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Abstract. We give a new presentation of the main result of Arunachalam, Briët and Palazue-
los (SICOMP’19) and show that quantum query algorithms are characterized by a new class of
polynomials which we call Fourier completely bounded polynomials. We conjecture that all such
polynomials have an influential variable. This conjecture is weaker than the famous Aaronson–
Ambainis (AA) conjecture (Theory of Computing’14), but has the same implications for classical
simulation of quantum query algorithms.

We prove a new case of the AA conjecture by showing that it holds for homogeneous Fourier
completely bounded polynomials. This implies that if the output of d-query quantum algorithm is
a homogeneous polynomial p of degree 2d, then it has a variable with influence at least Var[p]2.

In addition, we give an alternative proof of the results of Bansal, Sinha and de Wolf (CCC’22 and
QIP’23) showing that block-multilinear completely bounded polynomials have influential variables.
Our proof is simpler, obtains better constants and does not use randomness.

1. Introduction

Understanding the quantum query complexity of Boolean functions f : D → {−1, 1}, where D
is a subset of {−1, 1}n, has been a crucial task of quantum information science [Amb18]. Query
complexity is a model of computing where rigorous upper and lower bounds can be proven, which
allows one to compare the power of quantum computers with classical ones. Many celebrated
quantum algorithms show an advantage in terms of query complexity, for example in unstructured
search [Gro96], period finding [Sho99], Simon’s problem [Sim97], NAND-tree evaluation [FGG07]
and element distinctness [Amb07]. However, these advantages are limited to be polynomial in
the case of total functions (those with D = {−1, 1}n), while they can be exponential for highly
structured problems (informally, this means that |D| = o(2n)), such as for Simon’s problem [Sim97],
period finding [Sho99] or k-fold forrelation [AA15, Tal20, BS21, SSW21]. It is widely believed that a
lot of structure is necessary for superpolynomial speedups1. The following folklore conjecture, which
has circulated since the late 90s, but was first formally posed by Aaronson and Ambainis [AA09],
formalizes this idea.

This research was supported by the European Union’s Horizon 2020 research and innovation programme
under the Marie Sk lodowska-Curie grant agreement no. 945045, and by the NWO Gravitation project NETWORKS
under grant no. 024.002.003.

1Recently, Yamakawa and Zhandry showed that superpolynomial speedups can be attained in unstructured search
problems. However, that does not contradict the believe that structure is needed to achieve superpolynomial speedups
in decision problems, which are those modeled by Boolean functions [YZ22].
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Conjecture 1.1 (Folklore). The output of d-query quantum algorithms can be simulated with
error at most ε on at least a (1− δ)-fraction of the inputs using poly(d, 1/ε, 1/δ) classical queries.

In other words, it is believed that quantum query algorithms can be approximated almost every-
where by classical query algorithms with only a polynomial overhead.

A route towards proving Conjecture 1.1 was designed by Aaronson and Ambainis using that the
output of quantum query algorithms are polynomials2. Indeed, Beals et al. [BBC+01], proved that
the output of a d-query quantum algorithm is a bounded polynomial p : {−1, 1}n → R of degree at
most 2d. Here, bounded means that its supremum norm

(1) ∥p∥∞ = sup
x∈{−1,1}n

|p(x)|

is at most 1. Based on this observation, Aaronson and Ambainis conjectured in [AA09] that every
bounded polynomial of bounded degree has an influential variable.

Conjecture 1.2 (Aaronson-Ambainis (AA)). Let p : {−1, 1}n → R be a polynomial of degree at
most d with ∥p∥∞ ≤ 1. Then, p has a variable with influence at least poly(Var[p], 1/d).

The argument of [AA09, Theorem 7] to show that Conjecture 1.2 would imply Conjecture 1.1
works as follows. Let p the bounded polynomial of degree at most 2d that represents the output
of d query quantum algorithm. Say that we want to approximate p(y) for some y ∈ {−1, 1}n.
First, query an influential variable i of y. Then, the restricted polynomial p|x(i)=y(i) would also be a
bounded polynomial of degree at most 2d, so we can query again an influential variable. Given that
the influences of these variables are big, after a small number of queries the remaining polynomial
would have a low variance, so if we output its expectation it would be close to p(y) with high
probability.

Despite capturing the attention of a wide range of areas, little is known about Conjecture 1.2.
In fact, it was motivated by a similar result from analysis of Boolean functions, which proves the
conjecture with inverse exponential dependence on the degree [DFKO06]. This result was reproved
from a functional analytic perspective, highlighting its relation with the Bohnenblust-Hille inequality
[DMP19]. A couple reductions to other conjectures have been made, such as that it is sufficient to
prove the conjecture for one-block decoupled polynomials [OZ15]. Very recently, Lovett and Zhang
stated two conjectures related to fractional certificate complexity that, if true, would imply the AA
conjecture [LZ22]. Also recently, Austrin et al. showed a connection of the AA conjecture with
cryptography: if the AA conjecture is false, then there is a secure key agreement in the quantum
random oracle model that cannot be broken classically [ACC+22]. However, we only know it to be
true in a few particular cases: Boolean functions f : {−1, 1}n → {−1, 1} [Mid05, OSSS05, JZ11],
symmetric polynomials [Iva19], multilinear forms whose Fourier coefficients are all equal in absolute
value [Mon12] and block-multilinear completely bounded polynomials [BSdW22].

The last result is relevant in this context because Arunachalam, Briët and Palazuelos showed
that quantum query algorithms output polynomials that are not only bounded, but also completely
bounded [ABP19]. This is a more restricted normalization condition, which can be informally
understood as the polynomial taking bounded values when evaluated not only on bounded scalars,

2In this work we identify the output of quantum query algorithms on an input x ∈ {−1, 1}n with the expectation of
the quantum query algorithm on x, namely the difference of probability of accepting and the probability of rejecting.
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but also on bounded matrix inputs. This way, one could try to use this extra condition to prove
results about quantum query algorithms. The main motivation for Conjecture 1.2 was the fact that
it was known to hold with exponential dependence on the degree [DFKO06].

This idea was first put in practice by Bansal, Sinha and de Wolf [BSdW22]. They showed
that the AA conjecture holds for completely bounded block-multilinear forms, which implies an
almost everywhere classical simulation result, similar to Conjecture 1.1, for the amplitudes of certain
quantum query algorithms. These algorithms query different (non-controlled) bit strings on every
query, while Conjecture 1.1 concerns algorithms that query the same controlled bit string on every
query.

1.1. Our results. We follow that line of work and use the characterization of [ABP19] to design
a route towards Conjecture 1.1. Our first result is a new presentation of that characterization that
is more convenient for our purposes. To do this we introduce the Fourier completely bounded d-
norms (∥ · ∥fcb,d), which are relaxations of the supremum norm. In these norms we not only take
the supremum of the values that the polynomial takes over Boolean strings as in Eq. (1), but also
on matrix inputs that behave like Boolean strings. We will not include formal definitions in the
introduction, but we illustrate the concept of having Boolean behavior of degree d with an example.
For m ∈ N, we denote the m ×m real matrices by Mm. Say that d = 4 and n = 6, then if a pair
of vectors u, v ∈ Rm and a string of matrices A ∈ (Mm)6 have Boolean behaviour of degree 4, they
satisfy, for instance,

⟨u,A(1)A(1)A(2)A(3)v⟩ = ⟨u,A(5)A(2)A(3)A(5)v⟩,

because they should simulate the relation x(1)x(1)x(2)x(3) = x(5)x(2)x(3)x(5) satisfied by any
Boolean string {−1, 1}6. As the reader might guess, (u, v,A) will have Boolean behavior of degree
d if it simulates the relations of Fn

2 that involve product of d of the canonical generators.
Using the Fourier expansion of polynomials defined on the Boolean hypercube we will introduce

a natural way of evaluating polynomial on matrix inputs that have Boolean behavior, which allows
us to introduce the Fourier completely bounded d-norm.

Definition 1.3. (Informal version of Definition 2.2) Let p : {−1, 1}n → R be a polynomial of degree
at most d. Its Fourier completely bounded d-norm is given by

∥p∥fcb,d := sup |p(u, v,A)|(2)

where the supremum is taken over all (u, v,A) that have Boolean behavior of degree d.

After a reinterpretation of the semidefinite programs proposed in [GL19] to characterize quantum
query complexity, based on [ABP19], we show that the Fourier completely bounded d-norms are
those that characterize quantum query algorithms.

Theorem 1.4. Let p : {−1, 1}n → R. Then, p is the output of a d-query quantum algorithm if and
only if its degree is at most 2d and ∥p∥fcb,2d ≤ 1.

This new presentation of the main result of [ABP19] is more compact than the original one. It is
presented directly in terms of polynomials of the Boolean hypercube, does not involve a minimization
over possible completely bounded extensions of p, and eludes the use of tensors.
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Given that the Fourier completely bounded d-norms are at least the supremum norm3, Theorem
1.4 suggests that Conjecture 1.2 may be more general than necessary. Hence, we propose the
following weaker conjecture, that would also imply Conjecture 1.1.

Conjecture 1.5. Let p : {−1, 1}n → R be a polynomial of degree at most d with ∥p∥fcb,d ≤ 1.
Then, p has a variable with influence at least poly(Var[p], 1/d).

Using a generalization through creation and annihilation operators of the construction used by
Varopoulos to rule out a von Neumann’s inequality for degree 3 polynomials [Var74], we can prove
a particular case of Conjecture 1.5.

Theorem 1.6. Let d ∈ N. Let p : {−1, 1}n → R be a homogeneous polynomial of degree d and with
∥p∥fcb,d ≤ 1. Then, the maximum influence of p is at least Var[p]2.

The proof of the homogeneous case does not straightforwardly generalize (see Remark 4.3), but
it suggests a way to solve the general case (see Remark 4.4). In particular, we propose Question 4.5
(that reminds of tensor networks and almost-quantum correlations), which if answered affirmatively
would imply Conjecture 1.5.

Theorem 1.6 is the first result concerning the AA conjecture whose constant has no dependence
on the degree (to prove Conjecture 1.1 we could afford a polynomial dependence on the degree).
Also, it requires considerably fewer algebraic constraints than the other particular cases for which
we know AA conjecture to hold. In addition, thanks to Theorem 1.4, it can be interpreted directly
in terms of quantum query algorithms.

Corollary 1.7. Let d ∈ N. Let A be a d-query quantum algorithm whose output is a homogeneous
polynomial p : {−1, 1}n → R of degree 2d. Then, the maximum influence of p is at least Var[p]2.

With a similar construction as the one we used for Theorem 1.6, we can reprove the results
of [BSdW22] regarding the influence of block-multilinear completely bounded polynomials. These
polynomials have a particular algebraic structure and also a normalization condition when evaluated
on matrix inputs (see Section 4.1 below).

Theorem 1.8. Let d ∈ N. Let p : {−1, 1}n×d → R be a block-multilinear degree d polynomial
with ∥p∥cb ≤ 1. Then, p has a variable of influence at least (Var[p]/d)2. What is more, if p is
homogeneous of degree d, then it has a variable of influence at least Var[p]2.

Theorem 1.8 corresponds to [BSdW22, Theorem 1.4], where Bansal et al. proved the same result
but with influences at least Var[p]2/[e(d + 1)4] in the general case and with Var[p]2/(d + 1)2 in
the homogeneous degree d case. Their proofs involve evaluating p in random infinite dimensional
matrix inputs, which they can control using ideas of free probability. However, our proof evaluates
p in explicit finite dimensional matrix inputs, is shorter and obtains better constants. In particular,
our constant for the homogeneous case is optimal.

1.2. Some notation. Given n ∈ N, [n] denotes the set {1, . . . , n}, [n]0 the set {0, 1, . . . , n}, Mn

the space of n × n real matrices, Bn ⊂ Mn the space of n × n real matrices with operator norm
(largest singular value) at most 1, and Sn−1 ⊂ Rn the set of vectors with euclidean norm 1. Given,
d, n ∈ N, we use i to denote a multi-index in [n]d.

3From the results of [BP19] it can be inferred that there is a sequence of polynomials pn of degree 3 such that
∥pn∥fcb,3/∥pn∥∞ →n ∞.
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2. The Fourier completely bounded d-norms

There is a vast theory concerning the properties of multilinear maps T : Rn × · · · ×Rn → R that
are completely bounded, i.e., bounded when they are extended to matrix domains [Pau03]. However,
to the best of our knowledge, there is no notion of being completely bounded for polynomials p :
{−1, 1}n → R defined on the Boolean hypercube. Here, we propose a matrix notion of behaving like
a Boolean string. Then, using the Fourier expansion of these polynomials we define the evaluation
of the polynomials on these matrix inputs that behave like Boolean strings. Finally, we introduce
the Fourier completely bounded d-norms and prove a few of their properties.

Every p : {−1, 1}n → R can be written as

(3) p(x) =
∑
S⊂[n]

p̂(S)
∏
i∈S

x(i),

where p̂(S) are the Fourier coefficients of p. We say that p has degree at most d if p̂(S) = 0 for
every |S| > d, where |S| denotes the cardinality of S.

We will be interested on simulating the behavior of bit strings x ∈ {−1, 1}n×{1} with one extra
frozen variable4. Given d ∈ N and i, j ∈ [n+ 1]d we say that i ∼ j, if

(4) x(i1) . . . x(id) = x(j1) . . . x(jd) for every x ∈ {−1, 1}n × {1}.

In other words, if we define

Si := {k ∈ [n] : k occurs an odd number of times in i},

then i ∼ j if and only if Si = Sj. Note that n + 1 does not belong to these sets Si. Given S ⊂ [n]

with |S| ≤ d, we write [iS ] to denote the equivalence class of indices i such that Si = S.

Definition 2.1. Let n, d,m ∈ N. Let u, v ∈ Sm−1 and let A ∈ (Bm)n. We say that (u, v,A) has
Boolean behavior of degree d if

⟨u,A(i1) . . . A(id)v⟩ = ⟨u,A(j1) . . . A(jd)v⟩

for all i, j ∈ [n+ 1]d such that i ∼ j. We call BBd to the set of (u, v,A) with Boolean behavior of
degree d.

Informally, having Boolean behavior of degree d means that the relations of Eq. (4) and some
normalization conditions are satisfied. In particular, for any bit string x ∈ {−1, 1}n × {1} and any
d ∈ N, we have that (1, 1, x) has Boolean behavior of degree d.

Also note that given d ∈ N, for every S ∈ [n] with |S| ≤ d there is at least one i ∈ [n + 1]d

such that Si = S. Thus, given (u, v,A) with Boolean behavior of degree d, for every |S| ≤ d the
product

∏
i∈S x(i) can be simulated (in a unique manner) by ⟨u,A(iS1 ) . . . A(iSd )v⟩. In particular,

this means that for a polynomial p of degree at most d, we can define through Eq. (3) an evaluation
of p on every (u, v,A) that has Boolean behavior of degree d, which leads to the definition Fourier
completely bouded d-norm.

4The extra variable set to 1 is there because quantum query algorithms query a controlled bit string, and not a
non-controlled version, which would not require that extra variable.
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Definition 2.2. Let p : {−1, 1}n → R be a polynomial of degree at most d. Then, its Fourier
completely bounded d-norm is defined by

∥p∥fcb,d = sup
(u,v,A)∈BBd

∑
S⊂[n],|S|≤d

p̂(S)⟨u,A(iS1 ) . . . A(iSd )v⟩.

The rest of the section is devoted to prove a few results concerning the Fourier completely bounded
d-norms. First of all we show that, indeed, they are norms.

Proposition 2.3. Let d ∈ N. Then, ∥·∥fcb,d is a norm in the space of polynomials p : {−1, 1}n → R
of degree at most d.

Proof: It clearly satisfies the triangle inequality and is homogeneous. Also, if p = 0 then ∥p∥fcb,d = 0,
and vice versa, because ∥p∥∞ ≤ ∥p∥fcb,d. 2

One nice property of these norms is that they can be computed as semidefinite programs (SDPs),
which are optimization problems involving linear positive semidefinite constraints whose value can
be efficiently approximated (see [LR05] for an introduction to SDPs).

Proposition 2.4. Let p : {−1, 1}n → R be a polynomial of degree at most d. Then, its Fourier
completely bounded d-norm can be written as the following SDP

∥p∥fcb,d =sup
∑

S∈[n],|S|≤d

p̂(S)⟨u, viS ⟩,(5)

u, v, vi ∈ Rm, m ∈ N, i ∈ [n+ 1]s, s ∈ [d],

⟨u, vi⟩ = ⟨u, vj⟩, if i ∼ j, i, j ∈ [n+ 1]d,(6)

⟨u, u⟩ = ⟨v, v⟩ = 1,(7)

Gramj∈[n+1]s,
s∈[d−1]0

{vij} ≼ Gramj∈[n+1]s,
s∈[d−1]0

{vj}, for i ∈ [n+ 1],(8)

where we by vj with j ∈ [n+ 1]0 we mean v, Gram denotes the gram matrix and the symbol ‘≼’ the
usual matrix inequality.

Proof: Let |||p||| be the expression on the right-hand side of Eq. (5). Note that Eq. (6) represents
the relations of bit strings of Eq. (4), while Eqs. (7) and (8) encode normalization conditions.

On the one hand, every (u, v,A) ∈ BBd defines a feasible instance for |||p||| through

vi := A(i1) . . . A(is)v

for every i ∈ [n+ 1]s and every s ∈ [d]. Given that the value of this instance is∑
S⊂[n],|S|≤d

p̂(S)⟨u,A(iS1 ) . . . A(iSd )v⟩

we have that |||p||| ≥ ∥p∥fcb,d.
On the other hand, let u, v, vi ∈ Rm be a feasible instance of |||p|||. For i ∈ [n+1] define A(i) ∈ Mm

as the linear map from Rm to Rm that takes vj to vij for every j ∈ [n+1]s and every s ∈ [d−1]0, and
it is extended to 0 to the rest of Rm. First of all, we should check that this is a correct definition.
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In other words, we should check that for every λ ∈ RM , with M = (n+ 1)d−1 + · · ·+ (n+ 1)0, we
have that ∑

j

λjvj = 0 =⇒
∑
j

λjvij = 0.

Indeed, we can prove something stronger:

(
∑
j

λjvij)
T
∑
j′

λj′vij′ = λTGramj∈[n+1]s,
s∈[d−1]0

{vij}λ ≤ λTGramj∈[n+1]s,
s∈[d−1]0

{vj}λ

= (
∑
j

λjvj)
T
∑
j′

λj′vj′ .

The above calculation also proves that the A(i)’s are contractions, and thanks to Eq. (6) it follows
that (u, v,A) has Boolean behavior of degree d. Finally, note that the value of this (u, v,A) for
∥p∥fcb,d is the same as the value of (u, v, vj) for |||p|||, so ∥p∥fcb,d ≥ |||p|||. 2

Given d, d′ ∈ N with d′ > d and a polynomial p : {−1, 1}n → R of degree at most d, ∥p∥fcb,d
and ∥p∥fcb,d′ have different definitions, but they are comparable. In particular, we prove that the
Fourier completely bounded d-norms are not increasing.

Proposition 2.5. Let p : {−1, 1}n → R be a polynomial of degree at most d. Then,

∥p∥fcb,d+1 ≤ ∥p∥fcb,d.

Remark 2.6. Proposition 2.5 is coherent with Theorem 1.4 (proved below), because allowing more
queries to quantum algorithms only increases their power. Theorem 1.4 also suggests that ∥p∥fcb,n =
∥p∥∞ should hold, because n quantum queries should be enough to output any bounded polynomial.
If true, alongside Propositions 2.4 and 2.5, it would mean that (∥p∥fcb,d)d∈[n] is a decreasing hierarchy
of SDPs that tend to ∥p∥∞.

Proof of Proposition 2.5: Let (u, v,A) have Boolean behavior of degree d+ 1. Then,

(ũ, ṽ, Ã) = (u,
A(n+ 1)v

∥A(n+ 1)v∥
, A)

has Boolean behavior of degree d. Also, given that d+ 1 > d, we have that for every S ⊂ [n] with
|S| ≤ d, there exists i ∈ [n+ 1]d+1 such that Si = S and id+1 = n+ 1 and

(9) ⟨u,A(i1) . . . A(id+1)v⟩ = ∥A(n+ 1)v∥⟨ũ, Ã(i1) . . . Ã(id)ṽ⟩
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This way,

∥p∥fcb,d+1 = sup
(u,v,A)∈BBd+1

∑
S⊂[n],|S|≤d

p̂(S)⟨u,A(iS1 ) . . . A(iSd+1)v⟩

= ∥A(n+ 1)v∥ sup
(u,v,A)∈BBd+1

∑
S⊂[n],|S|≤d

p̂(S)⟨ũ, Ã(iS1 ) . . . Ã(iSd )ṽ⟩

≤ sup
(ũ,ṽ,Ã(i))∈BBd

∑
S⊂[n],|S|≤d

p̂(S)⟨ũ, Ã(iS1 ) . . . Ã(iSd )ṽ⟩

= ∥p∥fcb,d,

where in the equality we have used Eq. (9), and in the inequality that (ũ, ṽ, Ã) has Boolean behavior
of degree d and ∥A(n+ 1)v∥ ≤ 1. 2

The next proposition states that ∥ · ∥fcb,d does not increase after restrictions, which is a relevant
feature to ensure that Conjecture 1.5 implies Conjecture 1.1. Given a polynomial p : {−1, 1}n → R
and i ∈ [n], the restriction of p to the i-th variable being set to y ∈ {−1, 1} is the polynomial q :
{−1, 1}n−1 → R (whose variables we index with x(1), . . . , x(i−1), x(i+1), . . . , x(n) for convenience)
defined by q(x) := p(x(1), . . . , x(i− 1), y, x(i+ 1), . . . , x(n)).

Proposition 2.7. Let p : {−1, 1}n → R be a polynomial of degree at most d and let i ∈ [n]. Let
q : {−1, 1}n−1 → R be the restriction of p to the i-th variable being set to y ∈ {−1, 1}. Then,

∥q∥fcb,d ≤ ∥p∥fcb,d.

Proof: Let (u, v,A(1), . . . , A(i−1), A(i+1), . . . A(n+1)) with Boolean behavior of degree d. Define

ũ := u, ṽ := v and Ã(j) for j ∈ [n+ 1] as

Ã(j) =

{
A(j) if j ̸= i,
yA(n+ 1) if j = i.

Then, (ũ, ṽ, Ã(1), . . . , Ã(n + 1)) has Boolean behavior of degree d. Now note that for every S ⊂
[n+ 1]− {i}, we have that

(10) q̂(S) = p̂(S) + yp̂(S ∪ {i}).

Also, for every S ⊂ [n+ 1]− {i} with |S| ≤ d− 1, it is satisfied that

(11) ⟨ũ, Ã(jS1 ) . . . Ã(jSd )ṽ⟩ = y⟨ũ, Ã(j
S∪{i}
1 ) . . . Ã(j

S∪{i}
d )ṽ⟩.
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Thus,

∥q∥fcb,d = sup
(u,v,A(j))∈BBd

j∈[n+1]−{i}

∑
S⊂[n+1]−{i},|S|≤d

q̂(S)⟨u,A(jS1 ) . . . A(jSd )v⟩

= sup
(u,v,A(j))∈BBd

j∈[n+1]−{i}

∑
S⊂[n+1]−{i},|S|≤d

p̂(S)⟨u,A(jS1 ) . . . A(jSd )v⟩

+
∑

S⊂[n+1]−{i},|S|≤d−1

yp̂(S ∪ {i})⟨u,A(jS1 ) . . . A(jSd )v⟩

≤ sup
(ũ,ṽ,Ã(j))∈BBd

j∈[n+1]

∑
S⊂[n+1]−{i},|S|≤d

p̂(S)⟨ũ, Ã(jS1 ) . . . Ã(jSd )ṽ⟩

+
∑

S⊂[n+1]−{i},|S|≤d−1

p̂(S ∪ {i})⟨ũ, Ã(j
S∪{i}
1 ) . . . Ã(j

S∪{i}
d )ṽ⟩

= sup
(ũ,ṽ,Ã(j))∈BBd

j∈[n+1]

∑
S⊂[n],|S|≤d

p̂(S)⟨ũ, Ã(jS1 ) . . . Ã(jSd )ṽ⟩

= ∥p∥fcb,d,

where in the second equality we have used Eq. (10) and in the first inequality Eq. (11). 2

3. Quantum query algorithms are Fourier completely bounded polynomials

Now we are ready to prove Theorem 1.4, that fully characterizes quantum query algorithms in
terms of the Fourier completely bounded d-norms.

Theorem 1.4. Let p : {−1, 1}n → R. Then, p is the output of a d-query quantum algorithm if and
only if its degree is at most 2d and ∥p∥fcb,2d ≤ 1.

To prove Theorem 1.4 we just have to reinterpret the semidefinite programs of [GL19], based on
[ABP19].

Theorem 3.1 (Gribling-Laurent). Let p : {−1, 1}n → R. Then, p is the output of d-query quantum
algorithm if and only if its degree is at most 2d and the value of the following semidefinite program
is at most 0,

max − w +
∑

x∈{−1,1}n

p(x)ϕ(x)

2n
(12)

s.t. w ≥ 0, m ∈ N, As ∈ (Bm)n+1, u, v ∈ Rm, s ∈ [2d],

∥ϕ∥1 = 1, ∥u∥2 = ∥v∥2 = w,

ϕ̂(Si) = ⟨u,A1(i1) . . . A2d(i2d)v⟩, i ∈ [n+ 1]2d,

where ∥ϕ∥1 =
∑

x∈{−1,1}n
|ϕ(x)|
2n .
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Remark 3.2. Theorem 3.1 corresponds to [GL19, Equation (24)]. There, the authors not only ask
for the As(i) to be contractions, but also unitaries. However, that extra restriction does not change
the value of the semidefinite program because we can always block-encode a contraction in the top
left corner of an unitary (see for instance [AAI+16, Lemma 7]). We also want to remark that As(i)
can be taken to be equal to As′(i) for every s, s′ ∈ [2d] and every i ∈ [n+1], as this extra restriction
does not change value of the semidefinite program. Indeed, let (u, v,As, w, ϕ) be part of feasible
instance of Eq. (12). Define now

ũ := u⊗ e1,

ṽ := v ⊗ e2d+1,

A(i) :=
∑
s∈[2d]

As(i)⊗ ese
T
s ,

where {es}s∈[2d+1] is an orthonormal basis of R2d+1. Then,

⟨u,A1(i1) . . . Ad(i2d)v⟩ = ⟨ũ, Ã(i1) . . . Ã(i2d)ṽ⟩,

for every i ∈ [n+1]2d. Hence, (ũ, ṽ, Ã, w, ϕ) is a feasible instance for Eq. (12) that attains the same
value as (u, v,As, w, ϕ).

Proof of 1.4: Thanks to Theorem 3.1 and Remark 3.2, we know that p is the output of d-query
quantum algorithm if and only if its degree is at most 2d and the following constraint is satisfied

∑
x∈{−1,1}n

p(x)ϕ(x)

2n
≤ w(13)

s.t. w ≥ 0, m ∈ N, A ∈ (Bm)n+1, u, v ∈ Rm,

∥ϕ∥1 = 1,(14)

∥u∥2 = ∥v∥2 = w,

ϕ̂(Si) = ⟨u,A(i1) . . . A(i2d)v⟩, i ∈ [n+ 1]2d.

Now, note that if (u, v,A, ϕ,w) satisfies all conditions of Eq. (13) except for Eq. (14), then (u/
√
∥ϕ∥1,

v/
√

∥ϕ∥1, A, ϕ/∥ϕ∥1, w/∥ϕ∥1) would be a feasible instance. Furthermore, given that

∑
x∈{−1,1}n

p(x)ϕ(x)

2n
≤ w ⇐⇒ 1

∥ϕ∥1

∑
x∈{−1,1}n

p(x)ϕ(x)

2n
≤ w

∥ϕ∥1
,
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we can write Eq. (13) forgetting about the normalization condition of Eq. (14). In other words,
Eq. (13) is equivalent to ∑

x∈{−1,1}n

p(x)ϕ(x)

2n
≤ w(15)

s.t. w ≥ 0, m ∈ N, A ∈ (Bm)n+1, u, v ∈ Rm,

∥u∥2 = ∥v∥2 = w,(16)

ϕ̂(Si) = ⟨u,A(i1) . . . A(i2d)v⟩, i ∈ [n+ 1]2d.

In addition, by homogeneity we can assume w = 1. Also note, that if (u, v,A) are part of a
feasible instance of Eq. (15), then it automatically has Boolean behaviour of degree 2d, and any
(u, v,A) defines a feasible instance for Eq. (15). Finally, by Parseval’s identity we can rewrite∑

x∈{−1,1}n
p(x)ϕ(x)

2n as
∑

S⊂[n] p̂(S)ϕ̂(S). Putting altogether we get that p is the output of d-query

quantum algorithm if and only if its degree is at most 2d and∑
S⊂[n],|S|≤2d

p̂(S)⟨u,A(iS1 ) . . . A(iS2d)v⟩ ≤ 1

s.t. (u, v,A) has Boolean behavior of degree 2d,

which is the same as saying that ∥p∥fcb,2d ≤ 1. 2

4. Aaronson and Ambainis conjecture for (Fourier) completely bounded
polynomials

In this section we prove Theorem 1.6 and Theorem 1.8. Both are based on the construction used
by Varopoulos to disprove a degree 3 von Neumann’s inequality [Var74]. First of all, we recall the
expressions of variance and influences of a polynomial p : {−1, 1}n → R. The variance is given by

Var[p] =
∑
|S|≥1

p̂2(S),

and the influence of the i-th variable by

Infi[p] =
∑
S∋i

p̂2(S).

The maximum influence of p is MaxInf[p] := maxi∈[n] Infi[p]. One may interpret Var[p] as the total
change of p and Infi[p] as the change of p that is due to varying the i-th variable.

4.1. AA conjecture for block-multilinear completely bounded polynomials. Before prov-
ing Theorem 1.8, we shall specify what is a block-multilinear completely bounded polynomial. A
block-multilinear polynomial of degree d is a polynomial p : {−1, 1}n×d → R such that if we divide
the variables x ∈ {−1, 1}n×d in d blocks of n coordinates each, then the every of the monomials of p
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has at most one coordinate of each of the blocks. In other words, the block-multilinear polynomials
of degree d are those that can be written as

(17) p(x1, . . . , xd) = p̂(∅) +
∑
s∈[d]

∑
b∈[d]s

b1<···<bs

∑
i∈[n]s

p̂({(b1, i1), . . . , (bs, is)})xb1(i1) . . . xbs(is),

for every (x1, . . . , xd) ∈ ({−1, 1}n)d. For this kind of polynomials, there is a very natural way of
evaluating them in matrix inputs,

(18) p(A1, . . . , Ad) = p̂(∅) Idm+
∑
s∈[d]

∑
b∈[d]s

b1<···<bs

∑
i∈[n]s

p̂({(b1, i1), . . . , (bs, is)})Ab1(i1) . . . Abs(is),

for every As ∈ (Mm)n, s ∈ [d] and m ∈ N. The completely bounded norm of a block-multilinear
polynomial is defined as

(19) ∥p∥cb := sup{∥p(A1, . . . , Ad)∥ : m ∈ N, As ∈ (Bm)n, s ∈ [d]}.

Concerning these polynomials, we can show the following.

Theorem 1.8. Let d ∈ N. Let p : {−1, 1}n×d → R be a block-multilinear degree d polynomial
with ∥p∥cb ≤ 1. Then, p has a variable of influence at least (Var[p]/d)2. What is more, if p is
homogeneous of degree d, then it has a variable of influence at least Var[p]2.

Remark 4.1. With our proof of the homogeneous case of Theorem 1.8 we can show that for the
case of p : {−1, 1}n×d → R being a homogeneous degree d block-multinear polynomial we have the
following non-commutative root influence inequality

(20) ∥p∥cb ≥
∑
i∈[n]

√
Infs,i[p],

for any s ∈ [d]. This improves [BSdW22, Theorem 1.4] in two ways. First, we can allow s to be any
number in [d], while they only prove the result of s ∈ {1, d}. Second, they prove a weaker statement
that depends on d, namely,

∥p∥cb ≥
∑
i∈[n]

√
Infs,i[p]√
e(d+ 1)

,

for s ∈ {1, d}.

Remark 4.2. Given that p(x1, . . . , xd) = x1(1) . . . xd(1) is a homogeneous degree d block-multilinear
completely bounded polynomial with Var[p]2 = MaxInf[p] = 1, we have that the homogeneous case
of Theorem 1.8 is optimal.

Proof of the homogeneous degree d case of Theorem 1.8: Let p be a homogeneous degree d block-
multilinear polynomial. Let s ∈ [d]. We label the coordinates by (r, i), where r ∈ [d] indicates the
block, and i ∈ [n]. Our goal is defining A ∈ (Bm)n and f∅, e∅ ∈ Sm−1 such that

(21) ⟨f∅, A(i1) . . . A(id)e∅⟩ =
p̂({(1, i1), . . . , (d, id)})√

Infs,is [p]
.



INFLUENCES OF FOURIER COMPLETELY BOUNDED POLYNOMIALS 13

Once we are there, we can prove the announced root-influence inequality Eq. (20). Indeed,

∥p∥cb ≥
∑

i1,...,id∈[n]

p̂({(1, i1), . . . , (d, id)})⟨f∅, A(i1) . . . A(id)e∅⟩

=
∑

i1,...,id∈[n]

p̂({(1, i1), . . . , (d, id)})
p̂((1, i1), . . . , (d, id))√

Infs,is [p]

=
∑
i∈[n]

√
Infs,i[p].

Finally, the statement about the maximal influence quickly follows from the root-influence inequality

∥p∥cb ≥
∑
i∈[n]

√
Infs,i[p] ≥

∑
i∈[n]

Infs,i[p]√
MaxInf[p]

=
Var[p]√
MaxInf[p]

,

which after rearranging yields

MaxInf[p] ≥
(
Var[p]

∥p∥cb

)2

.

Hence, it suffices to design (f∅, e∅, A) ∈ Sm−1 × Sm−1 × (Bm)n satisfying Eq. (21). Let S :=
{{(r, ir), . . . , (d, id)} : ir, . . . , id ∈ [n], s + 1 ≤ r ≤ d} and S ′ := {{(1, i1), . . . , (r, ir)} : i1, . . . , ir ∈
[n], r ≤ s − 1}. Let m := 2 + |S| + |S ′|. Let {e∅, eS , f∅, fS′ : S ∈ S, S′ ∈ S ′} be an orthonormal
basis of Rm, and define A(i) ∈ Mm by

A(i)eS := eS∪{(d−|S|,i)}, for 0 ≤ |S| ≤ d− s− 1, S ∈ S,

A(i)eS :=
∑
S′∈S′

|S′|=s−1

p̂(S′ ∪ S ∪ {(s, i)})√
Infs,i(p)

fS′ , for |S| = d− s, S ∈ S,

A(i)fS′ := δ(|S′|,i)∈S′fS′−{(|S′|,i)}, S′ ∈ S ′.

One can check that (f∅, e∅, A(i)) satisfies Eq. (21). This is because the first applications of the
A(i)’s act like a creation operator and the last as annihilation operators. The first d−s applications
of the A(i)’s create a superposition over some vectors with the coefficients that we are interested
in (those Fourier coefficients that involve the d − s + 1 first applications of A(i)). The last s − 1
applications of A(i) act like annihilation operators that lead us to the desired coefficient.

Finally, we claim that A(i) are contractions. Given that {eS : 0 ≤ |S| ≤ d − s − 1, S ∈ S},
{eS : |S| = d − s, S ∈ S} and {fS′ : S′ ∈ S ′} are mapped to orthogonal spaces, we just have to
check than when A(i) is a contraction when is restricted to the span of each of these 3 sets. For the
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first and third sets of vectors that is clear. For the second is true because for any λ ∈ [n]d−s

∥A(i)
∑
S∈S

|S|=d−s

λSeS∥ = ∥
∑
S∈S

|S|=d−s

∑
S′∈S′

|S′|=s−1

p̂(S′ ∪ S ∪ {(s, i)})√
Infs,i[p]

λSfS′∥

=

√√√√√√∑
S′∈S′

|S′|=s−1

(∑
S∈S

|S|=d−s
p̂(S′ ∪ S ∪ {(s, i)})λS

)2

Infs,i[p]

≤

√√√√√∑
S′∈S′

|S′|=s−1

(∑
S∈S

|S|=d−s
p̂(S′ ∪ S ∪ {(s, i)})2

)(∑
S∈S

|S|=d−s
λ2
S

)
Infs,i[p]

=

√
Infs,i[p]

Infs,i[p]

√√√√ ∑
S∈S

|S|=d−s

λ2
S

= ∥
∑
S∈S

|S|=d−s

λSeS∥,

where in the inequality we have used Cauchy-Schwarz. 2

Proof of the general case of Theorem 1.8: Let p : {−1, 1}n×d → R be a block-multilinear degree d
polynomial. For every s ∈ [d], let p=s be its degree s part. Let D ∈ [d] be such that Var[p=D] ≥
Var[p]/d, which exists because Var[p] =

∑
s∈[d]Var[p=s]. We will now divide the proof in two parts.

One is showing that

(22) ∥p=D∥cb ≤ ∥p∥cb,

and the other is proving that

(23) MaxInf(p=D) ≥
(
Var[p=D]

∥p=D∥cb

)2

.

Once we had done that, the result will easily follow:

MaxInf(p) ≥ MaxInf(p=D) ≥
(
Var[p=D]

∥p=D∥cb

)2

≥
(
Var[p]

d∥p∥cb

)2

,

where in the second inequality we have used Eq. (23), and in the third we have used Eq. (22) and
that Var[p=D] ≥ Var[p]/d.
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First, we prove Eq. (22). Let B ∈ Bd+1 be defined by B :=
∑

s∈[D] ese
T
s+1, where {es}s∈[D+1] is

an orthonormal basis of RD+1. Note that ⟨e1, BseD+1⟩ = δs,D for all s ∈ [d]0. Hence,

∥p=D∥cb = sup
u,v∈Sm−1, A∈(Bm)n

m∈N

∑
b∈[d]D

b1<···<bD

∑
i∈[n]D

p̂=D({(b1, i1), . . . , (bD, iD)})⟨u,Ab1(i1) . . . AbD(iD)v⟩

= sup
u,v∈Sm−1, A∈(Bm)n

m∈N

∑
s∈[d]

∑
b∈[d]s

b1<···<bs

∑
i∈[n]s

p̂({(b1, i1), . . . , (bs, is)})

· ⟨u⊗ e1, [Ab1(i1)⊗B] . . . [Abs(is)⊗B]v ⊗ eD+1⟩
≤ ∥p∥cb.

Second, we prove Eq. (23). Let S := {{(b1, i1), . . . , (bD−1, iD−1)} : bs ∈ [d], b1 < · · · < bD−1, is ∈
[n], s ∈ [D − 1]}. Let m := 2 + |S|. Let {v, f∅, fS : S ∈ S} be an orthonormal basis of Rm. For
b ∈ [d], i ∈ [n], define Ab(i) ∈ Mm by

Ab(i)v :=
∑
S∈S

|S|=D−1

p̂=D(S ∪ {(b, i)})√
MaxInf[p=D]

fS ,

Ab(i)fS := δ(b,i)∈SfS−{(b,i)}, for S ∈ S ∪ ∅.

Ab(i) are contractions because they map the vectors of an orthonormal basis to orthogonal vectors
without increasing their norms. Note that for b1 < · · · < bD and i ∈ [n]D we have that

⟨f∅, Ab1(i1) . . . AbD(iD)v⟩ =
p̂=D({(b1, i1), . . . , (bD, iD)})√

MaxInf[p=D]
.

Thus,

∥p=D∥cb ≥
∑

b∈[d]D
b1<···<bD

∑
i∈[n]D

p̂=D({(b1, i1), . . . , (bD, iD)})⟨f∅, p(A1, . . . , Ad)v⟩ =
Var[p=D]√
MaxInf[p=D]

,

which after rearranging yields Eq. (23). 2

4.2. AA conjecture for homogeneous Fourier completely bounded polynomials. Finally,
we prove a new case of the AA conjecture.

Theorem 1.6. Let d ∈ N. Let p : {−1, 1}n → R be a homogeneous polynomial of degree d and with
∥p∥fcb,d ≤ 1. Then, the maximum influence of p is at least Var[p]2.
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Proof: Let m := 1 +
(
n
0

)
+ · · ·+

(
n

d−1

)
. Let {v, f∅, fS : S ⊂ [n], 1 ≤ |S| ≤ d− 1} be an orthonormal

basis of Rm. Define the matrices A(i) ∈ Mm as

A(i)v :=
∑
S∋i
|S|=d

p̂(S)√
MaxInf[p]

fS−{i},

A(i)fS := δS∋ifS−{i}, for S ⊂ [n], 0 ≤ |S| ≤ d− 1,

for i ∈ [n] and A(n+1) := 0. We claim that (f∅, v, A(i)) has Boolean behavior of degree d. A(n+1)
is clearly a contraction. For i ∈ [n], A(i) is a contraction, as it maps vectors of the orthonormal
basis to orthogonal vectors without increasing the norm, because

∥A(i)v∥2 =
∑
S∋i

p̂(S)2

MaxInf[p]
=

Infi[p]

MaxInf[p]
≤ 1.

On the other hand, if S ⊂ [n] satisfies |S| ≤ d − 1, then any i ∈ [n + 1]d with Si = S ei-
ther has a repeated element of [n] or has an appearance of the index n + 1, which implies that
⟨f∅, A(i1) . . . A(id)⟩ = 0 = p̂(S). If |S| = d, then any i ∈ [n+ 1]d with Si = S has d different indices
in [n] (corresponding to the elements of S), so in that case

(24) ⟨f∅, A(i1) . . . A(id)v⟩ =
p̂(S)√

MaxInf[p]
.

Putting everything together we conclude that (f∅, v, A(i)) has Boolean behavior of degree d, so

∥p∥fcb,d ≥
∑
S⊂[n]

p̂(S)⟨f∅, A(i1) . . . A(id)v⟩ =
∑
S⊂[n]

p̂(S)2√
MaxInf[p]

=
Var[p]√
MaxInf[p]

,

where in the first equality we have used Eq. (24). After rearranging, the above expression yields

MaxInf[p] ≥
(

Var[p]

∥p∥fcb,d

)2

.

2

Remark 4.3. Sadly, we could not extend the proof of Theorem 1.6 to the general case. Now, we aim
to illustrate what would go wrong with our technique.

For example, consider a polynomial p : {−1, 1}4 → R with deg(p) = 2 and ∥p∥fcb,4 ≤ 1. Ideally,
we would want to define unit vectors u and v and contractions A(i) such that for every S ⊂ [4] and
every i ∈ [iS ] they satisfied

(25) ⟨u,A(i1) . . . A(i4)v⟩ =
p̂(S)√

MaxInf[p]
.

If we emulated the strategy of the proof of Theorem 1.6, then A(1)v should be a normalized super-
position of orthogonal vectors whose amplitudes are all possible p̂(Si) that have i4 = 1. It can be
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seen that all p̂(S) with |S| ≤ 2 must be included among these amplitudes. Hence, the normalizing

factor of A(1)v should be
√
Var p, instead of

√
MaxInf(p). Thus, we would reach

⟨u,A(i1) . . . A(i4)v⟩ =
p̂(S)√
Var[p]

instead of Eq. (25), which would lead to ∥p∥fcb,4 ≥
√
Var p, that does not say much about the

influences.

Remark 4.4. However, there might be a different way of, given a polynomial p of degree at most d,
choosing (u, v,A) with Boolean behavior of degree d such that

⟨u,A(i1) . . . A(id)v⟩ =
p̂(Si)

poly(d,MaxInf[p])
,

for any i ∈ [n + 1]d. If that was true, one could copy and paste the proof of Theorem 1.6 and
conclude Conjecture 1.5. This reduces Conjecture 1.5 to a question with flavor of tensor networks
(at the end of the day we are seeking for an MPS, but caring about the norm of the matrices instead
of the dimension) [CPGSV21] and almost-quantum correlations (we could also say that we look for
(u, v,A) that define a correlation with some symmetry defined by the Boolean behavior, without
imposing the symmetries on the A) [NGHA15].

Question 4.5. Given a polynomial p of degree at most d, is there (u, v,A) ∈ BBd such that

⟨u,A(i1) . . . A(id)v⟩ =
p̂(Si)

poly(d,MaxInf[p])
,

for any i ∈ [n+ 1]d?
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