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ABSTRACT
Generalizing the attack structure in argumentation frameworks (AFs) has been stud-
ied in different ways. Most prominently, the binary attack relation of Dung frame-
works has been extended to the notion of collective attacks. The resulting formalism
is often termed SETAFs. Among the generalizations of AFs, abstract dialectical
frameworks ADFs allow for a systematic and flexible generalization of AFs in which
different kinds of logical relations, e.g. attack and support, among arguments can
be represented. Restricting the logical relations among arguments leads to different
subclasses of ADFs of interest. In this work we consider so-called support-free ADFs,
that allow for all kinds of attacks but no support or other relations, and SETADFs,
that embed SETAFs in the ADF setting.

The aim of the paper is to shed light on the relation between these two different
approaches. To this end, we investigate and compare the expressiveness of SETAFs
and support-free ADFs under the lens of 3-valued semantics. Our results show that
it is only the presence of unsatisfiable acceptance conditions in support-free ADFs
that discriminates the two approaches.

KEYWORDS
Abstract argumentation frameworks, Abstract dialectical frameworks, Collective
attack.

1. Introduction

The last 25 years have seen an increasing interest in the area of formal argumentation.
The ultimate goal of the field is to come up with computational models of how we
make decisions, based on incomplete or inconsistent information. It is very natural
to first construct arguments pro and con a particular position, and then to select
amongst all possible arguments those which are most reliable or trustworthy and lead
to a coherent view of the world. The main goal of formal argumentation is to make
these ideas precise via formal, computational theories of argumentation. The concept of
abstraction turned out be very useful in this context. Hereby, the tasks of constructing
arguments and sorting out the relation between them is decoupled from the question
which arguments are jointly acceptable. The latter is solely based on the relation
between the arguments (and thus “abstracts away” from their actual contents), and
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it was Dung’s seminal paper (Dung, 1995) which proposed fundamental mechanisms
how to compute these acceptable sets (often referred to as extensions).

However, Dung’s abstract frameworks (and semantics) only consider a very simple,
binary, relation between the arguments (the “attack relation”). While this simple
concept suffices in many settings, the community recognized that certain situations
require a richer structure (relaxing attacks to be non-binary, introducing additional
relations, e.g. support between arguments). Several such proposals can be found in the
literature (we refer to (Brewka, Polberg, & Woltran, 2014) for an overview), and most
of them have in common that the semantics as proposed by Dung are generalized in
similar ways, making these different formalisms amenable to formal comparisons. It
is this line of research, we want to tackle in this work. In fact, we shall investigate
two generalisations of Dung’s abstract frameworks (AFs) that allow for a more flexible
attack structure (but do not consider support between arguments). Understanding the
capacities of different formalisms is crucial to decide which approach to select for a
certain application scenario, but it is also important for avoiding redundant research
(for instance, in case it turns out that two formalisms are equally powerful).

The first formalism which we consider here are SETAFs as introduced by Nielsen
and Parsons (Bikakis, Cohen, Dvořák, Flouris, & Parsons, 2021; Nielsen & Parsons,
2007). SETAFs extend Dung AFs by allowing for collective attacks with the intended
meaning that a set of arguments B attacks another argument a but no proper subset
of B attacks a (via this attack). Argumentation frameworks with collective attacks
have received increasing interest in the last years, to some extend driven by the ob-
servation that for particular instantiations, SETAFs provide a more convenient target
formalism than Dung AFs, see e.g., (Yun, Vesic, & Croitoru, 2018). We list a few
of such new results on SETAFs: the adaption of semi-stable, stage, ideal, and eager
semantics (Dvořák, Fandinno, & Woltran, 2019; Flouris & Bikakis, 2019); transla-
tions between SETAFs and other abstract argumentation formalisms (Polberg, 2017);
principle-based investigations (Dvořák, König, Ulbricht, & Woltran, 2022); and tai-
lored complexity results for SETAFs, e.g., Dvořák, König, and Woltran (2021).

The second formalism we consider are support-free abstract dialectical frameworks
(SFADFs), a subclass of abstract dialectical frameworks (ADFs) (Brewka, Ellmau-
thaler, Strass, Wallner, & Woltran, 2018; Brewka & Woltran, 2010) which are known
as an advanced abstract formalism for argumentation, that is able to cover several
generalizations of AFs (Brewka et al., 2014; Polberg, 2017). This is accomplished by
acceptance conditions which specify, for each argument, its relation to its neighbour
arguments via propositional formulas. These conditions determine the links between
the arguments which can be, in particular, attacking or supporting. SFADFs are ADFs
where each link between arguments is attacking; they have been introduced in a recent
study on different sub-classes of ADFs (Diller, Zafarghandi, Linsbichler, & Woltran,
2020).

For comparison of the two formalisms, we need to focus on 3-valued (labelling)
semantics (Caminada & Gabbay, 2009; Verheij, 1996), which are integral for ADF
semantics (Brewka et al., 2018). In terms of SETAFs, we can rely on the recently
introduced labelling semantics in (Flouris & Bikakis, 2019). We first define a new class
of ADFs (SETADFs) where the acceptance conditions strictly follow the nature of
collective attacks in SETAFs. We then show that SETAFs and SETADFs coincide for
the main semantics, i.e. the σ-labellings of a SETAF are equal to the σ-interpretations
of the corresponding SETADF. While SETADFs are a syntactically defined subclass
of ADFs, the second formalism (SFADFs) we study can be understood as semantical
subclass of ADFs. In fact, for SFADFs it is not the syntactic structure of acceptance

2



conditions that is restricted but their semantic behavior, in the sense that all links
need to be attacking. The second main contribution of the paper is to determine the
exact difference in expressiveness between SETADFs and SFADFs.

We do so by employing the concept of signatures. As argued in Dunne, Dvořák,
Linsbichler, and Woltran (2015), an approach to study and compare the capabilities of
different semantics of AFs is via the notion of realizability. Realizability is the ability of
a formalism under a semantics to express specific desired sets of extensions. Signatures
then capture the exact expressiveness of a formalism under a semantics by collecting
all sets of extensions that can be realized.1 Previous work in this respect includes
Dunne et al. (2015) which studies the expressiveness of AFs, and Pührer (2020a);
Strass (2015a) for the expressiveness of ADFs from the perspective of realizability.
Signature have been used to compare the capability of different formalisms Strass
(2015b) and are recognized as crucial for operators in dynamics of argumentation (cf.
(Baumann & Brewka, 2019)). For SETAFs the expressiveness of two-valued semantics
has been investigated in (Dvořák et al., 2019), but the expressiveness of three-valued
semantics has not been characterised so far.

We deepen this kind of comparison by also investigating symmetric versions of
these classes (we recall that syntactic restrictions often lead to lower computational
complexity, see e.g. (Linsbichler, Maratea, Niskanen, Wallner, & Woltran, 2022) for
recent work in this direction in terms of ADFs).
To summarize, the main contributions of our paper are as follows:

• We embed SETAFs under 3-valued labeling based semantics (Flouris & Bikakis,
2019) in the more general framework of ADFs. That is, we show 3-valued labeling
based SETAF semantics to be equivalent to the corresponding ADF semantics.
As a side result, this also shows the equivalence of the 3-valued SETAF semantics
in (Linsbichler, Pührer, & Strass, 2016) and (Flouris & Bikakis, 2019).

• We investigate the expressiveness of SETAFs under 3-valued semantics by pro-
viding exact characterizations of the signatures for preferred, stable, grounded
and conflict-free semantics, thus complementing the investigations on expressive-
ness of SETAFs (Dvořák et al., 2019) in terms of extension-based semantics.

• We study the relations between SETAFs and support-free ADFs (SFADFs). In
particular we give the exact difference in expressiveness between SETAFs and
SFADFs under conflict-free, admissible, preferred, grounded, complete, stable
and two-valued model semantics.

• Finally, we consider symmetric variants of SETAFs, SFADFs and SETADFs. In
particular, we can show that the class of symmetric SFADFs is a strict superset
of the class of symmetric SETADFs, while the expressiveness of the class of
symmetric SETAFs and the class of symmetric SETADFs is the same.

This contribution is an extended version of the conference paper (Dvořák, Ke-
shavarzi Zafarghandi, & Woltran, 2020). New material is concerned with symmetric
subclasses of the SETAFs, SFADFs, and SETADFs.

Special issue on the occasion of Philippe Besnard’s retirement. We have cho-
sen this article as contribution to the special issue on the occasion of Philippe Besnard’s
retirement, since it touches on several areas Philippe has worked on. First of all, one
has to mention the seminal book on argumentation (Besnard & Hunter, 2008) which

1We note this concept does not allow for auxiliary arguments that simulate certain behaviors, see e.g. Modgil

and Bench-Capon (2011).
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gave an important boost to the argumentation community and has stipulated many
young academics to take up research in this field. Second, with the article (Besnard
& Doutre, 2004) Philippe, together with Sylvie Doutre, has initiated research on re-
ducing Dung AFs to other formalisms. The impact of their work is witnessed by the
fact that the most performant systems for abstract argumentation still rely on reduc-
tions to SAT, see e.g. (Lagniez, Lonca, Mailly, & Rossit, 2021; Niskanen & Järvisalo,
2020). Finally, the usage of three-valued semantics (which is constitutional for ADF
semantics) for inconsistency handling is something Philippe has already considered in
the 90ies when introducing the idea of circumscribing inconsistency, see e.g. (Besnard
& Schaub, 1997). In particular, the third author of the present contribution would
like to express his gratefulness to Philippe for having had the opportunity to jointly
work on these topics (Besnard, Hunter, & Woltran, 2009; Besnard, Schaub, Tompits,
& Woltran, 2002, 2003).

Dear Philippe, the discussion we had were always enlightening and an important
inspiration for my research agenda. We all wish you many laid-back years ahead. All
the best and thank you so much!

2. Argumentation Frameworks

In this section we briefly recall the necessary definitions for the different types of argu-
mentation frameworks we consider in this work, i.e., argumentation frameworks with
collective attacks (SETAFs), Abstract Dialectical Frameworks (ADFs), and support-
free ADFs (SFADFs).

2.1. Argumentation Frameworks with Collective Attacks

We recall the necessary background on SETAFs following Nielsen and Parsons (2007)
and Bikakis et al. (2021).

Definition 2.1. An argumentation framework with collective attacks (SETAF) is an
ordered pair F = (A,R), where A is a finite set of arguments and R ⊆ (2A \ {∅})×A
is the attack relation.

The semantics of SETAFs are usually defined similarly to AFs, i.e., based on exten-
sions. However, in this work we focus on 3-valued labelling based SETAF semantics
introduced by Flouris and Bikakis (2019).

Definition 2.2. A (3-valued) labelling of a SETAF F = (A,R) is a total function
λ : A 7→ {in, out, undec}. For x ∈ {in, out, undec} we write λx to denote the sets
of arguments a ∈ A with λ(a) = x. We sometimes denote labellings λ as triples
(λin, λout, λundec).

Next we give the generalization of conflict-freeness to labellings of SETAFs.

Definition 2.3. Let F = (A,R) be a SETAF. A labelling is called conflict-free in F
if

(i) for all (S, a) ∈ R either λ(a) ̸= in or there is a b ∈ S with λ(b) ̸= in, and
(ii) for all a ∈ A, if λ(a) = out then there is an attack (S, a) ∈ R such that λ(b) = in

for all b ∈ S.
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a

b c

Figure 1. The SETAF of Example 2.5.

We are now ready to present the definitions of the SETAF semantics under our
considerations.

Definition 2.4. A labelling λ which is conflict-free in F is

• naive in F iff λin is ⊆-maximal among all conflict-free labellings, i.e. there is no
conflict-free λ′ with λin ⊂ λ′

in;
• admissible in F iff for all a ∈ A if λ(a) = in then for all (S, a) ∈ R there is a
b ∈ S such that λ(b) = out;

• complete in F iff for all a ∈ A (i) λ(a) = in iff for all (S, a) ∈ R there is a b ∈ S
such that λ(b) = out, and (ii) λ(a) = out iff there is an attack (S, a) ∈ R such
that λ(b) = in for all b ∈ S;

• grounded in F iff it is complete and there is no λ′ with λ′
in ⊂ λin complete in F ;

• preferred in F iff it is complete and there is no λ′ with λ′
in⊃λin complete in F ;

• stable in F iff λundec = ∅.

The set of all σ labellings for a SETAF F is denoted by σL(F ), where σ ∈ {nai, cf, adm,
com, grd, prf, stb} abbreviates the different semantics in the obvious manner.

Example 2.5. The SETAF F = ({a, b, c}, {({a, b}, c), ({a, c}, b)}) is depicted in Fig-
ure 1. For instance, ({a, b}, c) ∈ R says that there is a joint attack from a and b to
c. This represents that neither a nor b is strong enough to attack c by themselves.
Further, {a 7→ in, b 7→ undec, c 7→ in} is an instance of a conflict-free labelling, that
is not an admissible labelling (since c is mapped to in but neither a nor b is mapped
to out). The labelling that maps all arguments to undec is not a complete labelling,
however, it is an admissible labelling. Further, {a 7→ in, b 7→ undec, c 7→ undec} is an
admissible, the unique grounded and a complete labelling, which is not a preferred la-
belling because λin = {a} is not ⊆-maximal among all complete labellings. Moreover,
prfL(F ) = stbL(F ) = {{a 7→ in, b 7→ out, c 7→ in}, {a 7→ in, b 7→ in, c 7→ out}}.

Notice that Dungs Abstract Argumentation Frameworks (AFs) (Dung, 1995) and
their semantics can be identified with SETAFs whose attacks are restricted a single
argument attacking an argument (Nielsen & Parsons, 2007). That is all attacks are of
the form ({b}, a) for some arguments a, b (in the setting of Dung AFs such attacks are
then denoted by pairs of arguments (b, a)).

2.2. Abstract Dialectical Frameworks

We now turn to abstract dialectical frameworks (Brewka, Ellmauthaler, Strass, Wall-
ner, & Woltran, 2013; Brewka & Woltran, 2010). We start with the definition of ADFs.

Definition 2.6. An abstract dialectical framework (ADF) is a tuple D = (S,L,C)
where:
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• S is a finite set of arguments (statements, positions);
• L ⊆ S × S is a set of links among arguments;
• C = {φs}s∈S is a collection of propositional formulas over arguments, called

acceptance conditions.

An ADF can be represented by a graph in which nodes indicate arguments and links
show the relation among arguments. Each argument s in an ADF is attached by a
propositional formula, called acceptance condition, φs over par(s) such that, par(s) =
{b | (b, s) ∈ L}. Since in ADFs an argument appears in the acceptance condition
of an argument s if and only if it belongs to the set par(s), the set of links L of
an ADF is given implicitly via the acceptance conditions. The acceptance condition
of each argument clarifies under which condition the argument can be accepted and
determines the type of links (see Definition 2.9 below). An argument s is considered
an initial argument if it has no parent, i.e., par(s) = ∅, and it is called an isolated
argument if it is an initial argument and has no children, meaning it does not have
any outgoing links.

An interpretation v (for F ) is a function v : S 7→ {t, f ,u}, that maps arguments
to one of the three truth values true (t), false (f), or undecided (u). Truth values can
be ordered via information ordering relation <i given by u <i t and u <i f and no
other pair of truth values are related by <i. Relation ≤i is the reflexive and transitive
closure of <i. An interpretation v is two-valued if it maps each argument to either t
or f . Let V be the set of all interpretations for an ADF D. Then, we call a subset of
all interpretations of the ADF, V ⊆ V, an interpretation-set. Interpretations can be
ordered via ≤i with respect to their information content, i.e. w ≤i v if w(s) ≤i v(s)
for each s ∈ S. Further, we denote the update of an interpretation v with a truth
value x ∈ {t, f ,u} for an argument b by v|bx, i.e. v|bx(b) = x and v|bx(a) = v(a) for
a ̸= b. Finally, the partial valuation of acceptance condition φs by v, is given by
φv
s = v(φs) = φs[p/⊤ : v(p) = t][p/⊥ : v(p) = f ], for p ∈ par(s).
Semantics for ADFs can be defined via a characteristic operator ΓD for an ADF D.

Given an interpretation v (for D), the characteristic operator ΓD for D is defined as

ΓD(v) = v′ such that v′(s) =


t if φv

s is irrefutable (i.e., a tautology),

f if φv
s is unsatisfiable,

u otherwise.

Definition 2.7. Given an ADF D = (S,L,C), an interpretation v is

• conflict-free in D iff v(s) = t implies φv
s is satisfiable and v(s) = f implies φv

s is
unsatisfiable;

• admissible in D iff v ≤i ΓD(v);
• complete in D iff v = ΓD(v);
• grounded in D iff v is the (unique) least fixed-point of ΓD;
• preferred in D iff v is ≤i-maximal admissible in D;
• a (two-valued) model of D iff v is two-valued and for all s ∈ S, it holds that
v(s) = v(φs);

• a stable model of D if v is a model of D and vt = wt, where w is the grounded
interpretation of the stb-reduct Dv = (Sv, Lv, Cv), where Sv = vt, Lv = L ∩
(Sv × Sv), and φs[p/⊥ : v(p) = f ] for each s ∈ Sv.

The set of all σ interpretations for an ADF D is denoted by σ(D), where σ ∈ {cf, adm,
com, grd, prf,mod, stb} abbreviates the different semantics in the obvious manner.
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b

a

c

¬b

b ∨ ¬c ¬a ∨ ¬b

Figure 2. The ADF of Example 2.8.

Example 2.8. An example of an ADF D = (S,L,C) is shown in Figure 2. To each
argument a propositional formula is associated, the acceptance condition of the argu-
ment. For instance, the acceptance condition of c, namely φc : ¬a ∨ ¬b, states that c
can be accepted in an interpretation where either a or b (or both) are rejected.

In D the interpretation v = {a 7→ u, b 7→ u, c 7→ t} is conflict-free. However, v is
not an admissible interpretation, because ΓD(v) = {a 7→ u, b 7→ u, c 7→ u}, that is,
v ̸≤i ΓD(v). The interpretation v1 = {a 7→ f , b 7→ t, c 7→ u} on the other hand is an
admissible interpretation. Since ΓD(v1) = {a 7→ f , b 7→ t, c 7→ t} and v1 ≤i ΓD(v1).
Further, prf(D) = mod(D) = {{a 7→ t, b 7→ f , c 7→ t}, {a 7→ f , b 7→ t, c 7→ t}}, but only
the first interpretation in this set is a stable model. This is because for v = {a 7→ t, b 7→
f , c 7→ t} the unique grounded interpretation w of Dv is {a 7→ t, c 7→ t} and vt = wt.
The interpretation v′ = {a 7→ f , b 7→ t, c 7→ t} is not a stable model, since the unique
grounded interpretation w′ of Dv′

is {b 7→ u, c 7→ t} and v′t ̸= w′t. Actually, the truth
value of b in v′ is assigned to t due to self-support, which makes v′ an unstable model.
Moreover, the unique grounded interpretation of D is v = {a 7→ u, b 7→ u, c 7→ u}. In
addition, we have that for the given ADF D, com(D) = prf(D) ∪ grd(D).

2.3. Support-free ADFs

In ADFs links between arguments can be classified into four types, reflecting the rela-
tionship of attack and/or support that exists among the arguments. In Definition 2.9
we consider two-valued interpretations that are only defined over the parents of a, that
is, only give values to par(a).

Definition 2.9. Let D = (S,L,C) be an ADF. A link (b, a) ∈ L is called

• supporting (in D) if for every two-valued interpretation v of par(a), v(φa) = t
implies v|bt(φa) = t;

• attacking (in D) if for every two-valued interpretation v of par(a), v(φa) = f
implies v|bt(φa) = f ;

• redundant (in D) if it is both attacking and supporting;
• dependent (in D) if it is neither attacking nor supporting.

We illustrate the different types of links in the following example.

Example 2.10. Consider the ADF illustrated in Figure 3. For the acceptance condi-
tion φa : b∨¬c of argument a we have {b, c} as the set of parents. With that we clarify
the type of (b, a) and (c, a). There are three satisfying two-valued interpretations, i.e.,
v1 = {b 7→ t, c 7→ t}, v2 = {b 7→ t, c 7→ f} and v3 = {b 7→ f , c 7→ f}, and one that does
not satisfy the formula, i.e., v4 = {b 7→ f , c 7→ t}. By the definition of supporting links
we have to check that whether vi(φa) = t for i with 1 ≤ i ≤ 3 implies vi|bt(φa) = t.
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a

b

c

db ∨ ¬c

a ∨ ¬a

⊤

(b ∨ ¬c) ∧ (¬b ∨ c)

Figure 3. Different link types in ADFs: (b, a) is a supporting (but not attacking) link; (c, a) is an attacking
(but not supporting) link; (a, b) is a redundant (both attacking and supporting) link; and (b, d), (c, d) are

dependent (neither attacking nor supporting) links.

Since for i with 1 ≤ i ≤ 3, vi(φa) = t implies vi|bt(φa) = t, it holds that (b, a) is a
supporting link. Furthermore, since v4(φa) = f but v4|bt(φa) = t, link (b, a) is not an
attack link. Moreover, since v3(a) = t but v3|ct(φa) = f , it holds that (c, a) is not a
support link. However, it holds that v4(φa) = f and v4|ct(φa) = f . Thus, (c, a) is only
an attacking link.

As an example for a link that is both attacking and supporting, consider φb : a∨¬a.
There are two satisfying two-valued interpretations for the formula, i.e., v1 = {a 7→ t}
and v2 = {a 7→ f}. Since for i with 1 ≤ i ≤ 2 it holds that vi(φb) = t implies
vi|at(φb) = t, it holds that (a, b) is a supporting link. Furthermore, since there is no
two-valued interpretation that does not satisfy the formula, the link (a, b) is also an
attacking link. Thus, (a, b) is a redundant link.

As an example for a link that is neither an attacking nor supporting, consider
φd : (¬c ∨ b) ∧ (c ∨ ¬b). Let v = {b 7→ f , c 7→ f} be a two-valued interpretation
that satisfies the formula. However, v|bt(φd) = f . Thus, (b, d) is not a support link.
Further, let v = {b 7→ f , c 7→ t} be a two-valued interpretation that does not satisfy
the formula. However, it holds that v|bt(φd) = t. Thus, (b, d) is not attacking. Hence
(b, d) is a dependent link and the same reasoning applies to (c, d).

The classification of the types of the links of ADFs is also relevant for classifying
ADFs themselves. One particularly important subclass of ADFs is that of bipolar
ADFs or BADFs for short. In such an ADF each link is either attacking or supporting
(or both; thus, the links can also be redundant). Another subclass of ADFs, having
only attacking and no redundant links, is defined in Diller et al. (2020), called support
free ADFs (SFADFs) in the current work, defined formally as follows.

Definition 2.11. An ADF is called support-free (SFADF for short) if it has no sup-
porting links and all its links are attacking.

Notice that by the above definition SFADFs (a) allow for all kinds of attacks that
can be formulated in ADFs and (b) do not contain neither redundant nor dependent
links. This reflects the fact that dependent links become supporting as soon as the
truth values of certain arguments have been fixed.
For SFADFs, it turns out that the intention of stable semantics, i.e. to avoid cyclic
support among arguments, becomes immaterial, thus mod(D) = stb(D) for any ADF
D; the property is called weakly coherent in Keshavarzi Zafarghandi (2017), which
however considers symmetric ADFs. In the following we generalize this observation
to arbitrary SFADFs. In order to show that SFADFs are weakly coherent we have to
introduce the following technical lemma.

Remark 1. To enhance the readability of this article, certain proofs have been relo-
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b a

c

⊤¬b

¬a ∧ (¬a ∨ ¬b)

b a

c

Figure 4. The SETADF of Example 3.2 and its associated SETAF

cated to Appendix A.

Lemma 2.12. Let D = (S,L,C) be an ADF, let v be a model of D and let s ∈ S
be an argument such that all parents of s are attackers. Then, φv

s is irrefutable if and
only if φs[p/⊥ : v(p) = f ] is irrefutable.

Proposition 2.13. For every SFADF D it holds that mod(D) = stb(D).

3. Embedding SETAFs in ADFs

As observed by Polberg (2016) and Linsbichler et al. (2016), the notion of collective
attacks can also be represented in ADFs by using the right acceptance conditions. We
next introduce the class SETADFs of ADFs for this purpose.

Definition 3.1. An ADF D = (S,L,C) is called SETAF-like (SETADF) if each of the
acceptance conditions in C is given by a formula (with C a set of non-empty clauses)∧

cl∈C

∨
a∈cl

¬a.

That is, in a SETADF each acceptance condition is either ⊤ (if C is empty) or a proper
CNF formula over negative literals.

Example 3.2. An instance of a SETADF is depicted in Figure 4 (on the left). Since
argument a does not have any incoming link, i.e., C = ∅, it holds that φa : ⊤. As we
see, φb and φc are in CNF over negative literals.

SETADFs and SETAFs can be embedded in each other as follows. Definition 3.3 shows
how a SETAF can be written as a SETADF.

Definition 3.3. Let F = (A,R) be a SETAF. The ADF associated to F is a tuple
DF = (S,L,C) in which S = A, L = {(a, b) | (B, b) ∈ R, a ∈ B} and C = {φa}a∈S is
the collection of acceptance conditions defined, for each a ∈ S, as

φa =
∧

(B,a)∈R

∨
a′∈B

¬a′.

Definition 3.4 shows how a SETADF can directly be rewritten as a SETAF.

Definition 3.4. Let D = (S,L,C) be a SETADF. We construct the associated
SETAF FD = (A,R) in which, A = S, and R is constructed as follows. For
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a

b c

a

b c

⊤

(¬a ∨ ¬c) (¬a ∨ ¬b)

Figure 5. A SETAF (left) and its associated SETADF (right) and vice versa.

each argument s ∈ S with acceptance formula
∧

cl∈C
∨

a∈cl ¬a we add the attacks
{(cl, s) | cl ∈ C} to R.

Example 3.5. First consider the SETADF of Example 3.2 illustrated in Figure 4
(on the left). When considering the associated SETAF (on the right of Figure 4)
the acceptance condition ¬a ∧ (¬a ∨ ¬b) of argument c corresponds to the two at-
tacks ({a, b}, c) and ({a}, c). Next consider the SETAF of Example 2.5, i.e., F =
({a, b, c}, {({a, b}, c), ({a, c}, b)}) as illustrated on the left of Figure 5. The ADF associ-
ated with F is DF = (A,L,C), where φa : ⊤ (since there is no B such that (B, a) ∈ R),
φb : ¬a ∨ ¬c (since ({a, c}, b) ∈ R in F ), and φc : ¬a ∨ ¬b (since ({a, b}, c) ∈ R in
F ) as illustrated at the right of Figure 5. Of course the SETAF associated with the
constructed SETADF DF is the original SETAF F .

Clearly the ADF DF associated to a SETAF F is a SETADF and D is the ADF
associated to the constructed SETAF FD. We next deal with the fact that SETAF
semantics are defined as three-valued labellings while semantics for ADFs are defined
as three valued interpretations. In order to compare these semantics we associate the
in label with t, the out label with f , and the undec label with u, presented formally
in Definition 3.6.

Definition 3.6. The function Lab2Int(·) maps three-valued labellings to three-valued
interpretations such that

• Lab2Int(λ)(s) = t iff λ(s) = in,
• Lab2Int(λ)(s) = f iff λ(s) = out, and
• Lab2Int(λ)(s) = u iff λ(s) = undec.

For a labelling λ and an interpretation I we write λ ≡ I iff Lab2Int(λ) = I. For a set
L of labellings and a set V of interpretations we write L ≡ V iff {Lab2Int(λ) | λ ∈
L} = V.

Theorem 3.7. For a SETAF F , its associated SETADF D and σ ∈
{cf, adm, com, prf, grd, stb} we have σL(F ) ≡ σ(D).

Notice that by the above theorem we have that the 3-valued SETAF semantics intro-
duced in Linsbichler et al. (2016) coincide with the 3-valued labelling based SETAF
semantics of Flouris and Bikakis (2019) and the model semantics of Linsbichler et al.
(2016) corresponds to the stable semantics of Flouris and Bikakis (2019).
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4. 3-valued Signatures of SETAFs

In this section we investigate the expressiveness of 3-valued SETAF semantics. To
provide exact characterisations of what can be expressed within a semantics, we inves-
tigate the expressiveness of SETAFs in terms of signatures. To this end, we adapt the
concept of signatures Dunne et al. (2015) towards our needs. Intuitively, a signature
for SETAFs is the sets of possible outcomes that can be achieved by SETAFs (of a
particular class) under the different semantics, presented formally in Definition 4.1.

Definition 4.1. The signature of SETAFs under a labelling-based semantics σL is
defined as ΣσL

SETAF = {σL(F ) | F ∈ SETAF}. The signature of an ADF-subclass C
under a semantics σ is defined as Σσ

C = {σ(D) | D ∈ C}.

That is, a signature of a semantics is essentially a set of sets of labellings such that
each of these sets of labellings corresponds to the evaluation of some SETAF under
this semantics. We aim for compact and easy to test characterisations of the sets of
labellings that are contained in the signature of a specific semantics. With such a
characterisation we then can efficiently decide for a given set of labellings whether
it can realized under a specific semantics and can also identify the sets that can be
realized under one semantics but not under another semantics, i.e., identify the exact
differences in the expressiveness of different semantics. By Theorem 3.7 we can use
labellings of SETAFs and interpretations of the SETADF class of ADFs interchange-
ably, yielding that ΣσL

SETAF ≡ Σσ
SETADF , i.e. the 3-valued signatures of SETAFs and

SETADFs only differ in the naming of the labels. For convenience, we will use the
SETAF terminology in this section.

In Propositions 4.2– 4.10, we indicate the exact characterization of Σσ
SETAF, for

σ ∈ {stb, prf, cf,nai, grd, adm}. We start with a characterisation of the signature for
stable semantics.

Proposition 4.2. The signature ΣstbL
SETAF is given by all sets L of labellings such that

(1) all λ ∈ L have the same domain ArgsL; λ(s) ̸= undec for all λ ∈ L, s ∈ ArgsL.
(2) If λ ∈ L assigns one argument to out then it also assigns an argument to in.
(3) For arbitrary λ1, λ2 ∈ L with λ1 ̸= λ2 there is an argument a such that λ1(a) =

in and λ2(a) = out.

Proof. We first show that for each SETAF F the set stbL(F ) satisfies the conditions
of the proposition. First clearly all λ ∈ stbL(F ) have the same domain and by the
definition of stable semantics do not assign undec to any argument. That is the first
condition is satisfied. For condition (2), towards a contradiction assume that the do-
main is non-empty and λ ∈ stbL(F ) assigns all arguments to out. Consider an arbitrary
argument a. By definition of stable semantics a is only labeled out if there is an attack
(B, a) such that all arguments in B are labeled in, a contradiction. Thus we obtain
that there is at least one argument a with λ(a) = in. For condition (3), towards a
contradiction assume that for all arguments a with λ1(a) = in also λ2(a) = in holds.
As λ1 ̸= λ2 there is an a with λ2(a) = in and λ1(a) = out. That is, there is an attack
(B, a) such that λ1(b) = in for all b ∈ B. But then also λ2(b) = in for all b ∈ B and
by λ2(a) = in we obtain that λ2 ̸∈ cfL(F ), a contradiction.

Now assume that L satisfies all the conditions of the proposition. We construct a
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SETAF FL = (AL, RL) with

AL = ArgsL

RL = {(λin, a) | λ ∈ L, λ(a) = out}

It remains to show that stbL(FL) = L. To this end we first show stbL(FL) ⊇ L. Consider
an arbitrary λ ∈ L: By condition (1) there is no a ∈ ArgsL with λ(a) = undec and it
only remains to show λ ∈ cfL(FL). First, if λ(a) = out for some argument a then by
construction of RL and condition (2) we have an attack (λin, a) and thus a is legally
labeled out.

Let us assume that λ(a) = in. We proceed with a proof by contradiction and suppose
that λ ̸∈ cfL(FL), meaning there exists a conflict (B, a) such that B∪{a} ⊆ λin. Then,
by construction of RL there is a λ′ ∈ L with λ′

in = B and λin ̸= B (as a ∈ λin). That
is, λ′

in ⊂ λin, a contradiction to condition (3). Thus, the assumption that there exists
a conflict (B, a) such that B ∪ a ⊆ λin is incorrect. As a result, the assumption that
λ ̸∈ cfL(FL) is also incorrect. Hence, λ ∈ cfL(FL) and therefore λ ∈ stbL(FL).

To show stbL(FL) ⊆ L, consider λ ∈ stbL(FL). If λ maps all arguments to in then
there is no attack in RL which means that L contains only the labelling λ. Thus, we
assume that there is a with λ(a) = out and there is (B, a) ∈ RL with B ⊆ λin. By
construction there is λ′ ∈ L such that λ′

in = B. Moreover, as L labels all arguments
either in or out, we have (B, c) ∈ RL for all c ̸∈ B and thus λ′

in = B = λin and
moreover λ′

out = λout and thus λ = λ′.

We now turn to the signature for preferred semantics. Compared to the conditions
for stable semantics, labelling may now assign undec to arguments. Note that stable
is the only semantics allowing for an empty labelling set.

Proposition 4.3. The signature Σ
prfL
SETAF is given by all non-empty sets L of labellings

s.t.

(1) all labellings λ ∈ L have the same domain ArgsL.
(2) If λ ∈ L assigns one argument to out then it also assigns an argument to in.
(3) For arbitrary λ1, λ2 ∈ L with λ1 ̸= λ2 there is an argument a such λ1(a) = in

and λ2(a) = out.

Proof. We first show that for each SETAF F the set prfL(F ) satisfies the conditions
of the proposition.

(1) The first condition is satisfied as all λ ∈ prfL(F ) have the same domain.
(2) Assume that λ ∈ prfL(F ) assigns an argument a to out. By the definition of

conflict-free labellings there is an attack (B, a) such that all arguments b ∈ B
are labeled in. Thus, the second condition is satisfied by the definition of conflict-
free labellings.

(3) For condition (3), consider λ, λ′ ∈ prfL(F ). Notice that there must be a conflict
(S, a) with S∪{a} ⊆ λin∪λ′

in as otherwise (λin∪λ′
in, λout∪λ′

out, λundec∩λ′
undec)

would be a larger admissible labelling. If a ∈ λ′
in then, by the definition of

admissible labellings, there is an attack (B, b) with B ⊆ λ′
in and b ∈ S ∩ λin.

Thus b is an argument with λ(b) = in and λ′(b) = out. Otherwise if a ∈ λin
then, by the definition of admissible labellings, there is an attack (B, b) with
B ⊆ λin and b ∈ S ∩ λ′

in. Then, again by the definition of admissible labellings,
there is an attack (C, c) with C ⊆ λ′

in and c ∈ B ⊆ λin. Thus c is an argument
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Figure 6. The SETAF of Example 4.4

with λ(c) = in and λ′(c) = out.

Now assume that L satisfies all the conditions. We give a SETAF FL = (AL, RL)
with prfL(FL) = L. We use

AL = ArgsL

RL = {(λin, a) | λ ∈ L, λ(a) = out} ∪ {(λin ∪ {a}, a) | λ ∈ L, λ(a) = undec}

It remains to show that prfL(FL) = L. We first show prfL(FL) ⊇ L: Consider an
arbitrary λ ∈ L: We first show λ ∈ cfL(FL). We first consider out labeled arguments.
First, if λ(a) = out for some argument a then by construction and condition (2) we
have an attack (λin, a) and thus a is legally labeled out. Now towards a contradiction
assume there is a conflict (B, a) such that B ∪ {a} ⊆ λin.

If |L| = 1, by the construction of FL there is no (B, a) ∈ RL such that a ∈ λin.
That is, a is legally labeled in. If |L| > 1, by construction there is a λ′ ∈ L with
λ′
in = B \ {a}, a contradiction to condition (3). Thus, λ ∈ cfL(FL). Next we show that

λ ∈ admL(FL). Consider an argument a with λ(a) = in and an attack (B, a). Then, by
construction there is a λ′ ∈ L with λ′

in = B \ {a} and, by condition (3), an argument
b ∈ B such that λ(b) = out. Thus, λ ∈ admL(FL). Finally we show that λ ∈ prfL(FL).
Towards a contradiction assume that there is a λ′ ∈ admL(FL) with λin ⊂ λ′

in. Let a
be an argument such that λ′(a) = in and λ(a) ∈ {out, undec}. By construction there
is either an attack (λin, a) or an attack (λin ∪ {a}, a). In both cases λ′ ̸∈ admL(FL), a
contradiction. Hence, λ ∈ prfL(FL).

We complete the proof by showing prfL(FL) ⊆ L: Consider λ ∈ prfL(FL): If λ maps
all arguments to in then there is no attack in RL which means that L contains only
the labelling λ. Thus we can assume that λ(a) = out for some argument a and there
is (B, a) ∈ RL with λ(b) = in for all b ∈ B. By construction there is λ′ ∈ L such that
λ′
in = B. Then by construction we have (B, c) ∈ RL for all c with λ′(c) = out and

(B∪{c}, c) ∈ RL for all c with λ′(c) = undec. We obtain that λ′
in = B = λin and thus

λ = λ′.

Example 4.4. Let L = {{a 7→ in, b 7→ out, c 7→ in}, {a 7→ undec, b 7→ in, c 7→
out}}. It holds that L ∈ Σ

prfL
SETAF and F = ({a, b, c}, {({a, b}, a), ({c}, b), ({b}, c)}), as

depicted in Figure 6, is a witness of satisfying L as a preferred labelling in SETAFs, i.e.,
prf(F ) = L. However, L ̸∈ ΣstbL

SETAF, since λ(a) = undec, where λ = {a 7→ undec, b 7→
in, c 7→ out}. That is, λ does not satisfies the first item of Proposition 4.2.

Proposition 4.5. The signature Σ
cfL
SETAF is given by all non-empty sets L of labellings

s.t.

(1) all λ ∈ L have the same domain ArgsL.
(2) If λ ∈ L assigns one argument to out then it also assigns an argument to in.
(3) For λ ∈ L and C ⊆ λin also (C, ∅,ArgsL \ C) ∈ L.
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(4) For λ ∈ L and C ⊆ λout also (λin, λout \ C, λundec ∪ C) ∈ L.
(5) For λ, λ′ ∈ L with λin ⊆ λ′

in also (λ′
in, λout ∪ λ′

out, λundec ∩ λ′
undec) ∈ L.

(6) For λ, λ′ ∈ L and C ⊆ λout (s.t. C ̸= ∅) we have λin ∪ C ̸⊆ λ′
in.

Proof. Let F be an arbitrary SETAF we show that cfL(F ) satisfies the conditions of
the proposition.

The first condition is satisfied as clearly all λ ∈ cfL(F ) have the same domain. Now,
assume that λ ∈ cfL(F ) assigns an argument a to out. By the definition of conflict-free
labellings there is an attack (B, a) such that all arguments b ∈ B are labeled in. Thus
condition (2) is satisfied.

For condition (3), towards a contradiction assume that (C, ∅,ArgsL \ C) is not
conflict-free. Then there is an attack (B, a) such that B ∪ {a} ⊆ C. But then also
B ∪ {a} ⊆ λin and thus λ ̸∈ cfL(F ), a contradiction.

Condition (4) is satisfied as in the definition of conflict-free labellings there are no
conditions for labeling an argument undec. Further, the conditions that allow to label
an argument out solely depend on the in labeled arguments. Since λout \ C ⊆ λout,
the condition for arguments labeled out is satisfied.

For condition (5), consider λ, λ′ ∈ cfL(F ) with λin ⊆ λ′
in and λ∗ = (λ′

in, λout ∪
λ′
out, λundec∩λ′

undec). First there cannot be an attack (B, a) such that B∪{a} ⊆ λ∗
in as

λ′ ∈ cfL(F ). Hence, λ′
in∩λout = ∅ and thus λ∗ is a well-defined labelling. Moreover, for

each a with λ∗(a) = out there is an attack (B, a) with B ⊆ λ∗
in as either λ(a) = out

or λ′(a) = out. Thus, λ∗ ∈ cfL(F ) and therefore the condition holds.
For condition (6), consider λ, λ′ ∈ cfL(F ) and a set C ⊆ λout containing an argument

a such that λ(a) = out. That is, there is an attack (B, a) with B ⊆ λin and thus
λin ∪ C ̸⊆ λ′

in. That is, condition (6) is satisfied.
Now assume that L satisfies all the conditions. We give a SETAF FL = (AL, RL)

with

AL = ArgsL

RL = {(λin, a) | λ ∈ L, λ(a) = out} ∪ {(B, b) | b ∈ B,∄λ ∈ L : λin = B}

We first show cfL(FL) ⊇ L: Consider an arbitrary λ ∈ L: First, if λ(a) = out for some
argument a then by construction and condition (2) we have an attack (λin, a) and
thus a is legally labeled out. Next, let us assume that λ(a) = in and consider a proof
by contradiction. Suppose there exists a conflict (B, a) ∈ RL such that B ∪{a} ⊆ λin.
By condition (3), it cannot be the case that a ∈ B. Therefore, there must be a λ′ ∈ L
such that λ′

in = B due to the construction. This implies that λ′
in ∪ {a} ⊆ λin, which

contradicts condition (6). Thus, the assumption that λ ̸∈ cfL(FL) is incorrect and we
obtain λ ∈ cfL(FL).

We complete the proof by showing cfL(FL) ⊆ L: Consider λ ∈ cfL(FL): If λ maps
all arguments to in then there is no attack in RL which means that L contains only
the labelling λ. Thus we can assume that λ(a) ∈ {out, undec} for some argument a. If
λin ̸= λ′

in for all λ′ ∈ L then by construction of the second part of RL there would be
attacks (λin, b) for all b ∈ λin, which is in contradiction to λ ∈ cfL(FL). Thus, there is
λ′ ∈ L such that λ′

in = λin. For arguments a with λ(a) = out there is an attack (B, a)
with B ⊆ λin and, by construction, a λ∗ ∈ L such that λ∗

in = B and λ∗(a) = out.
By the existence of λ′ ∈ L and condition (5) we have that there exists λ′′ ∈ L such
that λin = λ′′

in, λ
′
out ⊆ λ′′

out and a ∈ λ′′
out. By iteratively applying this argument for

each argument a with λ(a) = out we obtain that there is a labelling λ̂ ∈ L such that

λin = λ̂in and λout ⊂ λ̂out. By condition (4) we obtain that λ ∈ L.
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Example 4.6. Let L = {{a 7→ undec, b 7→ undec}, {a 7→ in, b 7→ undec}, {a 7→
undec, b 7→ in}, {a 7→ in, b 7→ in}, {a 7→ in, b 7→ out}}. Labellings in L satisfy the
four first items of Proposition 4.5. However, for λ = {a 7→ in, b 7→ out} and λ′ = {a 7→
in, b 7→ in} the fifth and the sixth items does not hold. Thus, L ̸∈ Σ

cfL
SETAF. However,

L can be realized by the conflict-free set of ADF D = ({a, b}, {φa : ⊤, φb : ¬a ∨ b}),
which is not a SETADF.

We next turn to naive semantics. For extension-based semantics we have that conflict-
free sets fully determine naive extensions and vice versa. For labelling-based semantics
only the former is true as the out labels of conflict-free subsets are not determined by
the out labels of the naive labellings.

Proposition 4.7. The signature ΣnaiL
SETAF is given by all sets L of labellings such that

(1) all λ ∈ L have the same domain ArgsL.
(2) if λ ∈ L assigns one argument to out then it also assigns an argument to in.
(3) for λ ∈ L and C ⊆ λout also (λin, λout \ C, λundec ∪ C) ∈ L
(4) for λ, λ′ ∈ L with λin = λ′

in also (λin, λout ∪ λ′
out, λundec ∩ λ′

undec) ∈ L.
(5) for arbitrary λ, λ′ ∈ L we have λin ̸⊂ λ′

in.

Proof. Let F be an arbitrary SETAF. First we show that naiL(F ) satisfies the
conditions of the proposition. Conditions (1)-(3) are by the fact that naiL(F ) ⊆
cfL(F ). For condition (4), consider λ, λ′ ∈ naiL(F ) with λin = λ′

in. We know
that for each a ∈ λout ∪ λ′

out there is an attack (B, a) with B ⊆ λin. Thus also
(λin, λout ∪ λ′

out, λundec ∩ λ′
undec) ∈ naiL(F ). Finally condition (5) is satisfied by the

maximality of λin in naive labellings.
Now assume that L satisfies all the conditions. We give a SETAF FL = (AL, RL)

with

AL = ArgsL

RL = {(λin, a) | λ ∈ L, λ(a) = out} ∪ {(λin ∪ {a}, a) | λ ∈ L, λ(a) = undec}.

To complete the proof we show that naiL(FL) = L. We first show naiL(FL) ⊇ L:
Consider an arbitrary λ ∈ L: We first show λ ∈ cfL(FL). First, if λ(a) = out for some
argument a then by construction and condition (2) we have an attack (λin, a) and
thus a is legally labeled out. Now towards a contradiction assume there is a conflict
(B, a) such that B ∪ {a} ⊆ λin. If |L| > 1, then, by construction there is a λ′ ∈ L
with λ′

in = B \ {a}, a contradiction to (5). Thus, λ ∈ cfL(FL). Finally we show that
λ ∈ naiL(FL). Towards a contradiction assume that there is a λ′ ∈ cfL(FL) with
λin ⊂ λ′

in. Let a be an argument such that λ′(a) = in and λ(a) ∈ {out, undec}. By
construction there is either an attack (λin, a) or an attack (λin∪{a}, a). In both cases
λ′ ̸∈ cfL(FL) a contradiction. Hence, λ ∈ naiL(FL).

We complete the proof by showing naiL(FL) ⊆ L: Consider λ ∈ naiL(FL): If λ maps
all arguments to in then there is no attack in RL which means that L contains only
the labelling λ. Thus we can assume that λ(a) ∈ {out, undec} for some argument a
and there is (B, a) ∈ RL with B ⊆ λin ∪ {a}. By construction there is λ′ ∈ L such
that λ′

in = B \ {a}. By the above λ′ ∈ naiL(FL) and thus λ = λ′
in (cf. condition (5)).

Moreover, for each argument b with λ(b) = out, by construction, we have a λb ∈ L
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with λb
in = λin and λb(b) = out. Let us next define the labelling

λ∗ = (λ′
in, λ

′
out ∪

⋃
b∈λout

λb
out, λ

′
undec ∩

⋂
b∈λout

λb
undec).

By condition (4) we have that λ∗ ∈ L. By the construction of λ∗ we have λout ⊆ λ∗
out

and λin = λ∗
in. Thus, by condition (3), λ ∈ L.

Example 4.8. Let L = {{a 7→ undec, b 7→ undec}, {a 7→ in, b 7→ undec}, {a 7→
undec, b 7→ in}, {a 7→ in, b 7→ out}}. L satisfied all conditions of Proposition 4.5, thus

L ∈ Σ
cfL
SETAF. However, the last item of Proposition 4.7 does not holds for L, since for

λ = {a 7→ undec, b 7→ undec} and λ′ = {a 7→ in, b 7→ undec} it holds that λin ⊂ λ′
in.

Now consider L′ = L \ {{a 7→ undec, b 7→ undec}}. This set is realized by the SETAF
FL′ = ({a, b}, {({a}, b), ({a, b}, b), ({a, b}, a)}), under naive semantics. Notice that the
attacks ({a, b}, b), ({a, b}, a) of FL′ are indeed redundant for naive semantics and can
be removed without changing the naive extensions.

Finally, we give an exact characterisation of the signature of grounded semantics.

Proposition 4.9. The signature Σ
grdL
SETAF is given by sets L of labellings such that

|L| = 1, and for the unique labelling λ ∈ L we have that if λout ̸= ∅ then also λin ̸= ∅.

Proof. We first show that for each SETAF F the set grdL(F ) satisfies the conditions of
the proposition. Let λ ∈ grdL(F ) be the unique grounded labelling, which by definition
is complete and thus conflict-free. Now, assume that λ assigns an argument a to out.
By the definition of conflict-free labellings there is an attack (B, a) such that B ⊆ λin.

Now assume that L satisfies all the conditions. We give a SETAF FL = (AL, RL)
with grdL(FL) = L.

AL = ArgsL

RL = {(λin, a) | λ ∈ L, λ(a) = out} ∪ {(λin ∪ {a}, a) | λ ∈ L, λ(a) = undec}

Consider the unique λ ∈ L and the unique λG ∈ grdL(FL). For each argument a ∈ λin
we have that a is not attacked in FL and thus a ∈ λG

in. For each argument a ∈ λout there
is an attack (λin, a) in FL and as λin ⊆ λG

in by the definition of complete labellings
we have a ∈ λG

out. Finally for each argument a ∈ λundec the attack (λin ∪ {a}, a) is the
only attack towards a in FL. Thus, by the definition of complete labellings, we have
that a is neither labelled in nor out in FL and therefore a ∈ λG

undec. We obtain that
λG = λ and thus grdL(FL) = L.

Notice that Proposition 4.9 basically exploits that grounded semantics is a unique
status semantics based on admissibility. The result thus immediately extends to
other SETAF semantics satisfying these two properties, e.g. to ideal or eager seman-
tics (Flouris & Bikakis, 2019).

So far, we have provided characterisations for the signatures ΣstbL
SETAF, Σ

prfL
SETAF,

Σ
cfL
SETAF, ΣnaiL

SETAF, Σ
grdL
SETAF. By Theorem 3.7 we get analogous characterizations of

Σσ
SETADF for the corresponding ADF semantics.
We have not yet touched admissible and complete semantics. Here, the exact char-

acterisations seem to be more cumbersome and are left for future work. However, for
admissible semantics the following proposition provides necessary conditions for an
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labelling-set to be adm-realizable, but it remains open whether they are also suffi-
cient.

Proposition 4.10. For each L ∈ ΣadmL
SETAF we have:

(1) all λ ∈ L have the same domain ArgsL.
(2) If λ ∈ L assigns one argument to out then it also assigns an argument to in.
(3) For λ, λ′ ∈ L and C ⊆ λout (s.t. C ̸= ∅) we have λin ∪ C ̸⊆ λ′

in.
(4) For arbitrary λ, λ′ ∈ L either (a) (λin ∪ λ′

in, λout ∪ λ′
out, λundec ∩ λ′

undec) ∈ L or
(b) there is an argument a such λ(a) = in and λ′(a) = out.

(5) For λ, λ′∈L with λout ⊆ λ′
out, and C ⊆ λin \

⋃
λ∗∈L: λ∗

in=λ′
in
λ∗
out we have (λ′

in ∪
C, λ′

out, λ
′
undec \ C) ∈ L.

(6) For λ, λ′ ∈ L with λin ⊆ λ′
in, and C ⊆ λout we have (λ

′
in, λ

′
out∪C, λ′

undec\C) ∈ L.
(7) For λ, λ′ ∈ L with λin ⊆ λ′

in and λout ⊇ λ′
out we have (λin, λ

′
out,ArgsL \ (λin ∪

λ′
out)) ∈ L.

(8) (∅, ∅,ArgsL) ∈ L.

5. On the Relation between SETAFs and Support-Free ADFs

In order to compare SETAFs with SFADFs, we can rely on SETADFs (recall The-
orem 3.7). In particular, we will compare the signatures Σσ

SETADF and Σσ
SFADF, cf.

Definition 4.1. We start with the observation that each SETADF can be rewritten as
an equivalent SETADF that is also a SFADF.2

Lemma 5.1. For each SETADF D = (S,L,C) there is an equivalent SETADF D′ =
(S,L′, C ′) that is also a SFADF, i.e. for each s ∈ S, φs ∈ C, φ′

s ∈ C ′ we have φs ≡ φ′
s.

Proof. Given a SETADF D, by Definition 3.1, each acceptance condition is a CNF
over negative literals and thus does not have any support link which is not redundant.
We can thus obtain L′ by removing the redundant links from L and C ′ by, in each
acceptance condition, deleting the clauses that are super-sets of other clauses.

Example 5.2 shows that there exists a SETADF which is not a SFADF, which shows
the importance of Lemma 5.1.

Example 5.2. Let D = ({a, b, c}, {φa : ⊤, φb : ⊤, φc : ¬a ∧ (¬a ∨ ¬b)}). By Defi-
nition 3.1, D is a SETADF. We show that link (b, c) is a redundant link. Thus, by
Definition 2.11, D is not a SFADF, since it contains a redundant link.

Here we aim to show that (b, c) is a redundant link. Let v = {a 7→ f , b 7→ t} and
v′ = {a 7→ f , b 7→ f}. It holds that v(φc) = v′(φc) = t, v|bt(φc) = v′|bt(φc) = t, and
there is no other two-valued interpretation over the parents of c that assigns c to t.
Therefore, by Definition 2.9, (b, c) is a supporting link.

Furthermore, let v = {a 7→ t, b 7→ t} and v′ = {a 7→ t, b 7→ f}. v and v′ are two-
valued interpretations over the parents of c that indicate (b, c) is an attacking link.
Hence, by Definition 2.9, (b, c) is a redundant link.

In φc clause (¬a ∨ ¬b) is a super-set of clause ¬a. Thus, we remove (¬a ∨ ¬b) from
the acceptance condition of c, as it is presented in the proof of Lemma 5.1. Thus,
D′ = ({a, b, c}, {φa : ⊤, φb : ⊤, φc : ¬a}) is a SETADF equivalent with D, which is
also a SFADF.

2As discussed in Polberg (2017), in general, SETAFs translate to bipolar ADFs that contain attacking and

redundant links. However, when we first remove redundant attacks from the SETAF we obtain a SFADF.
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Figure 7. Left: D is a SETADF but not a SFADF, right: SFADF/SETADF D′ equivalent with D, in Exam-

ple 5.2

By Lemma 5.1 we have that Σσ
SETADF ⊆ Σσ

SFADF. Now consider the interpretation
v = {a 7→ f}. We have that for all considered semantics σ, v is a σ-interpretation
of the SFADF D = ({a}, {φa = ⊥}) but there is no SETADF with v being a σ-
interpretation. We thus obtain Σσ

SETADF ⊂ Σσ
SFADF .

Theorem 5.3. Σσ
SETADF ⊂ Σσ

SFADF , for σ ∈ {cf, adm, stb,mod, com, prf, grd}.

In the remainder of this section we aim to characterise the difference between Σσ
SETADF

and Σσ
SFADF . To this end, in Lemma 5.4 we first recall a characterisation of the

acceptance conditions of SFADF that can be rewritten as collective attacks.

Lemma 5.4. Wallner (2019) Let D = (S,L,C) be a SFADF. If s ∈ S has at least
one incoming link then the acceptance condition φs can be written in CNF containing
only negative literals.

It remains to consider those arguments in an SFADF with no incoming links. Such
arguments allow for only two acceptance conditions ⊤ and ⊥. While condition ⊤ is
unproblematic (it refers to an initial argument in a SETAF), an argument with unsat-
isfiable acceptance condition cannot be modeled in a SETADF. In fact, the different
expressiveness of SETADFs and SFADFs is solely rooted in the capability of SFADFs
to set an argument to f via a ⊥ acceptance condition.

Lemma 5.5, by considering interpretation-sets, investigates the condition under
which the acceptance condition of an argument that is equal to ⊥ cannot be replaced
by collective attacks. Later we use Lemma 5.5 in the proof of Theorem 5.6 to indicate
which interpretation-set is not realizable in SETADF.

Lemma 5.5. Given an interpretation-set V ∈ ∆σ, for σ ∈ {adm, stb,mod,
com, prf, grd}, such that there exists v ∈ V, where v ̸= vu and v(a) = f/u, for each
argument a. In all SFADFs that realize V under σ, the acceptance conditions of all
arguments assigned to f by v are equal to ⊥.

Proof. Let D be a SFADF that realizes V under σ, for σ ∈ {adm, stb,mod, com,
prf, grd}. Let v ∈ V be an non-trivial interpretation that assigns all arguments either
to f or u. Towards a contradiction, assume that there exists an argument a which is
assigned to f by v, and φa ̸= ⊥ in D. First we show that V cannot be adm-realizable
in SFADFs. Since a is assigned to f in v the acceptance condition of a cannot be equal
to ⊤. If φa is neither ⊤, nor ⊥, then it has an incoming link. Thus, by Lemma 5.4,
the acceptance condition of a is in CNF and having only negative literals. Since all
b ∈ par(a) are either assigned to f or u by v, φv

a cannot be unsatisfiable. That is,
v(a) ̸≤i ΓD(v)(a). Therefore, v is not an admissible interpretation of D. Thus, any V
that contains v is not adm-realizable in SFADF. To complete the proof it remains to see
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that for each of the remaining semantics, each σ-interpretation is also admissible.

We next give a generic characterisations of the difference between Σσ
SETADF and

Σσ
SFADF .

Theorem 5.6. For σ ∈ {cf, adm, stb,mod, com, prf, grd}, we have ∆σ = Σσ
SFADF \

Σσ
SETADF with

∆σ = {V ∈ Σσ
SFADF | ∃v ∈ V s.t. ∀a : v(a) ∈ {f ,u} ∧ ∃a : v(a) = f}.

Proof. First we show that ∆σ ⊆ Σσ
SFADF \ Σσ

SETADF. To this end, we use
the facts shown in the previous sections. Let L be a σ-labelling for σ ∈
{cf, adm, stb,mod, com, prf, grd}. By Propositions 4.2-4.10, if λ ∈ L assigns one ar-
gument to out then, it also assigns an argument to in. Furthermore, by Theorem 3.7,
labellings of SETAFs and interpretations of SETADFs can be used interchangeably.
Thus, for V ∈ ∆σ the interpretation v cannot be realized in a SETADF as we can-
not have v(a) ∈ f without v(b) ∈ t for some other argument b. Furthermore, by the
definition of ∆σ, it holds that V ∈ Σσ

SFADF. That is, ∆σ ⊆ Σσ
SFADF \ Σσ

SETADF.
On the other hand, we show that Σσ

SFADF \Σσ
SETADF ⊆ ∆σ or equivalently Σσ

SFADF \
∆σ ⊆ Σσ

SETADF. To this end, consider V ∈ Σσ
SFADF such that each v ∈ V assigns some

argument to t. We show that one can construct a SETADF DF with σ(DF ) = V.

• Let σ = grd. Assume that F = (S,L,C) is a SFADF such that V = grd(F ).
Thus, |V| = 1. Let v ∈ V. We construct SETADF DF = (S,L′, C ′), such that
V = grd(DF ), where C ′ is a collection of φ′

a as follows.

φ′
a =


⊤ if v(a) = t∧

b∈vt ¬b if v(a) = f

¬a otherwise.

The second item of φ′
a in the above definition is well-defined, since we assume

that vt ̸= ∅. By Definition 3.1 it is clear that DF is a SETADF and it is easy to
check that grd(DF ) = V.

• Let σ ∈ {cf, adm}. Assume that F = (S,L,C) is a SFADF such that V = adm(F )
(V = cf(F ), respectively). F does not have any argument with ⊥ acceptance
condition. Otherwise, there exists a v ∈ adm(F ) (V = cf(F ), respectively) that
does not assign any argument to t. This is a contradiction by the assumption
that each v ∈ V assigns at least an argument to t. All the other acceptance
conditions can be rewritten in the associated SETADF DF via Lemma 5.4.

• Let σ = com. Let F be a SFADF such that com(F ) = V. Let g be the grounded
interpretation of F . If g(a) ∈ {t, f}, then let φ′

a as introduced in the first item
of the proof. Note that if there exists a such that φa : ⊥, then a assigns to f in
the grounded interpretation F . All the other acceptance conditions in DF can
be rewritten via Lemma 5.4.

• For σ ∈ {stb,mod, prf} assume there are arguments s1, . . . , sℓ with acceptance
condition ⊥ and thus si is denied by any vi ∈ V. For each vi ∈ V let bi be an
argument such that vi(bi) = t. We construct a SETADF DF = (S,L′, C ′) such

19



a

b c

⊥

¬c ¬b

Figure 8. ADF of Example 5.8

that C ′ is a collection of φ′
a as follows.

φ′
a =

{
φa if φa ̸= ⊥
¬a ∧

∧
vi∈V ¬bi otherwise.

It is now easy to verify that V = σ(DF ) and as, by construction DF , has no
argument with acceptance condition ⊥, by Lemma 5.4, V is σ-realizable in SE-
TADFs.

That is for all semantics under our considerations we have Σσ
SFADF \ Σσ

SETADF ⊆ ∆σ

and together with the above we obtain Σσ
SFADF \ Σσ

SETADF = ∆σ.

Next, we provide stronger characterisations of ∆σ for preferred and stable semantics.

Proposition 5.7. For V ∈ ∆σ and σ ∈ {stb,mod, prf} we have |V| = 1. For σ ∈
{stb,mod} the unique v ∈ V assigns all arguments to f .

Proof. If a SFADF has a σ-interpretation v that assigns some arguments to f with-
out assigning an argument to t then, by Lemma 5.5, we have that the arguments
assigned to f are exactly the arguments with acceptance condition ⊥. Since stable
and two-valued models are two-valued interpretations, this means all arguments have
acceptance condition ⊥ and the result follows. Each preferred interpretation assigns ar-
guments with acceptance condition ⊥ to f and thus the existence of another preferred
interpretation would violate the ≤i-maximality of v.

In other words each interpretation-set which is σ-realizable in SFADFs and contains
at least two interpretations can be realized in SETADFs, for σ ∈ {stb, prf,mod}. We
close this section with an example illustrating that the above characterisation thus
not hold for cf, adm, and com.

Example 5.8. Let D = ({a, b, c}, {φa = ⊥, φb = ¬c, φc = ¬b}), depicted in Figure 8.
We have com(D) = {{a 7→ f , b 7→ u, c 7→ u}, {a 7→ f , b 7→ t, c 7→ f}, {a 7→ f , b 7→
f , c 7→ t}}. By Theorem 5.6, com(D) cannot be realized as SETADF. Moreover, as
com(D) ⊆ adm(D) ⊆ cf(D) for every ADF D, we have that, despite all three contain
more than one interpretation, none of them can be realized via a SETADF.

In this section we obtained that each SETADF can be rewritten as SFADF if redun-
dant links/attacks are removed and that there are SFADFs that cannot be rewritten
as SETADFs. We then studied the exact difference an identified arguments with un-
satisfiable acceptance condition as the source of this difference. The relation among
the classes ΣSETAF, ΣSETADF, and ΣSFADF is illustrated in Figure 9.
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for σ ∈ {cf, adm, stb,mod, com, prf, grd}

∆σ

Σσ
SFADFΣσ

SETADF = Σσ
SETAF

Figure 9. The relation among the signatures of SETAFs, SETADFs, and SFADFs. for σ ∈
{cf, adm, stb,mod, com, prf, grd}, where ∆σ = {V ∈ Σσ

SFADF | ∃v ∈ V s.t. ∀a : v(a) ∈ {f ,u} ∧ ∃a : v(a) = f}.

6. Symmetric Argumentation Frameworks

Now we proceed our work by considering symmetric subclasses of these classes. These
restrictions make decision problems often easier from a computational complexity per-
spective (Coste-Marquis, Devred, & Marquis, 2005; Dvořák & Dunne, 2018). In this
section we investigate the effect of these restrictions to the relations between the differ-
ent kind of argumentation frameworks under our considerations. That is, we consider
symmetric subclasses of SETAFs and the different classes of ADFs. We start by re-
calling the definition of symmetric ADFs, presented in Diller et al. (2020).

Definition 6.1. An ADF D = (S,L,C) is symmetric if L is irreflexive and symmetric
and L does not contain any redundant links.

Notice that it is crucial to exclude redundant links as otherwise we are able to add
arbitrary links without changing the semantics of the ADF at hand, i.e., we would be
able to transform each ADF in equivalent symmetric one.

We continue by recalling the notion of support free symmetric ADF (for short
SymSFADFs) Diller et al. (2020) and symmetric SETADFs, in Definitions 6.2 and 6.3,
respectively.

Definition 6.2. A bipolar ADF D = (S,L,C) is a support free symmetric ADF
(SymSFADF for short) if it is symmetric and does not have any supporting links.

Definition 6.3. A SETADF D = (S,L,C) is a symmetric SETADF if it is a sym-
metric ADF.

Note that, by Definition 6.1, SymSFADFs and symmetric SETADFs do not have
redundant links. We can use this fact to strengthen Lemma 5.1 in the symmetric
case. That is, Lemma 6.4 shows that the class of symmetric SETADFs is a subclass
of SymSFADFs.

Lemma 6.4. Each symmetric SETADF is a SymSFADF.

Proof. Let D = (S,L,C) be a symmetric SETADF. By Definition 6.1, L does not
contain any redundant links. Since the acceptance condition of each argument of D
can be written in CNF with only negative literals, it holds that L = L−. Thus, D is a
SymSFADF.

Example 6.5 shows that the classes of symmetric SETADFs and SymSFADFs do not
coincide. That is, it provides an example of an SymSFADFs that has no equivalent
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¬b ¬a ∨ ¬c ¬b ⊥

Figure 10. The ADF of Example 6.5

symmetric SETADFs.

Example 6.5. Let D be an ADF depicted in Figure 10. Since D does not contain any
redundant links, and all links are symmetric and irreflexive and it does not contain
any supporting links, it holds that D is a SymSFADF. However, since the acceptance
condition of e cannot be written in CNF with negative literals, D is not equivalent to
a symmetric SETADF.

Again, the problems are unattacked arguments, which are isolated arguments in the
symmetric setting. with unsatisfiable acceptance condition. SymSFADF that do not
have such arguments can be easily rewritten as equivalent symmetric SETADFs.

Lemma 6.6. Each SymSFADF that does not have any isolated arguments with un-
satisfiable acceptance condition is equal to a symmetric SETADF.

Proof. Let D = (S,L,C) be a SymSFADF with no isolated arguments. Since D is
symmetric and does not have any isolated arguments, by Lemma 5.4 the acceptance
condition of each argument D can be written in CNF containing only negative literals.
Thus, By Definition 6.3, D is a symmetric SETADF.

That is, with Lemmas 6.4 and 6.6 we obtain that the class of SETADFs correspond
to the class of SymSFADFs with no isolated arguments with unsatisfiable acceptance
condition.

Finally, we will relate these result to symmetric SETAFs. To this end we recall the
notion of symmetric SETAFs presented in Diller et al. (2020). 3

Definition 6.7. A SETAF F = (A,R), in which R ⊆ (2A \ {∅} ×A), is a symmetric
SETAF if the following properties hold:

• for all (S, t) ∈ R and for all s ∈ S, there exists (T, s) ∈ R such that t ∈ T ,
• for each argument s and for each (S, s) ∈ R, the set S does not include s.
• for each (S, s) ∈ R there is no (S′, s) ∈ R with S′ ⊂ S.

In Definition 6.7, the first item indicates that in the symmetric SETAFs all links
are symmetric. The second item further means that there are also no reflexive links.
Finally, the third item excludes redundant links. Note that the third item presents a
crucial characterization of symmetric SETAFs. Intuitively, the third item is a guarantee
that the associated ADF of a given symmetric SETAF is a SymSFADF which is proven
in Theorem 9 in Diller et al. (2020).

We now show that in fact symmetric SETAFs correspond to symmetric SETADFs.

Lemma 6.8. The ADF associated to a given symmetric SETAF is a symmetric SE-
TADF.

Proof. Let F = (A,R) be a symmetric SETAF. From Definition 3.3 it follows that

3Recent work Dvořák, König, and Woltran (2021) studies different types of symmetry in SETAFs. Our notion
of symmetry corresponds the notion of primal-symmetric SETAFs without self-attacks in Dvořák et al. (2021)
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each SETAF can be represented as an ADF. We show that the ADF DF = (S,L,C)
associated to F is a symmetric SETADF. Since the acceptance condition of each
argument in DF is in CNF formula over negative literals, by Definition 3.1, DF is a
SETADF. Thus, it remains to show that DF is a symmetric ADF. It is clear that L
does not have any redundant links, since F does not have any redundant links. By
proof method presented in the proof of Theorem 9 in Diller et al. (2020) one can check
that L is symmetric and irreflexive. Hence, DF is a symmetric SETADFs.

Lemma 6.9. The SETAF associated to given symmetric SETADF is a symmetric
SETAF.

Proof. Let D = (S,L,C) be a symmetric SETADF. We construct the SETAF FD =
(A,R) associated to D as follows: We first define, for each a ∈ A the sets Ra of all
joint attacks to a, i.e., Ra = {(cl, a) | cl is a clause in φa}. We then have:

• A = S;
• R =

⋃
a∈S Ra.

It is easy to check that FD is a symmetric SETAF.

By Lemmas 6.4, 6.6, 6.8 and 6.9 we have that classes of (i) symmetric SETAFs, (ii)
symmetric SETADFs and (iii) SymSFADFs with no isolated arguments with unsatis-
fiable acceptance condition coincide.

7. Related Work

The expressiveness of SETAFs has first been investigated in (Linsbichler et al., 2016)
where different sub-classes of ADFs, i.e. AFs, SETAFs and Bipolar ADFs, are related
w.r.t. their signatures of 3-valued semantics. Moreover, they provide an algorithm to
decide realizability in one of the formalisms under admissible, preferred, complete,
model and stable semantics. However, no explicit characterisations of the signatures
are given. Pührer (2020b) presented explicit characterisations of the signatures of
general ADFs (but not for the sub-classes under our considerations). In contrast,
Dvořák et al. (2019) provide explicit characterisations of the two-valued signatures
of SETAFs and show that SETAFs are more expressive than AFs. In both works
all arguments are relevant for the signature, while in (Flouris & Bikakis, 2019) it is
shown that when allowing to add extra arguments to an AF which are not relevant for
the signature, i.e. the extensions/labellings are projected on common arguments, then
SETAFs and AFs are of equivalent expressiveness. Other recent work (Wallner, 2019)
already implicitly showed that SFADFs with satisfiable acceptance conditions can be
equivalently represented as SETAFs. This provides a sufficient condition for when we
can rewrite a SFADF as SETAF and raises the question whether it is also a necessary
condition. In fact, we showed that a SFADF has an equivalent SETAF if and only
if all acceptance conditions are satisfiable. Different sub-classes of ADFs (including
SFADFs) have been compared in (Diller et al., 2020), but no exact characterisations
of signatures as we provide here are given in that work.

Finally, an investigation quite similar to ours has independently been done by
Alcântara and Sá (2021), where the main focus lies on the translation between support-
free ADFs (there called attacking ADFs without redundant links) and SETAFs, while
we have put more on emphasize on the actual expressiveness of these two formalisms.
When comparing their technical results with ours they might seem to contradict each
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other at first glance. In the following we briefly discuss the origins of these differences
which are indeed due to slight differences in the basic definitions. First, by Definition 11
in (Alcântara & Sá, 2021), an attacking ADF (ADF+) can have redundant links while
our notion of support-free ADFs does not allow for redundant links. This is mirrored
by the fact that some of the main results in (Alcântara & Sá, 2021) are stated for
ADF+ without redundant links. The second difference is in the definition of SETAFs.
While the standard definition of SETAFs that we also use in our paper does not allow
attacks from the empty set of arguments towards a single argument, Alcântara and
Sá (2021) allow for such attacks. This comes into play when translating support-free
ADFs with unsatisfiable acceptance conditions into SETAFs. As shown in Section 5,
there are support-free ADFs with unsatisfiable acceptance conditions that cannot be
translated in an SETAF (with the standard definition). However, with the extended
definition of SETAFs it turns out that all support-free ADFs can be translated into
SETAFs (Alcântara & Sá, 2021). Comparing our results with (Alcântara & Sá, 2021),
one can thus see that allowing attacks from the empty-set is not just syntactic sugar
but increases the expressiveness of SETAFs.

8. Conclusion

In this paper, we have characterised the expressiveness of SETAFs under 3-valued
signatures. The more fine-grained notion of 3-valued signatures reveals subtle differ-
ences of the expressiveness of stable and preferred semantics which are not present in
the 2-valued setting (Dvořák et al., 2019) and enabled us to compare the expressive
power of SETAFs and SFADFs, a subclass of ADFs that allows only for attacking
links. In particular, we have exactly characterized the difference for conflict-free, ad-
missible, complete, stable, preferred, and grounded semantics; this difference is rooted
in the capability of SFADFs to set an initial argument to false. Together with our
exact characterisations on signatures of SETAFs for stable, preferred, grounded, and
conflict-free semantics, this also yields the corresponding results for SFADFs. More-
over, we extended this results to the cases where we additionally require the attack
relation of the frameworks to be symmetric. Our results indicates that notion collec-
tive attacks, despite its simplicity, is indeed rather expressive in the sense that we can
simulate all kinds of attack relations that are expressible in ADFs.

As directions for future work, we identify exact characterisations for admissible
and complete semantics. Another aspect to be investigated is to which extent our
insights on labelling-based semantics for SETAFs and SFADFs can help to improve
the performance of reasoning systems.
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Dvořák, W., König, M., & Woltran, S. (2021). Graph-Classes of Argumentation Frameworks
with Collective Attacks. In Proc. JELIA, virtual event, may 17-20, 2021, proceedings (pp.
3–17). Springer.
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Dvořák, W., König, M., Ulbricht, M., & Woltran, S. (2022). Rediscovering Argumentation

25



Principles Utilizing Collective Attacks. In Proc. KR.
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Appendix A. Full Proofs

Proof of Lemma 2.12

Assume that D = (S,L,C) is an ADF and v is a model of D. Further, assume s ∈ S
such that ∀p ∈ par(s), (p, s) is an attacking link in D. Clearly if φs[p/⊥ : v(p) = f ]
is irrefutable then also φv

s = φs[p/⊤ : v(p) = t][p/⊥ : v(p) = f ] is irrefutable. It
remains to show that if φv

s is irrefutable then also φs[p/⊥ : v(p) = f ] is irrefutable.
Let φ′

s = φs[p/⊥ : v(p) = f ]. Towards a contradiction, assume that φv
s is irrefutable

and φ′
s is not irrefutable. That is, either φ′

s is unsatisfiable or it is undecided. In
both cases, φ′

s[p/⊤ : v(p) = t] is unsatisfiable (as all the links are attacking).
Since φv

s = φ′
s[p/⊤ : v(p) = t], it holds that φv

s is unsatisfiable as well. This is a
contradiction with the assumption that φv

s is irrefutable.

Proof of Proposition 2.13

Let D = (S,L,C) be a SFADF. Since stb(D) ⊆ mod(D) for each ADF D, it remains
to show that each model of D is also a stable model of D. Towards a contradiction
assume that mod(D) ̸⊆ stb(D). Thus, there exists a model v of D which is not a stable
model. Let Dv be a stb-reduct of D and let w be the unique grounded interpretation
of Dv. Since it is assumed that v is not a stable model, vt ̸= wt. That is, there exists
s ∈ S such that v(s) = t and w(s) ̸= t. Since w is the grounded interpretation of Dv,
it is the least fixed-point of ΓDv . Moreover, w(s) ̸= t implies that ΓDv ̸= t. Therefore,
according to the definition of the characteristic operator, φs[p/⊥ : v(p) = f ] cannot be
irrefutable. Since, D is a SFADF, all parents of s are attackers. Hence, By Lemma 2.12,
φv
s is not irrefutable, that is, v(s) ̸= t. This is a contradiction by the assumption that

v(s) = t. Thus, the assumption that D consists of a model which is not a stable model
is incorrect.

Proof of Theorem 3.7

Let F = (A,R) be a SETAF and D = (S,L,C) be its corresponding SETADF.
We show that {Lab2Int(λ) | λ ∈ σL(F )} = σ(D). Let λ be an arbitrary three-
valued labelling and let v = Lab2Int(λ). We investigate that λ ∈ σL(F ) if and only if
v ∈ σ(D).

• Let σ = adm. We first assume that λ ∈ admL(F ) and show that v ∈ adm(D).
Consider s ∈ S and the acceptance condition φs =

∧
(B,s)∈R

∨
a∈B ¬a. If v(s) = t

we have that λ(s) = in and thus that for all (B, s) ∈ R there exists b ∈ B s.t.
λ(b) = out. The latter holds iff for all (B, s) ∈ R there exists b ∈ B s.t. v(b) = f
iff partial evaluation of φs under v is irrefutable iff ΓD(v)(s) = t. If v(s) = f we
have that λ(s) = out and thus that there exists (B, s) ∈ R s.t. for all b ∈ B:
λ(b) = in. The latter holds iff there exists (B, s) ∈ R s.t. for all b ∈ B: v(b) = t
iff φv

s is unsatisfiable iff ΓD(v)(s) = f . We thus obtain that v ≤i ΓD(v) and
therefore v ∈ adm(D).

Now we assume v ∈ adm(D) and show that λ ∈ admL(F ). That is for each s
with λ(s) = in we have ΓD(v)(s) = t and, as argued above, that for all (B, s) ∈ R
there exists b ∈ B s.t. λ(b) = out. Moreover for each s with λ(s) = out we have
ΓD(v)(s) = f and, as argued above, that there exists (B, s) ∈ R s.t. for all b ∈ B:
λ(b) = in. We obtain λ ∈ admL(F ).

27



• Let σ ∈ {com, prf, grd}. Let λ ∈ comL(F ) and let φs =
∧

(B,s)∈R
∨

a∈B ¬a be the
acceptance condition of s ∈ S in D. For complete semantics it is enough to show
that λ(s) = in iff ΓD(v)(s) = t and λ(s) = out iff ΓD(v)(s) = f .

◦ It holds that λ(s) = in (i.e. v(s) = t) iff for all (B, s) ∈ R there exists
b ∈ B s.t. λ(b) = out iff for all (B, s) ∈ R there exists b ∈ B s.t. v(b) = f
iff partial evaluation of φs under v is irrefutable iff ΓD(v)(s) = t.

◦ On the other hand, λ(s) = out (i.e. v(s) = f) iff there exists (B, s) ∈ R s.t.
for all b ∈ B: λ(b) = in iff there exists (B, s) ∈ R s.t. for all b ∈ B: v(b) = t
iff φv

s is unsatisfiable iff ΓD(v)(s) = f .
Now as complete semantics coincide it is easy to verify that also the maximal, i.e.
the preferred, extensions and the minimal, i.e. the grounded, extension coincide.

• Let σ = stb. Recall that, by Proposition 2.13, on SETADFs we have that stable
and models semantics coincide. We will show that λ ∈ stbL(F ) iff v ∈ mod(D).
That is we show that for each s ∈ S we have (i) λ(s) = in iff v(φs) = t and
(ii) λ(s) = out iff v(φs) = f . To this end let φs =

∧
(B,s)∈R

∨
a∈B ¬a be the

acceptance condition of s.
◦ It holds that λ(s) = in (i.e. v(s) = t) iff for all (B, s) ∈ R there exists

b ∈ B s.t. λ(b) = out iff for all (B, s) ∈ R there exists b ∈ B s.t. v(b) = f iff
v(φs) = t.

◦ On the other hand, λ(s) = out (i.e. v(s) = f) iff there exists (B, s) ∈ R s.t.
for all b ∈ B: λ(b) = in iff there exists (B, s) ∈ R s.t. for all b ∈ B: v(b) = t
iff v(φs) = f .

• Finally let σ = cf. We first assume that λ ∈ cfL(F ) and show that v ∈ cf(D).
Consider s ∈ S and the acceptance condition φs =

∧
(B,s)∈R

∨
a∈B ¬a. If v(s) = t

we have that λ(s) = in and thus that for all (B, s) ∈ R there exists b ∈ B s.t.
λ(b) ̸= in. The latter holds iff for all (B, s) ∈ R there exists b ∈ B s.t. v(b) ̸= t
iff φv

s is satisfiable. If v(s) = f we have that λ(s) = out and thus that there
exists (B, s) ∈ R s.t. for all b ∈ B: λ(b) = in. The latter holds iff there exists
(B, s) ∈ R s.t. for all b ∈ B: v(b) = t iff φv

s is unsatisfiable. We thus obtain that
v ∈ cf(D).

Now we assume v ∈ cf(D) and show that λ ∈ cfL(F ). That is for each s with
λ(s) = in we have φv

s is satisfiable and, as argued above, that for all (B, s) ∈ R
there exists b ∈ B s.t. λ(b) ̸= in. Moreover for each s with λ(s) = out we have
φv
s is unsatisfiable and, as argued above, that there exists (B, s) ∈ R s.t. for all

b ∈ B: λ(b) = in. We obtain λ ∈ cfL(F ).

Proof of Proposition 4.10

We show that for each SETAF F the set admL(F ) satisfies the conditions of the
proposition. fonditions (1)–(3) are by the fact that admL(F ) ⊆ cfL(F ).

For condition (4), let λ, λ′ ∈ admL(F ) with λin ∩ λ′
out = {} (since each admissible

labelling defends itself, λ′
in ∩ λout = {}). Thus, λ∗ = (λin ∪ λ′

in, λout ∪ λ′
out, λundec ∩

λ′
undec) is a well-defined labelling. Consider that λ∗(a) = in, that is, either λ(a) = in

or λ′(a) = in. Since λ, λ′ are admissible labellings, for each conflict (B, a) there exists
b ∈ B s.t. λ(b) = out in the former case and λ′(b) = out in the latter case. Thus, for
each conflict (B, a) there exists b ∈ B s.t. λ∗(b) = out. Moreover, if λ∗(a) = out there
is an attack (B, a) with B ⊆ λin or B ⊆ λ′

in, that is, there exists a conflict (B, a)
such that B ⊆ λ∗

in. On the other hand, assume that λin ∩ λ′
out ̸= {}, for instance,

a ∈ λin ∩ λ′
out. Therefore, a ∈ λ∗

in and a ∈ λ∗
out. That is, λ∗ is not a well-defined
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labelling.
For condition (5), let λ∗ = (λ′

in∪C, λ′
out, λ

′
undec\C). By the definition of C, it is easy

to check that λ∗
in ∩λ∗

out = {}, λ∗
in ∩λ∗

undec = {}, and λ∗
out ∩λ∗

undec = {} hold. Thus, λ∗

is a well-defined labelling. In the definition of admissible labelling there is no condition
for label an argument undec. Further, λ∗

out = λ′
out, λ

′
in ⊆ λ∗

in and λ′ is an admissible
labelling, therefore, the condition for arguments which are labelled out in λ∗ are also
satisfied. For argument a with λ∗(a) = in either a ∈ λ′

in or a 7→ in ∈ C ⊆ λin. Each
of them implies that for each conflict (B, a) there exists b ∈ B s.t. λ∗(b) = out, since
λ, λ′ are admissible labelling and λout ⊆ λ′

out. Thus, λ
∗ is an admissible labelling.

For condition (6), first we show that λ′
in ∩ (λ′

out ∪ C) = {}. To this end, let a ∈ C
we show that a ̸∈ λ′

in. Since C ⊆ λout, there exists (B, a) ∈ R such that λ(b) = in

for all b ∈ B. By the assumption of this condition, namely λin ⊆ λ′
in, the relation

B ⊆ λ′
in holds. Thus, λ′(a) ̸= in. Since λ′ ∈ admL(F ), to show that λ∗ ∈ admL(F )

it is enough to show that each a ∈ C is actually labelled out in λ∗. This condition is
trivially satisfied, because C ⊆ λout, λin ⊆ λ′

in and λ′ ∈ admL(F ).
For condition (7), it is enough to show that λin ∩ λ′

out = {}, λin ∩ (ArgsL \ (λin ∪
λ′
out)) = {}, and λout∩ (ArgsL \ (λin∪λ′

out)) = {}. Let λ∗ = (λin, λ
′
out,ArgsL \ (λin∪

λ′
out)). For a with λ∗(a) = in (a ∈ λin) it holds that a ̸∈ λout, because λ ∈ admL(F ).

Further, since λ′
out ⊆ λout, a ̸∈ λ′

out, that is, a ̸∈ λ∗
out. If a ∈ λ∗

out (a ∈ λ′
out), since

λ′
out ⊆ λout, a ∈ λout. Therefore, a ̸∈ λin as λ ∈ admL(F ). Thus, a ̸∈ λ∗

in. Moreover,
a is included either in λ∗

in or λ∗
out if and only if a ̸∈ (ArgsL \ (λin ∪ λ′

out)). On the
other hand, conditions of admissible labelling for arguments labelled out in λ∗ are
trivially satisfied as λ∗

in = λin and λ∗
out ⊆ λout. Towards a contradiction, assume that

λ∗(a) = in and there exists conflict (B, a) s.t. for each b ∈ B, λ∗(b) ̸= out, that
is, λ∗(b) = in/undec. If λ∗(b) = in, then λ(b) = in and if λ∗(b) = undec, then
b ̸∈ λ′

out ⊆ λout. That is, λ(b) ̸= out for each b ∈ B. This is a contradiction with the
assumption that λ ∈ admL(F ).

For condition (8) let λ = (∅, ∅,ArgsL). The conditions of admissible labelling for
arguments labelled with in or out in λ are satisfied, there is no such an argument, and
there is no condition for arguments labelled with undec in the conditions of admissible
labelling. Thus, λ ∈ admL(F ).

Proof of Theorem 5.3

Σσ
SETADF ⊆ Σσ

SFADF follows from Lemma 5.1. For showing Σadm
SETADF ⊂ Σadm

SFADF, let
V = {{a 7→ u, b 7→ u}, {a 7→ u, b 7→ f}, {a 7→ t, b 7→ f}} be an interpretation-set. A
witness of adm-realizability of V in SFADFs is D = ({a, b}, {φa = ¬a ∨ ¬b, φb =
⊥}). However, V is not realizable by any SETADF for admissible interpretations
(cf. Proposition 4.10). To show Σσ

SFADF ̸⊆ Σσ
SETADF, for σ ∈ {stb,mod, com, prf, grd},

let V = {{a 7→ f}}. The interpretation V is σ-realizable in SFADFs for σ ∈
{stb,mod, com, prf, grd}, and a witness of σ-realizability of V in SFADFs is D =
({a}, {φa = ⊥}). However, V cannot be realized by any SETADF for semantics
σ ∈ {adm, stb, prf, grd} (cf. Propositions 4.2–4.9). The result for σ = mod follows from
Proposition 2.13 and for σ = com by |V| = 1 (i.e. complete and grounded semantics
have to coincide). Further, cf(D) is not cf-realizable with any SETADF.

29


	Introduction
	Argumentation Frameworks
	Argumentation Frameworks with Collective Attacks
	Abstract Dialectical Frameworks
	Support-free ADFs

	Embedding SETAFs in ADFs
	3-valued Signatures of SETAFs
	On the Relation between SETAFs and Support-Free ADFs
	Symmetric Argumentation Frameworks
	Related Work
	Conclusion
	Full Proofs

