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Abstract. Spiking neural networks (SNNs) have gained attention as
models of sparse and event-driven communication of biological neurons,
and as such have shown increasing promise for energy-efficient applica-
tions in neuromorphic hardware. As with classical artificial neural net-
works (ANNs), predictive uncertainties are important for decision mak-
ing in high-stakes applications, such as autonomous vehicles, medical
diagnosis, and high frequency trading. Yet, discussion of uncertainty es-
timation in SNNs is limited, and approaches for uncertainty estimation in
ANNs are not directly applicable to SNNs. Here, we propose an efficient
Monte Carlo(MC)-dropout based approach for uncertainty estimation in
SNNs. Our approach exploits the time-step mechanism of SNNs to enable
MC-dropout in a computationally efficient manner, without introducing
significant overheads during training and inference while demonstrating
high accuracy and uncertainty quality.

Keywords: Spiking Neural Network · Uncertainty Estimation · MC-
dropout.

1 Introduction

Inspired by the brain’s event-driven and sparse communication, spiking neural
networks (SNNs) are enabling applications with high energy-efficiency in the
form of neuromorphic computing [21]. Analogous to biological neurons, spik-
ing neurons in SNNs communicate using discrete spikes, and time stepping is
typically used to account for the evolution of these neurons’ internal state as
a response to impinging and emitted spikes. With recent advances in architec-
tures and training methods, SNNs now achieve performance comparable to their
artificial neural network (ANN) counterparts in many tasks [25, 26, 3].

To employ SNNs in the real-world however, accurate predictions have to be
paired with high-quality uncertainty estimation to enable decision-making in
high-stakes applications such as autonomous vehicles, medical diagnosis, and
high frequency trading [4]: uncertain predictions in these applications may need
to be reviewed by human experts for final decisions. In ANNs, predictive uncer-
tainties in classification models are commonly represented by predictive distri-
butions [13]. While evidence suggests that the brain performs a form of Bayesian
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Fig. 1: (a) In ANNs, MC-dropout is performed by averaging results for a pre-
defined number (M) of forward passes through a dropout-enabled network. (b)
In AOT-SNNs, inference at each time step is taken as functionally equivalent
to a forward pass in the MC-dropout method. As the SNN network evaluation
requires T time-steps already, only one effective forward pass is needed.

inference based on uncertainty representations [18], the literature on uncertainty
in SNNs is relatively limited and primarily concentrates on the sampling of prob-
abilistic distributions, typically from a neuroscience perspective [20, 12].

Approaches for uncertainty estimation in classical deep learning models can
be divided into two groups: deterministic methods and Bayesian methods [6].
With a deterministic method, a model learned from training data is essentially a
point estimate of the model’s parameters. In a deterministic deep network, each
predictive distribution is estimated by a single forward propagation followed by
the softmax function. Yet, although it is feasible to infer uncertainty with deter-
ministic methods, these methods are known to be prone to output overconfident
estimation [13, 6]. In contrast, a Bayesian network learns the posterior distribu-
tion of parameters in the network rather than depending on a single setting of
parameters. The probability outputs of a Bayesian method can be analytically
obtained by marginalizing the likelihood of the input with the estimated poste-
rior distribution; this however is generally an intractable problem. To tackle this
issue, many approximation methods and non-Bayesian methods have been intro-
duced [6]. Example of these methods like Monte-Carlo-dropout (MC-dropout)
[5] and deep ensembles [13] achieve excellent performance in terms of uncertainty
estimation quality, either by repeatedly carrying out inference for each sample
in perturbed versions of the network (Figure 1a), or by training a collection of
networks and then carrying out inference in each network.

Here, we propose an efficient uncertainty estimation approach for SNNs by ex-
ploiting their time-step mechanism. Specifically, we apply continual MC-dropout
in SNNs by taking their outputs averaged over time steps as predictive distri-
butions, where we train SNNs with a loss function that also involves their time
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steps: Average-Over-Time-SNNs (AOT-SNNs, Figure 1b). In AOT-SNNs, we
take inference of each time step as functionally equivalent to a forward pass in
the classical MC-dropout method. Since only one forward pass is needed in infer-
ence, the computational overhead for AOT-SNNs is significantly reduced relative
to the MC-dropout method while still allowing effective uncertainty estimation.
We compare the performance of AOT-SNNs with more standard SNNs, as well
as with SNNs using the classical MC-dropout approach and SNN ensembles,
across multiple classification tasks. We demonstrate that for identical network
architectures, AOT-SNNs substantially outperform more standard SNNs and
achieve comparable accuracy as ensembles and classical MC-dropout SNNs at
little cost to uncertainty estimation quality while being much more computa-
tionally efficient.

2 Background

2.1 Problem Setup

We assume a training dataset D that consists of N i.i.d data points D =
{X,Y} = {xn, yn}Nn=1, where xn ∈ Rd and the true label yn ∈ y = {1, . . . ,K}.
Given a sample xn, a neural network outputs the probabilistic predictive distri-
bution pω(yn|xn), where ω is the parameters of the network.

A number of non-Bayesian methods achieving excellent performance in term
of uncertainty estimation have been proposed, among which are deep ensembles
[13] and post-hoc calibration methods [10]. Deep ensembles are considered a
“gold standard” for uncertainty estimation [24], while a set of models are trained
with a proper scoring rule as the loss function. At inference time, the output of
all models are then combined to obtain a predictive distribution. Post-hoc cali-
bration methods, such as temperature scaling [10], involve the re-calibration of
probabilities using a validation dataset and achieve excellent calibration perfor-
mance in the i.i.d test dataset.

2.2 Bayesian Neural Networks and MC-Dropout Approximation

In a Bayesian neural network, the predictive distribution for a sample x is given
by:

p(y|x,D) =

∫
p(y|x, ω)p(ω|D)dω. (1)

The posterior distribution, p(ω|D) or p(ω|X,Y), of the parameters ω can be
computed by applying Bayes’ theorem

p(ω|X,Y) =
p(Y|X, ω)p(ω)

p(Y|X)
. (2)

Due to the intractability of the normalizer in (2), the posterior distribution
p(ω|D) and the predictive distribution p(y|x,D)) usually cannot be evaluated
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analytically. A variety of approximation methods have been introduced to tackle
this issue [14, 9]. One such approximation is the MC-dropout method, which
is often taken as a baseline model in uncertainty estimation [13, 17] due to its
feasibility and relatively good performance.

Dropout [22] is a simple but effective technique used in deep learning models
to prevent overfitting. In the MC-dropout method, dropout is applied before
each weight layer of a neural network in both training and testing. The pre-
dictive distribution calculation with the MC-dropout method is performed by
averaging results over a predefined number of forward passes through a dropout-
enabled network. Gal & Gharamani [5] showed that neural networks with such
configuration can be viewed as an approximation to a Bayesian method in the
form of deep Gaussian processes [2].

Either MC-dropout models or deep ensembles involves multiple forward prop-
agation passes in inference. As a result, when naively applied to SNNs, the
computational and energy costs becomes relatively high due to the necessity of
repeatedly running SNNs for multiple times during inference.

2.3 Source and Quality of Predictive Uncertainty

The only source of predictive uncertainty of deterministic methods is from the
noisy data. Uncertainty in a Bayesian method comes from both data and defects
of the model itself [6]: uncertainty caused by data is referred to as data uncer-
tainty, while uncertainty caused by defects of the model itself is referred to as
model uncertainty.

The quality of predictive uncertainties can be measured from two aspects
[13]. The first concerns uncertainty quality on in-distribution data, where test
data and training data share the same distribution. The second aspect evaluates
generalization of uncertainty on domain-shifted data. While certain post-hoc cal-
ibration methods may generate accurate predictive probabilities for i.i.d data,
their effectiveness in predicting uncertainty for domain-shifted data is not en-
sured [17]. For both aspects, model calibration is examined as the indication of
uncertainty quality [17]. For classification tasks, accuracy and calibration are two
evaluation measures that are mutually orthogonal [13]. Accuracy, defined as the
ratio of corrected classified examples to total number of examples, measures how
often a model correctly classifies; calibration measures the quality of predictive
probability distributions [13] and indicates the extent to which the probability
of a predicted class label reflects the real correct likelihood. A class of metrics to
measure calibration is referred to as proper scoring rules [8], which include the
Brier score (BS) and negative log-likelihood (NLL); another calibration metrics
is the Expected Calibration Error (ECE) [10], which is a scalar summary statistic
of calibration that approximates miscalibration. Although the definition ECE is
intuitive and thus widely used, it is not a perfect metric for calibration because
optimal ECE values can be generated by trivial solutions [17]; see the Appendix
for details on proper scoring rules and ECE.
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2.4 SNN

SNNs typically work with the same types of network topologies as ANNs, but
computation in SNNs is distinct. SNNs use stateful and binary-valued spiking
neurons, rather than the stateless and analog valued neurons of ANNs. As a
result, unlike synchronous computation in ANNs, inference in SNNs is in a it-
erative form through multiple time steps t = 0, 1, ..., T : in each time step t, the
membrane potential of a spiking neuron U(t) is affected by the impinging spikes
from connecting neurons emitted at time step t − 1, and the past potential
U(t − 1). Once the membrane potential U(t) reaches a threshold θ, the neu-
ron itself emits a spike. Such sparse and asynchronous communications between
connected neurons is key to enabling SNNs to achieve high energy-efficiency.

LIF Neurons Various spiking neuron models exist, ranging in complexity from
the detailed Hodgkin-Huxley model to the simplified Leaky-Integrated-and-Fire
(LIF) neuron model [7]. The latter is widely used in SNNs, as it is interpretable
and computationally efficient. Resembling an RC circuit, the LIF neural model
is represented as:

τ
dU

dt
= −U +RI. (3)

where I and R are the current and input resistance, and τ is the time constant
of the circuit. The discrete approximation of (3) can be written as:

ut
i = λut−1

i +
∑
j

wijs
t
j − st−1

i θ, (4)

sti =

{
1, if ut

i > θ
0, otherwise

(5)

where ui is the membrane potential of a neuron i, λ denotes the leaky constant
(< 1) for the membrane potential, wij represents the weight connecting the
neuron i and its pre-synaptic neuron j, and si indicates whether a neuron spikes.

With the introduction of surrogate gradient methods [16, 25] and learnable
LIF neurons [25, 3], both trainability and performance of SNNs have been im-
proved dramatically.

3 Methods

Here, we present our proposed AOT-SNNs. We first explain how we efficiently
apply MC-dropout to SNNs, and then introduce the loss function used in AOT-
SNNs, which is based on the mean output values over time steps. Lastly, we
explain the network architecture we use to demonstrate AOT-SNNs in practice.
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3.1 Efficient MC-dropout in SNNs

As noted, the classical MC-dropout method runs a test sample a specified num-
ber (M) times in a model with dropout enabled, and takes the output of these
forward passes as the final predictive distribution (Figure 1a). Thus applied in
ANNs, MC-dropout results in satisfactory predictive uncertainty estimation.

In principle, such MC-dropout can be applied directly to SNNs, as MC-
dropout SNN. This, however, results in computationally expensive inference as
an SNN typically has to be run for multiple time steps to perform inference.
Naively performing inference of a single sample in an MC-dropout SNN would
mean running M forward passes of a sample through a network where each
individual pass entails the evaluation of T time steps, incurring M × T time
steps in total.

As an alternative, we propose to leverage the SNN time-step mechanism by
enabling MC-dropout in AOT-SNNs during a single evaluation. Specifically, we
compute predictive distributions in a dropout-enabled AOT-SNN by averaging
outputs at multiple time steps. For a sample x, the AOT-SNN computes at each
time step t a probability distribution pt(y|x). Thus, the probability distribution
for the sample x is calculated as:

p(y|x) = 1

T

T∑
t=1

pt(y|x).

In this view, each time step in an AOT-SNN is weakly equivalent to a single
forward pass in the classical MC-dropout method. As such, only one forward
pass is required during inference, which requires just T time steps compared to
M × T for the MC-dropout SNN.

3.2 Loss Function

Loss functions in many current high-performing SNN learning algorithms [25, 3,
19, 27] are computed based on the output values of last time step, and we will
refer such loss functions as last-time-step loss, resulting in Last-Time-Step-SNNs
(LTS-SNNs). The last-time-step loss can be written as:

L = l(T ), (6)

where l(T ) is the loss function computed from the output values of the final time
step T .

Since the last-time-step loss is not compatible with the proposed uncertainty
estimation approach in AOT-SNNs, we introduce the average-over-time loss,
which calculates its output by averaging over multiple time steps:

L =
1

T

T∑
t=1

l(t). (7)
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By combining the average-over-time loss with dropout, we expect that the
quality of uncertainty estimation for our approach will be improved, as the AOT
loss pushes SNNs to correctly classify as much as possible at every time step.
This is in contrast to LTS-SNNs, where dropout is not enabled during inference4

and the predictive distributions output of only the last time step are used.
For l(t), either negative log-likelihood (NLL) loss or the mean squared error

(MSE) loss [3] can be used. Here, we use the MSE loss, as we find that in
practice the NLL loss causes a disconnect between NLL and accuracy, which is
an indication of miscalibration [10].

3.3 Network Architecture

We use AOT-SNNs with a network architecture very similar to the high-performing
PLIF networks in [3]. These networks are composed of a spiking encoder net-
work and a classifier network. The spiking encoder network consists of multiple
downsampling modules. Each downsampling module has a certain number of
convolution blocks and a pooling layer (kernel size = 2, stride = 2). The con-
volution block is composed of a convolution layer (kernel size = 3, stride =
1, padding = 1), a batch normalization layer, and a spiking neuron layer.

Our classifier network is slightly modified from [3] and includes a fully-
connected layer, a spiking neuron layer, another fully-connected layer, which
is then followed by a readout integrator layer. Unlike the original PLIF networks
that classify using relatively coarse summed rate-coding collected from a pop-
ulation of output neurons, probabilities of AOT-SNNs are computed based on
the membrane potentials of readout integrator neurons as in [25]. This modifi-
cation enables AOT-SNNs to achieve better uncertainty estimation performance
compared to corresponding standard PLIF networks while obtaining similar ac-
curacy. In the spiking neuron layers, PLIF neurons [3] are used, where the time
constants τ are learned and shared by neurons within the same layer. Note that
dropout is applied to the neurons’ output spikes, and input data is directly
injected into the network as current into the input neurons.

4 Experiments

We performed a series of experiments to compare AOT-SNNs to LTS-SNNs, as
well as MC-dropout SNNs and also with the ‘gold standard’ of SNN ensem-
bles, across multiple classification tasks. As a proof of concept, we first applied
this approach to the MNIST dataset. Second, we experiment on the CIFAR-10
dataset to compare our models with corresponding LTS-SNNs. Additionally, we
reported and analyzed results on the CIFAR-100 dataset. Furthermore, we car-
ried out an ablation study where we characterized the uncertainty properties of
AOT-SNNs with regard to dropout rates and dropout types.

4 For LTS-SNNs, dropout is not enabled at inference time as this leads to notably
weak performance for LTS-SNNs, similar to that of ANNs.
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Table 1: Performance comparisons between the AOT-SNN and its corresponding
LTS-SNN on the MNIST dataset (mean±std across 10 models). The numbers
after the model names represent time steps.

Model Accuracy (%) ↑ BS ↓ NLL ↓ ECE ↓

AOT-SNN (8) 99.54±0.030 7.0e-4±4.3e-5 0.0144±7.6e-4 1.2e-3±3.4e-4

LTS-SNN (8) 99.37±0.080 9.8e-4±9.9e-5 0.021±2.5e-3 4e-3±1.1e-3

MC-dropout SNN (8, 10) 99.57±0.033 6.5e-4±5.0e-05 0.0125±9.6e-4 1.1e-3±2.9e-4

SNN Ensembles (8, 10) 99.56 7.5e-4 0.0180 6.7e-3

4.1 Experimental Setup

In our experiments, LTS-SNNs used the same layer structure as their corre-
sponding AOT-SNNs. All the MC-dropout SNNs and SNN ensembles are based
on their corresponding LTS-SNNs.

The Adam optimizer was used, with a cosine annealing learning rate sched-
uler, whose initial learning rate is 0.001 and Tmax is 64. The default dropout rate
used is 0.5. For the MINIST dataset, we used a batch size of 150, while the batch
sizes were 60 for CIFAR-10 and 15 for CIFAR-100. The number of epochs used
for each dataset were 200 (MNIST), 300 (CIFAR-10), and 300 (CIFAR-100).

4.2 MNIST

The spiking encoder network for the MNIST dataset has two downsampling
modules, each of which includes only one convolution block. In Table 1, we
compared the AOT-SNNs, its corresponding LTS-SNNs, MC-dropout SNNs, and
SNN ensembles, all using best performing models that have eight time steps to
evaluate samples. The results demonstrate that the AOT-SNNs outperform the
LTS-SNNs in both accuracy and the predictive uncertainty metrics, including
Brier score, NLL, and ECE. Furthermore, AOT-SNNs exhibit similar accuracy
and uncertainty estimation as both MC-dropout SNNs and SNN ensembles.

4.3 CIFAR-10 and CIFAR-100

The architectures of AOT-SNNs for the CIFAR-10 and CIFAR-100 dataset are
similar. They apply the same spiking encoder network, which has two down-
sampling modules, each with three convolution blocks. Their classifier networks
differ only in the last fully-connected layer due to their different number of
ground truth classes.
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CIFAR-10 held-out test dataset. Table 2 presents a comparison of AOT-
SNNs to LTS-SNNs, MC-dropout SNNs, and SNN ensembles. While each MC-
dropout SNN ran five forward passes, each SNN ensemble consisted of five mod-
els. We show results for 4 and 8 time steps, corresponding to respective best per-
forming duration (see also Table 3). AOT-SNNs exhibit superior performance
compared to LTS-SNNs and achieve comparable accuracy to SNN ensembles
while yielding slightly lower results on BS and NLL, only underperforming on
ECE. In comparison to the MC-dropout SNNs, AOT-SNNs do deliver superior
accuracy and performed almost as well as BS and NLL, with only a slight loss
in ECE.

Table 3 presents the results of AOT-SNNs and LTS-SNNs with time steps
smaller or equal to 10. With each model trained five times, the table lists the
mean and standard deviation for all the metrics. In this exhaustive compari-
son, we see that that AOT-SNNs significantly outperform LTS-SNNs, with all
models with more than 3 time steps achieving significantly better accuracy and
Brier score, with best results for 8 time steps. Moreover, almost all AOT-SNNs
achieve better NLL and ECE, except for the model with a single time step (which
however has considerably lower accuracy).

CIFAR-100. Comparing the AOT-SNN with time step eight with its corre-
sponding LTS-SNN for CIFAR-100 (Table 4), we similarly find that AOT-SNNs
achieve significantly better results than the LTS-SNN, in both accuracy and
predictive uncertainty quality.

CIFAR-10-C: domain-shifted test dataset. As mentioned earlier, the qual-
ity of predictive uncertainties needs to be measured on both in-distribution held-
out data and domain-shifted data. We evaluated AOT-SNNs on the CIFAR-10-
C dataset [11], a domain-shifted test dataset of CIFAR-10. The CIFAR-10-C

Table 2: Comparison on the CIFAR-10 dataset between AOT-SNNs, LTS-SNNs,
MC-dropout models, and deep ensembles (mean± std across 5 models). The
digits enclosed in brackets following the model names indicate the number of
SNN time steps and the number of forward passes or models used in inference.

Model Accuracy (%) ↑ BS ↓ NLL ↓ ECE ↓
AOT-SNN (4, 1) 90.2±0.26 0.0153±3.0e-4 0.38±1.2e-2 0.040±3.1e-3
AOT-SNN (8, 1) 90.8±0.23 0.0144±4.0e-4 0.37±2.2e-2 0.043±4.1e-3
LTS-SNN (4, 1) 88.9±0.71 0.017±1.1e-3 0.43±2.8e-2 0.058±4.4e-3
LTS-SNN (8, 1) 88.5±0.60 0.0181±8.1e-4 0.47±1.3e-2 0.067±3.4e-3

MC-dropout SNN (4, 5) 90.53±0.37 0.0140±4.1e-4 0.32±1.0e-2 0.026±3.0e-3
MC-dropout SNN (8, 5) 90.43±0.37 0.0145±5.3e-4 0.35±1.3e-2 0.037 ±1.4e-3
SNN Ensembles (4, 5) 90.9 0.0134 0.2919 0.012
SNN Ensembles (8, 5) 90.8 0.0135 0.2967 0.016
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Table 3: Performance comparisons between AOT-SNNs and LTS-SNNs on CI-
FAR10 (mean±std across 5 trials).

Model Time steps Accuracy (%) ↑ BS ↓ NLL ↓ ECE ↓

AOT-SNN 2 89.4±0.18 0.0168±1.4e-4 0.417±6.1e-3 0.047±2.3e-3
AOT-SNN 3 89.7±0.26 0.0160±2.7e-4 0.40±2.1e-2 0.044±4.2e-3
AOT-SNN 4 90.2±0.26 0.0153±3.0e-4 0.38±1.2e-2 0.040±3.1e-3
AOT-SNN 5 90.4±0.07 0.0150±2.4e-4 0.39±2.6e-2 0.043±3.6e-3
AOT-SNN 6 90.5±0.16 0.0149±2.8e-4 0.38±1.7e-2 0.043±3.0e-3
AOT-SNN 7 90.2±0.34 0.0151±4.3e-4 0.37±1.2e-2 0.043±1.9e-3
AOT-SNN 8 90.8±0.23 0.0144±4.0e-4 0.37±2.2e-2 0.043±4.1e-3
AOT-SNN 9 90.5±0.55 0.0147±7.3e-4 0.37±2.4e-2 0.044±4.1e-3
AOT-SNN 10 90.7±0.41 0.0146±6.2e-4 0.37±2.4e-2 0.044±5.2e-3

LTS-SNN 1 88.2±0.47 0.0168±6.8e-4 0.36±1.3e-2 0.014±3.4e-3
LTS-SNN 2 88.6±0.40 0.0180±3.1e-4 0.46±1.2e-2 0.067±5.5e-3
LTS-SNN 3 88.0±0.56 0.0184±7.6e-4 0.44±2.3e-2 0.060±3.0e-3
LTS-SNN 4 88.9±0.71 0.017±1.1e-3 0.43±2.8e-2 0.058±4.4e-3
LTS-SNN 5 88.4±0.27 0.0181±4.7e-4 0.46±1.6e-2 0.063±3.1e-3
LTS-SNN 7 88.3±1.12 0.018±1.4e-3 0.48±2.6e-2 0.068±6.2e-3
LTS-SNN 8 88.5±0.60 0.0181±8.1e-4 0.47±1.3e-2 0.067±3.4e-3
LTS-SNN 9 88.0±0.52 0.0189±8.2e-4 0.49±2.5e-2 0.069±3.6e-3
LTS-SNN 10 88.0±0.91 0.019±1.5e-3 0.49±4.6e-2 0.069±6.2e-3

Table 4: Performance comparisons between the AOT-SNN and the corresponding
LTS-SNN on the CIFAR-100 dataset.

Model Time steps Accuracy (%) ↑ BS ↓ NLL ↓ ECE ↓

AOT-SNN 8 65.15 5.028e-3 1.6749 0.1352
LTS-SNN 8 62.32 5.333e-3 1.7325 0.1665

dataset is designed to evaluate the robustness of image classification models
against common corruptions. It contains 19 corruption types that are created
by applying a combination of 5 severity levels to the original CIFAR-10 test
set. The CIFAR-10-C dataset is commonly used as a benchmark to evaluate the
uncertainty estimation in domain-shifted settings [17]. We compared the perfor-
mance of the AOT-SNN with eight time steps and its corresponding LTS-SNN
on all the severity levels of CIFAR-10-C (Figure 2). With the AOT-SNN outper-
forming the LTS-SNN in all severity levels, we conclude that AOT-SNNs also
improve uncertainty estimation over LTS-SNNs in domain-shifted settings.
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Fig. 2: Comparisons of the AOT-SNN model and its corresponding LTS-SNN on
each severity level of CIFAR-10-C.

Ablation study. We further considered the impact of dropout rates and dropout
types on the quality of uncertainty estimates of AOT-SNNs.

Dropout type. We replaced the dropout in the LTS-SNN and our best-performing
model, both of which have eight time steps, with DropConnect [23]. Instead
of dropping the spikes like the regular dropout, DropConnect randomly drops
the weights in each layer before the PLIF neuron layer. As shown in Table
5, despite the slightly better performance of the LTS-SNN-DC compared to the
corresponding dropout-based models (LTS-SNN), the AOT-SNN-DC outperform
LTS-SNN-DC in terms of both accuracy and uncertainty quality (both models in
the table have a dropout rate of 0.5). The observation suggests that DropConnect
may fulfill the same function as regular dropout in AOT-SNNs, and in some cases
even could be preferable.

Table 5: Performance comparisons between the AOT-SNN with DropConnect
and its corresponding LTS-SNN on the CIFAR-10 dataset. The numbers after
the model names represent time steps.

Model Accuracy (%) ↑ BS ↓ NLL ↓ ECE ↓

AOT-SNN (8) 90.8±0.23 0.0144±4.0e-4 0.37±0.022 0.043±4.1e-3
AOT-SNN-DC (8) 90.5±0.37 0.0140±4.1e-4 0.32±0.010 0.026±3.0e-3

LTS-SNN (8) 88.5±0.60 0.0181±8.1e-4 0.47±0.013 0.067±3.4e-3
LTS-SNN-DC (8) 90.2±0.25 0.0161±3.6e-4 0.47±0.035 0.065±4.1e-3

Dropout rate. To investigate the impact of dropout rate on performance, we
tested AOT-SNNs with dropout rates ranging from 0.1 to 0.9 in increments
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Fig. 3: The impact of dropout rate on performance of AOT-SNNs on the CIFAR-
10 dataset. Dropout rates are ranging from 0.1 to 0.9 in increments of 0.1.

of 0.1. These experiments were based on our best-performing model of eight
time steps and trained on the CIFAR-10 dataset separately for each amount
of dropout. The accuracy and Brier score were plotted in Figure 3. The trends
in accuracy, Brier score are consistent, with models having dropout rates lower
than 0.5 producing flat results, followed by a decline in performance.

5 Conclusion

We proposed a novel and efficient approach for uncertainty estimation in spiking
neural networks SNNs based on the MC-dropout method combined with an ap-
propriate choice of loss-function. Our approach exploits the time-step mechanism
of SNNs to enable MC-dropout in a computationally efficient manner, without in-
troducing significant overheads during training and inference. We demonstrated
that our proposed approach can be computationally efficient and performant in
uncertainty quality at the same time. Future work could investigate the poten-
tial of our approach in more applications, such as speech processing and medical
imaging.
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Appendix

Proper Scoring Rules. A scoring rule S(p, y) assigns a value for a predictive
distribution p and one of the labels y. A scoring function s(p,q) is defined as
the expected score of S(p, y) under the distribution q

s(p,q) =

K∑
y=1

qyS(p, y). (8)
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If a scoring rule satisfies s(p,q) <= s(q,q), it is called a proper scoring rule. If
s(p,q) = s(q,q) implies q = p, this scoring rule is a strictly proper scoring rule.
When evaluating quality of probabilities, an optimal score output by a proper
scoring rule indicates a perfect prediction [17]. In contrast, trivial solutions could
generate optimal values for an improper scoring rule [17, 8].

The two most commonly used proper scoring rules are Brier score [1] and
NLL. Brier score is the squared L2 norm of the difference between p and one-
hot encoding of the true label y. NLL is defined as S(p, y) = −logp(y|x) with
y being the true label of the sample x. Among these two rules, the Brier score
is more recommendable because NLL can unacceptably over-emphasize small
differences between small probabilities [17]. Note that proper scoring rules are
often used as loss functions to train neural networks. [13, 8].

ECE. The ECE is a scalar summary statistic of calibration that approximates
miscalibration [15, 10]. To calculate ECE, the predicted probabilities,
ŷn = argmaxyp(y|xn), of test instances are grouped into M equal-interval bins.
The ECE is defined as

ECE =

M∑
m=1

fm|om − em|, (9)

where om is the fraction of corrected classified instances in the mth bin, em the
average of all the predicted probabilities in the mth bin, and fm the fraction of
all the test instances falling into the mth bin. The ECE is not a proper scoring
rule and thus optimum ECEs could come from trivial solutions.
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