ⊆ 2V , with ∅, V ∈R, there exists a directed graph G on V, such that the sets S ∈R are exactly the subsets of ver-
tices of G having no out neighbors. The main idea for the bound is that the digraph representation of Ri, i ∈ [k],
must lose edges as i increases. The next statement is a slightly adapted version of Goemans et al. [10, theorem 5]
that is sufficient for our purposes. It shows that a sequence of sets with geometrically increasing h values forms
an increasing sequence of ring families. We include a proof for completeness.

Lemma 12. Let h : 2V→ R+ be a nonnegative submodular function. Consider a sequence of distinct sets T1, T2, : : : , Tq ⊆ V
such that h(Ti+1) > 4h(Ti) for i ∈ [q� 1]. Then, Ti+1 ∉R({T1, : : : , Ti}) for all i ∈ [q� 1].

Proof. Let Ri :�R({T1, : : : , Ti}), ∀i ∈ [q]. We claim that maxS∈Ri h(S) ≤ 2h(Ti), ∀i ∈ [q]. This proves Ti+1 ∉Ri for i ∈
[q� 1] because h(Ti+1) > 4h(Ti) ≥ 2h(Ti) ≥maxS∈Ri h(S), noting that the second inequality uses that h is
nonnegative.

We now prove the claim by induction on i ∈ [q]. The base case i � 1 is trivial because R1 � {T1}. We now
assume that maxS∈Ri h(S) ≤ 2h(Ti), for 1 ≤ i ≤ q� 1, and prove the corresponding bound for Ri+1. Recalling that
Ri+1 is the ring family generated by Ri and Ti+1, it is easy to verify that the set system

Ri ∪ {Ti+1} ∪ {S ∪ Ti+1 : S ∈Ri} ∪ {S ∩ Ti+1 : S ∈Ri} ∪ {S1 ∪ (S2 ∩ Ti+1) : S1, S2 ∈Ri}

is a ring family and hence, is equal to Ri+1. It, therefore, suffices to upper bound h(X) for a set X of this type. For
X ∈Ri or X � Ti+1, the bound is by assumption. For X � S1 ∪ (S2 ∩ Ti+1), S1, S2 ∈ Ri+1, we prove the bound as fol-
lows:

h(S1 ∪ (S2 ∩ Ti+1)) ≤ h(S1) + h(S2 ∩ Ti+1)� h(S1 ∩ S2 ∩ Ti+1) (by submodularity of h)
≤ h(S1) + h(S2) + h(Ti+1)� h(S2 ∪ Ti+1)� h(S1 ∩ S2 ∩ Ti+1)

≤ h(S1) + h(S2) + h(Ti+1) (by nonnegativity of h)
≤ 4h(Ti) + h(Ti+1) (by the induction hypothesis)

≤ 2h(Ti+1)
�
because 4h(Ti) < h(Ti+1)

�
:

For X � S ∪ Ti+1 or X � S ∩ Ti+1, S ∈Ri, similarly to that discussed, one has

h(X) ≤ h(S) + h(Ti+1) ≤ 2h(Ti) + h(Ti+1) ≤
3
2 h(Ti+1), as needed:

We now use the Bregman divergence analysis to show that for the function hδ∗ , the sequence of sets Ti �

S(ℓ�4(i�1)), 1 ≤ i ≤ ⌊ℓ+3
4 ⌋ satisfies the conditions of this lemma. Combined with Lemma 11, we get that the number

of iterations satisfies

⌊(ℓ+ 3)=4⌋ ≤ n+ 1
2

� �

+ 1⇒ ℓ ≤ 2n2 + 2n+ 4, as needed: w

Lemma 13. Let us define

Ti :� S(ℓ�4(i�1)) , i ∈ [q] for q :�

�
ℓ + 3

4

�

:

Then, the function hδ∗ and the sequence of sets T1, T2, : : : , Tq satisfy the conditions in Lemma 12.

Proof. The function hδ∗ is clearly submodular, and its minimum is zero because 0 � f (δ∗) �minS⊆Vhδ∗ (S) � hδ∗ (S(ℓ))
� hδ∗ (T1). In particular, hδ∗ is nonnegative. It is left to show hδ∗ (Ti+1) > 4hδ∗ (Ti) for i ∈ [q� 1]. For each δ(i), i ∈ [ℓ],

Dadush et al.: An Accelerated Newton–Dinkelbach Method and its Application to 2VPI Systems
1952 Mathematics of Operations Research, 2023, vol. 48, no. 4, pp. 1934–1958, © 2022 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

19
2.

16
.1

91
.1

36
]

on
 2

8
N

ov
em

be
r

20
23

, a
t 0

3:
43

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

we see that

Df (δ
∗,δ(i)) � f (δ(i)) + sup

g∈∂f (δ(i))
g(δ∗ � δ(i))� f (δ∗)

� hδ(i) (S
(i))� a(S(i))(δ∗ � δ(i))

�
by our choice of S(i) and f (δ∗) � 0

�

� h(S(i))� δ(i)a(S(i))� a(S(i))(δ∗ � δ(i)) � hδ∗ (S(i)):

By Lemma 3, we get for 3 ≤ i ≤ ℓ�that

Df (δ
∗,δ(i)) < 1

2 Df (δ
∗,δ(i�2))� hδ∗ (S(i)) <

1
2 hδ∗ (S(i�2)): (4)

Then, hδ∗ (Ti+1) > 4hδ∗ (Ti) for i ∈ [q� 1] follows by the definition of the Ti sets. w

6. Conclusion
We have presented an accelerated version of the Newton–Dinkelbach method for univariate concave functions
and illustrated its utility on three application domains. For linear fractional combinatorial optimization, we
obtain an improved O(m log m) iteration bound. For 2VPI LP feasibility, we get a strongly polynomial label-
correcting algorithm, which runs in O(mn) iterations. Finally, the method yields a simplified analysis of the para-
metric submodular function minimization result by Goemans et al. [10].

The key idea is to analyze the Newton–Dinkelbach method using the Bregman divergence; previous work (Rad-
zik [28], Wang et al. [35]) analyzed the gradient and function value of the iterates. With the look-ahead step, we
show that the Bregman divergence halves every two iterations. The Bregman divergence has a useful interpretation
in terms of a “modified” cost function, which allows us to derive convergence bounds for various problems. We
expect that this accelerated method and its analysis will find more applications in other fractional/parametric opti-
mization problems.

For 2VPI LP feasibility, every iteration of the Newton–Dinkelbach method takes O(mn) time, which results in a
total running time of O(m2n2) for the overall label-correcting algorithm. We do not know whether our analysis is
tight; it may be possible to amortize over the O(mn) iterations. It is interesting to see whether the running time
can be lowered to match the O(mn2logm) bound of Hochbaum and Naor [13].

Acknowledgments
L. A. Végh thanks Neil Olver for several inspiring discussions on 2VPI systems, in particular on symmetries of the prob-
lem. A preliminary version appeared in the proceedings of European Symposium on Algorithms 2021.

Appendix A. Omitted Proofs
Proof of Lemma 1. Because f (δ(i)) ≤ 0 and g(i) < 0, by concavity of f we have that f (δ) ≤ f (δ(i)) + g(i)(δ� δ(i)) < f (δ(i)) ≤ 0 for
all δ > δ(i). Given this, we must have δ∗ ≤ δ(i) because either f (δ∗) � 0 ≥ f (δ(i)) or 0 > f (δ∗) �maxz∈R f (z) ≥ f (δ(i)). As δ(i) �

δ(i�1) �
f (δ(i�1))

g(i�1) < δ
(i�1) because f (δ(i�1)), g(i�1) < 0, we have f (δ(i�1)) < f (δ(i)). Furthermore, g(i) ≥ g(i�1) is immediate from the

concavity of f.
To understand when g(i) � g(i�1), we see by concavity that

g(i) ≥ inf
g∈∂f (δ(i))

g ≥ f (δ(i�1))� f (δ(i))
δ(i�1) � δ(i)

≥ sup
g∈∂f (δ(i�1))

g ≥ g(i�1):

To have equality throughout, we must, therefore, have that g(i) and g(i�1) are equal to the respective infimum and supremum.
We must also have f (δ(i)) � 0 because

f (δ(i�1))� f (δ(i))
δ(i�1) � δ(i)

�
f (δ(i�1))� f (δ(i))

f (δ(i�1))

g(i�1)

� g(i�1) 1� f (δ(i))
f (δ(i�1))

 !

:

To have equality throughout, we must, therefore, have that g(i) and g(i�1) are equal to the respective infimum and supremum and
that f (δ(i)) � 0.

Dadush et al.: An Accelerated Newton–Dinkelbach Method and its Application to 2VPI Systems
Mathematics of Operations Research, 2023, vol. 48, no. 4, pp. 1934–1958, © 2022 INFORMS 1953

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

19
2.

16
.1

91
.1

36
]

on
 2

8
N

ov
em

be
r

20
23

, a
t 0

3:
43

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Lastly, because f is concave,

f (δ(i�1)) ≤ f (δ(i)) + g(i)(δ(i�1) � δ(i)) � f (δ(i)) + g(i) f (δ
(i�1))

g(i�1) :

The moreover now follows by dividing both sides by f (δ(i�1)) < 0. w

Proof of Lemma 2. By Lemma 1, we know that δ∗ ≤ δ(i) < δ(i�1) and 0 ≥ f (δ(i)) > f (δ(i�1)). Hence,

Df (δ
∗,δ(i�1)) � f (δ(i�1)) + sup

g∈∂f (δ(i�1))

g(δ∗ � δ(i�1))� f (δ∗)

≥ f (δ(i�1)) + g(i�1)(δ(i) � δ(i�1)) + g(i�1)(δ∗ � δ(i))� f (δ∗)
≥ f (δ(i)) + g(i�1)(δ∗ � δ(i))� f (δ∗) (by concavity of f)
≥ f (δ(i)) + sup

g∈∂f (δ(i))
g(δ∗ � δ(i))� f (δ∗)

�Df (δ
∗,δ(i)):

For the equality condition, note that the first inequality holds at equality if and only if g(i�1) � infg∈∂f (δ(i�1))g. The second
inequality holds at equality if and only if f (δ(i)) � 0 because f (δ(i�1)) + g(i�1)(δ(i) � δ(i�1)) � 0 from the definition of δ(i). If
f (δ(i)) � 0, then δ(i) � δ∗, and hence, the third inequality holds at equality as well. w

Appendix B. Further Explanations
B.1. Reducing 2VPI to M2VPI
Following Edelsbrunner et al. [7] and Hochbaum et al. [14], the idea is to replace each variable yu with (y+u � y�u)=2,
where y+u and y�u are newly introduced variables. Then, an inequality ayu + byv ≤ c becomes

a y+u � y�u
2

� �

+ b y+v � y�v
2

� �

≤ c,

which contains four variables but will be adjusted based on the signs of a and b. If a or b is zero, then the resulting
inequality is already monotone and contains two variables. Next, if sgn(a) � sgn(b), then we replace the inequality with
ay+u � by�v ≤ c and � ay�u + by+v ≤ c. Otherwise, we replace it with ay+u + by+v ≤ c and � ay�u � by�v ≤ c. Observe that every
inequality in the new system is monotone and supported on exactly two variables. If ŷ is a feasible solution to the original
system, then setting y+ � ŷ and y� �� ŷ yields a feasible solution to the new system. Conversely, if (ŷ+, ŷ�) is a feasible
solution to the new system, then setting y � (ŷ+ � ŷ�)=2 yields a feasible solution to the original system. It follows that the
two systems are equivalent.

B.2. Nonexistence of Shortest Paths
Consider Figure B.1. We will sketch three different scenarios in which a shortest path from u with respect to node labels
y ∈ R3 does not exist. Throughout, let C be the unique directed cycle and Ck be the v-v walk that traverses C exactly k ∈ N
times.

B.2.1. Negative Unit Gain Cycle. Let γwv � γvw � 1 and cwv � cvw �� 1. Then, the cycle C fulfils γ(C) � 1 and
c(C) �� 2 < 0. The concatenation of (u, v) and Ck leads to arbitrarily short walks from u. In particular, there exists no
shortest path from u. This observation is independent of the node labels y. Recall as well that the existence of such a
cycle renders the M2VPI instance infeasible (Theorem 3).

B.2.2. Flow-Absorbing Cycle for Large Node Labels. Let γvw � 1 and γwv � 1=2. Then, γ(C) � γvwγwv � 1=2, so C is flow
absorbing. Let further cwv � cvw � 0 and yw � yv � 1. Label correcting for the cycle C then updates yv and yw in two strictly
decreasing sequences, which both converge toward zero. Again, the concatenation of (u, v) and Ck leads to a sequence of
u-v walks that have no smallest element.

Figure B.1. A shortest path from u with respect to node labels y may not exist.

Dadush et al.: An Accelerated Newton–Dinkelbach Method and its Application to 2VPI Systems
1954 Mathematics of Operations Research, 2023, vol. 48, no. 4, pp. 1934–1958, © 2022 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

19
2.

16
.1

91
.1

36
]

on
 2

8
N

ov
em

be
r

20
23

, a
t 0

3:
43

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

B.2.3. Flow-Generating Cycle for Small Node Labels. Let γvw � 1 and γwv � 2. Then, γ(C) � γvwγwv � 2, so C is flow
generating. Let further cwv �� 1, cvw � 0 and yw � yv � 0. Label correcting for the cycle C then updates yv and yw in two
strictly decreasing and unbounded sequences. Again, the concatenation of (u, v) and Ck leads to a sequence of u-v walks
that have no smallest element.

B.3. From ymax to a Finite Feasible Solution
In this section, we show how to convert the node labels y ∈ R̄n obtained from Algorithm 3 into a finite feasible solution
or an infeasibility certificate of the M2VPI system (G, c,γ) in question. We summarize the classical arguments already
used by Aspvall and Shiloach [2]. If y is finite, then we are done because there are no violated arcs in G with respect to
y. In fact, y is the pointwise maximal solution by Theorem 4. So, we may assume that yu �∞ for some u ∈ V.

Define ymin ∈ R̄n as the pointwise minimal solution to (G, c,γ) if the system is feasible, where ymin
v :��∞ if and only if

the variable yv is unbounded from below. Consider the reversed graph G
←

� (V, E
←

), where E
←

:� {vu : uv ∈ E} denotes the
set of reversed arcs. The cost and gain factor of each arc vu ∈ E

←

are given by cvu
←

:� cuv=γuv and γ← vu :� 1=γuv, respectively.
The M2VPI system defined by (G

←

, c← ,γ←) is equivalent to the original system (G, c,γ), which can be verified by performing
the change of variables z �� y. Let us run Algorithm 3 on (G

←

, c← ,γ←). By Theorem 4, if it returns node labels z ∈ R̄n, then
z �� ymin if the system is feasible. Otherwise, the system is infeasible. If z is finite, then we are again done because there
are no violated arcs in G

←

with respect to z. So, we may assume that zv �∞ for some v ∈ V.
If yw � zw �∞ for some w ∈ V, then we know that w cannot reach a flow-absorbing cycle in G and G

←

. The inability to
reach a flow-absorbing cycle in G

←

is equivalent to the inability to be reached by a flow-generating cycle in G. Denote
W :� {w ∈ V : yw � zw �∞}. Observe that every node w ∈W is not strongly connected to any v ∉W in G. Thus, checking
the feasibility of the system amounts to checking whether there exists a negative unit-gain cycle in G[W]. This can be
done by running GRAPEVINE on G[W]. Let C1, C2, : : : , Ck be the sink components in the strongly connected component
decomposition of G[W], and pick any vi ∈ V(Ci) for all i ∈ [k]. Then, the input node labels y′ ∈ R̄W to GRAPEVINE are set as
y′vi
∈ R for all i ∈ [k] and y′v :�∞ for all other nodes. Let z′ ∈ RW be the returned node labels. It is easy to see that there

exists a negative unit-gain cycle in G[W] if and only if there exists a violated arc in G[W] with respect to z′.
If the check reveals that the system is feasible, then we have y � ymax and � z � ymin by Theorem 4. Then, we can apply

a result of Aspvall and Shiloach [2], which states that the interval [ymin
u , ymin

u] is the projection of the feasible region onto
the coordinate yu for every u ∈ V. To obtain a feasible solution, we simply fix a coordinate yu ∈ [ymin

u , ymin
u], update ymin

and ymax using a generic label-correcting algorithm like GRAPEVINE, and repeat.

Appendix C. 2VPI Analysis Without Acceleration
In this section, we analyze the convergence of Algorithm 3 when the look-ahead Newton–Dinkelbach method is replaced
with the standard version. Interestingly, we also obtain a strongly polynomial run time in this case, albeit slower than
the accelerated version by a factor of O(logn). To achieve the desired run time, we slightly strengthen Lemma 4, whose
proof remains largely the same.

Lemma C.1. Let c ∈ Rm
+ and x(1), x(2), : : : , x(k) ∈ Zm such that ‖x(i)‖1 ≤ n for all i ∈ [k]. If

0 < c⊤x(i+1) ≤
1
2 c⊤x(i)

for all i < k, then k �O(mlogn).

Proof. Consider the polyhedron P ⊆ Rm defined by the following constraints:

(x(i) � 2x(i+1))⊤z ≥ 0 ∀i < k
(x(k))⊤z � 1

z ≥ 0:

Let A ∈ R(k+m)×m and b ∈ Rk+m denote the coefficient matrix and right-hand side vector of this system. The polyhedron P is
nonempty because it contains the vector c=(x(k))⊤c. Moreover, because P does not contain a line, it has an extreme point.
So, there exists a vector c′ ∈ P such that A′c′ � b′ for some nonsingular submatrix A′ ∈ Rm×m of the matrix A and a subvec-
tor b′ ∈ Rm of the vector b. Cramer’s rule says that for each i ∈ [m],

c′i �
det A′i
det A′ ,

where the matrix A′i is obtained from matrix A′ by replacing the ith column with vector b′. The one norm of the rows of
A′i is bounded by 3n and so, by Hadamard’s inequality |det(Ai

′)| ≤ (3n)m.
As the matrix A′ is nonsingular, we also have |detA′| ≥ 1, which implies that c′i ≤ (3n)m for all i ∈ [m]. Finally, using the

constraints that define the polyhedron P, we obtain

1 � (x(k))⊤c′ ≤ (x
(1))⊤c′

2k�1 ≤
n(3n)m

2k�1 :

So, k ≤ log(3mnm+1) + 1 �O(mlogn) as desired. w

Dadush et al.: An Accelerated Newton–Dinkelbach Method and its Application to 2VPI Systems
Mathematics of Operations Research, 2023, vol. 48, no. 4, pp. 1934–1958, © 2022 INFORMS 1955

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

19
2.

16
.1

91
.1

36
]

on
 2

8
N

ov
em

be
r

20
23

, a
t 0

3:
43

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Fix a phase k ∈ [n], and denote mk � |E(G(k))|. It is helpful to classify the iterations of the Newton–Dinkelbach method
based on the magnitude by which the supergradient changes. Recall that the supergradient at the start of iteration i > 1
is given by γ(P(i))� 1, where P(i) is the u-u′ path returned by GRAPEVINE in the previous iteration.

Definition C.1. For every i > 1, we say that iteration i is good if 1� γ(P(i)) ≤ 1
2 (1� γ(P

(i�1))). Otherwise, we say that it is
bad.

The next lemma gives a strongly polynomial bound on the number of good iterations.

Lemma C.2. In each phase k ∈ [n], the number of good iterations is O(mklogk).

Proof. Let P be a sequence of u-u′ paths in G(k)u at the start of every iteration of the Newton–Dinkelbach method. Let
P∗ � (P(1), P(2), : : : , P(t)) be the subsequence of P restricted to good iterations. We claim that γ(P(i+1)) ≥

ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ(P(i))

p
for all i < t.

We use the simple inequality that (1� x)=2 ≤ 1�
ffiffiffi
x
√

for all x ∈ R+; one can derive this by rearranging (
ffiffiffi
x
√
� 1)2=2 ≥ 0.

This gives

1 � γ(P(i+1)) ≤
1
2
�
1 � γ(P(i))

�
≤ 1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi

γ(P(i))
q

,

which proves the claim. Next, enumerate the arcs of each path by P(i) � (e(i)1 , e(i)2 , : : : , e(i)ℓi). By taking logarithms, the claim
can be equivalently stated as

Xℓi+1

j�1
logγe(i+1)

j
≥

1
2
Xℓi

j�1
logγe(i)j

:

Note that both sides of the expression are negative because γ(P(i)) < 1 for all i ∈ [t]. Let c ∈ Rmk
+ be the vector defined by

ce � |logγe| for all e ∈ E(G(k)). In addition, for every i ∈ [t], define the vector x(i) ∈ Zm as

x(i)e �� sgn(logγe)|{j ∈ [ℓi] : e(i)j � e}|:

Then, we obtain

0 < c⊤x(i+1) �
Xℓi+1

j�1
�logγe(i+1)

j
≤

1
2
Xℓi

j�1
�logγe(i)j

�
1
2 c⊤x(i)

for all i < t. Because ||x(i)||1 ≤ k for all i ∈ [t], we conclude that t �O(mklogk) by Lemma C.1. w

It is left to bound the number of bad iterations. We approach this by arguing that in a strongly polynomial number of
bad iterations, an arc will no longer appear in future paths produced by the Newton–Dinkelbach method.

Lemma C.3. In each phase k ∈ [n], the number of bad iterations is O(mklogk).

Proof. Let Ȳ � (ȳ(1), ȳ(2), : : : , ȳ(ℓ)) and P � (P(1), P(2), : : : , P(ℓ)) be a sequence of node labels and u-u′ paths in G(k)u , respec-
tively, at the start of every iteration of the Newton–Dinkelbach method. Without loss of generality, we may assume that
ȳ(i) is finite for all i ∈ [ℓ]. For each i ∈ [ℓ], define y(i) ∈ Rn as y(i)u :� ȳ(i)u′ and y(i)v :� ȳ(i)v for all v ∉ {u, u′}. Now, pick an iteration
j ∈ [ℓ] such that more than log(2n) bad iterations have elapsed. Consider the reduced cost c′ ∈ Rmk given by c′vw :�

cvw + γvwy(j)w � y(j)v for all vw ∈ E(G(k)). Note that c′vw ≥ 0 for all v ≠ u.
According to Lemma 8, each P(i) is a shortest u-u′ path with respect to ȳ(i). By complementary slackness, the unit flow

on P(i) is an optimal primal solution to f (ȳ(i)u′). Because ȳ(i)u′ > ȳ(i+1)
u′ for all i < ℓ, the sequence P satisfies subpath monotonic-

ity at u by Lemma 9. Define the vector x ∈ Rm
+ as

xvw :�
max
i∈[ℓ]
{γ(P(i)uv) : vw ∈ E(P(i))} if vw ∈∪ℓi�1 E(P(i)),

0 otherwise:

(

Observe that xvw is the gain factor of the u-v subpath of the last path in P, which contains vw, because of subpath
monotonicity.

Claim C.1. We have � f (ȳ(j)u′) < ‖c′ ◦ x‖∞.

Proof. For every i ∈ [ℓ], we have

f (ȳ(i)u′) � c(P(i))� ȳ(i)u′ (1� γ(P(i))) � c′(P(i))� (ȳ(i)u′ � ȳ(j)u′)(1� γ(P(i))):

By applying the definition of ȳ(i)u′ , we can upper bound its negation by

� f (ȳ(i)u′) �� c′(P(i)) + 1� γ(P(i))
1� γ(P(i�1))

c′(P(i�1)) ≤ |c′(P(i))| + |c′(P(i�1))| ≤ 2k‖c′ ◦ x‖∞:

Dadush et al.: An Accelerated Newton–Dinkelbach Method and its Application to 2VPI Systems
1956 Mathematics of Operations Research, 2023, vol. 48, no. 4, pp. 1934–1958, © 2022 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

19
2.

16
.1

91
.1

36
]

on
 2

8
N

ov
em

be
r

20
23

, a
t 0

3:
43

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Lemma 1 tells us that � f (ȳ(i)u′) is nonnegative and monotonically decreasing. Moreover, it decreases geometrically by a
factor of 1/2 during bad iterations. Hence, by our choice of j, we obtain

� f (ȳ(j)u′) <
1
2

� �log(2n)
· 2k‖c′ ◦ x‖∞ � ‖c′ ◦ x‖∞: w

Let d ∈ Rmk be the arc costs defined by

dvw �
c′vw if v ≠ u,
c′vw � f (ȳ(j)u′) if v � u:

(

Because f (ȳ(j)u′) � ȳ(j)u � ȳ(j)u′ , observe that d ≥ 0 due to ȳ(j)V is feasible to the dual LP for f (ȳ(j)u′).

Claim C.2. We have ‖d ◦ x‖∞ ≥ ‖c′ ◦ x‖∞.

Proof. Let e∗ � arg maxe∈E(G(k))|c′exe|. The claim is trivial unless e∗ ∈∪ℓi�1 E(P(i)) and the tail of e∗ is u. Because f (ȳ(j)u′) ≤ 0 and
de∗ � c′e∗ � f (ȳ(j)u′), it suffices to show that c′e∗ ≥ 0. For the purpose of contradiction, suppose that c′e∗ < 0. Because de∗ ≥ 0, this
implies that |c′e∗ | ≤� f (ȳ(j)u′) < ‖c′ ◦ x‖∞ using Claim C.1. By the definition of x, xe∗ � 1 because e∗ is the first arc of any path
in P that uses it. However, this implies that

|c′e∗ | � |c
′
e∗xe∗ | � ‖c′ ◦ x‖∞,

which is a contradiction. w

Consider the arc e∗ :� arg maxe∈E|dexe|. We claim that e∗ does not appear in subsequent paths in P after iteration j. For
the purpose of contradiction, suppose that there exists an iteration i > j such that e∗ ∈ E(P(i)). Pick the iteration i such that
P(i) is the last path in P that contains e∗. Because the iterates ȳ(·)u′ are monotonically decreasing, we have

0 > ȳ(i+1)
u′ � ȳ(j)u′ �

c(P(i))
1� γ(P(i))

� ȳ(j)u′ �
c′(P(i))

1� γ(P(i))
�

d(P(i))� f (ȳ(j)u′)

1� γ(P(i))
:

This implies that d(P(i)) < f (ȳ(j)u′) < ‖c′ ◦ x‖∞. However, it contradicts

d(P(i)) ≥ de∗xe∗ � ‖d ◦ x‖∞ ≥ ‖c′ ◦ x‖∞,

where the first inequality is because of our choice of i and the nonnegativity of d, whereas the second inequality is because
of Claim C.2. Repeating the argument for m times yields the desired bound on the number of bad iterations. w

The run time of every iteration of the Newton–Dinkelbach method is dominated by GRAPEVINE. Thus, following the dis-
cussion in Appendix B.3, we obtain the following result.

Corollary C.1. If we replace Algorithm 1 with the Newton–Dinkelbach method in Algorithm 3, then it solves the feasibility of
M2VPI linear systems in O(m2n2logn) time.

Endnotes
1 The problem could be alternatively formulated with D ⊆ {0, 1}m but with nonlinear functions instead of c⊤x and d⊤x.
2 The value sequence may violate monotonicity in certain cases of value iteration.

References
0[1] Ahuja RK, Magnanti TL, Orlin JB (1993) Network Flows: Theory, Algorithms and Applications (Prentice Hall, Hoboken, NJ).
0[2] Aspvall B, Shiloach Y (1980) A polynomial time algorithm for solving systems of linear inequalities with two variables per inequality.

SIAM J. Comput. 9(4):827–845.
0[3] Cohen E, Megiddo N (1994) Improved algorithms for linear inequalities with two variables per inequality. SIAM J. Comput. 23(6):1313–1347.
0[4] Dadush D, Végh LA, Zambelli G (2018) Geometric rescaling algorithms for submodular function minimization. Proc. Twenty-Ninth

Annual ACM-SIAM Sympos. Discrete Algorithms (Society for Industrial and Applied Mathematics, Philadelphia), 832–848.
0[5] Dijkstra EW (1959) A note on two problems in connexion with graphs. Numerische Math. 1:269–271.
0[6] Dinkelbach W (1967) On nonlinear fractional programming. Management Sci. 13(7):492–498.
0[7] Edelsbrunner H, Rote G, Welzl E (1989) Testing the necklace condition for shortest tours and optimal factors in the plane. Theoret. Com-

put. Sci. 66(2):157–180.
0[8] Feinberg EA, Huang J (2014) The value iteration algorithm is not strongly polynomial for discounted dynamic programming. Oper. Res.

Lett. 42(2):130–131.
0[9] Fredman ML, Tarjan RE (1987) Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM 34(3):596–615.
[10] Goemans MX, Gupta S, Jaillet P (2017) Discrete Newton’s algorithm for parametric submodular function minimization. Proc. 19th Inter-

nat. Conf. Integer Programming Combinatorial Optim. (Springer, New York), 212–227.
[11] Goldberg AV, Tarjan RE (1989) Finding minimum-cost circulations by canceling negative cycles. J. ACM 36(4):873–886.
[12] Hansen TD, Kaplan H, Zwick U (2014) Dantzig’s pivoting rule for shortest paths, deterministic MDPs, and minimum cost to time ratio

cycles. Proc. 25th Annual ACM-SIAM Sympos. Discrete Algorithms (ACM–SIAM, New York–Philadelphia), 847–860.

Dadush et al.: An Accelerated Newton–Dinkelbach Method and its Application to 2VPI Systems
Mathematics of Operations Research, 2023, vol. 48, no. 4, pp. 1934–1958, © 2022 INFORMS 1957

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

19
2.

16
.1

91
.1

36
]

on
 2

8
N

ov
em

be
r

20
23

, a
t 0

3:
43

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

[13] Hochbaum DS, Naor J (1994) Simple and fast algorithms for linear and integer programs with two variables per inequality. SIAM J. Com-
put. 23(6):1179–1192.

[14] Hochbaum DS, Megiddo N, Naor J, Tamir A (1993) Tight bounds and 2-approximation algorithms for integer programs with two varia-
bles per inequality. Math. Programming 62:69–83.

[15] Iwata S (2008) Submodular function minimization. Math. Programming 112(1):45–64.
[16] Iwata S, Orlin JB (2009) A simple combinatorial algorithm for submodular function minimization. Proc. Twentieth Annual ACM-SIAM

Sympos. Discrete Algorithms (Society for Industrial and Applied Mathematics, New York), 1230–1237.
[17] Jiang H (2021) Minimizing convex functions with integral minimizers. Proc. 2021 ACM-SIAM Sympos. Discrete Algorithms (SODA) (Society

for Industrial and Applied Mathematics, Philadelphia), 976–985.
[18] Karczmarz A (2022) Improved strongly polynomial algorithms for deterministic MDPs, 2VPI feasibility, and discounted all-pairs shortest

paths. Proc. 2022 ACM-SIAM Sympos. Discrete Algorithms (SODA) (SIAM, Philadelphia), 154–172.
[19] Lee YT, Sidford A, Wong SC (2015) A faster cutting plane method and its implications for combinatorial and convex optimization. 2015

IEEE 56th Annual Sympos. Foundations Comput. Sci. (IEEE Computer Society, Berkeley, CA), 1049–1065.
[20] Littman ML, Dean TL, Kaelbling LP (1995) On the complexity of solving Markov decision problems. Proc. 11th Annual Conf. Uncertainty

Artificial Intelligence (UAI) (Morgan Kaufmann, Burlington, MA), 394–402.
[21] Madani O (2002) On policy iteration as a Newton’s method and polynomial policy iteration algorithms. Proc. 18th National Conf. Artificial

Intelligence (AAAI Press, Palo Alto, CA), 273–278.
[22] Megiddo N (1979) Combinatorial optimization with rational objective functions. Math. Oper. Res. 4(4):414–424.
[23] Megiddo N (1983) Towards a genuinely polynomial algorithm for linear programming. SIAM J. Comput. 12(2):347–353.
[24] Nagano K (2007) A strongly polynomial algorithm for line search in submodular polyhedra. Discrete Optim. 4(3–4):349–359.
[25] Olver N, Végh LA (2020) A simpler and faster strongly polynomial algorithm for generalized flow maximization. J. ACM 67(2):10.1–10.26.
[26] Post I, Ye Y (2015) The simplex method is strongly polynomial for deterministic Markov decision processes. Math. Oper. Res. 40(4):859–868.
[27] Radzik T (1992) Newton’s method for fractional combinatorial optimization. Proc. 33rd Annual Sympos. Foundations Comput. Sci., 659–669.
[28] Radzik T (1998) Fractional combinatorial optimization. Du DZ, Pardalos PM, eds. Handbook of Combinatorial Optimization, vol. 1 (Springer,

New York), 429–478.
[29] Radzik T, Goldberg AV (1994) Tight bounds on the number of minimum-mean cycle cancellations and related results. Algorithmica 11(3):

226–242.
[30] Shostak RE (1981) Deciding linear inequalities by computing loop residues. J. ACM 28(4):769–779.
[31] Smale S (1998) Mathematical problems for the next century. Math. Intelligencer 20:7–15.
[32] Tardos É (1985) A strongly polynomial minimum cost circulation algorithm. Combinatorica 5(3):247–256.
[33] Topkis DM (1978) Minimizing a submodular function on a lattice. Oper. Res. 26(2):305–321.
[34] Végh LA (2017) A strongly polynomial algorithm for generalized flow maximization. Math. Oper. Res. 42(1):179–211.
[35] Wang Q, Yang X, Zhang J (2006) A class of inverse dominant problems under weighted ℓ∞ norm and an improved complexity bound

for Radzik’s algorithm. J. Global Optim. 34(4):551–567.

Dadush et al.: An Accelerated Newton–Dinkelbach Method and its Application to 2VPI Systems
1958 Mathematics of Operations Research, 2023, vol. 48, no. 4, pp. 1934–1958, © 2022 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

19
2.

16
.1

91
.1

36
]

on
 2

8
N

ov
em

be
r

20
23

, a
t 0

3:
43

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

	An Accelerated Newton&hx2013;Dinkelbach Method and Its Application to Two Variables per Inequality Systems
	Introduction
	Preliminaries
	An Accelerated Newton–Dinkelbach Method
	Monotone Two Variables per Inequality Systems
	Parametric Submodular Function Minimization
	Conclusion

