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Abstract

In a base phi representation a natural number is written as a sum of powers of the golden mean ϕ. There
are many ways to do this. How many? Even if the number of powers of ϕ is finite, then any number has
infinitely many base phi representations. By not allowing an expansion to end with the digits 0,1,1, the
number of expansions becomes finite, a solution proposed by Ron Knott. Our first result is a recursion
to compute this number of expansions. This recursion is closely related to the recursion given by Neville
Robbins to compute the number of Fibonacci representations of a number, also known as Fibonacci
partitions. We propose another way to obtain finitely many expansions, which we call the natural base
phi expansions. We prove that these are closely connected to the Fibonacci partitions.
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1 Introduction

A natural number N is written in base phi if N has the form

N =

∞∑
i=−∞

aiϕ
i,

where ai = 0 or ai = 1, and where ϕ := (1 +
√

5)/2 is the golden mean.
There are infinitely many ways to do this. When the number of powers of ϕ in the sum is finite we write

these representations (also called expansions) as

α(N) = aLaL−1 . . . a1a0·a−1a−2 . . . aR+1aR,

where aL = aR = 1.

Since for all n one has ϕn+1 = ϕn+ϕn−1, infinitely many expansions can be generated in a rather trivial
way from expansions with just a few powers of ϕ using the replacement 100 → 011 at the right end of the
expansion. So we use Knott’s truncation rule from [11]:

aR+2aR+1aR 6= 011. (1)

Let Totκ(N) be the number of base phi expansions of the number N satisfying Equation (1):

Totκ = 1, 1, 2, 3, 3, 5, 5, 5, 8, 8, 8, 5, 10, 13, 12, 12, 13, 10, 7, 15, 18, 21, 16, 20, 20, 16, 21, 18, 15, 7, 17, . . .1

In 1957 George Bergman ([1]) proposed restrictions on the digits ai which entail that the representation
becomes unique (proofs of this are in [17, 15]) and finite. This is generally accepted as the representation of

1In OEIS ([14]): A289749 Number of ways not ending in 011 to write n in base phi.
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the natural numbers in base phi. A natural number N is written in the Bergman representation if N has
the form

N =

∞∑
i=−∞

diϕ
i,

with digits di = 0 or di = 1, and where di+1di = 11 is not allowed. We write these representations as

β(N) = dLdL−1 . . . d1d0·d−1d−2 . . . dR+1dR.

A natural number N is written in base Fibonacci if N has the form

N =

∞∑
i=2

ciFi,

where ci = 0 or ci = 1, and (Fi)i≥0 = 0, 1, 1, 2, 3, . . . are the Fibonacci numbers (defined by F0 = 0, F1 = 1
and Fn+1 = Fn + Fn−1).

Let TotFIB(N) be the total number of Fibonacci expansions of the number N . Then

TotFIB = 1, 1, 1, 2, 1, 2, 2, 1, 3, 2, 2, 3, 1, 3, 3, 2, 4, 2, 3, 3, 1, 4, 3, 3, 5, . . . 2

This sequence has received a lot of attention, see e.g., the papers [9], [8], [4], [5], [16], [2], [19], and [3].
In 1952 the paper [12] proposed restrictions on the digits ci which entail that the representation becomes

unique. This is known as the Zeckendorf expansion of the natural numbers after the paper [20].
A natural number N is written in the Zeckendorf representation if N has the form

N =

∞∑
i=2

eiFi,

with digits ei = 0 or ei = 1, and where ei+1ei = 11 is not allowed.
The Fibonacci representation and the base phi representation are closely related. We make a list.

Property Fibonacci Base phi

Fn : n ≥ 2 ϕn : n integer

Fundamental recursion Fn+1 = Fn + Fn−1 ϕn+1 = ϕn + ϕn−1

Golden mean flip 100→ 011 100→ 011

Unique expansion Zeckendorf Bergman

Condition on the digits no 11 no 11

Fundamental intervals [Fn, Fn+1 − 1] [L2n, L2n+1], [L2n+1 + 1, L2n+2 − 1]

Examples F5 = 5, L4 = 7 [5, 7] = [2 2 1] [7, 11] = [5 8 8 8 5]

Examples F6 = 8, L5 = 11 [8, 12] = [3 2 2 3 1] [12, 17] = [10 13 12 12 13 10]

Here the Ln are the Lucas numbers defined by L0 = 2, L1 = 1 and Ln+1 = Ln + Ln−1 for n ≥ 1.
The intervals Λ2n = [L2n, L2n+1], Λ2n+1 = [L2n+1+1, L2n+2−1] are called the even and odd Lucas intervals.

Replacing the digits 100 in an expansion by 011 will be called a golden mean flip. Our Theorem 2.1
shows that any finite base phi expansion can be obtained from the Bergman expansion by a finite number of
such golden mean flips. There is a special case which needs attention, which we illustrate with an example.
Let N = 4. Then β(4) = 101·01. Applying the golden mean flip at the right gives the expansion 101·0011,
which is not an allowed expansion. However, if we apply a second golden mean flip we can obtain 100·1111,
which is an allowed expansion. We call this operation a double golden mean flip.

2In OEIS ([14]): A000119 Number of representations of n as a sum of distinct Fibonacci numbers.
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In Section 2 we determine a formula for Totκ(N). In Section 3 we give simple formulas for N = Fn,
and for N = Ln. In Section 4 we introduce a new way to count expansions, by defining natural expansions,
and give a formula for Totν(N), the number of natural base phi expansions of N . We moreover show that
(Totν(N)) is a subsequence of the sequence of total numbers of Fibonacci representations. Section 5 gives
important information on the different behaviour of phi expansions on the odd and the even Lucas intervals.

We finally mention that our results have been recently reproved by Shallit in the paper [18], using the
Walnut software.

2 A recursive formula for the number of Knott expansions

In this section we determine a formula for Totκ(N) for each natural number N .

The emphasis will be on the manipulation of 0-1-words, not on base phi expansions of numbers.
Let α(N) = aLaL−1 . . . a1a0·a−1a−2 . . . aR+1aR be a base phi representation of N . By removing the radix
point, we obtain a 0-1-word A(N) := aLaL−1 . . . a1a0a−1a−2 . . . aR+1aR. Such a word will be called a base
phi word. Similarly, the Bergman word B(N) will be the unique 0-1-word obtained by removing the radix
point from the Bergman expansion β(N) of N .

We keep the indexing with L and R, and in decreasing order, to facilitate the connection with base phi
expansions.

We are going to apply golden mean flips to these 0-1-words. Such a golden mean flip may change the
length of the word, and the property aL = aR = 1. To cope with this, it is useful to consider the three
companion words 0A(N), A(N)00 and 0A(N)00 of a base phi word A(N). In particular we will identify the
Bergman 0-1-word B(N) with its 3 companion words in the proof of Theorem 2.1.

We map any base phi word A(N) = aLaL−1 . . . aR+1aR with ai+1aiai−1 = 100 for some i with R + 1 ≤
i ≤ L− 1 to another 0-1-word, by the map

Ti : . . . ai+1aiai−1 . . .→ . . . [ai+1 − 1][ai + 1][ai−1 + 1] . . . .

This is the golden mean flip. We also allow TR−1 on the companion word A(N)00 of A(N).
The map Ti has an inverse denoted Ui for R+ 1 ≤ i ≤ L− 1 given by

Ui : . . . ai+1aiai−1 . . .→ . . . [ai+1 + 1][ai − 1][ai−1 − 1] . . . ,

as soon as ai+1aiai−1 = 011. We also allow UL on the companion word 0A(N) of A(N).
We call the maps Ui reverse golden mean flips.

Example SupposeN = 11. Then β(N) = 10101·0101, soB(N) = 101010101. Let α(N) = 10101·001111,
so L = 4, R = −6, and A(N) = 10101001111.

Then U−3(A(N)) = 10101010011, and U−5U−3(A(N)) = 10101010100, which is a companion of the
Bergman word B(N).

Theorem 2.1 Any finite base phi expansion α(N) with digits 0 and 1 of a natural number N can be obtained
from the Bergman expansion β(N) of N by a finite number of applications of the golden mean flip.

Proof: We prove this by showing that any base phi word A(N) will be mapped to the Bergman word
B(N) or one of its companions by a finite number of applications of the reverse golden mean flip. Let
A(N) = aLaL−1 . . . aR+1aR be a base phi word associated to the expansion of N with digits 0 and 1. When
11 does not occur in A(N), then A(N) = B(N) or one of its companions, and there is nothing to do.
Otherwise, let m := max{i : aiai−1 = 11}. First, suppose m ≤ L− 2. Then by the definition of m, we have
ai+1 = 0 if i = m. So for the two possibilities ai+2 = 0 and ai+2 = 1

Ui(. . . 0ai+1aiai−1 . . .) = Ui(. . . 0011 . . .) = . . . 0100 . . . ,

Ui(. . . 1ai+1aiai−1 . . .) = Ui(. . . 1011 . . .) = . . . 1100 . . . .

Note that in the first case the total number of 11 occurring in A(N) has decreased by 1, and in the second
case it remained constant. However, in the second case the m of Ui(A(N)) has increased by 2. If we keep
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iterating the reverse golden mean flip on the left most occurrence of 11, then either 0011 will occur, or if
not, then A(N) = 1101 . . . . This is the case m = L, where there is a decrease in the number of 11, since
UL(0A(N) . . . ) = 10001 . . . . Conclusion: in all cases the number of 11 will decrease by at least 1 after a
finite number of applications of the reverse golden mean flip. So after a finite number of applications of the
reverse golden mean flip we reach a 0-1 word with no occurrences of 11. By definition, this is the Bergman
word B(N) or one of its companions.

The case m = L has already been considered above, the case m = L− 1 corresponds to A(N) = 011 . . . ,
where an application of the reverse golden mean flip leads also to a decrease in the number of 11. 2

Our proof for Totκ resembles the work of Neville Robbins [16] on Fibonacci representations, but we have
to incorporate the double golden mean flip defined in the Introduction. It then will appear that the two
recursions for Fibonacci representations and golden mean (Knott) representations are the same, but that
there is a difference in the initial conditions.

Let β(N) = dLdL−1 . . . d1d0·d−1d−2 . . . dR+1dR. As before, by removing the radix point we obtain a
0-1-word B(N) = dLdL−1 . . . d1d0d−1d−2 . . . dR+1dR. Let us denote

r(B(N)) := Totκ(N).

Remark 2.2 Before we continue with the determination of r(B(N)) we remark that in general the repre-
sentations that we obtain by golden mean flips are not representations of a natural number—not for any
choice of the radix point. An example is w = 100001, which represents ϕ5 + 1, and its multiplications by ϕ
and ϕ−1. Nevertheless, these words represent numbers a+ bϕ with non-negative natural numbers a an b in
the ring Z(ϕ).

For example w = 100001 represents 5ϕ + 4, which is a direct consequence of the relation ϕ2 = ϕ + 1.
This is the justification for continuing with the terminology of representations. 2

A 0-1 word that plays an important role in the analysis that follows is the word 10s, for s > 1. Although
10s is not a base phi representation, it is convenient to call the word 10s and its golden mean flip iterates
representations of 10s. Let q(10s) be the number of such representations. Then

q(10s) =

{
1
2s+ 1 if s is even,
1
2 (s+ 1) if s is odd.

(2)

This follows easily by making golden mean flips from left to right.
Suppose a 0-1 word is of the form 10s1. Then we have

r(10s1) =

{
1
2s+ 1 if s is even,
1
2 (s+ 1) + 1 if s is odd.

(3)

This follows since 10s1 has the same number of representations q(10s) as 10s when s is even, but there is
one extra representation generated by the double golden mean flip when s is odd.

Suppose the Bergman representation β(N) of a number N contains n + 1 ones. Then we can write for
some numbers s1, s2, . . . , sn

B(N) = 10sn . . . 10s2 10s1 1.

We start with the case n = 2, so
B(N) = 10s210s11.

Let us call I2 := 10s2 the initial segment of B(N), and T1 := 10s11 the terminal segment of B(N).
We want to deduce r(B(N)) = r(I2T1) from the number of representations q(I2) and r(T1). There are two
cases to consider.

Type 1: Arbitrary combinations of representations of I2 and T1.
Type 2: Arbitrary combinations of representations of I2 and T1 plus an ‘overlap’ combination.

4



Type 1 typically occurs if s2 is even. For example for the case s2 = 4, we have the three representations
10000, 01100, 01011. Note that in general these representations always end in 00 or 11.

So for Type 1 one has simply
r(B(N)) = r(I2T1) = q(I2)r(T1). (4)

But for s2 odd, for example when s2 = 5, then 100000, 011000, 010110 are the three representations of
I2. Note that in general these representations always end in 00 or 10.
So if a representation of the segment I2 is of the form w10, and a representation of T1 is of the form 0v, then
the representation w10 0v of I2T1 generates an ‘overlap’ representation w01 1v via the golden mean flip.
Obviously it is true in general that an I2 word with s2 odd will have exactly one representation that ends in
10. Also important: there is no representation that ends in 01. Therefore, if r(i)(T1) denotes the number of
representations of T1 starting with i for i = 0, 1, then we obtain for Type 2:

r(B(N)) = r(I2T1) = q(I2)r(T1) + r(0)(T1). (5)

It thus follows from Equation (5), the trivial equation r(0)(T1) + r(1)(T1) = r(T1), and the fact that the
segment T1 = 10s11 has just one representation that starts with a 1, that

r(B(N)) = q(I2)r(T1) + r(T1)− r(1)(T1) = r(T1)[q(I2) + 1]− r(1)(T1) = r(T1)[q(I2) + 1]− 1. (6)

We continue with the case n = 3, so

B(N) = 10s310s210s11.

Now I3 := 10s3 is the initial segment, and T2 := 10s210s1 1 the terminal segment.
As before there are two cases to consider to compute r(B(N)) = r(I3T2).

Type 1: Arbitrary combinations of representations of I3 and T2.
Type 2: Arbitrary combinations of representations of I3 and T2 plus an ‘overlap’ combination.

For Type 1 one has simply
r(B(N)) = r(I3T2) = q(I3)r(T2). (7)

For Type 2 one has :
r(B(N)) = r(I3T2) = q(I3)r(T2) + r(0)(T2). (8)

Next, we split T2 = I2T1, where I2 := 10s2 . Then we have, since I2 has just one representation that
starts with a 1, that r(1)(T2) = r(T1). It thus follows from Equation (8) and r(0)(T2) + r(1)(T2) = r(T2) that

r(B(N)) = q(I3)r(T2) + r(T2)− r(1)(T2) = r(T2)[q(I3) + 1]− r(1)(T2) = r(T2)[q(I3) + 1]− r(T1). (9)

For general n we split B(N) = 10sn . . . 10s2 10s11 in an initial segment In = 10sn and a terminal segment
Tn−1 = 10sn−1 . . . 10s11. We then find in the same way as for the case n = 3 that for sn even

r(Tn) = r(B(N)) = q(In)r(Tn−1), (10)

and for sn odd
r(Tn) = r(B(N)) = r(Tn−1)[q(In) + 1]− r(Tn−2). (11)

Defining rn := r(B(N)), rk := r(Tk) for k = 1, . . . , n−1 and r0 = 1 (cf. Equation (6)), we have obtained
a recursion that computes r(B(N)).

Theorem 2.3 For any integer N ≥ 2 let the Bergman expansion β(N) = dL . . . d0·d−1 . . . dR of N have
n+ 1 digits 1. Let Totκ(N) = rn be the number of Knott representations of N . Define the initial conditions:
r0 = 1 and r1 = 1

2s1 + 1 if s1 is even, r1 = 1
2 (s1+1) + 1 if s1 is odd. Then for n ≥ 2:

rn =

{
[ 12sn+1] rn−1 if sn is even

[ 12 (sn+1) + 1]rn−1 − rn−2 if sn is odd

The initial condition for r1 (given by Equation (3)) is different from the Fibonacci case: if s1 is odd, then
the base phi expansion has an extra representation that is generated by the double golden mean flip.
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3 Expansions of the Fibonacci numbers and the Lucas numbers

Let (Fn) = 0, 1, 1, 2, 3, 5, . . . be the Fibonacci numbers. We will determine the number of Knott representa-
tions of these numbers. Then we first have to find a formula for the Bergman expansions of the Fibonacci
numbers. Let B(N) be β(N) without the radix point in the expansion.

Proposition 3.1 For n ≥ 1 one has:

a) B(F2n) = (1000)n−11

b) B(F2n+1) = (1000)n−11001.

Proof: This will, of course, be proved by induction. It is simple to check that β(F2) = β(1) = 1, β(F3) =
β(2) = 10·01, β(F4) = β(3) = 100·01, β(F5) = β(5) = 1000·1001. So the statements hold for n = 1, 2.

The induction step is based on adding β(Fm−1) and β(Fm) for all m ≥ 4. We therefore need the position
of the radix point in these expansions. This is determined by giving L(Fm), which we claim is equal to
L(Fm) = m − 2. The validity of this claim can be read of directly from the expansions for m = 4, 5 above,
and will follow for m ≥ 6 directly from the induction proof that we give below.

We illustrate the induction step by giving the case n = 3. Since F6 = F4 + F5, we have

β(F4) = 100·01

β(F5) = 1000·1001

β(F4) + β(F5) = 1100·1101

β(F4) + β(F5) = 10001·0001 ⇒ B(F6) = (1000)21

Here we applied the reverse golden mean flip twice in the last step, and since the last expansion does not
have any 11, we could conclude that β(F6) = 10001·0001. Next we show what happens at F7 = F5 + F6.

β(F5) = 1000·1001

β(F6) = 10001·0001

β(F5) + β(F6) = 11001·1002 ⇒ β(F5) + β(F6) = 11001·101001

β(F5) + β(F6) = 100010·001001 ⇒ B(F7) = (1000)21001.

Here we used a shifted version of β(2) = 10·01, and we applied the reverse golden mean flip twice in the last
step. Since the last expansion does not have any 11, we could conclude that β(F7) = 100010·001001.

Suppose the formulas hold for the numbers 1, . . . , 2n−1. Then β(F2n) is determined by first obtaining a
base phi representation α(F2n) of F2n by way of

α(F2n) := β(F2n−2) + β(F2n−1).

We see that the corresponding 0-1 base phi word is equal to A(F2n) = (1100)n−21101.
Next n− 1 reverse golden mean flips transform A(F2n) to another base phi word A′(F2n) = (1000)n−11.

But then the Bergman word B(F2n) = A′(F2n) = (1000)n−11, since 11 does not occur in A′(F2n).
Then β(F2n+1) is determined by first obtaining a base phi representation α(F2n+1) of F2n+1 by way of

α(F2n+1) := β(F2n−1) + β(F2n).

This time the addition gives the word (1100)n−12 which represents F2n+1, but is not a 0-1-word. We get rid
of the 2 by replacing 02 by 1001 in the companion word (0110)n−102 of this word, resulting in the companion
base phi word 0A(F2n+1) := (0110)n−11001 .

Next n−1 reverse golden mean flips transform 0A(F2n+1) to a base phi word A′(F2n+1) = (1000)n−11001.
But then the Bergman word B(F2n+1) = A′(F2n+1) = (1000)n−11001, since 11 does not occur in A′(F2n+1).

This finishes the induction proof. 2

Theorem 3.2 For all n ≥ 1 one has Totκ(Fn) = Fn.
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Proof: It is easily checked that the proposition holds for n = 1 and n = 2. So let n ≥ 3. According to
Proposition 3.1, the number of ones in β(Fn) is p + 2, with p + 2 = (n + 1)/2 if n is odd, and p + 2 = n/2
if n is even. Also, β(Fn) = 10sp+1 . . . 10sk . . . 10s1 1, with sk = 3 for k = 2, . . . , p + 1, and s1 = 2 for n odd,
s1 = 3 for n even.

We apply Theorem 2.3. This yields that Totκ(Fn) = rp+1, the number of Knott representations of the
Bergman representation of Fn satisfies

rp+1 = 3rp − rp−1.

Here the initial conditions are r0 = 1, r1 = s1/2 + 1 = 2 for n even, and r1 = (s1 + 1)/2 + 1 = 3 for n odd.
Amusingly, the same recurrence relation holds for the subsequences of even and odd Fibonacci numbers:

Fn+1 = Fn + Fn−1 = 2Fn−1 + Fn−2 = 3Fn−1 − Fn−1 + Fn−2 = 3Fn−1 − Fn−3. (12)

(I) Suppose n = 2m+ 1 is odd. Then p = m− 1, so Totκ(F2m+1) = rm.
We claim that rm = F2m+1 for all m ≥ 0.
For m = 0, we have r0 = 1 = F1, and for m = 1 we have r1 = 2 = F3.
For m ≥ 2,

rm = 3rm−1 − rm−2 = 3F2m−1 − F2m−3 = F2m+1,

by the induction hypothesis and Equation (12).
(II) Suppose n = 2m+ 2 is even. Then p = m− 1, so Totκ(F2m+2) = rm.

We claim that rm = F2m+2 for all m ≥ 0.
For m = 0, we have r0 = 1 = F2, and for m = 1 we have r1 = 3 = F4.
For m ≥ 2,

rm = 3rm−1 − rm−2 = 3F2m − F2m−2 = F2m+2,

by the induction hypothesis and Equation (12).
Combining (I) and (II) yields the conclusion: Totκ(Fn) = Fn for all n ≥ 1. 2

At the Fibonacci numbers the total number of expansions is very large, but here we show that it is rather
small at the Lucas numbers (Ln).

Theorem 3.3 For all n ≥ 1 one has Totκ(L2n) = Totκ(L2n+1) = 2n+ 1.

Proof: The Lucas numbers have simple representations: β(L2n) = 102n·02n−11, β(L2n+1) = 1(01)n·(01)n.
For a proof: see Example 3 in Section 4.

So the representation of L2n has only two ones. It follows therefore from Theorem 2.3 that Totκ(L2n) =
r1 = (s1 + 1)/2 + 1 = 2n+ 1, since s1 = 4n− 1 is odd.

The representation of L2n+1 has 2n+ 1 ones, and each sk of the blocks 10sk is equal to 1, which is odd.
It follows therefore from Theorem 2.3 that Totκ(L2n+1) = rn = 2rn−1 − rn−2. And indeed, induction gives
that rn = 2(2n− 1)− (2n− 3) = 2n+ 1. 2

4 Natural base phi expansions

A consequence of the application of the double golden mean flip is that length of the negative part of the
Knott expansions may take two different values.

To obtain what we will call the natural expansions, let us delete all expansions that have a length of the
negative part that is not equal to the length of the negative part of the Bergman expansion.

For example in the case N = 4 Knott proposes the three expansions 101·01, 100·1111 and 11.1111.
However, there is only one natural expansion: the Bergman expansion 101·01.

Let Totν(N) denote the number of natural base phi expansions. Then we have the following

(Totν(N)) = 1, 1, 2, 2, 1, 5, 5, 4, 5, 4, 3, 1, 10, 13, 12, 12, 13, 10, 6, 11, 12, . . .

instead of

(Totκ(N)) = 1, 1, 2, 3, 3, 5, 5, 5, 8, 8, 8, 5, 10, 13, 12, 12, 13, 10, 7, 15, 18, . . .

7



The number of natural base phi expansions can be determined in a way that is very similar to the Knott
expansion case.

Theorem 4.1 For a natural number N let the Bergman expansion of N have n + 1 digits 1. Suppose
β(N) = 10sn . . . 10s1 1. Let Totν(N) = rn be the number of natural base phi representations of N . Define
the initial conditions: r0 = 1 and r1 = 1

2s1 + 1 if s1 is even, r1 = 1
2 (s1+1) if s1 is odd. Then for n ≥ 2:

rn =

{
[ 12sn+1] rn−1 if sn is even

[ 12 (sn+1) + 1]rn−1 − rn−2 if sn is odd

Proof: This follows directly from Theorem 2.3 and its proof. The only difference between the process of
generating all Knott expansions and all natural expansions is the double golden mean flip, which is performed
in the Knott expansion at the segment 10s11, and only when s1 is odd. So Totν(N) = rn satisfies the same
recursion as TotFIB(N), except that r1 = 1

2 (s1+1) + 1 has to be replaced by r1 = 1
2 (s1+1) in the case that

s1 is odd. 2

We will determine the total number of natural expansions of the Fibonacci numbers. First we present a
lemma that emphasizes the inter-connection between the Fibonacci and the Lucas numbers. Recall the even
and odd Lucas intervals Λ2n = [L2n, L2n+1], Λ2n+1 = [L2n+1 + 1, L2n+2 − 1] (cf. [6]).

Lemma 4.2 For all n = 1, 2, . . . one has F2n+2 ∈ Λ2n, F2n+3 ∈ Λ2n+1.

Proof: By induction. For n = 1 we have F4 = 3 ∈ Λ2 = [3, 4], and F5 = 5 ∈ Λ3 = [5, 6].
For n = 2 we have F6 = 8 ∈ Λ4 = [7, 11], and F7 = 13 ∈ Λ5 = [12, 17].

Suppose the statement of the lemma has been proved for F2n+1 and F2n+2. So we know

F2n+1 ∈ [L2n−1 + 1, L2n − 1] = Λ2n−1

F2n+2 ∈ [L2n, L2n+1] = Λ2n.

Adding the numbers in these two equations vertically, we obtain

F2n+3 ∈ [L2n+1 + 1, L2n+2 − 1] = Λ2n+1.

We can then write
F2n+2 ∈ [L2n, L2n+1] = Λ2n

F2n+3 ∈ [L2n+1 + 1, L2n+2 − 1] = Λ2n+1.

This time, adding gives

F2n+4 ∈ [L2n+2 + 1, L2n+3 − 1] ⊂ [L2n+2, L2n+3] = Λ2n+2. 2

Theorem 4.3 For all n = 0, 1, 2, . . . one has Totν(F2n+2) = F2n+1 and Totν(F2n+3) = F2n+3.

Proof: We use the result from Proposition 5.1, which gives that for all N from Λ2n+1 if β(N) = ...10s11,
then s1 is even. So for all N from Λ2n+1 we have that the total number of natural expansions is equal to
the total number of Knott expansions. In particular we obtain from Lemma 4.2, using Theorem 3.2, that

Totν(F2n+3) = Totκ(F2n+3) = F2n+3.

From Proposition 3.1 we have that B(F2n+2) = (1000)n1. Therefore Theorem 4.1 gives that (rn) satisfies
the recurrence relation rn = 3rn−1 − rn−2, with r1 = 1

2 (3 + 1) = 2 = F3. This is the recurrence relation for
the Fibonacci numbers with odd indices, cf. Equation (12). Therefore Totν(F2n+2) = rn = F2n+1. 2

There is a direct connection between the total number of natural expansions and the total number of
Fibonacci expansions.
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Theorem 4.4 For every N > 3 let β(N) = dL(N) . . . dR(N) be the Bergman expansion of N . Then

Totν(N) = TotFIB(F−R(N)+2N).

Proof: Suppose that β(N) = dL . . . dR, so N =
∑L
R diϕ

i.
Multiply by ϕ−R+2:

ϕ−R+2N =

L∑
i=R

diϕ
i−R+2 =

L−R+2∑
j=2

dj+R−2ϕ
j =

L−R+2∑
j=2

ejϕ
j

where we substituted j = i−R+ 2, and defined ej := dj+R−2.
Next we use the well known equation ϕj = Fjϕ+ Fj−1:

[F−R+2ϕ+ F−R+1]N =

L−R+2∑
j=2

ej [Fjϕ+ Fj−1].

This implies that

F−R+2N =

L−R+2∑
j=2

ejFj .

We conclude that the number F−R+2N has a Zeckendorf expansion given by the sum on the right side.
But the manipulations above can be made for any 0-1-word of length L − R + 1, so the golden mean

flips of dL . . . dR are in 1-to-1 correspondence with golden mean flips of e2 . . . eL−R+2. This implies that
Totν(N) = TotFIB(F−R(N)+2N). 2

Example 1 The Bergman expansion of 4 is 101·01, and F4 = 3. So Totν(4) = TotFIB(12) = 1.

Example 2 The Bergman expansion of 14 is 100100·001001, and F8 = 21. So Totν(14) = TotFIB(294) = 12.

Example 3 Consider the Lucas numbers. From L2n = ϕ2n + ϕ−2n, and L2n+1 = L2n + L2n−1:
β(L2n) = 102n·02n−11, β(L2n+1) = 1(01)n·(01)n.

We read off: R(L2n) = −2n,R(L2n+1) = −2n.
It is also clear that Totν(L2n) = 2n, and Totν(L2n+1) = 1.

So Theorem 4.4 gives the total number of Fibonacci representations of F2n+2L2n and F2n+2L2n+1:
TotFIB(F2n+2L2n) = 2n, TotFIB(F2n+2L2n+1) = 1 for all n ≥ 1.

We find in [14]: From Miklos Kristof, Mar 19 2007:
Let L(n) = A000032(n) = Lucas numbers. Then for a >= b and odd b, F (a+b)−F (a−b) = F (a)∗L(b).

So F2n+2L2n+1 = F4n+3 − F1 = F4n+3 − 1. But TotFIB(Fn − 1) = 1 is a well-known formula.

5 Comparing Knott expansions and natural expansions

It is not hard to see that the double golden mean flip—in general combined with more golden mean flips—can
be applied if and only if the expansion ends in 10s1, where s is odd. So the difference between the Knott
expansions and the natural expansions is made more explicit by part a) of the following result.

Proposition 5.1 a) A number N ≥ 2 is in Λ2n for some integer n if and only if β(N) = ...10s1, where s
is odd, and N ≥ 2 is in Λ2n+1 for some integer n if and only if β(N) = ...10s1, where s is even.
b) Let β(N) = L(N)...R(N). A number N in Λ2n has −R(N) = 2n, a number N in Λ2n+1 has −R(N) =
2n+ 2.

Proposition 5.1 will be proved by induction. Thus we need recursions to let the proof work. These are
given in the paper [7], from which we repeat the following.
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To obtain recursive relations, the interval Λ2n+1 = [L2n+1 + 1, L2n+2 − 1] has to be divided into three
subintervals. These three intervals are

In :=[L2n+1 + 1, L2n+1 + L2n−2 − 1],

Jn :=[L2n+1 + L2n−2, L2n+1 + L2n−1],

Kn :=[L2n+1 + L2n−1 + 1, L2n+2 − 1].

It will be convenient to extend the monoid of words of 0’s and 1’s to the corresponding free group. So, for
example, 1000(10)−11001 = 100001.

Theorem 5.2 [Recursive structure theorem, [7]]
I For all n ≥ 1 and k = 0, . . . , L2n−1 one has β(L2n + k) = β(L2n) + β(k) = 10 . . . 0β(k) 0 . . . 01.
II For all n ≥ 2 and k = 1, . . . , L2n−2 − 1

In : β(L2n+1 + k) = 1000(10)−1β(L2n−1 + k)(01)−11001,

Kn : β(L2n+1 + L2n−1 + k) = 1010(10)−1β(L2n−1 + k)(01)−10001.

Moreover, for all n ≥ 2 and k = 0, . . . , L2n−3

Jn : β(L2n+1 + L2n−2 + k) = 10010(10)−1β(L2n−2 + k)(01)−1001001.

Proof of Proposition 5.1: To start the induction, we note that

Λ2 = [3, 4]; β(3) = 100·01, β(4) = 101·01,

Λ3 = [5, 6]; β(5) = 1000·1001, β(6) = 1010·0001.

For the even intervals we have that β(L2n) = 102n·02n−11, so the expansion of the first element ends
indeed in 10s1, where s is odd. Note also that R(L2n) = 2n, and this property will hold for all L2n + k,
k = 0, . . . , L2n−1 since the sum β(L2n)+β(k) in I does not change the length of the negative part. Moreover,
since the length of the negative part of each β(k) in the sum β(L2n)+β(k) is even (by the induction hypothesis
for part b)), the expansion must end in 10s1 with s odd, simply because the difference of two even numbers
is even.

For the odd intervals we have to consider the three cases from II.
For In: we know that β(L2n−1 + k) ends in 01, so β(L2n+1 + k) ends in 1001. For part b): the length of

the negative part is increased by 2.

For Kn: L2n−1 +k is from an odd interval, so the expansion ends in 102t1 from some t > 0. But then the
expansion of L2n+1 + L2n−1 + k ends in 102t1 (01)−10001 = 102t−10001 = 102t+21. For part b): the length
of the negative part is increased by 2.

For Jn: obviously β(L2n+1 + L2n−2 + k) ends in 1001. For part b): the length of the negative part is
2n− 2 + 4 = 2n+ 2. 2
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