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Abstract

Motivated by a problem in computational complexity, we consider the behavior
of rank functions for tensors and polynomial maps under random coordinate restric-
tions. We show that, for a broad class of rank functions called natural rank functions,
random coordinate restriction to a dense set will typically reduce the rank by at most
a constant factor.
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1 Introduction
Different but equivalent definitions of matrix rank have been generalized to truly different
rank functions for tensors. Although they have proved useful in a variety of applications,
the basic theory of these rank functions, describing for instance their interrelations and
elementary properties, is still far from complete. Without going into the definitions, we
mention below a number of these rank functions to indicate some of the contexts in which
they have appeared.

The slice rank of a tensor was introduced by Tao [15, 16] to reformulate the break-
through proof of the cap set conjecture due to Croot, Lev and Pach [3] and Ellenberg
and Gijswijt [4]. Slice rank is generalized by the partition rank, which was introduced by
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Naslund to prove bounds on the size of subsets of Fnq without k-right corners [12], as well as
provide exponential improvements on the Erdős–Ginzburg–Ziv constant [11]. The analytic
rank is based on a measure of equidistribution for multilinear forms associated to tensors
over finite fields, and was introduced by Gowers and Wolf to study solutions to linear
systems of equations in large subsets of finite vectors spaces [6]. Geometric rank, defined
and studied by Kopparty, Moshkovitz and Zuiddam in the context of algebraic complexity
theory [10], gives a natural analogue of analytic rank for tensors over infinite fields.

Closely related to these rank functions for tensors are notions of rank for multivariate
polynomials. A notion of polynomial rank akin to the partition rank of tensors was used
already in the ’80s by Schmidt in work on algebraic geometry [13], and has since been
re-discovered and proven useful on several occasions. Work on the Inverse Theorem for the
Gowers uniformity norms led Green and Tao to define the notion of degree rank [7], which
quantifies how hard it is to express the considered polynomial as a function of lower-degree
polynomials; this notion was shown to be closely linked to equidistribution properties
of multivariate polynomials over prime fields Fp. Tao and Ziegler [17] later studied the
relationship between the degree rank of a polynomial and its analytic rank, defined as the
(tensor) analytic rank of its associated homogeneous multilinear form, and exploited their
close connection in order to prove the general case of the Gowers Inverse Theorem over Fnp .

Recent work on constant-depth Boolean circuits by Buhrman, Neumann and the present
authors gave rise to a problem on equidistribution properties of higher-dimensional poly-
nomial maps under biased input distributions [1]. This motivated a new notion of analytic
rank for (high-dimensional) polynomial maps and prompted the study of rank under ran-
dom coordinate restrictions, which is the topic of this work.

Common to the tensors, polynomials and polynomial maps considered here is that they
can be viewed as maps on FX , where F is a given field and X is a finite set indexing the
variables. The main question we address is whether, if a map φ on FX has high rank, then
most of its coordinate restrictions φ|I on FI also have high rank for dense subsets I ⊆ X
(where we also respect the product structure of X in the case of tensors). Our main results
show that this is the case for all “natural” rank functions, which include all those mentioned
above.

2 The matrix case
It is instructive to first consider the case of matrices, which is simpler and illustrates the
spirit of our main results. For a matrix A ∈ Fn×n and subsets I, J ⊆ [n], denote by A|I×J
the sub-matrix of A induced by the rows in I and columns in J . Given σ ∈ (0, 1), consider
a random set I ⊆ [n] containing each element independently with probability σ; we write
I ∼ [n]σ when I is distributed as such. Note that, if I ∼ [n]ρ and J ∼ [n]σ are independent,
then I ∪ J ∼ [n]η with η = 1− (1− ρ)(1− σ).

Proposition 2.1. For every σ ∈ (0, 1] there exists κ ∈ (0, 1] such that for every matrix
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A ∈ Fn×n we have

PrI∼[n]σ
[

rk(A|I×I) ≥ κ · rk(A)
]
≥ 1− 2e−κ rk(A).

Proof: Write ρ = 1 −
√

1− σ and let J, J ′ ∼ [n]ρ be independent random sets; note that
J ∪ J ′ ∼ [n]σ. Let r = rk(A), and fix a set S ⊆ [n] of r linearly independent rows of A.
By the Chernoff bound [8], the probability that the set J satisfies |J ∩ S| < ρr/2 is at
most e−ρr/8.

Now let B := A|(J∩S)×[n] be the (random) sub-matrix of A formed by the rows in J ∩S.
Since its rows are linearly independent, the rank of B is precisely |J∩S|; let T ⊆ [n] be a set
of |J ∩ S| linearly independent columns of B. Then the probability that |J ′ ∩ T | < ρ|T |/2
is at most e−ρ|T |/8, and the rank of B|(J∩S)×(J ′∩T ) = A|(J∩S)×(J ′∩T ) is equal to |J ′ ∩ T |.
It follows from the union bound and monotonicity of rank under restrictions that, with
probability at least 1− 2e−ρ

2r/16, the principal sub-matrix of A induced by J ∪ J ′ has rank
at least ρ2r/4. The result now follows since J ∪ J ′ ∼ [n]σ. �

3 Main results
Here we generalize Proposition 2.1 to tensors and polynomial maps for rank functions
that satisfy a few natural properties, namely “sub-additivity”, “monotonicity”, a “Lipschitz
condition” and, in the case of polynomial maps, “symmetry” (see below for the precise def-
initions). Those functions which satisfy these properties are called natural rank functions ;
we note that all notions of rank mentioned in the Introduction are natural rank functions.

Since our results are independent of the field considered (which can be finite or infinite),
we will always denote it by F and suppress statements of the form “let F be a field” or “for
every field F”.

3.1 Tensors

We begin by considering the case of tensors.

Definition 3.1. For finite sets X1, . . . , Xd ⊂ N, a d-tensor is a map T : X1×· · ·×Xd → F.
We will associate with any d-tensor T a multilinear map FX1×· · ·×FXd → F and an element
of FX1 ⊗ · · · ⊗ FXd in the obvious way, and also denote these objects by T .

For a tensor T as in Definition 3.1 and subsets I1 ⊆ X1, . . . , Id ⊆ Xd, denote I[d] =
I1 × · · · × Id and write T|I[d] for the restriction of T to I[d]. If T is viewed as an element of
FX1 ⊗ · · · ⊗ FXd , then T|I[d] is simply a sub-tensor.

We denote the set of d-tensors over F with finite support by (F∞)⊗d; note that the
tensors defined on finite sets naturally embed into this set, and that the rank functions for
tensors discussed above are invariant under this embedding. The notions of tensor rank
we will consider here are those called natural rank functions as defined below:
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Definition 3.2. We say that rk : (F∞)⊗d → R+ is a natural rank function if it satisfies
the following properties:

1. Sub-additivity:
rk(T + S) ≤ rk(T ) + rk(S) for all T, S ∈ (F∞)⊗d.

2. Monotonicity under restrictions:
rk
(
T|I[d]

)
≤ rk(T ) for all T ∈ (F∞)⊗d and all sets I1, . . . , Id ⊂ N.

3. Restriction Lipschitz property:
rk
(
T|J[d]

)
≤ rk

(
T|I[d]

)
+
∑d

i=1 |Ji \ Ii| for all T ∈ (F∞)⊗d and all sets I1 ⊆ J1, . . . , Id ⊆
Jd.

Our main result in this setting concerns how natural rank functions behave under
random coordinate restrictions. Intuitively, it shows that random restrictions of high-rank
tensors will also have high rank with high probability. It can be formally stated as follows:

Theorem 3.3. For every d ∈ N and σ ∈ (0, 1], there exist constants C, κ > 0 such that
the following holds. For every natural rank function rk : (F∞)⊗d → R+ and every d-tensor
T ∈

⊗d
i=1 Fni we have

PrI1∼[n1]σ ,...,Id∼[nd]σ
[

rk
(
T|I[d]

)
≥ κ · rk(T )

]
≥ 1− Ce−κ rk(T ).

From this theorem one can easily deduce a more symmetric version, which is valid in
the standard case of “cubic” tensors where every row is indexed by the same set:

Corollary 3.4. For every d ∈ N and σ ∈ (0, 1], there exist constants C, κ > 0 such that
the following holds. For every natural rank function rk : (F∞)⊗d → R+ and every d-tensor
T ∈ (Fn)⊗d we have

PrI∼[n]σ
[

rk
(
T|Id
)
≥ κ · rk(T )

]
≥ 1− Ce−κ rk(T ).

3.2 Polynomial maps

Next we consider the setting of polynomials and higher-dimensional polynomial maps.

Definition 3.5. A polynomial map is an ordered tuple φ(x) =
(
f1(x), . . . , fk(x)

)
of poly-

nomials f1, . . . , fk ∈ F[x1, . . . , xn]. We identify with φ a map Fn → Fk in the natural way.
The degree of φ is the maximum degree of the fi.

For a polynomial map φ : Fn → Fk and a set I ⊆ [n], define the restriction φ|I : FI → Fk
to be the map given by φ|I(y) = φ(ȳ), where ȳ ∈ Fn agrees with y on the coordinates in I
and is zero elsewhere.

We denote the space of all polynomial maps φ : Fn → Fk of degree at most d by
Pol≤d(Fn,Fk), and write

Pol≤d(F∞,Fk) =
⋃
n∈N

Pol≤d(Fn,Fk).

The notions of rank we consider are defined below:
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Definition 3.6. We say that rk : Pol≤d(F∞,Fk) → R+ is a natural rank function if it
satisfies the following properties:

1. Symmetry:
rk(φ) = rk(−φ) for all φ ∈ Pol≤d(F∞,Fk).

2. Sub-additivity:
rk(φ+ γ) ≤ rk(φ) + rk(γ) for all φ, γ ∈ Pol≤d(F∞,Fk).

3. Monotonicity under restrictions:
rk(φ|I) ≤ rk(φ) for all φ ∈ Pol≤d(F∞,Fk) and all sets I ⊂ N.

4. Restriction Lipschitz property:
rk(φ|I∪J) ≤ rk(φ|I) + |J | for all φ ∈ Pol≤d(F∞,Fk) and all sets I, J ⊂ N.

Our second main result shows that random restrictions of a high-rank polynomial map
will also have high rank with high probability. Its formal statement is given as follows:

Theorem 3.7. For every d ∈ N and σ, ε ∈ (0, 1], there exist constants κ = κ(d, σ) > 0
and R = R(d, σ, ε) ∈ N such that the following holds. For every natural rank function rk :
Pol≤d(F∞,Fk)→ R+ and every map φ ∈ Pol≤d(Fn,Fk) with rk(φ) ≥ R, we have

PrI∼[n]σ
[

rk(φ|I) ≥ κ · rk(φ)
]
≥ 1− ε.

3.3 The proofs

Whereas the proof of the matrix case (Proposition 2.1) uses in an essential way the fact that
a rank-r matrix contains a full-rank r × r submatrix, an analogous property is not known
to be true in general for tensors and polynomial maps. In fact, it was shown by Gowers
that such a property is false in the case of slice rank for 3-tensors (see [9, Proposition 3.1]).
Karam [9] recently studied the extent for which similar but quantitatively weaker properties
hold for tensor rank functions, but the quantitative bounds obtained are still insufficient
for an argument akin to that of Proposition 2.1 to work.

The proofs of our main theorems must then proceed differently from the simpler case
of matrices. Our proof of Theorem 3.3 (the tensor case) uses instead ideas from probabil-
ity theory, in particular concerning concentration inequalities on product spaces; it relies
mainly on an inequality of Talagrand [14, Theorem 3.1.1].

The proof of Theorem 3.7 (for polynomial maps) is again very different from the tensor
case, which implicitly makes use of multilinearity; it relies instead on results from the
analysis of Boolean functions, in particular Friedgut’s Junta Theorem [5], taken together
with elementary (but somewhat involved) combinatorial arguments. The full proofs can
be found in the full version of our paper [2].
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