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Abstract. The description of concurrent systems as a network of in-
teracting processes helps to reduce the complexity of the specification.
The same principle applies for the description of cyber-physical systems
as a network of interacting components. We introduce a transition sys-
tem based specification of cyber-physical components whose semantics
is compositional with respect to a family of algebraic products. We give
sufficient conditions for execution of a product of cyber-physical compo-
nents to be correctly implemented by a lazy runtime expansion of the
product construction. Our transition system algebra is implemented in
the Maude rewriting logic system. As an example, we show that, under
a coordination protocol, a set of autonomous energy-aware robots can
self-sort themselves on a shared physical grid.

1 Introduction

Cyber-physical systems are highly interactive. Self driving cars are instances of
cyber-physical systems with a significant amount of interaction between cyber
and physical aspects. The controller in the car periodically samples its environ-
ment through its cameras and other sensors, and performs actions to drive the
car. Dually, the environment responds to the action of the car by applying the
corresponding power on the wheel, consumming energy, and eventually mov-
ing the car on the ground. The specification of a problem involving parts with
cyber-physical aspects is complex and requires a specification of each individual
part, plus how the parts interact. For instance, consider a car rental agency, for
which autonomous cars are parked in a line. Having cars parked too far from the
agency wastes time for the renters. The agency may therefore want to sort the
cars at the end of the day, so that the reserved cars are first in line for the next
day. As one can imagine, such a problem involves several parts in interaction.
We give hereafter a specification of a simplified version of this problem, that
involves sorting robots on a 2 by n grid.
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Interaction in Cyber-Physical systems. We simplify the example of self driving
car on a rental parking with a set of robots moving on a field. Consider a set of
5 robots, roaming on a grid of size 2 by 5, as displayed in Figure 1. Robots are
identified with a unique identifier, and are initially positioned as shown in the
left configuration of Figure 1. Each robot is equipped with a battery from which

R5 R4 R3 R2 R1
⇒∗

R1 R2 R3 R4 R5

Fig. 1. Initial configuration of the unsorted robots (left), and final configuration of the
sorted robots (right).

it draws some energy for its move. A robot can move on an adjacent cell as long
as the cell is free, i.e., no other robot is located on the cell. A robot may have a
sensor that tells whether the next cell is free, and may send or receive messages
from other robots. However, the system of robots is inherently concurrent, as
each robot runs at its own speed, draws current from its battery, may sample the
environment at arbitrary times, and take decisions according to its own strategy.
In the system depicted in Figure 1, can the robots sort themselves in ascending
order while maintaining the energy level of their batteries above zero? To answer
this question requires analysis of the interactions among both cyber and physical
parts of the system.

Specification. The sorting problem highlights the need for a component-based
approach to design cyber-physical systems. Both cyber aspects (logic of each
robot) and physical parts (grid and batteries of robots) have a decisive contri-
bution for having the robots eventually sorted. Yet, the resulting cyber-physical
system is modular: the same set of robots may run on a different grid, with
different batteries; or the same grid may welcome different types of robots, with
other kinds of sensors.

In [16], we define an algebraic model in which components are first class enti-
ties and denote sequences of observables, called Timed-Event Sequences (TES),
from both cyber and physical aspects of systems. Interaction between compo-
nents is defined exogenously using algebraic operators on components. The model
of components is declarative: a component denotes a set of sequences of observa-
tions, and abstracts from the processes that generate such sequences. A product
of two components declares what set of sequences of each component is conserved
to comprise the resulting product component, and our algebraic framework sup-
ports an open-ended set of product operators parameterized on user-defined
composability relations.

In this paper, we give a state-based specification for components to oper-
ationally define their behavior. A procedure is then required to generate the
behavior of their composition such that the result faithfully respects the inter-
action constraints among components.
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Compositional runtime. The procedure that composes state-based components
is either done statically, or dynamically at runtime. In the first case, the resulting
composition may be optimized to improve its execution, while the second case
allows for modularity and runtime modifications.

Traditionally, a composition is flattened [17] by syntactically enumerating all
combinations of states and transitions. The flattened result contains all valid
behaviors and therefore faithfully respects the interaction constraints. As state
space may quickly get large, flattening the composition may be undesirable.

Instead, we seek a runtime composition operator that jointly executes step-
wise each component. The proof obligation for the correctness of such runtime
procedure is that the resulting behavior correctly respects the interaction con-
straints reflected in the product operator over components. For instance, given
that component behavior is non-blocking, the runtime should not generate a
finite sequence of composite observables for which there is no continuation (non-
blockingness [10]). We characterize a set of components for which our step-wise
composition is correct: components should be deadlock free and pairwise com-
patible. As a result, given compatible components, correctness of the step-wise
product reduces to showing that after each step, the system of components re-
mains deadlock free. We use our result to analyze in Maude a system of robots
that sort themselves.

Contributions. The contributions of this paper are:

– a large family of operators to model interaction of state-based descriptions
of cyber-physical components;

– a proof of semantic correctness for a range of user-defined products of TES
transition systems;

– a sufficient condition for applying a decomposition operator in incremental
steps at runtime;

– an application of our model on an example of self-sorting robots.

The state based model in our formalism allows for a uniform description of
arbitrary composition and arbitrary nesting of cyber-physical aspects of compo-
nents. Such diversity of operators is desirable to model the diversity of interaction
among cyber-physical components.

2 Related work

Process algebra The algebra of components described in this paper is an ex-
tension of [16]. Algebra of communicating processes [9] (ACP) achieves similar
objectives by decoupling processes from their interaction. For instance, the en-
capsulation operator in process algebra is a unary operator that restricts which
actions occurs, i.e., δH(t ∥ s) prevents t and s from performing actions in H.
Moreover, composition of actions is expressed using communication functions,
i.e., γ(a, b) = c means that actions a and b, if performed together, form the
new action c. Different types of coordination over communicating processes are
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studied in [5]. In [3], the authors present an extension of ACP to include time-
sensitive processes. Our work accommodates the counterparts of the δH and γ
operators from ACP and provides many more operators needed for direct ex-
pression of interaction of cyber-physical components.

Discrete Event Systems In [13], the author lists the current challenges in mod-
elling cyber-physical systems in such a way. The author points to the problem
of modular control, where even though two modules run without problems in
isolation, the same two modules may block when they are used in conjunction.

In [18], the authors present procedures to synthesize supervisors that control
a set of interacting processes and, in the case of failure, report a diagnosis. Cyber-
physical systems have also been studied from an actor-model perspective, where
actors interact through events [19, 11]. In our work, we add to the event structure
a timing constraint, and expose conditions to take the product of discrete event
systems at runtime.

Components In [2], the authors give a co-inductive definition of components, to
which [16] is an extension. In [4], the authors propose a state based specification
as constraint automata. A transition in a constraint automaton is labelled by
a guarded command, whose satisfaction depends on the context of its product
(other constraint automata). Except from [12], constraint automata do not have
time as part of their semantics (i.e., only specify time insensitive components),
and only describe observables on ports. In that respect, our model extends con-
straint automata by generalizing the set of possible observables, and adding the
time of the observables as part of the transition.

Timed systems In [8], the authors use heterogeneous timed asynchronous rela-
tional nets (HT-ARNs) to model timed sensitive components, and a specification
as timed IO-automata. The authors show some conditions (progress-enabledness
and r-closure) for the product of two HT-ARNs to preserve progress-enabledness.
We may have recovered a similar result, but with some modifications. Our prod-
uct is more expressive: κ needs not be only synchronization of shared events,
but can have more intricate coordination [16] (e.g., exclusion of two events). We
do not necessitate our process to be r-closed, and in general, we do not want to
explicitly write the silent observations.

The conjunction operator in Timed Automata defines a Timed Automaton
whose transitions are either synchronous transition labelled by shared actions (or
shared delay), or a transition with an independent action. The conjunction oper-
ator, however, is limited and cannot directly express the wide range of relations
and compositions that occur within cyber-physical systems. The definition of a
parametrized class of operators on TES transition systems makes the interac-
tion constraints explicit in our model and enables modular design of state-based
cyber-physical systems.
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3 Components in interaction

In [16], we give a unified semantic model to capture cyber and physical aspects
of processes as components and characterize their various types of interactions
as user-defined products in an algebraic framework. Moreover, we show some
general conditions for products on components to be associative, commutative,
and idempotent. In this section, we recall the basic definitions of a component
and product from [16], and introduce in Section 2.2 some instances of product
that suit our example in this paper.

Notations. Given σ : N → Σ, let σ[n] ∈ Σn be the finite prefix of size n of
σ and let ∼n be an equivalence relation on (N → Σ) × (N → Σ) such that
σ ∼n τ if and only if σ[n] = τ [n]. Let FG(L) be the set of left factors of a set
L ⊆ Σω, defined as FG(L) = {σ[n] | n ∈ N, σ ∈ L}. We use σ′ to denote the
derivative of the stream σ, such that σ′(i) = σ(i+1) for all i ∈ N. We write σ(n)

for the n-th derivative of σ, i.e., the stream such that σ(n)(i) = σ(n+ i) for all
i ∈ N. For a pair (σ, τ) of TESs, we use (σ, τ)′ to denote the new pair of TESs
for which the observation(s) with the smallest time stamp has been dropped,
i.e., (σ, τ)′ = (σ(x), τ (y)) with x (resp. y) is 1 if pr2(σ)(0) ≤ pr2(τ)(0) (resp.
pr2(τ)(0) ≤ pr2(σ)(0)) and 0 otherwise.

Let E be the domain of events. A timed-event stream σ ∈ TES (E) over a
set of events E ⊆ E is an infinite sequence of observations, where an observation
σ(i) = (O, t) consists of a pair of a subset of events in O ⊆ E, called observable,
and a positive real number t ∈ R+ as time stamp. A timed-event stream (TES)
has the additional properties that consecutive time stamps are increasing and
non-Zeno, i.e., for any TES σ and any time t ∈ R, there exists an element
σ(i) = (Oi, ti) in the sequence such that t < ti. For σ ∈ TES (E) and t ∈ R+, we
use σ(t) to denote the observable O in σ if there exists i ∈ N with σ(i) = (O, t),
and ∅ otherwise. We write dom(σ) for the set of all t ∈ R+ such that there
exists i ∈ N with σ(i) = (Oi, t) with Oi ⊆ E. Note that, for t ∈ R+ where
σ(t) = ∅, the meaning of σ(t) is ambiguous as it may mean either t ̸∈ dom(σ),
or there exists an i ∈ N such that σ(i) = (∅, t). The ambiguity is resolved
by checking if t ∈ dom(σ). The operation ∪ forms the interleaved union of
observables occurring in a pair of TESs, i.e., for two TESs σ and τ , we define σ∪τ
to be the TES such that dom(σ∪τ) = dom(σ)∪dom(τ) and (σ∪τ)(t) = σ(t)∪τ(t)
for all t ∈ dom(σ) ∪ dom(τ).

We recall the greatest post fixed point of a monotone operator, that we later
use as a definition scheme and as a proof principle. Let X be any set and let
P(X) = {V | V ⊆ X} be the set of all its subsets. If Ψ : P(X) → P(X) is a
monotone operator, that is, R ⊆ S implies Ψ(R) ⊆ Ψ(S) for all R ⊆ X and
S ⊆ X, then Ψ has a greatest fixed point P = Ψ(P ) satisfying:

P =
⋃

{R | R ⊆ Ψ(R)}

This equality can be used as a proof principle: in order to prove that R ⊆ P ,
for any R ⊆ X, it suffices to show that R is a post-fixed point of Ψ , that is,
R ⊆ Ψ(R).
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3.1 Components

A component uniformly models both cyber and physical aspects through a se-
quence of observables.

Definition 1 (Component). A component C = (E,L) is a pair of an inter-
face E, and a behavior L ⊆ TES (E). △

A complex system typically consists of multiple components that interact
with each other. For that purpose, we capture in an interaction signature the
type of the interaction between a pair of components, and we define a family of
binary products acting on components, each parametrized with an interaction
signature. Formally, an interaction signature Σ = (R,⊕) is a pair of a compos-
ability relation R(E1, E2) ⊆ TES (E1) × TES (E2) and a composition function
⊕ : TES (E) × TES (E) → TES (E) for arbitrary sets of events E1, E2 ⊆ E. As
a result, the product of two components, under a given interaction signature,
returns a new component whose behavior reflects that the two operand compo-
nents’ joint behavior is constrained according to the interaction signature.

Intuitively, the newly formed component describes, by its behavior, the evo-
lution of the joint system under the constraint that the interactions in the system
satisfy the composability relation. Formally, the product operation returns an-
other component, whose set of events is the union of sets of events of its operands,
and its behavior is obtained by composing all pairs of TES s in the behavior of
its operands deemed composable by the composability relation.

Definition 2 (Product). Let Σ = (R,⊕) be an interaction signature, and
Ci = (Ei, Li), i ∈ {1, 2}, two components. The product of C1 and C2, under
Σ, denoted as C1 ×Σ C2, is the component (E,L) where E = E1 ∪ E2 and L is
defined by

L = {σ1 ⊕ σ2 | σ1 ∈ L1, σ2 ∈ L2, (σ1, σ2) ∈ R(E1, E2)}

While the behaviors of a component are streams, it is natural to consider
termination of a component. We express a terminating behavior of component
C = (E,L) as an element σ ∈ L such that there exists n ∈ N with σ(n) ∈ TES (∅).
In other words, a terminating behavior σ is such that, starting from the n-th
observation, all next observations are empty.

Given a component C, we define C∗ to be the component that may termi-
nate after every sequence of observables. Formally, C∗ is the component whose
behavior is the prefix closure of C, i.e., the component C∗ = (E,L∗), where

L∗ = L ∪ {τ | ∃n ∈ N.∃σ ∈ L. τ ∼n σ, τ (n) ∈ TES (∅)}

In [16], we give a co-inductive definition for some R and ⊕ given a compos-
ability relation on observations, and a composition function on observations.

Let κ(E1, E2) ⊆ (P(E1)× R+)× (P(E2)× R+) be a composability relation
on observations, and, for any R ⊆ TES (E1) × TES (E2), let Φκ(E1, E2)(R) ⊆
TES (E1)× TES (E2) be such that:

Φκ(E1, E2)(R) = {(τ1, τ2) | (τ1(0), τ2(0)) ∈ κ(E1, E2) ∧ (τ1, τ2)
′ ∈ R)}
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The lifting of κ on TES s, written [κ], is the parametrized relation obtained by
taking the greatest post fixed point of the function Φκ(E1, E2) for arbitrary
pairs E1, E2 ⊆ E, i.e., the relation [κ](E1, E2) =

⋃
R⊆TES(E1)×TES(E2)

{R | R ⊆
Φκ(E1, E2)(R)}.

Two observations are synchronous if the two following conditions hold:

1. every observable that shares an event with the other component interface
must occur simultaneously with one of its related observables; and

2. only an observable that does not share events with the other component
interface can happen before another observable, i.e., at a strictly lower time.

Definition 3 (Synchronous observations). We define κsync as the synchronous
composability relation on observations and ((O1, t1), (O2, t2)) ∈ κsync(E1, E2) if
and only if every shared event always occurs at the same time, i.e., t1 < t2
implies O1 ∩ E2 = ∅, and t2 < t1 implies O2 ∩ E1 = ∅, and t2 = t1 implies
O1 ∩ E2 = O2 ∩ E1;

Let ▷◁ be the product defined as ▷◁ = ×([κsync ],∪). Intuitively, ▷◁ synchronizes
all observations that contain events shared by the interface of two components.
As a result of [16], ▷◁ is associative and commutative. Section 3.2 introduces a
motivating example in which robots, roaming on a shared physical medium, must
coordinate to sort themselves. We define algebraically the system consisting of 5
robots and a grid, to which we then add some coordinating protocol components.
For more details on each component, see [14].

3.2 Self-sorting robots

We consider the battery, robot, and grid components introduced in [14] in the
following interaction:

Sys(n, T1, . . . , Tn) = ⊗i∈{1,...,n}(R(i, Ti)×ΣRiBi
Bi)×ΣRG

Gµ({1, . . . , n}, n, 2)

where n is the number of robots R(i, Ti), each interacting with a private bat-
tery Bi under the interaction signatures ΣRiBi

, and in product with a grid G
under the interaction signature ΣRG. We use ⊗ for the product with the free
interaction signature (i.e., every pair of TESs is composable), and the notation
⊗i∈{1,...,n}{Ci} for C1 ⊗ . . .⊗ Cn as ⊗ is commutative and associative.

We fix n = 5 and the same period T for each robot. We write E for the set of
events of the composite system Sys(5, T ), and Ri for robot R(i, T ) with identifier
i. Figure 1 in the introduction shows five robot instances, each of which has a
unique and distinct natural number assigned, positioned at an initial location
on a grid. The goal of the robots in this example is to move around on the grid
such that they end up in a final state where they line-up in the sorted order
according to their assigned numbers.

We consider trace properties P ⊆ TES (E) and say that C satisfies P if
and only if L ⊆ P , i.e., all the behavior of C is included in the property P .
For the system Sys(5 ,T ), we consider the following property: eventually, the
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position of each robot Ri is (i, 0)Ri
, i.e., every robot successfully reaches its

place. This property is a trace property, which we call Psorted and consists of
every behavior σ ∈ TES (E) such that there exists an n ∈ N with σ(n) = (On, tn)
and (i, 0)Ri ∈ On for all robots Ri. In Section 3.3, we explore ways to enforce
the property Psorted on the system of robots, and in Section 5 verify its validity
given an operational specification for each robot given in Section 4.

3.3 Properties of components and coordination

Robots may beforehand decide on some strategies to swap and move on the grid
such that their composition satisfies the property Psorted . For instance, consider
the following strategy for each robot Ri:

– swapping : if the last read (x, y) of its location is such that x < n, then moves
North, then West, then South.

– pursuing : otherwise, move East.

Remember that the grid prevents two robots from moving to the same cell,
which is therefore removed from the observable behavior. We emphasize that
some sequences of moves for each robot may deadlock, and therefore are not part
of the component behavior of the system of robots, but may occur operationally
by constructing a behavior step-by-step (see Section 4.2). Consider Figure 2,
for which each robot follows its internal strategy. Because of non-determinism
introduced by the timing of each observations, one may consider the following
sequence of observations: first, R1 moves North, then West; in the meantime, R2

moves West, followed by R3, R4, and R5. By a similar sequence of moves, the
set of robots ends in the configuration on the right of Figure 2. In this position
and for each robot, the next move dictated by its internal strategy is disallowed,
which corresponds to a deadlock. While behaviors do not contain finite sequences
of observations, which makes the scenario of Figure 2 not expressible as a TES,
such scenario may occur in practice. We give in next Section some analysis to
prevent such behavior to happen.

R5 R4 R3 R2 R1
⇒

R1

R5 R4 R3 R2
⇒

R3

R2

R4R5

R1

Fig. 2. Initial state of the unsorted robot (left) leading to a possible deadlock (right)
if each robot follows its strategy.

Alternatively, the collection of robots may be coordinated by an external
protocol that guides their moves. Besides considering the robot and the grid
components, we add a third kind of component that acts as a coordinator. In
other words, we make the protocol used by the robots to interact explicit and
external to them and the grid; i.e., we assume exogenous coordination. Exoge-
nous coordination allows robots to decide a priori on some strategies to swap and
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move on the grid, in which case their external coordinator component merely
unconditionally facilitates their interactions. Alternatively, the external coordi-
nator component may implement a protocol that guides the moves of a set of
clueless robots into their destined final locations. The most intuitive of such co-
ordinators is the property itself as a component. Indeed, let Csorted = (E,L) be
such that E =

⋃
i∈I ERi

with I = {1, 2, 3, 4, 5} and L = Psorted . Then, and as
shown in [16], the coordinated component

Sys(5, T ) ▷◁ Csorted

trivially satisfies the property Psorted . While easily specified, such coordination
component is non-deterministic and not easily implementable. We provide an
example of a deterministic coordinators.

As discussed, we want to implement the property Psorted as a collection of
small coordinators that swap the position of unsorted robots. Intuitively, this
protocol mimics the behavior of bubble sort, but for physical devices. Given
two robot identifiers R1 and R2, we introduce the swap component S(R1, R2)
that coordinates the two robots R1 and R2 to swap their positions. Its interface
ES(R1, R2) contains the following events:

– start(S(R1, R2)) and end(S(R1, R2)) that respectively notify the beginning
and the end of an interaction with R1 and R2. Those events are observed
when the swap protocol is starting or ending an interaction with either R1

or with R2.

– (x, y)R1 and (x, y)R2 that occur when the protocol reads, respectively, the
position of robot R1 and robot R2,

– dR1 and dR2 for all d ∈ {N,W,E, S} that occur when the robots R1 and R2

move;

– lock(S(R1, R2)) and unlock(S(R1, R2)) that occur, respectively, when an-
other protocol begins and ends an interaction with either R1 and R2.

The behavior of a swapping protocol S(R1, R2) is such that it starts its protocol
sequence by an observable start(S(R1, R2)), then it moves R1 North, then R2

East, then R1 West and South. The protocol starts the sequence only if it reads
a position for R1 and R2 such that R1 is on the cell next to R2 on the x-axis.
Once the sequence of moves is complete, the protocol outputs the observable
end(S(R1, R2)). If the protocol is not swapping two robots, or is not locked,
then robots can freely read their positions.

Swapping protocols interact with each others by locking other protocols that
share the same robot identifiers. Therefore, if S(R1,R2) starts its protocol se-
quence, then S(R2, Ri) synchronizes with a locked event lock(S(R2, Ri)), for
2 < i. Then, R2 cannot swap with other robots unless S(R1,R2) completes its
sequence, in which case end(S(R1, R2)) synchronizes with unlock(S(R2, Ri)) for
2 < i. We extend the underlying composability relation κ on observations such
that, for i < j, simultaneous observations (O1, t) and (O2, t) are composable,
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i.e., ((O1, t), (O2, t)) ∈ κ, if:

start(S(Ri, Rj)) ∈ O1 =⇒ ∃k.k < i.lock(S(Rk, Ri)) ∈ O2∨
∃k.j < k.lock(S(Rj , Rk)) ∈ O2

and

end(S(Ri, Rj)) ∈ O1 =⇒ ∃k < i.unlock(S(Rk, Ri)) ∈ O2∨
∃j < k.unlock(S(Rj , Rk)) ∈ O2

For each pair of robots Ri, Rj such that i < j, we introduce a swapping
protocol S(Ri, Rj). As a result, the coordinated system is given by the following:

Sys(5, T ) ▷◁i<j S(Ri, Rj)

Note that the definition of ▷◁ imposes that, if one protocol starts its se-
quence, then all protocols that share some robot identifiers synchronize with a
lock event. Similar behavior occurs at the end of the sequence. See example 2
for an operational specification of the robot, grid, and swap component.

4 An operational specification of components

In Section 3.1, we give a declarative specification of components, and consider
infinite behaviors only. We give, in Section 4.1, an operational specification of
components using TES transition systems. We relate the parametrized product
of TES transition systems with the parametrized product on their corresponding
components, and show its correctness. The composition of two TES transition
systems may lead to transitions that are not composable, and ultimately to a
deadlock, i.e., a state with no outgoing transitions.

4.1 TES transition systems.

The behavior of a component as in Definition 1 is a set of TESs. We give an
operational definition of such set using a labelled transition system.

Definition 4 (TES transition system). A TES transition system is a triple
(Q,E,→) where Q is a set of state identifiers, E is a set of events, and → ⊆
(Q× N)× (P(E)× R+)× (Q× N) is a labelled transition relation, where labels
on transitions are observations and a state is a pair of a state identifier and a

counter value, such that [q, c]
(O,t)−−−→ [q′, c′] implies that c′ ≥ c.

We use the notation θ([q, c]) to refer to the counter value c labeling the state.

Example 1 (Strictly progressing TES transition system). We call a TES transi-

tion systems strictly progressing if, for all transitions [q, c]
(O,t)−−−→ [q′, c′], we have

that c′ > c. An example of a TES transition system that is strictly progress-
ing is one for which the counter label increases by 1 for every transition, i.e.,

[q, c]
(O,t)−−−→ [q′, c+ 1].
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Remark 1. The counter value labeling a state of a TES transition system is
related to the number of transitions a TES transition system has taken. The
counter value is therefore not related to the time of the observation labeling
the transition. However, it is possible for some transitions in the TES transition
system to keep the same counter value in the post state. As shown later, we
use the counter value to model fairness in the product of two TES transition
systems.

We present two different ways to give a semantics to a TES transition system:
inductive and co-inductive. Both definitions give the same behavior, as shown
in Theorem 1, and we use interchangeably each definition to simplify the proofs
of, e.g., Theorem 2.

Semantics 1 (runs). A run of a TES transition system is an infinite sequence
of consecutive transitions, such that the sequence of observations labeling the
transitions form a TES, and the counter in the state is always eventually strictly
increasing. Formally, the set of runs Linf(T, s0) of a TES transition system T =
(Q,E,→) initially in state s0 is:

Linf(T, s0) = {τ ∈ TES (E) | ∃χ ∈ (Q× N)ω.χ(0) = s0∧∀i.χ(i)
τ(i)−−→ χ(i+ 1)∧

∃j > 0. θ(χ(i+ j)) > θ(χ(i))}

Note that the domain of quantification for Linf(T, s0) ranges over TESs, therefore
the time labeling observations is, by definition, strictly increasing and non-Zeno.
The component semantics of a TES transition system T = (Q,E,→) initially in
state q is the component C = (E,Linf(T, q)).

Semantics 2 (greatest post fixed point) Alternatively, the semantics of a TES
transition system is the greatest post fixed point of a function over sets of
TESs paired with a state. For a TES transition system T = (Q,E,→), let
R ⊆ TES (E)×(Q×N). We introduce ϕT : P(TES (E)×(Q×N)) → P(TES (E)×
(Q× N)) as the function:

ϕT (R) = {(τ, s) | ∃n.∃p ∈ (Q× N), s
τ [n]−−→ p ∧ θ(p) > θ(s) ∧ (τ (n), p) ∈ R}

where τ [n] is the prefix of size n of the TES τ .
We can show that ϕT is monotone, and therefore ϕT has a greatest post fixed

point ΩT =
⋃
{R | R ⊆ ϕT (R)}. We write ΩT (q) = {τ | (τ, s) ∈ ΩT } for any

s ∈ Q× N. Note that the two semantics coincide.

Theorem 1 (Equivalence). For all s ∈ Q×N, Linf(T, s) = {τ | (τ, s) ∈ ΩT }.

The semantics of a TES transition system is defined as the component whose
behavior contains all runs of the TES transition system. Operationally, however,
the (infinite) step-wise generation of such a sequence does not always return a
valid prefix of a run. We introduce finite sequences of observables of a TES tran-
sition system, and define a deadlock of a TES transition system as a reachable
state without an outgoing transition.
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Let T = (Q,E,→) be a TES transition system. We write q
u−→ p for the se-

quence of transitions q
u(0)−−−→ q1

u(1)−−−→ q2 . . .
u(n−1)−−−−−→ p, where u = ⟨u(0), . . . , u(n−

1)⟩ ∈ (P(E)×R+)
n. We write |u| for the size of the sequence u. We use Lfin(T, q)

to denote the set of finite sequences of observables labeling a finite path in T
starting from state q, such that

Lfin(T, s) = {u | ∃p.s u−→ p ∧ ∀i < |u| − 1.u(i) = (Oi, ti) ∧ ti < ti+1}

Let FG(L) be the set of left factors of a set L ⊆ Σω, defined as FG(L) =
{σ[n] | n ∈ N, σ ∈ L}. We write σ(n) for the n-th derivative of σ, i.e., the stream
such that σ(n)(i) = σ(n+ i) for all i ∈ N.

Remark 2 (Deadlock). Observe that FG(Linf(T, q)) ⊆ Lfin(T, q) which, in the
case of strict inclusion, captures the fact that some states may have no outgoing
transitions and therefore deadlock.

Remark 3 (Abstraction). There may be two different TES transition systems
T1 and T2 such that Linf(T1) = Linf(T2), i.e., a set of TESs is not uniquely
characterized by a TES transition system. In that sense, the TES representation
of behaviors is more abstract than TES transition systems.

We use the transition rule q
(O,t)−−−→ q′ where the counter is not written to denote

the set of transitions

[q, c]
(O,t)−−−→ [q′, c′]

for c′ ≥ c with c, c′ ∈ N.

Example 2. The behavior of a robot introduced earlier is a TES transition sys-

tem TR = ({q0}, ER,→) where q0
({e},t)−−−−→ q0 for arbitrary t in R+ and e ∈ ER.

Similarly, the behavior of a grid is a TES transition system TG(I, n,m) =
(QG, EG(I, n,m),→) where:

– QG ⊆ (I → ([0;n]× [0;m])),

– f
(O,t)−−−→ f ′ for arbitrary t in R+, such that
• dR ∈ O implies f ′(R) is updated according to the direction d if the
resulting position is within the bounds of the grid;

• (x, y)R ∈ O implies f(R) = (x, y)R and f ′(R) = f(R);
• f ′(R) = f(R), otherwise.

The behavior of a swap protocol S(Ri,Rj) with i < j is a TES transition
system TS(R1, R2) = (Q,E,→) where, for t1, t2, t3 ∈ R+ with t1 < t2 < t3:

– Q = {q1, q2, q3, q4, q5, q6};
– E = ERi

∪ ERj
∪ {lock(Ri, Rj), unlock(Ri, Rj), start(Ri, Rj), end(Ri, Rj)}

– q1
({lock(Ri,Rj)},t1)−−−−−−−−−−−−→ q2;

– q2
({unlock(Ri,Rj)},t1)−−−−−−−−−−−−−→ q1;
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– q1
({start(Ri,Rj),(x,y)Ri

,(x+1,y)Rj
},t1)

−−−−−−−−−−−−−−−−−−−−−−−−→ q3;

– q3
({NRj

},t1)
−−−−−−−→ q4

({WRj
,ERi

},t2)
−−−−−−−−−−→ q5

({SRj
},t3)

−−−−−−−→ q6;

– q6
({end(Ri,Rj)},t1)−−−−−−−−−−−→ q1;

We use the letters E, W , S, and N , for an observation of a robot moving in
the directions East, West, South, and North, respectively. ■

The product of two components is parametrized by a composability relation
κ on observations and syntactically constructs the product of two TES transition
systems.

Definition 5 (Product). The product of two TES transition systems T1 =
(Q1, E1,→1) and T2 = (Q2, E2,→2) under the constraint κ is the TES transition
system T1 ×κ T2 = (Q1 ×Q2, E1 ∪ E2,→) such that:

[qi, ci]
(Oi,ti)−−−−→i [q

′
i, c

′
i] i ∈ {1, 2} ((O1, t1), (∅, t1)) ∈ κ(E1, E2) t1 < t2

[(q1, q2),min(c1, c2)]
(O1,t1)−−−−→ [(q′1, q2),min(c′1, c2)]

[qi, ci]
(Oi,ti)−−−−→i [q

′
i, c

′
i] i ∈ {1, 2} ((∅, t2), (O2, t2)) ∈ κ(E1, E2) t2 < t1

[(q1, q2),min(c1, c2)]
(O2,t2)−−−−→ [(q′1, q2),min(c1, c′2)]

[qi, ci]
(Oi,ti)−−−−→i [q

′
i, c

′
i] i ∈ {1, 2} ((O1, t1), (O2, t2)) ∈ κ(E1, E2) t2 = t1

[(q1, q2),min(c1, c2)]
(O1∪O2,t1)−−−−−−−→ [(q′1, q

′
2),min(c′1, c

′
2)]

Remark 4. The notion of an observation is an abstraction that groups an atomic
set of events within an ϵ neighborhood of a time t (see [16]). The statement that
two observations happen at the same time therefore becomes meaningful, and
describes two sets of events that occur atomically within an ϵ neighborhood of
the same time.

Observe that the product is defined on pairs of transitions, which implies that
if T1 or T2 has a state without outgoing transition, then the product has no outgo-
ing transitions from that state. The reciprocal is, however, not true in general. We
write CT1×κT2

((s1, s2)) for the component CT1×κT2
([(q1, q2),min(c1, c2)]) where

s1 = [q1, c1] and s2 = [q2, c2].
Theorem 2 states that the product of TES transition systems denotes (given

a state) the set of TESs that corresponds to the product of the corresponding
components (in their respective states). Then, the product that we define on
TES transition systems does not add nor remove behaviors with respect to the
product on their respective components.

Example 3. Consider two strictly progressing (as in Example 1) TES transition
systems T1 = (Q1, E1,→1) and T2 = (Q2, E2,→2). Then, consider a transition
in the product T1 ×κ T2 such that

[(q1, q2), c]
(O1,t1)−−−−→ [(q′1, q2), c]
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we can deduce that T1 made a step while the counter c labelling the state didn’t
change. Therefore, T2 in state q2 has a counter labelling its state that is higher
than the counter labelling the state in q1. Alternatively, if

[(q1, q2), c]
(O1,t1)−−−−→ [(q′1, q2), c+ 1]

then the counter at q2 may become lower than the counter at which T1 performs
the next transition, which means that eventually T2 has to take a transition.

The composability relation κ in the product of two TES transition systems
(see Definition 5) accepts an independent step from T1 (resp. T2) if the obser-
vation labeling the step relates to the simultaneous silent observation from T2

(resp. T1). Given two composable TESs σ and τ respectively in the component
behavior of T1 and T2, the composability relation [κ] must relate heads of such
TESs co-inductively. As we do not enforce silent observations to be effective from
the product rules (1) and (2), we consider composability relations such that:

– if ((O1, t1), (∅, t1)) ∈ κ(E1, E2) then ((O1, t1), (O2, t2)) ∈ κ(E1, E2) for any
O2 ⊆ P(E2) and t2 > t1; and

– if ((∅, t2), (O2, t2)) ∈ κ(E1, E2) then ((O1, t1), (O2, t2)) ∈ κ(E1, E2) for any
O1 ⊆ P(E1) and t1 > t2

The two rules above encode that an observation from T1 is independent to T2

(i.e., ((O1, t1), (∅, t1)) ∈ κ(E1, E2) if and only if T1 and T2 can make observations
at difference times (i.e., ((O1, t1), (O2, t2)) ∈ κ(E1, E2) for arbitrary (O2, t2) from
T2 with t2 > t1.

Theorem 2 (Correctness). For two TES transition systems T1 and T2, and
for κ satisfying the constraint above:

CT1×κT2
(s) = CT1

(s1)×([κ],[∪]) CT2
(s2)

with s1 = [q1, c1] ∈ (Q1×N), s2 = [q2, c2] ∈ (Q2×N), and s = [(q1, q2),min(c1, c2)].

Remark 5 (Fairness). Fairness, in our model, is the property that, in a product
of two TESs T1 ×κ T2, then always, eventually, T1 and T2 each makes progress.
The definition of the product of two TES transition systems defines the counter
value of the composite state as the minimal counter value from the two compound
states. The semantic condition that considers runs with counter values that
are always eventually increasing is sufficient for having T1 and T2 to always
eventually take a step, as shown in Theorem 2.

Remark 6. Note that the generality of Theorem 2 comes from the parametrized
composability relation κ. Thus, for instance, the synchronous product of I/O
automata can be expressed by a suitable composability relation κ that synchro-
nizes the occurrence of shared inputs and outputs for parallel composition or
conjunction (see [7]).
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We give in Example 4 the TES transition systems resulting from the product
of the TES transition systems of two robots and a grid. Example 4 defines
operationally the components in Section 2.2, i.e., their behavior is generated by
a TES transition system.

Example 4. Let TR1 , TR2 be two TES transition systems for robots R1 and R2,
and let TG({1}, n,m) be a grid with robot R1 alone and TG({1, 2}, n,m) be a
grid with robots R1 and R2. We use κsync as defined in Definition 3.

The product of TR1
, TR2

, and TG({1, 2}, n,m) under κsync is the TES tran-
sition system TR1

×κsync TR2
×κsync TG({1, 2}, n,m) such that it synchronizes ob-

servations of the two robots with the grid, but does not synchronize events of
the two robots directly, since the two sets of events are disjoint. ■

As a consequence of Theorem 1, letting κsync be the composability relation
used in the product ▷◁ and writing T = TR1

×κsync TR2
×κsync TG, CT (q1, q2, q3)

is equal to the component CTR1
(q1) ▷◁ CTR2

(q2) ▷◁ CTG
(q3).

Definition 6. Let T be a TES transition system, and let CT (q) = (E,Linf(T, q))
be a component whose behavior is defined by T . Then, C is deadlock free if and
only if FG(Linf(T, q)) = Lfin(T, q) ̸= ∅. As a consequence, we also say that (T, q)
is deadlock free when CT (q) is deadlock free.

A class of deadlock free components is that of components that accept arbi-
trary insertions of ∅ observables in between two observations. We say that such
component is prefix-closed, as every sequence of finite observations can be con-
tinued by an infinite sequence of empty observables, i.e., C is such that C = C∗

(as defined after Definition 5). We say that a TES transition system T is prefix-
closed in state s if and only if CT (s) = C∗

T (s). For instance, if T is such that,

for any state s and for any t ∈ R+ there is a transition s
(∅,t)−−−→ s, then T is

prefix-closed.

Lemma 1. If T1 and T2 are prefix-closed in s1 and s2 respectively, then T1×κsync

T2((s1, s2)) is prefix-closed.

We search for the condition under which deadlock freedom is preserved under
a product. Section 3.3 gives a condition for the product of two deadlock free
components to be deadlock free.

4.2 Compatibility of TES transition systems

Informally, the condition of κ-compatibility of two TES transition systems T1

and T2, respectively in initial state s01 and s02, describes the existence of a
relation R on pairs of states of T1 and T2 such that:

– (s01, s02) ∈ R, and
– for every state (s1, s2) ∈ R, there exists an outgoing transition from T1

(reciprocally T2) that composes under κ with an outgoing transition of T2

(respectively T1) and the resulting pair of states is in the relation R.
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Formally, a TES transition system T1 = (Q1, E1,→1) from state s01 is κ-
compatible with a TES transition system T2 = (Q2, E2,→2) from state s02, and
we say (T1, s01) is κ-compatible with (T2, s02) if there exists a relation R ⊆
(Q1 × N)× (Q2 × N) such that (s01, s02) ∈ R and for any (s1, s2) ∈ R,

– there exist s1
(O1,t1)−−−−→1 s′1 and s2

(O2,t2)−−−−→2 s′2 such that ((O1, t1), (O2, t2)) ∈
κ(E1, E2); and

– for all s1
(O1,t1)−−−−→1 s′1 and s2

(O2,t2)−−−−→2 s′2 if ((O1, t1), (O2, t2)) ∈ κ(E1, E2)
then (u1, u2) ∈ R, where ui = si if ti = min{t1, t2}, and ui = s′i otherwise
for i ∈ {1, 2}.

In other words, if (T1, s1) is κ-compatible with (T2, s2), then there exists
a composable pair of transitions in T1 and T2 from each pair of states in R
(first item of the definition), and all pairs of transitions in T1 composable with
a transition in T2 from a state in R end in a pair of states related by R. If
(T2, s2) is κ-compatible to (T1, s1) as well, then we say that (T1, s1) and (T2, s2)
are κ-compatible.

Theorem 3 (Deadlock free). Let (T1, s1) and (T2, s2) be κ-compatible. Let
CT1

(s1) and CT2
(s2) be deadlock free, as defined in Definition 6. Then, CT1

(s1)×([κ],[∪])

CT2(s2) is deadlock free.

In general however, κ-compatibility is not preserved over products, as demon-
strated by Example 5. For the case of coordinated cyber-physical systems, com-
ponents are usually not prefix-closed as there might be some timing constraints
or some mandatory actions to perform in a bounded time frame.

Example 5. Suppose three TES transition systems Ti = ({qi}, {a, b, c, d},→i),
with i ∈ {1, 2, 3}, defined as follows for all n ∈ N:

– q1
({a,b},n)−−−−−−→1 q1 and q1

({a,c},n)−−−−−−→1 q1;

– q2
({a,c},n)−−−−−−→2 q2 and q2

({a,d},n)−−−−−−→2 q2;

– q3
({a,d},n)−−−−−−→3 q3 and q3

({a,b},n)−−−−−−→3 q3.

The TES transition systems T1(q1), T2(q2), and T3(q3) are pairwise κ
sync-compatible

because each pair-wise product has an outgoing transition with an infinite run.
However, T1(q1) is not κsync-compatible with T2(q2) ×κsync T3(q3) because no
transition can synchronize between all three TES transition systems. ■

Lemma 2. Let ×κ be commutative and associative, and for arbitrary E1, E2 ∈
E, and t ∈ R+, let ((∅, t), (∅, t)) ∈ κ(E1, E2). Moreover, let S be a set of TES
transition systems, such that for T ∈ S and every state [q, n] in T , we have

[q, n]
(∅,t)−−−→ [q, n]. For S = S1 ⊎S2 a partition of S, ×κ{T}T∈S1

and ×κ{T}T∈S2

are κ-compatible and the component C×κ{T}T∈S
is deadlock free.

The consequence of two TES transition systems T1 and T2 being κ-compatible
on (s1, s2) and deadlock free, is that they can be run step-by-step from (s1, s2)
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and ensure that doing so would not generate a sequence of observations that is
not a prefix of an infinite run. However, there is still an obligation for the step-
by-step execution to produce a run that is in the behavior of the product, i.e.,
to perform a step-by-step product at runtime. Indeed, the resulting sequence of
states must always increase the counter value, which means that the selection
of a step must be fair (as introduced in Remark 5). We show in Example 6
an example for which an infinite sequence of transitions in the product (e.g.,
produced by a step-by-step implementation of the product) would not yield a
run, due to fairness violation.

Example 6. Let T1 = ({q1}, {a},→1) and T2 = ({q2}, {b},→2) be two TES

transition systems such that: [q1, c]
({a},t)−−−−→1 [q1, c+1] and [q2, c]

({b},t)−−−−→2 [q2, c+
1]for all t ∈ R+ and all c ∈ N. Let κ be such that (({a}, t), (∅, t)) ∈ κ({a}, {b})
and ((∅, t), ({b}, t)) ∈ κ({a}, {b}). Then, the product T1×κ T2 has the composite

transitions [(q1, q2), c]
({a},t)−−−−→ [(q1, q2), c] and [(q1, q2), c]

({b},t)−−−−→ [(q1, q
′
2), c] for

all c ∈ N and t ∈ R+.

The product, therefore has runs of the kind [(q1, q2), c]
({a},ti)−−−−−→ [(q′1, q2), c] where

for all i ∈ N, ci + 1 = ci+1 and ti < ti+1 (increasing) and there exists j ∈ N
with i < tj (non-Zeno). Thus, this run does only transitions from T1 and none
from T2: there is a step for which the counter c does not increase anymore. One
reason is that rule (1) of the product is always chosen. Instead, by imposing that
we always eventually take rule (3), we ensure that the step-by-step product is
fair.

We consider a class of TES transition systems for which a step-by-step im-
plementation of their product is fair, i.e., always eventually the counter of the
composite state increases. More particularly, we consider TES transition systems
that always eventually require synchronization. Therefore, the product always
eventually performs rule (3), and the runs are consequently fair. Such property is
a composite property, that can be obtained compositionally by imposing a trace
property on a TES transition system, such as: for every trace, there is always
eventually a state for which all outgoing transitions must synchronize with an
observation from the other TES transition system.

Remark 7. In the actor model, fairness is usually defined as an individual prop-
erty: always eventually an action that is enabled (such as reading a message in a
queue) will be performed. This notion of fairness differs from the one we intro-
duced for TES transition systems. In our model, fairness formalizes a collective
property, namely that each component always eventually progresses to yield an
observation.

Definition 7 (k-synchronizing). Two TES transition systems T1 and T2 are
k-synchronizing under κ if every sequences of k transitions in the product T1 ×κ

T2 contains at least one transition constructed by rule (3) of the product in
Definition 5.
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Lemma 3. Let T1 and T2 be two k-synchronizing TES transition systems. Then,
a step-by-step execution of the product T1 ×κ T2 is fair, namely, every finite
sequence of transitions is a prefix of an infinite run in the product behavior, i.e.,
FG(Linf(T1 ×κ T2, q)) = Lfin(T1 ×κ T2, q).

Remark 8. The step-by-step implementation of the product is sound if TES
transition systems always eventually synchronize on a transition. Definition 7
and Lemma 3 show that if two TES transition systems are k-synchronizing,
then their product can be formed lazily, step-by-step, at runtime.

5 Application: self-sorting robots

We implemented in Maude a framework to simulate concurrent executions of
TES transition systems, where time stamps are restricted to natural numbers.
Using the description given in Example 2 for the grid and for robots, we add to
their composition several protocols that aim at preventing deadlock. The source
for the implementation is accessible at [1] to reproduce the results of this section.

Components in Maude The implementation of TES transition systems in Maude
focuses on a subset that has some properties. First, TES transition systems in
Maude have time stamps that range over the set of positive natural numbers N.
We do not implement components with real time.

Second, TES transition systems run at a fixed sampling rate. Let T be the
sampling period. This property encodes that, between two transitions in the
TES transition system, a fixed time duration of T has passed. A TES transition
system may allow for arbitrary delay of its transitions by a fixed multiple k of
delay T . In which case, we say that the TES transition system is delay insensitive.

Formally, for every q
(O,n)−−−→ p of a delay insensitive TES transition system with

period T , we have n = k ·T for some k ∈ N. We therefore write q
O−→ p to denote

the set of transitions q
(O,k·T )−−−−−→ p for all n ∈ N.

In Maude, the state of a TES transition system component is represented by
a term and the state of a composed system is a multiset of component states.
Transitions of the step-wise product are defined in terms of such system states.
For instance, the swap protocol between robots R(3) and R(1) is the defined in
Maude as:

[swap(R(3),R(1)): Protocol | k("s") |-> ds(q(0)); false; mt]

where swap(R(3),R(1)) is the name of the component; Protocol is its class;
k("s")maps to the initial state of the protocol q(0); "false" denotes the status
of the protocol; and "mt" is the set of transitions that the protocol may take.

Runtime composition. The product of TES transition systems is constructed at
runtime, step by step. We use κsync for the product of TES transition systems.

Given a list of initialized TES transition system, the runtime computes the
set of all possible composite transitions, from which transitions that violate the
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composability relation κsync are filtered out, and one transition that is compos-
able is non-deterministically chosen.

Algorithm 1 Runtime composition

Require:
- n initialized TES transition systems S = {T1(q1), . . . , Tn(qn)}

1: procedure RuntimeComposition

2: for Ti(qi) ∈ S do add {qi
Oi−−→i pi | pi ∈ Qi} to Tr

3: while trsi, trsj ∈ Tr do

4: for qi
Oi−−→ pi ∈ trsi and qj

Oj−−→ pj ∈ trsj do
5: if ((Oi, 1), (Oj , 2)) ∈ κsync(Ei, Ej) then

6: add (qi, qj)
Oi−−→ (pi, qj) to trsij

7: if ((Oi, 2), (Oj , 1)) ∈ κsync(Ei, Ej) then

8: add (qi, qj)
Oj−−→ (qi, pj) to trsij

9: if ((Oi, 1), (Oj , 1)) ∈ κsync(Ei, Ej) then

10: add (qi, qj)
Oi∪Oj−−−−→ (pi, pj) to trsij

11: Tr := (Tr \ {trsi, trsi}) ∪ {trsij}
12: let trs ∈ Tr
13: let (q1, . . . , qn)

O−→ (r1, . . . , rn) ∈ trs
14: for i ≤ n do Ti(qi) ⇒ Ti(ri)

Algorithm 1 shows the procedure RuntimeComposition that corresponds
to a one step product of the input TES transition systems. Note that such
procedure applied recursively on its results would generate a behavior that is in
behavior of the product of the TES transition systems.

Results. Initially, the system consists of three robots, with identifiers R(0 ),
R(1 ), and R(2 ), each coordinated by two protocols swap(R(i),R(j )) with i, j ∈
{0, 1, 2} and j < i. The trolls move on a grid and trolls R(0 ), R(1 ), and R(2 ) are
respectively initialized at position (2; 0), (1; 0), and (0; 0).4 The property Psorted

is a reachability property on the state of the grid, that states that eventually,
all robots are in the sorted position. In Maude, given a system of 3 robots, we
express such reachability property with the following search command:

search [1] init =>*

[sys::Sys [ field : Field | k((0;0)) |-> d(R(0)),

k((1;0)) |-> d(R(1)),

k((2;0)) |-> d(R(2)) ; true ; mt]] .

The initial configuration of the grid is such that robot 0 is on location (2; 0),
robot 1 on (1; 0), and robot 2 on (0; 0). Since the grid is of size 3 by 2, robots need
to coordinate to reach the desired sorted configuration. The search commands
search for a final state where the robots are sorted.
4 We refer to [6] for a more detailed description of the Maude framework.
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Table 1 features three variations on the sorting problem. The first system
is composed of robots whose moves are free on the grid. The second adds one
battery for each component, whose energy level decreases for each robot move.
The third system adds a swap protocol for every pair of two robots. The last
system adds a protocol and batteries to compose with the robots.

We record, for each of those systems, whether the sorted configuration is
reachable (Psorted), and if all three robots can run out of energy (Pbat).

Table 1. Evaluation of different systems for the Psorted and Pbat behavioral properties,
where st. stands for states, rw for rewrites. Note that the Pbat property is not evaluated
when the system does not contain battery components.

System Psorted Pbat

▷◁
0≤i≤2

Ri ▷◁ G 12.103 st., 25s, 31.106 rw

▷◁
0≤i≤2

(Ri ▷◁ Bi) ▷◁ G 12.103 st., 25s, 31.106 rw true

▷◁
0≤i≤2

Ri ▷◁ G ▷◁
0≤i<j≤2

S(Ri, Rj) 8250 st., 44s, 80.106 rw

▷◁
0≤i≤2

(Ri ▷◁ Bi) ▷◁ G ▷◁
0≤i<j≤2

S(Ri, Rj) 8250 st., 71s, 83.106 rw false

Observe that the reachability query returns a solution for both system: the
one with and without protocols. However, the time to reach the first solution
increases as the number of transition increases (adding the protocol components).
We leave as future work some optimizations to improve on our results.

6 Conclusion

We introduce a transition system based specification of cyber-physical systems
whose semantics is compositional with respect to a family of algebraic products.
We give sufficient conditions for execution of a product to be correctly imple-
mented by a lazy expansion of the product construction. We proved, using an
implementation of our framework in Maude, a set of autonomous robots that
move on a grid, coordinated by a local swapping protocol, satisfy the emergent
property of ending in sorted position.

This work is a first step towards a finite characterization of component be-
haviors. We give in [15] a specification of TES transition systems as rewriting
agents, and explore other case studies for showing safety properties of cyber-
physical systems. As a future work, the extension of the framework with real
time can open reasoning about optimal frequencies at which robots can interact
to fulfill a coordination pattern.
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