
Quantifying Grover speed-ups beyond asymptotic
analysis
Chris Cade1,2, Marten Folkertsma3, Ido Niesen1,2, and Jordi Weggemans3

1QuSoft & University of Amsterdam (UvA), Amsterdam, the Netherlands
2Fermioniq, Amsterdam, the Netherlands
3QuSoft & CWI, Amsterdam, the Netherlands
September 19, 2023

Run-times of quantum algorithms are often studied via an asymptotic, worst-
case analysis. Whilst useful, such a comparison can often fall short: it is not
uncommon for algorithms with a large worst-case run-time to end up performing
well on instances of practical interest. To remedy this it is necessary to resort to
run-time analyses of a more empirical nature, which for sufficiently small input
sizes can be performed on a quantum device or a simulation thereof. For larger
input sizes, alternative approaches are required.

In this paper we consider an approach that combines classical emulation with
detailed complexity bounds that include all constants. We simulate quantum
algorithms by running classical versions of the sub-routines, whilst simultaneously
collecting information about what the run-time of the quantum routine would
have been if it were run instead. To do this accurately and efficiently for very
large input sizes, we describe an estimation procedure and prove that it obtains
upper bounds on the true expected complexity of the quantum algorithms.

We apply our method to some simple quantum speedups of classical heuristic
algorithms for solving the well-studied MAX-k-SAT optimization problem. This
requires rigorous bounds (including all constants) on the expected- and worst-
case complexities of two important quantum sub-routines: Grover search with
an unknown number of marked items, and quantum maximum-finding. These
improve upon existing results and might be of broader interest.

Amongst other results, we found that the classical heuristic algorithms we
studied did not offer significant quantum speedups despite the existence of a theo-
retical per-step speedup. This suggests that an empirical analysis such as the one
we implement in this paper already yields insights beyond those that can be seen
by an asymptotic analysis alone.

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 1

ar
X

iv
:2

20
3.

04
97

5v
2

 [
qu

an
t-

ph
]

 2
8

Se
p

20
23

https://quantum-journal.org/?s=Quantifying%20Grover%20speed-ups%20beyond%20asymptotic%20analysis&reason=title-click
https://quantum-journal.org/?s=Quantifying%20Grover%20speed-ups%20beyond%20asymptotic%20analysis&reason=title-click

Contents
1 Introduction 3

1.1 Summary of results . 4
1.2 Concurrent work . 5
1.3 A broader perspective . 5
1.4 Methodology . 6
1.5 Previous work . 8

2 Query complexity bounds 9
2.1 Expected query complexity of QSearch . 10
2.2 Worst-case query complexity of QSearch . 14
2.3 Quantum maximum finding QMax . 15

3 Estimating complexities under uncertainty 18
3.1 Estimating the number of marked items . 19
3.2 Unknown number of steps . 22

4 Use-case: max-k-sat 22
4.1 Propositional Boolean Satisfiability (k-SAT) 23
4.2 Quantum heuristics for max-k-sat . 24
4.3 Numerics . 25
4.4 Summary of results . 30

A Detailed analysis of QSearch 34
A.1 Improved bounds . 34
A.2 Success probability . 37
A.3 Expected number of queries . 39
A.4 Worst-case behaviour of QSearchZalka . 43

B Detailed analysis of QMax 45
B.1 Expected number of queries . 45
B.2 Upper bounds to the expected number of queries 47

C Estimators for the expected number of queries for QSearch 49
C.1 Proof of Lemma 7 . 49
C.2 Proof of Lemma 8 . 50
C.3 Estimator for EGrover for all t ≥ 1 . 52
C.4 Estimator for expected number of queries of QSearch 55

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 2

1 Introduction
There is growing motivation to design and evaluate quantum algorithms for commercial appli-
cations in order to assess the potential impact of quantum computers. To determine whether,
or when, a quantum algorithm should be used for a task will involve comparing the candi-
date quantum algorithm, or set of algorithms, to an existing state-of-the-art classical one. A
common approach to benchmark and compare algorithms is to consider their performances
on worst-case instances, by providing upper bounds to their runtimes: bounds that hold for
every possible instance of the problem the algorithm is designed to solve. In this context,
a quantum speedup of a classical algorithm refers to the use of quantum algorithmic tech-
niques that give an improvement over the worst-case runtime of the classical algorithm in
question. In some cases, expected run-times are considered, where the expectation is taken
over the internal (classical or quantum) randomness of the algorithm, and then upper bounds
on this expectation are compared. In even rarer cases, it is possible to rigorously analyse the
average-case complexity of the algorithms, where now the average is taken over the set of
inputs [4].

However, such worst-case (and to a lesser extent, average-case) upper bounds can often be
misleading: it is not uncommon for algorithms with a large worst-case run-time to perform
very well in practice [22, 33].1 For instance, this is especially true of heuristic algorithms,
which are commonly used to solve real-world problems and are often fine-tuned to perform
well on instances of interest, rather than on an artificial instance designed to be as difficult as
possible for the algorithm but that will likely not appear in a natural setting. As such, much
of quantum algorithms research focuses either on exponential quantum speedups (e.g. Shor’s
algorithm), in which case the speedup obtained by the algorithm is unambiguous; or when
only a modest quantum speedup is available, on situations where the run-time of both the
quantum and classical algorithms can be determined in a reasonably tight way: the square-
root speedup obtained by Grover’s algorithm for unstructured search is a simple example of
this. For more complicated (quantum and classical) algorithms, however, it might be that
the run-time suggested by an asymptotic analysis fails to capture the true complexity of
the algorithm on inputs that will be encountered in practice, which can make it difficult to
determine the usefulness of a candidate quantum algorithm over a classical one. A similar
observation was made in [21], where the authors point out that this disconnect is one of the
main reasons that it is so difficult to design quantum algorithms for machine learning and
assess their performance relative to their classical counterparts.

In this paper we continue along a line of work that moves beyond performing purely asymp-
totic analyses of quantum algorithms towards ones of a more empirical nature. In the time
before large fault-tolerant quantum computers become readily available, we suggest that for
the majority of quantum algorithms, an intermediate form of classical simulation + run-time
estimation is possible, and that it can allow for meaningful and informative comparisons to be
made. Our particular approach combines tight asymptotic analysis with classical simulation,
in an attempt to carefully estimate the run-time of quantum algorithms in lieu of actually
being able to run them on a quantum device. Importantly, our methodology is sensitive to
the input given to the quantum algorithm.

To verify the utility of our approach, we perform such an empirical analysis for a set of

1Interestingly, this observation can actually be made rigorous for some algorithms in certain situations [17].

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 3

reasonably simple quantum versions of a classical heuristic algorithm for a particular use-
case: that of MAX-k-SAT. The quantum speedups we obtain are quite typical of quantum
speedups of classical optimisation algorithms: the classical routine repeats a number of steps,
the kth taking some time tk – which will depend on what happened in previous steps –
until convergence; the quantum algorithm does the same, except with each step taking time
now ≈

√
tk. To assess the usefulness of such a quantum algorithm, we must ask: to what

extent does this square-root-like speedup manifest in the algorithm when it is actually run to
convergence? Moreover, it is likely that the behaviour of the algorithm will differ substantially
on different inputs, and hence a further question we should ask is: how much of a speedup does
the quantum algorithm obtain on a representative or real-world input? We seek to answer
such questions with our empirical approach.

1.1 Summary of results
Our main results and contributions are:

• Improved analyses of upper bounds on the expected and worst-case complexities of
Grover search when the number of marked items is unknown including log and constant
factors, improving upon analyses performed in earlier works (e.g. [34, 7]). We also
consider how to optimize the number of classical samples drawn before Grover iterations
are used. Sections 2.1, 2.2.

• Upper bounds on the expected complexity of a quantum maximum finding algorithm,
improving upon those in previous works (e.g. [14, 1]). Section 2.3.

• An estimation procedure that allows us to use the above bounds to obtain estimates of
the expected run-times of repeated calls to a Grover search sub-routine when the number
of marked items cannot be computed exactly (in our classical simulations), something
that is useful (and indeed necessary) for bench-marking quantum algorithms on very
large inputs. The outputs of the procedure come with theoretical guarantees. Section 3.

• A general approach combining the above that allows for rigorous (and efficient) clas-
sical estimation of the run-times of quantum algorithms that make repeated calls to
Grover sub-routines. This is achieved via classical emulation of the underlying quantum
algorithms.

• Two simple quantum heuristic algorithms for MAX-k-SAT, which are basic quantiza-
tions of classical ‘hill climber’ algorithms. Section 4.2.

• We find that the quantum hill climbers obtain favourable scaling compared to their
classical counterparts, but that only one of them (the ‘simple’ hill climber) obtained an
absolute speedup for the problem sizes we considered. We observe that some, but not
all, of the per-step speedup indicated by an asymptotic analysis manifests in the final
behaviours of the algorithms. Section 4.3.

• We verify that our estimation procedure does indeed yield accurate estimates of the
expected run-times of our algorithms when compared to an exact method. Section 4.3.

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 4

1.2 Concurrent work
In a concurrent work [8], we apply our methodology to help design quantum algorithms for
a common task in complex network analysis. The quantitative analysis employed in this
other study is notably more comprehensive than the one employed for the elementary hill-
climbing algorithm examined in this paper, and thus, the two studies are complementary: the
former serves as an introductory exposition to the methodology, while the latter showcases its
effectiveness when utilized for developing quantum algorithms for practical problems. More
specifically, the other work studies the Louvain algorithm2, which forms one of the main
tools for tackling a problem ubiquitous to the study of complex networks: that of community
detection. Together with its descendants, the Louvain algorithm has successfully been used
to study large sparse networks with millions of vertices [6, 13, 20, 27]. In [8], we introduce
several quantum versions of the Louvain algorithm, analyse their asymptotic (worst-case)
complexities, and investigate numerically how they perform on randomly generated networks,
as well as on real-world data sets.

1.3 A broader perspective
We remark that the kind of analysis we perform should in principle be possible for all quan-
tum algorithms that achieve small polynomial speedups over classical ones: we can always
‘simulate’ the quantum algorithm by running its classical equivalent (which will be only poly-
nomially slower!), and simultaneously estimate how long the quantum routine would have
made if it were run instead. All that is required are appropriately tight bounds (including
constants, etc.) on the run-times of the quantum sub-routines used by the algorithm. With
all of the above in mind, the semi-empirical approach to practical quantum algorithm design
and analysis that we use fits into a larger framework that follows the following structure:

• Design a quantum algorithm or collection of algorithms, perhaps via speedup of an
existing classical algorithm.

• Choose a measure of complexity for the algorithms, ideally one that is agnostic about
the capabilities of future hardware3. This could be for instance the number of time-steps,
or the number of queries to the input or to some function.

• ‘Simulate’ the quantum algorithms on inputs of interest by replacing the quantum
routines with their classical counterparts, and instead collect information to estimate
what the quantum complexities would have been if those sub-routines were used instead.
This will require one to obtain or prove (ideally tight) bounds on the worst/expected-
case complexities of the quantum subroutines used by the algorithms.

• Use these empirical results to inform the choice or design of the quantum algorithms.
For instance, one might observe that a particular quantum algorithm can be made faster
in practice by simplifying it and sacrificing some asymptotic speedup.

2The algorithm takes the name of the city in which it was developed. The original paper describing the
method has been cited over 15,000 times, and the algorithm itself can be found in all popular graph/network
analysis software packages.

3For reasons explained in Section 1.4.

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 5

As we will see in the sections that follow, there are further considerations that must be
taken into account that can prove to be tricky even for simple algorithms such as the ones we
consider, suggesting that such an analysis is unlikely to be entirely straightforward in general.
Nevertheless, a very fruitful next step could be to build such ‘pseudo-simulation’ of quantum
algorithms into any of the number of quantum programming languages now available [5, 15, 23,
26, 32], which might allow for these sorts of empirical analyses to be performed more quickly
and painlessly, and hence facilitate faster quantum algorithm development and prototyping.

1.4 Methodology
Here we describe our methodology for comparing the run-times of quantum and classical algo-
rithms. The most obvious way to do this is to run both algorithms on their respective devices
and measure the time they take to run to completion. Unfortunately, quantum hardware
is currently not sufficiently developed to be able to run any of the algorithms we describe,
and therefore such a comparison is not possible at this point, and will likely not be for the
foreseeable future. An alternative approach is to simulate the quantum algorithm at the qubit
level on classical hardware, count the number of quantum gates applied and then compare
this to the required number of classical gates. This is often the approach currently taken with
heuristic quantum algorithms such as VQE [29, 12, 9] and QAOA [35, 30]. However, such
simulations are almost always going to be restricted to a few qubits, which means that a com-
parison between the classical and quantum algorithms can only be made for very small input
sizes. Since we are interested in investigating how well the classical and quantum versions of
our algorithms compare on actual datasets, which will generally be very large, this method of
comparison is insufficient.

Moreover, since quantum technologies are still in their infancy, it is not unlikely that they
will improve significantly over the coming years. With this prospect in mind, a comparison
that depends heavily on the properties of current-day (or even current-day predictions of)
quantum hardware might become obsolete in the near future. For this reason, we aim to
make our comparisons architecture independent : this will in particular mean not explicitly
counting the number of gates needed to implement the algorithms, or taking into account
the overheads from error correction. Hence, our comparisons will be of a more qualitative
nature than a quantitative one: we are interested, in principle, in how much of the speedup
suggested by an asymptotic analysis manifests in the final behaviour of the algorithm – if no
speedup appears at this stage, then it certainly won’t appear after taking into account the
aforementioned overheads.

In lieu of estimating actual running times for our algorithms, we fix a suitable notion of com-
plexity and use this to directly compare the classical and quantum algorithms. In particular
we opt to count the number of calls made to a particular function (in fact, the very function
we are trying to maximise). This essentially equates to measuring query complexity, where we
count queries to a function rather than to, say, the input. Counting the number of function
calls of course does not capture every costly component of the algorithms that we consider:
there are parts that add to the run-time but do not require function calls. However, as is
common in the study of query complexity, we choose a suitable measure of complexity so that
these parts are those for which we do not obtain any quantum speedup, and hence cost the
same quantumly as they do classically – things such as updating what is stored in memory

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 6

after completing a step of the algorithm. From the perspective of quantum speedups, compar-
ing the number of function calls made by the quantum and classical algorithms can therefore
serve as a proxy for how much of a speedup we can expect to gain on the part of the classical
algorithm that admits a speedup. Finally, we note that choosing this complexity measure
preserves the architecture independence that we strive for in our analysis, by, for example,
ignoring precisely how long a memory update takes, or how many items can be retrieved from
memory in a single computational ‘step’.

For simplicity, we focus our attention on quantum algorithms that are composed of a number
of steps, each of which consists of some classical computation as well as one or more calls
to a Grover search on a list containing an unknown number of marked items, and/or to a
quantum maximum-finding sub-routine4. The quantum algorithms for MAX-SAT discussed
in Section 4 are examples of such an algorithm. We consider situations in which the list itself
and the number of marked items in it will differ for each step, and in particular will depend on
the outcome of the calls that came before it, making the behaviour of the algorithm sensitive
to the input itself, as well as the (possibly random) outcomes of the processing during each
step. Precisely, we consider quantum algorithms with the structure of Algorithm 1.

Algorithm 1 Generic quantum algorithm structure
1: Input X, Memory M
2: for k = 1, . . . , T do
3: Do some classical processing on X and M , resulting in some list Lk containing tk

marked items.
4: Perform either one or more (perhaps nested) Grover searches with an unknown number

of marked items on Lk, or run quantum maximum-finding on the list Lk, to obtain some
item xk.

5: Do some more classical processing given xk, update M .
6: end for

In order to estimate the run-time of such an algorithm given some particular input we
would, following our approach, execute all steps except step 4 of Algorithm 1 as they would
normally be executed classically, but then replace the step 4 with its classical alternative, and
instead estimate how long it would have taken if the quantum routine were called. In this
way, we can estimate the run-times for different inputs of any quantum algorithm that follows
this basic structure.

As we will see in Section 2, even to estimate the complexities of algorithms that make use
only of Grover search and quantum maximum finding already requires a somewhat substantial
effort. There we prove rigorous upper bounds (including constants) on the expected and
worst-case query complexities of Grover search with an unknown number of marked items –
something that, to our knowledge, has not been done elsewhere.5. Using these bounds, we

4I.e. the algorithm looks for either some solution at each step (Grover search), or the best one (quantum
maximum-finding).

5Not for the expected complexity, and for the worst-case complexity not in a way that is sufficient to esti-
mate the number of queries made by the quantum algorithm, including all constant and logarithmic overheads,
that holds for all input sizes

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 7

obtain bounds on the expected complexity of quantum maximum finding, improving upon
previous results from the literature.

Our approach can of course be extended to more complicated algorithms that make use
of different quantum sub-routines by proving analogous bounds for those sub-routines. Here,
however, we keep our focus narrowly on quantum algorithms of the simple structure described
above, so that we can apply and demonstrate the usefulness of our approach.

Finally, we note that the run-time estimates for the steps in line 4 will depend on the
number tk of marked items in the list Lk; however, it might well be that we don’t know how
many marked items are there during any one step, and moreover this could be prohibitively
time-consuming to compute. In such a situation we may be forced to estimate how many
marked items there are, and this will introduce some error into our run-time estimates that
we have to handle carefully. For instance, an unbiased estimate of the number of marked
items in a list can give us a biased estimate for the run-time of Grover search – we discuss
this and other considerations in more detail in Section 3.

1.5 Previous work
There have been an increasing number of papers that perform precise resource estimates for a
number of quantum algorithms, mostly with a focus on algorithms for simulation of physical
systems [28, 18, 31]. Others, such as [3], have investigated what impact overheads such as
error-correction might have on potential quantum speedups, in this case concluding that, at
least in the near-term, quadratic or small polynomial speedups are unlikely to manifest in
practice. Finally, Campbell et al. [11] performed a rigorous analysis of the potential speedups
achievable by quantum algorithms for solving constraint satisfaction problems. They consid-
ered upper bounds on the run-times of both a naive application of Grover search as well as an
optimized implementation of a more sophisticated quantum algorithm for backtracking due
to Montanaro [19], taking into account realistic properties of near-term as well as future hard-
ware. They then compared these run-times to the performance of state-of-the-art classical
algorithms in an effort to understand when quantum algorithms might provide a performance
advantage, and what resources would be required for this.

Our current work is similar in that we also use rigorous upper bounds on the complexities
of our quantum sub-routines, although we are often more interested in expected complexities.
Moreover, we attempt to perform an analysis that is architecture independent, whereas Camp-
bell et al. were interested in hardware properties. We also consider quantum algorithms whose
run-times cannot be analysed ahead of time, and which must be implemented, or simulated,
in order to discover the speedups (or lack thereof) that they might achieve in practice.

There have also been works that aim to prove rigorous upper bounds on the complexities
of various Grover search routines. For example, Zalka [34] performed a careful analysis to
upper-bound the number of Grover iterations performed in the worst-case on a list with an
unknown number of marked items. We make use of this result, and improve upon it, by
extending the analysis to consider the expected number of queries made by the algorithm,
which requires substantially more effort to bound (tightly). Finally, we note that our analysis
holds for all input sizes, whereas (as we understand it) Zalka’s result applies only in the limit
of large input size.

More recently, an arxiv preprint [24] appeared that claimed that Grover’s algorithm offers
no quantum advantage. That paper explores the question of whether one would expect a

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 8

speedup from applying Grover search in a different way than we do. We consider the speedup
obtained by Grover vs. it’s classical counterpart - i.e. brute-force search using the same query
oracle that Grover has access to. They consider the question of whether Grover’s algorithm
itself can be classically simulated in practice whilst retaining the square-root speedup, which
essentially boils down to studying the difficulty in classically simulating coherent calls to the
oracle. It would be interesting (but far beyond the scope of this work) to add this approach
to the toolbox when studying whether one can expect to obtain a speedup in practice via
application of Grover-type quantum algorithms. The remainder of their paper considers the
effects of noise on the performance of Grover’s algorithm, which we explicitly avoided in our
analysis.

Organization
We begin in Section 2 by explicitly describing an implementation of Grover search with an
unknown number of marked items followed by an implementation of a quantum maximum
finding routine. We then derive tight upper bounds, including all constants, for the expected
and worst-case complexities of these quantum sub-routines. In Section 3, we consider how
to apply these bounds for a particular input without knowing ahead of time the parameters
needed to compute them, and propose an estimation procedure that deals with this uncer-
tainty. Finally, in Section 4, we apply our methodology to the use-case of MAX-SAT, and
present our numerical results.

2 Query complexity bounds
In this section and the next we introduce the tools that form the backbone of our methodology
for estimating the run-times of quantum algorithms, in the sense described above. The two
main tools that we will require are: a set of rigorous upper bounds on the expected- and
worst-case query complexities of Grover search with an unknown number of marked items and
quantum maximum-finding (Section 2), and some technical results that allow us to estimate
these complexities even when the exact number of marked items is unknown to us (Section 3).

As mentioned, our main quantum sub-routine will be a Grover search with an unknown
number of marked items – which we shall refer to as QSearch – that can find and return a

marked item from a list L of length |L| using an expected O

(√
|L|
t

)
number of queries, when

there are t marked items in L:

Lemma 1 (Grover’s search with an unknown number of marked items [7]). Let L be a list
of items, and t the (unknown) number of ‘marked items’. Let Og |xi⟩ |0⟩ = |xi⟩ |g(xi)⟩ be an
oracle that provides access to the Boolean function g : [|L|] → {0, 1} that labels the items
in the list. Then there exists a quantum algorithm QSearch(L, ϵ) that finds and returns an
index i such that g(xi) = 1 with probability at least 1− ϵ if one exists and requires an expected
number O(

√
N/t log(1/ϵ)) queries to Og and O(

√
N/t log(N/ϵ)) other elementary operations.

If no such xi exists, the algorithm confirms this and to do so requires O(
√

N log(1/ϵ)) queries
to Og and O(

√
N log(N/ϵ)) other elementary operations.

We will also find the following variant of Grover search useful in proving our bounds.

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 9

Lemma 2 (Exact Grover search [16]). Let L be a list of items, and t > 0 the known number of
‘marked items’. Let Og |xi⟩ |0⟩ = |xi⟩ |g(xi)⟩ be an oracle that provides access to the Boolean
function g : [|L|] → {0, 1} that labels the items in the list. Then there exists a quantum
algorithm ExactQSearch(L, t) that finds and returns an index i such that g(xi) = 1 with
certainty. To do so, the algorithm makes O(

√
N/t) queries to Og and O(

√
N log(N)) other

elementary operations.

Finally, we will make use of the quantum maximum-finding algorithm of [14]

Lemma 3 (Quantum maximum-finding [14]). Let L be a list of items of length |L|, with each
item in the list taking a value in an ordered set, to which we have coherent access in the form
of a unitary that acts on basis states as

OL |x⟩ |0⟩ = |x⟩ |L[x]⟩ .

Then there exists a quantum algorithm QMax(L, ϵ) that will return arg maxx L[x] with proba-
bility at least 2/3 using at most O(

√
|L|) queries to OL (i.e. to the list L) and O(

√
|L| log |L|)

elementary operations. By repeating the algorithm log(1/ϵ) times, the probability of success
can be amplified to 1− ϵ.

In the sections that follow we carefully bound the expected and worst-case query com-
plexities, including all constants, of QSearch on a list with an unknown number of marked
items, and then of QMax. We consider two different implementations of QSearch, one that
performs better in the expected case, the other better in the worst case.

The implementation of QSearch uses both queries to the function g (classical queries) and the
oracle Og (quantum queries). Typically, the oracle Og can be constructed from a reversible
classical circuit implementing g, in which case a single query to Og will generally require two
queries to g (to compute and uncompute garbage). When we refer to queries, we will always
mean queries to g itself. A query to Og will then correspond to potentially multiple queries
to g, and will be weighed with a constant cq denoting the number of queries made to g per
query to Og. Generally speaking, and for the case of MAX-SAT discussed in Section 4, cq = 2
as mentioned above.

For notation, we will use E to denote an expected number of queries to g, and W for
worst-case, with the name of the algorithm in question in the subscript. E.g. if we run
QSearch on a list L of length |L| with t marked items and a success probability of at least
1 − ϵ, then the number of queries will be denoted by EQSearch(|L|, t, ϵ) in the expected case,
and by WQSearch(|L|, ϵ) in the worst-case.

2.1 Expected query complexity of QSearch
Our implementation of QSearch is based on the implementation of Boyer et al. [7], which
takes as input a list L of length |L| and a unitary/oracle that gives coherent access to the
function g : L → {0, 1}. Let t = |{x ∈ L : g(x) = 1}| be the unknown number of marked
items in L, which is assumed to be ≤ 3|L|/4. We first introduce the algorithm QSearch∞,
which consists of the following five steps:

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 10

1. Set λ = 6/5, and initialize6 m = λ.

2. Choose j uniformly at random from the set of non-negative integers smaller than m.

3. Apply j Grover iterations to the uniform superposition of all items in the list

4. Observe the list register.

5. If the observed item is marked, return it and exit; otherwise, set m = min(λm,
√
|L|),

and go back to step 2.

Note that QSearch∞ will always find a marked item if there is one, but will run forever if
there are no marked items. To obtain an algorithm with a finite stopping time one can add an
appropriate time-out, in which case the algorithm has some probability of failing (reporting
no marked items when there are in fact some). Boyer et al. note that the case t > 3|L|/4 can
be disposed of in constant time using classical sampling. In order to simulate the behaviour
of above algorithm numerically, we must include the classical sampling and time-out features
explicitly.

In fact, in Appendix A.1 we show that it is not necessary to assume 0 < t ≤ 3|L|/4,
and therefore the classical sampling part is optional. However, in case of many marked
items, drawing classical samples is more efficient than applying Grover iterations, and for this
reason we keep the classical sampling phase in our implementation of QSearch below, with
the number of classical samples Nsamples as a hyperparameter. We discuss how to pick an
optimal Nsamples in Section 2.1.2.

2.1.1 Implementation

We now give our implementation of QSearch(L, Nsamples, ϵ) Here, L is the list that contains
marked and unmarked items, Nsamples is the number of classical samples we take and 1− ϵ is
the required lower bound for the success probability. We also define λ = 6/5 and α = 9.2.

Our implementation works as follows. After sampling at most Nsamples items from L
classically, we execute Nruns Grover runs, where a single Grover run is an application of
QSearch∞ with a time-out, given by Qmax = α

√
|L| queries, i.e. lines 8 - 17 of Algorithm 2.

The number of runs depends on the desired success probability: Nruns = ⌈log3(1/ϵ)⌉. A single
application of QSearch∞ with timeout consists of several Grover cycles. That is, for a single
run of QSearch∞ with timeout, we first initialize m = λ, and then repeatedly (i) pick an
non-negative integer j less than m, (ii) do j Grover iterations and (iii) measure, and if we
don’t find a marked item we increase m by a factor of λ. Steps (ii) - (iii) will be referred to
as a Grover cycle, see Algorithm 3. Finally, a single application of the Grover iterate7 will be
referred to as a Grover iteration.

In Appendix A (precisely Appendices A.1-A.3) we show that QSearch, as given by Algo-
rithm 2, has the properties stated in the lemma below.

6Boyer et al. initialize λ = 1, which means they always start with one sample drawn uniformly at random.
We choose to start with λ = 6/5.

7The unitary that first reflects through the unmarked states followed by a reflection through the uniform
superposition.

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 11

Algorithm 2 QSearch
1: function QSearch(List L, integer Nsamples, real number ϵ > 0)
2: x← ClassicalSampling(L, Nsamples)
3: if x is marked then
4: return x
5: end if
6: Nruns ← ⌈log3(1/ϵ)⌉, Qmax ← α

√
|L|, r ← 0 ▷ α = 9.2

7: while r < Nruns do
8: m← 6

5 , Qsum ← 0
9: Sample a non-negative integer j less than m uniformly at random

10: while Qsum + j ≤ Qmax do
11: y ← GroverCycle(L, j)
12: if y is marked then
13: return y
14: else
15: Qsum ← Qsum + j + 1 ▷ Add j + 1 quantum queries to total
16: m← min(λm,

√
|L|) ▷ Update max number of iterations next cycle

17: Sample a non-negative integer j less than m uniformly at random
18: end if
19: end while
20: r ← r + 1
21: end while
22: return No marked item found
23: end function

Algorithm 3 Subroutines QSearch
1: function ClassicalSampling(List L, integer Nsamples)
2: k ← 0
3: while k < Nsample do
4: Sample an element x from L uniformly at random
5: if x is marked then
6: return x
7: end if
8: k ← k + 1
9: end while

10: return No marked item found
11: end function
1: function GroverCycle(List L, non-negative integer j)
2: Prepare uniform superposition over all elements of L
3: Do j Grover iterations
4: Measure list-index register
5: return measurement outcome
6: end function

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 12

Lemma 4 (Worst-case expected complexity of QSearch). Let L be a list, g : L → {0, 1}
a Boolean function, Nsamples a non-negative integer and ϵ > 0, and write t = |g−1(1)| for
the (unknown) number of marked items of L. Then, QSearch(L, Nsamples, ϵ) as described by
Algorithm 2 finds and returns an item x ∈ L such that g(x) = 1 with probability at least 1− ϵ
if one exists using an expected number of queries to g that is given by

EQSearch(|L|, t, Nsamples, ϵ) = |L|
t

(
1−

(
1− t

|L|

)Nsamples
)

+
(

1− t

|L|

)Nsamples
cqEGrover(|L|, t) ,

(1)
where

EGrover(|L|, t) ≤ F (|L|, t)

1 + 1
1− F (|L|,t)

α
√

|L|

 , (2)

with

F (|L|, t) =

9
4

|L|√
(|L|−t)t

+
⌈
log 6

5

(
|L|

2
√

(|L|−t)t

)⌉
− 3 ≤ α

√
L|

3
√

t
for 1 ≤ t < |L|

4

2.0344 for |L|
4 ≤ t ≤ |L|.

(3)

If no marked item exists, then the expected number of queries to g equals the number of queries
needed in the worst case (denoted by WQSearch(|L|, Nsamples, ϵ)), which is given by

EQSearch(|L|, 0, Nsamples, ϵ) = WQSearch(|L|, Nsamples, ϵ) ≤ Nsamples + αcq⌈log3(1/ϵ)⌉)
√
|L| .

(4)
In the formulas above, cq is the number of queries to g required to implement the oracle
Og |x⟩ |0⟩ = |x⟩ |g(x)⟩, and α = 9.2.

Note that our obtained expression for EQSearch(|L|, t, Nsamples, ϵ) is actually independent
of ϵ for t > 0 because our upper bound for EGrover(|L|, t) is independent of ϵ, which is a
consequence of the fact that we don’t have a lower bound on the failure probability; see
Appendix A.3 for details. Also, for the case 1 ≤ t ≤ |L|, even though it might appear to be,
the expected number of queries for the classical sampling part is actually not linear in |L|
since the term

(
1−

(
1− t

|L|

)Nsamples
)

contains a factor of t
|L| .

2.1.2 Optimizing Nsamples

As mentioned in the beginning of Section 2.1, the number of classical samples we use for
QSearch is a hyperparameter, and in this subsection we discuss how it can be optimized and
set to improve the performance of the algorithm for different inputs.

Classical sampling requires fewer queries than Grover search does when a large fraction of
the items is marked, whereas it is more efficient to not use classical sampling at all when a
small number of them is marked. When a fraction f of items are marked, then an expected
1/f classical queries will be required to find one. To determine when classical sampling is
more efficient than quantum, we can compare this quantity with the number of queries made
by Grover search. That is, given a list L of size L, we want to find out for what value of f
we have

1
f

= EGrover(|L|, f |L|). (5)

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 13

The fraction where equality is attained we call f0. When f < f0, the Grover part requires
fewer queries than classical sampling does, and therefore setting Nsamples > 0 (i.e. turning
the classical sampling part on) increases the query count compared to having Nsamples = 0.
We can numerically compute f0(|L|) for different values of |L|. We observe the following.

• For |L| ≤ 260, classical sampling always requires fewer queries.

• For |L| ≥ 260, the value for 1/f0 that makes the rightmost inequality in Eq. (5) an
equality is plotted as a function of |L| in Fig. 1a.

20000 40000 60000 80000 100000
|L|

131

132

133

134

135

136

137

1

f0

(a) The value for 1/f0 as a function of the list length
|L| that marks the point beyond which, in expecta-
tion, Grover search requires fewer queries than sam-
pling classically does. In the limit |L| → ∞, there is a
horizontal asymptote at 1/f0 → 131.665.

500 1000 1500 2000
|L|

120

140

160

180

200

NSamples

(b) The optimal setting for Nsamples that minimizes the
expected number of queries of QSearch when we have
no prior knowledge on the number of marked items t,
i.e. every value of t is equally likely.

In practice, we do not know what the fraction of marked items f = t/|L| is. For certain
algorithms, we might have some information about what f can be, and in such cases this
information can be leveraged to our advantage (see e.g. [8]). In case we have no prior knowledge
on the number of marked items at all, we can assume every value of t is equally likely. In this
case, the expected number of queries for QSearch is given by

1
|L|

|L|∑
t=1

EQSearch(|L|, t, Nsamples, ϵ).

Numerically minimizing8 the expression above as function of Nsamples for small list sizes yields
the graph in Fig. 1b, which gives an indication for what settings of Nsamples work well in
practice. For our particular numerical simulations in Section 4.3.3, we set Nsamples = 130.

2.2 Worst-case query complexity of QSearch
If we make use of a slightly different implementation of QSearch described by Zalka [34],
we can obtain a tighter bound on its worst-case performance, which will be useful for some

8Recall that our upper bound for EQSearch(|L|, t, Nsamples, ϵ) given by Eq. (1) is independent of ϵ for t > 0.

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 14

of our applications of QSearch where we only care about the worst case (since the expected
complexity of this variant is actually worse than that of the QSearch implementation described
in the previous section). Unfortunately, the bounds given in [34] are only asymptotic and
ignore, for example, extra constants arising from rounding integers, and so we briefly re-derive
them below. The main upshot is that the dependence on the error becomes quadratically
better than the usual implementation, which could end up being a significant improvement
for our algorithms. To distinguish this implementation of QSearch from the one outlined in
Section 2.1, we will refer to this quantum sub-routine as QSearchZalka.

As usual, let L be the list of items over which we are searching, and suppose that t of them
are marked, and that we want to succeed in finding one if it exists with probability ≥ 1− ϵ.
The algorithm, based on the one described in [34], consists of the following steps:

1. A preliminary step that checks for a small number of marked items, by systematically
ruling out t = 1, t = 2, . . . , t = t0 for (for reasons made clear in Appendix A.4) t0 =
⌈ ln ϵ

2 ln(3/4)⌉, by running exact Grover search for each value of t. If this step finds a marked
item, we return it and stop.

2. A second step where (now with the knowledge from the first step that t0 < t) we

repeatedly choose an integer j uniformly at random from the range [0, ⌈π
4

√
|L|
t0
⌉] and

then run Grover search using j iterations. This is done 2t0 times (which minimises the
part of the complexity that depends on |L|). If a marked item is found during any run,
we return it and stop. Otherwise, the algorithm returns ‘no marked item’.

Run-time analysis The worst-case run-time is clearly when there are no marked items,
and hence both steps above are run to the end. In Appendix A.4 we prove the following
lemma.

Lemma 5 (worst-case complexity of QSearchZalka). Let L be a list of items, g : L →
{0, 1} a Boolean function and ϵ > 0, and write cq for the number of queries to g required
to implement the oracle Og |x⟩ |0⟩ = |x⟩ |g(x)⟩. Then, with probability of failure at most ϵ,
QSearchZalkarequires at most

WQSearchZalka(|L|, ϵ) := cq

(
5
⌈ ln(1/ϵ)

2 ln(4/3)

⌉
+ π

√
|L|
√⌈ ln(1/ϵ)

2 ln(4/3)

⌉)
(6)

queries to g to find a marked item of L, or otherwise to report that there is none.

2.3 Quantum maximum finding QMax
We use the quantum maximum finding algorithm from Ahuja and Kapoor [1], described
below. We then provide an improved analysis9 for the expected number of queries made by
their quantum maximum finding algorithm.

The input of the algorithm is once again a list L, together with a function R : L→ R that
assigns a value to each item. The output is the index of an element of L that maximises R.

9We also believe that there is a slight error in the proof provided by [1], which we fix in our proof.

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 15

We assume we have coherent oracle access to the following marking function f defined by

fi(j) =
{

1 if R(j) > R(i)
0 otherwise ,

(7)

i.e. access to unitaries Ofi
that acts as

Ofi
|j⟩ |0⟩ = |j⟩ |fi(j)⟩ . (8)

2.3.1 Infinite-time algorithm

To start with, we define a zero-error infinite-time10 algorithm for finding the maximum. Af-
terwards, we will incorporate a time-out in the infinite algorithm, and use Markov’s inequality
to turn the infinite algorithm into a bounded-error algorithm that terminates in finitely many
steps.

Algorithm 4 QMax∞

1: function QMax∞(List L)
2: Choose i ∈ L uniformly at random and set y = R(i).
3: while True do
4: Apply QSearch∞ to the list L with the marked items being f−1

y (1).
5: Update y = R(j), where j ∈ L is the item found by QSearch∞.
6: end while
7: return y
8: end function

We say that QMax∞ has found the maximum when y in Algorithm 4 is equal to an item
that maximises R. In Appendix B.1, we prove the lemma stated below.

Lemma 6. [Expected complexity of QMax∞] Let L be a list of |L| items. Then, the expected
number of queries to any of the fi (as defined as in Eq. 7) required for QMax∞ to find the
maximum of L is upper bounded by

EQMax∞(|L|) ≤ cq

|L|−1∑
t=1

F (|L|, t)
t + 1 , (9)

where F (|L|, t) is defined by Eq. (3). Here, cq is the number of queries to fi required to
implement the oracle Ofi

(which we assume to be the same for all i).

In case we are interested in queries to R rather than the fi, then we note that the total
number of queries to any of the fi combined is equal to the total number of queries to R
(since for each fi we need to compute R(i) only once, and this we do anyway at the end of
every Grover run to check if the found item is marked), except at the very beginning, where
in line 2 of Algorithm 4 we need to compute R(y). Therefore, the number of queries to R is
upper bounded by Eq. (9) plus one. Consequently, when running QMax∞ a total of T times,

10QMax∞ will not stop running when it has found the maximum: it will continue to run indefinitely
because it will be running QSearch∞ on a list with no marked items.

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 16

if we switch from upper bounding queries to any of the fi to queries to R, we need to add T
to our obtained bound for the former to obtain a bound for the latter.

Next, we can use the bounds for the expected number of queries made by QSearch∞ to
bound the expected number of queries for QMax∞. Using the upper bound in Eq. (3), we
have

F (|L|, t) ≤

9.2
√

|L|
3
√

t
if 1 ≤ t < |L|

4

2.0344 if |L|
4 ≤ t ≤ |L|

(10)

Hence, we obtain

EQMax∞(|L|) ≤ cq

9.2
√
|L|

3

⌈|L|/4⌉−1∑
t=1

1√
t(t + 1)

+ 2.0344
|L|−1∑

t=⌈|L|/4⌉

1
t + 1

 . (11)

If the list L is not too large, we can compute the above upper bound by evaluating the sum
explicitly. If this computation becomes too time-consuming, we can also resort to bounds that
are easier to evaluate. Two such bounds are derived in Appendix B.2, and are given below.
We have the following loose upper bound

EQMax∞(|L|) ≤ cq

(
6.3505

√
|L|+ 2.8203

)
,

as well as a tighter upper bound, given by

EQMax∞(|L|) ≤ cq

[
3
√

3(1 + π)
4

√
|L|+ ln(|L|/4)

2 ln(6/5)

(
ln(|L|/3) + ln(|L|/4 + 1)

)

− 2 ln(|L|/4) + 5.3482 + Li2(−⌈|L|/4⌉+ 1)
2 ln(6/5)

]
,

where Li2 is Spence’s function, also known as the dilogarithm. For the second bound the
leading order term in

√
|L|,

cq
3
√

3(1 + π)
4

√
|L| ≤ cq5.3801

√
|L| ,

has a smaller coefficient than the first upper bound has.

2.3.2 Finite-time bounded-error algorithm

Next, we can introduce a timeout Qtimeout = 3EQMax∞ to make QMax∞ a finite-time bounded-
error algorithm. If X is the random variable corresponding to the number of queries to g made
by QMax∞ in order to find the maximum of the list L, then by Markov’s inequality,

Pr[X ≥ Qtimeout] ≤
EQMax∞

Qtimeout
≤ 1

3 ,

resulting in a maximum-finding algorithm that finds the maximum with probability at least
2
3 and uses an expected number of queries that is upper-bounded by Qtimeout.

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 17

We can further boost the success probability to 1 − ϵ by repeating the above log3(1/ϵ)
times, and picking the largest element (with respect to the function R) out of all repetitions,
to obtain the algorithm QMax that succeeds with probability at least ϵ and makes at most
⌈log3(1/ϵ)⌉Qtimeout queries in expectation.

Corollary 1 (Expected complexity of QMax). Let L be a list of items of length |L|. Let fi

be the marking functions as defined in Eq. 7. Then the expected number of queries to fi (for
any i) required for QMax to find the maximum of L with success probability at least 1− ϵ is
⌈log3(1/ϵ)⌉3EQMax∞(|L|), where EQMax∞(|L|) is given by Eq. (9).

Using the upper bounds derived for EQMax∞ derived above, it is sufficient to choose

Qtimeout ≥ cq

(
19.0515

√
|L|+ 8.4609

)
using the loose upper bound, or

Qtimeout ≥ cq

[
9
√

3(1 + π)
4

√
|L|+ 3 ln(|L|/4)

2 ln(6/5)

(
ln(|L|/3) + ln(|L|/4 + 1)

)
− 6 ln(|L|/4)

+ 16.0466 + 3Li2(−⌈|L|/4⌉+ 1)
2 ln(6/5)

]

using the tight upper bound.

3 Estimating complexities under uncertainty
To estimate the query complexities of QSearch and QMax, we can use the bounds derived in
the previous sections for their expected- and worst-case complexities. These bounds take as
input a list L, the desired success probability of the sub-routine, and in case of QSearch also
the number t of marked items in L. However, the number of marked items in the list will not
be known ahead of time, and moreover could be computationally time-consuming to compute
classically, especially for very large inputs, which will likely be the ones for which we want to
estimate the run-times of quantum algorithms.

Additionally, for algorithms of form of Algorithm 1 that make use of repeated calls to
QSearch or QMax, we would like that with high probability every call to either QSearch or
QMax succeeds, which will require boosting their success probabilities to something (inversely)
proportional the number of times they are run. However, the number of times each sub-routine
is called will often not be known until the algorithm has finished executing, and therefore we
will require a reliable upper bound T to the number steps, i.e. the number of times such calls
are made.

In this section, we discuss how to deal with both quantities. First, in Section 3.1, we discuss
how to use a sampling procedure to estimate the number of marked items using sampling, and
consider the extra complications that arise when we use such estimated values to compute
(bounds on) the complexities of algorithms. Next, in Section 3.2, we discuss how the total
number of steps affects the accuracy of both QSearch and QMax, as well as the accuracy of
the estimates for the expected number of queries made by these quantum routines as obtained
through the sampling procedure discussed in Section 3.1.

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 18

3.1 Estimating the number of marked items
To use the bounds on the number of queries made by QSearch derived in Section 2.1, we
need to know how many marked items there are in the list given as input to a QSearch call.
For sufficiently small lists, we can count the number of marked items exactly at reasonably
little computational cost. For longer lists this will become very time consuming, leading to
exceedingly slow simulations. When determining the number of marked items exactly becomes
infeasible, we can instead estimate the number of marked items. We can do this by counting
the number of samples l we need to draw on average before we find a marked vertex.

For a list L with t marked items, the probability that an element of L chosen uniformly
at random is marked is f = t/|L|. Consequently, the probability that we find a marked item
after randomly choosing (with replacement) k ∈ N elements of L (the first k− 1 elements not
being marked) is given by

Pr[l = k] = (1− f)k−1f (12)

(i.e a geometric distribution with parameter f). We write l ∼ Geo(f) to denote a random
variable sampled according to such a distribution, and throughout this section, when we take
the expectation value over l it is implied that we do this over the geometric distribution, i.e.:

E[X(l)] = El∼Geo(f)[X(l)]

for any function X : N→ R. By sampling l ∼ Geo(f), we obtain an unbiased estimate of

E[l] = 1/f = |L|/t ,

which we can use to approximate the expected number of queries made by QSearch if it were
run on L.

To start we focus on our upper bound for the expected number of (quantum) queries (EGrover)
to the oracle Og made by QSearch. In order to estimate (an upper bound for) EGrover(|L|, t),
we would like an estimator Eestimator

Grover such that the procedure (i) sample l ∼ Geo(f), and then
(ii) plug the result into our expression for Eestimator

Grover (l) gives, in expectation (over l), an upper
bound to EGrover(|L|, t); i.e. we want E[Eestimator

Grover (l)] ≥ EGrover(|L|, t).
A naive attempt at constructing Eestimator

Grover would be to take our upper bound on EGrover(|L|, t)
from Eq. (2) and in this expression replace 1/t by l/|L|. However, from Eq. (3), we observe
that F (|L|, t) contains concave functions like the square-root and the logarithm, which, by
Jensen’s inequality satisfy

E[
√

l] ≤
√
E[l] =

√
1/f and E[log 6

5
l] ≤ log 6

5
E[l] = log 6

5
1/f .

As a consequence, the procedure outlined above (in expectation over l) does not give an
upper bound to the expected number of queries; instead we obtain a biased estimator that
underestimates our upper bound for EGrover. Note that the issue of concavity will arise in any
approach that tries to simulate a Grover search on an unknown number of marked items by
using classical sampling to estimate the fraction of marked items.

We now discuss how to deal with the concavity of the square-root and logarithm, and then
describe an estimator that always upper bounds EGrover in expectation.

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 19

Upper bound for square-root and log estimates We prove the following two lemmas
in Appendices C.1 and C.2:

Lemma 7. For a random variable X geometrically distributed with parameter f , there exists
a constant d1 = 4/π ≈ 1.273, such that√

E[X] ≤ E[
√

d1X]

for all f ∈ (0, 1].

Lemma 8. For a random variable X geometrically distributed with parameter f , there exists
a constant d2 = eγ ≈ 1.781, where γ is the Euler–Mascheroni constant, such that

log(E[X]) ≤ E[log (d2X)]

for all f ∈ (0, 1].

Moreover, the proof of Lemma 7 also tells us that in the interesting regime, i.e. where the
fraction f is small, the relative error between our upper bound and the actual expected value√

1/f goes to zero.
Using the two lemma’s above, in Appendix C.3, we show that the following estimator

Eestimator
Grover (l) := −1.1272 + 1.7850√

|L|
+ 1.2991√

|L|
l +

(
5.1962− 2.5064√

|L|

)
2
√

l√
π

+ 5
4 log 6

5
(eγl) (13)

upper bounds EGrover in expectation for all 1 ≤ t ≤ |L| (or 1 ≤ 1
f ≤ |L|):

E[Eestimator
Grover (l)] ≥ EGrover(|L|, t) ,

where the expectation is taken over the geometric distribution l ∼ Geo(f), with f = t/|L|.

Estimation procedure Using the estimator Eestimator
Grover , we can construct an estimator that

in expectation upper bounds the expected number of queries EQSearch given by Eq. (1). To
do so, we require the following two functions on the set of positive integers: h1, h2 : N→ R

h1(l) = min(l, Nsamples) ,

and

h2(l) =
{

0 l ≤ Nsamples

1 l > Nsamples

Given h1 and h2, in Appendix C.4 we prove the following lemma.

Lemma 9. The estimator

H(l) = h1(l) + h2(l)cqEestimator
Grover (l) (14)

upper bounds EQSearch in expectation:

E[H(l)] ≥ EQSearch(|L|, t, Nsamples, ϵ)

for 1 ≤ t ≤ |L| and for all11 ϵ > 0, where the expectation value is taken over the geometric
distribution l ∼ Geo(f), with f = t/|L|.

11Note that the derived expression for EQSearch(|L|, t, Nsamples, ϵ) is independent of ϵ for t ≥ 1.

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 20

The above estimator applies to the situation where there is at least one marked item.
However in case t = 0, in order to determine l we keep drawing samples (with replacement)
indefinitely. To make sure our algorithm terminates in finite time, we need to set a maximum
lmax such that, if l = lmax, we conclude that t = 0 and we stop the sampling procedure. The
particular choice of lmax will depend on our tolerance for falsely detecting no marked items.

In practice, we use the procedure EstimateQSearch(L, Nsamples, δ, ϵ) described in Algorithm 5
for estimating (an upper bound to) the expected number of queries to g made by QSearch.
Recall that cq is the number of queries to g required to implement the oracle Og.

Algorithm 5
1: function EstimateQSearch(List L, integer Nsamples, failure probabilities δ and ϵ)
2: lmax ← ⌈ |L|

δ ⌉.
3: Draw samples uniformly at random (with replacement) from L until either finding a

marked item, or making lmax samples. Let l be the number of samples taken.
4: if l ≤ Nsamples then
5: Then a marked item would have been found classically, in which case

E ← l .

6: else if Nsamples < l ≤ lmax then
7: Then the marked item would not have been found classically, and some Grover

iterations would have been performed. In such a case,

E ← Nsamples + cq

[
− 1.1272 + 1.7850√

|L|
+ 1.2991√

|L|
l

+
(

5.1962− 2.5064√
|L|

)
2
√

l√
π

+ 5
4 log 6

5
(eγl)

]
.

8: else if l > lmax then We conclude t = 0, and therefore, by Eq. (4),

E ← Nsamples + 9.2cq⌈log3(1/ϵ)⌉)
√
|L| .

9: end if
10: return E
11: end function

Lemma 10. Let L be a list of items, g : L → {0, 1} a Boolean function and ϵ, δ > 0. Write
t = |g−1(1)| for the (unknown) number of marked items of L. Then, with probability at
least 1 − δ, the procedure EstimateQSearch(L, Nsamples, δ, ϵ) of Algorithm 5, gives an upper
bound to the expected number of queries made by QSearch(L, Nsamples, ϵ), in expectation over
l ∼ Geo(f), where f = t/|L|.

Proof. This follows from Lemma 9, except now we have to take into account the possibility
that we sample l = lmax even when t ≥ 1. Recall that in Algorithm 5 we set lmax = ⌈ |L|

δ ⌉. As-
suming the worst-case of f = 1/|L|, by Markov’s inequality, this can happen with probability

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 21

at most
Pr[l ≥ lmax] ≤ E[l]

lmax
≤ |L|

lmax
= δ .

This lemma gives a very rough upper bound on the failure probability as it does not take
the fraction of marked elements into account. In practice we found that setting δ = 1

100 worked
well. Also note that, to get more accurate estimates, rather than sampling l and plugging
the expression into H, we can also sample l multiple times and take the sample average of
all the corresponding H-values. This will however require a somewhat more elaborate failure
probability analysis in case some of the sampled l’s are equal to lmax.

3.2 Unknown number of steps
When running an algorithm of the form of Algorithm 1, we require that all calls to the quantum
subroutines QSearch or QMax to succeed in order to guarantee that the final algorithm worked
correctly. This requires boosting their success probabilities, and, in order to do so, we need
to know how many times each one is called, which in our case means knowing how many
steps the overall algorithm will take. In case of heuristic algorithms, the number of steps is
usually not known. However, it is not uncommon for heuristic algorithms that their typical
behaviour on certain practical problem instances is known – which is the case for, for example,
MAX-SAT and community detection [8].

In case nothing is known about the number of steps, then instead we can (i) guess an upper
bound to the number of steps, (ii) run the classical algorithm that emulates the quantum
algorithm, and (iii) check retro-actively if indeed we required fewer steps than the guessed
upper bound. If our guess was too low, then optionally we can increase it and repeat.

Suppose that T is such a (guessed) upper bound to the total number of steps of an
algorithm of the form of Algorithm 1, meaning that we call QSearch or QMax at most T times.
By the union bound, given a desired probability of failure of at most ϵtotal, the accuracies of
the individual subroutines ϵsubroutine should be set such that

(1− ϵsubroutine)T ≥ 1− ϵtotal ,

meaning it is sufficient to choose

ϵsubroutine ≤ 1− (1− ϵtotal)1/T .

The above formula in fact holds for the accuracy of the quantum subroutines (denoted by ϵ
in the sections above), as well as the parameter δ (which determines lmax) in Lemma 10 for
the procedure EstimateQSearch(L, Nsamples, δ, ϵ), since this estimation procedure is called once
per step of the (classical simulation of the) algorithm.

4 Use-case: max-k-sat
In this section, we take the tools developed in Sections 2 and 3 and apply them to a particular
heuristic, called a hill-climber, for finding (approximate) solutions to Boolean satisfiability
problems. The algorithm discussed is of the sort that it admits a quantum speedup that is of

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 22

the form of Algorithm 1. This section achieves the modest goal of numerically confirming—
that the proposed framework works, but is limited in its depth; for a more comprehensive
and detailed numerical study (of a different computational problem) we would like to refer
the reader to [8] (see also Section 1.2).

4.1 Propositional Boolean Satisfiability (k-SAT)
k-sat is a fundamental problem in computer science and artificial intelligence, in which we
ask whether a satisfying assignment exists for a given Boolean formula in conjunctive normal
form, with the property that each clause contains at most k literals. Whilst k-sat is an
example of a decision problem, max-k-sat is an optimization problem that generalizes k-sat:
it is the problem of determining the maximum number of clauses, that can be made true by
an assignment of truth values to the variables of the formula. Let x ∈ {0, 1}n be bit strings
of length n, C = {Ci}mi=1 be a set of m clauses, which each act on at most k literals, and
W = {wi}mi=1 ⊆ Rm a set of weights. The goal of max-k-sat is to solve

max
x

φ(x),

where φ(x) =
∑m

i=1 wiCi(x). This problem is NP-hard for any k ≥ 2.
A straightforward heuristic for solving max-k-sat instances is based on hill-climbing : the

general idea is to start with some initial bit string, and then look for incremental improvements
in the direct neighbourhood of this given bit string. This process is repeated iteratively until
it has converged to some local maximum or the maximum number of iterations is reached.
Hill-climbing belongs to the family of local search methods in mathematical optimization.
Local search heuristics have been widely studied for SAT and MAX-SAT (see Ref. [25] for an
extensive review on local search methods) and are also yet still being studied: see Refs. [2, 10]
for some more recent works.

For max-k-sat , we define the d-level neighbourhood Nd(x) of some bit string x as the
set of all other bit strings that differ from x in at most d bit flips. The total size of this space
is given by

|Nd(x)| =
d∑

i=1

(
n

i

)
= O(nd).

For our hill climber heuristic, we either consider a simple hill climber, which greedily moves
to an arbitrary neighbouring bit string with a strictly larger objective function value, and the
steep ascent hill climber, which computes φ on all bit strings in the neighbourhood of the
current bit string and picks the one that maximises the increase in φ (assuming its objective
function value is strictly larger than that of the current bit string.

If we write T for the number of moves made by either the simple or the steep ascent hill
climber (which in general will require different number of steps depending on the problem in-
stance, and in case of the simple hill climber also on the internal randomness of the algorithm)
the worst-case time complexities of both algorithms have similar mathematical expressions,
given by ∑

t∈[T]
O(nd) = O(Tnd) , (15)

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 23

because the per step complexities have the same worst-case upper bounds. However, in
practice the expected run-time of the simple hill climber depends on the instance and the
current state of the algorithm: the more bit strings in its neighbourhood increase the objective
function value the faster it completes its local search step in expectation. If, at step t of the
algorithm, we write fd,t for the fraction of the number of bit strings in Nd(xt) for which φ
assumes a value larger than φ(xt), i.e.

fd,t = |{x ∈ Nd(xt) : φ(x) > φ(xt)}|
|Nd(xt)|

,

then we can bound the expected number of steps for the simple hill climber by

∑
t∈[T]
O
(

1
fd,t

)
. (16)

4.2 Quantum heuristics for max-k-sat
Both variants of the hill climber search routines lend themselves to be sped up easily by
Grover implementations.

To start with, given a bit string y, we define the function

fy(x) =
{

1 if φ(x) > φ(y)
0 otherwise .

We assume that, for every bit string y ∈ {0, 1}n, we have oracle access to Ofy .

Lemma 11 (Simple quantum hill-climber). Let φ be a max-k-sat instance on n variables,
and assume oracle access to each of the Ofy as described above. Then there exists a quantum
algorithm Simple quantum hill-climber that with probability ≥ 2/3, behaves identically to
a classical simple hill climber and requires at most an expected number

∑
t∈[T]
Õ
(√

1
fd,k

)
(17)

calls to φ.

Proof. We pick an initial bit string as we would with the classical simple hill climber. Next,
suppose that in step t of the algorithm our current best bit string is xt. Here, we replace the
local search step of a d-level neighbourhood in the aforementioned classical simple hill-climber
by a single call to QSearch using the oracle Ofxt

. Writing fd,k for the fraction of neighbours
of xt for which the objective function value is strictly larger than φ(xt), by Lemma 1 we
require at most an expected number O(

√
1

fd,t
log(1/ϵ)) queries to Ofxt

and O(
√

1
fd,t

log(nd/ϵ))
other elementary operations to find such a candidate xt+1 with probability at least 1− ϵ. If
we set ϵ = 1− T

√
2
3 , our overall success probability will be at least (1− ϵ)T = 2/3, as required.

Since each query to any of the Ofxt
’s requires O(1) queries to φ, the lemma statement

follows.

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 24

Lemma 12 (Steep quantum hill-climber). Let φ be a max-k-sat instance on n variables,
and assume oracle access to each of the Ofy as described above. Then there exists a quantum
algorithm Steep quantum hill-climber that with probability ≥ 2/3, behaves identically to
some classical steep hill climber and requires at most an expected number∑

t∈[T]
Õ(nd/2) (18)

calls to φ.

Proof. The proof is similar to the proof of Lemma 11, except that in this case, instead of
the classical maximum finding routine, we make use of the quantum subroutine QMax of
Lemma 3, which also requires access to each of the Ofxt

’s. We can find the maximum in
O(
√

nd) log(1/ϵ) queries to each of the Ofxt
’s with probability ≥ 1− ϵ. We set ϵ in the same

way as we did for the simple quantum hill climber to get the desired success probability.

4.3 Numerics
In this section, we describe our numerical implementations of the classical and quantum
versions of the steep and simple hill climbers. We then compare the expected number of
queries for the quantum and classical versions when applied to typical problem instances of
max-k-sat using the method developed in Sections 2 and 3.

4.3.1 Algorithmic implementations

Classical hill climbers Both classical algorithms are allowed to sample without replace-
ment when searching for a good (or the best) element. Therefore we have that, in the case
of a simple hill climber, the number of samples Xd,t when searching over a list of |Nd(xt)|
elements at step t, of which a fraction of fd,t are ‘good elements’, has an expected value given
by

E[Xd,t] = |Nd(x)|+ 1
|Nd(x)|fd,t + 1 . (19)

For the steep hill climber, the classical expected number of queries at every step is always
equal to |Nd(x)|.

Quantum hill climbers For the quantum algorithms, we set the desired failure probability
ϵ for the entire algorithm to be at most 10−5, which can be achieved by setting the accuracy
per step to ϵ/T , with T the maximum total number of steps. Empirically, we found that T = n
provides a very loose upper bound on the total number of steps taken by the algorithm. Note
that the value of T could be optimised more thoroughly – this leads to a smaller total number
of queries needed in the quantum setting – but we leave this for now as this is beyond the
main goal of this case study.

For the simple hill climber we use two implementations, one that calculates the number of
marked elements t (in this case marked elements correspond to possible moves that increase

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 25

the objective function value) exactly at every step, and one that acquires only an estimate of
this via sampling.

The exact implementation keeps track of the list of all marked elements at every step,
which allows us to use our sharper bounds from Lemma 4 in Section 2.1 to upper bound the
expected number of queries made by QSearch at each step of the algorithm. From this list
of marked elements, we select an element at random and use that as an update step for the
classical simulation.

The sampling algorithm, just like its classical counterpart, instead samples in search of
elements that give an increase in the cost function. When it finds one, use the number of tries
l it took to find a marked item as input to estimate (an upper bound) to the expected number
of queries QSearch would have made, as described in Section 3, to estimate the run-time of
the quantum algorithm. This procedure is just an implementation of Algorithm 5 for the case
of max-k-sat .

The steep ascent hill climber also keeps track of the complete list of marked items at every
step. From this it selects the item with the maximal function value increase. It uses our
bounds from Section 2.3 to attain estimates of the expected number of queries QMax would
have made for every step, in order to estimate the run-time of the entire algorithm.

4.3.2 Numerical implementation

We write the problem as a matrix multiplication problem and use numpy to solve it, which
allows for larger instances to be tested. The assignment of truth values x ∈ {0, 1}n is written
as a vector x̃ ∈ {−1, 1}n where −1 is assigned to variables that are false and 1 to those that
are true. The clauses C can be written in a similar fashion, C̃i ∈ {−1, 0, 1}n, where −1 is
assigned to the negated variables, 0 is assigned to the variables that are not in the clause,
and 1 to those that should be true according to the clause. We construct a matrix A with the
C̃i’s as rows. This matrix has an efficient sparse representation since most of it’s entries are
0. The objective function ϕ(x) becomes the following:

ϕ̃(x̃) = W T
(⌈

Ax̃ + k

2k

⌉)
,

where W T is row vector containing the weights for each clause and k is the number of vari-
ables per clause. The addition and division of k is elements-wise, while Ax̃ is matrix vector
multiplication. Note that −k ≤ Ax̃ ≤ k, where the left-hand inequality is only attained when
all variables are incorrectly assigned. In that case the ceiling function returns a 0 and in all
other cases it returns a 1, as required. In all numerical simulations d (which determines the
level of the neighbourhood considered) is set to 1.

Sampling implementation At every step, the sampling algorithm samples up to d (that
determines the size of the neighbourhood of x̃ that the hill climber algorithm can search over;
in our case d = 1) indices of x̃ and flips their value by multiplying by −1. It then calculates the
objective function ϕ̃(x̃) and accepts the changes if the cost increased, and rejects otherwise.
This is repeated until the algorithm rejects 10n times12 in a row, at which point we assume
that the algorithm has converged.

12This is the value of lmax = 10n in Algorithm 5.

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 26

Exact implementation At every step, the exact implementation calculates the cost in-
crease of every possible change to x̃. This is done by constructing the matrix

B(x̃) =
∑
ij

xi(1− 2δij),

which consists of n copies of x̃ as columns, where we multiply all diagonal elements by −1.
This represents all the possible changes of x̃ at a single step. Now we can use ϕ̃(B(x̃)) to
calculate the cost of all possible changes simultaneously. This gives a vector ỹ containing
the cost value of all the n possible new configurations of x̃ (assuming d = 1). These values
are compared to the old cost value and those that give a positive increase are saved in a list
of marked elements. We consider those variables for which a change (being multiplied by
−1) incurs a positive increase in the objective function as marked, the all other variables as
unmarked. The size of this list gives the exact value of t, the number of marked variables. The
exact implementation of simple quantum hill-climber selects one marked element from the list
at random. The steep quantum hill-climber selects the marked element with the highest cost
value.

Data structure The exact implementation is feasible due to the fact that we use matrix
multiplication to calculate the cost values. However, it can still be quite slow for larger
instances. To remedy this, to an extent, we add an extra data structure that keeps track of
the list of marked variables, rather than reconstruct it at every step. To do so we use the fact
that any update is in some sense local. Let the i’th index of x̃ be the index that is updated.
Then there is a subset of clauses {Cj |Cij ̸= 0} (rows of A where the i’th index of the clause
is not zero). These are the only clauses that can change from being satisfied to not satisfied,
or from not satisfied to satisfied, by changing the i’th index of x̃. Not all variables of x̃ are
contained in these clauses (only k variables get assigned a non-zero value in a clause). Exactly
those variables that are, can change from being marked to not and visa versa. Hence we only
need to consider this subset of variables when updating the list of marked variables. This
severely reduces the computational cost of keeping track of marked items. As it turns out, this
is efficient enough to avoid running-time limitations, but instead makes memory limitations
the bottleneck.

4.3.3 Results

Here we present our results for estimating the run-times of the two quantum algorithms
described previously. Specifically, we estimate the number of queries to any of the marking
functions13 fy from Section 4.2 by applying the bounds obtained in Section 2. We set cq = 2,

13We could have also chosen to count queries to φ instead. Note that, after finding xt at step t, we know
φ(xt) from the checking part of QSearch∞ (used as a subroutine for both QSearch and QMax), so every
query to fxt corresponds one query to φ. The difference between counting queries to the marking functions
versus counting queries to φ occurs at initialisation, where we need one extra query to φ to compute the
function value of the initial bit string that is not taken into account when counting queries to the marking
functions. Hence, for a total of T calls to either QSearch or QMax, the number of queries to φ equals the
number of queries to the marking functions plus T . This relationship holds for both the classical and quantum
query counts. In our comparison, we chose to compare queries to marking functions, because this is where the
speedup manifests itself.

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 27

since the quantum algorithms for max-k-sat make queries to an oracle Ofy , which requires
2 queries to fy to implement.

Figure 2: Numerical results for the query counts on randomly generated max-k-sat instances, with n
variables and m = rn weighted (uniformly random between 0 and 1) clauses, of the proposed classical
and quantum algorithms that implement a hill climber search routine. All hill climbers only consider a
d = 1 level neighbourhood, so the local search space size is at any step k equal to n. The horizontal
axis indicates the total amount of variables n and the vertical axis the amount of queries made to any of
the marking functions. Each data point corresponds to the average over 10 randomly generated instances
and the shaded area represents one standard deviation. In every sub-figure the inlet plots the fractional
number of weighted satisfied clauses, defined as φ(x∗)/W , where W =

∑
i∈[m] wi is total weight on the

m clauses and φ(x∗) the objective function value for the obtained solution x∗, the x-axis of the subplots
is the number of nodes n. The blue and orange lines in the sub-figures are overlapping, this shows that
the quality of the solutions found is comparable for the different algorithms. The classical algorithms are
indicated by a ‘•′, the respective quantum algorithms by a ‘×’.

We tested our algorithms on different instances of max-k-sat to see what kind of speed-ups
can be attained on average-case instances. The instances were generated using a random
assignment of k variables per clause. Figure 2 shows the average number of queries made by
our classical and quantum algorithms. There, n is the number of variables, k the number
of variables per clause, r is multiplied by n to get the number of clauses m = rn. We
observe that the behaviour is very similar amongst the different parameter choices in the
random max-k-sat generation. We find, as one might expect, that both quantum versions
of the steep and simple hill climbers achieve better asymptotic scaling when compared to
their classical counterparts: here better asymptotic scaling means that we expect that the
polynomial which describes the number of queries made to the cost function has a lower
degree for the quantum algorithm than it has for the classical one. This is indicated by the
difference in slope of the plots in Figure 2, as the number of queries against the problem size
is plotted on a log-log scale and thus gives information about the degree of this polynomial,
provided n is large enough. On the contrary, only the simple quantum hill climber is able to
also beat the classical algorithm in terms the of absolute number of queries for the problem

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 28

sizes considered (since only in this case the plot corresponding to the number of quantum
queries goes below the classical one). However, since it achieves better scaling, we expect that
for slightly larger n (larger than 104) the steep quantum hill climber will also start to beat
the classical counterpart on average, as one would expect. The interesting point here is that,
even for a fairly simple model that only takes query counts into consideration, the problem
sizes need to already be quite large in order to achieve a quantum speedup.

Table 1 shows the empirically observed asymptotic scaling behaviour of our algorithms.
By taking a linear fit in the log-log plot we can estimate the scaling exponents of the different
algorithms. In Table 1 we show the relative speedup of our quantum algorithms compared
to their classical counterpart. We see that a part of the theoretical speedup is lost. This is
likely due to a combination of the fact that the theoretical speedup is a per-step speedup that
does not affect the total number of steps taken, only the number of queries required for each
individual step, and the fact that on relatively small instances the extra overhead required to
run the quantum algorithms is significant.

Figure 3: Several numerical results for sampling and exact methods for the simple hill climber on random
2-SAT instances with r = 3n clauses, with Nsamples = 130 a): average query count, b) average running
times and c) peak memory usage. The first plot shows a comparison of query count between the sampling
and exact method. Note how for the smallest value of n our sampling method fails to yield a proper upper
bound: this is due to the fact that Nsamples > n, which results in the fact that with high probability we fail to
turn on Grover at all, and as a consequence we underestimate the expectation value (since the contribution
from Grover to the expectation value is high). The second plot shows a run-time comparison between the
exact (with and without data structure) and the sampling method. The third plot shows a comparison
of peak memory usage between the exact method (with data structure), and the sampling method. The
exact method without data-structure is not shown in the third plot as it has the same memory usage as
the sampling method.

As discussed in Section 3, when instances become too large we cannot use an exact method
anymore to keep tack of the number of marked items. In Figure 3 we show a comparison
between the exact methods and our introduced sampling method for estimating an upper
bound on the expected number of queries, for Nsamples = 130. We find that our estimation
method provides a decent upper bound on the number of queries in expectation. For the exact
methods we consider two different implementations to acquire the necessary information for
calculating the expected number of queries at every step. The first one runs over the entire
search space at every step acquiring the number of marked items. The second one uses the

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 29

data-structure — described in Section 4.3.2 — that exploits the locality of the instances to
update the fraction of ‘good elements’ in the neighborhood of a given bit string.

Regarding the run-times of our classical simulations, Figure 3 shows that both sampling
and the data-structure method considerably outperform the exact implementation that runs
over the entire search space. However, the extra added data structure comes at the cost of
additional memory requirements, which become the bottleneck as we consider problems at
a larger scale. Therefore, for instances where n > 104, we are limited to the usage of the
sampling methods to obtain results. Finally, we note that the data structure method is very
context-specific (i.e. here the data structure is specific to max-k-sat) and might not always
be possible, whereas the estimation method is applicable generally.

Classical query
complexity

per iteration τ

Quantum query
complexity

per iteration τ

Absolute
speed-up
observed?

Empirically observed
range of polynomial

speed-ups
Simple hill climber O

(
1

fτ

)
Õ(
√

1
fτ

) Yes 1.45-1.72
Steep hill climber O (|L|) Õ(

√
|L|) No 1.38-1.60

Table 1: Shown are the theoretically obtained per-iteration complexities of our algorithms compared to their
empirically observed speedups across the entire algorithm. Here ’absolute speedup’ refers to the quantum
algorithm making fewer (estimated) queries than the classical algorithm on the datasets that we considered.
The numbers shown in the rightmost column measure the speedup achieved by the quantum algorithm:
these are obtained by a linear weighted fit on the plots of Figure 2, which gives the scaling exponent
of the expected query counts as a function of the problem size; the number in the table is the classical
exponent divided by the corresponding quantum exponent. The numbers are larger than one in all cases,
indicating a (modest) quantum speedup. The maximum speedup that can be obtained is 2, since that
would correspond to the full quadratic per-step speedup manifesting across the entire run-time. Note that
the steep hill-climber would likely also achieve an absolute speed-up if we considered slightly larger problem
instances, as it achieves a better scaling than it’s classical counterpart.

4.4 Summary of results
Our main findings can be summarised as follows.

• The quantum hill climbers obtain favourable scaling compared to their classical coun-
terparts, but only one of them (the simple hill climber) obtained an absolute (query)
speedup compared to its classical counterparts.

• Our estimation procedure gave reliable upper bounds on the complexities of the quantum
algorithms as compared to an exact procedure, confirming our theoretical analysis from
Section 3.

• Our estimation procedure significantly decreased the computational cost of obtaining
run-time estimates in the way considered in this paper. An exact approach that made use
of a particular data structure yielded similar results, however it added large memory
costs, and such an approach will always be very context-specific and sometimes not
possible at all.

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 30

• Classical heuristic algorithms tend to work by making many fast-to-compute but small
updates to minimize the cost function, a structure that does not lend itself to significant
quantum speedups.

References
[1] Ashish Ahuja and Sanjiv Kapoor. A quantum algorithm for finding the maximum.

arXiv:quant-ph/9911082, 1999. https://doi.org/10.48550/arXiv.quant-ph/9911082 .

[2] Haifa Hamad Alkasem and Mohamed El Bachir Menai. Stochastic local search for partial
MAX-SAT: an experimental evaluation. Artificial Intelligence Review, 54:2525–2566,
2021. https://doi.org/10.1007/s10462-020-09908-4.

[3] Ryan Babbush, Jarrod R McClean, Michael Newman, Craig Gidney, Ser-
gio Boixo, and Hartmut Neven. Focus beyond quadratic speedups for
error-corrected quantum advantage. PRX Quantum, 2(1):010103, 2021.
https://doi.org/10.1103/PRXQuantum.2.010103.

[4] Shai Ben-David, Benny Chor, Oded Goldreich, and Michel Luby. On the theory of
average case complexity. Journal of Computer and system Sciences, 44(2):193–219, 1992.
https://doi.org/10.1016/0022-0000(92)90019-F.

[5] Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin Vechev. Silq: A high-
level quantum language with safe uncomputation and intuitive semantics. In ACM SIG-
PLAN Conference on Programming Language Design and Implementation, pages 286–
300, 2020. https://doi.org/10.5281/zenodo.3764961.

[6] Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre.
Fast unfolding of communities in large networks. Journal of Statistical Mechanics:
Theory and Experiment, 2008:P10008, October 2008. https://doi.org/10.1088/1742-
5468/2008/10/P10008.

[7] Michel Boyer, Gilles Brassard, Peter Høyer, and Alain Tapp. Tight bounds
on quantum searching. Fortschritte der Physik: Progress of Physics, 46(4-
5):493–505, 1998. https://doi.org/10.1002/(SICI)1521-3978(199806)46:4/5¡493::AID-
PROP493¿3.0.CO;2-P.

[8] Chris Cade, Marten Folkertsma, Ido Niesen, and Jordi Weggemans. Quantum algo-
rithms for community detection and their empirical run-times. arXiv:2203.06208, 2022.
https://doi.org/10.48550/arXiv.2203.06208.

[9] Chris Cade, Lana Mineh, Ashley Montanaro, and Stasja Stanisic. Strategies for solv-
ing the Fermi-Hubbard model on near-term quantum computers. Physical Review B,
102(23):235122, 2020. https://doi.org/10.1103/PhysRevB.102.235122.

[10] Shaowei Cai, Chuan Luo, and Haochen Zhang. From decimation to local search
and back: A new approach to MAX-SAT. In IJCAI, pages 571–577, 2017.
https://doi.org/10.24963/ijcai.2017/80.

[11] Earl Campbell, Ankur Khurana, and Ashley Montanaro. Applying quantum algorithms
to constraint satisfaction problems. Quantum, 3:167, 2019. https://doi.org/10.22331/q-
2019-07-18-167.

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 31

https://arxiv.org/abs/quant-ph/9911082
 https://doi.org/10.48550/arXiv.quant-ph/9911082
https://doi.org/10.1007/s10462-020-09908-4
https://doi.org/10.1103/PRXQuantum.2.010103
https://doi.org/10.1016/0022-0000(92)90019-F
https://doi.org/10.5281/zenodo.3764961
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P
https://doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P
https://arxiv.org/abs/2203.06208
 https://doi.org/10.48550/arXiv.2203.06208
https://doi.org/10.1103/PhysRevB.102.235122
 https://doi.org/10.24963/ijcai.2017/80
https://doi.org/10.22331/q-2019-07-18-167
https://doi.org/10.22331/q-2019-07-18-167

[12] Pierre-Luc Dallaire-Demers, Jonathan Romero, Libor Veis, Sukin Sim, and Alán
Aspuru-Guzik. Low-depth circuit ansatz for preparing correlated fermionic states
on a quantum computer. Quantum Science and Technology, 4(4):045005, 2019.
https://doi.org/10.1088/2058-9565/ab3951.

[13] Pasquale De Meo, Emilio Ferrara, Giacomo Fiumara, and Alessandro Provetti. Gener-
alized louvain method for community detection in large networks. In 2011 11th inter-
national conference on intelligent systems design and applications, pages 88–93. IEEE,
2011. https://doi.org/10.1109/ISDA.2011.6121636.

[14] Christoph Durr and Peter Hoyer. A quantum algorithm for finding the minimum.
arXiv:quant-ph/9607014, 1996. https://doi.org/10.48550/arXiv.quant-ph/9607014.

[15] Andrew Hancock, Austin Garcia, Jacob Shedenhelm, Jordan Cowen, and Calista Carey.
Cirq: A python framework for creating, editing, and invoking quantum circuits. URL
https://github.com/quantumlib/Cirq, 2019.

[16] Peter Høyer. Arbitrary phases in quantum amplitude amplification. Physical Review A,
62(5):052304, 2000. https://doi.org/10.1103/PhysRevA.62.052304.

[17] Richard M Karp and J Michael Steele. Probabilistic analysis of heuristics. The traveling
salesman problem, pages 181–205, 1985.

[18] Joonho Lee, Dominic W Berry, Craig Gidney, William J Huggins, Jarrod R Mc-
Clean, Nathan Wiebe, and Ryan Babbush. Even more efficient quantum computa-
tions of chemistry through tensor hypercontraction. PRX Quantum, 2(3):030305, 2021.
https://doi.org/10.1103/PRXQuantum.2.030305.

[19] Ashley Montanaro. Quantum-walk speedup of backtracking algorithms. Theory OF
Computing, 14(15):1–24, 2018. http://dx.doi.org/10.4086/toc.2018.v014a015.

[20] Xinyu Que, Fabio Checconi, Fabrizio Petrini, and John A Gunnels. Scal-
able community detection with the louvain algorithm. In 2015 IEEE Interna-
tional Parallel and Distributed Processing Symposium, pages 28–37. IEEE, 2015.
https://doi.org/10.1109/IPDPS.2015.59.

[21] Maria Schuld and Nathan Killoran. Is quantum advantage the right
goal for quantum machine learning? Prx Quantum, 3(3):030101, 2022.
https://doi.org/10.1103/PRXQuantum.3.030101.

[22] Daniel A Spielman and Shang-Hua Teng. Smoothed analysis: an attempt to explain the
behavior of algorithms in practice. Communications of the ACM, 52(10):76–84, 2009.
http://doi.acm.org/10.1145/1562764.1562785.

[23] Damian S Steiger, Thomas Häner, and Matthias Troyer. ProjectQ: an open
source software framework for quantum computing. Quantum, 2:49, 2018.
https://doi.org/10.22331/q-2018-01-31-49.

[24] EM Stoudenmire and Xavier Waintal. Grover’s algorithm offers no quantum advantage.
arXiv:2303.11317, 2023. https://doi.org/10.48550/arXiv.2303.11317 .

[25] Thomas Stützle, Holger H. Hoos, and Andrea Roli. A review of the literature on local
search algorithms for MAX-SAT. 2001.

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 32

https://doi.org/10.1088/2058-9565/ab3951
https://doi.org/10.1109/ISDA.2011.6121636
https://arxiv.org/abs/quant-ph/9607014
 https://doi.org/10.48550/arXiv.quant-ph/9607014
https://github.com/quantumlib/Cirq
https://doi.org/10.1103/PhysRevA.62.052304
https://doi.org/10.1103/PRXQuantum.2.030305
http://dx.doi.org/10.4086/toc.2018.v014a015
https://doi.org/10.1109/IPDPS.2015.59
https://doi.org/10.1103/PRXQuantum.3.030101
http://doi.acm.org/10.1145/1562764.1562785
https://doi.org/10.22331/q-2018-01-31-49
https://arxiv.org/abs/2303.11317
 https://doi.org/10.48550/arXiv.2303.11317

[26] Krysta Svore, Alan Geller, Matthias Troyer, John Azariah, Christopher Granade, Bet-
tina Heim, Vadym Kliuchnikov, Mariia Mykhailova, Andres Paz, and Martin Roetteler.
Q# enabling scalable quantum computing and development with a high-level DSL. In
Proceedings of the Real World Domain Specific Languages Workshop 2018, pages 1–10,
2018. https://doi.org/10.1145/3183895.3183901.

[27] V. A. Traag, L. Waltman, and N. J. van Eck. From Louvain to Leiden:
guaranteeing well-connected communities. Scientific Reports, 9:5233, March 2019.
https://doi.org/10.1038/s41598-019-41695-z.

[28] Vera von Burg, Guang Hao Low, Thomas Häner, Damian S Steiger, Markus
Reiher, Martin Roetteler, and Matthias Troyer. Quantum computing en-
hanced computational catalysis. Physical Review Research, 3(3):033055, 2021.
https://doi.org/10.1103/PhysRevResearch.3.033055.

[29] Dave Wecker, Matthew B Hastings, and Matthias Troyer. Progress towards prac-
tical quantum variational algorithms. Physical Review A, 92(4):042303, 2015.
https://doi.org/10.1103/PhysRevA.92.042303.

[30] Jordi R Weggemans, Alexander Urech, Alexander Rausch, Robert Spreeuw, Richard
Boucherie, Florian Schreck, Kareljan Schoutens, Jǐŕı Minář, and Florian Speelman. Solv-
ing correlation clustering with QAOA and a Rydberg qudit system: a full-stack approach.
Quantum, 6:687, 2022. https://doi.org/10.22331/q-2022-04-13-687.

[31] James D Whitfield, Jacob Biamonte, and Alán Aspuru-Guzik. Quantum computing
resource estimate of molecular energy simulation. Science, 309:1704, 2005.

[32] Robert Wille, Rod Van Meter, and Yehuda Naveh. IBM’s Qiskit tool chain: Work-
ing with and developing for real quantum computers. In 2019 Design, Automa-
tion & Test in Europe Conference & Exhibition, pages 1234–1240. IEEE, 2019.
https://doi.org/10.23919/DATE.2019.8715261.

[33] Margaret Wright. The interior-point revolution in optimization: history, recent de-
velopments, and lasting consequences. Bulletin of the American mathematical society,
42(1):39–56, 2005. https://doi.org/10.1090/S0273-0979-04-01040-7.

[34] Christof Zalka. A Grover-based quantum search of optimal order for an
unknown number of marked elements. arXiv:quant-ph/9902049, 1999.
https://doi.org/10.48550/arXiv.quant-ph/9902049 .

[35] Leo Zhou, Sheng-Tao Wang, Soonwon Choi, Hannes Pichler, and Mikhail D
Lukin. Quantum approximate optimization algorithm: Performance, mechanism,
and implementation on near-term devices. Physical Review X, 10(2):021067, 2020.
https://doi.org/10.1103/PhysRevX.10.021067.

Acknowledgements We would like to thank Harry Buhrman for suggesting the idea of es-
timating input-dependent run-times, Ian Marshall for helpful discussions, and Quinten Tupker
for help with the proof of Lemma 8. The numerics of Section 4.3.3 were carried out on the
Dutch national e-infrastructure with the support of the SURF Cooperative.

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 33

https://doi.org/10.1145/3183895.3183901
https://doi.org/10.1038/s41598-019-41695-z
https://doi.org/10.1103/PhysRevResearch.3.033055
https://doi.org/10.1103/PhysRevA.92.042303
 https://doi.org/10.22331/q-2022-04-13-687
https://doi.org/10.23919/DATE.2019.8715261
 https://doi.org/10.1090/S0273-0979-04-01040-7
https://arxiv.org/abs/quant-ph/9902049
 https://doi.org/10.48550/arXiv.quant-ph/9902049
https://doi.org/10.1103/PhysRevX.10.021067

Funding CC was supported by QuantERA project QuantAlgo 680-91-034, with further
funding provided by QuSoft and CWI. MF and JW were supported by the Dutch Ministry of
Economic Affairs and Climate Policy (EZK), as part of the Quantum Delta NL programme.
IN was supported by the DisQover project: a collaboration between QuSoft and ABN AMRO,
and recieved funding from ABN AMRO and CWI.

A Detailed analysis of QSearch
In this section of the appendix we give details to support the bounds on the success probability
and expected number of queries made by our implementation of QSearch given in Section 2.1.

As mentioned in the beginning of Section 2, queries to the quantum oracle Og come with
a weight of cq relative to the classical queries to g. In Sections A.1 and A.2, a query refers
to a query to Og. Only in Section A.3 will we include the classical queries, and then the
queries to the quantum oracle will by multiplied by an extra factor of cq (where needed) in
the expressions obtained for the expected number of queries to g for QSearch.

A.1 Improved bounds
To start with, let us briefly go over the original analysis of Boyer et al. [7], and improve some
of the bounds where we can. The analysis in this subsection applies to QSearch∞.

Suppose we have a list L with t marked items, and let θ be such that

sin2(θ) = t/|L| .

Moreover, let

mt = 1
sin(2θ) = |L|

2
√

(|L| − t)t
.

Now, the following lemma provides a lower bound to the success probability of finding a
marked item with a single Grover run.

Lemma 13. (Lemma 2 from [7]). Suppose we have a list L with t marked items, and let θ
be such that sin2(θ) = t/|L|, m ∈ N>0 an arbitrary positive integer. Then, the probability Pm

of finding a marked element after doing j Grover iterations, where j is a non-negative integer
smaller than m chosen uniformly at random, is given by

Pm = 1
2 −

sin(4mθ)
4m sin(2θ) .

Consequently, if m ≥ mt, then Pm ≥ 1
4 .

According to the algorithm description of QSearch∞, we initialize m = λ and λ = 6/5.
After every run, we multiply m by λ. The moment m > mt, we reach the so-called critical
stage. As Boyer et al. observe, because of Lemma 13, once in the critical stage every run has
probability of at least 1/4 to find a marked item, and this lower bound can be used to upper
bound the expected number of Grover iterations required to find a marked item.

The issue with the requirement m ≥ mt is that, when θ → π/2, mt → ∞. For this
reason, Boyer et al. exclude the regime of θ close to π/2 – which corresponds to the case

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 34

of many marked items – by classical sampling. However, as we show below, in the regime
|L|/4 < t ≤ |L|, or π/6 ≤ θ ≤ π/2, we actually have Pm ≥ 1/4 for every integer m > 0. More
precisely, we have the following lemma.

Lemma 14. For |L|/4 < t ≤ |L|, which corresponds to π/6 ≤ θ ≤ π/2, we have that

Pm ≥

1
4 for m = 1
1
2 −

1
1− π2

96
≈ 0.323 for m > 1

Proof. Let us start with the easy case of m = 1. We have

sin(4θ)
4 sin(2θ) = 1

2 cos(2θ)

which is upper bounded by 1
4 for π/6 ≤ θ ≤ π/2. Therefore14, P1 ≥ 1

4 .
Next, we focus on the case m > 1. We will prove that

sin(4mθ)
4m sin(2θ) ≤

1
2π

1
1− π2

96
≈ 0.177 .

To do so, define f(θ) = sin(4mθ)
4m sin(2θ) = g(θ)

h(θ) , where g(θ) = sin(4mθ) and h(θ) = 4m sin(2θ). We
have that |g(θ)| ≤ 1. Also, note that f(θ) is only positive when g(θ) ≥ 0. Furthermore, by L’
Hôpital’s rule,

lim
θ→ π

2

sin(4mθ)
4m sin(2θ) = lim

θ→ π
2

4m cos(4mθ)
8m cos(2θ) = −1

2 .

We now distinguish two sub-cases:

Case (a): π/4 ≤ θ ≤ π/2. On this interval for θ we have that h(θ) is a decreasing positive
function. The roots of g(θ) are given by θ = πn

4m , n ∈ Z. In particular, there is one root at π/2,
which corresponds to n = 2m. Since g(θ) is negative just left of θ = π

2 , the largest value of θ

for which g(θ) is positive is attained when n → 2m − 1, which corresponds to θ∗ = π(2m−1)
4m .

Combining the above, we have that

f(θ) ≤ 1
4m sin(2θ) ≤

1
4m sin(2π(2m−1)

4m)
= 1

4m sin(π
2m) .

We now use that sin(x) ≥ x− 1
6x3 for x ≥ 0, which holds since

1. sin(x) = x− 1
6x3 at x = 0.

2. ∂
∂x sin(x) = cos(x) ≥ 1− 1

2x2 = ∂
∂x

[
x− 1

6x3
]
, since

(a) cos(x) = 1− 1
2x2 at x = 0.

(b) ∂
∂x cos(x) = − sin(x) ≥ −x = ∂

∂x

(
1− 1

2x2
)

for x ≥ 0
(using sin(x) ≤ x for x ≥ 0).

14This makes sense, since m = 1 corresponds to measuring directly without doing any Grover iterations,
and therefore the probability of finding a marked item is at least 1

4 when t ≥ |L|/4.

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 35

For m > 1, we have that m̃ := π
2m ∈ (0, π

4], and therefore
1

4m sin(π
2m) ≤

1
4m

(
m̃− 1

6m̃3
) = 1

4m

1
m̃

1
1− 1

6m̃2 ≤
1

4m

2m

π

1
1− π2

96

= 1
2π

1
1− π2

96
.

Case (b): π/6 ≤ θ ≤ π/4. On this interval h(θ) is an increasing positive function with
minimum 1

2
√

3m
attained at θ = π/6. For m > 1, we have that

f(θ) ≤ 1
2
√

3m
≤
√

3
12 <

1
2π

1
1− π2

96
.

Finally, since Pm = 1/2− f(θ), we conclude that Pm ≥ 1
2 −

1
2π

1
1− π2

96
for π/6 ≤ θ ≤ π/2.

To start with, let us bound the expected number of queries of QSearch∞ to the quantum
oracle.

Lemma 15. The expected number of queries EQuantum
QSearch∞

to the quantum oracle Og used by
QSearch∞ when applied to a list L with t marked items can be upper bounded by

EQuantum
QSearch∞

(|L|, t) ≤
{9

2mt + ⌈logλ(mt)⌉ − 3 if 1 ≤ t < |L|
4

2.0344 if |L|
4 ≤ t ≤ |L|

(20)

where λ = 6
5 .

Proof. For every Grover cycle of QSearch∞, we sample 0 ≤ j < m uniformly at random.
Hence, on average, j = (⌈m⌉ − 1)/2. Because we need one query at the end of each cycle to
check if the returned item is marked15, on average a single Grover cycle uses (⌈m⌉−1)/2+1 ≤
m/2 + 1 queries. Since m is initialized at m = λ, and multiplied by λ after every run,
m(u) = λu during the u-th cycle.

Now, for |L|/4 ≤ t ≤ |L| by16 Lemma 14, writing p = 1
2 −

1
2π

1
1− π2

96
, QSearch∞ has success

probability lower bounded by p and failure probability upper bounded by ≤ 1− p. Hence, we
can upper bound the expected number of queries for QSearch∞ by

∞∑
u=1

(1− p)u−1 p

(
λu

2 + 1
)

= λp

2

∞∑
u=0

(λ(1− p))u + p
∞∑

u=0
(1− p)u = λp

2
1

1− λ(1− p) + 1

= 3
5

(
1
2 −

1
2π

1
1− π2

96

)
1

1− 6
5

(
1
2 + 1

2π
1

1− π2
96

) + 1 ≤ 2.0344 .

15In terms of queries to the function g, a check actually requires one query to g, not cq queries to g. Since
cq ≥ 1, and we are working with upper bounds, and the checking only happens ⌈log(mt)⌉ times, we choose to
count the check as cq queries to g to keep the formulas clean. As side note, when we say that we know the
value of R for QMax or φ for max-k-sat ‘from the previous step’, this value comes from these classical checks
(that occur as a subroutine of both QSearch and QMax).

16Lemma 14 holds for integer m. In our case, m(u) = λu is not necessarily integer, but since we are picking
the integer j less than m(u), we can always replace by m(u) by ⌈m(u)⌉. In particular, since m(1) = λ > 1,
⌈m(u)⌉ > 1 for all u, and we can use the bound in Lemma 14 for m > 1.

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 36

For 1 ≤ t < |L|
4 , we can repeat the analysis of Boyer et al. Before we reach the critical

stage, i.e. the cycles for which m < mt, the number of queries is upper bounded by

⌈logλ(mt)⌉−1∑
u=1

(
λu

2 + 1
)

= 1
2

λ⌈logλ(mt)⌉ − λ

λ− 1 + ⌈logλ(mt)⌉ − 1

≤ 1
2

λmt − λ

λ− 1 + ⌈logλ(mt)⌉ − 1

= 3mt + ⌈logλ(mt)⌉ − 4 .

Once m ≥ mt, we are in the critical stage, and by Lemma 13, Pm ≥ 1
4 . Hence, the expected

number of queries is upper bounded by

∞∑
u=0

(3
4

)u 1
4

(
λu+⌈logλ(mt)⌉

2 + 1
)

= λ⌈logλ(mt)⌉

8
1

1− 3λ
4

+ 1 ≤ λmt

8
1

1− 3λ
4

+ 1 = 3
2mt + 1 .

Including the upper bound to the expected number of queries before the critical stage, we
arrive17 at Eq. (20).

It should be noted that the bound of 9
2mt +⌈logλ(mt)⌉−3 actually holds for all t, but only

becomes useful when we can further bound mt (as we do in the next section, which requires
that number of marked items is not too large, e.g. 1 ≤ t ≤ |L|/4).

A.2 Success probability
Next, we focus on QSearch as described by Algorithm 2, which includes a time-out, making
it a finite-time bounded-error algorithm whose success probability and complexity we analyse
in the subsections that follow.

As a consequence of Lemma 14, we do not need to first sample classically to exclude the
case of many marked items before using Grover, because the success probability of a single run
is ≥ 1

4 also in the regime of many marked items. Hence, the success probability of QSearch
only depends on the success probability of the Grover search part (lines 6 - 19 of Algorithm 2),
which we investigate next. Note that, in our implementation of QSearch given in Algorithm 2,
we do include the classical sampling part because it can make the algorithm efficient in the
regime of many marked items.

If t = 0, then the Grover search part will run the maximum number Nruns of Grover runs,
and return ‘no marked item found’, which means it will always return the correct answer.
Thus, we can restrict ourselves to the case t > 0. In this case, the Grover part can only fail
when every Grover run fails. For a single Grover run to fail, it has to not find a marked item
before the time-out, meaning that QSearch∞ would have required more than Qmax queries to
find a marked item.

17The reason that we pick λ = 6/5 is that it minimizes the coefficient of the dominant term mt – which by
the above two expressions is given by c(λ) = 1

2

(
λ

λ−1 + λ
4−3λ

)
– on the interval λ ∈ (1, 4/3). In particular, the

choice λ = 6/5 is optimal.

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 37

Let X be the random variable that corresponds to the number of queries to Og needed
for QSearch∞ to find a marked item. We distinguish two cases.18

Case 1: 1 ≤ t ≤ |L|
4 . In this case, |L|

|L|−t ≤
4
3 , and therefore19

mt = 1
2

|L|√
(|L| − t)t

= 1
2

√
|L|
|L| − t

√
|L|
t
≤

√
|L|
3t

. (21)

Now, let us set Qmax = α
√
|L|, where α will be determined below. Using Eq. (20), the

probability that X ≥ Qmax can be upper bounded by Markov’s inequality:

Pr[X ≥ Qmax] ≤ E[X]
Qmax

≤
9
2mt + ⌈logλ(mt)⌉ − 3

α
√
|L|

≤ 1
α

3
√

3
2
√

t
+

logλ

(√
|L|
3t

)
− 2√

|L|

 . (22)

We want to make this expression less than or equal to 1
3 for all t ≥ 1 and for all |L|, which

we can accomplished by maximising the above expression with respect to t (which sets t = 1
in the above expression), and then choosing α to be

α ≥ max
x≥1

9
√

3
2 + 3

logλ

(√
x

3

)
− 2

√
x

 = 9
√

3
2 + 25

36e ln(λ) ≈ 9.1954 . (23)

To keep the notation simple, let us set

α = 9.2 . (24)

In particular, setting α = 9.2 actually guarantees that

Pr[X ≥ Qmax] ≤ 1
3
√

t
, (25)

for all 1 ≤ t ≤ |L|
4 . Indeed, making the rightmost expression in Eq. (22) less than or equal to

1
3
√

t
is equivalent to

α ≥

9
√

3
2 + 3

⌈
logλ

(√
x

3

)⌉
− 3

√
x

 (26)

for x = |L|
t , which holds because of Eq. (23).

Case 2: |L|
4 < t ≤ |L|. By Eq. (20),

Pr[X ≥ Qmax] ≤ 2.0344
α
√
|L|

. (27)

which is also less than or equal to 1
3 for α = 9.2.

18We assume that |L| ≥ 4 throughout this analysis.
19Note that the bound 9

4
|L|√

(|L|−t)t
≤ 9

2

√
|L|

t
in [7] follows similarly.

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 38

In conclusion Given failure probability of at most ϵ > 0, recall that we execute at most
Nruns = log3(1/ϵ) Grover runs. Therefore, the probability that QSearch succeeds satisfies

psuccessQSearch ≥
(

1− 1
3Nruns

)
= 1− ϵ

as required.

A.3 Expected number of queries
In this section of the appendix, we upper bound the expected number of queries to g made
by QSearch.

A.3.1 Classical sampling part

For fixed |L| and t, the probability that a vertex drawn uniformly at random is marked is
given by the fraction f = t/|L|. Now, if we draw at most Nsamples classical samples uniformly
at random, and then use Grover search if all Nsamples samples turn out to be unmarked, this
takes a total of

EQSearch =
Nsamples∑

i=1
f(1− f)i−1i + (1− f)Nsamples(Nsamples + cqEGrover) . (28)

queries to g in expectation, where EGrover is the expected number of queries to the quantum
oracle Og made by all Nruns Grover runs of QSearch combined.

If t = 0, then the above expression becomes

EQSearch = Nsamples + cqEGrover . (29)

If 1 < t ≤ |L|, then we can evaluate the geometric series. We have the following expression
for the number of queries made by the classical sampling part

E(f) =
Nsamples∑

i=1
f(1− f)i−1i + (1− f)NsamplesNsamples

where f = t/|L| is the fraction of marked items. The sum above can be evaluated as follows:

f

Nsamples∑
i=1

(1− f)i−1i = −f
∂

∂f

Nsamples∑
i=1

(1− f)i = f
∂

∂f

(
(1− f)Nsamples+1 − 1 + f

f

)

= −(Nsamples + 1)(1− f)Nsamples − (1− f)Nsamples+1

f
+ 1

f
.

Adding (1− f)NsamplesNsamples gives that E(f) can be rewritten as follows:

E(f) = −(1− f)Nsamples − (1− f)Nsamples+1

f
+ 1

f

= (1− f)Nsamples

(
−1− 1− f

f

)
+ 1

f

= 1
f

(
1− (1− f)Nsamples

)
. (30)

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 39

Hence, for 1 ≤ t ≤ |L|, we conclude that20

EQSearch = 1
f

(1− (1− f)Nsamples) + (1− f)NsamplescqEGrover . (31)

A.3.2 Grover part

Next, we investigate the expected number of queries EGrover to Og in the Grover part of
QSearch.

No marked items in the list If t = 0, then every run runs to completion without finding
a marked element. In total, a single run executes at most Qmax queries to Og. Since for t = 0
we perform Nruns, the expected total number of queries to Og in case of no marked items is
upper bounded by

EGrover ≤ Nrunsα
√
|L| ≤ 9.2Nruns

√
|L| , (32)

where in the last inequality we used the expression for α in Eq. (24).

Marked items in the list i.e. t > 0. To start with, we want to bound the number of
Grover iterations executed in a single run. To do so, we first examine a single run of QSearch∞,
i.e. without a timeout. For k ∈ N, let us write pk for the probability that the random variable
X – introduced in Appendix A.2 corresponding to the number of queries to Og needed for
QSearch∞ to find a marked item – assumes the value k, i.e. the probability that a single run
of QSearch∞ would have found a marked item using a total of k queries. Then, in terms of
the probabilities {pk}k∈N, we have

E[X] =
∞∑

k=1
k pk .

A single Grover run fails exactly when QSearch∞ would have timed-out. Hence, the
probability of a single Grover run succeeding is given by

qsuccess =
⌈Qmax⌉−1∑

k=0
pk .

Conditioned on the outcome that step 2 finds a marked item – which happens with probability
qsuccess, a single run requires in expectation

Qsuccess =
⌈Qmax⌉−1∑

k=0
k

qk

qsuccess
(33)

queries. Due to Lemma 16, we have that

Qsuccess ≤ E[X]. (34)
20Interestingly, this expression is the same as the one we would have obtained using the following procedure:

with probability (1 − f)Nsamples , we do Grover search, which takes NGrover
g steps, and with probability 1 − (1 −

f)Nsamples , we classically sample vertices, of which we need 1
f

. The nice thing about the implementation we
use, is that our implementation of QSearch mimics this behaviour without knowing f in advance (meaning
that we’re not flipping a coin that returns heads with probability (1 − f)Nsamples).

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 40

Lemma 16. Let P = {pk}∞k=0 be a discrete probability on N and let E =
∑∞

k=0 pkk be the
expectation value of sampling a number from N according to P. If there is a promise that the
sampled number k is less than some value K ∈ N, the resulting probability distribution P′ is
renormalized by pK =

∑K
k=0 pk, that is: P′ =

{
pk
pK

}K

k=0
. Now, we claim that

E′ =
K∑

k=0

pk

pK
k ≤ E,

i.e. the expectation value of drawing a number bellow K according to P′ is bounded from above
by the original expectation value E.

Proof. We distinguish two cases.
Case 1: K ≤ E. In this case, we have

E′ =
K∑

k=0

pk

pK
i ≤

K∑
k=0

pk

pK
K = K ≤ E.

Case 2: K > E. Now we have

E = E′pK + (1− pK)
∞∑

k=K+1

pk

1− pK
i ≥ E′pK + (1− pK)K > E′pK + (1− pK)E ,

which implies
E ≥ E′ .

Similarly, conditioned on the outcome that we do not find a marked item (due to the
timeout) – which happens with probability qfail = 1 − qsuccess, the number of queries Qfail in
a single run can trivially be bounded by

Qfail < Qmax = α
√
|L| = 9.2

√
|L| . (35)

Because we execute at most Nruns Grover runs, the expected number of queries in its entirety
is given by the following sum

EGrover =
Nruns−1∑

j=0
qj
fail(1− qfail)(jQfail + Qsuccess) + qNruns

fail NrunsQfail

= Qsuccess(1− qfail)
Nruns−1∑

j=0
qj
fail + Qfail

qNruns
fail Nruns + (1− qfail)

Nruns−1∑
j=1

qj
failj

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 41

We can simplify the series above as follows

qNruns
fail Nruns + (1− qfail)

Nruns−1∑
j=1

qj
fail j = qNruns

fail + qfail

qNruns−1
fail (Nruns − 1) + (1− qfail)

Nruns−1∑
j=1

qj−1
fail j

= qNruns

fail + qfail

(1
1− qfail

(1− qNruns−1
fail)

)
= qfail

1− qfail

(
qNruns−1
fail (1− qfail) + 1− qNruns−1

fail

)
= qfail

1− qfail
(1− qNruns

fail)

where, going from the first to the second line we have used the derived expression for E(f)
in Eq. (30) with f = 1− qfail and Nsamples = Nruns − 1. We conclude that, for t > 0,

EGrover = Qsuccess(1− qNruns
fail) + Qfailqfail

1− qNruns
fail

1− qfail
. (36)

Recall that the probability qfail that a single Grover run fails is given by

qfail =
∞∑

k=⌈Qmax⌉
pk ,

which is bounded by Eq. (25) if 1 ≤ t < |L|
4 , and Eq. (27) if |L|

4 < t ≤ |L| – see Appendix A.2.
However, we don’t have a lower bound on qfail, and therefore the best we can do with the
1− qNruns

fail term is to upper bound it by 1, which is equivalent to taking the Nruns →∞ limit.
As a consequence, for t > 0, our upper bound for EGrover is independent of the number of
Grover runs Nruns. The resulting upper bound for EGrover is given by

EGrover ≤ Qsuccess + qfail
Qfail

1− qfail
, (37)

where Qfail is bounded by Eq. (35), and Qsuccess given by Eq. (33) will be bounded in the
subsection below.

A.3.3 In conclusion

Given a list L with t marked items, a failure probability of ϵ, and a maximum number
of classical samples Nsamples, QSearch(L, Nsamples, ϵ) executes at most Nruns = ⌈log3(1/ϵ)⌉
Grover runs.

If t = 0, then by Eqs. (29) and (32), the expected total number of queries to g is bounded
from above by

EQSearch ≤ Nsamples + αcq⌈log3(1/ϵ)⌉)
√
|L| .

If t > 0, then by Eq. (31) we have

EQSearch = |L|
t

(
1−

(
1− t

|L|

)Nsamples
)

+
(

1− t

|L|

)Nsamples

cqEGrover

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 42

By Eq. (37), EGrover satisfies the bounds below

EGrover ≤ Qsuccess + qfail
Qfail

1− qfail

≤ Qsuccess + E[X]
α
√
|L|

Qfail

1− E[X]
α
√

|L|

.

In the second line we have used Eq (22). Now, for Qfail, we have the upper bound from
Eq. (35): Qfail ≤ α

√
|L|. Moreover, to bound Qsuccess, we can use Eq. (34), which says that

Qsuccess ≤ E[X]. Hence, we obtain

EGrover ≤ E[X]

1 + 1
1− E[X]

α
√

|L|

 ,

Depending on the number of marked items t, we can bound E[X] as follows.

• If 1 ≤ t ≤ |L|
4 , then by Eq. (20),

E[X] ≤ 9
4

|L|√
(|L| − t)t

+
⌈

log 6
5

(
|L|

2
√

(|L| − t)t

)⌉
− 3 ≤ α

√
L|

3
√

t
.

The rightmost inequality follows from the analysis leading up to Eq. (25).

• In case |L|
4 < t ≤ |L|, by Eq. (20) we have

E[X] ≤ 2.0344 .

In the above formulas, by Eq. (24),

α = 9.2 ≥ max
x≥1

9
√

3
2 + 3

logλ

(√
x

3

)
− 2

√
x

 .

The expressions obtained for the expected number of queries to g are presented more concisely
in Lemma 4.

A.4 Worst-case behaviour of QSearchZalka

The two steps of this algorithm are given in Section 2.2. Here we analyse the worst-case
complexity of that implementation. For the first step, recall that (see Lemma 2) when there
are t marked items (and we know t), then exact Grover search21 can find and return one with

21We note that exact Grover search is somewhat unrealistic, since it requires arbitrarily precise rotations to
be performed in each Grover step. In general this will not be possible, and the best we can hope for is some
very close approximation using a sequence of gates taken from some universal gate set. This approximation
can be made inverse-exponentially close to the correct rotations with only a polynomial overhead (in terms
of the number of gates required), which in particular does not contribute to the query complexity of the
algorithm. This will mean that ‘exact’ Grover search will actually fail with some small probability, but that
this probability can be made small enough to be negligible for our purposes (e.g. we can simply ensure that the
probability of it failing is smaller than ϵ/t0 without incurring any extra queries). With this in mind, we ignore
such considerations, since there will always be issues of approximation and error arising from the physical
implementations of quantum algorithms, and we view such issues as being on the same level as overheads from
error correction, which as we have already discussed we will omit from our analysis.

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 43

certainty, using precisely

⌈
π
4

√
N
t −

1
2

⌋
+ 1 Grover iterations [16].22 Therefore, step 1 requires

at most

t0∑
t=1

π

4

√
N

t
− 1

2

+ 1

 ≤ t0∑
t=1

π

4

√
|L|
t

+ 1

 = t0 + π

4

√
|L|

t0∑
t=1

1√
t

≤ t0 + π

4

√
|L|
∫ t0

0

1√
t
dt

= t0 + π

2

√
|L|t0

queries to the quantum oracle Og (recalling that every Grover iteration takes a single query,
and every Grover run requires one at the end to check whether a marked item was found or
not). For the second step, clearly there will be at most

2t0

π

4

√
|L|
t0

+ 2t0 ≤
π

2

√
|L|t0 + 4t0

queries (though the probability of doing this many is quite small), and it remains to set the
value of t0. Suppose that whenever we run Grover search with a number of iterations in

the range [0, ⌈π
4

√
|L|
t0
⌉], the probability of detecting a marked item is at least p. Then the

probability that this step of the algorithm fails will be no more than (1− p)2t0 . If we require
that (1− p)2t0 ≤ ϵ, then it is sufficient to choose

t0 =
⌈ ln (ϵ)

2 ln (1− p)

⌉
(where we round up to ensure that t0 is an integer). Then we can combine the queries from
each stage and rewrite the total number made by the algorithm as

5
⌈ ln ϵ

2 ln(1− p)

⌉
+ π

√
|L|
√⌈ ln ϵ

2 ln(1− p)

⌉
.

It remains to lower bound the success probability p for different values of t. We can first use

a bound derived in [7], which says that p ≥ 1/4 provided

⌈
π
4

√
|L|
t0

⌉
≥ |L|

2
√

t
√

|L|−t
. Using the

fact that t > t0, and further assuming that t ≤ (a−1)|L|
a for some a > 1 to be chosen, we have

|L|
2
√

t
√
|L| − t

≤ 1
2

√
a|L|
t0

and therefore we can ensure that

⌈
π
4

√
|L|
t0

⌉
≥ |L|

2
√

t
√

|L|−t
by choosing a = π2

4 , in which case we

obtain p ≥ 1/4.
Now we can consider the case that t > (a−1)|L|

a . In this case, we are still very likely to
find a marked item even after applying some Grover iterations that will, in general, rotate the

22The notation ⌈x⌋ represents the closest integer to x.

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 44

state away from the marked subspace, and as we show in Lemma 14 we have p ≥ 1/4 when

t > π2/4−1
π2/4 > |L|

4 , and so for both cases we have p ≥ 1/4. Plugging this lower bound on p

into the expression for the total number of Grover iterations, and taking into account that a
single query to Og corresponds to cq queries to g, we see that the total number of queries to
g made by the algorithm is at most

WQSearchZalka(|L|, ϵ) := cq

(
5
⌈ ln(1/ϵ)

2 ln(4/3)

⌉
+ π

√
|L|
√⌈ ln(1/ϵ)

2 ln(4/3)

⌉)
. (38)

B Detailed analysis of QMax
In this section we compute the expected number of queries to g made by QMax∞, and we
give further upper bounds to the obtained expression for the expected number of queries.

B.1 Expected number of queries
Based on the the proof idea of [1], we provide a more accurate proof and expression of the
expected number of queries made by QMax∞ when searching the list L with t marked items,
as stated in Lemma 6 (restated below for convenience).

Lemma 6. [Expected complexity of QMax∞] Let L be a list of |L| items. Then, the expected
number of queries to any of the fi (as defined as in Eq. 7) required for QMax∞ to find the
maximum of L is upper bounded by

EQMax∞(|L|) ≤ cq

|L|−1∑
t=1

F (|L|, t)
t + 1 , (9)

where F (|L|, t) is defined by Eq. (3). Here, cq is the number of queries to fi required to
implement the oracle Ofi

(which we assume to be the same for all i).

Proof. Let us use the shorthand notation

Q(t) = EQuantum
QSearch∞

(|L|, t)

for the expected number of queries made by QSearch∞ to the quantum oracle when searching
a list L with t marked items (suppressing the L dependence for notational convenience). Note
that by Lemma 15,

Q(t) ≤ F (|L|, t)
where F (|L|, t) is given by Eq. (3). Moreover, let E(t) denote the expected number of queries
to the quantum oracles Ofi

for finding the maximum when t items are marked: i.e. the
expected number of queries to find the maximum given that y is set to the t + 1-th item of L
when ordered according to R in descending order. We first compute the expected number of
queries to the quantum oracles Ofi

, and then include the factor of cq in the end23.
We have the following recursion relation for E(t):

E(t) = 1
t

(
E(t− 1) + E(t− 2) + . . . + E(1) + E(0)

)
+ Q(t) , (39)

23Since each query to Og corresponds to cq queries to g.

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 45

(because, after applying QSearch∞, with equal probability we find one of the t marked items
in L with a larger value for R than the current index y). Note that E(0) = 0.

Using Eq. (39) for t and t− 1:

tE(t) =
t−1∑
u=1

E(u) + tQ(t)

(t− 1)E(t− 1) =
t−2∑
u=1

E(u) + (t− 1)Q(t− 1)

and subtracting the bottom equation from the top equation and then dividing by t yields

E(t) = E(t− 1) + Q(t)− t− 1
t

Q(t− 1) . (40)

Since the above equation holds for every t, we can use the equation for t − 1 and plug it
into Eq. (40), and then do the same for t− 2, etc., up to t = 2. We then obtain

E(t) = E(1) +
t∑

u=2

(
Q(u)− u− 1

u
Q(u− 1)

)
.

We next rewrite24 the sums above as follows:

E(t) = E(1) +
t∑

u=2
Q(t)−

t−1∑
u=1

u

u + 1Q(u)

= E(1) + Q(t) +
t−1∑
u=2

Q(t)
(

1− u

u + 1

)
− 1

2Q(1)

= Q(t) +
t−1∑
u=2

Q(u)
u + 1 + 1

2Q(1)

= Q(t) +
t−1∑
u=1

Q(u)
u + 1 , (41)

where, when going to the third line, we have used that E(1) = Q(1).
Now, since, at initialization, QMax∞ chooses an index y uniformly at random, the ex-

pected number of queries of QMax∞ to the quantum oracles is given by

1
|L|

|L|−1∑
t=1

E(t) .

24This is where the proof of [1] becomes imprecise. The authors use upper bounds for Q(u) and Q(u − 1)
in order to upper bound E(t). However, in order to obtain an upper bound for E(t), a lower bound for the
Q(u − 1) terms should be used, because they come with a minus sign. The correct way to continue the proof
is to postpone using upper bounds for Q(u) until after rewriting the sum.

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 46

As before, E(0) = 0 and needs not to be included in the sum. Using Eq. (41), we get

1
|L|

|L|−1∑
t=1

E(t) = 1
|L|

|L|−1∑
t=1

Q(t) +
|L|−1∑
t=1

t−1∑
u=1

Q(u)
u + 1

= 1
|L|

|L|−1∑
s=1

Q(s)
(

1 + |L| − 1− s

s + 1

)

=
|L|−1∑
s=1

Q(s)
s + 1 ,

where the expression is the second line can be obtained by collecting all terms Q(s) together
for every s ∈ {1, 2, . . . , |L| − 1}. Including the factor cq, and only now using the fact that
Q(s) ≤ F (|L|, s) we obtain our result.

B.2 Upper bounds to the expected number of queries
Next, we will upper bound the series that upper bounds the expected number of queries to g
made by QMax∞ by a simpler expression. By Lem. 6 and Eq. (3), we have

EQMax∞(|L|) ≤ cq

⌈|L|/4⌉−1∑
s=1

F (L, s)√
s(s + 1) + 2.0344

|L|−1∑
s=⌈|L|/4⌉

1
s + 1

 . (42)

with

F (L, s) ≤ 9
4

|L|√
(|L| − t)t

+
⌈

log 6
5

(
|L|

2
√

(|L| − t)t

)⌉
− 3 ≤ 9.2

√
L|

3
√

t

for s ≤ ⌈|L|/4⌉ − 1.

Loose upper bound We can upper bound the sums above by integrals. For the second
term, we have

|L|−1∑
s=⌈|L|/4⌉

1
s + 1 ≤

∫ |L|−1

⌈|L|/4⌉−1
ds

1
s + 1 =

∫ |L|

⌈|L|/4⌉
dx

1
x

= ln(|L|)− ln(⌈|L|/4⌉) ≤ ln(4) .

For the first term, using
9.2
√

|L|
2
√

s
as an upper bound for F (L, s), we get

⌈|L|/4⌉−1∑
s=1

1√
s(s + 1) ≤

1
2 +

∫ ⌈|L|/4⌉−1

1
ds

1√
s(s + 1 = 1

2 + 2 arctan(
√
⌈|L|/4⌉ − 1)− π

2

Hence,

EQMax∞(|L|) ≤ cq

(
9.2
√
|L|

3

(1− π

2 + 2 arctan(
√
⌈|L|/4⌉ − 1)

)
+ 2.0344 ln(4)

)

≤ cq

(
9.2
√
|L|

3
1 + π

2 + 2.0344 ln(4)
)

≤ cq

(
6.3505

√
|L|+ 2.8203

)
.

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 47

Tighter bound We can also use

F (L, t) ≤ 3
√

3
2

√
|L|
t

+ log 6
5

√ |L|
3t

− 2

for the 1 ≤ t < |L|/4 regime – obtained from the tighter upper bound for F (L, t) above
combined with Eq. (21). In this case, the first term in Eq. (42) can be upper bounded by

⌈|L|/4⌉−1∑
s=1

F (L, s)
s + 1 ≤ 3

√
3|L|
2

⌈|L|/4⌉−1∑
s=1

1√
s(s + 1) +

(1
2 log 6

5
(|L|/3)− 2

) ⌈|L|/4⌉−1∑
s=1

1
s + 1

− 1
2

⌈|L|/4⌉−1∑
s=1

log 6
5
(s)

s + 1 .

The first term above can be bounded by

3
√

3|L|
2

(1− π

2 + 2 arctan
(√
⌈|L|/4⌉ − 1

))
,

as before, and the second by (1
2 log 6

5
(|L|/3)− 2

)
ln(|L|/4) .

For the third term above, note that the function ln(s)
s+1 is monotonically decreasing for s ≥ 4.

Hence, assuming ⌈|L|/4⌉ − 1 ≥ 4, we have

1
2 ln(6/5)

⌈|L|/4⌉−1∑
s=1

ln(s)
s + 1 ≤

1
2 ln(6/5)

4∑
s=1

ln(s)
s + 1 +

∫ ⌈|L|/4⌉−1

4
ds

ln(s)
s + 1

≤ 2.5279 + Li2(−⌈|L|/4⌉+ 1) + ln(⌈|L|/4⌉ − 1) ln(⌈|L|/4⌉)
2 ln(6/5)

where Li2 is Spence’s function, or dilogarithm.
Collecting all terms together, we get

⌈|L|/4⌉−1∑
s=1

Q(s)
s + 1 ≤

3
√

3|L|
2

(1− π

2 + 2 arctan
(√
|L|/4

))

+ ln(|L|/4)
2 ln(6/5) (ln(|L|/3) + ln(|L|/4 + 1))

− 2 ln(|L|/4) + 2.5279 + Li2(−⌈|L|/4⌉+ 1)
2 ln(6/5) .

Using arctan(x) ≤ π
2 , the expected number of queries to g of QMax∞ is bounded by

EQMax∞(|L|) ≤ cq

[
3
√

3(1 + π)
4

√
|L|+ ln(|L|/4)

2 ln(6/5)

(
ln(|L|/3) + ln(|L|/4 + 1)

)
− 2 ln(|L|/4)

+ 5.3482 + Li2(−⌈|L|/4⌉+ 1)
2 ln(6/5)

]
(43)

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 48

which has a leading term that grows as

cq
3
√

3(1 + π)
4

√
|L| ≤ cq5.3801

√
|L| .

C Estimators for the expected number of queries for QSearch
In this section, we provide additional details for our derivation of the estimator in Section 3.1
that overestimates expected number of queries for QSearch by sampling items from L uni-
formly at random and counting after how many samples we find a marked item. We start by
proving Lemma 7 and Lemma 8, then construct Eestimator

Grover , and finally construct an estimator
for the expected number of queries EQSearch for QSearch.

C.1 Proof of Lemma 7
Here we prove Lemma 7, restated below for convenience.

Lemma 7. For a random variable X geometrically distributed with parameter f , there exists
a constant d1 = 4/π ≈ 1.273, such that√

E[X] ≤ E[
√

d1X]

for all f ∈ (0, 1].

Proof. The expectation value of E[
√

d1X] is given by

E[
√

d1X] =
∞∑

i=1

√
d1if(1− f)i−1 =

√
d1

fLi− 1
2
(1− f)

1− f
=:
√

d1h(f),

where Lis(z) is a polylogarithmic function known as Jonquière’s function, given by

Lis(z) =
∞∑

k−1

zk

ks
.

We prove this corollary in three steps: 1) we investigate the limiting behaviour of the ratio
of
√

d1h(f)/
√

1/f at the domain boundaries, and show that there exists a constant d1 = 4
π

such that at both limits the ratio is at least one; 2) we show that this ratio is non-decreasing
on this domain; 3) we deduct the implied upper bound and relative errors. We obtain the

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 49

limiting behaviour when f → 0+ as follows:

lim
f→0+

√
d1h(f)√

1
f

= lim
f→0+

√
d1fLi− 1

2
(1− f)

(1− f)
√

1
f

=
√

d1 lim
f→0+

Li− 1
2
(1− f)

f−3/2(1− f)

=
√

d1 lim
f→0+

[1
1− f

]
lim

f→0+

[Li− 1
2
(1− f)

f−3/2

]
(Product rule)

=
√

d1 lim
f→0+

√
π

2 f−3/2 +O(f−1/2)
f−3/2 (Series expansion)

=
√

d1

√
π

2 .

Similarly, for f → 1 we get

lim
f→1

√
d1

h(f)√
1
f

= lim
f→1

√
d1

fLi− 1
2
(1− f)

(1− f)
√

1
f

=
√

d1 lim
f→1

Li− 1
2
(1− f)

f−3/2(1− f)

=
√

d1 lim
f→1

[1
f−3/2

]
lim
f→1

[Li− 1
2
(1− f)

1− f

]
(Product rule)

=
√

d1 lim
f→1

(1− f) +O((1− f)2)
1− f

(Series expansion)

=
√

d1.

Therefore, if we pick d1 = (2/
√

π)2 = 4/π, we have that the ratio is at both limits at least
one. We will now establish the non-decreasing property of this ratio, already evaluated with
our proposed

√
d1 = 2/

√
π, by invoking the first derivative test. Note that

∂

∂f

2√
π

h(f)√
1
f

= −
2fLi−3/2(1− f) + (f − 3)Li−1/2(1− f)

√
π
√

1
f (1− f)2

,

for which the denominator
√

π
√

1
f (1−f)2 ≥ 0 for all f ∈ (0, 1], and the numerator has exactly

one root at f = 1. Since for any other f̃ ∈ (0, 1] taken left of f = 1 the derivative of the ratio
is larger than zero, we must have that the ratio is a non-decreasing function. Therefore, we
have that

√
d1h(f) ≥

√
1/f for all f ∈ (0, 1].

C.2 Proof of Lemma 8
Lemma 8. For a random variable X geometrically distributed with parameter f , there exists
a constant d2 = eγ ≈ 1.781, where γ is the Euler–Mascheroni constant, such that

log(E[X]) ≤ E[log (d2X)]

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 50

for all f ∈ (0, 1].

Proof. For random variable X geometrically distributed with parameter f , we have that
E[X] = 1

f , and

E[log X] =
∞∑

i=1
log (i)f(1− f)i−1.

We will show that
log(E[X])− E[log X] ≤ γ (44)

from which the statement of the lemma follows:

log(E[X]) ≤ log(eγ) + E[log X] = E[log(eγX)] .

In order to prove Eq. (44), let us define q := 1− f ∈ [0, 1). Now, we have

log(E[X])− E[log X] = − log (1− q)−
∞∑

i=1
log (i)(1− q)qi−1

= − log (1− q)−
∞∑

i=2
log (i)qi−1 +

∞∑
i=1

log (i)qi

= − log (1− q)−
∞∑

i=1
log (i + 1)qi +

∞∑
i=1

log (i)qi

= − log (1− q)−
∞∑

i=1
log

(
i + 1

i

)
qi

=
∞∑

i=1

qi

i
−

∞∑
i=1

log
(

i + 1
i

)
qi [Series expansion]

=
∞∑

i=1

[1
i
− log

(
i + 1

i

)]
qi

Next, we investigate the above series without the qi’s, which turns out to be convergent.
Indeed, for n ∈ N we have

n∑
i=1

[
− log

(1 + i

i

)
+ 1

i

]
= − log

(
n∏

i=1

1 + i

i

)
+

n∑
i=1

1
i

= − log (n + 1) +
n+1∑
i=1

1
i
− 1

n + 1 .

Taking the limit n→∞ yields
∞∑

i=1

[
− log

(1 + i

i

)
+ 1

i

]
= lim

n→∞

[
− log (n + 1) +

n+1∑
i=1

1
i

]
− lim

n→∞

[1
n + 1

]
= γ ≈ 0.5772

by definition of the Euler-Mascheroni constant.
Moreover, since

1
i
− log

(
i + 1

i

)
= 1

i
− log

(
1 + 1

i

)
≥ 0 for all i > 0,

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 51

and qi ∈ [0, 1), the following must hold

∞∑
i=1

[1
i
− log

(
i + 1

i

)]
qi ≤ γ for all 0 ≤ q < 1 ,

and therefore so does Eq. (44).

C.3 Estimator for EGrover for all t ≥ 1
We next construct an estimator that overestimates EGrover. To do so, we will first construct
a single function of the form

G(f) = c0 + c1
1
f

+ c2

√
1
f

+ c3 log 6
5

(1
f

)
, (45)

where f = t/|L|, that upper bounds EGrover(|L|, t) on the entire domain [1, |L|] of t — except
for the case of t = 0, which will be dealt with separately in Section 3.1. Afterwards, we
will use Lemmas 7 and 8 to deal with the issue of the concavity of the square root and the
logarithm appearing in the expression for G.

Let us start with the regime 1 ≤ t ≤ |L|/4. From Eq. (2), using Eq. (21) with f = t
|L| , we

have

EGrover(|L|, t) ≤
(

3
2

√
3
f

+ log 6
5

(√
1

3f

)
− 2

)1 + 1
1− 1

3
√

f |L|

≤
(

3
2

√
3
f

+ log 6
5

(√
1
f

)
+ log 6

5

(1√
3

)
− 2

)(
2 + 1

2
√

f |L|

)
, (46)

where we have bounded the term 1
1− 1

3
√

f |L|
by 1 + 1

2
√

f |L|
, which holds since (defining x :=

1
3
√

f |L|
)

1
1− 1

3
√

f |L|

= 1
1− x

= 1 + x

1− x
≤ 1 + 3

2x = 1 + 1
2
√

f |L|
, (47)

when 0 ≤ x ≤ 1/3. Plugging Eq. (47) into Eq. (46) and expanding all terms we obtain

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 52

EGrover(|L|, t) ≤ G(f) by choosing the ci’s as follows.
25

c0 = 2 log 6
5

(1√
3

)
− 4 ≤ −10.0256

c1 = 3
√

3
4
√
|L|
≤ 1.2991√

|L|

c2 = 3
√

3 + 1
2
√
|L|

(
log 6

5

(1√
3

)
− 2

)
≤ 5.1962− 2.5064√

|L|

c3 = 5
4 .

Above, we have absorbed the product of the log 6
5
(
√

1/f) and the 1/(2
√

f |L|) into c3, by

upper bounding 1/(2
√

f |L|) ≤ 1/2.
The function G(f) with the constants as given above gives an expression that upper bounds

EGrover on the domain 1 ≤ t < |L|
4 (or 4 ≤ 1

f ≤ |L|), but it does not upper bound EGrover for
|L|
4 ≤ t ≤ |L| (or 1 ≤ 1

f ≤ 4). In order to obtain a single expression that upper bounds EGrover

for all 1 ≤ t ≤ |L|, or equivalently 1 ≤ 1
f ≤ |L|, we can take the expression from Eq. (45) and

add an unknown constant26 to c0 to ensure that the resulting expression also upper bounds
EGrover for

|L|
4 ≤ t ≤ |L|, i.e. 1 ≤ 1

f ≤ 4. The latter is given by Eq. (2):

2.0344

1 + 1
1− 2.0344

α
√

|L|

 . (48)

To obtain a bound that holds for all 1 ≤ 1
f ≤ |L|, note that Eq. (45) is monotonically

increasing in 1/f . Therefore, all we need is that Eq. (45) upper bounds the expression in
Eq. (48) for 1

f = 1, that is, we require

2.0344

1 + 1
1− 2.0344

α
√

|L|

 ≤ c0 + c1 + c2 , (49)

with

c0 = 2 log 6
5

(1√
3

)
− 4 + A + B

2
√

L
(50)

c1 = 3
√

3
4
√
|L|

c2 = 3
√

3 + 1
2
√
|L|

(
log 6

5

(1√
3

)
− 2

)

25Note that, despite there being a term linear in 1
f

, there number of iterations scales as
√

|L|: indeed,
the constant c1 multiplying the linear term contains a factor of 1√

|L|
, and since 1/f ≤ |L|, we have that

c1
1
f

= O(
√

|L|).
26We can also alter the other coefficients, but that will give a much worse upper bound for the small t

regime.

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 53

where A and B will be chosen to make Eq. (49) hold.
Using the same reasoning as for Eq. (47) with x = 2.0344

α
√

|L|
and 0 ≤ x ≤ 2.0344

α , we have

2.0344

1 + 1
1− 2.0344

α
√

|L|

 ≤ 2.0344
(

2 + 1
1− 2.0344

α

2.0344
α
√
|L|

)

= 4.0688 + 1√
|L|

2.03442

α− 2.0344

In order to make the right-hand side of the above expression less than or equal to c0 + c1 + c2,
we can compare the constant terms and the terms multiplying 1√

|L
on both sides separately.

For the constant terms, we require

4.0688 ≤ 2 log 6
5

(1√
3

)
− 4 + A + 3

√
3

which implies that

A = 8.8984 ≥ 4.0688− 2 log 6
5

(1√
3

)
+ 4− 3

√
3

works. For the terms multiplying 1√
|L|

, we need

2.03442

α− 2.0344 ≤
1
2

(
3
√

3
2 + log 6

5

(1√
3

)
− 2 + B

)

which means we can take

B = 3.5700 ≥ 2 2.03442

α− 2.0344 −
(

3
√

3
2 + log 6

5

(1√
3

)
− 2

)
.

Taking everything together, we obtain the following upper bound

EGrover(|L|, t) ≤ −1.1272 + 1.7850√
|L|

+ 1.2991√
|L|

1
f

+
(

5.1962− 2.5064√
|L|

)√
1
f

+ 5
4 log 6

5

(1
f

)
.

Hence, the following estimator

Ẽestimator
Grover (l) := −1.1272 + 1.7850√

|L|
+ 1.2991√

|L|
l +

(
5.1962− 2.5064√

|L|

)
√

l + 5
4 log 6

5
(l)

satisfies
Ẽestimator

Grover (E[l]) = Ẽestimator
Grover (1/f) ≥ EGrover(|L|, t) .

for all 1 ≤ t ≤ |L|.

Next, we want to construct an estimator Eestimator
Grover (l) that satisfies

E[Eestimator
Grover (l)] ≥ Ẽestimator

Grover (E[l]) .

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 54

Lemma 7 implies that, if we multiply our sample average27 of
√

l by 2/
√

π =
√

d1, we obtain
an an estimator that in expectation upper bounds

√
1/f . Similarly, from Lemma 8 we gather

that, if we multiply l by eγ in the argument of the logarithm, we obtain an estimator that in

expectation upper bounds log 6
5

(
1
f

)
. Consequently, the following estimator

Eestimator
Grover (l) := −1.1272 + 1.7850√

|L|
+ 1.2991√

|L|
l +

(
5.1962− 2.5064√

|L|

)
2
√

l√
π

+ 5
4 log 6

5
(eγl)

upper bounds EGrover in expectation for all 1 ≤ t ≤ |L| (or 1 ≤ 1
f ≤ |L|):

E[Eestimator
Grover (l)] ≥ EGrover(|L|, t) ,

where the expectation is taken over the geometric distribution l ∼ Geo(f), with f = t/|L|.

C.4 Estimator for expected number of queries of QSearch
In this section we will prove that, for a list L with t ≥ 1 marked items,

E[H(l)] ≥ |L|
t

(
1−

(
1− t

|L|

)N
)

+
(

1− t

|L|

)N

cqEGrover(|L|, t) , (51)

where H(l) = h1(l)+h2(l)cqEestimator
Grover (l), N = Nsamples is the number of classical samples taken

by QSearch, and the expectation over l is taken over the geometric distribution l ∼ Geo(f),
with f = t/|L|.

As a quick sanity check, if l is geometrically distributed with parameter f (e.g. Pr[x =
k] = f(1− f)k−1), then we have

E[l] =
∞∑

k=1
(1− f)k−1fk = −f

∂

∂f

∞∑
k=0

(1− f)k = −f
∂

∂f

1
f

= 1
f

,

as expected.
Next, we focus on the first term in Eq. (51). Recall from Eq. (30) that for the classical

contribution to the queries, we have

1
f

(
1− (1− f)N

)
=

N∑
i=1

f(1− f)i−1i + N(1− f)N . (52)

Now, for h1(l) = min(l, N), we have the following lemma.

Lemma 17. E[h1(l)] = 1
f

(
1− (1− f)N

)
. (Where x is drawn according to the geometric

distribution above with parameter f).

27Of sample size 1.

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 55

Proof.

E[g(l)] =
∞∑

k=1
(1− f)k−1fh1(k) =

N∑
k=1

(1− f)k−1fk +
∞∑

k=N+1
(1− f)k−1fN

=
N∑

k=1
(1− f)kfk + N(1− f)N

∞∑
k=1

(1− f)k−1f

=
N∑

k=1
(1− f)kfk + N(1− f)N

= 1
f

(
1− (1− f)N

)
,

where the final equality holds from (52).

Hence, we can take as an estimator for the number of classical queries just min(l, N),
where l is the number of items sampled from L before finding a marked one.

Now we turn our attention to the quantum contribution to the number of queries, which
is given by

(1− f)N cqEGrover(|L|, t) .

We already have from Eq. (13) an estimator Eestimator
Grover (l) such that E

[
Eestimator

Grover (l)
]
≥ EGrover(|L|, t).

We seek a function h2 such that, when multiplied by Eestimator
Grover we also have E

[
h2(l)Eestimator

Grover (l)
]
≥

(1− f)N EGrover(|L|, t). Toward this end, let

h2(l) =
{

0 l ≤ N

1 l > N.

Then

E[h2(l)] =
∞∑

k=1
(1− f)k−1fh2(k) =

∞∑
k=N+1

(1− f)k−1f

= (1− f)N
∞∑

k=1
(1− f)k−1f = (1− f)N .

It remains to show that E
[
h2(l)Eestimator

Grover (l)
]
≥ (1− f)N EGrover(|L|, t).

Lemma 18. Let f, g : N → R be non-negative non-decreasing functions, and x a random
variable on N. Then

E[f(x)g(x)] ≥ E[f(x)]E[g(x)] .

Proof. Fix x, y,∈ N. Because f and g are non-decreasing, we have

(f(x)− f(y))(g(x)− g(y)) ≥ 0 ,

and therefore
f(x)g(x) + f(y)g(y) ≥ f(x)g(y) + f(y)g(x) .

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 56

Because f and g are non-negative functions on N, f , g and the product fg are Lesbesgue
integrable with respect to the probability measure. Taking the expectation value over x and
y yields

Ex[f(x)g(x)] + Ey[f(y)g(y)] ≥ Ex[g(x)]Ey[g(y)] + Ey[f(y)]Ex[g(x)] ,

from which the lemma follows.

Combining Lemma 18 with the observations above, as well as the fact that both h2 and
Eestimator

Grover are non-decreasing, we conclude that the function H(l) = h1(l)+h2(l)cqEestimator
Grover (l)

satisfies

E[H(l)] ≥ 1
f

(
1− (1− f)N

)
+ (1− f)N cqEGrover(|L|, t) .

for t ≥ 1. Hence, H is an estimator that always upper bounds, in expectation, the number of
queries made by QSearch when there is at least one marked item.

Accepted in Quantum 2023-08-22, click title to verify. Published under CC-BY 4.0. 57

	Introduction
	Summary of results
	Concurrent work
	A broader perspective
	Methodology
	Previous work

	Query complexity bounds
	Expected query complexity of QSearch
	Worst-case query complexity of QSearch
	Quantum maximum finding QMax

	Estimating complexities under uncertainty
	Estimating the number of marked items
	Unknown number of steps

	Use-case: max-k-sat
	Propositional Boolean Satisfiability (k-SAT)
	Quantum heuristics for max-k-sat
	Numerics
	Summary of results

	Detailed analysis of QSearch
	Improved bounds
	Success probability
	Expected number of queries
	Worst-case behaviour of QSearchZalka

	Detailed analysis of QMax
	Expected number of queries
	Upper bounds to the expected number of queries

	Estimators for the expected number of queries for QSearch
	Proof of Lemma 7
	Proof of Lemma 8
	Estimator for EGrover for all t 1
	Estimator for expected number of queries of QSearch

