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Chimney fires constitute one of the most commonly occurring fire types.
Precise prediction and prompt prevention are crucial in reducing the harm
they cause. In this paper we develop a combined machine learning and statis-
tical modelling process to predict fire risk. First, we use random forests and
permutation importance techniques to identify the most informative explana-
tory variables. Second, we design a Poisson point process model and employ
logistic regression estimation to estimate the parameters. Moreover, we val-
idate the Poisson model assumption using second-order summary statistics
and residuals. We implement the modelling process on data collected by the
Twente Fire Brigade and obtain plausible predictions. Compared to similar
studies, our approach has two advantages: (i) with random forests, we can
select explanatory variables nonparametrically considering variable depen-
dence; (ii) using logistic regression estimation, we can fit our statistical model
efficiently by tuning it to focus on regions and times that are salient for fire
risk.

1. Introduction. During the last decade, the Dutch fire and rescue services have been
developing an interest in applying business intelligence to improve their strategy of fire pre-
diction and prevention (NVBR (2010)). To prepare for risk reducing measures, such as es-
sential public awareness campaigns and proper fire staffing and equipment arrangements,
accurate predictions are required. In this study we focus on chimney fires, as they occur fre-
quently, rely heavily on environmental factors and impact people’s daily life. Collaborating
with the Twente Fire Brigade, we conduct a complete risk prediction study for chimney fires.
We define fire risk prediction as an occurrence modelling problem, analyze underlying pat-
terns and design appropriate prediction models. Our approach for chimney fire prediction is
general and can be transferred to similar fire types, such as kitchen fires.

The literature for fire risk prediction is mostly concerned with wildfires. Overall, the pre-
diction approaches can be divided into two categories: machine learning based approaches
(e.g., Rodrigues and de la Riva (2014), Jain et al. (2020), Malik et al. (2021)) and statis-
tical approaches (e.g., Turner (2009), Møller and Díaz-Avalos (2010), Xu and Schoenberg
(2011)). Usually, machine learning based approaches do not require prior knowledge but can
detect the dependence between fire risk and a large number of environmental variables au-
tomatically using specialised learning algorithms, such as logistic regression (Preisler et al.
(2004)), support vector machine (Sakr et al. (2010)), decision tree (Stojanova et al. (2012)),
random forest (Rodrigues and de la Riva (2014)) and neural network (Satir, Berberoglu and
Donmez (2016)). Most machine learning algorithms are applicable for discrete data, whereas
hazard maps of fire risk are continuous. Moreover, fire occurrences are usually recorded as
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spatiotemporal point patterns. To resolve such discrepancies, certain studies (e.g., Sakr et al.
(2010), Stojanova et al. (2012), Satir, Berberoglu and Donmez (2016)) discretized fire in-
cidents into areal unit data and transformed risk prediction from an occurrence modelling
problem to a risk scale classification problem (i.e., labelling different amounts of fires to cor-
responding risk scales). However, doing so may result in a loss of information. In addition,
machine learning approaches often require relatively large amounts of data to obtain a sat-
isfactory performance, and due to their ‘black box’ behaviour, it is difficult to interpret the
influence of an explanatory variable on fire risk in terms that are meaningful for practical
implementation for fire services.

In contrast, statistical approaches enable us to learn spatiotemporal point patterns directly.
Moreover, they are interpretable based on specific, parametric, mathematical models and al-
low for theoretical confidence intervals. For instance, Hering, Bell and Genton (2009) and
Costafreda-Aumedes, Comas and Vega-Garcia (2016) used the K-function to analyze clus-
tered patterns of wildfire data. Ye (2011) and Boubeta et al. (2015) employed Poisson struc-
tures to generate hazard maps of fire occurrences. Møller and Díaz-Avalos (2010) consid-
ered spatial and temporal explanatory variables in a shot-noise Cox process and fitted it with
minimum contrast techniques. Pereira et al. (2013) and Serra et al. (2014) modelled fire oc-
currences using log-Gaussian Cox processes, which were particularly designed to simulate
latent phenomena. Recently, a Bayesian framework was developed and suggested to improve
fire prediction (Juan Verdoy (2021)). Pimont et al. (2021) also employed a log-Gaussian Cox
process model to predict wildfires but established Bayesian inference for model components
using integrated nested Laplace approximation (Rue, Martino and Chopin (2009)). Koh et al.
(2023) developed a joint hierarchical model framework by combining extreme-value theory
and point processes and studied summer wildfire data for the French Mediterranean basin.
For chimney fires School (2018) proposed a log-Gaussian Cox process model to predict the
risk based on explanatory variables selected by Pearson correlation coefficients and random
effects simulated by Gaussian random fields. Most statistical studies (e.g., Møller and Díaz-
Avalos (2010), Pereira et al. (2013)) first determined their model structures and selected and
fitted explanatory variables afterward. This procedure does not fully exploit information con-
tained in variables and sometimes requires complex modelling of residuals. In addition, the
selection of explanatory variables is conducted either manually (Turner (2009)) or using ba-
sic statistical methods (Yang et al. (2015), School (2018)). Some studies (Thurman and Zhu
(2014), Yue and Loh (2015), Choiruddin, Coeurjolly and Letué (2018)) applied regularized
penalty functions in the estimation of point processes for variable selection. However, a para-
metric form of the intensity function, including all variables, needs to be specified in advance.

To conduct a data-driven fire risk prediction study, we combine machine learning and point
process tools in our modelling process to leverage the advantages of both types of approaches.
In a pilot study (Lu et al. (2021)), we used the permutation importance techniques of random
forests to select important variables, as they are recommended as relatively accurate machine
learning methods for fire prediction (Rodrigues and de la Riva (2014)). Accordingly, we
designed a generalized linear Poisson model, based on the selected variables, and fitted it
on areal unit data to predict the chimney fire risk in Twente. In this paper we complete the
theoretical background and implementation details for the variable selection part and refine
the areal unit model to a spatiotemporal Poisson point process model. Since point patterns
(cf. Figure 1(b)) are targeted directly, the new model does not depend on the scale of the areal
units, leads to a continuous hazard map for fire prediction and enables more detailed data
analyses, such as point interaction tests.

Specifically, our contributions are as discussed below. First, we propose a modelling pro-
cess for fire prediction, which is fully data-driven and meanwhile allows for model inter-
pretability: (i) we use machine learning algorithms in a supporting role to select explanatory
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FIG. 1. Map of Twente municipalities (a) and spatial projection of the chimney fire incidents during 2004–2020
(b).

variables for fire risk nonparametrically so that variable information can be exploited; (ii) we
adhere to a statistical Poisson point process model for fire occurrences with parametric struc-
tures designed on the selected explanatory variables so that complete model inference can
be conducted. Second, in the fitting of the point process model, we efficiently estimate the
parameters, using logistic regression estimation (Baddeley et al. (2014)), by tuning it to focus
on important parts in space and time and provide theoretical confidence intervals.

The remainder of the paper is organized as follows. Section 2 introduces the fire data we
use and some data preprocessing steps. Section 3 elaborates on the selection of important
variables. In Section 4 we motivate and fit a Poisson point process model and compare it
to the areal unit model proposed in Lu et al. (2021). Section 5 tests for point interactions
in the fire data and validates the Poisson model assumption of absence of such interactions.
Section 6 reviews our modelling process and explores the role of the dummy intensity in
logistic regression estimation. Section 7 provides a conclusion and some ideas on future
work.

2. Data. In this section, we introduce the chimney fire data, the relevant environmental
variables and the data preprocessing operations.

2.1. Chimney fires and environmental variables. Collaborating with the Twente Fire
Brigade, we collected the data of all reported chimney fire incidents occurring between Jan-
uary 1, 2004 and December 31, 2020, in the Twente region in the eastern part of the Nether-
lands (map shown in Figure 1(a)). After a manual check to remove obvious mistakes, the
dataset consists of 1759 incidents. Each incident is reported individually with its ID number,
location, time and a brief description of the circumstances of the fire and rescue processes.1

The spatial and temporal projections2 are plotted, respectively, in Figure 1(b) and Figure 2.
It is clearly visible in Figure 1(b) that the spatial distribution of chimney fires is heteroge-
neous in the sense that most incidents occur in urban areas, especially in cities with a higher
population such as Almelo, Hengelo and Enschede (cf. Figure 1(a)). Because neighbouring
buildings tend to have identical chimney types, apparent clustering may also arise. Moreover,

1Location is recorded in the form of Dutch RD coordinates and in the unit of metre; time is recorded in the unit
of day to match the weather data.

2Fire incidents on the leap days have already been excluded here, as discussed in Section 2.2.
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FIG. 2. Temporal projection (monthly counts) of the chimney fire incidents (y-axis) during 2004–2020.

locations neighbouring in space and time share similar weather conditions. In Figure 2 the
temporal distribution of chimney fires is periodic: chimney fires occur more frequently in
winter than in summer.

According to the experts from the Twente Fire Brigade, various environmental factors may
influence the risk of chimney fires. Spatially, building types, population density and compo-
sitions and urbanity degrees in an area may determine the baseline fire risk. Temporally, sea-
son and weather conditions influence the risk as well. Other factors, such as fueling sources,
chimney types and dominant human causes, may also affect it; however, their information is
not accessible. Table 1 lists 27 putative explanatory variables with specific abbreviations, de-
scriptions and sources. Among them, population and urbanity information are recorded over
6291 predefined 500 m × 500 m area boxes3 in Twente, whereas building information con-
tains the precise locations, ages and functions of houses. Temporal data comes in the form of
daily weather observations from the weather station (Twenthe) at Twente airport. To assess
the influence of small variations in weather among different parts of the Twente region, we
also collected the data from two neighbouring weather stations (Heino and Hupsel) outside
Twente for analysis. Their locations can be found on https://www.knmi.nl.

2.2. Data preprocessing. To unify the data to be used in our modelling process, we per-
form several data preprocessing operations on environmental variables.

First, we further extract building information at the level of living units, as it may reflect
the geographical information of chimneys in a more representative way. For instance, two
families living in one semidetached house actually use their individual chimneys. Second,
some spatial variables (i.e., population and urbanity information) consist of a list of historical
data, whereas others (i.e., building information) are only accessed in a single actual value. To
enable similar treatment of the data, we use averaged values over the time period of interest
for those variables consisting of a list of historical data so that for all spatial variables a sin-
gle value is accessible. Moreover, we only consider the buildings that are currently in use and
assume that buildings keep their functions and types during the time period of interest. Ob-
serving that the age and type information of some buildings are missing, we assign them the
label “extra” during the counting process. Finally, we exclude the fire incidents and weather
data on the leap days in the leap years, while in future fire risk prediction, we will use the
prediction of February 28 to compensate for the missing prediction of the leap day, February
29.

3Determined by Statistics Netherlands (CBS, cf. column “Source” in Table 1).

https://www.knmi.nl
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TABLE 1
Putative explanatory variables, with their abbreviations, descriptions and sources. σ : Spatial variables, τ :

Temporal variables

Variable Abbreviation Description Sourcea

Vσ,1 House The total number of houses NIPV
Vσ,2 House_indu The number of houses with an industrial function NIPV
Vσ,3 House_hotl The number of houses with a hotel function NIPV
Vσ,4 House_resi The number of houses with a residential function NIPV
Vσ,5 House_20 The number of houses constructed before 1920 NIPV
Vσ,6 House_2045 The number of houses constructed between 1920 and 1945 NIPV
Vσ,7 House_4570 The number of houses constructed between 1945 and 1970 NIPV
Vσ,8 House_7080 The number of houses constructed between 1970 and 1980 NIPV
Vσ,9 House_8090 The number of houses constructed between 1980 and 1990 NIPV
Vσ,10 House_90 The number of houses constructed after 1990 NIPV
Vσ,11 House_frsd The number of freestanding (detached or semi-detached) houses NIPV
Vσ,12 Resid The total number of residents CBS
Vσ,13 Resid_14 The number of residents with an age in the range of 0 till 14 CBS
Vσ,14 Resid_1524 The number of residents with an age in the range of 15 till 24 CBS
Vσ,15 Resid_2544 The number of residents with an age in the range of 25 till 44 CBS
Vσ,16 Resid_4564 The number of residents with an age in the range of 45 till 64 CBS
Vσ,17 Resid_65 The number of residents with an age of 65 or higher CBS
Vσ,18 Man The number of male residents CBS
Vσ,19 Woman The number of female residents CBS
Vσ,20 Address The number of addresses in the neighbourhood CBS
Vσ,21 Urbanityb The urbanity of the neighbourhood CBS
Vσ,22 Town Boolean variable indicating the presence of a town CBS

Vτ,1 WindSpeed Daily mean wind speed (km/h) KNMI
Vτ,2 Temperature Daily mean temperature (°C) KNMI
Vτ,3 WindChill Daily mean wind chill (°C) (calculated from Vτ,1, Vτ,2)
Vτ,4 Sunshine Daily sunshine duration (h) KNMI
Vτ,5 Visibilityc Daily minimum visibility KNMI

aNIPV: Nederlands Instituut Publieke Veiligheid, CBS: Centraal Bureau voor de Statistiek, KNMI: Koninklijk
Nederlands Meteorologisch Instituut. All data is provided by the Twente Fire Brigade, especially for this research.
bCategorical, where the urbanity of a neighbourhood is evaluated into levels varying from 1 to 5 (urban–not
urban), thus is treated as numerical in random forests.
cCategorical, where the minimum visibility distances (0–∞ km) are defined to levels varying from 1 to 80, thus
is treated as numerical in random forests.

In addition, particularly for the point process modelling phase in Section 4, in order to
obtain the data that records spatial variables for every location in Twente (i.e., density maps)
from either areal unit data (i.e., population and urbanity information) or data with precise
coordinates (i.e., building information), we employ kernel smoothing. For temporal variables
we assume that their values at different times of a day remain invariant and equal to daily
mean values. Recalling Table 1, we then introduce the following notation for environmental
variables:

(i) Vσ,i(u): The smoothed value of the ith spatial variable at location u,
(ii) Vτ,i(t): The assigned value of the ith temporal variable at time t ,

where (u, t) denotes any location and time combination in the spatiotemporal domain.

3. Selection of explanatory variables. Obviously, not all environmental variables listed
in Table 1 are required to model the risk of chimney fires, and some of them are mutually
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dependent. To select the most informative ones, in Lu et al. (2021), we performed a nonpara-
metric variable importance analysis using the permutation importance techniques of random
forests (Breiman (2001)). For the sake of completeness, we elaborate here on the theoretical
background and implementation details.

3.1. Random forests and permutation importance. Random forests (Breiman (2001)) are
widely used as robust classification and regression methods in many applications, such as risk
prediction (Wongvibulsin, Wu and Zeger (2019)) and data mining (Schonlau and Zou (2020)).
A random forest is usually composed of hundreds or thousands of decision trees, where each
tree is generated on a sampled subset of the data by repeated bagging (i.e., bootstrap sampling
with replacement) and trained to fit explanatory variables to the response variable. Afterward,
a combined result over all trees will be reported as the final output. In addition, random
forests can also be used to assess the importance of a variable by means of permutation
importance techniques (Breiman (2001), Strobl and Zeileis (2008), Altmann et al. (2010)).
Through randomly permuting the values of a variable over the observations, the importance
of a variable is defined as the mean increase of the prediction error over all trees computed
on the permuted data compared to that computed on the original data.

More formally, consider a regression problem on a dataset D with n observations. Suppose
that, for each observation in D, there are m explanatory variables. Let x

(j)
i and yi , with

i = 1, . . . , n and j = 1, . . . ,m, denote the j th explanatory variable and the response variable,
respectively, for the ith observation; xi is the vector that collects all x

(j)
i . The construction

of a random forest consists of the generation of E decision trees. To generate a tree e, a
subset of D, denoted as B(e), is sampled by bagging. At each node of the tree, a number of
explanatory variables are selected randomly from all variables as the candidates. Then one of
the candidates, say x(j), is used to split the node into two subsets, BL(e) and BR(e) (e.g., for
a numerical x(j), BL(e) = {(xi , yi) : x(j)

i ≤ c; (xi , yi) ∈ B(e)} and BR(e) = {(xi , yi) : x(j)
i >

c; (xi , yi) ∈ B(e)}), in such a way that the residual sum of squares

(3.1)
∑

(xi ,yi )∈BL(e)

(yi − ȳBL(e))
2 + ∑

(xi ,yi )∈BR(e)

(yi − ȳBR(e))
2

is minimized. Here ȳBL(e) and ȳBR(e) denote the mean of the response variables in corre-
sponding subsets. Such a node splitting procedure is continued until tree e satisfies certain
preconditions (e.g., reaching the maximum number of levels of a tree). Similar tree generation
processes are employed to construct all other trees in the forest. To measure the importance
of an explanatory variable, again say x(j) in tree e, we randomly permute its values over the
out-of-bag observations of the tree, denoted as oB(e) (i.e., oB(e) = D \ B(e)). Write πj for
the permutation. The value of the j th explanatory variable for the response yi for an observa-
tion (xi , yi) then changes from x

(j)
i to x

(j)
πj (i) with (xi , yi) ∈ oB(e), while the values of other

explanatory variables are left unchanged. Thus, the increase of the prediction error is

(3.2) I
(
x(j); e) =

∑
(xi ,yi )∈oB(e)(yi − ŷi,πj

)2

|oB(e)| −
∑

(xi ,yi )∈oB(e)(yi − ŷi )
2

|oB(e)| ,

where ŷi denotes the prediction in tree e for observation (xi , yi) using original explanatory
variables, ŷi,πj

denotes the corresponding prediction but using explanatory variables with the
j th variable permuted and |oB(e)| denotes the number of out-of-bag observations for the tree.
Finally, the mean increase of the prediction error over all trees,

∑
e I (x(j); e)/E, is used to

illustrate the importance of the j th variable, x(j), in the forest.
In practice, the original construction algorithms of random forests tend to bias the variable

selection at tree nodes to factorial variables with many categories or continuous variables with
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many cut points. Moreover, traditional permutation importance techniques can sometimes
be misled by correlated explanatory variables. To address these problems, unbiased random
forests (Hothorn, Hornik and Zeileis (2006), Strobl et al. (2007)) and conditional permutation
importance techniques (Strobl et al. (2008)) were proposed based on a conditional inference
framework of recursive partitioning. Compared to earlier methods, the idea is to partition
the variable space in order to obtain groups of observations with similar association patterns
instead of groups of observations with merely similar values of the response variable. For
instance, to measure the importance of variable x(j) under conditional permutation in tree
e, the set of out-of-bag observations, oB(e), is first partitioned into a grid where each block
shares the same information on the remaining variables, x \ x(j). Then the same permutation
operation as introduced above is applied to each block, and the increase of the prediction
error is computed and summed up over all blocks to illustrate the importance of x(j). With
significant increments and optimizations, the random forest approach has been very useful
to measure variable importance nonparametrically considering variable dependence (Strobl,
Hothorn and Zeileis (2009)).

Note that the notation used in this section is only valid here to explain random forests and
permutation importance techniques statistically.

3.2. Variable importance analysis. In Lu et al. (2021), we measured the importance of
spatial and temporal variables separately on areal unit data. The main reason for this is that
spatial variables are available as a single actual value for every area box while temporal
variables are available as historical time series.

Specifically, for spatial variables we grouped the incidents by the 6291 predefined
500 m × 500 m area boxes and merged them into a large data frame consisting of 6291 rows
and 23 columns. Each row indicates an area box, and the 23 columns refer to the number of
incidents occurring in that box (response variable) as well as the values of 22 spatial envi-
ronmental variables. We found that some boundary area boxes lie only partially in Twente.
However, the population statistics for such boxes do not distinguish between Twente and the
neighbouring regions. To avoid bias, we filtered out the data of these boundary boxes in our
variable importance analysis. For temporal variables we grouped the incidents in 6205 days
and merged them into a data frame consisting of 6205 rows and six columns. Each row indi-
cates a specific day, and the six columns refer to the number of incidents on that day (response
variable) as well as the values of five temporal environmental variables.

In the analysis we constructed two unbiased random forests of 2000 trees to fit spatial and
temporal variables to the number of incidents in corresponding data tables, respectively, and
set the proportion of the number of input variables that are randomly sampled as the candi-
dates at a tree node to approximately 1/3 (i.e., spatial: seven candidates, temporal: two candi-
dates). Considering high correlations between certain variables (e.g., population and urbanity
information), we used conditional permutation importance techniques (Strobl et al. (2008)),
instead of the traditional ones (Breiman (2001)), to suppress the importance scores biasing
toward correlated variables. Our implementation of variable importance analysis was based
on the R-package party (Hothorn et al. (2006), Strobl et al. (2007)). We used the method pro-
posed in Debeer and Strobl (2020) to compute the conditional permutation importance, which
provides a faster computation and shows more stable results than the original implementation
(Strobl et al. (2008)).

The variable importance results,4 under conditional permutation for spatial and temporal
variables, are plotted in Figure 3 and Figure 4, respectively. For comparison, we also plot

4The importance scores for spatial and temporal variables are not comparable, as the two random forests were
fitted on spatial and temporal variables separately.
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FIG. 3. Importance (y-axis) obtained for spatial variables using traditional (a) and conditional (b) permutation
techniques.

the results under traditional permutation. In all plots the y-axis refers to the increase of the
squared prediction error when traditional or conditional permutation on a variable is applied.
A large increase indicates that the variable is very important for correct predictions, while
a decrease indicates that the variable has no influence on or even hampers the prediction. If
we compare the results under traditional and conditional permutation, we see that the bias
caused by correlated variables is suppressed well. For instance, the number of residents aged
between 45 and 64 and the total number of residents have the largest importance scores under
traditional permutation, with the number of freestanding houses coming third. However, the
latter has the highest variable importance score under conditional permutation. A possible
explanation could be that freestanding houses are mostly occupied by families whose adult
members are aged between 45 and 64, which implies a strong positive correlation among
all three categories. Moreover, other age groups, such as the elderly or families with young
children, may be less inclined to use their chimneys. The importance scores of the two vari-
ables concerning residents decrease a lot under conditional permutation. Similar observations
hold for temporal variables as well. Both wind chill and temperature obtain high importance
scores under traditional permutation, although they are correlated. Conditional permutation
detects the underlying correlation and suppresses temperature, as wind chill is defined in
terms of both temperature and wind speed information. However, since wind speed still ob-
tains a relatively large importance score, even under conditional permutation, we will further

FIG. 4. Importance (y-axis) obtained for temporal variables using traditional (a) and conditional (b) permuta-
tion techniques.
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consider it in the modelling phase. The additional analysis to assess the influence of small
weather variations among different parts in Twente indicates that these variations can be ig-
nored.5

Overall, according to the variable importance under conditional permutation, the number
of buildings constructed between 1920 and 1945 and the number of freestanding houses are
the most important spatial variables, and wind chill and wind speed are the most important
temporal variables. The results could have the following explanations: (i) most freestanding
houses contain chimneys, whereas other types do not; (ii) chimney pipes in old buildings tend
to be made of brick rather than metal, which increases the risk to catch fires; (iii) strong wind
can fuel a fire; (iv) wind chill reflects people feeling cold, thus inducing them to use their
fires and chimneys.

4. Poisson point process model. In this section we refine the areal unit model for chim-
ney fire prediction proposed in Lu et al. (2021) to a spatiotemporal point process model. First,
we review the motivation for the nested model structure designed in Lu et al. (2021) using the
selected variables from Section 3.2. Second, we define a Poisson point process model based
on the same structure. Afterward, we present model fitting and selection procedures and pro-
pose theoretical confidence intervals for both model parameters and predicted fire intensities.
Finally, we compare the new point process model to the areal unit model and illustrate the
former’s advantages.

4.1. Model motivation. In preparation for an appropriate model structure for chimney
fire prediction in Lu et al. (2021), we performed a preliminary investigation on the relations
between the selected explanatory variables and chimney fire occurrences using areal unit
data.

Recalling the selected variables in Section 3.2, we first divided the houses in Twente into
four house types depending on their ages (i.e., whether they have been constructed between
1920 and 1945 or not) and on whether they are freestanding or not and plot the monthly in-
tensities of chimney fires per house for different house types separately. Figure 5 shows that,
generally, chimney fire occurrences in all house types are periodic, with incidents concen-
trated in the colder seasons. However, different house types run different risks of chimney
fires: the intensities for old houses (i.e., House_2045) and freestanding houses are higher
than others. Moreover, note that the patterns are not perfectly periodic; the amplitudes of the
peaks vary per year. To model such varying patterns, we need to take wind chill and wind
speed into account.

In addition, we plot the numerical relations between chimney fire occurrences and the
number of houses of different types in Figure 6. To approximate the underlying trends in
the scatter plots, we apply the locally estimated scatter plot smoothing method (Cleveland,
Grosse and Shyu (1992)) and plot the estimated trends. It is interesting to find that, for each
house type, chimney fire occurrences increase approximately linearly in the number of houses
of that type. However, this observation only holds when the number of houses is not very
large. If it is too large, the number of chimney fires tends to a saturated value.

To summarize, we draw the following conclusions: (i) chimneys in different house types
catch fires at a type-dependent rate, and the rate is influenced by both seasonal information
and temporal explanatory variables; (ii) chimney fire occurrences in the houses of a specific
type are approximately proportional to the number of houses of that type.

5For details we refer to the Supplementary Material (Lu et al. (2023)).
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FIG. 5. Monthly intensities of chimney fires per house (y-axis) for different house types during 2004–2020.

4.2. Model structure. Based on the motivation above, a nested Poisson model structure
was designed for chimney fire risk prediction (Lu et al. (2021)). Here we construct a point
process model which uses the same structure but learns point patterns (cf. Figure 1(b)) di-
rectly. We assume that the explanatory variables for the areal unit model and the point process
model are identical.

FIG. 6. Numerical relations between chimney fire occurrences (y-axis) and the number of houses of different
types (x-axis). The blue curves are the estimated trends using the locally estimated scatterplot smoothing method
with parameter span = 1. The 95% envelopes are also included to show the confidence of such estimates.
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Suppose that each house catches chimney fires independently at a type-dependent rate that
varies in time. Under this assumption the fire prediction model is a spatiotemporal Poisson
point process, defined on the Twente region and the period 2004–2020, with an intensity
function of the form �(u, t) = ∑

k λk(u, t), where �(u, t) indicates the overall fire risk at
location u at time t and λk(u, t) indicates the risk at location u at time t for the houses of
type k. Furthermore, we define λk(u, t) = hk(u)φk(t), where hk(u) indicates the density of
house type k at location u and φk(t) indicates the risk for a house of that type at time t . Such
a structure reflects the conclusions reached in Section 4.1, although it relies on the condition
that the density of houses at a location is not too large (cf. Figure 6).

More formally, our nested Poisson point process model is defined by its intensity function

(4.1) �(u, t) =
4∑

k=1

λk(u, t) =
4∑

k=1

hk(u)φk(t).

The density maps of houses of four types (i.e., hk(u)), as shown in Figure 7, are derived from
corresponding building information (i.e., Vσ,6(u) and Vσ,11(u)) by smoothing using Gaussian
kernels with a standard deviation of 1000 metres.6 Moreover, since both seasonal information
and temporal variables, wind speed and wind chill (i.e., Vτ,1(t) and Vτ,3(t)), are taken into

FIG. 7. Density maps of houses of four types. The unit in all plots is metre−2. Note that the intensity bars have
different scales.

6Suggested by the experts from the Twente Fire Brigade, considering the distances between cities in Twente.
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account, we propose a temporal intensity function φk(t) for houses of type k of the form

φk(t) = exp
(
Harmonic(t;ok,1) + Polynom

(
Vτ,1(t);ok,2

)
+ Polynom

(
Vτ,3(t);ok,3

) + Polynom
(
Vτ,1(t)Vτ,3(t);ok,4

))
,

(4.2)

where a harmonic function7 with order ok,1 is employed to model seasonal variations and
two polynomial functions with order ok,2 and ok,3 are used to model information of wind
speed and wind chill. In addition, we employ another polynomial function of Vτ,1(t)Vτ,3(t)

with order ok,4 to allow for interactions between wind speed and wind chill. The exponen-
tial function is applied to guarantee that the intensity function stays positive. For purposes
of parametric representation, the temporal intensity function φk(t) can also be described as
φk(t; θk) (accordingly, λk(u, t) as λk(u, t; θk)), where θk indicates the vector of coefficients
in the harmonic and polynomial functions for house type k.

4.3. Model fitting. In Lu et al. (2021), the areal unit model was fitted by maximum like-
lihood estimation. Moreover, we established theoretical confidence intervals for model pa-
rameters and predicted fire intensities based on classical theories: the Fisher information
for asymptotic normality for generalized linear models (Fahrmeir and Kaufmann (1985),
McCullagh and Nelder (2019)) and the Delta method (Ver Hoef (2012)).

In principle, we could also apply maximum likelihood estimation here to maximize the
log-likelihood function of our Poisson point process model, which reads

(4.3)
4∑

k=1

{∑
xk

logλk(xk; θk) −
∫

Twente

∫
Year 2004–2020

λk(u, t; θk) dudt

}
,

where xk denotes combinations of location and time and runs through chimney fire incidents
occurring in houses of type k. However, since we have a continuous space-time domain,
the integral in the log-likelihood function must be approximated numerically, for example,
using quadrature points (Baddeley and Turner (2000)). In our case the number of quadrature
points would have to be rather large; thus, we prefer to use logistic regression estimation
(Baddeley et al. (2014)) to fit the Poisson point process model, where we can freely adjust
the distribution of quadrature points.

The idea behind the logistic regression estimation approach is the well-known Campbell–
Mecke theorem (see, e.g., Daley and Vere-Jones (2008)). Consider a point process X that
is defined on a space-time domain R

2 × R and is locally finite, which means that X places
almost surely finitely many points in every bounded subset of R2 × R. We assume that X

is confined to a bounded domain W × T ⊆ R
2 × R and has intensity function λ(u, t) with

(u, t) ∈ W × T . For any vector of real-valued nonnegative or integrable functions f (u, t),
defined on W × T , the Campbell–Mecke theorem reads

(4.4) E

{∑
x∈X

f (x)

}
=

∫
W

∫
T

f (u, t)λ(u, t) dudt,

where x runs through the points of X. Suppose that the intensity function λ is parametric and
depends on a parameter vector θ , thus can be described as λ(u, t; θ). One may estimate both
sides of the Campbell–Mecke theorem and then equate them to obtain estimating equations
for θ .

The logistic regression estimation approach is based on the components of the vector func-
tion

(4.5) f (u, t) = ∂

∂θ
log

[
λ(u, t; θ)

λ(u, t; θ) + ρ(u, t)

]
= ρ(u, t)/λ(u, t; θ)

λ(u, t; θ) + ρ(u, t)
∇λ(u, t; θ),

7Harmonic function here refers to cosine and sine functions.
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where ∇λ(u, t; θ) denotes the gradient of λ(u, t; θ) with respect to θ and ρ is a positive-
valued function defined on W × T . Here one needs to assume that λ > 0. To estimate the
integral in (4.4) with f (u, t), defined in (4.5), one can use a “dummy” point process D on
W ×T that is independent of X and has intensity function ρ. Applying the Campbell–Mecke
theorem (4.4) to D, one has

(4.6) E

{∑
x∈D

1

λ(x; θ) + ρ(x)
∇λ(x; θ)

}
=

∫
W

∫
T

ρ(u, t)

λ(u, t; θ) + ρ(u, t)
∇λ(u, t; θ) dudt.

Having obtained unbiased estimators for both left- and right-hand side of equation (4.4) with
f given by (4.5), one can plug them in to obtain the estimating equation. It solves

(4.7) s(X,D; θ) = ∑
x∈X

ρ(x)/λ(x; θ)

λ(x; θ) + ρ(x)
∇λ(x; θ) − ∑

x∈D

1

λ(x; θ) + ρ(x)
∇λ(x; θ) = 0

over the parameter θ . Note that the subscript x in the two sums runs through the points of
X and D, respectively. It is interesting to observe that (4.7) is precisely the derivative of a
logistic log-likelihood function

(4.8) l(X,D; θ) = ∑
x∈X

log
[

λ(x; θ)

λ(x; θ) + ρ(x)

]
+ ∑

x∈D

log
[

ρ(x)

λ(x; θ) + ρ(x)

]
.

In this way the fitting of a Poisson point process model can be transformed into a maximum
likelihood estimation problem of logistic regression.8 It can be easily implemented, based on
the R-package stats (Venables and Ripley (2002)), and treated as the fitting of generalized
linear models with a logit link function. Since the log-likelihood function is concave, the
existence and uniqueness of parameter θ that maximizes the log-likelihood are guaranteed
under certain conditions (Silvapulle (1981)).

4.4. Modelling chimney fire data. As introduced above, we use logistic regression esti-
mation to fit the intensity functions of our four house types separately. Consider (4.2) for fixed
k and write θk as above for the vector of coefficients in the harmonic and polynomial func-
tions. Also, consider the chimney fires occurring in houses of type k as a point process Xk

with intensity function λk(u, t; θk). Denote the corresponding dummy point process by Dk

with intensity function ρk(u, t). Assuming that we have m parameters in θk , the estimating
equations then read

(4.9)
sp(Xk,Dk; θk) = ∑

x∈Xk

ρk(x)Cp(x)

λk(x; θk) + ρk(x)
− ∑

x∈Dk

λk(x; θk)Cp(x)

λk(x; θk) + ρk(x)

= 0, p = 1, . . . ,m,

where Cp(x) denotes the pth temporal covariate (i.e., the harmonic components, wind speed
and wind chill terms with different orders and the interaction terms of wind chill and wind
speed in (4.2)) at point x.

To estimate the parameters in θk , we perform a three-step implementation. First, we spec-
ify the intensity function ρk(u, t) of the dummy point process Dk . Note that the role of the
dummy point process is to approximate the integral in the Campbell–Mecke theorem (4.4) by
(4.6). In order to efficiently estimate the parameters, we need to put more dummy points in
the regions and times with a relatively high number of fire occurrences so that the approxima-
tion of the integral in those parts can be more accurate. Consider that, spatially, most chimney

8Note that the point process model itself is not a logistic model; only the estimation takes the form of logistic
regression. For details we refer to Baddeley et al. (2014).
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fires occur in urban areas, and that temporally, there are more chimney fires in winter than in
summer; specifically, we use the density map of houses of the given type k (cf. Figure 7) to
distinguish urban areas from rural areas and employ a sine function to assign higher ρk(u, t)

to cold seasons to comply with the observations in Figure 2. Thus, the intensity function
ρk(u, t) of Dk is given by

(4.10) ρk(u, t) = rkhk(u)

(
0.5 + 0.25

(
sin

(
2π

365
t + π

2

)
+ 1

))
,

where rk is a multiplication factor9 used to ensure that ρk(u, t) is at least four times
λk(u, t; θk), as suggested in Baddeley et al. (2014), and hk(u) is the density of houses of
type k at location u. Second, we generate a realisation from the dummy point process Dk

using the R-package spatstat (Baddeley, Rubak and Turner (2015)). Third, based on the ob-
servation of Xk and the realisation of the dummy point process Dk , we use the R-package
stats (Venables and Ripley (2002)) to estimate model parameters θk . In addition, in order
to determine the optimal function orders (i.e., ok,1, ok,2, ok,3, ok,4 in (4.2)) simultaneously,
we apply a grid search to select the combination that yields the smallest Akaike informa-
tion criterion (Choiruddin, Coeurjolly and Waagepetersen (2021)), given a set of ranges10

for them. Considering that wind chill already contains some information of wind speed, we
also perform likelihood ratio tests over the best models with and without wind speed and the
interaction terms.

Similar to Lu et al. (2021), we separate the fire data into two sets: the data on the period
2004–2019 and the data on the year 2020 for fitting and predicting purposes, respectively.
Performing the model selection introduced above on the data over 2004–2019, we obtain the
models for each of the four house types. We find that wind chill alone is mostly sufficient
to obtain accurate risk predictions, except for house type 4 where including the interaction
terms provides a better fitting performance. Finally, the temporal intensity functions obtained
for the four house types read as follows:

φ1(t; θ1) = exp
(
θ1,1 + θ1,2 cos

(
2π

365
t

)
+ θ1,3 sin

(
2π

365
t

)
+ θ1,4 cos

(
4π

365
t

)

+ θ1,5 sin
(

4π

365
t

)
+ θ1,6 cos

(
6π

365
t

)
+ θ1,7 sin

(
6π

365
t

)
+ θ1,8 cos

(
8π

365
t

)
(4.11)

+ θ1,9 sin
(

8π

365
t

)
+ θ1,10Vτ,3(t) + θ1,11V

2
τ,3(t)

)
,

φ2(t; θ2) = exp
(
θ2,1 + θ2,2 cos

(
2π

365
t

)
+ θ2,3 sin

(
2π

365
t

)
+ θ2,4 cos

(
4π

365
t

)

+ θ2,5 sin
(

4π

365
t

)
+ θ2,6 cos

(
6π

365
t

)
+ θ2,7 sin

(
6π

365
t

)
+ θ2,8Vτ,3(t)(4.12)

+ θ2,9V
2
τ,3(t) + θ2,10V

3
τ,3(t) + θ2,11V

4
τ,3(t)

)
,

φ3(t; θ3) = exp
(
θ3,1 + θ3,2 cos

(
2π

365
t

)
+ θ3,3 sin

(
2π

365
t

)
+ θ3,4 cos

(
4π

365
t

)

(4.13)

+ θ3,5 sin
(

4π

365
t

)
+ θ3,6 cos

(
6π

365
t

)
+ θ3,7 sin

(
6π

365
t

)
+ θ3,8Vτ,3(t)

)
,

9Specifically, we set rk ’s to 60, 20, 20 and 8 for the four house types, respectively.
10ok,1: 1–4, ok,2: 1–5, ok,3: 1–5, ok,4: 1–5.
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TABLE 2
Parameter estimates for a Poisson point process model defined by the intensity functions of (4.11)–(4.14) and

their 95% confidence intervals (CI). The “e” denotes a base of 10

Parameter Estimate (CI) Parameter Estimate (CI) Parameter Estimate (CI)

θ1,1 −1.22e1(±3.82e−1) θ1,2 −2.78e−1(± 4.81e−1) θ1,3 −1.44e−1(± 2.84e−1)
θ1,4 −1.63e−1(± 2.64e−1) θ1,5 7.99e−2(± 3.04e−1) θ1,6 −9.21e−3(± 2.49e−1)
θ1,7 −2.33e−2(± 2.62e−1) θ1,8 3.05e−1(± 2.19e−1) θ1,9 1.59e−2(± 2.20e−1)
θ1,10 −7.42e−2(± 3.56e−2) θ1,11 −6.12e−3(± 3.31e−3) θ2,1 −1.30e1(± 2.31e−1)
θ2,2 6.40e−2(± 2.74e−1) θ2,3 1.42e−2(± 1.56e−1) θ2,4 −3.14e−2(± 1.64e−1)
θ2,5 1.69e−1(± 1.60e−1) θ2,6 1.48e−1(± 1.24e−1) θ2,7 −4.54e−2(± 1.27e−1)
θ2,8 −6.81e−2(± 2.64e−2) θ2,9 2.33e−3(± 3.65e−3) θ2,10 −8.50e−6(± 2.47e−4)
θ2,11 −2.76e−5(± 1.93e−5) θ3,1 −1.43e1(± 9.48e−1) θ3,2 1.57e0(± 1.60e0)
θ3,3 2.25e−1(± 6.00e−1) θ3,4 −1.19e0(± 1.09e0) θ3,5 −3.19e−1(± 7.20e−1)
θ3,6 6.32e−1(± 6.06e−1) θ3,7 1.65e−1(± 5.39e−1) θ3,8 −1.12e−1(± 5.25e−2)
θ4,1 −1.39e1(± 2.41e−1) θ4,2 1.49e−1(± 3.05e−1) θ4,3 6.11e−2(± 1.76e−1)
θ4,4 −2.06e−1(± 1.83e−1) θ4,5 9.00e−2(± 1.95e−1) θ4,6 2.77e−2(± 1.61e−1)
θ4,7 7.11e−2(± 1.72e−1) θ4,8 1.82e−1(± 1.36e−1) θ4,9 −4.84e−2(± 1.38e−1)
θ4,10 −9.38e−2(± 4.06e−2) θ4,11 −7.92e−4(± 1.99e−3) θ4,12 −2.35e−4(± 1.62e−4)
θ4,13 2.99e−3(± 2.10e−3)

φ4(t; θ4) = exp
(
θ4,1 + θ4,2 cos

(
2π

365
t

)
+ θ4,3 sin

(
2π

365
t

)
+ θ4,4 cos

(
4π

365
t

)

+ θ4,5 sin
(

4π

365
t

)
+ θ4,6 cos

(
6π

365
t

)
+ θ4,7 sin

(
6π

365
t

)
+ θ4,8 cos

(
8π

365
t

)

(4.14)

+ θ4,9 sin
(

8π

365
t

)
+ θ4,10Vτ,3(t) + θ4,11V

2
τ,3(t)

+ θ4,12V
3
τ,3(t) + θ4,13Vτ,1(t)Vτ,3(t)

)
.

We provide the estimates of all model parameters (i.e., θ ’s) in Table 2. Moreover, we plot the
spatial and temporal predictions and the actual realisations11 for the year 2020 in Figure 8.

Overall, both spatial and temporal predictions capture the correct trends of fire occur-
rences. Specifically, in the spatial domain our model learns the urbanity features of the Twente
region, which are highly relevant for chimney fires. Since the spatial prediction depends on
the distribution of houses of different types, which can only be accessed as actual data, our
model displays similar spatial patterns for different years. In the temporal domain, our model
captures the periodic pattern on an annual basis and adds weather variable dependent informa-
tion, which explains the noisier aspect of Figure 8(b) compared to Figure 8(a). A comparison
to the areal unit model in Lu et al. (2021) and some ρ-tuning experiments will be specifically
discussed in Section 4.6 and Section 6.2. In summary, given appropriate building informa-
tion, our prediction model can detect areas with higher risks of chimney fires in Twente and,
additionally, estimate the risk for specific days based on weather forecast.

4.5. Confidence interval. For risk prediction problems, it is important to quantify the
uncertainty of the estimates. In the literature Baddeley et al. (2014) demonstrated asymp-
totic normality for their logistic regression estimators for stationary Gibbs point processes in
space when the domain increases. Recently, Choiruddin, Coeurjolly and Letué (2018) proved

11Spatial realisation is smoothed by Gaussian kernels with a standard deviation of 1000 metres.
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FIG. 8. Spatial and temporal predictions (a, b) based on our point process model and actual realisations (c, d)
for the year 2020. Shadows in (b) bound the 95% confidence intervals. The unit in spatial plots is metre−2; the
unit in temporal plots is day−1.

asymptotic normality also in an increasing-domain setting for spatial point process models
that involve explanatory variables. In a companion paper (Lieshout and Lu (2022)), we study
strong consistency and asymptotic normality for the logistic regression estimators we use
above for spatiotemporal point processes in an infill asymptotic setting.

Specifically, under appropriate conditions we prove that the maximiser θ̂ of (4.7), under
the true value θ0, is approximately normally distributed with mean θ0 and covariance matrix
G, given by the inverse of the Godambe matrix (Godambe and Heyde (1987)). A plug-in
estimator for G is

(4.15) Ĝ =
[∫

T

∫
W

λk(u, t; θ̂)ρ(u, t)

λk(u, t; θ̂) + ρ(u, t)
Cp(u, t)Cq(u, t) dudt

]m

p,q=1
,

assuming that we have m parameters in θ . Approximate confidence intervals for model pa-
rameters are then readily obtained.

For chimney fire data modelling, the approximate numerical 95% confidence intervals of
model parameters are listed in Table 2. The Delta method (Ver Hoef (2012)) can again be
used to calculate approximate confidence intervals for predicted fire intensities. We visualize
the temporal risk predictions for the year 2020 in Figure 8(b) as an example.

4.6. Comparison to the areal unit model. To compare the performance of the point pro-
cess model to the areal unit model in Lu et al. (2021), we plot the spatial and temporal
predictions for the year 2020 for the latter in Figure 9. Since the spatial predictions from
the areal unit model are computed for 500 m × 500 m area boxes, we average them by the
volume of these boxes to comply with the scaling level of the point process model.
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FIG. 9. Spatial (a) and temporal (b) predictions based on the areal unit model in Lu et al. (2021) for the year
2020. The unit in the spatial plot is metre−2; the unit in the temporal plot is day−1.

Generally, comparing Figure 9 to Figure 8, we see that both areal unit model and point
process model capture similar spatial and temporal patterns from the fire data. However, the
spatial predictions from the point process model by construction are smoother than those from
the areal unit model, as we apply kernel smoothing in the former to obtain the density of a
house type at a location, which helps establish spatially continuous predictions. The temporal
predictions from the two models are almost identical for every day, because we assume that
temporal variables at different times of a day remain invariant and the spatial aggregation is
integrated out. Specifically, in terms of the total chimney fire risk predicted for the year 2020,
the areal unit model predicts 92.86 and the point process model predicts 92.95, which are
very close to each other. The observed actual count of 81 lies in the 95% confidence intervals
of both models. However, the areal unit model overestimates many more fire risks for certain
area boxes of big city centres (e.g., Enschede) and underestimates for rural area boxes.

To conclude, the point process model generates continuous hazard maps of chimney fires,
which avoids the classic modifiable area unit data problem and enables to access fire risks
at exact locations in Twente, thus is more user-friendly for fire services. The predictions do
not depend on the scale of the area boxes, while only the smoothing bandwidth is inevitably
inherited. Moreover, from a computational perspective the logistic regression estimation ap-
proach used to fit the point process model is more efficient and captures more accurate data
patterns.

5. Model validation. In this section we validate the independence assumption underly-
ing our Poisson point process model by analyzing the second-order properties of the chimney
fire data. We also validate the first-order structure of our model by visualizing the residuals.

5.1. Second-order analysis. To assess the validity of the Poisson assumption, we perform
a second-order analysis on the fire data using two summary statistics: the pair correlation
function and the K-function (see, e.g., Lieshout (2019)). The pair correlation function can
be used to detect interpoint interactions for specific distances, whereas the K-function is a
cumulative statistic that can be used to test the existence of point interactions in data.

5.1.1. The pair correlation function. Consider a point process X defined on a space-time
domain W × T ⊂ R

2 × R that is locally finite. The second-order product density λ(2)(x, y)

of the pair (x, y), where x, y ∈ W × T , is the infinitesimal probability that X places points at
x and y. The pair correlation function for the pair (x, y) is then defined as

(5.1) g(x, y) = λ(2)(x, y)

λ(x)λ(y)
,
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FIG. 10. Estimated (solid black line) and theoretical (dashed red line) pair correlation functions for the spatial
and temporal projections (cf. Figure 1(b) and 2) of the chimney fire incidents during 2004–2020 using the intensity
functions fitted by our Poisson point process model.

where λ(x) and λ(y) denote the intensities at x and y, and we use the convention that a/0 = 0
for all a ≥ 0. For visualisation purposes we consider pair correlation functions for the projec-
tions in space and time separately. Under appropriate stationarity and isotropy assumptions,
in d dimensions (spatially, d = 2; temporally, d = 1), (5.1) is a function of r = ‖x − y‖
only12 and can be estimated by

(5.2) ĝ(r) = 1

sdrd−1


=∑
x,y∈X

kb(r − ‖x − y‖)
λ(x)λ(y)|W ∩ Wx−y | ,

where sd denotes the surface area of the unit sphere in R
d ,

∑ 
= denotes the summation over
all pairs of distinct points, kb(·) is an one-dimensional smoothing kernel with bandwidth b,
1/|W ∩ Wx−y | is the spatial edge correction factor (Ohser and Stoyan (1981)) (temporally,
1/|T ∩ Tx−y |) and |A| is the volume of A ⊂ R

d . If there is no interaction, the pair correlation
function is 1. At short distances a value of ĝ(r) larger than 1 suggests clustering in the sense
that points are more likely to occur from one another, whereas a value smaller than 1 suggests
inhibition, that is, points tend to mutually avoid each other. If the intensity function λ(x) is
unknown, a plug-in estimator can be used.

In practice, we employ (5.2) with Gaussian smoothing kernels as kb and plug in the fit-
ted intensity functions based on the data from all 17 years. We set the possible interaction
intervals for the spatial and temporal domain to 10,000 metres and 100 days, respectively,
and the smoothing bandwidths to 500 metres and 10 days. The estimated pair correlation
functions are plotted in Figure 10. Overall, both the spatial and temporal results show a curve
that converges to 1. At smaller distances there is some attraction between the points spatially.
Temporally, possibly because of the precision of the observations (daily basis), there is some
repulsion and a weak peak at an interval of about 20 days. The latter might also be due to
underestimates of the intensity function on a specific pair of days (cf. equation (5.2)).

5.1.2. The K-function. Since the pair correlation function shows some point interactions
at small distances and time intervals, we perform a joint space-time K-function test on the
fire data. The K-function, also known as Ripley’s reduced second moment function, of a
stationary point process X is defined as the expected number of other points within a given

12Spatially, ‖x − y‖ is the distance between two points; temporally, ‖x − y‖ is the time interval between two
points.
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FIG. 11. Estimated (solid black line) and theoretical (dashed red line) inhomogeneous K-functions for the
space-time pattern of the chimney fire incidents during 2004–2020 using the intensity functions fitted by our
Poisson point process model (a). Estimated (solid black line) and theoretical (dashed red line) inhomogeneous
K-functions for the chimney fire data and the envelope of the estimated inhomogeneous K-functions (shadows)
for the 99 Monto Carlo simulations of a Poisson point process with the fitted intensities, both using the intensity
functions fitted by kernel estimators (b).

distance of an arbitrary point divided by the intensities. In an inhomogeneous and space-time
version, it takes the form of

(5.3) Kinhom(r, v) = 1

|B|E
{ ∑

x∈X∩B

∑
y∈X;y 
=x

1(‖x(u) − y(u)‖ ≤ r,‖x(t) − y(t)‖ ≤ v)

λ(x)λ(y)

}
,

where the distance and time intervals r, v ≥ 0, B denotes any Borel set, x and y are distinctive
points with x(u), y(u) and x(t), y(t) representing their spatial and temporal coordinates and
1(·) is the indicator function. Under appropriate weak stationarity assumptions (Gabriel and
Diggle (2009)), a pointwise unbiased estimator of the K-function is

(5.4) K̂inhom(r, v) = ∑
x∈X

∑
y∈X;y 
=x

1(‖x(u) − y(u)‖ ≤ r,‖x(t) − y(t)‖ ≤ v)

λ(x)λ(y)|(W × T ) ∩ (W × T )x−y |

with notation as in the previous section. In the absence of interaction, Kinhom(r, v) = 2πr2v.
Moreover, when the intensity function λ(x) is unknown, a plug-in estimator can be used.

We compute the inhomogeneous K-function over the chimney fire data from all 17 years.
To obtain an elegant view, we set the testing sequences of spatial and temporal distances to
10,000 metres and 100 days and divide both of them into 100 step size pairs of 100 metres
and one day. We calculate the K-function, using the fitted intensity functions by our Poisson
point process model to estimate λ in (5.4), and plot the result in Figure 11(a). As for the
pair correlation function, we find some evidence of clustering. To test whether the interaction
is statistically significant, we implement a Monte Carlo test (Baddeley, Rubak and Turner
(2015)). We generate 99 realisations of a Poisson point process with the fitted intensities
(i.e., by our Poisson point process model) and compute their K-functions and that of the
actual chimney fire data but now using kernel estimators to estimate the intensity function
λ in (5.4). We plot the local envelopes in Figure 11(b). As the empirical K-function of the
actual chimney fire data lies completely within the envelope, there is no reason to look beyond
a Poisson model.

5.2. Residual analysis. In order to further verify the validity of our point process model,
we perform a residual analysis to check the remaining structure after the modelling of a
Poisson point process with specific forms defined in (4.1), (4.2) and (4.11)–(4.14). We fit the
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FIG. 12. Spatial (a) and temporal (b) residuals based on the chimney fire data during 2004–2020. The unit in
the spatial plot is metre−2; the unit in the temporal plot is month−1.

model using the data from all 17 years and compute spatial and temporal residuals separately.
As suggested in Baddeley et al. (2005), the spatial residuals are defined as the difference
between the smoothed fitted fire risk and the smoothed actual realisations using Gaussian
kernels with a standard deviation of 1000 metres. Temporally, we show the residuals of the
difference between the predicted and actual monthly counts.

The results of the residual analysis are plotted in Figure 12. In the spatial domain, no
specific pattern is shown, except that our Poisson point process model still overestimates
for big city centres (e.g., Enschede and Hengelo), whereas it underestimates a bit for small
city centres. This could be expected, as our model depends only on the density of houses
of various types, and we observe a saturation pattern of chimney fire occurrences when the
density of a house type increases (cf. Figure 6). A possible solution for that is to apply a
piecewise function, instead of the linear function, to model the relation between chimney fire
occurrences and the density of a house type. In the temporal domain, no particular pattern is
apparent.

6. Discussion. In this section we discuss the data-driven modelling process designed for
chimney fire prediction, which can be generalized to similar fire types. We also investigate
the influence of tuning the dummy intensity ρ to important regions and times in logistic
regression estimation on model fitting.

6.1. Modelling process. We propose a two-step data-driven modelling process for the
risk prediction of chimney fires.

In the first step, we combine machine learning and statistics, where the former is utilized
to help select the most important environmental variables and the latter appropriately ap-
proximates and explains the relations between explanatory variables and fire incidence. We
employ parametric functions to model such relations and fit them using logistic regression es-
timation so that the influence of a variable on chimney fires can be analyzed by its coefficient
in the function model. This combination offers significant advantages. From the machine
learning side: (i) compared to naive statistics used for the selection of explanatory variables,
random forests can detect both linear and nonlinear correlation between a candidate variable
and chimney fire occurrences; (ii) random forests consider the dependence among candidate
variables nonparametrically; (iii) through applying the conditional permutation importance
techniques, instead of the traditional ones, the bias toward correlated variables is suppressed;
(iv) machine learning algorithms can handle the selection with a large number of putative
variables, while statistical methods often behave unstable or even fail in such cases. From
the statistics side: (i) classic statistical methods for regression modelling with specific math-
ematical expressions are more interpretable and based on natural assumptions; (ii) statistical
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methods also allow for significance testing for detailed analyses and uncertainty quantifica-
tion. However, due to the fact that the environmental variables relevant to our chimney fire
data are not available for every point in space and time, we perform variable selection and
model fitting at different levels of data aggregation, which has the disadvantage that the se-
lected explanatory variables might not be consistent. We leave it as an important direction in
future work.

In the second step, we use summary statistics, the pair correlation function and the K-
function, to detect point interactions. We also perform a residual analysis to validate the
model structure. Although in our study a Poisson point process model is sufficient for chim-
ney fire prediction, a hierarchical model (Banerjee, Carlin and Gelfand (2015)), where ran-
dom effects are incorporated to deal with latent variables, might be more appropriate for other
fire types.

6.2. ρ tuning in logistic regression estimation. Recall that the role of the dummy point
process in logistic regression estimation is to estimate the integral in (4.4). In Baddeley et al.
(2014), a rule of thumb was proposed that the intensity function ρ of the dummy point process
should be at least four times the intensity function λ of the point process to be estimated;
additionally, a data-driven selection of ρ was suggested.

In Section 4.4 we tune ρ to concentrate on the urban areas and cold seasons by (4.10) in
order to efficiently obtain more precise estimates for model parameters provided a limited
number of dummy points. Here we perform two experiments to verify the influence of this
ρ tuning operation in the spatial and temporal domains separately. Specifically, we fit our
fire prediction model on the data from all 17 years using logistic regression estimation with
and without tuning the dummy intensity ρ and plot the difference of the fitted values. For
comparison, we set the expectations of the number of dummy points as equal in both cases.
In addition, since the realisations of the dummy point process generated in different runs
contain randomness, we perform each experiment 60 times and plot the averaged spatial and
temporal differences to reduce the randomness.

The results show that, under the premise of the same amount of calculation, concentrating
on important regions and times enables the model to obtain more accurate patterns of chimney
fires. Spatially, according to Figure 13(a), the bias caused by the saturation effect shown in
Figure 6 is reduced. Temporally, plotted in Figure 13(b), the fitted fire intensities increase
in March and April, which are known as the weather tipping seasons and are found more
likely to catch chimney fires in School (2018). To summarize, tuning the dummy intensity ρ

to regions and times that are salient for fire risk is helpful to estimate the risk more efficiently
and capture important underlying patterns.

FIG. 13. Spatial (a) and temporal (b) difference of the fitted intensities using tuned ρ compared to uniform ρ

with an equal expected number of dummy points in logistic regression estimation (averaged on 60 random runs).
The unit in the spatial plot is metre−2; the unit in the temporal plot is day−1.
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7. Conclusion. In this paper we proposed a data-driven modelling process for chim-
ney fire risk prediction, which can be generalized to studies on other fire types. First, we
applied random forests and permutation importance techniques to identify the explanatory
variables nonparametrically from a large number of environmental variables. From a practi-
cal perspective, our results indicate that prewar detached or semidetached houses run a higher
risk of chimney fires, and, therefore, public awareness campaigns should preferentially tar-
get the owners of such houses. Second, based on the observed relations between the selected
variables and chimney fire occurrences, we defined a Poisson point process model to learn
the observed spatiotemporal point pattern in order to predict fire risk. We applied logistic
regression estimation for model fitting and provided infill asymptotic confidence intervals.
Additionally, to validate our model assumptions we performed a second-order analysis and
a residual study. Last but not least, we reviewed our modelling process and showed the ad-
vantages of the tuned intensity function of the dummy point process in logistic regression
estimation.

For future work the first direction would be to extend the data-driven modelling process of
chimney fire risk prediction to similar fire types to test its utility. Additionally, due to data lim-
itations, we performed our nonparametric variable selection on areal unit data, which may not
return consistent results on point process data. Hence, it would also be interesting to conduct
a study into data-driven variable selection for point process modelling when environmental
variables are available for every point in space and time.
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SUPPLEMENTARY MATERIAL

Supplement to “Data-driven chimney fire risk prediction using machine learning and
point process tools” (DOI: 10.1214/23-AOAS1752SUPP; .pdf). Supplement A: Results for
Extra Variable Importance Experiments. In the selection of explanatory variables, to test the
influence of different hyperparameter settings of random forests (i.e., the number of randomly
sampled input variables at each tree node, mtry, and the random seed) on variable importance,
we performed experiments that construct random forests with multiple configurations. More-
over, to assess the influence of small variations in weather among different parts of the Twente
region on variable importance, we performed another analysis on the temporal data from two
neighbouring weather stations. We provide the results obtained from these experiments in
this supplement.
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